1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/slab.h>
8 #include <linux/pagemap.h>
9 #include <linux/highmem.h>
10 #include <linux/sched/mm.h>
11 #include <crypto/hash.h>
15 #include "transaction.h"
17 #include "compression.h"
19 #include "accessors.h"
20 #include "file-item.h"
22 #define __MAX_CSUM_ITEMS(r, size) ((unsigned long)(((BTRFS_LEAF_DATA_SIZE(r) - \
23 sizeof(struct btrfs_item) * 2) / \
26 #define MAX_CSUM_ITEMS(r, size) (min_t(u32, __MAX_CSUM_ITEMS(r, size), \
30 * Set inode's size according to filesystem options.
32 * @inode: inode we want to update the disk_i_size for
33 * @new_i_size: i_size we want to set to, 0 if we use i_size
35 * With NO_HOLES set this simply sets the disk_is_size to whatever i_size_read()
36 * returns as it is perfectly fine with a file that has holes without hole file
39 * However without NO_HOLES we need to only return the area that is contiguous
40 * from the 0 offset of the file. Otherwise we could end up adjust i_size up
41 * to an extent that has a gap in between.
43 * Finally new_i_size should only be set in the case of truncate where we're not
44 * ready to use i_size_read() as the limiter yet.
46 void btrfs_inode_safe_disk_i_size_write(struct btrfs_inode
*inode
, u64 new_i_size
)
48 u64 start
, end
, i_size
;
51 spin_lock(&inode
->lock
);
52 i_size
= new_i_size
?: i_size_read(&inode
->vfs_inode
);
53 if (!inode
->file_extent_tree
) {
54 inode
->disk_i_size
= i_size
;
58 ret
= find_contiguous_extent_bit(inode
->file_extent_tree
, 0, &start
,
60 if (!ret
&& start
== 0)
61 i_size
= min(i_size
, end
+ 1);
64 inode
->disk_i_size
= i_size
;
66 spin_unlock(&inode
->lock
);
70 * Mark range within a file as having a new extent inserted.
72 * @inode: inode being modified
73 * @start: start file offset of the file extent we've inserted
74 * @len: logical length of the file extent item
76 * Call when we are inserting a new file extent where there was none before.
77 * Does not need to call this in the case where we're replacing an existing file
78 * extent, however if not sure it's fine to call this multiple times.
80 * The start and len must match the file extent item, so thus must be sectorsize
83 int btrfs_inode_set_file_extent_range(struct btrfs_inode
*inode
, u64 start
,
86 if (!inode
->file_extent_tree
)
92 ASSERT(IS_ALIGNED(start
+ len
, inode
->root
->fs_info
->sectorsize
));
94 return set_extent_bit(inode
->file_extent_tree
, start
, start
+ len
- 1,
99 * Mark an inode range as not having a backing extent.
101 * @inode: inode being modified
102 * @start: start file offset of the file extent we've inserted
103 * @len: logical length of the file extent item
105 * Called when we drop a file extent, for example when we truncate. Doesn't
106 * need to be called for cases where we're replacing a file extent, like when
107 * we've COWed a file extent.
109 * The start and len must match the file extent item, so thus must be sectorsize
112 int btrfs_inode_clear_file_extent_range(struct btrfs_inode
*inode
, u64 start
,
115 if (!inode
->file_extent_tree
)
121 ASSERT(IS_ALIGNED(start
+ len
, inode
->root
->fs_info
->sectorsize
) ||
124 return clear_extent_bit(inode
->file_extent_tree
, start
,
125 start
+ len
- 1, EXTENT_DIRTY
, NULL
);
128 static size_t bytes_to_csum_size(const struct btrfs_fs_info
*fs_info
, u32 bytes
)
130 ASSERT(IS_ALIGNED(bytes
, fs_info
->sectorsize
));
132 return (bytes
>> fs_info
->sectorsize_bits
) * fs_info
->csum_size
;
135 static size_t csum_size_to_bytes(const struct btrfs_fs_info
*fs_info
, u32 csum_size
)
137 ASSERT(IS_ALIGNED(csum_size
, fs_info
->csum_size
));
139 return (csum_size
/ fs_info
->csum_size
) << fs_info
->sectorsize_bits
;
142 static inline u32
max_ordered_sum_bytes(const struct btrfs_fs_info
*fs_info
)
144 u32 max_csum_size
= round_down(PAGE_SIZE
- sizeof(struct btrfs_ordered_sum
),
147 return csum_size_to_bytes(fs_info
, max_csum_size
);
151 * Calculate the total size needed to allocate for an ordered sum structure
152 * spanning @bytes in the file.
154 static int btrfs_ordered_sum_size(const struct btrfs_fs_info
*fs_info
, unsigned long bytes
)
156 return sizeof(struct btrfs_ordered_sum
) + bytes_to_csum_size(fs_info
, bytes
);
159 int btrfs_insert_hole_extent(struct btrfs_trans_handle
*trans
,
160 struct btrfs_root
*root
,
161 u64 objectid
, u64 pos
, u64 num_bytes
)
164 struct btrfs_file_extent_item
*item
;
165 struct btrfs_key file_key
;
166 struct btrfs_path
*path
;
167 struct extent_buffer
*leaf
;
169 path
= btrfs_alloc_path();
172 file_key
.objectid
= objectid
;
173 file_key
.offset
= pos
;
174 file_key
.type
= BTRFS_EXTENT_DATA_KEY
;
176 ret
= btrfs_insert_empty_item(trans
, root
, path
, &file_key
,
180 leaf
= path
->nodes
[0];
181 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
182 struct btrfs_file_extent_item
);
183 btrfs_set_file_extent_disk_bytenr(leaf
, item
, 0);
184 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, 0);
185 btrfs_set_file_extent_offset(leaf
, item
, 0);
186 btrfs_set_file_extent_num_bytes(leaf
, item
, num_bytes
);
187 btrfs_set_file_extent_ram_bytes(leaf
, item
, num_bytes
);
188 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
189 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
190 btrfs_set_file_extent_compression(leaf
, item
, 0);
191 btrfs_set_file_extent_encryption(leaf
, item
, 0);
192 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
194 btrfs_mark_buffer_dirty(trans
, leaf
);
196 btrfs_free_path(path
);
200 static struct btrfs_csum_item
*
201 btrfs_lookup_csum(struct btrfs_trans_handle
*trans
,
202 struct btrfs_root
*root
,
203 struct btrfs_path
*path
,
206 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
208 struct btrfs_key file_key
;
209 struct btrfs_key found_key
;
210 struct btrfs_csum_item
*item
;
211 struct extent_buffer
*leaf
;
213 const u32 csum_size
= fs_info
->csum_size
;
216 file_key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
217 file_key
.offset
= bytenr
;
218 file_key
.type
= BTRFS_EXTENT_CSUM_KEY
;
219 ret
= btrfs_search_slot(trans
, root
, &file_key
, path
, 0, cow
);
222 leaf
= path
->nodes
[0];
225 if (path
->slots
[0] == 0)
228 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
229 if (found_key
.type
!= BTRFS_EXTENT_CSUM_KEY
)
232 csum_offset
= (bytenr
- found_key
.offset
) >>
233 fs_info
->sectorsize_bits
;
234 csums_in_item
= btrfs_item_size(leaf
, path
->slots
[0]);
235 csums_in_item
/= csum_size
;
237 if (csum_offset
== csums_in_item
) {
240 } else if (csum_offset
> csums_in_item
) {
244 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_csum_item
);
245 item
= (struct btrfs_csum_item
*)((unsigned char *)item
+
246 csum_offset
* csum_size
);
254 int btrfs_lookup_file_extent(struct btrfs_trans_handle
*trans
,
255 struct btrfs_root
*root
,
256 struct btrfs_path
*path
, u64 objectid
,
259 struct btrfs_key file_key
;
260 int ins_len
= mod
< 0 ? -1 : 0;
263 file_key
.objectid
= objectid
;
264 file_key
.offset
= offset
;
265 file_key
.type
= BTRFS_EXTENT_DATA_KEY
;
267 return btrfs_search_slot(trans
, root
, &file_key
, path
, ins_len
, cow
);
271 * Find checksums for logical bytenr range [disk_bytenr, disk_bytenr + len) and
272 * store the result to @dst.
274 * Return >0 for the number of sectors we found.
275 * Return 0 for the range [disk_bytenr, disk_bytenr + sectorsize) has no csum
276 * for it. Caller may want to try next sector until one range is hit.
277 * Return <0 for fatal error.
279 static int search_csum_tree(struct btrfs_fs_info
*fs_info
,
280 struct btrfs_path
*path
, u64 disk_bytenr
,
283 struct btrfs_root
*csum_root
;
284 struct btrfs_csum_item
*item
= NULL
;
285 struct btrfs_key key
;
286 const u32 sectorsize
= fs_info
->sectorsize
;
287 const u32 csum_size
= fs_info
->csum_size
;
293 ASSERT(IS_ALIGNED(disk_bytenr
, sectorsize
) &&
294 IS_ALIGNED(len
, sectorsize
));
296 /* Check if the current csum item covers disk_bytenr */
297 if (path
->nodes
[0]) {
298 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
299 struct btrfs_csum_item
);
300 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
301 itemsize
= btrfs_item_size(path
->nodes
[0], path
->slots
[0]);
303 csum_start
= key
.offset
;
304 csum_len
= (itemsize
/ csum_size
) * sectorsize
;
306 if (in_range(disk_bytenr
, csum_start
, csum_len
))
310 /* Current item doesn't contain the desired range, search again */
311 btrfs_release_path(path
);
312 csum_root
= btrfs_csum_root(fs_info
, disk_bytenr
);
313 item
= btrfs_lookup_csum(NULL
, csum_root
, path
, disk_bytenr
, 0);
318 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
319 itemsize
= btrfs_item_size(path
->nodes
[0], path
->slots
[0]);
321 csum_start
= key
.offset
;
322 csum_len
= (itemsize
/ csum_size
) * sectorsize
;
323 ASSERT(in_range(disk_bytenr
, csum_start
, csum_len
));
326 ret
= (min(csum_start
+ csum_len
, disk_bytenr
+ len
) -
327 disk_bytenr
) >> fs_info
->sectorsize_bits
;
328 read_extent_buffer(path
->nodes
[0], dst
, (unsigned long)item
,
331 if (ret
== -ENOENT
|| ret
== -EFBIG
)
337 * Lookup the checksum for the read bio in csum tree.
339 * Return: BLK_STS_RESOURCE if allocating memory fails, BLK_STS_OK otherwise.
341 blk_status_t
btrfs_lookup_bio_sums(struct btrfs_bio
*bbio
)
343 struct btrfs_inode
*inode
= bbio
->inode
;
344 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
345 struct bio
*bio
= &bbio
->bio
;
346 struct btrfs_path
*path
;
347 const u32 sectorsize
= fs_info
->sectorsize
;
348 const u32 csum_size
= fs_info
->csum_size
;
349 u32 orig_len
= bio
->bi_iter
.bi_size
;
350 u64 orig_disk_bytenr
= bio
->bi_iter
.bi_sector
<< SECTOR_SHIFT
;
351 const unsigned int nblocks
= orig_len
>> fs_info
->sectorsize_bits
;
352 blk_status_t ret
= BLK_STS_OK
;
355 if ((inode
->flags
& BTRFS_INODE_NODATASUM
) ||
356 test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS
, &fs_info
->fs_state
))
360 * This function is only called for read bio.
362 * This means two things:
363 * - All our csums should only be in csum tree
364 * No ordered extents csums, as ordered extents are only for write
366 * - No need to bother any other info from bvec
367 * Since we're looking up csums, the only important info is the
368 * disk_bytenr and the length, which can be extracted from bi_iter
371 ASSERT(bio_op(bio
) == REQ_OP_READ
);
372 path
= btrfs_alloc_path();
374 return BLK_STS_RESOURCE
;
376 if (nblocks
* csum_size
> BTRFS_BIO_INLINE_CSUM_SIZE
) {
377 bbio
->csum
= kmalloc_array(nblocks
, csum_size
, GFP_NOFS
);
379 btrfs_free_path(path
);
380 return BLK_STS_RESOURCE
;
383 bbio
->csum
= bbio
->csum_inline
;
387 * If requested number of sectors is larger than one leaf can contain,
388 * kick the readahead for csum tree.
390 if (nblocks
> fs_info
->csums_per_leaf
)
391 path
->reada
= READA_FORWARD
;
394 * the free space stuff is only read when it hasn't been
395 * updated in the current transaction. So, we can safely
396 * read from the commit root and sidestep a nasty deadlock
397 * between reading the free space cache and updating the csum tree.
399 if (btrfs_is_free_space_inode(inode
)) {
400 path
->search_commit_root
= 1;
401 path
->skip_locking
= 1;
404 while (bio_offset
< orig_len
) {
406 u64 cur_disk_bytenr
= orig_disk_bytenr
+ bio_offset
;
407 u8
*csum_dst
= bbio
->csum
+
408 (bio_offset
>> fs_info
->sectorsize_bits
) * csum_size
;
410 count
= search_csum_tree(fs_info
, path
, cur_disk_bytenr
,
411 orig_len
- bio_offset
, csum_dst
);
413 ret
= errno_to_blk_status(count
);
414 if (bbio
->csum
!= bbio
->csum_inline
)
421 * We didn't find a csum for this range. We need to make sure
422 * we complain loudly about this, because we are not NODATASUM.
424 * However for the DATA_RELOC inode we could potentially be
425 * relocating data extents for a NODATASUM inode, so the inode
426 * itself won't be marked with NODATASUM, but the extent we're
427 * copying is in fact NODATASUM. If we don't find a csum we
428 * assume this is the case.
431 memset(csum_dst
, 0, csum_size
);
434 if (btrfs_root_id(inode
->root
) == BTRFS_DATA_RELOC_TREE_OBJECTID
) {
435 u64 file_offset
= bbio
->file_offset
+ bio_offset
;
437 set_extent_bit(&inode
->io_tree
, file_offset
,
438 file_offset
+ sectorsize
- 1,
439 EXTENT_NODATASUM
, NULL
);
441 btrfs_warn_rl(fs_info
,
442 "csum hole found for disk bytenr range [%llu, %llu)",
443 cur_disk_bytenr
, cur_disk_bytenr
+ sectorsize
);
446 bio_offset
+= count
* sectorsize
;
449 btrfs_free_path(path
);
454 * Search for checksums for a given logical range.
456 * @root: The root where to look for checksums.
457 * @start: Logical address of target checksum range.
458 * @end: End offset (inclusive) of the target checksum range.
459 * @list: List for adding each checksum that was found.
460 * Can be NULL in case the caller only wants to check if
461 * there any checksums for the range.
462 * @nowait: Indicate if the search must be non-blocking or not.
464 * Return < 0 on error, 0 if no checksums were found, or 1 if checksums were
467 int btrfs_lookup_csums_list(struct btrfs_root
*root
, u64 start
, u64 end
,
468 struct list_head
*list
, bool nowait
)
470 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
471 struct btrfs_key key
;
472 struct btrfs_path
*path
;
473 struct extent_buffer
*leaf
;
474 struct btrfs_ordered_sum
*sums
;
475 struct btrfs_csum_item
*item
;
477 bool found_csums
= false;
479 ASSERT(IS_ALIGNED(start
, fs_info
->sectorsize
) &&
480 IS_ALIGNED(end
+ 1, fs_info
->sectorsize
));
482 path
= btrfs_alloc_path();
486 path
->nowait
= nowait
;
488 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
490 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
492 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
495 if (ret
> 0 && path
->slots
[0] > 0) {
496 leaf
= path
->nodes
[0];
497 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
500 * There are two cases we can hit here for the previous csum
503 * |<- search range ->|
507 * |<- search range ->|
510 * Check if the previous csum item covers the leading part of
511 * the search range. If so we have to start from previous csum
514 if (key
.objectid
== BTRFS_EXTENT_CSUM_OBJECTID
&&
515 key
.type
== BTRFS_EXTENT_CSUM_KEY
) {
516 if (bytes_to_csum_size(fs_info
, start
- key
.offset
) <
517 btrfs_item_size(leaf
, path
->slots
[0] - 1))
522 while (start
<= end
) {
525 leaf
= path
->nodes
[0];
526 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
527 ret
= btrfs_next_leaf(root
, path
);
532 leaf
= path
->nodes
[0];
535 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
536 if (key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
537 key
.type
!= BTRFS_EXTENT_CSUM_KEY
||
541 if (key
.offset
> start
)
544 csum_end
= key
.offset
+ csum_size_to_bytes(fs_info
,
545 btrfs_item_size(leaf
, path
->slots
[0]));
546 if (csum_end
<= start
) {
555 csum_end
= min(csum_end
, end
+ 1);
556 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
557 struct btrfs_csum_item
);
558 while (start
< csum_end
) {
559 unsigned long offset
;
562 size
= min_t(size_t, csum_end
- start
,
563 max_ordered_sum_bytes(fs_info
));
564 sums
= kzalloc(btrfs_ordered_sum_size(fs_info
, size
),
571 sums
->logical
= start
;
574 offset
= bytes_to_csum_size(fs_info
, start
- key
.offset
);
576 read_extent_buffer(path
->nodes
[0],
578 ((unsigned long)item
) + offset
,
579 bytes_to_csum_size(fs_info
, size
));
582 list_add_tail(&sums
->list
, list
);
587 btrfs_free_path(path
);
590 struct btrfs_ordered_sum
*tmp_sums
;
592 list_for_each_entry_safe(sums
, tmp_sums
, list
, list
)
599 return found_csums
? 1 : 0;
603 * Do the same work as btrfs_lookup_csums_list(), the difference is in how
604 * we return the result.
606 * This version will set the corresponding bits in @csum_bitmap to represent
607 * that there is a csum found.
608 * Each bit represents a sector. Thus caller should ensure @csum_buf passed
609 * in is large enough to contain all csums.
611 int btrfs_lookup_csums_bitmap(struct btrfs_root
*root
, struct btrfs_path
*path
,
612 u64 start
, u64 end
, u8
*csum_buf
,
613 unsigned long *csum_bitmap
)
615 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
616 struct btrfs_key key
;
617 struct extent_buffer
*leaf
;
618 struct btrfs_csum_item
*item
;
619 const u64 orig_start
= start
;
620 bool free_path
= false;
623 ASSERT(IS_ALIGNED(start
, fs_info
->sectorsize
) &&
624 IS_ALIGNED(end
+ 1, fs_info
->sectorsize
));
627 path
= btrfs_alloc_path();
633 /* Check if we can reuse the previous path. */
634 if (path
->nodes
[0]) {
635 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
637 if (key
.objectid
== BTRFS_EXTENT_CSUM_OBJECTID
&&
638 key
.type
== BTRFS_EXTENT_CSUM_KEY
&&
641 btrfs_release_path(path
);
644 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
645 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
648 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
651 if (ret
> 0 && path
->slots
[0] > 0) {
652 leaf
= path
->nodes
[0];
653 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0] - 1);
656 * There are two cases we can hit here for the previous csum
659 * |<- search range ->|
663 * |<- search range ->|
666 * Check if the previous csum item covers the leading part of
667 * the search range. If so we have to start from previous csum
670 if (key
.objectid
== BTRFS_EXTENT_CSUM_OBJECTID
&&
671 key
.type
== BTRFS_EXTENT_CSUM_KEY
) {
672 if (bytes_to_csum_size(fs_info
, start
- key
.offset
) <
673 btrfs_item_size(leaf
, path
->slots
[0] - 1))
679 while (start
<= end
) {
682 leaf
= path
->nodes
[0];
683 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
684 ret
= btrfs_next_leaf(root
, path
);
689 leaf
= path
->nodes
[0];
692 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
693 if (key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
694 key
.type
!= BTRFS_EXTENT_CSUM_KEY
||
698 if (key
.offset
> start
)
701 csum_end
= key
.offset
+ csum_size_to_bytes(fs_info
,
702 btrfs_item_size(leaf
, path
->slots
[0]));
703 if (csum_end
<= start
) {
708 csum_end
= min(csum_end
, end
+ 1);
709 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
710 struct btrfs_csum_item
);
711 while (start
< csum_end
) {
712 unsigned long offset
;
714 u8
*csum_dest
= csum_buf
+ bytes_to_csum_size(fs_info
,
717 size
= min_t(size_t, csum_end
- start
, end
+ 1 - start
);
719 offset
= bytes_to_csum_size(fs_info
, start
- key
.offset
);
721 read_extent_buffer(path
->nodes
[0], csum_dest
,
722 ((unsigned long)item
) + offset
,
723 bytes_to_csum_size(fs_info
, size
));
725 bitmap_set(csum_bitmap
,
726 (start
- orig_start
) >> fs_info
->sectorsize_bits
,
727 size
>> fs_info
->sectorsize_bits
);
736 btrfs_free_path(path
);
741 * Calculate checksums of the data contained inside a bio.
743 blk_status_t
btrfs_csum_one_bio(struct btrfs_bio
*bbio
)
745 struct btrfs_ordered_extent
*ordered
= bbio
->ordered
;
746 struct btrfs_inode
*inode
= bbio
->inode
;
747 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
748 SHASH_DESC_ON_STACK(shash
, fs_info
->csum_shash
);
749 struct bio
*bio
= &bbio
->bio
;
750 struct btrfs_ordered_sum
*sums
;
752 struct bvec_iter iter
;
755 unsigned int blockcount
;
759 nofs_flag
= memalloc_nofs_save();
760 sums
= kvzalloc(btrfs_ordered_sum_size(fs_info
, bio
->bi_iter
.bi_size
),
762 memalloc_nofs_restore(nofs_flag
);
765 return BLK_STS_RESOURCE
;
767 sums
->len
= bio
->bi_iter
.bi_size
;
768 INIT_LIST_HEAD(&sums
->list
);
770 sums
->logical
= bio
->bi_iter
.bi_sector
<< SECTOR_SHIFT
;
773 shash
->tfm
= fs_info
->csum_shash
;
775 bio_for_each_segment(bvec
, bio
, iter
) {
776 blockcount
= BTRFS_BYTES_TO_BLKS(fs_info
,
777 bvec
.bv_len
+ fs_info
->sectorsize
780 for (i
= 0; i
< blockcount
; i
++) {
781 data
= bvec_kmap_local(&bvec
);
782 crypto_shash_digest(shash
,
783 data
+ (i
* fs_info
->sectorsize
),
787 index
+= fs_info
->csum_size
;
793 btrfs_add_ordered_sum(ordered
, sums
);
798 * Nodatasum I/O on zoned file systems still requires an btrfs_ordered_sum to
799 * record the updated logical address on Zone Append completion.
800 * Allocate just the structure with an empty sums array here for that case.
802 blk_status_t
btrfs_alloc_dummy_sum(struct btrfs_bio
*bbio
)
804 bbio
->sums
= kmalloc(sizeof(*bbio
->sums
), GFP_NOFS
);
806 return BLK_STS_RESOURCE
;
807 bbio
->sums
->len
= bbio
->bio
.bi_iter
.bi_size
;
808 bbio
->sums
->logical
= bbio
->bio
.bi_iter
.bi_sector
<< SECTOR_SHIFT
;
809 btrfs_add_ordered_sum(bbio
->ordered
, bbio
->sums
);
814 * Remove one checksum overlapping a range.
816 * This expects the key to describe the csum pointed to by the path, and it
817 * expects the csum to overlap the range [bytenr, len]
819 * The csum should not be entirely contained in the range and the range should
820 * not be entirely contained in the csum.
822 * This calls btrfs_truncate_item with the correct args based on the overlap,
823 * and fixes up the key as required.
825 static noinline
void truncate_one_csum(struct btrfs_trans_handle
*trans
,
826 struct btrfs_path
*path
,
827 struct btrfs_key
*key
,
830 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
831 struct extent_buffer
*leaf
;
832 const u32 csum_size
= fs_info
->csum_size
;
834 u64 end_byte
= bytenr
+ len
;
835 u32 blocksize_bits
= fs_info
->sectorsize_bits
;
837 leaf
= path
->nodes
[0];
838 csum_end
= btrfs_item_size(leaf
, path
->slots
[0]) / csum_size
;
839 csum_end
<<= blocksize_bits
;
840 csum_end
+= key
->offset
;
842 if (key
->offset
< bytenr
&& csum_end
<= end_byte
) {
847 * A simple truncate off the end of the item
849 u32 new_size
= (bytenr
- key
->offset
) >> blocksize_bits
;
850 new_size
*= csum_size
;
851 btrfs_truncate_item(trans
, path
, new_size
, 1);
852 } else if (key
->offset
>= bytenr
&& csum_end
> end_byte
&&
853 end_byte
> key
->offset
) {
858 * we need to truncate from the beginning of the csum
860 u32 new_size
= (csum_end
- end_byte
) >> blocksize_bits
;
861 new_size
*= csum_size
;
863 btrfs_truncate_item(trans
, path
, new_size
, 0);
865 key
->offset
= end_byte
;
866 btrfs_set_item_key_safe(trans
, path
, key
);
873 * Delete the csum items from the csum tree for a given range of bytes.
875 int btrfs_del_csums(struct btrfs_trans_handle
*trans
,
876 struct btrfs_root
*root
, u64 bytenr
, u64 len
)
878 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
879 struct btrfs_path
*path
;
880 struct btrfs_key key
;
881 u64 end_byte
= bytenr
+ len
;
883 struct extent_buffer
*leaf
;
885 const u32 csum_size
= fs_info
->csum_size
;
886 u32 blocksize_bits
= fs_info
->sectorsize_bits
;
888 ASSERT(btrfs_root_id(root
) == BTRFS_CSUM_TREE_OBJECTID
||
889 btrfs_root_id(root
) == BTRFS_TREE_LOG_OBJECTID
);
891 path
= btrfs_alloc_path();
896 key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
897 key
.offset
= end_byte
- 1;
898 key
.type
= BTRFS_EXTENT_CSUM_KEY
;
900 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
903 if (path
->slots
[0] == 0)
906 } else if (ret
< 0) {
910 leaf
= path
->nodes
[0];
911 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
913 if (key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
914 key
.type
!= BTRFS_EXTENT_CSUM_KEY
) {
918 if (key
.offset
>= end_byte
)
921 csum_end
= btrfs_item_size(leaf
, path
->slots
[0]) / csum_size
;
922 csum_end
<<= blocksize_bits
;
923 csum_end
+= key
.offset
;
925 /* this csum ends before we start, we're done */
926 if (csum_end
<= bytenr
)
929 /* delete the entire item, it is inside our range */
930 if (key
.offset
>= bytenr
&& csum_end
<= end_byte
) {
934 * Check how many csum items preceding this one in this
935 * leaf correspond to our range and then delete them all
938 if (key
.offset
> bytenr
&& path
->slots
[0] > 0) {
939 int slot
= path
->slots
[0] - 1;
944 btrfs_item_key_to_cpu(leaf
, &pk
, slot
);
945 if (pk
.offset
< bytenr
||
946 pk
.type
!= BTRFS_EXTENT_CSUM_KEY
||
948 BTRFS_EXTENT_CSUM_OBJECTID
)
950 path
->slots
[0] = slot
;
952 key
.offset
= pk
.offset
;
956 ret
= btrfs_del_items(trans
, root
, path
,
957 path
->slots
[0], del_nr
);
960 if (key
.offset
== bytenr
)
962 } else if (key
.offset
< bytenr
&& csum_end
> end_byte
) {
963 unsigned long offset
;
964 unsigned long shift_len
;
965 unsigned long item_offset
;
970 * Our bytes are in the middle of the csum,
971 * we need to split this item and insert a new one.
973 * But we can't drop the path because the
974 * csum could change, get removed, extended etc.
976 * The trick here is the max size of a csum item leaves
977 * enough room in the tree block for a single
978 * item header. So, we split the item in place,
979 * adding a new header pointing to the existing
980 * bytes. Then we loop around again and we have
981 * a nicely formed csum item that we can neatly
984 offset
= (bytenr
- key
.offset
) >> blocksize_bits
;
987 shift_len
= (len
>> blocksize_bits
) * csum_size
;
989 item_offset
= btrfs_item_ptr_offset(leaf
,
992 memzero_extent_buffer(leaf
, item_offset
+ offset
,
997 * btrfs_split_item returns -EAGAIN when the
998 * item changed size or key
1000 ret
= btrfs_split_item(trans
, root
, path
, &key
, offset
);
1001 if (ret
&& ret
!= -EAGAIN
) {
1002 btrfs_abort_transaction(trans
, ret
);
1007 key
.offset
= end_byte
- 1;
1009 truncate_one_csum(trans
, path
, &key
, bytenr
, len
);
1010 if (key
.offset
< bytenr
)
1013 btrfs_release_path(path
);
1015 btrfs_free_path(path
);
1019 static int find_next_csum_offset(struct btrfs_root
*root
,
1020 struct btrfs_path
*path
,
1023 const u32 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1024 struct btrfs_key found_key
;
1025 int slot
= path
->slots
[0] + 1;
1028 if (nritems
== 0 || slot
>= nritems
) {
1029 ret
= btrfs_next_leaf(root
, path
);
1032 } else if (ret
> 0) {
1033 *next_offset
= (u64
)-1;
1036 slot
= path
->slots
[0];
1039 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, slot
);
1041 if (found_key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
1042 found_key
.type
!= BTRFS_EXTENT_CSUM_KEY
)
1043 *next_offset
= (u64
)-1;
1045 *next_offset
= found_key
.offset
;
1050 int btrfs_csum_file_blocks(struct btrfs_trans_handle
*trans
,
1051 struct btrfs_root
*root
,
1052 struct btrfs_ordered_sum
*sums
)
1054 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1055 struct btrfs_key file_key
;
1056 struct btrfs_key found_key
;
1057 struct btrfs_path
*path
;
1058 struct btrfs_csum_item
*item
;
1059 struct btrfs_csum_item
*item_end
;
1060 struct extent_buffer
*leaf
= NULL
;
1062 u64 total_bytes
= 0;
1069 const u32 csum_size
= fs_info
->csum_size
;
1071 path
= btrfs_alloc_path();
1075 next_offset
= (u64
)-1;
1077 bytenr
= sums
->logical
+ total_bytes
;
1078 file_key
.objectid
= BTRFS_EXTENT_CSUM_OBJECTID
;
1079 file_key
.offset
= bytenr
;
1080 file_key
.type
= BTRFS_EXTENT_CSUM_KEY
;
1082 item
= btrfs_lookup_csum(trans
, root
, path
, bytenr
, 1);
1083 if (!IS_ERR(item
)) {
1085 leaf
= path
->nodes
[0];
1086 item_end
= btrfs_item_ptr(leaf
, path
->slots
[0],
1087 struct btrfs_csum_item
);
1088 item_end
= (struct btrfs_csum_item
*)((char *)item_end
+
1089 btrfs_item_size(leaf
, path
->slots
[0]));
1092 ret
= PTR_ERR(item
);
1093 if (ret
!= -EFBIG
&& ret
!= -ENOENT
)
1096 if (ret
== -EFBIG
) {
1098 /* we found one, but it isn't big enough yet */
1099 leaf
= path
->nodes
[0];
1100 item_size
= btrfs_item_size(leaf
, path
->slots
[0]);
1101 if ((item_size
/ csum_size
) >=
1102 MAX_CSUM_ITEMS(fs_info
, csum_size
)) {
1103 /* already at max size, make a new one */
1107 /* We didn't find a csum item, insert one. */
1108 ret
= find_next_csum_offset(root
, path
, &next_offset
);
1116 * At this point, we know the tree has a checksum item that ends at an
1117 * offset matching the start of the checksum range we want to insert.
1118 * We try to extend that item as much as possible and then add as many
1119 * checksums to it as they fit.
1121 * First check if the leaf has enough free space for at least one
1122 * checksum. If it has go directly to the item extension code, otherwise
1123 * release the path and do a search for insertion before the extension.
1125 if (btrfs_leaf_free_space(leaf
) >= csum_size
) {
1126 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1127 csum_offset
= (bytenr
- found_key
.offset
) >>
1128 fs_info
->sectorsize_bits
;
1132 btrfs_release_path(path
);
1133 path
->search_for_extension
= 1;
1134 ret
= btrfs_search_slot(trans
, root
, &file_key
, path
,
1136 path
->search_for_extension
= 0;
1141 if (path
->slots
[0] == 0)
1146 leaf
= path
->nodes
[0];
1147 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1148 csum_offset
= (bytenr
- found_key
.offset
) >> fs_info
->sectorsize_bits
;
1150 if (found_key
.type
!= BTRFS_EXTENT_CSUM_KEY
||
1151 found_key
.objectid
!= BTRFS_EXTENT_CSUM_OBJECTID
||
1152 csum_offset
>= MAX_CSUM_ITEMS(fs_info
, csum_size
)) {
1157 if (csum_offset
== btrfs_item_size(leaf
, path
->slots
[0]) /
1163 tmp
= sums
->len
- total_bytes
;
1164 tmp
>>= fs_info
->sectorsize_bits
;
1166 extend_nr
= max_t(int, 1, tmp
);
1169 * A log tree can already have checksum items with a subset of
1170 * the checksums we are trying to log. This can happen after
1171 * doing a sequence of partial writes into prealloc extents and
1172 * fsyncs in between, with a full fsync logging a larger subrange
1173 * of an extent for which a previous fast fsync logged a smaller
1174 * subrange. And this happens in particular due to merging file
1175 * extent items when we complete an ordered extent for a range
1176 * covered by a prealloc extent - this is done at
1177 * btrfs_mark_extent_written().
1179 * So if we try to extend the previous checksum item, which has
1180 * a range that ends at the start of the range we want to insert,
1181 * make sure we don't extend beyond the start offset of the next
1182 * checksum item. If we are at the last item in the leaf, then
1183 * forget the optimization of extending and add a new checksum
1184 * item - it is not worth the complexity of releasing the path,
1185 * getting the first key for the next leaf, repeat the btree
1186 * search, etc, because log trees are temporary anyway and it
1187 * would only save a few bytes of leaf space.
1189 if (btrfs_root_id(root
) == BTRFS_TREE_LOG_OBJECTID
) {
1190 if (path
->slots
[0] + 1 >=
1191 btrfs_header_nritems(path
->nodes
[0])) {
1192 ret
= find_next_csum_offset(root
, path
, &next_offset
);
1199 ret
= find_next_csum_offset(root
, path
, &next_offset
);
1203 tmp
= (next_offset
- bytenr
) >> fs_info
->sectorsize_bits
;
1205 extend_nr
= min_t(int, extend_nr
, tmp
);
1208 diff
= (csum_offset
+ extend_nr
) * csum_size
;
1210 MAX_CSUM_ITEMS(fs_info
, csum_size
) * csum_size
);
1212 diff
= diff
- btrfs_item_size(leaf
, path
->slots
[0]);
1213 diff
= min_t(u32
, btrfs_leaf_free_space(leaf
), diff
);
1217 btrfs_extend_item(trans
, path
, diff
);
1223 btrfs_release_path(path
);
1228 tmp
= sums
->len
- total_bytes
;
1229 tmp
>>= fs_info
->sectorsize_bits
;
1230 tmp
= min(tmp
, (next_offset
- file_key
.offset
) >>
1231 fs_info
->sectorsize_bits
);
1233 tmp
= max_t(u64
, 1, tmp
);
1234 tmp
= min_t(u64
, tmp
, MAX_CSUM_ITEMS(fs_info
, csum_size
));
1235 ins_size
= csum_size
* tmp
;
1237 ins_size
= csum_size
;
1239 ret
= btrfs_insert_empty_item(trans
, root
, path
, &file_key
,
1243 leaf
= path
->nodes
[0];
1245 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_csum_item
);
1246 item_end
= (struct btrfs_csum_item
*)((unsigned char *)item
+
1247 btrfs_item_size(leaf
, path
->slots
[0]));
1248 item
= (struct btrfs_csum_item
*)((unsigned char *)item
+
1249 csum_offset
* csum_size
);
1251 ins_size
= (u32
)(sums
->len
- total_bytes
) >> fs_info
->sectorsize_bits
;
1252 ins_size
*= csum_size
;
1253 ins_size
= min_t(u32
, (unsigned long)item_end
- (unsigned long)item
,
1255 write_extent_buffer(leaf
, sums
->sums
+ index
, (unsigned long)item
,
1259 ins_size
/= csum_size
;
1260 total_bytes
+= ins_size
* fs_info
->sectorsize
;
1262 btrfs_mark_buffer_dirty(trans
, path
->nodes
[0]);
1263 if (total_bytes
< sums
->len
) {
1264 btrfs_release_path(path
);
1269 btrfs_free_path(path
);
1273 void btrfs_extent_item_to_extent_map(struct btrfs_inode
*inode
,
1274 const struct btrfs_path
*path
,
1275 const struct btrfs_file_extent_item
*fi
,
1276 struct extent_map
*em
)
1278 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
1279 struct btrfs_root
*root
= inode
->root
;
1280 struct extent_buffer
*leaf
= path
->nodes
[0];
1281 const int slot
= path
->slots
[0];
1282 struct btrfs_key key
;
1284 u8 type
= btrfs_file_extent_type(leaf
, fi
);
1285 int compress_type
= btrfs_file_extent_compression(leaf
, fi
);
1287 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1288 extent_start
= key
.offset
;
1289 em
->ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1290 em
->generation
= btrfs_file_extent_generation(leaf
, fi
);
1291 if (type
== BTRFS_FILE_EXTENT_REG
||
1292 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1293 const u64 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1295 em
->start
= extent_start
;
1296 em
->len
= btrfs_file_extent_end(path
) - extent_start
;
1297 if (disk_bytenr
== 0) {
1298 em
->disk_bytenr
= EXTENT_MAP_HOLE
;
1299 em
->disk_num_bytes
= 0;
1303 em
->disk_bytenr
= disk_bytenr
;
1304 em
->disk_num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1305 em
->offset
= btrfs_file_extent_offset(leaf
, fi
);
1306 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
1307 extent_map_set_compression(em
, compress_type
);
1310 * Older kernels can create regular non-hole data
1311 * extents with ram_bytes smaller than disk_num_bytes.
1312 * Not a big deal, just always use disk_num_bytes
1315 em
->ram_bytes
= em
->disk_num_bytes
;
1316 if (type
== BTRFS_FILE_EXTENT_PREALLOC
)
1317 em
->flags
|= EXTENT_FLAG_PREALLOC
;
1319 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
1320 /* Tree-checker has ensured this. */
1321 ASSERT(extent_start
== 0);
1323 em
->disk_bytenr
= EXTENT_MAP_INLINE
;
1325 em
->len
= fs_info
->sectorsize
;
1327 extent_map_set_compression(em
, compress_type
);
1330 "unknown file extent item type %d, inode %llu, offset %llu, "
1331 "root %llu", type
, btrfs_ino(inode
), extent_start
,
1332 btrfs_root_id(root
));
1337 * Returns the end offset (non inclusive) of the file extent item the given path
1338 * points to. If it points to an inline extent, the returned offset is rounded
1339 * up to the sector size.
1341 u64
btrfs_file_extent_end(const struct btrfs_path
*path
)
1343 const struct extent_buffer
*leaf
= path
->nodes
[0];
1344 const int slot
= path
->slots
[0];
1345 struct btrfs_file_extent_item
*fi
;
1346 struct btrfs_key key
;
1349 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1350 ASSERT(key
.type
== BTRFS_EXTENT_DATA_KEY
);
1351 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
1353 if (btrfs_file_extent_type(leaf
, fi
) == BTRFS_FILE_EXTENT_INLINE
)
1354 end
= leaf
->fs_info
->sectorsize
;
1356 end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);