Linux 6.13-rc4
[linux.git] / fs / btrfs / file.c
blob14e27473c5bcea8d1959ac1814babe022c7f5cf0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/fs.h>
7 #include <linux/pagemap.h>
8 #include <linux/time.h>
9 #include <linux/init.h>
10 #include <linux/string.h>
11 #include <linux/backing-dev.h>
12 #include <linux/falloc.h>
13 #include <linux/writeback.h>
14 #include <linux/compat.h>
15 #include <linux/slab.h>
16 #include <linux/btrfs.h>
17 #include <linux/uio.h>
18 #include <linux/iversion.h>
19 #include <linux/fsverity.h>
20 #include "ctree.h"
21 #include "direct-io.h"
22 #include "disk-io.h"
23 #include "transaction.h"
24 #include "btrfs_inode.h"
25 #include "tree-log.h"
26 #include "locking.h"
27 #include "qgroup.h"
28 #include "compression.h"
29 #include "delalloc-space.h"
30 #include "reflink.h"
31 #include "subpage.h"
32 #include "fs.h"
33 #include "accessors.h"
34 #include "extent-tree.h"
35 #include "file-item.h"
36 #include "ioctl.h"
37 #include "file.h"
38 #include "super.h"
41 * Helper to fault in page and copy. This should go away and be replaced with
42 * calls into generic code.
44 static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
45 struct folio *folio, struct iov_iter *i)
47 size_t copied = 0;
48 size_t total_copied = 0;
49 int offset = offset_in_page(pos);
51 while (write_bytes > 0) {
52 size_t count = min_t(size_t, PAGE_SIZE - offset, write_bytes);
54 * Copy data from userspace to the current page
56 copied = copy_folio_from_iter_atomic(folio, offset, count, i);
58 /* Flush processor's dcache for this page */
59 flush_dcache_folio(folio);
62 * if we get a partial write, we can end up with
63 * partially up to date page. These add
64 * a lot of complexity, so make sure they don't
65 * happen by forcing this copy to be retried.
67 * The rest of the btrfs_file_write code will fall
68 * back to page at a time copies after we return 0.
70 if (unlikely(copied < count)) {
71 if (!folio_test_uptodate(folio)) {
72 iov_iter_revert(i, copied);
73 copied = 0;
75 if (!copied)
76 break;
79 write_bytes -= copied;
80 total_copied += copied;
81 offset += copied;
83 return total_copied;
87 * Unlock folio after btrfs_file_write() is done with it.
89 static void btrfs_drop_folio(struct btrfs_fs_info *fs_info, struct folio *folio,
90 u64 pos, u64 copied)
92 u64 block_start = round_down(pos, fs_info->sectorsize);
93 u64 block_len = round_up(pos + copied, fs_info->sectorsize) - block_start;
95 ASSERT(block_len <= U32_MAX);
97 * Folio checked is some magic around finding folios that have been
98 * modified without going through btrfs_dirty_folio(). Clear it here.
99 * There should be no need to mark the pages accessed as
100 * prepare_one_folio() should have marked them accessed in
101 * prepare_one_folio() via find_or_create_page()
103 btrfs_folio_clamp_clear_checked(fs_info, folio, block_start, block_len);
104 folio_unlock(folio);
105 folio_put(folio);
109 * After btrfs_copy_from_user(), update the following things for delalloc:
110 * - Mark newly dirtied folio as DELALLOC in the io tree.
111 * Used to advise which range is to be written back.
112 * - Mark modified folio as Uptodate/Dirty and not needing COW fixup
113 * - Update inode size for past EOF write
115 int btrfs_dirty_folio(struct btrfs_inode *inode, struct folio *folio, loff_t pos,
116 size_t write_bytes, struct extent_state **cached, bool noreserve)
118 struct btrfs_fs_info *fs_info = inode->root->fs_info;
119 int ret = 0;
120 u64 num_bytes;
121 u64 start_pos;
122 u64 end_of_last_block;
123 u64 end_pos = pos + write_bytes;
124 loff_t isize = i_size_read(&inode->vfs_inode);
125 unsigned int extra_bits = 0;
127 if (write_bytes == 0)
128 return 0;
130 if (noreserve)
131 extra_bits |= EXTENT_NORESERVE;
133 start_pos = round_down(pos, fs_info->sectorsize);
134 num_bytes = round_up(write_bytes + pos - start_pos,
135 fs_info->sectorsize);
136 ASSERT(num_bytes <= U32_MAX);
137 ASSERT(folio_pos(folio) <= pos &&
138 folio_pos(folio) + folio_size(folio) >= pos + write_bytes);
140 end_of_last_block = start_pos + num_bytes - 1;
143 * The pages may have already been dirty, clear out old accounting so
144 * we can set things up properly
146 clear_extent_bit(&inode->io_tree, start_pos, end_of_last_block,
147 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
148 cached);
150 ret = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
151 extra_bits, cached);
152 if (ret)
153 return ret;
155 btrfs_folio_clamp_set_uptodate(fs_info, folio, start_pos, num_bytes);
156 btrfs_folio_clamp_clear_checked(fs_info, folio, start_pos, num_bytes);
157 btrfs_folio_clamp_set_dirty(fs_info, folio, start_pos, num_bytes);
160 * we've only changed i_size in ram, and we haven't updated
161 * the disk i_size. There is no need to log the inode
162 * at this time.
164 if (end_pos > isize)
165 i_size_write(&inode->vfs_inode, end_pos);
166 return 0;
170 * this is very complex, but the basic idea is to drop all extents
171 * in the range start - end. hint_block is filled in with a block number
172 * that would be a good hint to the block allocator for this file.
174 * If an extent intersects the range but is not entirely inside the range
175 * it is either truncated or split. Anything entirely inside the range
176 * is deleted from the tree.
178 * Note: the VFS' inode number of bytes is not updated, it's up to the caller
179 * to deal with that. We set the field 'bytes_found' of the arguments structure
180 * with the number of allocated bytes found in the target range, so that the
181 * caller can update the inode's number of bytes in an atomic way when
182 * replacing extents in a range to avoid races with stat(2).
184 int btrfs_drop_extents(struct btrfs_trans_handle *trans,
185 struct btrfs_root *root, struct btrfs_inode *inode,
186 struct btrfs_drop_extents_args *args)
188 struct btrfs_fs_info *fs_info = root->fs_info;
189 struct extent_buffer *leaf;
190 struct btrfs_file_extent_item *fi;
191 struct btrfs_key key;
192 struct btrfs_key new_key;
193 u64 ino = btrfs_ino(inode);
194 u64 search_start = args->start;
195 u64 disk_bytenr = 0;
196 u64 num_bytes = 0;
197 u64 extent_offset = 0;
198 u64 extent_end = 0;
199 u64 last_end = args->start;
200 int del_nr = 0;
201 int del_slot = 0;
202 int extent_type;
203 int recow;
204 int ret;
205 int modify_tree = -1;
206 int update_refs;
207 int found = 0;
208 struct btrfs_path *path = args->path;
210 args->bytes_found = 0;
211 args->extent_inserted = false;
213 /* Must always have a path if ->replace_extent is true */
214 ASSERT(!(args->replace_extent && !args->path));
216 if (!path) {
217 path = btrfs_alloc_path();
218 if (!path) {
219 ret = -ENOMEM;
220 goto out;
224 if (args->drop_cache)
225 btrfs_drop_extent_map_range(inode, args->start, args->end - 1, false);
227 if (args->start >= inode->disk_i_size && !args->replace_extent)
228 modify_tree = 0;
230 update_refs = (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID);
231 while (1) {
232 recow = 0;
233 ret = btrfs_lookup_file_extent(trans, root, path, ino,
234 search_start, modify_tree);
235 if (ret < 0)
236 break;
237 if (ret > 0 && path->slots[0] > 0 && search_start == args->start) {
238 leaf = path->nodes[0];
239 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
240 if (key.objectid == ino &&
241 key.type == BTRFS_EXTENT_DATA_KEY)
242 path->slots[0]--;
244 ret = 0;
245 next_slot:
246 leaf = path->nodes[0];
247 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
248 BUG_ON(del_nr > 0);
249 ret = btrfs_next_leaf(root, path);
250 if (ret < 0)
251 break;
252 if (ret > 0) {
253 ret = 0;
254 break;
256 leaf = path->nodes[0];
257 recow = 1;
260 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
262 if (key.objectid > ino)
263 break;
264 if (WARN_ON_ONCE(key.objectid < ino) ||
265 key.type < BTRFS_EXTENT_DATA_KEY) {
266 ASSERT(del_nr == 0);
267 path->slots[0]++;
268 goto next_slot;
270 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= args->end)
271 break;
273 fi = btrfs_item_ptr(leaf, path->slots[0],
274 struct btrfs_file_extent_item);
275 extent_type = btrfs_file_extent_type(leaf, fi);
277 if (extent_type == BTRFS_FILE_EXTENT_REG ||
278 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
279 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
280 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
281 extent_offset = btrfs_file_extent_offset(leaf, fi);
282 extent_end = key.offset +
283 btrfs_file_extent_num_bytes(leaf, fi);
284 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
285 extent_end = key.offset +
286 btrfs_file_extent_ram_bytes(leaf, fi);
287 } else {
288 /* can't happen */
289 BUG();
293 * Don't skip extent items representing 0 byte lengths. They
294 * used to be created (bug) if while punching holes we hit
295 * -ENOSPC condition. So if we find one here, just ensure we
296 * delete it, otherwise we would insert a new file extent item
297 * with the same key (offset) as that 0 bytes length file
298 * extent item in the call to setup_items_for_insert() later
299 * in this function.
301 if (extent_end == key.offset && extent_end >= search_start) {
302 last_end = extent_end;
303 goto delete_extent_item;
306 if (extent_end <= search_start) {
307 path->slots[0]++;
308 goto next_slot;
311 found = 1;
312 search_start = max(key.offset, args->start);
313 if (recow || !modify_tree) {
314 modify_tree = -1;
315 btrfs_release_path(path);
316 continue;
320 * | - range to drop - |
321 * | -------- extent -------- |
323 if (args->start > key.offset && args->end < extent_end) {
324 BUG_ON(del_nr > 0);
325 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
326 ret = -EOPNOTSUPP;
327 break;
330 memcpy(&new_key, &key, sizeof(new_key));
331 new_key.offset = args->start;
332 ret = btrfs_duplicate_item(trans, root, path,
333 &new_key);
334 if (ret == -EAGAIN) {
335 btrfs_release_path(path);
336 continue;
338 if (ret < 0)
339 break;
341 leaf = path->nodes[0];
342 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
343 struct btrfs_file_extent_item);
344 btrfs_set_file_extent_num_bytes(leaf, fi,
345 args->start - key.offset);
347 fi = btrfs_item_ptr(leaf, path->slots[0],
348 struct btrfs_file_extent_item);
350 extent_offset += args->start - key.offset;
351 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
352 btrfs_set_file_extent_num_bytes(leaf, fi,
353 extent_end - args->start);
354 btrfs_mark_buffer_dirty(trans, leaf);
356 if (update_refs && disk_bytenr > 0) {
357 struct btrfs_ref ref = {
358 .action = BTRFS_ADD_DELAYED_REF,
359 .bytenr = disk_bytenr,
360 .num_bytes = num_bytes,
361 .parent = 0,
362 .owning_root = btrfs_root_id(root),
363 .ref_root = btrfs_root_id(root),
365 btrfs_init_data_ref(&ref, new_key.objectid,
366 args->start - extent_offset,
367 0, false);
368 ret = btrfs_inc_extent_ref(trans, &ref);
369 if (ret) {
370 btrfs_abort_transaction(trans, ret);
371 break;
374 key.offset = args->start;
377 * From here on out we will have actually dropped something, so
378 * last_end can be updated.
380 last_end = extent_end;
383 * | ---- range to drop ----- |
384 * | -------- extent -------- |
386 if (args->start <= key.offset && args->end < extent_end) {
387 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
388 ret = -EOPNOTSUPP;
389 break;
392 memcpy(&new_key, &key, sizeof(new_key));
393 new_key.offset = args->end;
394 btrfs_set_item_key_safe(trans, path, &new_key);
396 extent_offset += args->end - key.offset;
397 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
398 btrfs_set_file_extent_num_bytes(leaf, fi,
399 extent_end - args->end);
400 btrfs_mark_buffer_dirty(trans, leaf);
401 if (update_refs && disk_bytenr > 0)
402 args->bytes_found += args->end - key.offset;
403 break;
406 search_start = extent_end;
408 * | ---- range to drop ----- |
409 * | -------- extent -------- |
411 if (args->start > key.offset && args->end >= extent_end) {
412 BUG_ON(del_nr > 0);
413 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
414 ret = -EOPNOTSUPP;
415 break;
418 btrfs_set_file_extent_num_bytes(leaf, fi,
419 args->start - key.offset);
420 btrfs_mark_buffer_dirty(trans, leaf);
421 if (update_refs && disk_bytenr > 0)
422 args->bytes_found += extent_end - args->start;
423 if (args->end == extent_end)
424 break;
426 path->slots[0]++;
427 goto next_slot;
431 * | ---- range to drop ----- |
432 * | ------ extent ------ |
434 if (args->start <= key.offset && args->end >= extent_end) {
435 delete_extent_item:
436 if (del_nr == 0) {
437 del_slot = path->slots[0];
438 del_nr = 1;
439 } else {
440 BUG_ON(del_slot + del_nr != path->slots[0]);
441 del_nr++;
444 if (update_refs &&
445 extent_type == BTRFS_FILE_EXTENT_INLINE) {
446 args->bytes_found += extent_end - key.offset;
447 extent_end = ALIGN(extent_end,
448 fs_info->sectorsize);
449 } else if (update_refs && disk_bytenr > 0) {
450 struct btrfs_ref ref = {
451 .action = BTRFS_DROP_DELAYED_REF,
452 .bytenr = disk_bytenr,
453 .num_bytes = num_bytes,
454 .parent = 0,
455 .owning_root = btrfs_root_id(root),
456 .ref_root = btrfs_root_id(root),
458 btrfs_init_data_ref(&ref, key.objectid,
459 key.offset - extent_offset,
460 0, false);
461 ret = btrfs_free_extent(trans, &ref);
462 if (ret) {
463 btrfs_abort_transaction(trans, ret);
464 break;
466 args->bytes_found += extent_end - key.offset;
469 if (args->end == extent_end)
470 break;
472 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
473 path->slots[0]++;
474 goto next_slot;
477 ret = btrfs_del_items(trans, root, path, del_slot,
478 del_nr);
479 if (ret) {
480 btrfs_abort_transaction(trans, ret);
481 break;
484 del_nr = 0;
485 del_slot = 0;
487 btrfs_release_path(path);
488 continue;
491 BUG();
494 if (!ret && del_nr > 0) {
496 * Set path->slots[0] to first slot, so that after the delete
497 * if items are move off from our leaf to its immediate left or
498 * right neighbor leafs, we end up with a correct and adjusted
499 * path->slots[0] for our insertion (if args->replace_extent).
501 path->slots[0] = del_slot;
502 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
503 if (ret)
504 btrfs_abort_transaction(trans, ret);
507 leaf = path->nodes[0];
509 * If btrfs_del_items() was called, it might have deleted a leaf, in
510 * which case it unlocked our path, so check path->locks[0] matches a
511 * write lock.
513 if (!ret && args->replace_extent &&
514 path->locks[0] == BTRFS_WRITE_LOCK &&
515 btrfs_leaf_free_space(leaf) >=
516 sizeof(struct btrfs_item) + args->extent_item_size) {
518 key.objectid = ino;
519 key.type = BTRFS_EXTENT_DATA_KEY;
520 key.offset = args->start;
521 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
522 struct btrfs_key slot_key;
524 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
525 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
526 path->slots[0]++;
528 btrfs_setup_item_for_insert(trans, root, path, &key,
529 args->extent_item_size);
530 args->extent_inserted = true;
533 if (!args->path)
534 btrfs_free_path(path);
535 else if (!args->extent_inserted)
536 btrfs_release_path(path);
537 out:
538 args->drop_end = found ? min(args->end, last_end) : args->end;
540 return ret;
543 static int extent_mergeable(struct extent_buffer *leaf, int slot,
544 u64 objectid, u64 bytenr, u64 orig_offset,
545 u64 *start, u64 *end)
547 struct btrfs_file_extent_item *fi;
548 struct btrfs_key key;
549 u64 extent_end;
551 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
552 return 0;
554 btrfs_item_key_to_cpu(leaf, &key, slot);
555 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
556 return 0;
558 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
559 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
560 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
561 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
562 btrfs_file_extent_compression(leaf, fi) ||
563 btrfs_file_extent_encryption(leaf, fi) ||
564 btrfs_file_extent_other_encoding(leaf, fi))
565 return 0;
567 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
568 if ((*start && *start != key.offset) || (*end && *end != extent_end))
569 return 0;
571 *start = key.offset;
572 *end = extent_end;
573 return 1;
577 * Mark extent in the range start - end as written.
579 * This changes extent type from 'pre-allocated' to 'regular'. If only
580 * part of extent is marked as written, the extent will be split into
581 * two or three.
583 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
584 struct btrfs_inode *inode, u64 start, u64 end)
586 struct btrfs_root *root = inode->root;
587 struct extent_buffer *leaf;
588 struct btrfs_path *path;
589 struct btrfs_file_extent_item *fi;
590 struct btrfs_ref ref = { 0 };
591 struct btrfs_key key;
592 struct btrfs_key new_key;
593 u64 bytenr;
594 u64 num_bytes;
595 u64 extent_end;
596 u64 orig_offset;
597 u64 other_start;
598 u64 other_end;
599 u64 split;
600 int del_nr = 0;
601 int del_slot = 0;
602 int recow;
603 int ret = 0;
604 u64 ino = btrfs_ino(inode);
606 path = btrfs_alloc_path();
607 if (!path)
608 return -ENOMEM;
609 again:
610 recow = 0;
611 split = start;
612 key.objectid = ino;
613 key.type = BTRFS_EXTENT_DATA_KEY;
614 key.offset = split;
616 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
617 if (ret < 0)
618 goto out;
619 if (ret > 0 && path->slots[0] > 0)
620 path->slots[0]--;
622 leaf = path->nodes[0];
623 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
624 if (key.objectid != ino ||
625 key.type != BTRFS_EXTENT_DATA_KEY) {
626 ret = -EINVAL;
627 btrfs_abort_transaction(trans, ret);
628 goto out;
630 fi = btrfs_item_ptr(leaf, path->slots[0],
631 struct btrfs_file_extent_item);
632 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
633 ret = -EINVAL;
634 btrfs_abort_transaction(trans, ret);
635 goto out;
637 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
638 if (key.offset > start || extent_end < end) {
639 ret = -EINVAL;
640 btrfs_abort_transaction(trans, ret);
641 goto out;
644 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
645 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
646 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
647 memcpy(&new_key, &key, sizeof(new_key));
649 if (start == key.offset && end < extent_end) {
650 other_start = 0;
651 other_end = start;
652 if (extent_mergeable(leaf, path->slots[0] - 1,
653 ino, bytenr, orig_offset,
654 &other_start, &other_end)) {
655 new_key.offset = end;
656 btrfs_set_item_key_safe(trans, path, &new_key);
657 fi = btrfs_item_ptr(leaf, path->slots[0],
658 struct btrfs_file_extent_item);
659 btrfs_set_file_extent_generation(leaf, fi,
660 trans->transid);
661 btrfs_set_file_extent_num_bytes(leaf, fi,
662 extent_end - end);
663 btrfs_set_file_extent_offset(leaf, fi,
664 end - orig_offset);
665 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
666 struct btrfs_file_extent_item);
667 btrfs_set_file_extent_generation(leaf, fi,
668 trans->transid);
669 btrfs_set_file_extent_num_bytes(leaf, fi,
670 end - other_start);
671 btrfs_mark_buffer_dirty(trans, leaf);
672 goto out;
676 if (start > key.offset && end == extent_end) {
677 other_start = end;
678 other_end = 0;
679 if (extent_mergeable(leaf, path->slots[0] + 1,
680 ino, bytenr, orig_offset,
681 &other_start, &other_end)) {
682 fi = btrfs_item_ptr(leaf, path->slots[0],
683 struct btrfs_file_extent_item);
684 btrfs_set_file_extent_num_bytes(leaf, fi,
685 start - key.offset);
686 btrfs_set_file_extent_generation(leaf, fi,
687 trans->transid);
688 path->slots[0]++;
689 new_key.offset = start;
690 btrfs_set_item_key_safe(trans, path, &new_key);
692 fi = btrfs_item_ptr(leaf, path->slots[0],
693 struct btrfs_file_extent_item);
694 btrfs_set_file_extent_generation(leaf, fi,
695 trans->transid);
696 btrfs_set_file_extent_num_bytes(leaf, fi,
697 other_end - start);
698 btrfs_set_file_extent_offset(leaf, fi,
699 start - orig_offset);
700 btrfs_mark_buffer_dirty(trans, leaf);
701 goto out;
705 while (start > key.offset || end < extent_end) {
706 if (key.offset == start)
707 split = end;
709 new_key.offset = split;
710 ret = btrfs_duplicate_item(trans, root, path, &new_key);
711 if (ret == -EAGAIN) {
712 btrfs_release_path(path);
713 goto again;
715 if (ret < 0) {
716 btrfs_abort_transaction(trans, ret);
717 goto out;
720 leaf = path->nodes[0];
721 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
722 struct btrfs_file_extent_item);
723 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
724 btrfs_set_file_extent_num_bytes(leaf, fi,
725 split - key.offset);
727 fi = btrfs_item_ptr(leaf, path->slots[0],
728 struct btrfs_file_extent_item);
730 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
731 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
732 btrfs_set_file_extent_num_bytes(leaf, fi,
733 extent_end - split);
734 btrfs_mark_buffer_dirty(trans, leaf);
736 ref.action = BTRFS_ADD_DELAYED_REF;
737 ref.bytenr = bytenr;
738 ref.num_bytes = num_bytes;
739 ref.parent = 0;
740 ref.owning_root = btrfs_root_id(root);
741 ref.ref_root = btrfs_root_id(root);
742 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
743 ret = btrfs_inc_extent_ref(trans, &ref);
744 if (ret) {
745 btrfs_abort_transaction(trans, ret);
746 goto out;
749 if (split == start) {
750 key.offset = start;
751 } else {
752 if (start != key.offset) {
753 ret = -EINVAL;
754 btrfs_abort_transaction(trans, ret);
755 goto out;
757 path->slots[0]--;
758 extent_end = end;
760 recow = 1;
763 other_start = end;
764 other_end = 0;
766 ref.action = BTRFS_DROP_DELAYED_REF;
767 ref.bytenr = bytenr;
768 ref.num_bytes = num_bytes;
769 ref.parent = 0;
770 ref.owning_root = btrfs_root_id(root);
771 ref.ref_root = btrfs_root_id(root);
772 btrfs_init_data_ref(&ref, ino, orig_offset, 0, false);
773 if (extent_mergeable(leaf, path->slots[0] + 1,
774 ino, bytenr, orig_offset,
775 &other_start, &other_end)) {
776 if (recow) {
777 btrfs_release_path(path);
778 goto again;
780 extent_end = other_end;
781 del_slot = path->slots[0] + 1;
782 del_nr++;
783 ret = btrfs_free_extent(trans, &ref);
784 if (ret) {
785 btrfs_abort_transaction(trans, ret);
786 goto out;
789 other_start = 0;
790 other_end = start;
791 if (extent_mergeable(leaf, path->slots[0] - 1,
792 ino, bytenr, orig_offset,
793 &other_start, &other_end)) {
794 if (recow) {
795 btrfs_release_path(path);
796 goto again;
798 key.offset = other_start;
799 del_slot = path->slots[0];
800 del_nr++;
801 ret = btrfs_free_extent(trans, &ref);
802 if (ret) {
803 btrfs_abort_transaction(trans, ret);
804 goto out;
807 if (del_nr == 0) {
808 fi = btrfs_item_ptr(leaf, path->slots[0],
809 struct btrfs_file_extent_item);
810 btrfs_set_file_extent_type(leaf, fi,
811 BTRFS_FILE_EXTENT_REG);
812 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
813 btrfs_mark_buffer_dirty(trans, leaf);
814 } else {
815 fi = btrfs_item_ptr(leaf, del_slot - 1,
816 struct btrfs_file_extent_item);
817 btrfs_set_file_extent_type(leaf, fi,
818 BTRFS_FILE_EXTENT_REG);
819 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
820 btrfs_set_file_extent_num_bytes(leaf, fi,
821 extent_end - key.offset);
822 btrfs_mark_buffer_dirty(trans, leaf);
824 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
825 if (ret < 0) {
826 btrfs_abort_transaction(trans, ret);
827 goto out;
830 out:
831 btrfs_free_path(path);
832 return ret;
836 * On error return an unlocked folio and the error value
837 * On success return a locked folio and 0
839 static int prepare_uptodate_folio(struct inode *inode, struct folio *folio, u64 pos,
840 u64 len, bool force_uptodate)
842 u64 clamp_start = max_t(u64, pos, folio_pos(folio));
843 u64 clamp_end = min_t(u64, pos + len, folio_pos(folio) + folio_size(folio));
844 int ret = 0;
846 if (folio_test_uptodate(folio))
847 return 0;
849 if (!force_uptodate &&
850 IS_ALIGNED(clamp_start, PAGE_SIZE) &&
851 IS_ALIGNED(clamp_end, PAGE_SIZE))
852 return 0;
854 ret = btrfs_read_folio(NULL, folio);
855 if (ret)
856 return ret;
857 folio_lock(folio);
858 if (!folio_test_uptodate(folio)) {
859 folio_unlock(folio);
860 return -EIO;
864 * Since btrfs_read_folio() will unlock the folio before it returns,
865 * there is a window where btrfs_release_folio() can be called to
866 * release the page. Here we check both inode mapping and page
867 * private to make sure the page was not released.
869 * The private flag check is essential for subpage as we need to store
870 * extra bitmap using folio private.
872 if (folio->mapping != inode->i_mapping || !folio_test_private(folio)) {
873 folio_unlock(folio);
874 return -EAGAIN;
876 return 0;
879 static gfp_t get_prepare_gfp_flags(struct inode *inode, bool nowait)
881 gfp_t gfp;
883 gfp = btrfs_alloc_write_mask(inode->i_mapping);
884 if (nowait) {
885 gfp &= ~__GFP_DIRECT_RECLAIM;
886 gfp |= GFP_NOWAIT;
889 return gfp;
893 * Get folio into the page cache and lock it.
895 static noinline int prepare_one_folio(struct inode *inode, struct folio **folio_ret,
896 loff_t pos, size_t write_bytes,
897 bool force_uptodate, bool nowait)
899 unsigned long index = pos >> PAGE_SHIFT;
900 gfp_t mask = get_prepare_gfp_flags(inode, nowait);
901 fgf_t fgp_flags = (nowait ? FGP_WRITEBEGIN | FGP_NOWAIT : FGP_WRITEBEGIN);
902 struct folio *folio;
903 int ret = 0;
905 again:
906 folio = __filemap_get_folio(inode->i_mapping, index, fgp_flags, mask);
907 if (IS_ERR(folio)) {
908 if (nowait)
909 ret = -EAGAIN;
910 else
911 ret = PTR_ERR(folio);
912 return ret;
914 folio_wait_writeback(folio);
915 /* Only support page sized folio yet. */
916 ASSERT(folio_order(folio) == 0);
917 ret = set_folio_extent_mapped(folio);
918 if (ret < 0) {
919 folio_unlock(folio);
920 folio_put(folio);
921 return ret;
923 ret = prepare_uptodate_folio(inode, folio, pos, write_bytes, force_uptodate);
924 if (ret) {
925 /* The folio is already unlocked. */
926 folio_put(folio);
927 if (!nowait && ret == -EAGAIN) {
928 ret = 0;
929 goto again;
931 return ret;
933 *folio_ret = folio;
934 return 0;
938 * Locks the extent and properly waits for data=ordered extents to finish
939 * before allowing the folios to be modified if need.
941 * Return:
942 * 1 - the extent is locked
943 * 0 - the extent is not locked, and everything is OK
944 * -EAGAIN - need to prepare the folios again
946 static noinline int
947 lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct folio *folio,
948 loff_t pos, size_t write_bytes,
949 u64 *lockstart, u64 *lockend, bool nowait,
950 struct extent_state **cached_state)
952 struct btrfs_fs_info *fs_info = inode->root->fs_info;
953 u64 start_pos;
954 u64 last_pos;
955 int ret = 0;
957 start_pos = round_down(pos, fs_info->sectorsize);
958 last_pos = round_up(pos + write_bytes, fs_info->sectorsize) - 1;
960 if (start_pos < inode->vfs_inode.i_size) {
961 struct btrfs_ordered_extent *ordered;
963 if (nowait) {
964 if (!try_lock_extent(&inode->io_tree, start_pos, last_pos,
965 cached_state)) {
966 folio_unlock(folio);
967 folio_put(folio);
968 return -EAGAIN;
970 } else {
971 lock_extent(&inode->io_tree, start_pos, last_pos, cached_state);
974 ordered = btrfs_lookup_ordered_range(inode, start_pos,
975 last_pos - start_pos + 1);
976 if (ordered &&
977 ordered->file_offset + ordered->num_bytes > start_pos &&
978 ordered->file_offset <= last_pos) {
979 unlock_extent(&inode->io_tree, start_pos, last_pos,
980 cached_state);
981 folio_unlock(folio);
982 folio_put(folio);
983 btrfs_start_ordered_extent(ordered);
984 btrfs_put_ordered_extent(ordered);
985 return -EAGAIN;
987 if (ordered)
988 btrfs_put_ordered_extent(ordered);
990 *lockstart = start_pos;
991 *lockend = last_pos;
992 ret = 1;
996 * We should be called after prepare_one_folio() which should have locked
997 * all pages in the range.
999 WARN_ON(!folio_test_locked(folio));
1001 return ret;
1005 * Check if we can do nocow write into the range [@pos, @pos + @write_bytes)
1007 * @pos: File offset.
1008 * @write_bytes: The length to write, will be updated to the nocow writeable
1009 * range.
1011 * This function will flush ordered extents in the range to ensure proper
1012 * nocow checks.
1014 * Return:
1015 * > 0 If we can nocow, and updates @write_bytes.
1016 * 0 If we can't do a nocow write.
1017 * -EAGAIN If we can't do a nocow write because snapshoting of the inode's
1018 * root is in progress.
1019 * < 0 If an error happened.
1021 * NOTE: Callers need to call btrfs_check_nocow_unlock() if we return > 0.
1023 int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
1024 size_t *write_bytes, bool nowait)
1026 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1027 struct btrfs_root *root = inode->root;
1028 struct extent_state *cached_state = NULL;
1029 u64 lockstart, lockend;
1030 u64 num_bytes;
1031 int ret;
1033 if (!(inode->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1034 return 0;
1036 if (!btrfs_drew_try_write_lock(&root->snapshot_lock))
1037 return -EAGAIN;
1039 lockstart = round_down(pos, fs_info->sectorsize);
1040 lockend = round_up(pos + *write_bytes,
1041 fs_info->sectorsize) - 1;
1042 num_bytes = lockend - lockstart + 1;
1044 if (nowait) {
1045 if (!btrfs_try_lock_ordered_range(inode, lockstart, lockend,
1046 &cached_state)) {
1047 btrfs_drew_write_unlock(&root->snapshot_lock);
1048 return -EAGAIN;
1050 } else {
1051 btrfs_lock_and_flush_ordered_range(inode, lockstart, lockend,
1052 &cached_state);
1054 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1055 NULL, nowait, false);
1056 if (ret <= 0)
1057 btrfs_drew_write_unlock(&root->snapshot_lock);
1058 else
1059 *write_bytes = min_t(size_t, *write_bytes ,
1060 num_bytes - pos + lockstart);
1061 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
1063 return ret;
1066 void btrfs_check_nocow_unlock(struct btrfs_inode *inode)
1068 btrfs_drew_write_unlock(&inode->root->snapshot_lock);
1071 int btrfs_write_check(struct kiocb *iocb, size_t count)
1073 struct file *file = iocb->ki_filp;
1074 struct inode *inode = file_inode(file);
1075 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1076 loff_t pos = iocb->ki_pos;
1077 int ret;
1078 loff_t oldsize;
1079 loff_t start_pos;
1082 * Quickly bail out on NOWAIT writes if we don't have the nodatacow or
1083 * prealloc flags, as without those flags we always have to COW. We will
1084 * later check if we can really COW into the target range (using
1085 * can_nocow_extent() at btrfs_get_blocks_direct_write()).
1087 if ((iocb->ki_flags & IOCB_NOWAIT) &&
1088 !(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW | BTRFS_INODE_PREALLOC)))
1089 return -EAGAIN;
1091 ret = file_remove_privs(file);
1092 if (ret)
1093 return ret;
1096 * We reserve space for updating the inode when we reserve space for the
1097 * extent we are going to write, so we will enospc out there. We don't
1098 * need to start yet another transaction to update the inode as we will
1099 * update the inode when we finish writing whatever data we write.
1101 if (!IS_NOCMTIME(inode)) {
1102 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1103 inode_inc_iversion(inode);
1106 start_pos = round_down(pos, fs_info->sectorsize);
1107 oldsize = i_size_read(inode);
1108 if (start_pos > oldsize) {
1109 /* Expand hole size to cover write data, preventing empty gap */
1110 loff_t end_pos = round_up(pos + count, fs_info->sectorsize);
1112 ret = btrfs_cont_expand(BTRFS_I(inode), oldsize, end_pos);
1113 if (ret)
1114 return ret;
1117 return 0;
1120 ssize_t btrfs_buffered_write(struct kiocb *iocb, struct iov_iter *i)
1122 struct file *file = iocb->ki_filp;
1123 loff_t pos;
1124 struct inode *inode = file_inode(file);
1125 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1126 struct extent_changeset *data_reserved = NULL;
1127 u64 release_bytes = 0;
1128 u64 lockstart;
1129 u64 lockend;
1130 size_t num_written = 0;
1131 ssize_t ret;
1132 loff_t old_isize = i_size_read(inode);
1133 unsigned int ilock_flags = 0;
1134 const bool nowait = (iocb->ki_flags & IOCB_NOWAIT);
1135 unsigned int bdp_flags = (nowait ? BDP_ASYNC : 0);
1136 bool only_release_metadata = false;
1138 if (nowait)
1139 ilock_flags |= BTRFS_ILOCK_TRY;
1141 ret = btrfs_inode_lock(BTRFS_I(inode), ilock_flags);
1142 if (ret < 0)
1143 return ret;
1145 ret = generic_write_checks(iocb, i);
1146 if (ret <= 0)
1147 goto out;
1149 ret = btrfs_write_check(iocb, ret);
1150 if (ret < 0)
1151 goto out;
1153 pos = iocb->ki_pos;
1154 while (iov_iter_count(i) > 0) {
1155 struct extent_state *cached_state = NULL;
1156 size_t offset = offset_in_page(pos);
1157 size_t sector_offset;
1158 size_t write_bytes = min(iov_iter_count(i), PAGE_SIZE - offset);
1159 size_t reserve_bytes;
1160 size_t copied;
1161 size_t dirty_sectors;
1162 size_t num_sectors;
1163 struct folio *folio = NULL;
1164 int extents_locked;
1165 bool force_page_uptodate = false;
1168 * Fault pages before locking them in prepare_one_folio()
1169 * to avoid recursive lock
1171 if (unlikely(fault_in_iov_iter_readable(i, write_bytes))) {
1172 ret = -EFAULT;
1173 break;
1176 only_release_metadata = false;
1177 sector_offset = pos & (fs_info->sectorsize - 1);
1179 extent_changeset_release(data_reserved);
1180 ret = btrfs_check_data_free_space(BTRFS_I(inode),
1181 &data_reserved, pos,
1182 write_bytes, nowait);
1183 if (ret < 0) {
1184 int can_nocow;
1186 if (nowait && (ret == -ENOSPC || ret == -EAGAIN)) {
1187 ret = -EAGAIN;
1188 break;
1192 * If we don't have to COW at the offset, reserve
1193 * metadata only. write_bytes may get smaller than
1194 * requested here.
1196 can_nocow = btrfs_check_nocow_lock(BTRFS_I(inode), pos,
1197 &write_bytes, nowait);
1198 if (can_nocow < 0)
1199 ret = can_nocow;
1200 if (can_nocow > 0)
1201 ret = 0;
1202 if (ret)
1203 break;
1204 only_release_metadata = true;
1207 reserve_bytes = round_up(write_bytes + sector_offset,
1208 fs_info->sectorsize);
1209 WARN_ON(reserve_bytes == 0);
1210 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1211 reserve_bytes,
1212 reserve_bytes, nowait);
1213 if (ret) {
1214 if (!only_release_metadata)
1215 btrfs_free_reserved_data_space(BTRFS_I(inode),
1216 data_reserved, pos,
1217 write_bytes);
1218 else
1219 btrfs_check_nocow_unlock(BTRFS_I(inode));
1221 if (nowait && ret == -ENOSPC)
1222 ret = -EAGAIN;
1223 break;
1226 release_bytes = reserve_bytes;
1227 again:
1228 ret = balance_dirty_pages_ratelimited_flags(inode->i_mapping, bdp_flags);
1229 if (ret) {
1230 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1231 break;
1234 ret = prepare_one_folio(inode, &folio, pos, write_bytes,
1235 force_page_uptodate, false);
1236 if (ret) {
1237 btrfs_delalloc_release_extents(BTRFS_I(inode),
1238 reserve_bytes);
1239 break;
1242 extents_locked = lock_and_cleanup_extent_if_need(BTRFS_I(inode),
1243 folio, pos, write_bytes, &lockstart,
1244 &lockend, nowait, &cached_state);
1245 if (extents_locked < 0) {
1246 if (!nowait && extents_locked == -EAGAIN)
1247 goto again;
1249 btrfs_delalloc_release_extents(BTRFS_I(inode),
1250 reserve_bytes);
1251 ret = extents_locked;
1252 break;
1255 copied = btrfs_copy_from_user(pos, write_bytes, folio, i);
1257 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
1258 dirty_sectors = round_up(copied + sector_offset,
1259 fs_info->sectorsize);
1260 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
1262 if (copied == 0) {
1263 force_page_uptodate = true;
1264 dirty_sectors = 0;
1265 } else {
1266 force_page_uptodate = false;
1269 if (num_sectors > dirty_sectors) {
1270 /* release everything except the sectors we dirtied */
1271 release_bytes -= dirty_sectors << fs_info->sectorsize_bits;
1272 if (only_release_metadata) {
1273 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1274 release_bytes, true);
1275 } else {
1276 u64 release_start = round_up(pos + copied,
1277 fs_info->sectorsize);
1278 btrfs_delalloc_release_space(BTRFS_I(inode),
1279 data_reserved, release_start,
1280 release_bytes, true);
1284 release_bytes = round_up(copied + sector_offset,
1285 fs_info->sectorsize);
1287 ret = btrfs_dirty_folio(BTRFS_I(inode), folio, pos, copied,
1288 &cached_state, only_release_metadata);
1291 * If we have not locked the extent range, because the range's
1292 * start offset is >= i_size, we might still have a non-NULL
1293 * cached extent state, acquired while marking the extent range
1294 * as delalloc through btrfs_dirty_page(). Therefore free any
1295 * possible cached extent state to avoid a memory leak.
1297 if (extents_locked)
1298 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
1299 lockend, &cached_state);
1300 else
1301 free_extent_state(cached_state);
1303 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes);
1304 if (ret) {
1305 btrfs_drop_folio(fs_info, folio, pos, copied);
1306 break;
1309 release_bytes = 0;
1310 if (only_release_metadata)
1311 btrfs_check_nocow_unlock(BTRFS_I(inode));
1313 btrfs_drop_folio(fs_info, folio, pos, copied);
1315 cond_resched();
1317 pos += copied;
1318 num_written += copied;
1321 if (release_bytes) {
1322 if (only_release_metadata) {
1323 btrfs_check_nocow_unlock(BTRFS_I(inode));
1324 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1325 release_bytes, true);
1326 } else {
1327 btrfs_delalloc_release_space(BTRFS_I(inode),
1328 data_reserved,
1329 round_down(pos, fs_info->sectorsize),
1330 release_bytes, true);
1334 extent_changeset_free(data_reserved);
1335 if (num_written > 0) {
1336 pagecache_isize_extended(inode, old_isize, iocb->ki_pos);
1337 iocb->ki_pos += num_written;
1339 out:
1340 btrfs_inode_unlock(BTRFS_I(inode), ilock_flags);
1341 return num_written ? num_written : ret;
1344 static ssize_t btrfs_encoded_write(struct kiocb *iocb, struct iov_iter *from,
1345 const struct btrfs_ioctl_encoded_io_args *encoded)
1347 struct file *file = iocb->ki_filp;
1348 struct inode *inode = file_inode(file);
1349 loff_t count;
1350 ssize_t ret;
1352 btrfs_inode_lock(BTRFS_I(inode), 0);
1353 count = encoded->len;
1354 ret = generic_write_checks_count(iocb, &count);
1355 if (ret == 0 && count != encoded->len) {
1357 * The write got truncated by generic_write_checks_count(). We
1358 * can't do a partial encoded write.
1360 ret = -EFBIG;
1362 if (ret || encoded->len == 0)
1363 goto out;
1365 ret = btrfs_write_check(iocb, encoded->len);
1366 if (ret < 0)
1367 goto out;
1369 ret = btrfs_do_encoded_write(iocb, from, encoded);
1370 out:
1371 btrfs_inode_unlock(BTRFS_I(inode), 0);
1372 return ret;
1375 ssize_t btrfs_do_write_iter(struct kiocb *iocb, struct iov_iter *from,
1376 const struct btrfs_ioctl_encoded_io_args *encoded)
1378 struct file *file = iocb->ki_filp;
1379 struct btrfs_inode *inode = BTRFS_I(file_inode(file));
1380 ssize_t num_written, num_sync;
1383 * If the fs flips readonly due to some impossible error, although we
1384 * have opened a file as writable, we have to stop this write operation
1385 * to ensure consistency.
1387 if (BTRFS_FS_ERROR(inode->root->fs_info))
1388 return -EROFS;
1390 if (encoded && (iocb->ki_flags & IOCB_NOWAIT))
1391 return -EOPNOTSUPP;
1393 if (encoded) {
1394 num_written = btrfs_encoded_write(iocb, from, encoded);
1395 num_sync = encoded->len;
1396 } else if (iocb->ki_flags & IOCB_DIRECT) {
1397 num_written = btrfs_direct_write(iocb, from);
1398 num_sync = num_written;
1399 } else {
1400 num_written = btrfs_buffered_write(iocb, from);
1401 num_sync = num_written;
1404 btrfs_set_inode_last_sub_trans(inode);
1406 if (num_sync > 0) {
1407 num_sync = generic_write_sync(iocb, num_sync);
1408 if (num_sync < 0)
1409 num_written = num_sync;
1412 return num_written;
1415 static ssize_t btrfs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1417 return btrfs_do_write_iter(iocb, from, NULL);
1420 int btrfs_release_file(struct inode *inode, struct file *filp)
1422 struct btrfs_file_private *private = filp->private_data;
1424 if (private) {
1425 kfree(private->filldir_buf);
1426 free_extent_state(private->llseek_cached_state);
1427 kfree(private);
1428 filp->private_data = NULL;
1432 * Set by setattr when we are about to truncate a file from a non-zero
1433 * size to a zero size. This tries to flush down new bytes that may
1434 * have been written if the application were using truncate to replace
1435 * a file in place.
1437 if (test_and_clear_bit(BTRFS_INODE_FLUSH_ON_CLOSE,
1438 &BTRFS_I(inode)->runtime_flags))
1439 filemap_flush(inode->i_mapping);
1440 return 0;
1443 static int start_ordered_ops(struct btrfs_inode *inode, loff_t start, loff_t end)
1445 int ret;
1446 struct blk_plug plug;
1449 * This is only called in fsync, which would do synchronous writes, so
1450 * a plug can merge adjacent IOs as much as possible. Esp. in case of
1451 * multiple disks using raid profile, a large IO can be split to
1452 * several segments of stripe length (currently 64K).
1454 blk_start_plug(&plug);
1455 ret = btrfs_fdatawrite_range(inode, start, end);
1456 blk_finish_plug(&plug);
1458 return ret;
1461 static inline bool skip_inode_logging(const struct btrfs_log_ctx *ctx)
1463 struct btrfs_inode *inode = ctx->inode;
1464 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1466 if (btrfs_inode_in_log(inode, btrfs_get_fs_generation(fs_info)) &&
1467 list_empty(&ctx->ordered_extents))
1468 return true;
1471 * If we are doing a fast fsync we can not bail out if the inode's
1472 * last_trans is <= then the last committed transaction, because we only
1473 * update the last_trans of the inode during ordered extent completion,
1474 * and for a fast fsync we don't wait for that, we only wait for the
1475 * writeback to complete.
1477 if (inode->last_trans <= btrfs_get_last_trans_committed(fs_info) &&
1478 (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags) ||
1479 list_empty(&ctx->ordered_extents)))
1480 return true;
1482 return false;
1486 * fsync call for both files and directories. This logs the inode into
1487 * the tree log instead of forcing full commits whenever possible.
1489 * It needs to call filemap_fdatawait so that all ordered extent updates are
1490 * in the metadata btree are up to date for copying to the log.
1492 * It drops the inode mutex before doing the tree log commit. This is an
1493 * important optimization for directories because holding the mutex prevents
1494 * new operations on the dir while we write to disk.
1496 int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
1498 struct dentry *dentry = file_dentry(file);
1499 struct btrfs_inode *inode = BTRFS_I(d_inode(dentry));
1500 struct btrfs_root *root = inode->root;
1501 struct btrfs_fs_info *fs_info = root->fs_info;
1502 struct btrfs_trans_handle *trans;
1503 struct btrfs_log_ctx ctx;
1504 int ret = 0, err;
1505 u64 len;
1506 bool full_sync;
1507 bool skip_ilock = false;
1509 if (current->journal_info == BTRFS_TRANS_DIO_WRITE_STUB) {
1510 skip_ilock = true;
1511 current->journal_info = NULL;
1512 btrfs_assert_inode_locked(inode);
1515 trace_btrfs_sync_file(file, datasync);
1517 btrfs_init_log_ctx(&ctx, inode);
1520 * Always set the range to a full range, otherwise we can get into
1521 * several problems, from missing file extent items to represent holes
1522 * when not using the NO_HOLES feature, to log tree corruption due to
1523 * races between hole detection during logging and completion of ordered
1524 * extents outside the range, to missing checksums due to ordered extents
1525 * for which we flushed only a subset of their pages.
1527 start = 0;
1528 end = LLONG_MAX;
1529 len = (u64)LLONG_MAX + 1;
1532 * We write the dirty pages in the range and wait until they complete
1533 * out of the ->i_mutex. If so, we can flush the dirty pages by
1534 * multi-task, and make the performance up. See
1535 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
1537 ret = start_ordered_ops(inode, start, end);
1538 if (ret)
1539 goto out;
1541 if (skip_ilock)
1542 down_write(&inode->i_mmap_lock);
1543 else
1544 btrfs_inode_lock(inode, BTRFS_ILOCK_MMAP);
1546 atomic_inc(&root->log_batch);
1549 * Before we acquired the inode's lock and the mmap lock, someone may
1550 * have dirtied more pages in the target range. We need to make sure
1551 * that writeback for any such pages does not start while we are logging
1552 * the inode, because if it does, any of the following might happen when
1553 * we are not doing a full inode sync:
1555 * 1) We log an extent after its writeback finishes but before its
1556 * checksums are added to the csum tree, leading to -EIO errors
1557 * when attempting to read the extent after a log replay.
1559 * 2) We can end up logging an extent before its writeback finishes.
1560 * Therefore after the log replay we will have a file extent item
1561 * pointing to an unwritten extent (and no data checksums as well).
1563 * So trigger writeback for any eventual new dirty pages and then we
1564 * wait for all ordered extents to complete below.
1566 ret = start_ordered_ops(inode, start, end);
1567 if (ret) {
1568 if (skip_ilock)
1569 up_write(&inode->i_mmap_lock);
1570 else
1571 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1572 goto out;
1576 * Always check for the full sync flag while holding the inode's lock,
1577 * to avoid races with other tasks. The flag must be either set all the
1578 * time during logging or always off all the time while logging.
1579 * We check the flag here after starting delalloc above, because when
1580 * running delalloc the full sync flag may be set if we need to drop
1581 * extra extent map ranges due to temporary memory allocation failures.
1583 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1586 * We have to do this here to avoid the priority inversion of waiting on
1587 * IO of a lower priority task while holding a transaction open.
1589 * For a full fsync we wait for the ordered extents to complete while
1590 * for a fast fsync we wait just for writeback to complete, and then
1591 * attach the ordered extents to the transaction so that a transaction
1592 * commit waits for their completion, to avoid data loss if we fsync,
1593 * the current transaction commits before the ordered extents complete
1594 * and a power failure happens right after that.
1596 * For zoned filesystem, if a write IO uses a ZONE_APPEND command, the
1597 * logical address recorded in the ordered extent may change. We need
1598 * to wait for the IO to stabilize the logical address.
1600 if (full_sync || btrfs_is_zoned(fs_info)) {
1601 ret = btrfs_wait_ordered_range(inode, start, len);
1602 clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags);
1603 } else {
1605 * Get our ordered extents as soon as possible to avoid doing
1606 * checksum lookups in the csum tree, and use instead the
1607 * checksums attached to the ordered extents.
1609 btrfs_get_ordered_extents_for_logging(inode, &ctx.ordered_extents);
1610 ret = filemap_fdatawait_range(inode->vfs_inode.i_mapping, start, end);
1611 if (ret)
1612 goto out_release_extents;
1615 * Check and clear the BTRFS_INODE_COW_WRITE_ERROR now after
1616 * starting and waiting for writeback, because for buffered IO
1617 * it may have been set during the end IO callback
1618 * (end_bbio_data_write() -> btrfs_finish_ordered_extent()) in
1619 * case an error happened and we need to wait for ordered
1620 * extents to complete so that any extent maps that point to
1621 * unwritten locations are dropped and we don't log them.
1623 if (test_and_clear_bit(BTRFS_INODE_COW_WRITE_ERROR, &inode->runtime_flags))
1624 ret = btrfs_wait_ordered_range(inode, start, len);
1627 if (ret)
1628 goto out_release_extents;
1630 atomic_inc(&root->log_batch);
1632 if (skip_inode_logging(&ctx)) {
1634 * We've had everything committed since the last time we were
1635 * modified so clear this flag in case it was set for whatever
1636 * reason, it's no longer relevant.
1638 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
1640 * An ordered extent might have started before and completed
1641 * already with io errors, in which case the inode was not
1642 * updated and we end up here. So check the inode's mapping
1643 * for any errors that might have happened since we last
1644 * checked called fsync.
1646 ret = filemap_check_wb_err(inode->vfs_inode.i_mapping, file->f_wb_err);
1647 goto out_release_extents;
1650 btrfs_init_log_ctx_scratch_eb(&ctx);
1653 * We use start here because we will need to wait on the IO to complete
1654 * in btrfs_sync_log, which could require joining a transaction (for
1655 * example checking cross references in the nocow path). If we use join
1656 * here we could get into a situation where we're waiting on IO to
1657 * happen that is blocked on a transaction trying to commit. With start
1658 * we inc the extwriter counter, so we wait for all extwriters to exit
1659 * before we start blocking joiners. This comment is to keep somebody
1660 * from thinking they are super smart and changing this to
1661 * btrfs_join_transaction *cough*Josef*cough*.
1663 trans = btrfs_start_transaction(root, 0);
1664 if (IS_ERR(trans)) {
1665 ret = PTR_ERR(trans);
1666 goto out_release_extents;
1668 trans->in_fsync = true;
1670 ret = btrfs_log_dentry_safe(trans, dentry, &ctx);
1672 * Scratch eb no longer needed, release before syncing log or commit
1673 * transaction, to avoid holding unnecessary memory during such long
1674 * operations.
1676 if (ctx.scratch_eb) {
1677 free_extent_buffer(ctx.scratch_eb);
1678 ctx.scratch_eb = NULL;
1680 btrfs_release_log_ctx_extents(&ctx);
1681 if (ret < 0) {
1682 /* Fallthrough and commit/free transaction. */
1683 ret = BTRFS_LOG_FORCE_COMMIT;
1686 /* we've logged all the items and now have a consistent
1687 * version of the file in the log. It is possible that
1688 * someone will come in and modify the file, but that's
1689 * fine because the log is consistent on disk, and we
1690 * have references to all of the file's extents
1692 * It is possible that someone will come in and log the
1693 * file again, but that will end up using the synchronization
1694 * inside btrfs_sync_log to keep things safe.
1696 if (skip_ilock)
1697 up_write(&inode->i_mmap_lock);
1698 else
1699 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1701 if (ret == BTRFS_NO_LOG_SYNC) {
1702 ret = btrfs_end_transaction(trans);
1703 goto out;
1706 /* We successfully logged the inode, attempt to sync the log. */
1707 if (!ret) {
1708 ret = btrfs_sync_log(trans, root, &ctx);
1709 if (!ret) {
1710 ret = btrfs_end_transaction(trans);
1711 goto out;
1716 * At this point we need to commit the transaction because we had
1717 * btrfs_need_log_full_commit() or some other error.
1719 * If we didn't do a full sync we have to stop the trans handle, wait on
1720 * the ordered extents, start it again and commit the transaction. If
1721 * we attempt to wait on the ordered extents here we could deadlock with
1722 * something like fallocate() that is holding the extent lock trying to
1723 * start a transaction while some other thread is trying to commit the
1724 * transaction while we (fsync) are currently holding the transaction
1725 * open.
1727 if (!full_sync) {
1728 ret = btrfs_end_transaction(trans);
1729 if (ret)
1730 goto out;
1731 ret = btrfs_wait_ordered_range(inode, start, len);
1732 if (ret)
1733 goto out;
1736 * This is safe to use here because we're only interested in
1737 * making sure the transaction that had the ordered extents is
1738 * committed. We aren't waiting on anything past this point,
1739 * we're purely getting the transaction and committing it.
1741 trans = btrfs_attach_transaction_barrier(root);
1742 if (IS_ERR(trans)) {
1743 ret = PTR_ERR(trans);
1746 * We committed the transaction and there's no currently
1747 * running transaction, this means everything we care
1748 * about made it to disk and we are done.
1750 if (ret == -ENOENT)
1751 ret = 0;
1752 goto out;
1756 ret = btrfs_commit_transaction(trans);
1757 out:
1758 free_extent_buffer(ctx.scratch_eb);
1759 ASSERT(list_empty(&ctx.list));
1760 ASSERT(list_empty(&ctx.conflict_inodes));
1761 err = file_check_and_advance_wb_err(file);
1762 if (!ret)
1763 ret = err;
1764 return ret > 0 ? -EIO : ret;
1766 out_release_extents:
1767 btrfs_release_log_ctx_extents(&ctx);
1768 if (skip_ilock)
1769 up_write(&inode->i_mmap_lock);
1770 else
1771 btrfs_inode_unlock(inode, BTRFS_ILOCK_MMAP);
1772 goto out;
1776 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
1777 * called from a page fault handler when a page is first dirtied. Hence we must
1778 * be careful to check for EOF conditions here. We set the page up correctly
1779 * for a written page which means we get ENOSPC checking when writing into
1780 * holes and correct delalloc and unwritten extent mapping on filesystems that
1781 * support these features.
1783 * We are not allowed to take the i_mutex here so we have to play games to
1784 * protect against truncate races as the page could now be beyond EOF. Because
1785 * truncate_setsize() writes the inode size before removing pages, once we have
1786 * the page lock we can determine safely if the page is beyond EOF. If it is not
1787 * beyond EOF, then the page is guaranteed safe against truncation until we
1788 * unlock the page.
1790 static vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf)
1792 struct page *page = vmf->page;
1793 struct folio *folio = page_folio(page);
1794 struct inode *inode = file_inode(vmf->vma->vm_file);
1795 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1796 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1797 struct btrfs_ordered_extent *ordered;
1798 struct extent_state *cached_state = NULL;
1799 struct extent_changeset *data_reserved = NULL;
1800 unsigned long zero_start;
1801 loff_t size;
1802 vm_fault_t ret;
1803 int ret2;
1804 int reserved = 0;
1805 u64 reserved_space;
1806 u64 page_start;
1807 u64 page_end;
1808 u64 end;
1810 ASSERT(folio_order(folio) == 0);
1812 reserved_space = PAGE_SIZE;
1814 sb_start_pagefault(inode->i_sb);
1815 page_start = folio_pos(folio);
1816 page_end = page_start + folio_size(folio) - 1;
1817 end = page_end;
1820 * Reserving delalloc space after obtaining the page lock can lead to
1821 * deadlock. For example, if a dirty page is locked by this function
1822 * and the call to btrfs_delalloc_reserve_space() ends up triggering
1823 * dirty page write out, then the btrfs_writepages() function could
1824 * end up waiting indefinitely to get a lock on the page currently
1825 * being processed by btrfs_page_mkwrite() function.
1827 ret2 = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1828 page_start, reserved_space);
1829 if (!ret2) {
1830 ret2 = file_update_time(vmf->vma->vm_file);
1831 reserved = 1;
1833 if (ret2) {
1834 ret = vmf_error(ret2);
1835 if (reserved)
1836 goto out;
1837 goto out_noreserve;
1840 /* Make the VM retry the fault. */
1841 ret = VM_FAULT_NOPAGE;
1842 again:
1843 down_read(&BTRFS_I(inode)->i_mmap_lock);
1844 folio_lock(folio);
1845 size = i_size_read(inode);
1847 if ((folio->mapping != inode->i_mapping) ||
1848 (page_start >= size)) {
1849 /* Page got truncated out from underneath us. */
1850 goto out_unlock;
1852 folio_wait_writeback(folio);
1854 lock_extent(io_tree, page_start, page_end, &cached_state);
1855 ret2 = set_folio_extent_mapped(folio);
1856 if (ret2 < 0) {
1857 ret = vmf_error(ret2);
1858 unlock_extent(io_tree, page_start, page_end, &cached_state);
1859 goto out_unlock;
1863 * We can't set the delalloc bits if there are pending ordered
1864 * extents. Drop our locks and wait for them to finish.
1866 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start, PAGE_SIZE);
1867 if (ordered) {
1868 unlock_extent(io_tree, page_start, page_end, &cached_state);
1869 folio_unlock(folio);
1870 up_read(&BTRFS_I(inode)->i_mmap_lock);
1871 btrfs_start_ordered_extent(ordered);
1872 btrfs_put_ordered_extent(ordered);
1873 goto again;
1876 if (folio->index == ((size - 1) >> PAGE_SHIFT)) {
1877 reserved_space = round_up(size - page_start, fs_info->sectorsize);
1878 if (reserved_space < PAGE_SIZE) {
1879 end = page_start + reserved_space - 1;
1880 btrfs_delalloc_release_space(BTRFS_I(inode),
1881 data_reserved, page_start,
1882 PAGE_SIZE - reserved_space, true);
1887 * page_mkwrite gets called when the page is firstly dirtied after it's
1888 * faulted in, but write(2) could also dirty a page and set delalloc
1889 * bits, thus in this case for space account reason, we still need to
1890 * clear any delalloc bits within this page range since we have to
1891 * reserve data&meta space before lock_page() (see above comments).
1893 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
1894 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1895 EXTENT_DEFRAG, &cached_state);
1897 ret2 = btrfs_set_extent_delalloc(BTRFS_I(inode), page_start, end, 0,
1898 &cached_state);
1899 if (ret2) {
1900 unlock_extent(io_tree, page_start, page_end, &cached_state);
1901 ret = VM_FAULT_SIGBUS;
1902 goto out_unlock;
1905 /* Page is wholly or partially inside EOF. */
1906 if (page_start + folio_size(folio) > size)
1907 zero_start = offset_in_folio(folio, size);
1908 else
1909 zero_start = PAGE_SIZE;
1911 if (zero_start != PAGE_SIZE)
1912 folio_zero_range(folio, zero_start, folio_size(folio) - zero_start);
1914 btrfs_folio_clear_checked(fs_info, folio, page_start, PAGE_SIZE);
1915 btrfs_folio_set_dirty(fs_info, folio, page_start, end + 1 - page_start);
1916 btrfs_folio_set_uptodate(fs_info, folio, page_start, end + 1 - page_start);
1918 btrfs_set_inode_last_sub_trans(BTRFS_I(inode));
1920 unlock_extent(io_tree, page_start, page_end, &cached_state);
1921 up_read(&BTRFS_I(inode)->i_mmap_lock);
1923 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1924 sb_end_pagefault(inode->i_sb);
1925 extent_changeset_free(data_reserved);
1926 return VM_FAULT_LOCKED;
1928 out_unlock:
1929 folio_unlock(folio);
1930 up_read(&BTRFS_I(inode)->i_mmap_lock);
1931 out:
1932 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
1933 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, page_start,
1934 reserved_space, (ret != 0));
1935 out_noreserve:
1936 sb_end_pagefault(inode->i_sb);
1937 extent_changeset_free(data_reserved);
1938 return ret;
1941 static const struct vm_operations_struct btrfs_file_vm_ops = {
1942 .fault = filemap_fault,
1943 .map_pages = filemap_map_pages,
1944 .page_mkwrite = btrfs_page_mkwrite,
1947 static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
1949 struct address_space *mapping = filp->f_mapping;
1951 if (!mapping->a_ops->read_folio)
1952 return -ENOEXEC;
1954 file_accessed(filp);
1955 vma->vm_ops = &btrfs_file_vm_ops;
1957 return 0;
1960 static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
1961 int slot, u64 start, u64 end)
1963 struct btrfs_file_extent_item *fi;
1964 struct btrfs_key key;
1966 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1967 return 0;
1969 btrfs_item_key_to_cpu(leaf, &key, slot);
1970 if (key.objectid != btrfs_ino(inode) ||
1971 key.type != BTRFS_EXTENT_DATA_KEY)
1972 return 0;
1974 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1976 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
1977 return 0;
1979 if (btrfs_file_extent_disk_bytenr(leaf, fi))
1980 return 0;
1982 if (key.offset == end)
1983 return 1;
1984 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
1985 return 1;
1986 return 0;
1989 static int fill_holes(struct btrfs_trans_handle *trans,
1990 struct btrfs_inode *inode,
1991 struct btrfs_path *path, u64 offset, u64 end)
1993 struct btrfs_fs_info *fs_info = trans->fs_info;
1994 struct btrfs_root *root = inode->root;
1995 struct extent_buffer *leaf;
1996 struct btrfs_file_extent_item *fi;
1997 struct extent_map *hole_em;
1998 struct btrfs_key key;
1999 int ret;
2001 if (btrfs_fs_incompat(fs_info, NO_HOLES))
2002 goto out;
2004 key.objectid = btrfs_ino(inode);
2005 key.type = BTRFS_EXTENT_DATA_KEY;
2006 key.offset = offset;
2008 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2009 if (ret <= 0) {
2011 * We should have dropped this offset, so if we find it then
2012 * something has gone horribly wrong.
2014 if (ret == 0)
2015 ret = -EINVAL;
2016 return ret;
2019 leaf = path->nodes[0];
2020 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2021 u64 num_bytes;
2023 path->slots[0]--;
2024 fi = btrfs_item_ptr(leaf, path->slots[0],
2025 struct btrfs_file_extent_item);
2026 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2027 end - offset;
2028 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2029 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2030 btrfs_set_file_extent_offset(leaf, fi, 0);
2031 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2032 btrfs_mark_buffer_dirty(trans, leaf);
2033 goto out;
2036 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2037 u64 num_bytes;
2039 key.offset = offset;
2040 btrfs_set_item_key_safe(trans, path, &key);
2041 fi = btrfs_item_ptr(leaf, path->slots[0],
2042 struct btrfs_file_extent_item);
2043 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2044 offset;
2045 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2046 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2047 btrfs_set_file_extent_offset(leaf, fi, 0);
2048 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2049 btrfs_mark_buffer_dirty(trans, leaf);
2050 goto out;
2052 btrfs_release_path(path);
2054 ret = btrfs_insert_hole_extent(trans, root, btrfs_ino(inode), offset,
2055 end - offset);
2056 if (ret)
2057 return ret;
2059 out:
2060 btrfs_release_path(path);
2062 hole_em = alloc_extent_map();
2063 if (!hole_em) {
2064 btrfs_drop_extent_map_range(inode, offset, end - 1, false);
2065 btrfs_set_inode_full_sync(inode);
2066 } else {
2067 hole_em->start = offset;
2068 hole_em->len = end - offset;
2069 hole_em->ram_bytes = hole_em->len;
2071 hole_em->disk_bytenr = EXTENT_MAP_HOLE;
2072 hole_em->disk_num_bytes = 0;
2073 hole_em->generation = trans->transid;
2075 ret = btrfs_replace_extent_map_range(inode, hole_em, true);
2076 free_extent_map(hole_em);
2077 if (ret)
2078 btrfs_set_inode_full_sync(inode);
2081 return 0;
2085 * Find a hole extent on given inode and change start/len to the end of hole
2086 * extent.(hole/vacuum extent whose em->start <= start &&
2087 * em->start + em->len > start)
2088 * When a hole extent is found, return 1 and modify start/len.
2090 static int find_first_non_hole(struct btrfs_inode *inode, u64 *start, u64 *len)
2092 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2093 struct extent_map *em;
2094 int ret = 0;
2096 em = btrfs_get_extent(inode, NULL,
2097 round_down(*start, fs_info->sectorsize),
2098 round_up(*len, fs_info->sectorsize));
2099 if (IS_ERR(em))
2100 return PTR_ERR(em);
2102 /* Hole or vacuum extent(only exists in no-hole mode) */
2103 if (em->disk_bytenr == EXTENT_MAP_HOLE) {
2104 ret = 1;
2105 *len = em->start + em->len > *start + *len ?
2106 0 : *start + *len - em->start - em->len;
2107 *start = em->start + em->len;
2109 free_extent_map(em);
2110 return ret;
2113 static void btrfs_punch_hole_lock_range(struct inode *inode,
2114 const u64 lockstart,
2115 const u64 lockend,
2116 struct extent_state **cached_state)
2119 * For subpage case, if the range is not at page boundary, we could
2120 * have pages at the leading/tailing part of the range.
2121 * This could lead to dead loop since filemap_range_has_page()
2122 * will always return true.
2123 * So here we need to do extra page alignment for
2124 * filemap_range_has_page().
2126 const u64 page_lockstart = round_up(lockstart, PAGE_SIZE);
2127 const u64 page_lockend = round_down(lockend + 1, PAGE_SIZE) - 1;
2129 while (1) {
2130 truncate_pagecache_range(inode, lockstart, lockend);
2132 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2133 cached_state);
2135 * We can't have ordered extents in the range, nor dirty/writeback
2136 * pages, because we have locked the inode's VFS lock in exclusive
2137 * mode, we have locked the inode's i_mmap_lock in exclusive mode,
2138 * we have flushed all delalloc in the range and we have waited
2139 * for any ordered extents in the range to complete.
2140 * We can race with anyone reading pages from this range, so after
2141 * locking the range check if we have pages in the range, and if
2142 * we do, unlock the range and retry.
2144 if (!filemap_range_has_page(inode->i_mapping, page_lockstart,
2145 page_lockend))
2146 break;
2148 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2149 cached_state);
2152 btrfs_assert_inode_range_clean(BTRFS_I(inode), lockstart, lockend);
2155 static int btrfs_insert_replace_extent(struct btrfs_trans_handle *trans,
2156 struct btrfs_inode *inode,
2157 struct btrfs_path *path,
2158 struct btrfs_replace_extent_info *extent_info,
2159 const u64 replace_len,
2160 const u64 bytes_to_drop)
2162 struct btrfs_fs_info *fs_info = trans->fs_info;
2163 struct btrfs_root *root = inode->root;
2164 struct btrfs_file_extent_item *extent;
2165 struct extent_buffer *leaf;
2166 struct btrfs_key key;
2167 int slot;
2168 int ret;
2170 if (replace_len == 0)
2171 return 0;
2173 if (extent_info->disk_offset == 0 &&
2174 btrfs_fs_incompat(fs_info, NO_HOLES)) {
2175 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2176 return 0;
2179 key.objectid = btrfs_ino(inode);
2180 key.type = BTRFS_EXTENT_DATA_KEY;
2181 key.offset = extent_info->file_offset;
2182 ret = btrfs_insert_empty_item(trans, root, path, &key,
2183 sizeof(struct btrfs_file_extent_item));
2184 if (ret)
2185 return ret;
2186 leaf = path->nodes[0];
2187 slot = path->slots[0];
2188 write_extent_buffer(leaf, extent_info->extent_buf,
2189 btrfs_item_ptr_offset(leaf, slot),
2190 sizeof(struct btrfs_file_extent_item));
2191 extent = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2192 ASSERT(btrfs_file_extent_type(leaf, extent) != BTRFS_FILE_EXTENT_INLINE);
2193 btrfs_set_file_extent_offset(leaf, extent, extent_info->data_offset);
2194 btrfs_set_file_extent_num_bytes(leaf, extent, replace_len);
2195 if (extent_info->is_new_extent)
2196 btrfs_set_file_extent_generation(leaf, extent, trans->transid);
2197 btrfs_mark_buffer_dirty(trans, leaf);
2198 btrfs_release_path(path);
2200 ret = btrfs_inode_set_file_extent_range(inode, extent_info->file_offset,
2201 replace_len);
2202 if (ret)
2203 return ret;
2205 /* If it's a hole, nothing more needs to be done. */
2206 if (extent_info->disk_offset == 0) {
2207 btrfs_update_inode_bytes(inode, 0, bytes_to_drop);
2208 return 0;
2211 btrfs_update_inode_bytes(inode, replace_len, bytes_to_drop);
2213 if (extent_info->is_new_extent && extent_info->insertions == 0) {
2214 key.objectid = extent_info->disk_offset;
2215 key.type = BTRFS_EXTENT_ITEM_KEY;
2216 key.offset = extent_info->disk_len;
2217 ret = btrfs_alloc_reserved_file_extent(trans, root,
2218 btrfs_ino(inode),
2219 extent_info->file_offset,
2220 extent_info->qgroup_reserved,
2221 &key);
2222 } else {
2223 struct btrfs_ref ref = {
2224 .action = BTRFS_ADD_DELAYED_REF,
2225 .bytenr = extent_info->disk_offset,
2226 .num_bytes = extent_info->disk_len,
2227 .owning_root = btrfs_root_id(root),
2228 .ref_root = btrfs_root_id(root),
2230 u64 ref_offset;
2232 ref_offset = extent_info->file_offset - extent_info->data_offset;
2233 btrfs_init_data_ref(&ref, btrfs_ino(inode), ref_offset, 0, false);
2234 ret = btrfs_inc_extent_ref(trans, &ref);
2237 extent_info->insertions++;
2239 return ret;
2243 * The respective range must have been previously locked, as well as the inode.
2244 * The end offset is inclusive (last byte of the range).
2245 * @extent_info is NULL for fallocate's hole punching and non-NULL when replacing
2246 * the file range with an extent.
2247 * When not punching a hole, we don't want to end up in a state where we dropped
2248 * extents without inserting a new one, so we must abort the transaction to avoid
2249 * a corruption.
2251 int btrfs_replace_file_extents(struct btrfs_inode *inode,
2252 struct btrfs_path *path, const u64 start,
2253 const u64 end,
2254 struct btrfs_replace_extent_info *extent_info,
2255 struct btrfs_trans_handle **trans_out)
2257 struct btrfs_drop_extents_args drop_args = { 0 };
2258 struct btrfs_root *root = inode->root;
2259 struct btrfs_fs_info *fs_info = root->fs_info;
2260 u64 min_size = btrfs_calc_insert_metadata_size(fs_info, 1);
2261 u64 ino_size = round_up(inode->vfs_inode.i_size, fs_info->sectorsize);
2262 struct btrfs_trans_handle *trans = NULL;
2263 struct btrfs_block_rsv *rsv;
2264 unsigned int rsv_count;
2265 u64 cur_offset;
2266 u64 len = end - start;
2267 int ret = 0;
2269 if (end <= start)
2270 return -EINVAL;
2272 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2273 if (!rsv) {
2274 ret = -ENOMEM;
2275 goto out;
2277 rsv->size = btrfs_calc_insert_metadata_size(fs_info, 1);
2278 rsv->failfast = true;
2281 * 1 - update the inode
2282 * 1 - removing the extents in the range
2283 * 1 - adding the hole extent if no_holes isn't set or if we are
2284 * replacing the range with a new extent
2286 if (!btrfs_fs_incompat(fs_info, NO_HOLES) || extent_info)
2287 rsv_count = 3;
2288 else
2289 rsv_count = 2;
2291 trans = btrfs_start_transaction(root, rsv_count);
2292 if (IS_ERR(trans)) {
2293 ret = PTR_ERR(trans);
2294 trans = NULL;
2295 goto out_free;
2298 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
2299 min_size, false);
2300 if (WARN_ON(ret))
2301 goto out_trans;
2302 trans->block_rsv = rsv;
2304 cur_offset = start;
2305 drop_args.path = path;
2306 drop_args.end = end + 1;
2307 drop_args.drop_cache = true;
2308 while (cur_offset < end) {
2309 drop_args.start = cur_offset;
2310 ret = btrfs_drop_extents(trans, root, inode, &drop_args);
2311 /* If we are punching a hole decrement the inode's byte count */
2312 if (!extent_info)
2313 btrfs_update_inode_bytes(inode, 0,
2314 drop_args.bytes_found);
2315 if (ret != -ENOSPC) {
2317 * The only time we don't want to abort is if we are
2318 * attempting to clone a partial inline extent, in which
2319 * case we'll get EOPNOTSUPP. However if we aren't
2320 * clone we need to abort no matter what, because if we
2321 * got EOPNOTSUPP via prealloc then we messed up and
2322 * need to abort.
2324 if (ret &&
2325 (ret != -EOPNOTSUPP ||
2326 (extent_info && extent_info->is_new_extent)))
2327 btrfs_abort_transaction(trans, ret);
2328 break;
2331 trans->block_rsv = &fs_info->trans_block_rsv;
2333 if (!extent_info && cur_offset < drop_args.drop_end &&
2334 cur_offset < ino_size) {
2335 ret = fill_holes(trans, inode, path, cur_offset,
2336 drop_args.drop_end);
2337 if (ret) {
2339 * If we failed then we didn't insert our hole
2340 * entries for the area we dropped, so now the
2341 * fs is corrupted, so we must abort the
2342 * transaction.
2344 btrfs_abort_transaction(trans, ret);
2345 break;
2347 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2349 * We are past the i_size here, but since we didn't
2350 * insert holes we need to clear the mapped area so we
2351 * know to not set disk_i_size in this area until a new
2352 * file extent is inserted here.
2354 ret = btrfs_inode_clear_file_extent_range(inode,
2355 cur_offset,
2356 drop_args.drop_end - cur_offset);
2357 if (ret) {
2359 * We couldn't clear our area, so we could
2360 * presumably adjust up and corrupt the fs, so
2361 * we need to abort.
2363 btrfs_abort_transaction(trans, ret);
2364 break;
2368 if (extent_info &&
2369 drop_args.drop_end > extent_info->file_offset) {
2370 u64 replace_len = drop_args.drop_end -
2371 extent_info->file_offset;
2373 ret = btrfs_insert_replace_extent(trans, inode, path,
2374 extent_info, replace_len,
2375 drop_args.bytes_found);
2376 if (ret) {
2377 btrfs_abort_transaction(trans, ret);
2378 break;
2380 extent_info->data_len -= replace_len;
2381 extent_info->data_offset += replace_len;
2382 extent_info->file_offset += replace_len;
2386 * We are releasing our handle on the transaction, balance the
2387 * dirty pages of the btree inode and flush delayed items, and
2388 * then get a new transaction handle, which may now point to a
2389 * new transaction in case someone else may have committed the
2390 * transaction we used to replace/drop file extent items. So
2391 * bump the inode's iversion and update mtime and ctime except
2392 * if we are called from a dedupe context. This is because a
2393 * power failure/crash may happen after the transaction is
2394 * committed and before we finish replacing/dropping all the
2395 * file extent items we need.
2397 inode_inc_iversion(&inode->vfs_inode);
2399 if (!extent_info || extent_info->update_times)
2400 inode_set_mtime_to_ts(&inode->vfs_inode,
2401 inode_set_ctime_current(&inode->vfs_inode));
2403 ret = btrfs_update_inode(trans, inode);
2404 if (ret)
2405 break;
2407 btrfs_end_transaction(trans);
2408 btrfs_btree_balance_dirty(fs_info);
2410 trans = btrfs_start_transaction(root, rsv_count);
2411 if (IS_ERR(trans)) {
2412 ret = PTR_ERR(trans);
2413 trans = NULL;
2414 break;
2417 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
2418 rsv, min_size, false);
2419 if (WARN_ON(ret))
2420 break;
2421 trans->block_rsv = rsv;
2423 cur_offset = drop_args.drop_end;
2424 len = end - cur_offset;
2425 if (!extent_info && len) {
2426 ret = find_first_non_hole(inode, &cur_offset, &len);
2427 if (unlikely(ret < 0))
2428 break;
2429 if (ret && !len) {
2430 ret = 0;
2431 break;
2437 * If we were cloning, force the next fsync to be a full one since we
2438 * we replaced (or just dropped in the case of cloning holes when
2439 * NO_HOLES is enabled) file extent items and did not setup new extent
2440 * maps for the replacement extents (or holes).
2442 if (extent_info && !extent_info->is_new_extent)
2443 btrfs_set_inode_full_sync(inode);
2445 if (ret)
2446 goto out_trans;
2448 trans->block_rsv = &fs_info->trans_block_rsv;
2450 * If we are using the NO_HOLES feature we might have had already an
2451 * hole that overlaps a part of the region [lockstart, lockend] and
2452 * ends at (or beyond) lockend. Since we have no file extent items to
2453 * represent holes, drop_end can be less than lockend and so we must
2454 * make sure we have an extent map representing the existing hole (the
2455 * call to __btrfs_drop_extents() might have dropped the existing extent
2456 * map representing the existing hole), otherwise the fast fsync path
2457 * will not record the existence of the hole region
2458 * [existing_hole_start, lockend].
2460 if (drop_args.drop_end <= end)
2461 drop_args.drop_end = end + 1;
2463 * Don't insert file hole extent item if it's for a range beyond eof
2464 * (because it's useless) or if it represents a 0 bytes range (when
2465 * cur_offset == drop_end).
2467 if (!extent_info && cur_offset < ino_size &&
2468 cur_offset < drop_args.drop_end) {
2469 ret = fill_holes(trans, inode, path, cur_offset,
2470 drop_args.drop_end);
2471 if (ret) {
2472 /* Same comment as above. */
2473 btrfs_abort_transaction(trans, ret);
2474 goto out_trans;
2476 } else if (!extent_info && cur_offset < drop_args.drop_end) {
2477 /* See the comment in the loop above for the reasoning here. */
2478 ret = btrfs_inode_clear_file_extent_range(inode, cur_offset,
2479 drop_args.drop_end - cur_offset);
2480 if (ret) {
2481 btrfs_abort_transaction(trans, ret);
2482 goto out_trans;
2486 if (extent_info) {
2487 ret = btrfs_insert_replace_extent(trans, inode, path,
2488 extent_info, extent_info->data_len,
2489 drop_args.bytes_found);
2490 if (ret) {
2491 btrfs_abort_transaction(trans, ret);
2492 goto out_trans;
2496 out_trans:
2497 if (!trans)
2498 goto out_free;
2500 trans->block_rsv = &fs_info->trans_block_rsv;
2501 if (ret)
2502 btrfs_end_transaction(trans);
2503 else
2504 *trans_out = trans;
2505 out_free:
2506 btrfs_free_block_rsv(fs_info, rsv);
2507 out:
2508 return ret;
2511 static int btrfs_punch_hole(struct file *file, loff_t offset, loff_t len)
2513 struct inode *inode = file_inode(file);
2514 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2515 struct btrfs_root *root = BTRFS_I(inode)->root;
2516 struct extent_state *cached_state = NULL;
2517 struct btrfs_path *path;
2518 struct btrfs_trans_handle *trans = NULL;
2519 u64 lockstart;
2520 u64 lockend;
2521 u64 tail_start;
2522 u64 tail_len;
2523 u64 orig_start = offset;
2524 int ret = 0;
2525 bool same_block;
2526 u64 ino_size;
2527 bool truncated_block = false;
2528 bool updated_inode = false;
2530 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2532 ret = btrfs_wait_ordered_range(BTRFS_I(inode), offset, len);
2533 if (ret)
2534 goto out_only_mutex;
2536 ino_size = round_up(inode->i_size, fs_info->sectorsize);
2537 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2538 if (ret < 0)
2539 goto out_only_mutex;
2540 if (ret && !len) {
2541 /* Already in a large hole */
2542 ret = 0;
2543 goto out_only_mutex;
2546 ret = file_modified(file);
2547 if (ret)
2548 goto out_only_mutex;
2550 lockstart = round_up(offset, fs_info->sectorsize);
2551 lockend = round_down(offset + len, fs_info->sectorsize) - 1;
2552 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2553 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
2555 * We needn't truncate any block which is beyond the end of the file
2556 * because we are sure there is no data there.
2559 * Only do this if we are in the same block and we aren't doing the
2560 * entire block.
2562 if (same_block && len < fs_info->sectorsize) {
2563 if (offset < ino_size) {
2564 truncated_block = true;
2565 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2567 } else {
2568 ret = 0;
2570 goto out_only_mutex;
2573 /* zero back part of the first block */
2574 if (offset < ino_size) {
2575 truncated_block = true;
2576 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2577 if (ret) {
2578 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2579 return ret;
2583 /* Check the aligned pages after the first unaligned page,
2584 * if offset != orig_start, which means the first unaligned page
2585 * including several following pages are already in holes,
2586 * the extra check can be skipped */
2587 if (offset == orig_start) {
2588 /* after truncate page, check hole again */
2589 len = offset + len - lockstart;
2590 offset = lockstart;
2591 ret = find_first_non_hole(BTRFS_I(inode), &offset, &len);
2592 if (ret < 0)
2593 goto out_only_mutex;
2594 if (ret && !len) {
2595 ret = 0;
2596 goto out_only_mutex;
2598 lockstart = offset;
2601 /* Check the tail unaligned part is in a hole */
2602 tail_start = lockend + 1;
2603 tail_len = offset + len - tail_start;
2604 if (tail_len) {
2605 ret = find_first_non_hole(BTRFS_I(inode), &tail_start, &tail_len);
2606 if (unlikely(ret < 0))
2607 goto out_only_mutex;
2608 if (!ret) {
2609 /* zero the front end of the last page */
2610 if (tail_start + tail_len < ino_size) {
2611 truncated_block = true;
2612 ret = btrfs_truncate_block(BTRFS_I(inode),
2613 tail_start + tail_len,
2614 0, 1);
2615 if (ret)
2616 goto out_only_mutex;
2621 if (lockend < lockstart) {
2622 ret = 0;
2623 goto out_only_mutex;
2626 btrfs_punch_hole_lock_range(inode, lockstart, lockend, &cached_state);
2628 path = btrfs_alloc_path();
2629 if (!path) {
2630 ret = -ENOMEM;
2631 goto out;
2634 ret = btrfs_replace_file_extents(BTRFS_I(inode), path, lockstart,
2635 lockend, NULL, &trans);
2636 btrfs_free_path(path);
2637 if (ret)
2638 goto out;
2640 ASSERT(trans != NULL);
2641 inode_inc_iversion(inode);
2642 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
2643 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2644 updated_inode = true;
2645 btrfs_end_transaction(trans);
2646 btrfs_btree_balance_dirty(fs_info);
2647 out:
2648 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2649 &cached_state);
2650 out_only_mutex:
2651 if (!updated_inode && truncated_block && !ret) {
2653 * If we only end up zeroing part of a page, we still need to
2654 * update the inode item, so that all the time fields are
2655 * updated as well as the necessary btrfs inode in memory fields
2656 * for detecting, at fsync time, if the inode isn't yet in the
2657 * log tree or it's there but not up to date.
2659 struct timespec64 now = inode_set_ctime_current(inode);
2661 inode_inc_iversion(inode);
2662 inode_set_mtime_to_ts(inode, now);
2663 trans = btrfs_start_transaction(root, 1);
2664 if (IS_ERR(trans)) {
2665 ret = PTR_ERR(trans);
2666 } else {
2667 int ret2;
2669 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2670 ret2 = btrfs_end_transaction(trans);
2671 if (!ret)
2672 ret = ret2;
2675 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2676 return ret;
2679 /* Helper structure to record which range is already reserved */
2680 struct falloc_range {
2681 struct list_head list;
2682 u64 start;
2683 u64 len;
2687 * Helper function to add falloc range
2689 * Caller should have locked the larger range of extent containing
2690 * [start, len)
2692 static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2694 struct falloc_range *range = NULL;
2696 if (!list_empty(head)) {
2698 * As fallocate iterates by bytenr order, we only need to check
2699 * the last range.
2701 range = list_last_entry(head, struct falloc_range, list);
2702 if (range->start + range->len == start) {
2703 range->len += len;
2704 return 0;
2708 range = kmalloc(sizeof(*range), GFP_KERNEL);
2709 if (!range)
2710 return -ENOMEM;
2711 range->start = start;
2712 range->len = len;
2713 list_add_tail(&range->list, head);
2714 return 0;
2717 static int btrfs_fallocate_update_isize(struct inode *inode,
2718 const u64 end,
2719 const int mode)
2721 struct btrfs_trans_handle *trans;
2722 struct btrfs_root *root = BTRFS_I(inode)->root;
2723 int ret;
2724 int ret2;
2726 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2727 return 0;
2729 trans = btrfs_start_transaction(root, 1);
2730 if (IS_ERR(trans))
2731 return PTR_ERR(trans);
2733 inode_set_ctime_current(inode);
2734 i_size_write(inode, end);
2735 btrfs_inode_safe_disk_i_size_write(BTRFS_I(inode), 0);
2736 ret = btrfs_update_inode(trans, BTRFS_I(inode));
2737 ret2 = btrfs_end_transaction(trans);
2739 return ret ? ret : ret2;
2742 enum {
2743 RANGE_BOUNDARY_WRITTEN_EXTENT,
2744 RANGE_BOUNDARY_PREALLOC_EXTENT,
2745 RANGE_BOUNDARY_HOLE,
2748 static int btrfs_zero_range_check_range_boundary(struct btrfs_inode *inode,
2749 u64 offset)
2751 const u64 sectorsize = inode->root->fs_info->sectorsize;
2752 struct extent_map *em;
2753 int ret;
2755 offset = round_down(offset, sectorsize);
2756 em = btrfs_get_extent(inode, NULL, offset, sectorsize);
2757 if (IS_ERR(em))
2758 return PTR_ERR(em);
2760 if (em->disk_bytenr == EXTENT_MAP_HOLE)
2761 ret = RANGE_BOUNDARY_HOLE;
2762 else if (em->flags & EXTENT_FLAG_PREALLOC)
2763 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2764 else
2765 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
2767 free_extent_map(em);
2768 return ret;
2771 static int btrfs_zero_range(struct inode *inode,
2772 loff_t offset,
2773 loff_t len,
2774 const int mode)
2776 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2777 struct extent_map *em;
2778 struct extent_changeset *data_reserved = NULL;
2779 int ret;
2780 u64 alloc_hint = 0;
2781 const u64 sectorsize = fs_info->sectorsize;
2782 u64 alloc_start = round_down(offset, sectorsize);
2783 u64 alloc_end = round_up(offset + len, sectorsize);
2784 u64 bytes_to_reserve = 0;
2785 bool space_reserved = false;
2787 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start,
2788 alloc_end - alloc_start);
2789 if (IS_ERR(em)) {
2790 ret = PTR_ERR(em);
2791 goto out;
2795 * Avoid hole punching and extent allocation for some cases. More cases
2796 * could be considered, but these are unlikely common and we keep things
2797 * as simple as possible for now. Also, intentionally, if the target
2798 * range contains one or more prealloc extents together with regular
2799 * extents and holes, we drop all the existing extents and allocate a
2800 * new prealloc extent, so that we get a larger contiguous disk extent.
2802 if (em->start <= alloc_start && (em->flags & EXTENT_FLAG_PREALLOC)) {
2803 const u64 em_end = em->start + em->len;
2805 if (em_end >= offset + len) {
2807 * The whole range is already a prealloc extent,
2808 * do nothing except updating the inode's i_size if
2809 * needed.
2811 free_extent_map(em);
2812 ret = btrfs_fallocate_update_isize(inode, offset + len,
2813 mode);
2814 goto out;
2817 * Part of the range is already a prealloc extent, so operate
2818 * only on the remaining part of the range.
2820 alloc_start = em_end;
2821 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2822 len = offset + len - alloc_start;
2823 offset = alloc_start;
2824 alloc_hint = extent_map_block_start(em) + em->len;
2826 free_extent_map(em);
2828 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2829 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2830 em = btrfs_get_extent(BTRFS_I(inode), NULL, alloc_start, sectorsize);
2831 if (IS_ERR(em)) {
2832 ret = PTR_ERR(em);
2833 goto out;
2836 if (em->flags & EXTENT_FLAG_PREALLOC) {
2837 free_extent_map(em);
2838 ret = btrfs_fallocate_update_isize(inode, offset + len,
2839 mode);
2840 goto out;
2842 if (len < sectorsize && em->disk_bytenr != EXTENT_MAP_HOLE) {
2843 free_extent_map(em);
2844 ret = btrfs_truncate_block(BTRFS_I(inode), offset, len,
2846 if (!ret)
2847 ret = btrfs_fallocate_update_isize(inode,
2848 offset + len,
2849 mode);
2850 return ret;
2852 free_extent_map(em);
2853 alloc_start = round_down(offset, sectorsize);
2854 alloc_end = alloc_start + sectorsize;
2855 goto reserve_space;
2858 alloc_start = round_up(offset, sectorsize);
2859 alloc_end = round_down(offset + len, sectorsize);
2862 * For unaligned ranges, check the pages at the boundaries, they might
2863 * map to an extent, in which case we need to partially zero them, or
2864 * they might map to a hole, in which case we need our allocation range
2865 * to cover them.
2867 if (!IS_ALIGNED(offset, sectorsize)) {
2868 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2869 offset);
2870 if (ret < 0)
2871 goto out;
2872 if (ret == RANGE_BOUNDARY_HOLE) {
2873 alloc_start = round_down(offset, sectorsize);
2874 ret = 0;
2875 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2876 ret = btrfs_truncate_block(BTRFS_I(inode), offset, 0, 0);
2877 if (ret)
2878 goto out;
2879 } else {
2880 ret = 0;
2884 if (!IS_ALIGNED(offset + len, sectorsize)) {
2885 ret = btrfs_zero_range_check_range_boundary(BTRFS_I(inode),
2886 offset + len);
2887 if (ret < 0)
2888 goto out;
2889 if (ret == RANGE_BOUNDARY_HOLE) {
2890 alloc_end = round_up(offset + len, sectorsize);
2891 ret = 0;
2892 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
2893 ret = btrfs_truncate_block(BTRFS_I(inode), offset + len,
2894 0, 1);
2895 if (ret)
2896 goto out;
2897 } else {
2898 ret = 0;
2902 reserve_space:
2903 if (alloc_start < alloc_end) {
2904 struct extent_state *cached_state = NULL;
2905 const u64 lockstart = alloc_start;
2906 const u64 lockend = alloc_end - 1;
2908 bytes_to_reserve = alloc_end - alloc_start;
2909 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2910 bytes_to_reserve);
2911 if (ret < 0)
2912 goto out;
2913 space_reserved = true;
2914 btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2915 &cached_state);
2916 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode), &data_reserved,
2917 alloc_start, bytes_to_reserve);
2918 if (ret) {
2919 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart,
2920 lockend, &cached_state);
2921 goto out;
2923 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2924 alloc_end - alloc_start,
2925 fs_info->sectorsize,
2926 offset + len, &alloc_hint);
2927 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2928 &cached_state);
2929 /* btrfs_prealloc_file_range releases reserved space on error */
2930 if (ret) {
2931 space_reserved = false;
2932 goto out;
2935 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
2936 out:
2937 if (ret && space_reserved)
2938 btrfs_free_reserved_data_space(BTRFS_I(inode), data_reserved,
2939 alloc_start, bytes_to_reserve);
2940 extent_changeset_free(data_reserved);
2942 return ret;
2945 static long btrfs_fallocate(struct file *file, int mode,
2946 loff_t offset, loff_t len)
2948 struct inode *inode = file_inode(file);
2949 struct extent_state *cached_state = NULL;
2950 struct extent_changeset *data_reserved = NULL;
2951 struct falloc_range *range;
2952 struct falloc_range *tmp;
2953 LIST_HEAD(reserve_list);
2954 u64 cur_offset;
2955 u64 last_byte;
2956 u64 alloc_start;
2957 u64 alloc_end;
2958 u64 alloc_hint = 0;
2959 u64 locked_end;
2960 u64 actual_end = 0;
2961 u64 data_space_needed = 0;
2962 u64 data_space_reserved = 0;
2963 u64 qgroup_reserved = 0;
2964 struct extent_map *em;
2965 int blocksize = BTRFS_I(inode)->root->fs_info->sectorsize;
2966 int ret;
2968 /* Do not allow fallocate in ZONED mode */
2969 if (btrfs_is_zoned(inode_to_fs_info(inode)))
2970 return -EOPNOTSUPP;
2972 alloc_start = round_down(offset, blocksize);
2973 alloc_end = round_up(offset + len, blocksize);
2974 cur_offset = alloc_start;
2976 /* Make sure we aren't being give some crap mode */
2977 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2978 FALLOC_FL_ZERO_RANGE))
2979 return -EOPNOTSUPP;
2981 if (mode & FALLOC_FL_PUNCH_HOLE)
2982 return btrfs_punch_hole(file, offset, len);
2984 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
2986 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2987 ret = inode_newsize_ok(inode, offset + len);
2988 if (ret)
2989 goto out;
2992 ret = file_modified(file);
2993 if (ret)
2994 goto out;
2997 * TODO: Move these two operations after we have checked
2998 * accurate reserved space, or fallocate can still fail but
2999 * with page truncated or size expanded.
3001 * But that's a minor problem and won't do much harm BTW.
3003 if (alloc_start > inode->i_size) {
3004 ret = btrfs_cont_expand(BTRFS_I(inode), i_size_read(inode),
3005 alloc_start);
3006 if (ret)
3007 goto out;
3008 } else if (offset + len > inode->i_size) {
3010 * If we are fallocating from the end of the file onward we
3011 * need to zero out the end of the block if i_size lands in the
3012 * middle of a block.
3014 ret = btrfs_truncate_block(BTRFS_I(inode), inode->i_size, 0, 0);
3015 if (ret)
3016 goto out;
3020 * We have locked the inode at the VFS level (in exclusive mode) and we
3021 * have locked the i_mmap_lock lock (in exclusive mode). Now before
3022 * locking the file range, flush all dealloc in the range and wait for
3023 * all ordered extents in the range to complete. After this we can lock
3024 * the file range and, due to the previous locking we did, we know there
3025 * can't be more delalloc or ordered extents in the range.
3027 ret = btrfs_wait_ordered_range(BTRFS_I(inode), alloc_start,
3028 alloc_end - alloc_start);
3029 if (ret)
3030 goto out;
3032 if (mode & FALLOC_FL_ZERO_RANGE) {
3033 ret = btrfs_zero_range(inode, offset, len, mode);
3034 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3035 return ret;
3038 locked_end = alloc_end - 1;
3039 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3040 &cached_state);
3042 btrfs_assert_inode_range_clean(BTRFS_I(inode), alloc_start, locked_end);
3044 /* First, check if we exceed the qgroup limit */
3045 while (cur_offset < alloc_end) {
3046 em = btrfs_get_extent(BTRFS_I(inode), NULL, cur_offset,
3047 alloc_end - cur_offset);
3048 if (IS_ERR(em)) {
3049 ret = PTR_ERR(em);
3050 break;
3052 last_byte = min(extent_map_end(em), alloc_end);
3053 actual_end = min_t(u64, extent_map_end(em), offset + len);
3054 last_byte = ALIGN(last_byte, blocksize);
3055 if (em->disk_bytenr == EXTENT_MAP_HOLE ||
3056 (cur_offset >= inode->i_size &&
3057 !(em->flags & EXTENT_FLAG_PREALLOC))) {
3058 const u64 range_len = last_byte - cur_offset;
3060 ret = add_falloc_range(&reserve_list, cur_offset, range_len);
3061 if (ret < 0) {
3062 free_extent_map(em);
3063 break;
3065 ret = btrfs_qgroup_reserve_data(BTRFS_I(inode),
3066 &data_reserved, cur_offset, range_len);
3067 if (ret < 0) {
3068 free_extent_map(em);
3069 break;
3071 qgroup_reserved += range_len;
3072 data_space_needed += range_len;
3074 free_extent_map(em);
3075 cur_offset = last_byte;
3078 if (!ret && data_space_needed > 0) {
3080 * We are safe to reserve space here as we can't have delalloc
3081 * in the range, see above.
3083 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
3084 data_space_needed);
3085 if (!ret)
3086 data_space_reserved = data_space_needed;
3090 * If ret is still 0, means we're OK to fallocate.
3091 * Or just cleanup the list and exit.
3093 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3094 if (!ret) {
3095 ret = btrfs_prealloc_file_range(inode, mode,
3096 range->start,
3097 range->len, blocksize,
3098 offset + len, &alloc_hint);
3100 * btrfs_prealloc_file_range() releases space even
3101 * if it returns an error.
3103 data_space_reserved -= range->len;
3104 qgroup_reserved -= range->len;
3105 } else if (data_space_reserved > 0) {
3106 btrfs_free_reserved_data_space(BTRFS_I(inode),
3107 data_reserved, range->start,
3108 range->len);
3109 data_space_reserved -= range->len;
3110 qgroup_reserved -= range->len;
3111 } else if (qgroup_reserved > 0) {
3112 btrfs_qgroup_free_data(BTRFS_I(inode), data_reserved,
3113 range->start, range->len, NULL);
3114 qgroup_reserved -= range->len;
3116 list_del(&range->list);
3117 kfree(range);
3119 if (ret < 0)
3120 goto out_unlock;
3123 * We didn't need to allocate any more space, but we still extended the
3124 * size of the file so we need to update i_size and the inode item.
3126 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
3127 out_unlock:
3128 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
3129 &cached_state);
3130 out:
3131 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_MMAP);
3132 extent_changeset_free(data_reserved);
3133 return ret;
3137 * Helper for btrfs_find_delalloc_in_range(). Find a subrange in a given range
3138 * that has unflushed and/or flushing delalloc. There might be other adjacent
3139 * subranges after the one it found, so btrfs_find_delalloc_in_range() keeps
3140 * looping while it gets adjacent subranges, and merging them together.
3142 static bool find_delalloc_subrange(struct btrfs_inode *inode, u64 start, u64 end,
3143 struct extent_state **cached_state,
3144 bool *search_io_tree,
3145 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3147 u64 len = end + 1 - start;
3148 u64 delalloc_len = 0;
3149 struct btrfs_ordered_extent *oe;
3150 u64 oe_start;
3151 u64 oe_end;
3154 * Search the io tree first for EXTENT_DELALLOC. If we find any, it
3155 * means we have delalloc (dirty pages) for which writeback has not
3156 * started yet.
3158 if (*search_io_tree) {
3159 spin_lock(&inode->lock);
3160 if (inode->delalloc_bytes > 0) {
3161 spin_unlock(&inode->lock);
3162 *delalloc_start_ret = start;
3163 delalloc_len = count_range_bits(&inode->io_tree,
3164 delalloc_start_ret, end,
3165 len, EXTENT_DELALLOC, 1,
3166 cached_state);
3167 } else {
3168 spin_unlock(&inode->lock);
3172 if (delalloc_len > 0) {
3174 * If delalloc was found then *delalloc_start_ret has a sector size
3175 * aligned value (rounded down).
3177 *delalloc_end_ret = *delalloc_start_ret + delalloc_len - 1;
3179 if (*delalloc_start_ret == start) {
3180 /* Delalloc for the whole range, nothing more to do. */
3181 if (*delalloc_end_ret == end)
3182 return true;
3183 /* Else trim our search range for ordered extents. */
3184 start = *delalloc_end_ret + 1;
3185 len = end + 1 - start;
3187 } else {
3188 /* No delalloc, future calls don't need to search again. */
3189 *search_io_tree = false;
3193 * Now also check if there's any ordered extent in the range.
3194 * We do this because:
3196 * 1) When delalloc is flushed, the file range is locked, we clear the
3197 * EXTENT_DELALLOC bit from the io tree and create an extent map and
3198 * an ordered extent for the write. So we might just have been called
3199 * after delalloc is flushed and before the ordered extent completes
3200 * and inserts the new file extent item in the subvolume's btree;
3202 * 2) We may have an ordered extent created by flushing delalloc for a
3203 * subrange that starts before the subrange we found marked with
3204 * EXTENT_DELALLOC in the io tree.
3206 * We could also use the extent map tree to find such delalloc that is
3207 * being flushed, but using the ordered extents tree is more efficient
3208 * because it's usually much smaller as ordered extents are removed from
3209 * the tree once they complete. With the extent maps, we mau have them
3210 * in the extent map tree for a very long time, and they were either
3211 * created by previous writes or loaded by read operations.
3213 oe = btrfs_lookup_first_ordered_range(inode, start, len);
3214 if (!oe)
3215 return (delalloc_len > 0);
3217 /* The ordered extent may span beyond our search range. */
3218 oe_start = max(oe->file_offset, start);
3219 oe_end = min(oe->file_offset + oe->num_bytes - 1, end);
3221 btrfs_put_ordered_extent(oe);
3223 /* Don't have unflushed delalloc, return the ordered extent range. */
3224 if (delalloc_len == 0) {
3225 *delalloc_start_ret = oe_start;
3226 *delalloc_end_ret = oe_end;
3227 return true;
3231 * We have both unflushed delalloc (io_tree) and an ordered extent.
3232 * If the ranges are adjacent returned a combined range, otherwise
3233 * return the leftmost range.
3235 if (oe_start < *delalloc_start_ret) {
3236 if (oe_end < *delalloc_start_ret)
3237 *delalloc_end_ret = oe_end;
3238 *delalloc_start_ret = oe_start;
3239 } else if (*delalloc_end_ret + 1 == oe_start) {
3240 *delalloc_end_ret = oe_end;
3243 return true;
3247 * Check if there's delalloc in a given range.
3249 * @inode: The inode.
3250 * @start: The start offset of the range. It does not need to be
3251 * sector size aligned.
3252 * @end: The end offset (inclusive value) of the search range.
3253 * It does not need to be sector size aligned.
3254 * @cached_state: Extent state record used for speeding up delalloc
3255 * searches in the inode's io_tree. Can be NULL.
3256 * @delalloc_start_ret: Output argument, set to the start offset of the
3257 * subrange found with delalloc (may not be sector size
3258 * aligned).
3259 * @delalloc_end_ret: Output argument, set to he end offset (inclusive value)
3260 * of the subrange found with delalloc.
3262 * Returns true if a subrange with delalloc is found within the given range, and
3263 * if so it sets @delalloc_start_ret and @delalloc_end_ret with the start and
3264 * end offsets of the subrange.
3266 bool btrfs_find_delalloc_in_range(struct btrfs_inode *inode, u64 start, u64 end,
3267 struct extent_state **cached_state,
3268 u64 *delalloc_start_ret, u64 *delalloc_end_ret)
3270 u64 cur_offset = round_down(start, inode->root->fs_info->sectorsize);
3271 u64 prev_delalloc_end = 0;
3272 bool search_io_tree = true;
3273 bool ret = false;
3275 while (cur_offset <= end) {
3276 u64 delalloc_start;
3277 u64 delalloc_end;
3278 bool delalloc;
3280 delalloc = find_delalloc_subrange(inode, cur_offset, end,
3281 cached_state, &search_io_tree,
3282 &delalloc_start,
3283 &delalloc_end);
3284 if (!delalloc)
3285 break;
3287 if (prev_delalloc_end == 0) {
3288 /* First subrange found. */
3289 *delalloc_start_ret = max(delalloc_start, start);
3290 *delalloc_end_ret = delalloc_end;
3291 ret = true;
3292 } else if (delalloc_start == prev_delalloc_end + 1) {
3293 /* Subrange adjacent to the previous one, merge them. */
3294 *delalloc_end_ret = delalloc_end;
3295 } else {
3296 /* Subrange not adjacent to the previous one, exit. */
3297 break;
3300 prev_delalloc_end = delalloc_end;
3301 cur_offset = delalloc_end + 1;
3302 cond_resched();
3305 return ret;
3309 * Check if there's a hole or delalloc range in a range representing a hole (or
3310 * prealloc extent) found in the inode's subvolume btree.
3312 * @inode: The inode.
3313 * @whence: Seek mode (SEEK_DATA or SEEK_HOLE).
3314 * @start: Start offset of the hole region. It does not need to be sector
3315 * size aligned.
3316 * @end: End offset (inclusive value) of the hole region. It does not
3317 * need to be sector size aligned.
3318 * @start_ret: Return parameter, used to set the start of the subrange in the
3319 * hole that matches the search criteria (seek mode), if such
3320 * subrange is found (return value of the function is true).
3321 * The value returned here may not be sector size aligned.
3323 * Returns true if a subrange matching the given seek mode is found, and if one
3324 * is found, it updates @start_ret with the start of the subrange.
3326 static bool find_desired_extent_in_hole(struct btrfs_inode *inode, int whence,
3327 struct extent_state **cached_state,
3328 u64 start, u64 end, u64 *start_ret)
3330 u64 delalloc_start;
3331 u64 delalloc_end;
3332 bool delalloc;
3334 delalloc = btrfs_find_delalloc_in_range(inode, start, end, cached_state,
3335 &delalloc_start, &delalloc_end);
3336 if (delalloc && whence == SEEK_DATA) {
3337 *start_ret = delalloc_start;
3338 return true;
3341 if (delalloc && whence == SEEK_HOLE) {
3343 * We found delalloc but it starts after out start offset. So we
3344 * have a hole between our start offset and the delalloc start.
3346 if (start < delalloc_start) {
3347 *start_ret = start;
3348 return true;
3351 * Delalloc range starts at our start offset.
3352 * If the delalloc range's length is smaller than our range,
3353 * then it means we have a hole that starts where the delalloc
3354 * subrange ends.
3356 if (delalloc_end < end) {
3357 *start_ret = delalloc_end + 1;
3358 return true;
3361 /* There's delalloc for the whole range. */
3362 return false;
3365 if (!delalloc && whence == SEEK_HOLE) {
3366 *start_ret = start;
3367 return true;
3371 * No delalloc in the range and we are seeking for data. The caller has
3372 * to iterate to the next extent item in the subvolume btree.
3374 return false;
3377 static loff_t find_desired_extent(struct file *file, loff_t offset, int whence)
3379 struct btrfs_inode *inode = BTRFS_I(file->f_mapping->host);
3380 struct btrfs_file_private *private;
3381 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3382 struct extent_state *cached_state = NULL;
3383 struct extent_state **delalloc_cached_state;
3384 const loff_t i_size = i_size_read(&inode->vfs_inode);
3385 const u64 ino = btrfs_ino(inode);
3386 struct btrfs_root *root = inode->root;
3387 struct btrfs_path *path;
3388 struct btrfs_key key;
3389 u64 last_extent_end;
3390 u64 lockstart;
3391 u64 lockend;
3392 u64 start;
3393 int ret;
3394 bool found = false;
3396 if (i_size == 0 || offset >= i_size)
3397 return -ENXIO;
3400 * Quick path. If the inode has no prealloc extents and its number of
3401 * bytes used matches its i_size, then it can not have holes.
3403 if (whence == SEEK_HOLE &&
3404 !(inode->flags & BTRFS_INODE_PREALLOC) &&
3405 inode_get_bytes(&inode->vfs_inode) == i_size)
3406 return i_size;
3408 spin_lock(&inode->lock);
3409 private = file->private_data;
3410 spin_unlock(&inode->lock);
3412 if (private && private->owner_task != current) {
3414 * Not allocated by us, don't use it as its cached state is used
3415 * by the task that allocated it and we don't want neither to
3416 * mess with it nor get incorrect results because it reflects an
3417 * invalid state for the current task.
3419 private = NULL;
3420 } else if (!private) {
3421 private = kzalloc(sizeof(*private), GFP_KERNEL);
3423 * No worries if memory allocation failed.
3424 * The private structure is used only for speeding up multiple
3425 * lseek SEEK_HOLE/DATA calls to a file when there's delalloc,
3426 * so everything will still be correct.
3428 if (private) {
3429 bool free = false;
3431 private->owner_task = current;
3433 spin_lock(&inode->lock);
3434 if (file->private_data)
3435 free = true;
3436 else
3437 file->private_data = private;
3438 spin_unlock(&inode->lock);
3440 if (free) {
3441 kfree(private);
3442 private = NULL;
3447 if (private)
3448 delalloc_cached_state = &private->llseek_cached_state;
3449 else
3450 delalloc_cached_state = NULL;
3453 * offset can be negative, in this case we start finding DATA/HOLE from
3454 * the very start of the file.
3456 start = max_t(loff_t, 0, offset);
3458 lockstart = round_down(start, fs_info->sectorsize);
3459 lockend = round_up(i_size, fs_info->sectorsize);
3460 if (lockend <= lockstart)
3461 lockend = lockstart + fs_info->sectorsize;
3462 lockend--;
3464 path = btrfs_alloc_path();
3465 if (!path)
3466 return -ENOMEM;
3467 path->reada = READA_FORWARD;
3469 key.objectid = ino;
3470 key.type = BTRFS_EXTENT_DATA_KEY;
3471 key.offset = start;
3473 last_extent_end = lockstart;
3475 lock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3477 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3478 if (ret < 0) {
3479 goto out;
3480 } else if (ret > 0 && path->slots[0] > 0) {
3481 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
3482 if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
3483 path->slots[0]--;
3486 while (start < i_size) {
3487 struct extent_buffer *leaf = path->nodes[0];
3488 struct btrfs_file_extent_item *extent;
3489 u64 extent_end;
3490 u8 type;
3492 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3493 ret = btrfs_next_leaf(root, path);
3494 if (ret < 0)
3495 goto out;
3496 else if (ret > 0)
3497 break;
3499 leaf = path->nodes[0];
3502 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3503 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY)
3504 break;
3506 extent_end = btrfs_file_extent_end(path);
3509 * In the first iteration we may have a slot that points to an
3510 * extent that ends before our start offset, so skip it.
3512 if (extent_end <= start) {
3513 path->slots[0]++;
3514 continue;
3517 /* We have an implicit hole, NO_HOLES feature is likely set. */
3518 if (last_extent_end < key.offset) {
3519 u64 search_start = last_extent_end;
3520 u64 found_start;
3523 * First iteration, @start matches @offset and it's
3524 * within the hole.
3526 if (start == offset)
3527 search_start = offset;
3529 found = find_desired_extent_in_hole(inode, whence,
3530 delalloc_cached_state,
3531 search_start,
3532 key.offset - 1,
3533 &found_start);
3534 if (found) {
3535 start = found_start;
3536 break;
3539 * Didn't find data or a hole (due to delalloc) in the
3540 * implicit hole range, so need to analyze the extent.
3544 extent = btrfs_item_ptr(leaf, path->slots[0],
3545 struct btrfs_file_extent_item);
3546 type = btrfs_file_extent_type(leaf, extent);
3549 * Can't access the extent's disk_bytenr field if this is an
3550 * inline extent, since at that offset, it's where the extent
3551 * data starts.
3553 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
3554 (type == BTRFS_FILE_EXTENT_REG &&
3555 btrfs_file_extent_disk_bytenr(leaf, extent) == 0)) {
3557 * Explicit hole or prealloc extent, search for delalloc.
3558 * A prealloc extent is treated like a hole.
3560 u64 search_start = key.offset;
3561 u64 found_start;
3564 * First iteration, @start matches @offset and it's
3565 * within the hole.
3567 if (start == offset)
3568 search_start = offset;
3570 found = find_desired_extent_in_hole(inode, whence,
3571 delalloc_cached_state,
3572 search_start,
3573 extent_end - 1,
3574 &found_start);
3575 if (found) {
3576 start = found_start;
3577 break;
3580 * Didn't find data or a hole (due to delalloc) in the
3581 * implicit hole range, so need to analyze the next
3582 * extent item.
3584 } else {
3586 * Found a regular or inline extent.
3587 * If we are seeking for data, adjust the start offset
3588 * and stop, we're done.
3590 if (whence == SEEK_DATA) {
3591 start = max_t(u64, key.offset, offset);
3592 found = true;
3593 break;
3596 * Else, we are seeking for a hole, check the next file
3597 * extent item.
3601 start = extent_end;
3602 last_extent_end = extent_end;
3603 path->slots[0]++;
3604 if (fatal_signal_pending(current)) {
3605 ret = -EINTR;
3606 goto out;
3608 cond_resched();
3611 /* We have an implicit hole from the last extent found up to i_size. */
3612 if (!found && start < i_size) {
3613 found = find_desired_extent_in_hole(inode, whence,
3614 delalloc_cached_state, start,
3615 i_size - 1, &start);
3616 if (!found)
3617 start = i_size;
3620 out:
3621 unlock_extent(&inode->io_tree, lockstart, lockend, &cached_state);
3622 btrfs_free_path(path);
3624 if (ret < 0)
3625 return ret;
3627 if (whence == SEEK_DATA && start >= i_size)
3628 return -ENXIO;
3630 return min_t(loff_t, start, i_size);
3633 static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
3635 struct inode *inode = file->f_mapping->host;
3637 switch (whence) {
3638 default:
3639 return generic_file_llseek(file, offset, whence);
3640 case SEEK_DATA:
3641 case SEEK_HOLE:
3642 btrfs_inode_lock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3643 offset = find_desired_extent(file, offset, whence);
3644 btrfs_inode_unlock(BTRFS_I(inode), BTRFS_ILOCK_SHARED);
3645 break;
3648 if (offset < 0)
3649 return offset;
3651 return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
3654 static int btrfs_file_open(struct inode *inode, struct file *filp)
3656 int ret;
3658 filp->f_mode |= FMODE_NOWAIT | FMODE_CAN_ODIRECT;
3660 ret = fsverity_file_open(inode, filp);
3661 if (ret)
3662 return ret;
3663 return generic_file_open(inode, filp);
3666 static ssize_t btrfs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
3668 ssize_t ret = 0;
3670 if (iocb->ki_flags & IOCB_DIRECT) {
3671 ret = btrfs_direct_read(iocb, to);
3672 if (ret < 0 || !iov_iter_count(to) ||
3673 iocb->ki_pos >= i_size_read(file_inode(iocb->ki_filp)))
3674 return ret;
3677 return filemap_read(iocb, to, ret);
3680 const struct file_operations btrfs_file_operations = {
3681 .llseek = btrfs_file_llseek,
3682 .read_iter = btrfs_file_read_iter,
3683 .splice_read = filemap_splice_read,
3684 .write_iter = btrfs_file_write_iter,
3685 .splice_write = iter_file_splice_write,
3686 .mmap = btrfs_file_mmap,
3687 .open = btrfs_file_open,
3688 .release = btrfs_release_file,
3689 .get_unmapped_area = thp_get_unmapped_area,
3690 .fsync = btrfs_sync_file,
3691 .fallocate = btrfs_fallocate,
3692 .unlocked_ioctl = btrfs_ioctl,
3693 #ifdef CONFIG_COMPAT
3694 .compat_ioctl = btrfs_compat_ioctl,
3695 #endif
3696 .remap_file_range = btrfs_remap_file_range,
3697 .uring_cmd = btrfs_uring_cmd,
3698 .fop_flags = FOP_BUFFER_RASYNC | FOP_BUFFER_WASYNC,
3701 int btrfs_fdatawrite_range(struct btrfs_inode *inode, loff_t start, loff_t end)
3703 struct address_space *mapping = inode->vfs_inode.i_mapping;
3704 int ret;
3707 * So with compression we will find and lock a dirty page and clear the
3708 * first one as dirty, setup an async extent, and immediately return
3709 * with the entire range locked but with nobody actually marked with
3710 * writeback. So we can't just filemap_write_and_wait_range() and
3711 * expect it to work since it will just kick off a thread to do the
3712 * actual work. So we need to call filemap_fdatawrite_range _again_
3713 * since it will wait on the page lock, which won't be unlocked until
3714 * after the pages have been marked as writeback and so we're good to go
3715 * from there. We have to do this otherwise we'll miss the ordered
3716 * extents and that results in badness. Please Josef, do not think you
3717 * know better and pull this out at some point in the future, it is
3718 * right and you are wrong.
3720 ret = filemap_fdatawrite_range(mapping, start, end);
3721 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, &inode->runtime_flags))
3722 ret = filemap_fdatawrite_range(mapping, start, end);
3724 return ret;