Linux 6.13-rc4
[linux.git] / fs / btrfs / free-space-cache.c
blobcfa52ef40b06e44b9866ed8fc0ad073081646e39
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Red Hat. All rights reserved.
4 */
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include <linux/string_choices.h>
15 #include "ctree.h"
16 #include "fs.h"
17 #include "messages.h"
18 #include "misc.h"
19 #include "free-space-cache.h"
20 #include "transaction.h"
21 #include "disk-io.h"
22 #include "extent_io.h"
23 #include "space-info.h"
24 #include "block-group.h"
25 #include "discard.h"
26 #include "subpage.h"
27 #include "inode-item.h"
28 #include "accessors.h"
29 #include "file-item.h"
30 #include "file.h"
31 #include "super.h"
33 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
34 #define MAX_CACHE_BYTES_PER_GIG SZ_64K
35 #define FORCE_EXTENT_THRESHOLD SZ_1M
37 static struct kmem_cache *btrfs_free_space_cachep;
38 static struct kmem_cache *btrfs_free_space_bitmap_cachep;
40 struct btrfs_trim_range {
41 u64 start;
42 u64 bytes;
43 struct list_head list;
46 static int link_free_space(struct btrfs_free_space_ctl *ctl,
47 struct btrfs_free_space *info);
48 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
49 struct btrfs_free_space *info, bool update_stat);
50 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
51 struct btrfs_free_space *bitmap_info, u64 *offset,
52 u64 *bytes, bool for_alloc);
53 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
54 struct btrfs_free_space *bitmap_info);
55 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
56 struct btrfs_free_space *info, u64 offset,
57 u64 bytes, bool update_stats);
59 static void btrfs_crc32c_final(u32 crc, u8 *result)
61 put_unaligned_le32(~crc, result);
64 static void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
66 struct btrfs_free_space *info;
67 struct rb_node *node;
69 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
70 info = rb_entry(node, struct btrfs_free_space, offset_index);
71 if (!info->bitmap) {
72 unlink_free_space(ctl, info, true);
73 kmem_cache_free(btrfs_free_space_cachep, info);
74 } else {
75 free_bitmap(ctl, info);
78 cond_resched_lock(&ctl->tree_lock);
82 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
83 struct btrfs_path *path,
84 u64 offset)
86 struct btrfs_key key;
87 struct btrfs_key location;
88 struct btrfs_disk_key disk_key;
89 struct btrfs_free_space_header *header;
90 struct extent_buffer *leaf;
91 struct inode *inode = NULL;
92 unsigned nofs_flag;
93 int ret;
95 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
96 key.offset = offset;
97 key.type = 0;
99 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
100 if (ret < 0)
101 return ERR_PTR(ret);
102 if (ret > 0) {
103 btrfs_release_path(path);
104 return ERR_PTR(-ENOENT);
107 leaf = path->nodes[0];
108 header = btrfs_item_ptr(leaf, path->slots[0],
109 struct btrfs_free_space_header);
110 btrfs_free_space_key(leaf, header, &disk_key);
111 btrfs_disk_key_to_cpu(&location, &disk_key);
112 btrfs_release_path(path);
115 * We are often under a trans handle at this point, so we need to make
116 * sure NOFS is set to keep us from deadlocking.
118 nofs_flag = memalloc_nofs_save();
119 inode = btrfs_iget_path(location.objectid, root, path);
120 btrfs_release_path(path);
121 memalloc_nofs_restore(nofs_flag);
122 if (IS_ERR(inode))
123 return inode;
125 mapping_set_gfp_mask(inode->i_mapping,
126 mapping_gfp_constraint(inode->i_mapping,
127 ~(__GFP_FS | __GFP_HIGHMEM)));
129 return inode;
132 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
133 struct btrfs_path *path)
135 struct btrfs_fs_info *fs_info = block_group->fs_info;
136 struct inode *inode = NULL;
137 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
139 spin_lock(&block_group->lock);
140 if (block_group->inode)
141 inode = igrab(&block_group->inode->vfs_inode);
142 spin_unlock(&block_group->lock);
143 if (inode)
144 return inode;
146 inode = __lookup_free_space_inode(fs_info->tree_root, path,
147 block_group->start);
148 if (IS_ERR(inode))
149 return inode;
151 spin_lock(&block_group->lock);
152 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
153 btrfs_info(fs_info, "Old style space inode found, converting.");
154 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
155 BTRFS_INODE_NODATACOW;
156 block_group->disk_cache_state = BTRFS_DC_CLEAR;
159 if (!test_and_set_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags))
160 block_group->inode = BTRFS_I(igrab(inode));
161 spin_unlock(&block_group->lock);
163 return inode;
166 static int __create_free_space_inode(struct btrfs_root *root,
167 struct btrfs_trans_handle *trans,
168 struct btrfs_path *path,
169 u64 ino, u64 offset)
171 struct btrfs_key key;
172 struct btrfs_disk_key disk_key;
173 struct btrfs_free_space_header *header;
174 struct btrfs_inode_item *inode_item;
175 struct extent_buffer *leaf;
176 /* We inline CRCs for the free disk space cache */
177 const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
178 BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
179 int ret;
181 ret = btrfs_insert_empty_inode(trans, root, path, ino);
182 if (ret)
183 return ret;
185 leaf = path->nodes[0];
186 inode_item = btrfs_item_ptr(leaf, path->slots[0],
187 struct btrfs_inode_item);
188 btrfs_item_key(leaf, &disk_key, path->slots[0]);
189 memzero_extent_buffer(leaf, (unsigned long)inode_item,
190 sizeof(*inode_item));
191 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
192 btrfs_set_inode_size(leaf, inode_item, 0);
193 btrfs_set_inode_nbytes(leaf, inode_item, 0);
194 btrfs_set_inode_uid(leaf, inode_item, 0);
195 btrfs_set_inode_gid(leaf, inode_item, 0);
196 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
197 btrfs_set_inode_flags(leaf, inode_item, flags);
198 btrfs_set_inode_nlink(leaf, inode_item, 1);
199 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
200 btrfs_set_inode_block_group(leaf, inode_item, offset);
201 btrfs_mark_buffer_dirty(trans, leaf);
202 btrfs_release_path(path);
204 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
205 key.offset = offset;
206 key.type = 0;
207 ret = btrfs_insert_empty_item(trans, root, path, &key,
208 sizeof(struct btrfs_free_space_header));
209 if (ret < 0) {
210 btrfs_release_path(path);
211 return ret;
214 leaf = path->nodes[0];
215 header = btrfs_item_ptr(leaf, path->slots[0],
216 struct btrfs_free_space_header);
217 memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
218 btrfs_set_free_space_key(leaf, header, &disk_key);
219 btrfs_mark_buffer_dirty(trans, leaf);
220 btrfs_release_path(path);
222 return 0;
225 int create_free_space_inode(struct btrfs_trans_handle *trans,
226 struct btrfs_block_group *block_group,
227 struct btrfs_path *path)
229 int ret;
230 u64 ino;
232 ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
233 if (ret < 0)
234 return ret;
236 return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
237 ino, block_group->start);
241 * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
242 * handles lookup, otherwise it takes ownership and iputs the inode.
243 * Don't reuse an inode pointer after passing it into this function.
245 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
246 struct inode *inode,
247 struct btrfs_block_group *block_group)
249 struct btrfs_path *path;
250 struct btrfs_key key;
251 int ret = 0;
253 path = btrfs_alloc_path();
254 if (!path)
255 return -ENOMEM;
257 if (!inode)
258 inode = lookup_free_space_inode(block_group, path);
259 if (IS_ERR(inode)) {
260 if (PTR_ERR(inode) != -ENOENT)
261 ret = PTR_ERR(inode);
262 goto out;
264 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
265 if (ret) {
266 btrfs_add_delayed_iput(BTRFS_I(inode));
267 goto out;
269 clear_nlink(inode);
270 /* One for the block groups ref */
271 spin_lock(&block_group->lock);
272 if (test_and_clear_bit(BLOCK_GROUP_FLAG_IREF, &block_group->runtime_flags)) {
273 block_group->inode = NULL;
274 spin_unlock(&block_group->lock);
275 iput(inode);
276 } else {
277 spin_unlock(&block_group->lock);
279 /* One for the lookup ref */
280 btrfs_add_delayed_iput(BTRFS_I(inode));
282 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
283 key.type = 0;
284 key.offset = block_group->start;
285 ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
286 -1, 1);
287 if (ret) {
288 if (ret > 0)
289 ret = 0;
290 goto out;
292 ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
293 out:
294 btrfs_free_path(path);
295 return ret;
298 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
299 struct btrfs_block_group *block_group,
300 struct inode *vfs_inode)
302 struct btrfs_truncate_control control = {
303 .inode = BTRFS_I(vfs_inode),
304 .new_size = 0,
305 .ino = btrfs_ino(BTRFS_I(vfs_inode)),
306 .min_type = BTRFS_EXTENT_DATA_KEY,
307 .clear_extent_range = true,
309 struct btrfs_inode *inode = BTRFS_I(vfs_inode);
310 struct btrfs_root *root = inode->root;
311 struct extent_state *cached_state = NULL;
312 int ret = 0;
313 bool locked = false;
315 if (block_group) {
316 struct btrfs_path *path = btrfs_alloc_path();
318 if (!path) {
319 ret = -ENOMEM;
320 goto fail;
322 locked = true;
323 mutex_lock(&trans->transaction->cache_write_mutex);
324 if (!list_empty(&block_group->io_list)) {
325 list_del_init(&block_group->io_list);
327 btrfs_wait_cache_io(trans, block_group, path);
328 btrfs_put_block_group(block_group);
332 * now that we've truncated the cache away, its no longer
333 * setup or written
335 spin_lock(&block_group->lock);
336 block_group->disk_cache_state = BTRFS_DC_CLEAR;
337 spin_unlock(&block_group->lock);
338 btrfs_free_path(path);
341 btrfs_i_size_write(inode, 0);
342 truncate_pagecache(vfs_inode, 0);
344 lock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
345 btrfs_drop_extent_map_range(inode, 0, (u64)-1, false);
348 * We skip the throttling logic for free space cache inodes, so we don't
349 * need to check for -EAGAIN.
351 ret = btrfs_truncate_inode_items(trans, root, &control);
353 inode_sub_bytes(&inode->vfs_inode, control.sub_bytes);
354 btrfs_inode_safe_disk_i_size_write(inode, control.last_size);
356 unlock_extent(&inode->io_tree, 0, (u64)-1, &cached_state);
357 if (ret)
358 goto fail;
360 ret = btrfs_update_inode(trans, inode);
362 fail:
363 if (locked)
364 mutex_unlock(&trans->transaction->cache_write_mutex);
365 if (ret)
366 btrfs_abort_transaction(trans, ret);
368 return ret;
371 static void readahead_cache(struct inode *inode)
373 struct file_ra_state ra;
374 unsigned long last_index;
376 file_ra_state_init(&ra, inode->i_mapping);
377 last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
379 page_cache_sync_readahead(inode->i_mapping, &ra, NULL, 0, last_index);
382 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
383 int write)
385 int num_pages;
387 num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
389 /* Make sure we can fit our crcs and generation into the first page */
390 if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
391 return -ENOSPC;
393 memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
395 io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
396 if (!io_ctl->pages)
397 return -ENOMEM;
399 io_ctl->num_pages = num_pages;
400 io_ctl->fs_info = inode_to_fs_info(inode);
401 io_ctl->inode = inode;
403 return 0;
405 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
407 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
409 kfree(io_ctl->pages);
410 io_ctl->pages = NULL;
413 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
415 if (io_ctl->cur) {
416 io_ctl->cur = NULL;
417 io_ctl->orig = NULL;
421 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
423 ASSERT(io_ctl->index < io_ctl->num_pages);
424 io_ctl->page = io_ctl->pages[io_ctl->index++];
425 io_ctl->cur = page_address(io_ctl->page);
426 io_ctl->orig = io_ctl->cur;
427 io_ctl->size = PAGE_SIZE;
428 if (clear)
429 clear_page(io_ctl->cur);
432 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
434 int i;
436 io_ctl_unmap_page(io_ctl);
438 for (i = 0; i < io_ctl->num_pages; i++) {
439 if (io_ctl->pages[i]) {
440 btrfs_folio_clear_checked(io_ctl->fs_info,
441 page_folio(io_ctl->pages[i]),
442 page_offset(io_ctl->pages[i]),
443 PAGE_SIZE);
444 unlock_page(io_ctl->pages[i]);
445 put_page(io_ctl->pages[i]);
450 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
452 struct page *page;
453 struct inode *inode = io_ctl->inode;
454 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
455 int i;
457 for (i = 0; i < io_ctl->num_pages; i++) {
458 int ret;
460 page = find_or_create_page(inode->i_mapping, i, mask);
461 if (!page) {
462 io_ctl_drop_pages(io_ctl);
463 return -ENOMEM;
466 ret = set_page_extent_mapped(page);
467 if (ret < 0) {
468 unlock_page(page);
469 put_page(page);
470 io_ctl_drop_pages(io_ctl);
471 return ret;
474 io_ctl->pages[i] = page;
475 if (uptodate && !PageUptodate(page)) {
476 btrfs_read_folio(NULL, page_folio(page));
477 lock_page(page);
478 if (page->mapping != inode->i_mapping) {
479 btrfs_err(BTRFS_I(inode)->root->fs_info,
480 "free space cache page truncated");
481 io_ctl_drop_pages(io_ctl);
482 return -EIO;
484 if (!PageUptodate(page)) {
485 btrfs_err(BTRFS_I(inode)->root->fs_info,
486 "error reading free space cache");
487 io_ctl_drop_pages(io_ctl);
488 return -EIO;
493 for (i = 0; i < io_ctl->num_pages; i++)
494 clear_page_dirty_for_io(io_ctl->pages[i]);
496 return 0;
499 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
501 io_ctl_map_page(io_ctl, 1);
504 * Skip the csum areas. If we don't check crcs then we just have a
505 * 64bit chunk at the front of the first page.
507 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
508 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
510 put_unaligned_le64(generation, io_ctl->cur);
511 io_ctl->cur += sizeof(u64);
514 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
516 u64 cache_gen;
519 * Skip the crc area. If we don't check crcs then we just have a 64bit
520 * chunk at the front of the first page.
522 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
523 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
525 cache_gen = get_unaligned_le64(io_ctl->cur);
526 if (cache_gen != generation) {
527 btrfs_err_rl(io_ctl->fs_info,
528 "space cache generation (%llu) does not match inode (%llu)",
529 cache_gen, generation);
530 io_ctl_unmap_page(io_ctl);
531 return -EIO;
533 io_ctl->cur += sizeof(u64);
534 return 0;
537 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
539 u32 *tmp;
540 u32 crc = ~(u32)0;
541 unsigned offset = 0;
543 if (index == 0)
544 offset = sizeof(u32) * io_ctl->num_pages;
546 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
547 btrfs_crc32c_final(crc, (u8 *)&crc);
548 io_ctl_unmap_page(io_ctl);
549 tmp = page_address(io_ctl->pages[0]);
550 tmp += index;
551 *tmp = crc;
554 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
556 u32 *tmp, val;
557 u32 crc = ~(u32)0;
558 unsigned offset = 0;
560 if (index == 0)
561 offset = sizeof(u32) * io_ctl->num_pages;
563 tmp = page_address(io_ctl->pages[0]);
564 tmp += index;
565 val = *tmp;
567 io_ctl_map_page(io_ctl, 0);
568 crc = crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
569 btrfs_crc32c_final(crc, (u8 *)&crc);
570 if (val != crc) {
571 btrfs_err_rl(io_ctl->fs_info,
572 "csum mismatch on free space cache");
573 io_ctl_unmap_page(io_ctl);
574 return -EIO;
577 return 0;
580 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
581 void *bitmap)
583 struct btrfs_free_space_entry *entry;
585 if (!io_ctl->cur)
586 return -ENOSPC;
588 entry = io_ctl->cur;
589 put_unaligned_le64(offset, &entry->offset);
590 put_unaligned_le64(bytes, &entry->bytes);
591 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
592 BTRFS_FREE_SPACE_EXTENT;
593 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
594 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
596 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
597 return 0;
599 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
601 /* No more pages to map */
602 if (io_ctl->index >= io_ctl->num_pages)
603 return 0;
605 /* map the next page */
606 io_ctl_map_page(io_ctl, 1);
607 return 0;
610 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
612 if (!io_ctl->cur)
613 return -ENOSPC;
616 * If we aren't at the start of the current page, unmap this one and
617 * map the next one if there is any left.
619 if (io_ctl->cur != io_ctl->orig) {
620 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
621 if (io_ctl->index >= io_ctl->num_pages)
622 return -ENOSPC;
623 io_ctl_map_page(io_ctl, 0);
626 copy_page(io_ctl->cur, bitmap);
627 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
628 if (io_ctl->index < io_ctl->num_pages)
629 io_ctl_map_page(io_ctl, 0);
630 return 0;
633 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
636 * If we're not on the boundary we know we've modified the page and we
637 * need to crc the page.
639 if (io_ctl->cur != io_ctl->orig)
640 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
641 else
642 io_ctl_unmap_page(io_ctl);
644 while (io_ctl->index < io_ctl->num_pages) {
645 io_ctl_map_page(io_ctl, 1);
646 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
650 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
651 struct btrfs_free_space *entry, u8 *type)
653 struct btrfs_free_space_entry *e;
654 int ret;
656 if (!io_ctl->cur) {
657 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
658 if (ret)
659 return ret;
662 e = io_ctl->cur;
663 entry->offset = get_unaligned_le64(&e->offset);
664 entry->bytes = get_unaligned_le64(&e->bytes);
665 *type = e->type;
666 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
667 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
669 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
670 return 0;
672 io_ctl_unmap_page(io_ctl);
674 return 0;
677 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
678 struct btrfs_free_space *entry)
680 int ret;
682 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
683 if (ret)
684 return ret;
686 copy_page(entry->bitmap, io_ctl->cur);
687 io_ctl_unmap_page(io_ctl);
689 return 0;
692 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
694 struct btrfs_block_group *block_group = ctl->block_group;
695 u64 max_bytes;
696 u64 bitmap_bytes;
697 u64 extent_bytes;
698 u64 size = block_group->length;
699 u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
700 u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
702 max_bitmaps = max_t(u64, max_bitmaps, 1);
704 if (ctl->total_bitmaps > max_bitmaps)
705 btrfs_err(block_group->fs_info,
706 "invalid free space control: bg start=%llu len=%llu total_bitmaps=%u unit=%u max_bitmaps=%llu bytes_per_bg=%llu",
707 block_group->start, block_group->length,
708 ctl->total_bitmaps, ctl->unit, max_bitmaps,
709 bytes_per_bg);
710 ASSERT(ctl->total_bitmaps <= max_bitmaps);
713 * We are trying to keep the total amount of memory used per 1GiB of
714 * space to be MAX_CACHE_BYTES_PER_GIG. However, with a reclamation
715 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
716 * bitmaps, we may end up using more memory than this.
718 if (size < SZ_1G)
719 max_bytes = MAX_CACHE_BYTES_PER_GIG;
720 else
721 max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
723 bitmap_bytes = ctl->total_bitmaps * ctl->unit;
726 * we want the extent entry threshold to always be at most 1/2 the max
727 * bytes we can have, or whatever is less than that.
729 extent_bytes = max_bytes - bitmap_bytes;
730 extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
732 ctl->extents_thresh =
733 div_u64(extent_bytes, sizeof(struct btrfs_free_space));
736 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
737 struct btrfs_free_space_ctl *ctl,
738 struct btrfs_path *path, u64 offset)
740 struct btrfs_fs_info *fs_info = root->fs_info;
741 struct btrfs_free_space_header *header;
742 struct extent_buffer *leaf;
743 struct btrfs_io_ctl io_ctl;
744 struct btrfs_key key;
745 struct btrfs_free_space *e, *n;
746 LIST_HEAD(bitmaps);
747 u64 num_entries;
748 u64 num_bitmaps;
749 u64 generation;
750 u8 type;
751 int ret = 0;
753 /* Nothing in the space cache, goodbye */
754 if (!i_size_read(inode))
755 return 0;
757 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
758 key.offset = offset;
759 key.type = 0;
761 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
762 if (ret < 0)
763 return 0;
764 else if (ret > 0) {
765 btrfs_release_path(path);
766 return 0;
769 ret = -1;
771 leaf = path->nodes[0];
772 header = btrfs_item_ptr(leaf, path->slots[0],
773 struct btrfs_free_space_header);
774 num_entries = btrfs_free_space_entries(leaf, header);
775 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
776 generation = btrfs_free_space_generation(leaf, header);
777 btrfs_release_path(path);
779 if (!BTRFS_I(inode)->generation) {
780 btrfs_info(fs_info,
781 "the free space cache file (%llu) is invalid, skip it",
782 offset);
783 return 0;
786 if (BTRFS_I(inode)->generation != generation) {
787 btrfs_err(fs_info,
788 "free space inode generation (%llu) did not match free space cache generation (%llu)",
789 BTRFS_I(inode)->generation, generation);
790 return 0;
793 if (!num_entries)
794 return 0;
796 ret = io_ctl_init(&io_ctl, inode, 0);
797 if (ret)
798 return ret;
800 readahead_cache(inode);
802 ret = io_ctl_prepare_pages(&io_ctl, true);
803 if (ret)
804 goto out;
806 ret = io_ctl_check_crc(&io_ctl, 0);
807 if (ret)
808 goto free_cache;
810 ret = io_ctl_check_generation(&io_ctl, generation);
811 if (ret)
812 goto free_cache;
814 while (num_entries) {
815 e = kmem_cache_zalloc(btrfs_free_space_cachep,
816 GFP_NOFS);
817 if (!e) {
818 ret = -ENOMEM;
819 goto free_cache;
822 ret = io_ctl_read_entry(&io_ctl, e, &type);
823 if (ret) {
824 kmem_cache_free(btrfs_free_space_cachep, e);
825 goto free_cache;
828 if (!e->bytes) {
829 ret = -1;
830 kmem_cache_free(btrfs_free_space_cachep, e);
831 goto free_cache;
834 if (type == BTRFS_FREE_SPACE_EXTENT) {
835 spin_lock(&ctl->tree_lock);
836 ret = link_free_space(ctl, e);
837 spin_unlock(&ctl->tree_lock);
838 if (ret) {
839 btrfs_err(fs_info,
840 "Duplicate entries in free space cache, dumping");
841 kmem_cache_free(btrfs_free_space_cachep, e);
842 goto free_cache;
844 } else {
845 ASSERT(num_bitmaps);
846 num_bitmaps--;
847 e->bitmap = kmem_cache_zalloc(
848 btrfs_free_space_bitmap_cachep, GFP_NOFS);
849 if (!e->bitmap) {
850 ret = -ENOMEM;
851 kmem_cache_free(
852 btrfs_free_space_cachep, e);
853 goto free_cache;
855 spin_lock(&ctl->tree_lock);
856 ret = link_free_space(ctl, e);
857 if (ret) {
858 spin_unlock(&ctl->tree_lock);
859 btrfs_err(fs_info,
860 "Duplicate entries in free space cache, dumping");
861 kmem_cache_free(btrfs_free_space_bitmap_cachep, e->bitmap);
862 kmem_cache_free(btrfs_free_space_cachep, e);
863 goto free_cache;
865 ctl->total_bitmaps++;
866 recalculate_thresholds(ctl);
867 spin_unlock(&ctl->tree_lock);
868 list_add_tail(&e->list, &bitmaps);
871 num_entries--;
874 io_ctl_unmap_page(&io_ctl);
877 * We add the bitmaps at the end of the entries in order that
878 * the bitmap entries are added to the cache.
880 list_for_each_entry_safe(e, n, &bitmaps, list) {
881 list_del_init(&e->list);
882 ret = io_ctl_read_bitmap(&io_ctl, e);
883 if (ret)
884 goto free_cache;
887 io_ctl_drop_pages(&io_ctl);
888 ret = 1;
889 out:
890 io_ctl_free(&io_ctl);
891 return ret;
892 free_cache:
893 io_ctl_drop_pages(&io_ctl);
895 spin_lock(&ctl->tree_lock);
896 __btrfs_remove_free_space_cache(ctl);
897 spin_unlock(&ctl->tree_lock);
898 goto out;
901 static int copy_free_space_cache(struct btrfs_block_group *block_group,
902 struct btrfs_free_space_ctl *ctl)
904 struct btrfs_free_space *info;
905 struct rb_node *n;
906 int ret = 0;
908 while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
909 info = rb_entry(n, struct btrfs_free_space, offset_index);
910 if (!info->bitmap) {
911 const u64 offset = info->offset;
912 const u64 bytes = info->bytes;
914 unlink_free_space(ctl, info, true);
915 spin_unlock(&ctl->tree_lock);
916 kmem_cache_free(btrfs_free_space_cachep, info);
917 ret = btrfs_add_free_space(block_group, offset, bytes);
918 spin_lock(&ctl->tree_lock);
919 } else {
920 u64 offset = info->offset;
921 u64 bytes = ctl->unit;
923 ret = search_bitmap(ctl, info, &offset, &bytes, false);
924 if (ret == 0) {
925 bitmap_clear_bits(ctl, info, offset, bytes, true);
926 spin_unlock(&ctl->tree_lock);
927 ret = btrfs_add_free_space(block_group, offset,
928 bytes);
929 spin_lock(&ctl->tree_lock);
930 } else {
931 free_bitmap(ctl, info);
932 ret = 0;
935 cond_resched_lock(&ctl->tree_lock);
937 return ret;
940 static struct lock_class_key btrfs_free_space_inode_key;
942 int load_free_space_cache(struct btrfs_block_group *block_group)
944 struct btrfs_fs_info *fs_info = block_group->fs_info;
945 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
946 struct btrfs_free_space_ctl tmp_ctl = {};
947 struct inode *inode;
948 struct btrfs_path *path;
949 int ret = 0;
950 bool matched;
951 u64 used = block_group->used;
954 * Because we could potentially discard our loaded free space, we want
955 * to load everything into a temporary structure first, and then if it's
956 * valid copy it all into the actual free space ctl.
958 btrfs_init_free_space_ctl(block_group, &tmp_ctl);
961 * If this block group has been marked to be cleared for one reason or
962 * another then we can't trust the on disk cache, so just return.
964 spin_lock(&block_group->lock);
965 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
966 spin_unlock(&block_group->lock);
967 return 0;
969 spin_unlock(&block_group->lock);
971 path = btrfs_alloc_path();
972 if (!path)
973 return 0;
974 path->search_commit_root = 1;
975 path->skip_locking = 1;
978 * We must pass a path with search_commit_root set to btrfs_iget in
979 * order to avoid a deadlock when allocating extents for the tree root.
981 * When we are COWing an extent buffer from the tree root, when looking
982 * for a free extent, at extent-tree.c:find_free_extent(), we can find
983 * block group without its free space cache loaded. When we find one
984 * we must load its space cache which requires reading its free space
985 * cache's inode item from the root tree. If this inode item is located
986 * in the same leaf that we started COWing before, then we end up in
987 * deadlock on the extent buffer (trying to read lock it when we
988 * previously write locked it).
990 * It's safe to read the inode item using the commit root because
991 * block groups, once loaded, stay in memory forever (until they are
992 * removed) as well as their space caches once loaded. New block groups
993 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
994 * we will never try to read their inode item while the fs is mounted.
996 inode = lookup_free_space_inode(block_group, path);
997 if (IS_ERR(inode)) {
998 btrfs_free_path(path);
999 return 0;
1002 /* We may have converted the inode and made the cache invalid. */
1003 spin_lock(&block_group->lock);
1004 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
1005 spin_unlock(&block_group->lock);
1006 btrfs_free_path(path);
1007 goto out;
1009 spin_unlock(&block_group->lock);
1012 * Reinitialize the class of struct inode's mapping->invalidate_lock for
1013 * free space inodes to prevent false positives related to locks for normal
1014 * inodes.
1016 lockdep_set_class(&(&inode->i_data)->invalidate_lock,
1017 &btrfs_free_space_inode_key);
1019 ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
1020 path, block_group->start);
1021 btrfs_free_path(path);
1022 if (ret <= 0)
1023 goto out;
1025 matched = (tmp_ctl.free_space == (block_group->length - used -
1026 block_group->bytes_super));
1028 if (matched) {
1029 spin_lock(&tmp_ctl.tree_lock);
1030 ret = copy_free_space_cache(block_group, &tmp_ctl);
1031 spin_unlock(&tmp_ctl.tree_lock);
1033 * ret == 1 means we successfully loaded the free space cache,
1034 * so we need to re-set it here.
1036 if (ret == 0)
1037 ret = 1;
1038 } else {
1040 * We need to call the _locked variant so we don't try to update
1041 * the discard counters.
1043 spin_lock(&tmp_ctl.tree_lock);
1044 __btrfs_remove_free_space_cache(&tmp_ctl);
1045 spin_unlock(&tmp_ctl.tree_lock);
1046 btrfs_warn(fs_info,
1047 "block group %llu has wrong amount of free space",
1048 block_group->start);
1049 ret = -1;
1051 out:
1052 if (ret < 0) {
1053 /* This cache is bogus, make sure it gets cleared */
1054 spin_lock(&block_group->lock);
1055 block_group->disk_cache_state = BTRFS_DC_CLEAR;
1056 spin_unlock(&block_group->lock);
1057 ret = 0;
1059 btrfs_warn(fs_info,
1060 "failed to load free space cache for block group %llu, rebuilding it now",
1061 block_group->start);
1064 spin_lock(&ctl->tree_lock);
1065 btrfs_discard_update_discardable(block_group);
1066 spin_unlock(&ctl->tree_lock);
1067 iput(inode);
1068 return ret;
1071 static noinline_for_stack
1072 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1073 struct btrfs_free_space_ctl *ctl,
1074 struct btrfs_block_group *block_group,
1075 int *entries, int *bitmaps,
1076 struct list_head *bitmap_list)
1078 int ret;
1079 struct btrfs_free_cluster *cluster = NULL;
1080 struct btrfs_free_cluster *cluster_locked = NULL;
1081 struct rb_node *node = rb_first(&ctl->free_space_offset);
1082 struct btrfs_trim_range *trim_entry;
1084 /* Get the cluster for this block_group if it exists */
1085 if (block_group && !list_empty(&block_group->cluster_list)) {
1086 cluster = list_entry(block_group->cluster_list.next,
1087 struct btrfs_free_cluster,
1088 block_group_list);
1091 if (!node && cluster) {
1092 cluster_locked = cluster;
1093 spin_lock(&cluster_locked->lock);
1094 node = rb_first(&cluster->root);
1095 cluster = NULL;
1098 /* Write out the extent entries */
1099 while (node) {
1100 struct btrfs_free_space *e;
1102 e = rb_entry(node, struct btrfs_free_space, offset_index);
1103 *entries += 1;
1105 ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1106 e->bitmap);
1107 if (ret)
1108 goto fail;
1110 if (e->bitmap) {
1111 list_add_tail(&e->list, bitmap_list);
1112 *bitmaps += 1;
1114 node = rb_next(node);
1115 if (!node && cluster) {
1116 node = rb_first(&cluster->root);
1117 cluster_locked = cluster;
1118 spin_lock(&cluster_locked->lock);
1119 cluster = NULL;
1122 if (cluster_locked) {
1123 spin_unlock(&cluster_locked->lock);
1124 cluster_locked = NULL;
1128 * Make sure we don't miss any range that was removed from our rbtree
1129 * because trimming is running. Otherwise after a umount+mount (or crash
1130 * after committing the transaction) we would leak free space and get
1131 * an inconsistent free space cache report from fsck.
1133 list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1134 ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1135 trim_entry->bytes, NULL);
1136 if (ret)
1137 goto fail;
1138 *entries += 1;
1141 return 0;
1142 fail:
1143 if (cluster_locked)
1144 spin_unlock(&cluster_locked->lock);
1145 return -ENOSPC;
1148 static noinline_for_stack int
1149 update_cache_item(struct btrfs_trans_handle *trans,
1150 struct btrfs_root *root,
1151 struct inode *inode,
1152 struct btrfs_path *path, u64 offset,
1153 int entries, int bitmaps)
1155 struct btrfs_key key;
1156 struct btrfs_free_space_header *header;
1157 struct extent_buffer *leaf;
1158 int ret;
1160 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1161 key.offset = offset;
1162 key.type = 0;
1164 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1165 if (ret < 0) {
1166 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1167 EXTENT_DELALLOC, NULL);
1168 goto fail;
1170 leaf = path->nodes[0];
1171 if (ret > 0) {
1172 struct btrfs_key found_key;
1173 ASSERT(path->slots[0]);
1174 path->slots[0]--;
1175 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1176 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1177 found_key.offset != offset) {
1178 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1179 inode->i_size - 1, EXTENT_DELALLOC,
1180 NULL);
1181 btrfs_release_path(path);
1182 goto fail;
1186 BTRFS_I(inode)->generation = trans->transid;
1187 header = btrfs_item_ptr(leaf, path->slots[0],
1188 struct btrfs_free_space_header);
1189 btrfs_set_free_space_entries(leaf, header, entries);
1190 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1191 btrfs_set_free_space_generation(leaf, header, trans->transid);
1192 btrfs_mark_buffer_dirty(trans, leaf);
1193 btrfs_release_path(path);
1195 return 0;
1197 fail:
1198 return -1;
1201 static noinline_for_stack int write_pinned_extent_entries(
1202 struct btrfs_trans_handle *trans,
1203 struct btrfs_block_group *block_group,
1204 struct btrfs_io_ctl *io_ctl,
1205 int *entries)
1207 u64 start, extent_start, extent_end, len;
1208 struct extent_io_tree *unpin = NULL;
1209 int ret;
1211 if (!block_group)
1212 return 0;
1215 * We want to add any pinned extents to our free space cache
1216 * so we don't leak the space
1218 * We shouldn't have switched the pinned extents yet so this is the
1219 * right one
1221 unpin = &trans->transaction->pinned_extents;
1223 start = block_group->start;
1225 while (start < block_group->start + block_group->length) {
1226 if (!find_first_extent_bit(unpin, start,
1227 &extent_start, &extent_end,
1228 EXTENT_DIRTY, NULL))
1229 return 0;
1231 /* This pinned extent is out of our range */
1232 if (extent_start >= block_group->start + block_group->length)
1233 return 0;
1235 extent_start = max(extent_start, start);
1236 extent_end = min(block_group->start + block_group->length,
1237 extent_end + 1);
1238 len = extent_end - extent_start;
1240 *entries += 1;
1241 ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1242 if (ret)
1243 return -ENOSPC;
1245 start = extent_end;
1248 return 0;
1251 static noinline_for_stack int
1252 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1254 struct btrfs_free_space *entry, *next;
1255 int ret;
1257 /* Write out the bitmaps */
1258 list_for_each_entry_safe(entry, next, bitmap_list, list) {
1259 ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1260 if (ret)
1261 return -ENOSPC;
1262 list_del_init(&entry->list);
1265 return 0;
1268 static int flush_dirty_cache(struct inode *inode)
1270 int ret;
1272 ret = btrfs_wait_ordered_range(BTRFS_I(inode), 0, (u64)-1);
1273 if (ret)
1274 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1275 EXTENT_DELALLOC, NULL);
1277 return ret;
1280 static void noinline_for_stack
1281 cleanup_bitmap_list(struct list_head *bitmap_list)
1283 struct btrfs_free_space *entry, *next;
1285 list_for_each_entry_safe(entry, next, bitmap_list, list)
1286 list_del_init(&entry->list);
1289 static void noinline_for_stack
1290 cleanup_write_cache_enospc(struct inode *inode,
1291 struct btrfs_io_ctl *io_ctl,
1292 struct extent_state **cached_state)
1294 io_ctl_drop_pages(io_ctl);
1295 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1296 cached_state);
1299 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1300 struct btrfs_trans_handle *trans,
1301 struct btrfs_block_group *block_group,
1302 struct btrfs_io_ctl *io_ctl,
1303 struct btrfs_path *path, u64 offset)
1305 int ret;
1306 struct inode *inode = io_ctl->inode;
1308 if (!inode)
1309 return 0;
1311 /* Flush the dirty pages in the cache file. */
1312 ret = flush_dirty_cache(inode);
1313 if (ret)
1314 goto out;
1316 /* Update the cache item to tell everyone this cache file is valid. */
1317 ret = update_cache_item(trans, root, inode, path, offset,
1318 io_ctl->entries, io_ctl->bitmaps);
1319 out:
1320 if (ret) {
1321 invalidate_inode_pages2(inode->i_mapping);
1322 BTRFS_I(inode)->generation = 0;
1323 if (block_group)
1324 btrfs_debug(root->fs_info,
1325 "failed to write free space cache for block group %llu error %d",
1326 block_group->start, ret);
1328 btrfs_update_inode(trans, BTRFS_I(inode));
1330 if (block_group) {
1331 /* the dirty list is protected by the dirty_bgs_lock */
1332 spin_lock(&trans->transaction->dirty_bgs_lock);
1334 /* the disk_cache_state is protected by the block group lock */
1335 spin_lock(&block_group->lock);
1338 * only mark this as written if we didn't get put back on
1339 * the dirty list while waiting for IO. Otherwise our
1340 * cache state won't be right, and we won't get written again
1342 if (!ret && list_empty(&block_group->dirty_list))
1343 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1344 else if (ret)
1345 block_group->disk_cache_state = BTRFS_DC_ERROR;
1347 spin_unlock(&block_group->lock);
1348 spin_unlock(&trans->transaction->dirty_bgs_lock);
1349 io_ctl->inode = NULL;
1350 iput(inode);
1353 return ret;
1357 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1358 struct btrfs_block_group *block_group,
1359 struct btrfs_path *path)
1361 return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1362 block_group, &block_group->io_ctl,
1363 path, block_group->start);
1367 * Write out cached info to an inode.
1369 * @inode: freespace inode we are writing out
1370 * @ctl: free space cache we are going to write out
1371 * @block_group: block_group for this cache if it belongs to a block_group
1372 * @io_ctl: holds context for the io
1373 * @trans: the trans handle
1375 * This function writes out a free space cache struct to disk for quick recovery
1376 * on mount. This will return 0 if it was successful in writing the cache out,
1377 * or an errno if it was not.
1379 static int __btrfs_write_out_cache(struct inode *inode,
1380 struct btrfs_free_space_ctl *ctl,
1381 struct btrfs_block_group *block_group,
1382 struct btrfs_io_ctl *io_ctl,
1383 struct btrfs_trans_handle *trans)
1385 struct extent_state *cached_state = NULL;
1386 LIST_HEAD(bitmap_list);
1387 int entries = 0;
1388 int bitmaps = 0;
1389 int ret;
1390 int must_iput = 0;
1391 int i_size;
1393 if (!i_size_read(inode))
1394 return -EIO;
1396 WARN_ON(io_ctl->pages);
1397 ret = io_ctl_init(io_ctl, inode, 1);
1398 if (ret)
1399 return ret;
1401 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1402 down_write(&block_group->data_rwsem);
1403 spin_lock(&block_group->lock);
1404 if (block_group->delalloc_bytes) {
1405 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1406 spin_unlock(&block_group->lock);
1407 up_write(&block_group->data_rwsem);
1408 BTRFS_I(inode)->generation = 0;
1409 ret = 0;
1410 must_iput = 1;
1411 goto out;
1413 spin_unlock(&block_group->lock);
1416 /* Lock all pages first so we can lock the extent safely. */
1417 ret = io_ctl_prepare_pages(io_ctl, false);
1418 if (ret)
1419 goto out_unlock;
1421 lock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1422 &cached_state);
1424 io_ctl_set_generation(io_ctl, trans->transid);
1426 mutex_lock(&ctl->cache_writeout_mutex);
1427 /* Write out the extent entries in the free space cache */
1428 spin_lock(&ctl->tree_lock);
1429 ret = write_cache_extent_entries(io_ctl, ctl,
1430 block_group, &entries, &bitmaps,
1431 &bitmap_list);
1432 if (ret)
1433 goto out_nospc_locked;
1436 * Some spaces that are freed in the current transaction are pinned,
1437 * they will be added into free space cache after the transaction is
1438 * committed, we shouldn't lose them.
1440 * If this changes while we are working we'll get added back to
1441 * the dirty list and redo it. No locking needed
1443 ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1444 if (ret)
1445 goto out_nospc_locked;
1448 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1449 * locked while doing it because a concurrent trim can be manipulating
1450 * or freeing the bitmap.
1452 ret = write_bitmap_entries(io_ctl, &bitmap_list);
1453 spin_unlock(&ctl->tree_lock);
1454 mutex_unlock(&ctl->cache_writeout_mutex);
1455 if (ret)
1456 goto out_nospc;
1458 /* Zero out the rest of the pages just to make sure */
1459 io_ctl_zero_remaining_pages(io_ctl);
1461 /* Everything is written out, now we dirty the pages in the file. */
1462 i_size = i_size_read(inode);
1463 for (int i = 0; i < round_up(i_size, PAGE_SIZE) / PAGE_SIZE; i++) {
1464 u64 dirty_start = i * PAGE_SIZE;
1465 u64 dirty_len = min_t(u64, dirty_start + PAGE_SIZE, i_size) - dirty_start;
1467 ret = btrfs_dirty_folio(BTRFS_I(inode), page_folio(io_ctl->pages[i]),
1468 dirty_start, dirty_len, &cached_state, false);
1469 if (ret < 0)
1470 goto out_nospc;
1473 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1474 up_write(&block_group->data_rwsem);
1476 * Release the pages and unlock the extent, we will flush
1477 * them out later
1479 io_ctl_drop_pages(io_ctl);
1480 io_ctl_free(io_ctl);
1482 unlock_extent(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1483 &cached_state);
1486 * at this point the pages are under IO and we're happy,
1487 * The caller is responsible for waiting on them and updating
1488 * the cache and the inode
1490 io_ctl->entries = entries;
1491 io_ctl->bitmaps = bitmaps;
1493 ret = btrfs_fdatawrite_range(BTRFS_I(inode), 0, (u64)-1);
1494 if (ret)
1495 goto out;
1497 return 0;
1499 out_nospc_locked:
1500 cleanup_bitmap_list(&bitmap_list);
1501 spin_unlock(&ctl->tree_lock);
1502 mutex_unlock(&ctl->cache_writeout_mutex);
1504 out_nospc:
1505 cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1507 out_unlock:
1508 if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1509 up_write(&block_group->data_rwsem);
1511 out:
1512 io_ctl->inode = NULL;
1513 io_ctl_free(io_ctl);
1514 if (ret) {
1515 invalidate_inode_pages2(inode->i_mapping);
1516 BTRFS_I(inode)->generation = 0;
1518 btrfs_update_inode(trans, BTRFS_I(inode));
1519 if (must_iput)
1520 iput(inode);
1521 return ret;
1524 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1525 struct btrfs_block_group *block_group,
1526 struct btrfs_path *path)
1528 struct btrfs_fs_info *fs_info = trans->fs_info;
1529 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1530 struct inode *inode;
1531 int ret = 0;
1533 spin_lock(&block_group->lock);
1534 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1535 spin_unlock(&block_group->lock);
1536 return 0;
1538 spin_unlock(&block_group->lock);
1540 inode = lookup_free_space_inode(block_group, path);
1541 if (IS_ERR(inode))
1542 return 0;
1544 ret = __btrfs_write_out_cache(inode, ctl, block_group,
1545 &block_group->io_ctl, trans);
1546 if (ret) {
1547 btrfs_debug(fs_info,
1548 "failed to write free space cache for block group %llu error %d",
1549 block_group->start, ret);
1550 spin_lock(&block_group->lock);
1551 block_group->disk_cache_state = BTRFS_DC_ERROR;
1552 spin_unlock(&block_group->lock);
1554 block_group->io_ctl.inode = NULL;
1555 iput(inode);
1559 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1560 * to wait for IO and put the inode
1563 return ret;
1566 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1567 u64 offset)
1569 ASSERT(offset >= bitmap_start);
1570 offset -= bitmap_start;
1571 return (unsigned long)(div_u64(offset, unit));
1574 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1576 return (unsigned long)(div_u64(bytes, unit));
1579 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1580 u64 offset)
1582 u64 bitmap_start;
1583 u64 bytes_per_bitmap;
1585 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1586 bitmap_start = offset - ctl->start;
1587 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1588 bitmap_start *= bytes_per_bitmap;
1589 bitmap_start += ctl->start;
1591 return bitmap_start;
1594 static int tree_insert_offset(struct btrfs_free_space_ctl *ctl,
1595 struct btrfs_free_cluster *cluster,
1596 struct btrfs_free_space *new_entry)
1598 struct rb_root *root;
1599 struct rb_node **p;
1600 struct rb_node *parent = NULL;
1602 lockdep_assert_held(&ctl->tree_lock);
1604 if (cluster) {
1605 lockdep_assert_held(&cluster->lock);
1606 root = &cluster->root;
1607 } else {
1608 root = &ctl->free_space_offset;
1611 p = &root->rb_node;
1613 while (*p) {
1614 struct btrfs_free_space *info;
1616 parent = *p;
1617 info = rb_entry(parent, struct btrfs_free_space, offset_index);
1619 if (new_entry->offset < info->offset) {
1620 p = &(*p)->rb_left;
1621 } else if (new_entry->offset > info->offset) {
1622 p = &(*p)->rb_right;
1623 } else {
1625 * we could have a bitmap entry and an extent entry
1626 * share the same offset. If this is the case, we want
1627 * the extent entry to always be found first if we do a
1628 * linear search through the tree, since we want to have
1629 * the quickest allocation time, and allocating from an
1630 * extent is faster than allocating from a bitmap. So
1631 * if we're inserting a bitmap and we find an entry at
1632 * this offset, we want to go right, or after this entry
1633 * logically. If we are inserting an extent and we've
1634 * found a bitmap, we want to go left, or before
1635 * logically.
1637 if (new_entry->bitmap) {
1638 if (info->bitmap) {
1639 WARN_ON_ONCE(1);
1640 return -EEXIST;
1642 p = &(*p)->rb_right;
1643 } else {
1644 if (!info->bitmap) {
1645 WARN_ON_ONCE(1);
1646 return -EEXIST;
1648 p = &(*p)->rb_left;
1653 rb_link_node(&new_entry->offset_index, parent, p);
1654 rb_insert_color(&new_entry->offset_index, root);
1656 return 0;
1660 * This is a little subtle. We *only* have ->max_extent_size set if we actually
1661 * searched through the bitmap and figured out the largest ->max_extent_size,
1662 * otherwise it's 0. In the case that it's 0 we don't want to tell the
1663 * allocator the wrong thing, we want to use the actual real max_extent_size
1664 * we've found already if it's larger, or we want to use ->bytes.
1666 * This matters because find_free_space() will skip entries who's ->bytes is
1667 * less than the required bytes. So if we didn't search down this bitmap, we
1668 * may pick some previous entry that has a smaller ->max_extent_size than we
1669 * have. For example, assume we have two entries, one that has
1670 * ->max_extent_size set to 4K and ->bytes set to 1M. A second entry hasn't set
1671 * ->max_extent_size yet, has ->bytes set to 8K and it's contiguous. We will
1672 * call into find_free_space(), and return with max_extent_size == 4K, because
1673 * that first bitmap entry had ->max_extent_size set, but the second one did
1674 * not. If instead we returned 8K we'd come in searching for 8K, and find the
1675 * 8K contiguous range.
1677 * Consider the other case, we have 2 8K chunks in that second entry and still
1678 * don't have ->max_extent_size set. We'll return 16K, and the next time the
1679 * allocator comes in it'll fully search our second bitmap, and this time it'll
1680 * get an uptodate value of 8K as the maximum chunk size. Then we'll get the
1681 * right allocation the next loop through.
1683 static inline u64 get_max_extent_size(const struct btrfs_free_space *entry)
1685 if (entry->bitmap && entry->max_extent_size)
1686 return entry->max_extent_size;
1687 return entry->bytes;
1691 * We want the largest entry to be leftmost, so this is inverted from what you'd
1692 * normally expect.
1694 static bool entry_less(struct rb_node *node, const struct rb_node *parent)
1696 const struct btrfs_free_space *entry, *exist;
1698 entry = rb_entry(node, struct btrfs_free_space, bytes_index);
1699 exist = rb_entry(parent, struct btrfs_free_space, bytes_index);
1700 return get_max_extent_size(exist) < get_max_extent_size(entry);
1704 * searches the tree for the given offset.
1706 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1707 * want a section that has at least bytes size and comes at or after the given
1708 * offset.
1710 static struct btrfs_free_space *
1711 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1712 u64 offset, int bitmap_only, int fuzzy)
1714 struct rb_node *n = ctl->free_space_offset.rb_node;
1715 struct btrfs_free_space *entry = NULL, *prev = NULL;
1717 lockdep_assert_held(&ctl->tree_lock);
1719 /* find entry that is closest to the 'offset' */
1720 while (n) {
1721 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1722 prev = entry;
1724 if (offset < entry->offset)
1725 n = n->rb_left;
1726 else if (offset > entry->offset)
1727 n = n->rb_right;
1728 else
1729 break;
1731 entry = NULL;
1734 if (bitmap_only) {
1735 if (!entry)
1736 return NULL;
1737 if (entry->bitmap)
1738 return entry;
1741 * bitmap entry and extent entry may share same offset,
1742 * in that case, bitmap entry comes after extent entry.
1744 n = rb_next(n);
1745 if (!n)
1746 return NULL;
1747 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1748 if (entry->offset != offset)
1749 return NULL;
1751 WARN_ON(!entry->bitmap);
1752 return entry;
1753 } else if (entry) {
1754 if (entry->bitmap) {
1756 * if previous extent entry covers the offset,
1757 * we should return it instead of the bitmap entry
1759 n = rb_prev(&entry->offset_index);
1760 if (n) {
1761 prev = rb_entry(n, struct btrfs_free_space,
1762 offset_index);
1763 if (!prev->bitmap &&
1764 prev->offset + prev->bytes > offset)
1765 entry = prev;
1768 return entry;
1771 if (!prev)
1772 return NULL;
1774 /* find last entry before the 'offset' */
1775 entry = prev;
1776 if (entry->offset > offset) {
1777 n = rb_prev(&entry->offset_index);
1778 if (n) {
1779 entry = rb_entry(n, struct btrfs_free_space,
1780 offset_index);
1781 ASSERT(entry->offset <= offset);
1782 } else {
1783 if (fuzzy)
1784 return entry;
1785 else
1786 return NULL;
1790 if (entry->bitmap) {
1791 n = rb_prev(&entry->offset_index);
1792 if (n) {
1793 prev = rb_entry(n, struct btrfs_free_space,
1794 offset_index);
1795 if (!prev->bitmap &&
1796 prev->offset + prev->bytes > offset)
1797 return prev;
1799 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1800 return entry;
1801 } else if (entry->offset + entry->bytes > offset)
1802 return entry;
1804 if (!fuzzy)
1805 return NULL;
1807 while (1) {
1808 n = rb_next(&entry->offset_index);
1809 if (!n)
1810 return NULL;
1811 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1812 if (entry->bitmap) {
1813 if (entry->offset + BITS_PER_BITMAP *
1814 ctl->unit > offset)
1815 break;
1816 } else {
1817 if (entry->offset + entry->bytes > offset)
1818 break;
1821 return entry;
1824 static inline void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1825 struct btrfs_free_space *info,
1826 bool update_stat)
1828 lockdep_assert_held(&ctl->tree_lock);
1830 rb_erase(&info->offset_index, &ctl->free_space_offset);
1831 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1832 ctl->free_extents--;
1834 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1835 ctl->discardable_extents[BTRFS_STAT_CURR]--;
1836 ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1839 if (update_stat)
1840 ctl->free_space -= info->bytes;
1843 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1844 struct btrfs_free_space *info)
1846 int ret = 0;
1848 lockdep_assert_held(&ctl->tree_lock);
1850 ASSERT(info->bytes || info->bitmap);
1851 ret = tree_insert_offset(ctl, NULL, info);
1852 if (ret)
1853 return ret;
1855 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1857 if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1858 ctl->discardable_extents[BTRFS_STAT_CURR]++;
1859 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1862 ctl->free_space += info->bytes;
1863 ctl->free_extents++;
1864 return ret;
1867 static void relink_bitmap_entry(struct btrfs_free_space_ctl *ctl,
1868 struct btrfs_free_space *info)
1870 ASSERT(info->bitmap);
1873 * If our entry is empty it's because we're on a cluster and we don't
1874 * want to re-link it into our ctl bytes index.
1876 if (RB_EMPTY_NODE(&info->bytes_index))
1877 return;
1879 lockdep_assert_held(&ctl->tree_lock);
1881 rb_erase_cached(&info->bytes_index, &ctl->free_space_bytes);
1882 rb_add_cached(&info->bytes_index, &ctl->free_space_bytes, entry_less);
1885 static inline void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1886 struct btrfs_free_space *info,
1887 u64 offset, u64 bytes, bool update_stat)
1889 unsigned long start, count, end;
1890 int extent_delta = -1;
1892 start = offset_to_bit(info->offset, ctl->unit, offset);
1893 count = bytes_to_bits(bytes, ctl->unit);
1894 end = start + count;
1895 ASSERT(end <= BITS_PER_BITMAP);
1897 bitmap_clear(info->bitmap, start, count);
1899 info->bytes -= bytes;
1900 if (info->max_extent_size > ctl->unit)
1901 info->max_extent_size = 0;
1903 relink_bitmap_entry(ctl, info);
1905 if (start && test_bit(start - 1, info->bitmap))
1906 extent_delta++;
1908 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1909 extent_delta++;
1911 info->bitmap_extents += extent_delta;
1912 if (!btrfs_free_space_trimmed(info)) {
1913 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1914 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1917 if (update_stat)
1918 ctl->free_space -= bytes;
1921 static void btrfs_bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1922 struct btrfs_free_space *info, u64 offset,
1923 u64 bytes)
1925 unsigned long start, count, end;
1926 int extent_delta = 1;
1928 start = offset_to_bit(info->offset, ctl->unit, offset);
1929 count = bytes_to_bits(bytes, ctl->unit);
1930 end = start + count;
1931 ASSERT(end <= BITS_PER_BITMAP);
1933 bitmap_set(info->bitmap, start, count);
1936 * We set some bytes, we have no idea what the max extent size is
1937 * anymore.
1939 info->max_extent_size = 0;
1940 info->bytes += bytes;
1941 ctl->free_space += bytes;
1943 relink_bitmap_entry(ctl, info);
1945 if (start && test_bit(start - 1, info->bitmap))
1946 extent_delta--;
1948 if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1949 extent_delta--;
1951 info->bitmap_extents += extent_delta;
1952 if (!btrfs_free_space_trimmed(info)) {
1953 ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1954 ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1959 * If we can not find suitable extent, we will use bytes to record
1960 * the size of the max extent.
1962 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1963 struct btrfs_free_space *bitmap_info, u64 *offset,
1964 u64 *bytes, bool for_alloc)
1966 unsigned long found_bits = 0;
1967 unsigned long max_bits = 0;
1968 unsigned long bits, i;
1969 unsigned long next_zero;
1970 unsigned long extent_bits;
1973 * Skip searching the bitmap if we don't have a contiguous section that
1974 * is large enough for this allocation.
1976 if (for_alloc &&
1977 bitmap_info->max_extent_size &&
1978 bitmap_info->max_extent_size < *bytes) {
1979 *bytes = bitmap_info->max_extent_size;
1980 return -1;
1983 i = offset_to_bit(bitmap_info->offset, ctl->unit,
1984 max_t(u64, *offset, bitmap_info->offset));
1985 bits = bytes_to_bits(*bytes, ctl->unit);
1987 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1988 if (for_alloc && bits == 1) {
1989 found_bits = 1;
1990 break;
1992 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1993 BITS_PER_BITMAP, i);
1994 extent_bits = next_zero - i;
1995 if (extent_bits >= bits) {
1996 found_bits = extent_bits;
1997 break;
1998 } else if (extent_bits > max_bits) {
1999 max_bits = extent_bits;
2001 i = next_zero;
2004 if (found_bits) {
2005 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
2006 *bytes = (u64)(found_bits) * ctl->unit;
2007 return 0;
2010 *bytes = (u64)(max_bits) * ctl->unit;
2011 bitmap_info->max_extent_size = *bytes;
2012 relink_bitmap_entry(ctl, bitmap_info);
2013 return -1;
2016 /* Cache the size of the max extent in bytes */
2017 static struct btrfs_free_space *
2018 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
2019 unsigned long align, u64 *max_extent_size, bool use_bytes_index)
2021 struct btrfs_free_space *entry;
2022 struct rb_node *node;
2023 u64 tmp;
2024 u64 align_off;
2025 int ret;
2027 if (!ctl->free_space_offset.rb_node)
2028 goto out;
2029 again:
2030 if (use_bytes_index) {
2031 node = rb_first_cached(&ctl->free_space_bytes);
2032 } else {
2033 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset),
2034 0, 1);
2035 if (!entry)
2036 goto out;
2037 node = &entry->offset_index;
2040 for (; node; node = rb_next(node)) {
2041 if (use_bytes_index)
2042 entry = rb_entry(node, struct btrfs_free_space,
2043 bytes_index);
2044 else
2045 entry = rb_entry(node, struct btrfs_free_space,
2046 offset_index);
2049 * If we are using the bytes index then all subsequent entries
2050 * in this tree are going to be < bytes, so simply set the max
2051 * extent size and exit the loop.
2053 * If we're using the offset index then we need to keep going
2054 * through the rest of the tree.
2056 if (entry->bytes < *bytes) {
2057 *max_extent_size = max(get_max_extent_size(entry),
2058 *max_extent_size);
2059 if (use_bytes_index)
2060 break;
2061 continue;
2064 /* make sure the space returned is big enough
2065 * to match our requested alignment
2067 if (*bytes >= align) {
2068 tmp = entry->offset - ctl->start + align - 1;
2069 tmp = div64_u64(tmp, align);
2070 tmp = tmp * align + ctl->start;
2071 align_off = tmp - entry->offset;
2072 } else {
2073 align_off = 0;
2074 tmp = entry->offset;
2078 * We don't break here if we're using the bytes index because we
2079 * may have another entry that has the correct alignment that is
2080 * the right size, so we don't want to miss that possibility.
2081 * At worst this adds another loop through the logic, but if we
2082 * broke here we could prematurely ENOSPC.
2084 if (entry->bytes < *bytes + align_off) {
2085 *max_extent_size = max(get_max_extent_size(entry),
2086 *max_extent_size);
2087 continue;
2090 if (entry->bitmap) {
2091 struct rb_node *old_next = rb_next(node);
2092 u64 size = *bytes;
2094 ret = search_bitmap(ctl, entry, &tmp, &size, true);
2095 if (!ret) {
2096 *offset = tmp;
2097 *bytes = size;
2098 return entry;
2099 } else {
2100 *max_extent_size =
2101 max(get_max_extent_size(entry),
2102 *max_extent_size);
2106 * The bitmap may have gotten re-arranged in the space
2107 * index here because the max_extent_size may have been
2108 * updated. Start from the beginning again if this
2109 * happened.
2111 if (use_bytes_index && old_next != rb_next(node))
2112 goto again;
2113 continue;
2116 *offset = tmp;
2117 *bytes = entry->bytes - align_off;
2118 return entry;
2120 out:
2121 return NULL;
2124 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
2125 struct btrfs_free_space *info, u64 offset)
2127 info->offset = offset_to_bitmap(ctl, offset);
2128 info->bytes = 0;
2129 info->bitmap_extents = 0;
2130 INIT_LIST_HEAD(&info->list);
2131 link_free_space(ctl, info);
2132 ctl->total_bitmaps++;
2133 recalculate_thresholds(ctl);
2136 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
2137 struct btrfs_free_space *bitmap_info)
2140 * Normally when this is called, the bitmap is completely empty. However,
2141 * if we are blowing up the free space cache for one reason or another
2142 * via __btrfs_remove_free_space_cache(), then it may not be freed and
2143 * we may leave stats on the table.
2145 if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
2146 ctl->discardable_extents[BTRFS_STAT_CURR] -=
2147 bitmap_info->bitmap_extents;
2148 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
2151 unlink_free_space(ctl, bitmap_info, true);
2152 kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
2153 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
2154 ctl->total_bitmaps--;
2155 recalculate_thresholds(ctl);
2158 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
2159 struct btrfs_free_space *bitmap_info,
2160 u64 *offset, u64 *bytes)
2162 u64 end;
2163 u64 search_start, search_bytes;
2164 int ret;
2166 again:
2167 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
2170 * We need to search for bits in this bitmap. We could only cover some
2171 * of the extent in this bitmap thanks to how we add space, so we need
2172 * to search for as much as it as we can and clear that amount, and then
2173 * go searching for the next bit.
2175 search_start = *offset;
2176 search_bytes = ctl->unit;
2177 search_bytes = min(search_bytes, end - search_start + 1);
2178 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2179 false);
2180 if (ret < 0 || search_start != *offset)
2181 return -EINVAL;
2183 /* We may have found more bits than what we need */
2184 search_bytes = min(search_bytes, *bytes);
2186 /* Cannot clear past the end of the bitmap */
2187 search_bytes = min(search_bytes, end - search_start + 1);
2189 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes, true);
2190 *offset += search_bytes;
2191 *bytes -= search_bytes;
2193 if (*bytes) {
2194 struct rb_node *next = rb_next(&bitmap_info->offset_index);
2195 if (!bitmap_info->bytes)
2196 free_bitmap(ctl, bitmap_info);
2199 * no entry after this bitmap, but we still have bytes to
2200 * remove, so something has gone wrong.
2202 if (!next)
2203 return -EINVAL;
2205 bitmap_info = rb_entry(next, struct btrfs_free_space,
2206 offset_index);
2209 * if the next entry isn't a bitmap we need to return to let the
2210 * extent stuff do its work.
2212 if (!bitmap_info->bitmap)
2213 return -EAGAIN;
2216 * Ok the next item is a bitmap, but it may not actually hold
2217 * the information for the rest of this free space stuff, so
2218 * look for it, and if we don't find it return so we can try
2219 * everything over again.
2221 search_start = *offset;
2222 search_bytes = ctl->unit;
2223 ret = search_bitmap(ctl, bitmap_info, &search_start,
2224 &search_bytes, false);
2225 if (ret < 0 || search_start != *offset)
2226 return -EAGAIN;
2228 goto again;
2229 } else if (!bitmap_info->bytes)
2230 free_bitmap(ctl, bitmap_info);
2232 return 0;
2235 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2236 struct btrfs_free_space *info, u64 offset,
2237 u64 bytes, enum btrfs_trim_state trim_state)
2239 u64 bytes_to_set = 0;
2240 u64 end;
2243 * This is a tradeoff to make bitmap trim state minimal. We mark the
2244 * whole bitmap untrimmed if at any point we add untrimmed regions.
2246 if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2247 if (btrfs_free_space_trimmed(info)) {
2248 ctl->discardable_extents[BTRFS_STAT_CURR] +=
2249 info->bitmap_extents;
2250 ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2252 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2255 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2257 bytes_to_set = min(end - offset, bytes);
2259 btrfs_bitmap_set_bits(ctl, info, offset, bytes_to_set);
2261 return bytes_to_set;
2265 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2266 struct btrfs_free_space *info)
2268 struct btrfs_block_group *block_group = ctl->block_group;
2269 struct btrfs_fs_info *fs_info = block_group->fs_info;
2270 bool forced = false;
2272 #ifdef CONFIG_BTRFS_DEBUG
2273 if (btrfs_should_fragment_free_space(block_group))
2274 forced = true;
2275 #endif
2277 /* This is a way to reclaim large regions from the bitmaps. */
2278 if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2279 return false;
2282 * If we are below the extents threshold then we can add this as an
2283 * extent, and don't have to deal with the bitmap
2285 if (!forced && ctl->free_extents < ctl->extents_thresh) {
2287 * If this block group has some small extents we don't want to
2288 * use up all of our free slots in the cache with them, we want
2289 * to reserve them to larger extents, however if we have plenty
2290 * of cache left then go ahead an dadd them, no sense in adding
2291 * the overhead of a bitmap if we don't have to.
2293 if (info->bytes <= fs_info->sectorsize * 8) {
2294 if (ctl->free_extents * 3 <= ctl->extents_thresh)
2295 return false;
2296 } else {
2297 return false;
2302 * The original block groups from mkfs can be really small, like 8
2303 * megabytes, so don't bother with a bitmap for those entries. However
2304 * some block groups can be smaller than what a bitmap would cover but
2305 * are still large enough that they could overflow the 32k memory limit,
2306 * so allow those block groups to still be allowed to have a bitmap
2307 * entry.
2309 if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2310 return false;
2312 return true;
2315 static const struct btrfs_free_space_op free_space_op = {
2316 .use_bitmap = use_bitmap,
2319 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2320 struct btrfs_free_space *info)
2322 struct btrfs_free_space *bitmap_info;
2323 struct btrfs_block_group *block_group = NULL;
2324 int added = 0;
2325 u64 bytes, offset, bytes_added;
2326 enum btrfs_trim_state trim_state;
2327 int ret;
2329 bytes = info->bytes;
2330 offset = info->offset;
2331 trim_state = info->trim_state;
2333 if (!ctl->op->use_bitmap(ctl, info))
2334 return 0;
2336 if (ctl->op == &free_space_op)
2337 block_group = ctl->block_group;
2338 again:
2340 * Since we link bitmaps right into the cluster we need to see if we
2341 * have a cluster here, and if so and it has our bitmap we need to add
2342 * the free space to that bitmap.
2344 if (block_group && !list_empty(&block_group->cluster_list)) {
2345 struct btrfs_free_cluster *cluster;
2346 struct rb_node *node;
2347 struct btrfs_free_space *entry;
2349 cluster = list_entry(block_group->cluster_list.next,
2350 struct btrfs_free_cluster,
2351 block_group_list);
2352 spin_lock(&cluster->lock);
2353 node = rb_first(&cluster->root);
2354 if (!node) {
2355 spin_unlock(&cluster->lock);
2356 goto no_cluster_bitmap;
2359 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2360 if (!entry->bitmap) {
2361 spin_unlock(&cluster->lock);
2362 goto no_cluster_bitmap;
2365 if (entry->offset == offset_to_bitmap(ctl, offset)) {
2366 bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2367 bytes, trim_state);
2368 bytes -= bytes_added;
2369 offset += bytes_added;
2371 spin_unlock(&cluster->lock);
2372 if (!bytes) {
2373 ret = 1;
2374 goto out;
2378 no_cluster_bitmap:
2379 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2380 1, 0);
2381 if (!bitmap_info) {
2382 ASSERT(added == 0);
2383 goto new_bitmap;
2386 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2387 trim_state);
2388 bytes -= bytes_added;
2389 offset += bytes_added;
2390 added = 0;
2392 if (!bytes) {
2393 ret = 1;
2394 goto out;
2395 } else
2396 goto again;
2398 new_bitmap:
2399 if (info && info->bitmap) {
2400 add_new_bitmap(ctl, info, offset);
2401 added = 1;
2402 info = NULL;
2403 goto again;
2404 } else {
2405 spin_unlock(&ctl->tree_lock);
2407 /* no pre-allocated info, allocate a new one */
2408 if (!info) {
2409 info = kmem_cache_zalloc(btrfs_free_space_cachep,
2410 GFP_NOFS);
2411 if (!info) {
2412 spin_lock(&ctl->tree_lock);
2413 ret = -ENOMEM;
2414 goto out;
2418 /* allocate the bitmap */
2419 info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2420 GFP_NOFS);
2421 info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2422 spin_lock(&ctl->tree_lock);
2423 if (!info->bitmap) {
2424 ret = -ENOMEM;
2425 goto out;
2427 goto again;
2430 out:
2431 if (info) {
2432 if (info->bitmap)
2433 kmem_cache_free(btrfs_free_space_bitmap_cachep,
2434 info->bitmap);
2435 kmem_cache_free(btrfs_free_space_cachep, info);
2438 return ret;
2442 * Free space merging rules:
2443 * 1) Merge trimmed areas together
2444 * 2) Let untrimmed areas coalesce with trimmed areas
2445 * 3) Always pull neighboring regions from bitmaps
2447 * The above rules are for when we merge free space based on btrfs_trim_state.
2448 * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2449 * same reason: to promote larger extent regions which makes life easier for
2450 * find_free_extent(). Rule 2 enables coalescing based on the common path
2451 * being returning free space from btrfs_finish_extent_commit(). So when free
2452 * space is trimmed, it will prevent aggregating trimmed new region and
2453 * untrimmed regions in the rb_tree. Rule 3 is purely to obtain larger extents
2454 * and provide find_free_extent() with the largest extents possible hoping for
2455 * the reuse path.
2457 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2458 struct btrfs_free_space *info, bool update_stat)
2460 struct btrfs_free_space *left_info = NULL;
2461 struct btrfs_free_space *right_info;
2462 bool merged = false;
2463 u64 offset = info->offset;
2464 u64 bytes = info->bytes;
2465 const bool is_trimmed = btrfs_free_space_trimmed(info);
2466 struct rb_node *right_prev = NULL;
2469 * first we want to see if there is free space adjacent to the range we
2470 * are adding, if there is remove that struct and add a new one to
2471 * cover the entire range
2473 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2474 if (right_info)
2475 right_prev = rb_prev(&right_info->offset_index);
2477 if (right_prev)
2478 left_info = rb_entry(right_prev, struct btrfs_free_space, offset_index);
2479 else if (!right_info)
2480 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2482 /* See try_merge_free_space() comment. */
2483 if (right_info && !right_info->bitmap &&
2484 (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2485 unlink_free_space(ctl, right_info, update_stat);
2486 info->bytes += right_info->bytes;
2487 kmem_cache_free(btrfs_free_space_cachep, right_info);
2488 merged = true;
2491 /* See try_merge_free_space() comment. */
2492 if (left_info && !left_info->bitmap &&
2493 left_info->offset + left_info->bytes == offset &&
2494 (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2495 unlink_free_space(ctl, left_info, update_stat);
2496 info->offset = left_info->offset;
2497 info->bytes += left_info->bytes;
2498 kmem_cache_free(btrfs_free_space_cachep, left_info);
2499 merged = true;
2502 return merged;
2505 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2506 struct btrfs_free_space *info,
2507 bool update_stat)
2509 struct btrfs_free_space *bitmap;
2510 unsigned long i;
2511 unsigned long j;
2512 const u64 end = info->offset + info->bytes;
2513 const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2514 u64 bytes;
2516 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2517 if (!bitmap)
2518 return false;
2520 i = offset_to_bit(bitmap->offset, ctl->unit, end);
2521 j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2522 if (j == i)
2523 return false;
2524 bytes = (j - i) * ctl->unit;
2525 info->bytes += bytes;
2527 /* See try_merge_free_space() comment. */
2528 if (!btrfs_free_space_trimmed(bitmap))
2529 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2531 bitmap_clear_bits(ctl, bitmap, end, bytes, update_stat);
2533 if (!bitmap->bytes)
2534 free_bitmap(ctl, bitmap);
2536 return true;
2539 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2540 struct btrfs_free_space *info,
2541 bool update_stat)
2543 struct btrfs_free_space *bitmap;
2544 u64 bitmap_offset;
2545 unsigned long i;
2546 unsigned long j;
2547 unsigned long prev_j;
2548 u64 bytes;
2550 bitmap_offset = offset_to_bitmap(ctl, info->offset);
2551 /* If we're on a boundary, try the previous logical bitmap. */
2552 if (bitmap_offset == info->offset) {
2553 if (info->offset == 0)
2554 return false;
2555 bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2558 bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2559 if (!bitmap)
2560 return false;
2562 i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2563 j = 0;
2564 prev_j = (unsigned long)-1;
2565 for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2566 if (j > i)
2567 break;
2568 prev_j = j;
2570 if (prev_j == i)
2571 return false;
2573 if (prev_j == (unsigned long)-1)
2574 bytes = (i + 1) * ctl->unit;
2575 else
2576 bytes = (i - prev_j) * ctl->unit;
2578 info->offset -= bytes;
2579 info->bytes += bytes;
2581 /* See try_merge_free_space() comment. */
2582 if (!btrfs_free_space_trimmed(bitmap))
2583 info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2585 bitmap_clear_bits(ctl, bitmap, info->offset, bytes, update_stat);
2587 if (!bitmap->bytes)
2588 free_bitmap(ctl, bitmap);
2590 return true;
2594 * We prefer always to allocate from extent entries, both for clustered and
2595 * non-clustered allocation requests. So when attempting to add a new extent
2596 * entry, try to see if there's adjacent free space in bitmap entries, and if
2597 * there is, migrate that space from the bitmaps to the extent.
2598 * Like this we get better chances of satisfying space allocation requests
2599 * because we attempt to satisfy them based on a single cache entry, and never
2600 * on 2 or more entries - even if the entries represent a contiguous free space
2601 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2602 * ends).
2604 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2605 struct btrfs_free_space *info,
2606 bool update_stat)
2609 * Only work with disconnected entries, as we can change their offset,
2610 * and must be extent entries.
2612 ASSERT(!info->bitmap);
2613 ASSERT(RB_EMPTY_NODE(&info->offset_index));
2615 if (ctl->total_bitmaps > 0) {
2616 bool stole_end;
2617 bool stole_front = false;
2619 stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2620 if (ctl->total_bitmaps > 0)
2621 stole_front = steal_from_bitmap_to_front(ctl, info,
2622 update_stat);
2624 if (stole_end || stole_front)
2625 try_merge_free_space(ctl, info, update_stat);
2629 static int __btrfs_add_free_space(struct btrfs_block_group *block_group,
2630 u64 offset, u64 bytes,
2631 enum btrfs_trim_state trim_state)
2633 struct btrfs_fs_info *fs_info = block_group->fs_info;
2634 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2635 struct btrfs_free_space *info;
2636 int ret = 0;
2637 u64 filter_bytes = bytes;
2639 ASSERT(!btrfs_is_zoned(fs_info));
2641 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2642 if (!info)
2643 return -ENOMEM;
2645 info->offset = offset;
2646 info->bytes = bytes;
2647 info->trim_state = trim_state;
2648 RB_CLEAR_NODE(&info->offset_index);
2649 RB_CLEAR_NODE(&info->bytes_index);
2651 spin_lock(&ctl->tree_lock);
2653 if (try_merge_free_space(ctl, info, true))
2654 goto link;
2657 * There was no extent directly to the left or right of this new
2658 * extent then we know we're going to have to allocate a new extent, so
2659 * before we do that see if we need to drop this into a bitmap
2661 ret = insert_into_bitmap(ctl, info);
2662 if (ret < 0) {
2663 goto out;
2664 } else if (ret) {
2665 ret = 0;
2666 goto out;
2668 link:
2670 * Only steal free space from adjacent bitmaps if we're sure we're not
2671 * going to add the new free space to existing bitmap entries - because
2672 * that would mean unnecessary work that would be reverted. Therefore
2673 * attempt to steal space from bitmaps if we're adding an extent entry.
2675 steal_from_bitmap(ctl, info, true);
2677 filter_bytes = max(filter_bytes, info->bytes);
2679 ret = link_free_space(ctl, info);
2680 if (ret)
2681 kmem_cache_free(btrfs_free_space_cachep, info);
2682 out:
2683 btrfs_discard_update_discardable(block_group);
2684 spin_unlock(&ctl->tree_lock);
2686 if (ret) {
2687 btrfs_crit(fs_info, "unable to add free space :%d", ret);
2688 ASSERT(ret != -EEXIST);
2691 if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2692 btrfs_discard_check_filter(block_group, filter_bytes);
2693 btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2696 return ret;
2699 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2700 u64 bytenr, u64 size, bool used)
2702 struct btrfs_space_info *sinfo = block_group->space_info;
2703 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2704 u64 offset = bytenr - block_group->start;
2705 u64 to_free, to_unusable;
2706 int bg_reclaim_threshold = 0;
2707 bool initial;
2708 u64 reclaimable_unusable;
2710 spin_lock(&block_group->lock);
2712 initial = ((size == block_group->length) && (block_group->alloc_offset == 0));
2713 WARN_ON(!initial && offset + size > block_group->zone_capacity);
2714 if (!initial)
2715 bg_reclaim_threshold = READ_ONCE(sinfo->bg_reclaim_threshold);
2717 if (!used)
2718 to_free = size;
2719 else if (initial)
2720 to_free = block_group->zone_capacity;
2721 else if (offset >= block_group->alloc_offset)
2722 to_free = size;
2723 else if (offset + size <= block_group->alloc_offset)
2724 to_free = 0;
2725 else
2726 to_free = offset + size - block_group->alloc_offset;
2727 to_unusable = size - to_free;
2729 spin_lock(&ctl->tree_lock);
2730 ctl->free_space += to_free;
2731 spin_unlock(&ctl->tree_lock);
2733 * If the block group is read-only, we should account freed space into
2734 * bytes_readonly.
2736 if (!block_group->ro) {
2737 block_group->zone_unusable += to_unusable;
2738 WARN_ON(block_group->zone_unusable > block_group->length);
2740 if (!used) {
2741 block_group->alloc_offset -= size;
2744 reclaimable_unusable = block_group->zone_unusable -
2745 (block_group->length - block_group->zone_capacity);
2746 /* All the region is now unusable. Mark it as unused and reclaim */
2747 if (block_group->zone_unusable == block_group->length) {
2748 btrfs_mark_bg_unused(block_group);
2749 } else if (bg_reclaim_threshold &&
2750 reclaimable_unusable >=
2751 mult_perc(block_group->zone_capacity, bg_reclaim_threshold)) {
2752 btrfs_mark_bg_to_reclaim(block_group);
2755 spin_unlock(&block_group->lock);
2757 return 0;
2760 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2761 u64 bytenr, u64 size)
2763 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2765 if (btrfs_is_zoned(block_group->fs_info))
2766 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2767 true);
2769 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2770 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2772 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2775 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2776 u64 bytenr, u64 size)
2778 if (btrfs_is_zoned(block_group->fs_info))
2779 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2780 false);
2782 return btrfs_add_free_space(block_group, bytenr, size);
2786 * This is a subtle distinction because when adding free space back in general,
2787 * we want it to be added as untrimmed for async. But in the case where we add
2788 * it on loading of a block group, we want to consider it trimmed.
2790 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2791 u64 bytenr, u64 size)
2793 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2795 if (btrfs_is_zoned(block_group->fs_info))
2796 return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2797 true);
2799 if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2800 btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2801 trim_state = BTRFS_TRIM_STATE_TRIMMED;
2803 return __btrfs_add_free_space(block_group, bytenr, size, trim_state);
2806 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2807 u64 offset, u64 bytes)
2809 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2810 struct btrfs_free_space *info;
2811 int ret;
2812 bool re_search = false;
2814 if (btrfs_is_zoned(block_group->fs_info)) {
2816 * This can happen with conventional zones when replaying log.
2817 * Since the allocation info of tree-log nodes are not recorded
2818 * to the extent-tree, calculate_alloc_pointer() failed to
2819 * advance the allocation pointer after last allocated tree log
2820 * node blocks.
2822 * This function is called from
2823 * btrfs_pin_extent_for_log_replay() when replaying the log.
2824 * Advance the pointer not to overwrite the tree-log nodes.
2826 if (block_group->start + block_group->alloc_offset <
2827 offset + bytes) {
2828 block_group->alloc_offset =
2829 offset + bytes - block_group->start;
2831 return 0;
2834 spin_lock(&ctl->tree_lock);
2836 again:
2837 ret = 0;
2838 if (!bytes)
2839 goto out_lock;
2841 info = tree_search_offset(ctl, offset, 0, 0);
2842 if (!info) {
2844 * oops didn't find an extent that matched the space we wanted
2845 * to remove, look for a bitmap instead
2847 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2848 1, 0);
2849 if (!info) {
2851 * If we found a partial bit of our free space in a
2852 * bitmap but then couldn't find the other part this may
2853 * be a problem, so WARN about it.
2855 WARN_ON(re_search);
2856 goto out_lock;
2860 re_search = false;
2861 if (!info->bitmap) {
2862 unlink_free_space(ctl, info, true);
2863 if (offset == info->offset) {
2864 u64 to_free = min(bytes, info->bytes);
2866 info->bytes -= to_free;
2867 info->offset += to_free;
2868 if (info->bytes) {
2869 ret = link_free_space(ctl, info);
2870 WARN_ON(ret);
2871 } else {
2872 kmem_cache_free(btrfs_free_space_cachep, info);
2875 offset += to_free;
2876 bytes -= to_free;
2877 goto again;
2878 } else {
2879 u64 old_end = info->bytes + info->offset;
2881 info->bytes = offset - info->offset;
2882 ret = link_free_space(ctl, info);
2883 WARN_ON(ret);
2884 if (ret)
2885 goto out_lock;
2887 /* Not enough bytes in this entry to satisfy us */
2888 if (old_end < offset + bytes) {
2889 bytes -= old_end - offset;
2890 offset = old_end;
2891 goto again;
2892 } else if (old_end == offset + bytes) {
2893 /* all done */
2894 goto out_lock;
2896 spin_unlock(&ctl->tree_lock);
2898 ret = __btrfs_add_free_space(block_group,
2899 offset + bytes,
2900 old_end - (offset + bytes),
2901 info->trim_state);
2902 WARN_ON(ret);
2903 goto out;
2907 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2908 if (ret == -EAGAIN) {
2909 re_search = true;
2910 goto again;
2912 out_lock:
2913 btrfs_discard_update_discardable(block_group);
2914 spin_unlock(&ctl->tree_lock);
2915 out:
2916 return ret;
2919 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2920 u64 bytes)
2922 struct btrfs_fs_info *fs_info = block_group->fs_info;
2923 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2924 struct btrfs_free_space *info;
2925 struct rb_node *n;
2926 int count = 0;
2929 * Zoned btrfs does not use free space tree and cluster. Just print
2930 * out the free space after the allocation offset.
2932 if (btrfs_is_zoned(fs_info)) {
2933 btrfs_info(fs_info, "free space %llu active %d",
2934 block_group->zone_capacity - block_group->alloc_offset,
2935 test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2936 &block_group->runtime_flags));
2937 return;
2940 spin_lock(&ctl->tree_lock);
2941 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2942 info = rb_entry(n, struct btrfs_free_space, offset_index);
2943 if (info->bytes >= bytes && !block_group->ro)
2944 count++;
2945 btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2946 info->offset, info->bytes, str_yes_no(info->bitmap));
2948 spin_unlock(&ctl->tree_lock);
2949 btrfs_info(fs_info, "block group has cluster?: %s",
2950 str_no_yes(list_empty(&block_group->cluster_list)));
2951 btrfs_info(fs_info,
2952 "%d free space entries at or bigger than %llu bytes",
2953 count, bytes);
2956 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2957 struct btrfs_free_space_ctl *ctl)
2959 struct btrfs_fs_info *fs_info = block_group->fs_info;
2961 spin_lock_init(&ctl->tree_lock);
2962 ctl->unit = fs_info->sectorsize;
2963 ctl->start = block_group->start;
2964 ctl->block_group = block_group;
2965 ctl->op = &free_space_op;
2966 ctl->free_space_bytes = RB_ROOT_CACHED;
2967 INIT_LIST_HEAD(&ctl->trimming_ranges);
2968 mutex_init(&ctl->cache_writeout_mutex);
2971 * we only want to have 32k of ram per block group for keeping
2972 * track of free space, and if we pass 1/2 of that we want to
2973 * start converting things over to using bitmaps
2975 ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2979 * for a given cluster, put all of its extents back into the free
2980 * space cache. If the block group passed doesn't match the block group
2981 * pointed to by the cluster, someone else raced in and freed the
2982 * cluster already. In that case, we just return without changing anything
2984 static void __btrfs_return_cluster_to_free_space(
2985 struct btrfs_block_group *block_group,
2986 struct btrfs_free_cluster *cluster)
2988 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2989 struct rb_node *node;
2991 lockdep_assert_held(&ctl->tree_lock);
2993 spin_lock(&cluster->lock);
2994 if (cluster->block_group != block_group) {
2995 spin_unlock(&cluster->lock);
2996 return;
2999 cluster->block_group = NULL;
3000 cluster->window_start = 0;
3001 list_del_init(&cluster->block_group_list);
3003 node = rb_first(&cluster->root);
3004 while (node) {
3005 struct btrfs_free_space *entry;
3007 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3008 node = rb_next(&entry->offset_index);
3009 rb_erase(&entry->offset_index, &cluster->root);
3010 RB_CLEAR_NODE(&entry->offset_index);
3012 if (!entry->bitmap) {
3013 /* Merging treats extents as if they were new */
3014 if (!btrfs_free_space_trimmed(entry)) {
3015 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3016 ctl->discardable_bytes[BTRFS_STAT_CURR] -=
3017 entry->bytes;
3020 try_merge_free_space(ctl, entry, false);
3021 steal_from_bitmap(ctl, entry, false);
3023 /* As we insert directly, update these statistics */
3024 if (!btrfs_free_space_trimmed(entry)) {
3025 ctl->discardable_extents[BTRFS_STAT_CURR]++;
3026 ctl->discardable_bytes[BTRFS_STAT_CURR] +=
3027 entry->bytes;
3030 tree_insert_offset(ctl, NULL, entry);
3031 rb_add_cached(&entry->bytes_index, &ctl->free_space_bytes,
3032 entry_less);
3034 cluster->root = RB_ROOT;
3035 spin_unlock(&cluster->lock);
3036 btrfs_put_block_group(block_group);
3039 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
3041 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3042 struct btrfs_free_cluster *cluster;
3043 struct list_head *head;
3045 spin_lock(&ctl->tree_lock);
3046 while ((head = block_group->cluster_list.next) !=
3047 &block_group->cluster_list) {
3048 cluster = list_entry(head, struct btrfs_free_cluster,
3049 block_group_list);
3051 WARN_ON(cluster->block_group != block_group);
3052 __btrfs_return_cluster_to_free_space(block_group, cluster);
3054 cond_resched_lock(&ctl->tree_lock);
3056 __btrfs_remove_free_space_cache(ctl);
3057 btrfs_discard_update_discardable(block_group);
3058 spin_unlock(&ctl->tree_lock);
3063 * Walk @block_group's free space rb_tree to determine if everything is trimmed.
3065 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
3067 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3068 struct btrfs_free_space *info;
3069 struct rb_node *node;
3070 bool ret = true;
3072 spin_lock(&ctl->tree_lock);
3073 node = rb_first(&ctl->free_space_offset);
3075 while (node) {
3076 info = rb_entry(node, struct btrfs_free_space, offset_index);
3078 if (!btrfs_free_space_trimmed(info)) {
3079 ret = false;
3080 break;
3083 node = rb_next(node);
3086 spin_unlock(&ctl->tree_lock);
3087 return ret;
3090 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
3091 u64 offset, u64 bytes, u64 empty_size,
3092 u64 *max_extent_size)
3094 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3095 struct btrfs_discard_ctl *discard_ctl =
3096 &block_group->fs_info->discard_ctl;
3097 struct btrfs_free_space *entry = NULL;
3098 u64 bytes_search = bytes + empty_size;
3099 u64 ret = 0;
3100 u64 align_gap = 0;
3101 u64 align_gap_len = 0;
3102 enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3103 bool use_bytes_index = (offset == block_group->start);
3105 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3107 spin_lock(&ctl->tree_lock);
3108 entry = find_free_space(ctl, &offset, &bytes_search,
3109 block_group->full_stripe_len, max_extent_size,
3110 use_bytes_index);
3111 if (!entry)
3112 goto out;
3114 ret = offset;
3115 if (entry->bitmap) {
3116 bitmap_clear_bits(ctl, entry, offset, bytes, true);
3118 if (!btrfs_free_space_trimmed(entry))
3119 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3121 if (!entry->bytes)
3122 free_bitmap(ctl, entry);
3123 } else {
3124 unlink_free_space(ctl, entry, true);
3125 align_gap_len = offset - entry->offset;
3126 align_gap = entry->offset;
3127 align_gap_trim_state = entry->trim_state;
3129 if (!btrfs_free_space_trimmed(entry))
3130 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3132 entry->offset = offset + bytes;
3133 WARN_ON(entry->bytes < bytes + align_gap_len);
3135 entry->bytes -= bytes + align_gap_len;
3136 if (!entry->bytes)
3137 kmem_cache_free(btrfs_free_space_cachep, entry);
3138 else
3139 link_free_space(ctl, entry);
3141 out:
3142 btrfs_discard_update_discardable(block_group);
3143 spin_unlock(&ctl->tree_lock);
3145 if (align_gap_len)
3146 __btrfs_add_free_space(block_group, align_gap, align_gap_len,
3147 align_gap_trim_state);
3148 return ret;
3152 * given a cluster, put all of its extents back into the free space
3153 * cache. If a block group is passed, this function will only free
3154 * a cluster that belongs to the passed block group.
3156 * Otherwise, it'll get a reference on the block group pointed to by the
3157 * cluster and remove the cluster from it.
3159 void btrfs_return_cluster_to_free_space(
3160 struct btrfs_block_group *block_group,
3161 struct btrfs_free_cluster *cluster)
3163 struct btrfs_free_space_ctl *ctl;
3165 /* first, get a safe pointer to the block group */
3166 spin_lock(&cluster->lock);
3167 if (!block_group) {
3168 block_group = cluster->block_group;
3169 if (!block_group) {
3170 spin_unlock(&cluster->lock);
3171 return;
3173 } else if (cluster->block_group != block_group) {
3174 /* someone else has already freed it don't redo their work */
3175 spin_unlock(&cluster->lock);
3176 return;
3178 btrfs_get_block_group(block_group);
3179 spin_unlock(&cluster->lock);
3181 ctl = block_group->free_space_ctl;
3183 /* now return any extents the cluster had on it */
3184 spin_lock(&ctl->tree_lock);
3185 __btrfs_return_cluster_to_free_space(block_group, cluster);
3186 spin_unlock(&ctl->tree_lock);
3188 btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3190 /* finally drop our ref */
3191 btrfs_put_block_group(block_group);
3194 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3195 struct btrfs_free_cluster *cluster,
3196 struct btrfs_free_space *entry,
3197 u64 bytes, u64 min_start,
3198 u64 *max_extent_size)
3200 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3201 int err;
3202 u64 search_start = cluster->window_start;
3203 u64 search_bytes = bytes;
3204 u64 ret = 0;
3206 search_start = min_start;
3207 search_bytes = bytes;
3209 err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3210 if (err) {
3211 *max_extent_size = max(get_max_extent_size(entry),
3212 *max_extent_size);
3213 return 0;
3216 ret = search_start;
3217 bitmap_clear_bits(ctl, entry, ret, bytes, false);
3219 return ret;
3223 * given a cluster, try to allocate 'bytes' from it, returns 0
3224 * if it couldn't find anything suitably large, or a logical disk offset
3225 * if things worked out
3227 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3228 struct btrfs_free_cluster *cluster, u64 bytes,
3229 u64 min_start, u64 *max_extent_size)
3231 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3232 struct btrfs_discard_ctl *discard_ctl =
3233 &block_group->fs_info->discard_ctl;
3234 struct btrfs_free_space *entry = NULL;
3235 struct rb_node *node;
3236 u64 ret = 0;
3238 ASSERT(!btrfs_is_zoned(block_group->fs_info));
3240 spin_lock(&cluster->lock);
3241 if (bytes > cluster->max_size)
3242 goto out;
3244 if (cluster->block_group != block_group)
3245 goto out;
3247 node = rb_first(&cluster->root);
3248 if (!node)
3249 goto out;
3251 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3252 while (1) {
3253 if (entry->bytes < bytes)
3254 *max_extent_size = max(get_max_extent_size(entry),
3255 *max_extent_size);
3257 if (entry->bytes < bytes ||
3258 (!entry->bitmap && entry->offset < min_start)) {
3259 node = rb_next(&entry->offset_index);
3260 if (!node)
3261 break;
3262 entry = rb_entry(node, struct btrfs_free_space,
3263 offset_index);
3264 continue;
3267 if (entry->bitmap) {
3268 ret = btrfs_alloc_from_bitmap(block_group,
3269 cluster, entry, bytes,
3270 cluster->window_start,
3271 max_extent_size);
3272 if (ret == 0) {
3273 node = rb_next(&entry->offset_index);
3274 if (!node)
3275 break;
3276 entry = rb_entry(node, struct btrfs_free_space,
3277 offset_index);
3278 continue;
3280 cluster->window_start += bytes;
3281 } else {
3282 ret = entry->offset;
3284 entry->offset += bytes;
3285 entry->bytes -= bytes;
3288 break;
3290 out:
3291 spin_unlock(&cluster->lock);
3293 if (!ret)
3294 return 0;
3296 spin_lock(&ctl->tree_lock);
3298 if (!btrfs_free_space_trimmed(entry))
3299 atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3301 ctl->free_space -= bytes;
3302 if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3303 ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3305 spin_lock(&cluster->lock);
3306 if (entry->bytes == 0) {
3307 rb_erase(&entry->offset_index, &cluster->root);
3308 ctl->free_extents--;
3309 if (entry->bitmap) {
3310 kmem_cache_free(btrfs_free_space_bitmap_cachep,
3311 entry->bitmap);
3312 ctl->total_bitmaps--;
3313 recalculate_thresholds(ctl);
3314 } else if (!btrfs_free_space_trimmed(entry)) {
3315 ctl->discardable_extents[BTRFS_STAT_CURR]--;
3317 kmem_cache_free(btrfs_free_space_cachep, entry);
3320 spin_unlock(&cluster->lock);
3321 spin_unlock(&ctl->tree_lock);
3323 return ret;
3326 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3327 struct btrfs_free_space *entry,
3328 struct btrfs_free_cluster *cluster,
3329 u64 offset, u64 bytes,
3330 u64 cont1_bytes, u64 min_bytes)
3332 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3333 unsigned long next_zero;
3334 unsigned long i;
3335 unsigned long want_bits;
3336 unsigned long min_bits;
3337 unsigned long found_bits;
3338 unsigned long max_bits = 0;
3339 unsigned long start = 0;
3340 unsigned long total_found = 0;
3341 int ret;
3343 lockdep_assert_held(&ctl->tree_lock);
3345 i = offset_to_bit(entry->offset, ctl->unit,
3346 max_t(u64, offset, entry->offset));
3347 want_bits = bytes_to_bits(bytes, ctl->unit);
3348 min_bits = bytes_to_bits(min_bytes, ctl->unit);
3351 * Don't bother looking for a cluster in this bitmap if it's heavily
3352 * fragmented.
3354 if (entry->max_extent_size &&
3355 entry->max_extent_size < cont1_bytes)
3356 return -ENOSPC;
3357 again:
3358 found_bits = 0;
3359 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3360 next_zero = find_next_zero_bit(entry->bitmap,
3361 BITS_PER_BITMAP, i);
3362 if (next_zero - i >= min_bits) {
3363 found_bits = next_zero - i;
3364 if (found_bits > max_bits)
3365 max_bits = found_bits;
3366 break;
3368 if (next_zero - i > max_bits)
3369 max_bits = next_zero - i;
3370 i = next_zero;
3373 if (!found_bits) {
3374 entry->max_extent_size = (u64)max_bits * ctl->unit;
3375 return -ENOSPC;
3378 if (!total_found) {
3379 start = i;
3380 cluster->max_size = 0;
3383 total_found += found_bits;
3385 if (cluster->max_size < found_bits * ctl->unit)
3386 cluster->max_size = found_bits * ctl->unit;
3388 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3389 i = next_zero + 1;
3390 goto again;
3393 cluster->window_start = start * ctl->unit + entry->offset;
3394 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3395 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3398 * We need to know if we're currently on the normal space index when we
3399 * manipulate the bitmap so that we know we need to remove and re-insert
3400 * it into the space_index tree. Clear the bytes_index node here so the
3401 * bitmap manipulation helpers know not to mess with the space_index
3402 * until this bitmap entry is added back into the normal cache.
3404 RB_CLEAR_NODE(&entry->bytes_index);
3406 ret = tree_insert_offset(ctl, cluster, entry);
3407 ASSERT(!ret); /* -EEXIST; Logic error */
3409 trace_btrfs_setup_cluster(block_group, cluster,
3410 total_found * ctl->unit, 1);
3411 return 0;
3415 * This searches the block group for just extents to fill the cluster with.
3416 * Try to find a cluster with at least bytes total bytes, at least one
3417 * extent of cont1_bytes, and other clusters of at least min_bytes.
3419 static noinline int
3420 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3421 struct btrfs_free_cluster *cluster,
3422 struct list_head *bitmaps, u64 offset, u64 bytes,
3423 u64 cont1_bytes, u64 min_bytes)
3425 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3426 struct btrfs_free_space *first = NULL;
3427 struct btrfs_free_space *entry = NULL;
3428 struct btrfs_free_space *last;
3429 struct rb_node *node;
3430 u64 window_free;
3431 u64 max_extent;
3432 u64 total_size = 0;
3434 lockdep_assert_held(&ctl->tree_lock);
3436 entry = tree_search_offset(ctl, offset, 0, 1);
3437 if (!entry)
3438 return -ENOSPC;
3441 * We don't want bitmaps, so just move along until we find a normal
3442 * extent entry.
3444 while (entry->bitmap || entry->bytes < min_bytes) {
3445 if (entry->bitmap && list_empty(&entry->list))
3446 list_add_tail(&entry->list, bitmaps);
3447 node = rb_next(&entry->offset_index);
3448 if (!node)
3449 return -ENOSPC;
3450 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3453 window_free = entry->bytes;
3454 max_extent = entry->bytes;
3455 first = entry;
3456 last = entry;
3458 for (node = rb_next(&entry->offset_index); node;
3459 node = rb_next(&entry->offset_index)) {
3460 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3462 if (entry->bitmap) {
3463 if (list_empty(&entry->list))
3464 list_add_tail(&entry->list, bitmaps);
3465 continue;
3468 if (entry->bytes < min_bytes)
3469 continue;
3471 last = entry;
3472 window_free += entry->bytes;
3473 if (entry->bytes > max_extent)
3474 max_extent = entry->bytes;
3477 if (window_free < bytes || max_extent < cont1_bytes)
3478 return -ENOSPC;
3480 cluster->window_start = first->offset;
3482 node = &first->offset_index;
3485 * now we've found our entries, pull them out of the free space
3486 * cache and put them into the cluster rbtree
3488 do {
3489 int ret;
3491 entry = rb_entry(node, struct btrfs_free_space, offset_index);
3492 node = rb_next(&entry->offset_index);
3493 if (entry->bitmap || entry->bytes < min_bytes)
3494 continue;
3496 rb_erase(&entry->offset_index, &ctl->free_space_offset);
3497 rb_erase_cached(&entry->bytes_index, &ctl->free_space_bytes);
3498 ret = tree_insert_offset(ctl, cluster, entry);
3499 total_size += entry->bytes;
3500 ASSERT(!ret); /* -EEXIST; Logic error */
3501 } while (node && entry != last);
3503 cluster->max_size = max_extent;
3504 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3505 return 0;
3509 * This specifically looks for bitmaps that may work in the cluster, we assume
3510 * that we have already failed to find extents that will work.
3512 static noinline int
3513 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3514 struct btrfs_free_cluster *cluster,
3515 struct list_head *bitmaps, u64 offset, u64 bytes,
3516 u64 cont1_bytes, u64 min_bytes)
3518 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3519 struct btrfs_free_space *entry = NULL;
3520 int ret = -ENOSPC;
3521 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3523 if (ctl->total_bitmaps == 0)
3524 return -ENOSPC;
3527 * The bitmap that covers offset won't be in the list unless offset
3528 * is just its start offset.
3530 if (!list_empty(bitmaps))
3531 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3533 if (!entry || entry->offset != bitmap_offset) {
3534 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3535 if (entry && list_empty(&entry->list))
3536 list_add(&entry->list, bitmaps);
3539 list_for_each_entry(entry, bitmaps, list) {
3540 if (entry->bytes < bytes)
3541 continue;
3542 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3543 bytes, cont1_bytes, min_bytes);
3544 if (!ret)
3545 return 0;
3549 * The bitmaps list has all the bitmaps that record free space
3550 * starting after offset, so no more search is required.
3552 return -ENOSPC;
3556 * here we try to find a cluster of blocks in a block group. The goal
3557 * is to find at least bytes+empty_size.
3558 * We might not find them all in one contiguous area.
3560 * returns zero and sets up cluster if things worked out, otherwise
3561 * it returns -enospc
3563 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3564 struct btrfs_free_cluster *cluster,
3565 u64 offset, u64 bytes, u64 empty_size)
3567 struct btrfs_fs_info *fs_info = block_group->fs_info;
3568 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3569 struct btrfs_free_space *entry, *tmp;
3570 LIST_HEAD(bitmaps);
3571 u64 min_bytes;
3572 u64 cont1_bytes;
3573 int ret;
3576 * Choose the minimum extent size we'll require for this
3577 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3578 * For metadata, allow allocates with smaller extents. For
3579 * data, keep it dense.
3581 if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3582 cont1_bytes = bytes + empty_size;
3583 min_bytes = cont1_bytes;
3584 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3585 cont1_bytes = bytes;
3586 min_bytes = fs_info->sectorsize;
3587 } else {
3588 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3589 min_bytes = fs_info->sectorsize;
3592 spin_lock(&ctl->tree_lock);
3595 * If we know we don't have enough space to make a cluster don't even
3596 * bother doing all the work to try and find one.
3598 if (ctl->free_space < bytes) {
3599 spin_unlock(&ctl->tree_lock);
3600 return -ENOSPC;
3603 spin_lock(&cluster->lock);
3605 /* someone already found a cluster, hooray */
3606 if (cluster->block_group) {
3607 ret = 0;
3608 goto out;
3611 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3612 min_bytes);
3614 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3615 bytes + empty_size,
3616 cont1_bytes, min_bytes);
3617 if (ret)
3618 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3619 offset, bytes + empty_size,
3620 cont1_bytes, min_bytes);
3622 /* Clear our temporary list */
3623 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3624 list_del_init(&entry->list);
3626 if (!ret) {
3627 btrfs_get_block_group(block_group);
3628 list_add_tail(&cluster->block_group_list,
3629 &block_group->cluster_list);
3630 cluster->block_group = block_group;
3631 } else {
3632 trace_btrfs_failed_cluster_setup(block_group);
3634 out:
3635 spin_unlock(&cluster->lock);
3636 spin_unlock(&ctl->tree_lock);
3638 return ret;
3642 * simple code to zero out a cluster
3644 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3646 spin_lock_init(&cluster->lock);
3647 spin_lock_init(&cluster->refill_lock);
3648 cluster->root = RB_ROOT;
3649 cluster->max_size = 0;
3650 cluster->fragmented = false;
3651 INIT_LIST_HEAD(&cluster->block_group_list);
3652 cluster->block_group = NULL;
3655 static int do_trimming(struct btrfs_block_group *block_group,
3656 u64 *total_trimmed, u64 start, u64 bytes,
3657 u64 reserved_start, u64 reserved_bytes,
3658 enum btrfs_trim_state reserved_trim_state,
3659 struct btrfs_trim_range *trim_entry)
3661 struct btrfs_space_info *space_info = block_group->space_info;
3662 struct btrfs_fs_info *fs_info = block_group->fs_info;
3663 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3664 int ret;
3665 int update = 0;
3666 const u64 end = start + bytes;
3667 const u64 reserved_end = reserved_start + reserved_bytes;
3668 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3669 u64 trimmed = 0;
3671 spin_lock(&space_info->lock);
3672 spin_lock(&block_group->lock);
3673 if (!block_group->ro) {
3674 block_group->reserved += reserved_bytes;
3675 space_info->bytes_reserved += reserved_bytes;
3676 update = 1;
3678 spin_unlock(&block_group->lock);
3679 spin_unlock(&space_info->lock);
3681 ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3682 if (!ret) {
3683 *total_trimmed += trimmed;
3684 trim_state = BTRFS_TRIM_STATE_TRIMMED;
3687 mutex_lock(&ctl->cache_writeout_mutex);
3688 if (reserved_start < start)
3689 __btrfs_add_free_space(block_group, reserved_start,
3690 start - reserved_start,
3691 reserved_trim_state);
3692 if (end < reserved_end)
3693 __btrfs_add_free_space(block_group, end, reserved_end - end,
3694 reserved_trim_state);
3695 __btrfs_add_free_space(block_group, start, bytes, trim_state);
3696 list_del(&trim_entry->list);
3697 mutex_unlock(&ctl->cache_writeout_mutex);
3699 if (update) {
3700 spin_lock(&space_info->lock);
3701 spin_lock(&block_group->lock);
3702 if (block_group->ro)
3703 space_info->bytes_readonly += reserved_bytes;
3704 block_group->reserved -= reserved_bytes;
3705 space_info->bytes_reserved -= reserved_bytes;
3706 spin_unlock(&block_group->lock);
3707 spin_unlock(&space_info->lock);
3710 return ret;
3714 * If @async is set, then we will trim 1 region and return.
3716 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3717 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3718 bool async)
3720 struct btrfs_discard_ctl *discard_ctl =
3721 &block_group->fs_info->discard_ctl;
3722 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3723 struct btrfs_free_space *entry;
3724 struct rb_node *node;
3725 int ret = 0;
3726 u64 extent_start;
3727 u64 extent_bytes;
3728 enum btrfs_trim_state extent_trim_state;
3729 u64 bytes;
3730 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3732 while (start < end) {
3733 struct btrfs_trim_range trim_entry;
3735 mutex_lock(&ctl->cache_writeout_mutex);
3736 spin_lock(&ctl->tree_lock);
3738 if (ctl->free_space < minlen)
3739 goto out_unlock;
3741 entry = tree_search_offset(ctl, start, 0, 1);
3742 if (!entry)
3743 goto out_unlock;
3745 /* Skip bitmaps and if async, already trimmed entries */
3746 while (entry->bitmap ||
3747 (async && btrfs_free_space_trimmed(entry))) {
3748 node = rb_next(&entry->offset_index);
3749 if (!node)
3750 goto out_unlock;
3751 entry = rb_entry(node, struct btrfs_free_space,
3752 offset_index);
3755 if (entry->offset >= end)
3756 goto out_unlock;
3758 extent_start = entry->offset;
3759 extent_bytes = entry->bytes;
3760 extent_trim_state = entry->trim_state;
3761 if (async) {
3762 start = entry->offset;
3763 bytes = entry->bytes;
3764 if (bytes < minlen) {
3765 spin_unlock(&ctl->tree_lock);
3766 mutex_unlock(&ctl->cache_writeout_mutex);
3767 goto next;
3769 unlink_free_space(ctl, entry, true);
3771 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3772 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3773 * X when we come back around. So trim it now.
3775 if (max_discard_size &&
3776 bytes >= (max_discard_size +
3777 BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3778 bytes = max_discard_size;
3779 extent_bytes = max_discard_size;
3780 entry->offset += max_discard_size;
3781 entry->bytes -= max_discard_size;
3782 link_free_space(ctl, entry);
3783 } else {
3784 kmem_cache_free(btrfs_free_space_cachep, entry);
3786 } else {
3787 start = max(start, extent_start);
3788 bytes = min(extent_start + extent_bytes, end) - start;
3789 if (bytes < minlen) {
3790 spin_unlock(&ctl->tree_lock);
3791 mutex_unlock(&ctl->cache_writeout_mutex);
3792 goto next;
3795 unlink_free_space(ctl, entry, true);
3796 kmem_cache_free(btrfs_free_space_cachep, entry);
3799 spin_unlock(&ctl->tree_lock);
3800 trim_entry.start = extent_start;
3801 trim_entry.bytes = extent_bytes;
3802 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3803 mutex_unlock(&ctl->cache_writeout_mutex);
3805 ret = do_trimming(block_group, total_trimmed, start, bytes,
3806 extent_start, extent_bytes, extent_trim_state,
3807 &trim_entry);
3808 if (ret) {
3809 block_group->discard_cursor = start + bytes;
3810 break;
3812 next:
3813 start += bytes;
3814 block_group->discard_cursor = start;
3815 if (async && *total_trimmed)
3816 break;
3818 if (btrfs_trim_interrupted()) {
3819 ret = -ERESTARTSYS;
3820 break;
3823 cond_resched();
3826 return ret;
3828 out_unlock:
3829 block_group->discard_cursor = btrfs_block_group_end(block_group);
3830 spin_unlock(&ctl->tree_lock);
3831 mutex_unlock(&ctl->cache_writeout_mutex);
3833 return ret;
3837 * If we break out of trimming a bitmap prematurely, we should reset the
3838 * trimming bit. In a rather contrieved case, it's possible to race here so
3839 * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3841 * start = start of bitmap
3842 * end = near end of bitmap
3844 * Thread 1: Thread 2:
3845 * trim_bitmaps(start)
3846 * trim_bitmaps(end)
3847 * end_trimming_bitmap()
3848 * reset_trimming_bitmap()
3850 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3852 struct btrfs_free_space *entry;
3854 spin_lock(&ctl->tree_lock);
3855 entry = tree_search_offset(ctl, offset, 1, 0);
3856 if (entry) {
3857 if (btrfs_free_space_trimmed(entry)) {
3858 ctl->discardable_extents[BTRFS_STAT_CURR] +=
3859 entry->bitmap_extents;
3860 ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3862 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3865 spin_unlock(&ctl->tree_lock);
3868 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3869 struct btrfs_free_space *entry)
3871 if (btrfs_free_space_trimming_bitmap(entry)) {
3872 entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3873 ctl->discardable_extents[BTRFS_STAT_CURR] -=
3874 entry->bitmap_extents;
3875 ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3880 * If @async is set, then we will trim 1 region and return.
3882 static int trim_bitmaps(struct btrfs_block_group *block_group,
3883 u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3884 u64 maxlen, bool async)
3886 struct btrfs_discard_ctl *discard_ctl =
3887 &block_group->fs_info->discard_ctl;
3888 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3889 struct btrfs_free_space *entry;
3890 int ret = 0;
3891 int ret2;
3892 u64 bytes;
3893 u64 offset = offset_to_bitmap(ctl, start);
3894 const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3896 while (offset < end) {
3897 bool next_bitmap = false;
3898 struct btrfs_trim_range trim_entry;
3900 mutex_lock(&ctl->cache_writeout_mutex);
3901 spin_lock(&ctl->tree_lock);
3903 if (ctl->free_space < minlen) {
3904 block_group->discard_cursor =
3905 btrfs_block_group_end(block_group);
3906 spin_unlock(&ctl->tree_lock);
3907 mutex_unlock(&ctl->cache_writeout_mutex);
3908 break;
3911 entry = tree_search_offset(ctl, offset, 1, 0);
3913 * Bitmaps are marked trimmed lossily now to prevent constant
3914 * discarding of the same bitmap (the reason why we are bound
3915 * by the filters). So, retrim the block group bitmaps when we
3916 * are preparing to punt to the unused_bgs list. This uses
3917 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3918 * which is the only discard index which sets minlen to 0.
3920 if (!entry || (async && minlen && start == offset &&
3921 btrfs_free_space_trimmed(entry))) {
3922 spin_unlock(&ctl->tree_lock);
3923 mutex_unlock(&ctl->cache_writeout_mutex);
3924 next_bitmap = true;
3925 goto next;
3929 * Async discard bitmap trimming begins at by setting the start
3930 * to be key.objectid and the offset_to_bitmap() aligns to the
3931 * start of the bitmap. This lets us know we are fully
3932 * scanning the bitmap rather than only some portion of it.
3934 if (start == offset)
3935 entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3937 bytes = minlen;
3938 ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3939 if (ret2 || start >= end) {
3941 * We lossily consider a bitmap trimmed if we only skip
3942 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3944 if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3945 end_trimming_bitmap(ctl, entry);
3946 else
3947 entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3948 spin_unlock(&ctl->tree_lock);
3949 mutex_unlock(&ctl->cache_writeout_mutex);
3950 next_bitmap = true;
3951 goto next;
3955 * We already trimmed a region, but are using the locking above
3956 * to reset the trim_state.
3958 if (async && *total_trimmed) {
3959 spin_unlock(&ctl->tree_lock);
3960 mutex_unlock(&ctl->cache_writeout_mutex);
3961 goto out;
3964 bytes = min(bytes, end - start);
3965 if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3966 spin_unlock(&ctl->tree_lock);
3967 mutex_unlock(&ctl->cache_writeout_mutex);
3968 goto next;
3972 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3973 * If X < @minlen, we won't trim X when we come back around.
3974 * So trim it now. We differ here from trimming extents as we
3975 * don't keep individual state per bit.
3977 if (async &&
3978 max_discard_size &&
3979 bytes > (max_discard_size + minlen))
3980 bytes = max_discard_size;
3982 bitmap_clear_bits(ctl, entry, start, bytes, true);
3983 if (entry->bytes == 0)
3984 free_bitmap(ctl, entry);
3986 spin_unlock(&ctl->tree_lock);
3987 trim_entry.start = start;
3988 trim_entry.bytes = bytes;
3989 list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3990 mutex_unlock(&ctl->cache_writeout_mutex);
3992 ret = do_trimming(block_group, total_trimmed, start, bytes,
3993 start, bytes, 0, &trim_entry);
3994 if (ret) {
3995 reset_trimming_bitmap(ctl, offset);
3996 block_group->discard_cursor =
3997 btrfs_block_group_end(block_group);
3998 break;
4000 next:
4001 if (next_bitmap) {
4002 offset += BITS_PER_BITMAP * ctl->unit;
4003 start = offset;
4004 } else {
4005 start += bytes;
4007 block_group->discard_cursor = start;
4009 if (btrfs_trim_interrupted()) {
4010 if (start != offset)
4011 reset_trimming_bitmap(ctl, offset);
4012 ret = -ERESTARTSYS;
4013 break;
4016 cond_resched();
4019 if (offset >= end)
4020 block_group->discard_cursor = end;
4022 out:
4023 return ret;
4026 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
4027 u64 *trimmed, u64 start, u64 end, u64 minlen)
4029 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4030 int ret;
4031 u64 rem = 0;
4033 ASSERT(!btrfs_is_zoned(block_group->fs_info));
4035 *trimmed = 0;
4037 spin_lock(&block_group->lock);
4038 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4039 spin_unlock(&block_group->lock);
4040 return 0;
4042 btrfs_freeze_block_group(block_group);
4043 spin_unlock(&block_group->lock);
4045 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
4046 if (ret)
4047 goto out;
4049 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
4050 div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
4051 /* If we ended in the middle of a bitmap, reset the trimming flag */
4052 if (rem)
4053 reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
4054 out:
4055 btrfs_unfreeze_block_group(block_group);
4056 return ret;
4059 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
4060 u64 *trimmed, u64 start, u64 end, u64 minlen,
4061 bool async)
4063 int ret;
4065 *trimmed = 0;
4067 spin_lock(&block_group->lock);
4068 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4069 spin_unlock(&block_group->lock);
4070 return 0;
4072 btrfs_freeze_block_group(block_group);
4073 spin_unlock(&block_group->lock);
4075 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
4076 btrfs_unfreeze_block_group(block_group);
4078 return ret;
4081 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
4082 u64 *trimmed, u64 start, u64 end, u64 minlen,
4083 u64 maxlen, bool async)
4085 int ret;
4087 *trimmed = 0;
4089 spin_lock(&block_group->lock);
4090 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &block_group->runtime_flags)) {
4091 spin_unlock(&block_group->lock);
4092 return 0;
4094 btrfs_freeze_block_group(block_group);
4095 spin_unlock(&block_group->lock);
4097 ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
4098 async);
4100 btrfs_unfreeze_block_group(block_group);
4102 return ret;
4105 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
4107 return btrfs_super_cache_generation(fs_info->super_copy);
4110 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
4111 struct btrfs_trans_handle *trans)
4113 struct btrfs_block_group *block_group;
4114 struct rb_node *node;
4115 int ret = 0;
4117 btrfs_info(fs_info, "cleaning free space cache v1");
4119 node = rb_first_cached(&fs_info->block_group_cache_tree);
4120 while (node) {
4121 block_group = rb_entry(node, struct btrfs_block_group, cache_node);
4122 ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
4123 if (ret)
4124 goto out;
4125 node = rb_next(node);
4127 out:
4128 return ret;
4131 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
4133 struct btrfs_trans_handle *trans;
4134 int ret;
4137 * update_super_roots will appropriately set or unset
4138 * super_copy->cache_generation based on SPACE_CACHE and
4139 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
4140 * transaction commit whether we are enabling space cache v1 and don't
4141 * have any other work to do, or are disabling it and removing free
4142 * space inodes.
4144 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4145 if (IS_ERR(trans))
4146 return PTR_ERR(trans);
4148 if (!active) {
4149 set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4150 ret = cleanup_free_space_cache_v1(fs_info, trans);
4151 if (ret) {
4152 btrfs_abort_transaction(trans, ret);
4153 btrfs_end_transaction(trans);
4154 goto out;
4158 ret = btrfs_commit_transaction(trans);
4159 out:
4160 clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
4162 return ret;
4165 int __init btrfs_free_space_init(void)
4167 btrfs_free_space_cachep = KMEM_CACHE(btrfs_free_space, 0);
4168 if (!btrfs_free_space_cachep)
4169 return -ENOMEM;
4171 btrfs_free_space_bitmap_cachep = kmem_cache_create("btrfs_free_space_bitmap",
4172 PAGE_SIZE, PAGE_SIZE,
4173 0, NULL);
4174 if (!btrfs_free_space_bitmap_cachep) {
4175 kmem_cache_destroy(btrfs_free_space_cachep);
4176 return -ENOMEM;
4179 return 0;
4182 void __cold btrfs_free_space_exit(void)
4184 kmem_cache_destroy(btrfs_free_space_cachep);
4185 kmem_cache_destroy(btrfs_free_space_bitmap_cachep);
4188 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4190 * Use this if you need to make a bitmap or extent entry specifically, it
4191 * doesn't do any of the merging that add_free_space does, this acts a lot like
4192 * how the free space cache loading stuff works, so you can get really weird
4193 * configurations.
4195 int test_add_free_space_entry(struct btrfs_block_group *cache,
4196 u64 offset, u64 bytes, bool bitmap)
4198 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4199 struct btrfs_free_space *info = NULL, *bitmap_info;
4200 void *map = NULL;
4201 enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4202 u64 bytes_added;
4203 int ret;
4205 again:
4206 if (!info) {
4207 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4208 if (!info)
4209 return -ENOMEM;
4212 if (!bitmap) {
4213 spin_lock(&ctl->tree_lock);
4214 info->offset = offset;
4215 info->bytes = bytes;
4216 info->max_extent_size = 0;
4217 ret = link_free_space(ctl, info);
4218 spin_unlock(&ctl->tree_lock);
4219 if (ret)
4220 kmem_cache_free(btrfs_free_space_cachep, info);
4221 return ret;
4224 if (!map) {
4225 map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4226 if (!map) {
4227 kmem_cache_free(btrfs_free_space_cachep, info);
4228 return -ENOMEM;
4232 spin_lock(&ctl->tree_lock);
4233 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4234 1, 0);
4235 if (!bitmap_info) {
4236 info->bitmap = map;
4237 map = NULL;
4238 add_new_bitmap(ctl, info, offset);
4239 bitmap_info = info;
4240 info = NULL;
4243 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4244 trim_state);
4246 bytes -= bytes_added;
4247 offset += bytes_added;
4248 spin_unlock(&ctl->tree_lock);
4250 if (bytes)
4251 goto again;
4253 if (info)
4254 kmem_cache_free(btrfs_free_space_cachep, info);
4255 if (map)
4256 kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4257 return 0;
4261 * Checks to see if the given range is in the free space cache. This is really
4262 * just used to check the absence of space, so if there is free space in the
4263 * range at all we will return 1.
4265 int test_check_exists(struct btrfs_block_group *cache,
4266 u64 offset, u64 bytes)
4268 struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4269 struct btrfs_free_space *info;
4270 int ret = 0;
4272 spin_lock(&ctl->tree_lock);
4273 info = tree_search_offset(ctl, offset, 0, 0);
4274 if (!info) {
4275 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4276 1, 0);
4277 if (!info)
4278 goto out;
4281 have_info:
4282 if (info->bitmap) {
4283 u64 bit_off, bit_bytes;
4284 struct rb_node *n;
4285 struct btrfs_free_space *tmp;
4287 bit_off = offset;
4288 bit_bytes = ctl->unit;
4289 ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4290 if (!ret) {
4291 if (bit_off == offset) {
4292 ret = 1;
4293 goto out;
4294 } else if (bit_off > offset &&
4295 offset + bytes > bit_off) {
4296 ret = 1;
4297 goto out;
4301 n = rb_prev(&info->offset_index);
4302 while (n) {
4303 tmp = rb_entry(n, struct btrfs_free_space,
4304 offset_index);
4305 if (tmp->offset + tmp->bytes < offset)
4306 break;
4307 if (offset + bytes < tmp->offset) {
4308 n = rb_prev(&tmp->offset_index);
4309 continue;
4311 info = tmp;
4312 goto have_info;
4315 n = rb_next(&info->offset_index);
4316 while (n) {
4317 tmp = rb_entry(n, struct btrfs_free_space,
4318 offset_index);
4319 if (offset + bytes < tmp->offset)
4320 break;
4321 if (tmp->offset + tmp->bytes < offset) {
4322 n = rb_next(&tmp->offset_index);
4323 continue;
4325 info = tmp;
4326 goto have_info;
4329 ret = 0;
4330 goto out;
4333 if (info->offset == offset) {
4334 ret = 1;
4335 goto out;
4338 if (offset > info->offset && offset < info->offset + info->bytes)
4339 ret = 1;
4340 out:
4341 spin_unlock(&ctl->tree_lock);
4342 return ret;
4344 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */