Linux 6.13-rc4
[linux.git] / fs / btrfs / raid56.c
blobcdd373c277848e418dead620f5be7515e354f521
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Fusion-io All rights reserved.
4 * Copyright (C) 2012 Intel Corp. All rights reserved.
5 */
7 #include <linux/sched.h>
8 #include <linux/bio.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/raid/pq.h>
12 #include <linux/hash.h>
13 #include <linux/list_sort.h>
14 #include <linux/raid/xor.h>
15 #include <linux/mm.h>
16 #include "messages.h"
17 #include "ctree.h"
18 #include "disk-io.h"
19 #include "volumes.h"
20 #include "raid56.h"
21 #include "async-thread.h"
22 #include "file-item.h"
23 #include "btrfs_inode.h"
25 /* set when additional merges to this rbio are not allowed */
26 #define RBIO_RMW_LOCKED_BIT 1
29 * set when this rbio is sitting in the hash, but it is just a cache
30 * of past RMW
32 #define RBIO_CACHE_BIT 2
35 * set when it is safe to trust the stripe_pages for caching
37 #define RBIO_CACHE_READY_BIT 3
39 #define RBIO_CACHE_SIZE 1024
41 #define BTRFS_STRIPE_HASH_TABLE_BITS 11
43 static void dump_bioc(const struct btrfs_fs_info *fs_info, const struct btrfs_io_context *bioc)
45 if (unlikely(!bioc)) {
46 btrfs_crit(fs_info, "bioc=NULL");
47 return;
49 btrfs_crit(fs_info,
50 "bioc logical=%llu full_stripe=%llu size=%llu map_type=0x%llx mirror=%u replace_nr_stripes=%u replace_stripe_src=%d num_stripes=%u",
51 bioc->logical, bioc->full_stripe_logical, bioc->size,
52 bioc->map_type, bioc->mirror_num, bioc->replace_nr_stripes,
53 bioc->replace_stripe_src, bioc->num_stripes);
54 for (int i = 0; i < bioc->num_stripes; i++) {
55 btrfs_crit(fs_info, " nr=%d devid=%llu physical=%llu",
56 i, bioc->stripes[i].dev->devid,
57 bioc->stripes[i].physical);
61 static void btrfs_dump_rbio(const struct btrfs_fs_info *fs_info,
62 const struct btrfs_raid_bio *rbio)
64 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
65 return;
67 dump_bioc(fs_info, rbio->bioc);
68 btrfs_crit(fs_info,
69 "rbio flags=0x%lx nr_sectors=%u nr_data=%u real_stripes=%u stripe_nsectors=%u scrubp=%u dbitmap=0x%lx",
70 rbio->flags, rbio->nr_sectors, rbio->nr_data,
71 rbio->real_stripes, rbio->stripe_nsectors,
72 rbio->scrubp, rbio->dbitmap);
75 #define ASSERT_RBIO(expr, rbio) \
76 ({ \
77 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
78 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
79 (rbio)->bioc->fs_info : NULL; \
81 btrfs_dump_rbio(__fs_info, (rbio)); \
82 } \
83 ASSERT((expr)); \
86 #define ASSERT_RBIO_STRIPE(expr, rbio, stripe_nr) \
87 ({ \
88 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
89 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
90 (rbio)->bioc->fs_info : NULL; \
92 btrfs_dump_rbio(__fs_info, (rbio)); \
93 btrfs_crit(__fs_info, "stripe_nr=%d", (stripe_nr)); \
94 } \
95 ASSERT((expr)); \
98 #define ASSERT_RBIO_SECTOR(expr, rbio, sector_nr) \
99 ({ \
100 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
101 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
102 (rbio)->bioc->fs_info : NULL; \
104 btrfs_dump_rbio(__fs_info, (rbio)); \
105 btrfs_crit(__fs_info, "sector_nr=%d", (sector_nr)); \
107 ASSERT((expr)); \
110 #define ASSERT_RBIO_LOGICAL(expr, rbio, logical) \
111 ({ \
112 if (IS_ENABLED(CONFIG_BTRFS_ASSERT) && unlikely(!(expr))) { \
113 const struct btrfs_fs_info *__fs_info = (rbio)->bioc ? \
114 (rbio)->bioc->fs_info : NULL; \
116 btrfs_dump_rbio(__fs_info, (rbio)); \
117 btrfs_crit(__fs_info, "logical=%llu", (logical)); \
119 ASSERT((expr)); \
122 /* Used by the raid56 code to lock stripes for read/modify/write */
123 struct btrfs_stripe_hash {
124 struct list_head hash_list;
125 spinlock_t lock;
128 /* Used by the raid56 code to lock stripes for read/modify/write */
129 struct btrfs_stripe_hash_table {
130 struct list_head stripe_cache;
131 spinlock_t cache_lock;
132 int cache_size;
133 struct btrfs_stripe_hash table[];
137 * A bvec like structure to present a sector inside a page.
139 * Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
141 struct sector_ptr {
142 struct page *page;
143 unsigned int pgoff:24;
144 unsigned int uptodate:8;
147 static void rmw_rbio_work(struct work_struct *work);
148 static void rmw_rbio_work_locked(struct work_struct *work);
149 static void index_rbio_pages(struct btrfs_raid_bio *rbio);
150 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
152 static int finish_parity_scrub(struct btrfs_raid_bio *rbio);
153 static void scrub_rbio_work_locked(struct work_struct *work);
155 static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio)
157 bitmap_free(rbio->error_bitmap);
158 kfree(rbio->stripe_pages);
159 kfree(rbio->bio_sectors);
160 kfree(rbio->stripe_sectors);
161 kfree(rbio->finish_pointers);
164 static void free_raid_bio(struct btrfs_raid_bio *rbio)
166 int i;
168 if (!refcount_dec_and_test(&rbio->refs))
169 return;
171 WARN_ON(!list_empty(&rbio->stripe_cache));
172 WARN_ON(!list_empty(&rbio->hash_list));
173 WARN_ON(!bio_list_empty(&rbio->bio_list));
175 for (i = 0; i < rbio->nr_pages; i++) {
176 if (rbio->stripe_pages[i]) {
177 __free_page(rbio->stripe_pages[i]);
178 rbio->stripe_pages[i] = NULL;
182 btrfs_put_bioc(rbio->bioc);
183 free_raid_bio_pointers(rbio);
184 kfree(rbio);
187 static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
189 INIT_WORK(&rbio->work, work_func);
190 queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
194 * the stripe hash table is used for locking, and to collect
195 * bios in hopes of making a full stripe
197 int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
199 struct btrfs_stripe_hash_table *table;
200 struct btrfs_stripe_hash_table *x;
201 struct btrfs_stripe_hash *cur;
202 struct btrfs_stripe_hash *h;
203 int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
204 int i;
206 if (info->stripe_hash_table)
207 return 0;
210 * The table is large, starting with order 4 and can go as high as
211 * order 7 in case lock debugging is turned on.
213 * Try harder to allocate and fallback to vmalloc to lower the chance
214 * of a failing mount.
216 table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
217 if (!table)
218 return -ENOMEM;
220 spin_lock_init(&table->cache_lock);
221 INIT_LIST_HEAD(&table->stripe_cache);
223 h = table->table;
225 for (i = 0; i < num_entries; i++) {
226 cur = h + i;
227 INIT_LIST_HEAD(&cur->hash_list);
228 spin_lock_init(&cur->lock);
231 x = cmpxchg(&info->stripe_hash_table, NULL, table);
232 kvfree(x);
233 return 0;
237 * caching an rbio means to copy anything from the
238 * bio_sectors array into the stripe_pages array. We
239 * use the page uptodate bit in the stripe cache array
240 * to indicate if it has valid data
242 * once the caching is done, we set the cache ready
243 * bit.
245 static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
247 int i;
248 int ret;
250 ret = alloc_rbio_pages(rbio);
251 if (ret)
252 return;
254 for (i = 0; i < rbio->nr_sectors; i++) {
255 /* Some range not covered by bio (partial write), skip it */
256 if (!rbio->bio_sectors[i].page) {
258 * Even if the sector is not covered by bio, if it is
259 * a data sector it should still be uptodate as it is
260 * read from disk.
262 if (i < rbio->nr_data * rbio->stripe_nsectors)
263 ASSERT(rbio->stripe_sectors[i].uptodate);
264 continue;
267 ASSERT(rbio->stripe_sectors[i].page);
268 memcpy_page(rbio->stripe_sectors[i].page,
269 rbio->stripe_sectors[i].pgoff,
270 rbio->bio_sectors[i].page,
271 rbio->bio_sectors[i].pgoff,
272 rbio->bioc->fs_info->sectorsize);
273 rbio->stripe_sectors[i].uptodate = 1;
275 set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
279 * we hash on the first logical address of the stripe
281 static int rbio_bucket(struct btrfs_raid_bio *rbio)
283 u64 num = rbio->bioc->full_stripe_logical;
286 * we shift down quite a bit. We're using byte
287 * addressing, and most of the lower bits are zeros.
288 * This tends to upset hash_64, and it consistently
289 * returns just one or two different values.
291 * shifting off the lower bits fixes things.
293 return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
296 static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
297 unsigned int page_nr)
299 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
300 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
301 int i;
303 ASSERT(page_nr < rbio->nr_pages);
305 for (i = sectors_per_page * page_nr;
306 i < sectors_per_page * page_nr + sectors_per_page;
307 i++) {
308 if (!rbio->stripe_sectors[i].uptodate)
309 return false;
311 return true;
315 * Update the stripe_sectors[] array to use correct page and pgoff
317 * Should be called every time any page pointer in stripes_pages[] got modified.
319 static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
321 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
322 u32 offset;
323 int i;
325 for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
326 int page_index = offset >> PAGE_SHIFT;
328 ASSERT(page_index < rbio->nr_pages);
329 rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
330 rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
334 static void steal_rbio_page(struct btrfs_raid_bio *src,
335 struct btrfs_raid_bio *dest, int page_nr)
337 const u32 sectorsize = src->bioc->fs_info->sectorsize;
338 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
339 int i;
341 if (dest->stripe_pages[page_nr])
342 __free_page(dest->stripe_pages[page_nr]);
343 dest->stripe_pages[page_nr] = src->stripe_pages[page_nr];
344 src->stripe_pages[page_nr] = NULL;
346 /* Also update the sector->uptodate bits. */
347 for (i = sectors_per_page * page_nr;
348 i < sectors_per_page * page_nr + sectors_per_page; i++)
349 dest->stripe_sectors[i].uptodate = true;
352 static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr)
354 const int sector_nr = (page_nr << PAGE_SHIFT) >>
355 rbio->bioc->fs_info->sectorsize_bits;
358 * We have ensured PAGE_SIZE is aligned with sectorsize, thus
359 * we won't have a page which is half data half parity.
361 * Thus if the first sector of the page belongs to data stripes, then
362 * the full page belongs to data stripes.
364 return (sector_nr < rbio->nr_data * rbio->stripe_nsectors);
368 * Stealing an rbio means taking all the uptodate pages from the stripe array
369 * in the source rbio and putting them into the destination rbio.
371 * This will also update the involved stripe_sectors[] which are referring to
372 * the old pages.
374 static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
376 int i;
378 if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
379 return;
381 for (i = 0; i < dest->nr_pages; i++) {
382 struct page *p = src->stripe_pages[i];
385 * We don't need to steal P/Q pages as they will always be
386 * regenerated for RMW or full write anyway.
388 if (!is_data_stripe_page(src, i))
389 continue;
392 * If @src already has RBIO_CACHE_READY_BIT, it should have
393 * all data stripe pages present and uptodate.
395 ASSERT(p);
396 ASSERT(full_page_sectors_uptodate(src, i));
397 steal_rbio_page(src, dest, i);
399 index_stripe_sectors(dest);
400 index_stripe_sectors(src);
404 * merging means we take the bio_list from the victim and
405 * splice it into the destination. The victim should
406 * be discarded afterwards.
408 * must be called with dest->rbio_list_lock held
410 static void merge_rbio(struct btrfs_raid_bio *dest,
411 struct btrfs_raid_bio *victim)
413 bio_list_merge_init(&dest->bio_list, &victim->bio_list);
414 dest->bio_list_bytes += victim->bio_list_bytes;
415 /* Also inherit the bitmaps from @victim. */
416 bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap,
417 dest->stripe_nsectors);
421 * used to prune items that are in the cache. The caller
422 * must hold the hash table lock.
424 static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
426 int bucket = rbio_bucket(rbio);
427 struct btrfs_stripe_hash_table *table;
428 struct btrfs_stripe_hash *h;
429 int freeit = 0;
432 * check the bit again under the hash table lock.
434 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
435 return;
437 table = rbio->bioc->fs_info->stripe_hash_table;
438 h = table->table + bucket;
440 /* hold the lock for the bucket because we may be
441 * removing it from the hash table
443 spin_lock(&h->lock);
446 * hold the lock for the bio list because we need
447 * to make sure the bio list is empty
449 spin_lock(&rbio->bio_list_lock);
451 if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
452 list_del_init(&rbio->stripe_cache);
453 table->cache_size -= 1;
454 freeit = 1;
456 /* if the bio list isn't empty, this rbio is
457 * still involved in an IO. We take it out
458 * of the cache list, and drop the ref that
459 * was held for the list.
461 * If the bio_list was empty, we also remove
462 * the rbio from the hash_table, and drop
463 * the corresponding ref
465 if (bio_list_empty(&rbio->bio_list)) {
466 if (!list_empty(&rbio->hash_list)) {
467 list_del_init(&rbio->hash_list);
468 refcount_dec(&rbio->refs);
469 BUG_ON(!list_empty(&rbio->plug_list));
474 spin_unlock(&rbio->bio_list_lock);
475 spin_unlock(&h->lock);
477 if (freeit)
478 free_raid_bio(rbio);
482 * prune a given rbio from the cache
484 static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
486 struct btrfs_stripe_hash_table *table;
488 if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
489 return;
491 table = rbio->bioc->fs_info->stripe_hash_table;
493 spin_lock(&table->cache_lock);
494 __remove_rbio_from_cache(rbio);
495 spin_unlock(&table->cache_lock);
499 * remove everything in the cache
501 static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
503 struct btrfs_stripe_hash_table *table;
504 struct btrfs_raid_bio *rbio;
506 table = info->stripe_hash_table;
508 spin_lock(&table->cache_lock);
509 while (!list_empty(&table->stripe_cache)) {
510 rbio = list_entry(table->stripe_cache.next,
511 struct btrfs_raid_bio,
512 stripe_cache);
513 __remove_rbio_from_cache(rbio);
515 spin_unlock(&table->cache_lock);
519 * remove all cached entries and free the hash table
520 * used by unmount
522 void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
524 if (!info->stripe_hash_table)
525 return;
526 btrfs_clear_rbio_cache(info);
527 kvfree(info->stripe_hash_table);
528 info->stripe_hash_table = NULL;
532 * insert an rbio into the stripe cache. It
533 * must have already been prepared by calling
534 * cache_rbio_pages
536 * If this rbio was already cached, it gets
537 * moved to the front of the lru.
539 * If the size of the rbio cache is too big, we
540 * prune an item.
542 static void cache_rbio(struct btrfs_raid_bio *rbio)
544 struct btrfs_stripe_hash_table *table;
546 if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
547 return;
549 table = rbio->bioc->fs_info->stripe_hash_table;
551 spin_lock(&table->cache_lock);
552 spin_lock(&rbio->bio_list_lock);
554 /* bump our ref if we were not in the list before */
555 if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
556 refcount_inc(&rbio->refs);
558 if (!list_empty(&rbio->stripe_cache)){
559 list_move(&rbio->stripe_cache, &table->stripe_cache);
560 } else {
561 list_add(&rbio->stripe_cache, &table->stripe_cache);
562 table->cache_size += 1;
565 spin_unlock(&rbio->bio_list_lock);
567 if (table->cache_size > RBIO_CACHE_SIZE) {
568 struct btrfs_raid_bio *found;
570 found = list_entry(table->stripe_cache.prev,
571 struct btrfs_raid_bio,
572 stripe_cache);
574 if (found != rbio)
575 __remove_rbio_from_cache(found);
578 spin_unlock(&table->cache_lock);
582 * helper function to run the xor_blocks api. It is only
583 * able to do MAX_XOR_BLOCKS at a time, so we need to
584 * loop through.
586 static void run_xor(void **pages, int src_cnt, ssize_t len)
588 int src_off = 0;
589 int xor_src_cnt = 0;
590 void *dest = pages[src_cnt];
592 while(src_cnt > 0) {
593 xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
594 xor_blocks(xor_src_cnt, len, dest, pages + src_off);
596 src_cnt -= xor_src_cnt;
597 src_off += xor_src_cnt;
602 * Returns true if the bio list inside this rbio covers an entire stripe (no
603 * rmw required).
605 static int rbio_is_full(struct btrfs_raid_bio *rbio)
607 unsigned long size = rbio->bio_list_bytes;
608 int ret = 1;
610 spin_lock(&rbio->bio_list_lock);
611 if (size != rbio->nr_data * BTRFS_STRIPE_LEN)
612 ret = 0;
613 BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN);
614 spin_unlock(&rbio->bio_list_lock);
616 return ret;
620 * returns 1 if it is safe to merge two rbios together.
621 * The merging is safe if the two rbios correspond to
622 * the same stripe and if they are both going in the same
623 * direction (read vs write), and if neither one is
624 * locked for final IO
626 * The caller is responsible for locking such that
627 * rmw_locked is safe to test
629 static int rbio_can_merge(struct btrfs_raid_bio *last,
630 struct btrfs_raid_bio *cur)
632 if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
633 test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
634 return 0;
637 * we can't merge with cached rbios, since the
638 * idea is that when we merge the destination
639 * rbio is going to run our IO for us. We can
640 * steal from cached rbios though, other functions
641 * handle that.
643 if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
644 test_bit(RBIO_CACHE_BIT, &cur->flags))
645 return 0;
647 if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical)
648 return 0;
650 /* we can't merge with different operations */
651 if (last->operation != cur->operation)
652 return 0;
654 * We've need read the full stripe from the drive.
655 * check and repair the parity and write the new results.
657 * We're not allowed to add any new bios to the
658 * bio list here, anyone else that wants to
659 * change this stripe needs to do their own rmw.
661 if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
662 return 0;
664 if (last->operation == BTRFS_RBIO_READ_REBUILD)
665 return 0;
667 return 1;
670 static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
671 unsigned int stripe_nr,
672 unsigned int sector_nr)
674 ASSERT_RBIO_STRIPE(stripe_nr < rbio->real_stripes, rbio, stripe_nr);
675 ASSERT_RBIO_SECTOR(sector_nr < rbio->stripe_nsectors, rbio, sector_nr);
677 return stripe_nr * rbio->stripe_nsectors + sector_nr;
680 /* Return a sector from rbio->stripe_sectors, not from the bio list */
681 static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
682 unsigned int stripe_nr,
683 unsigned int sector_nr)
685 return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
686 sector_nr)];
689 /* Grab a sector inside P stripe */
690 static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
691 unsigned int sector_nr)
693 return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
696 /* Grab a sector inside Q stripe, return NULL if not RAID6 */
697 static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
698 unsigned int sector_nr)
700 if (rbio->nr_data + 1 == rbio->real_stripes)
701 return NULL;
702 return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
706 * The first stripe in the table for a logical address
707 * has the lock. rbios are added in one of three ways:
709 * 1) Nobody has the stripe locked yet. The rbio is given
710 * the lock and 0 is returned. The caller must start the IO
711 * themselves.
713 * 2) Someone has the stripe locked, but we're able to merge
714 * with the lock owner. The rbio is freed and the IO will
715 * start automatically along with the existing rbio. 1 is returned.
717 * 3) Someone has the stripe locked, but we're not able to merge.
718 * The rbio is added to the lock owner's plug list, or merged into
719 * an rbio already on the plug list. When the lock owner unlocks,
720 * the next rbio on the list is run and the IO is started automatically.
721 * 1 is returned
723 * If we return 0, the caller still owns the rbio and must continue with
724 * IO submission. If we return 1, the caller must assume the rbio has
725 * already been freed.
727 static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
729 struct btrfs_stripe_hash *h;
730 struct btrfs_raid_bio *cur;
731 struct btrfs_raid_bio *pending;
732 struct btrfs_raid_bio *freeit = NULL;
733 struct btrfs_raid_bio *cache_drop = NULL;
734 int ret = 0;
736 h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
738 spin_lock(&h->lock);
739 list_for_each_entry(cur, &h->hash_list, hash_list) {
740 if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical)
741 continue;
743 spin_lock(&cur->bio_list_lock);
745 /* Can we steal this cached rbio's pages? */
746 if (bio_list_empty(&cur->bio_list) &&
747 list_empty(&cur->plug_list) &&
748 test_bit(RBIO_CACHE_BIT, &cur->flags) &&
749 !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
750 list_del_init(&cur->hash_list);
751 refcount_dec(&cur->refs);
753 steal_rbio(cur, rbio);
754 cache_drop = cur;
755 spin_unlock(&cur->bio_list_lock);
757 goto lockit;
760 /* Can we merge into the lock owner? */
761 if (rbio_can_merge(cur, rbio)) {
762 merge_rbio(cur, rbio);
763 spin_unlock(&cur->bio_list_lock);
764 freeit = rbio;
765 ret = 1;
766 goto out;
771 * We couldn't merge with the running rbio, see if we can merge
772 * with the pending ones. We don't have to check for rmw_locked
773 * because there is no way they are inside finish_rmw right now
775 list_for_each_entry(pending, &cur->plug_list, plug_list) {
776 if (rbio_can_merge(pending, rbio)) {
777 merge_rbio(pending, rbio);
778 spin_unlock(&cur->bio_list_lock);
779 freeit = rbio;
780 ret = 1;
781 goto out;
786 * No merging, put us on the tail of the plug list, our rbio
787 * will be started with the currently running rbio unlocks
789 list_add_tail(&rbio->plug_list, &cur->plug_list);
790 spin_unlock(&cur->bio_list_lock);
791 ret = 1;
792 goto out;
794 lockit:
795 refcount_inc(&rbio->refs);
796 list_add(&rbio->hash_list, &h->hash_list);
797 out:
798 spin_unlock(&h->lock);
799 if (cache_drop)
800 remove_rbio_from_cache(cache_drop);
801 if (freeit)
802 free_raid_bio(freeit);
803 return ret;
806 static void recover_rbio_work_locked(struct work_struct *work);
809 * called as rmw or parity rebuild is completed. If the plug list has more
810 * rbios waiting for this stripe, the next one on the list will be started
812 static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
814 int bucket;
815 struct btrfs_stripe_hash *h;
816 int keep_cache = 0;
818 bucket = rbio_bucket(rbio);
819 h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
821 if (list_empty(&rbio->plug_list))
822 cache_rbio(rbio);
824 spin_lock(&h->lock);
825 spin_lock(&rbio->bio_list_lock);
827 if (!list_empty(&rbio->hash_list)) {
829 * if we're still cached and there is no other IO
830 * to perform, just leave this rbio here for others
831 * to steal from later
833 if (list_empty(&rbio->plug_list) &&
834 test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
835 keep_cache = 1;
836 clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
837 BUG_ON(!bio_list_empty(&rbio->bio_list));
838 goto done;
841 list_del_init(&rbio->hash_list);
842 refcount_dec(&rbio->refs);
845 * we use the plug list to hold all the rbios
846 * waiting for the chance to lock this stripe.
847 * hand the lock over to one of them.
849 if (!list_empty(&rbio->plug_list)) {
850 struct btrfs_raid_bio *next;
851 struct list_head *head = rbio->plug_list.next;
853 next = list_entry(head, struct btrfs_raid_bio,
854 plug_list);
856 list_del_init(&rbio->plug_list);
858 list_add(&next->hash_list, &h->hash_list);
859 refcount_inc(&next->refs);
860 spin_unlock(&rbio->bio_list_lock);
861 spin_unlock(&h->lock);
863 if (next->operation == BTRFS_RBIO_READ_REBUILD) {
864 start_async_work(next, recover_rbio_work_locked);
865 } else if (next->operation == BTRFS_RBIO_WRITE) {
866 steal_rbio(rbio, next);
867 start_async_work(next, rmw_rbio_work_locked);
868 } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
869 steal_rbio(rbio, next);
870 start_async_work(next, scrub_rbio_work_locked);
873 goto done_nolock;
876 done:
877 spin_unlock(&rbio->bio_list_lock);
878 spin_unlock(&h->lock);
880 done_nolock:
881 if (!keep_cache)
882 remove_rbio_from_cache(rbio);
885 static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
887 struct bio *next;
889 while (cur) {
890 next = cur->bi_next;
891 cur->bi_next = NULL;
892 cur->bi_status = err;
893 bio_endio(cur);
894 cur = next;
899 * this frees the rbio and runs through all the bios in the
900 * bio_list and calls end_io on them
902 static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
904 struct bio *cur = bio_list_get(&rbio->bio_list);
905 struct bio *extra;
907 kfree(rbio->csum_buf);
908 bitmap_free(rbio->csum_bitmap);
909 rbio->csum_buf = NULL;
910 rbio->csum_bitmap = NULL;
913 * Clear the data bitmap, as the rbio may be cached for later usage.
914 * do this before before unlock_stripe() so there will be no new bio
915 * for this bio.
917 bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors);
920 * At this moment, rbio->bio_list is empty, however since rbio does not
921 * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
922 * hash list, rbio may be merged with others so that rbio->bio_list
923 * becomes non-empty.
924 * Once unlock_stripe() is done, rbio->bio_list will not be updated any
925 * more and we can call bio_endio() on all queued bios.
927 unlock_stripe(rbio);
928 extra = bio_list_get(&rbio->bio_list);
929 free_raid_bio(rbio);
931 rbio_endio_bio_list(cur, err);
932 if (extra)
933 rbio_endio_bio_list(extra, err);
937 * Get a sector pointer specified by its @stripe_nr and @sector_nr.
939 * @rbio: The raid bio
940 * @stripe_nr: Stripe number, valid range [0, real_stripe)
941 * @sector_nr: Sector number inside the stripe,
942 * valid range [0, stripe_nsectors)
943 * @bio_list_only: Whether to use sectors inside the bio list only.
945 * The read/modify/write code wants to reuse the original bio page as much
946 * as possible, and only use stripe_sectors as fallback.
948 static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
949 int stripe_nr, int sector_nr,
950 bool bio_list_only)
952 struct sector_ptr *sector;
953 int index;
955 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->real_stripes,
956 rbio, stripe_nr);
957 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
958 rbio, sector_nr);
960 index = stripe_nr * rbio->stripe_nsectors + sector_nr;
961 ASSERT(index >= 0 && index < rbio->nr_sectors);
963 spin_lock(&rbio->bio_list_lock);
964 sector = &rbio->bio_sectors[index];
965 if (sector->page || bio_list_only) {
966 /* Don't return sector without a valid page pointer */
967 if (!sector->page)
968 sector = NULL;
969 spin_unlock(&rbio->bio_list_lock);
970 return sector;
972 spin_unlock(&rbio->bio_list_lock);
974 return &rbio->stripe_sectors[index];
978 * allocation and initial setup for the btrfs_raid_bio. Not
979 * this does not allocate any pages for rbio->pages.
981 static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info,
982 struct btrfs_io_context *bioc)
984 const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes;
985 const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT;
986 const unsigned int num_pages = stripe_npages * real_stripes;
987 const unsigned int stripe_nsectors =
988 BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits;
989 const unsigned int num_sectors = stripe_nsectors * real_stripes;
990 struct btrfs_raid_bio *rbio;
992 /* PAGE_SIZE must also be aligned to sectorsize for subpage support */
993 ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize));
995 * Our current stripe len should be fixed to 64k thus stripe_nsectors
996 * (at most 16) should be no larger than BITS_PER_LONG.
998 ASSERT(stripe_nsectors <= BITS_PER_LONG);
1001 * Real stripes must be between 2 (2 disks RAID5, aka RAID1) and 256
1002 * (limited by u8).
1004 ASSERT(real_stripes >= 2);
1005 ASSERT(real_stripes <= U8_MAX);
1007 rbio = kzalloc(sizeof(*rbio), GFP_NOFS);
1008 if (!rbio)
1009 return ERR_PTR(-ENOMEM);
1010 rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *),
1011 GFP_NOFS);
1012 rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1013 GFP_NOFS);
1014 rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr),
1015 GFP_NOFS);
1016 rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS);
1017 rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS);
1019 if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors ||
1020 !rbio->finish_pointers || !rbio->error_bitmap) {
1021 free_raid_bio_pointers(rbio);
1022 kfree(rbio);
1023 return ERR_PTR(-ENOMEM);
1026 bio_list_init(&rbio->bio_list);
1027 init_waitqueue_head(&rbio->io_wait);
1028 INIT_LIST_HEAD(&rbio->plug_list);
1029 spin_lock_init(&rbio->bio_list_lock);
1030 INIT_LIST_HEAD(&rbio->stripe_cache);
1031 INIT_LIST_HEAD(&rbio->hash_list);
1032 btrfs_get_bioc(bioc);
1033 rbio->bioc = bioc;
1034 rbio->nr_pages = num_pages;
1035 rbio->nr_sectors = num_sectors;
1036 rbio->real_stripes = real_stripes;
1037 rbio->stripe_npages = stripe_npages;
1038 rbio->stripe_nsectors = stripe_nsectors;
1039 refcount_set(&rbio->refs, 1);
1040 atomic_set(&rbio->stripes_pending, 0);
1042 ASSERT(btrfs_nr_parity_stripes(bioc->map_type));
1043 rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type);
1044 ASSERT(rbio->nr_data > 0);
1046 return rbio;
1049 /* allocate pages for all the stripes in the bio, including parity */
1050 static int alloc_rbio_pages(struct btrfs_raid_bio *rbio)
1052 int ret;
1054 ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages, false);
1055 if (ret < 0)
1056 return ret;
1057 /* Mapping all sectors */
1058 index_stripe_sectors(rbio);
1059 return 0;
1062 /* only allocate pages for p/q stripes */
1063 static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio)
1065 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1066 int ret;
1068 ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages,
1069 rbio->stripe_pages + data_pages, false);
1070 if (ret < 0)
1071 return ret;
1073 index_stripe_sectors(rbio);
1074 return 0;
1078 * Return the total number of errors found in the vertical stripe of @sector_nr.
1080 * @faila and @failb will also be updated to the first and second stripe
1081 * number of the errors.
1083 static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr,
1084 int *faila, int *failb)
1086 int stripe_nr;
1087 int found_errors = 0;
1089 if (faila || failb) {
1091 * Both @faila and @failb should be valid pointers if any of
1092 * them is specified.
1094 ASSERT(faila && failb);
1095 *faila = -1;
1096 *failb = -1;
1099 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1100 int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr;
1102 if (test_bit(total_sector_nr, rbio->error_bitmap)) {
1103 found_errors++;
1104 if (faila) {
1105 /* Update faila and failb. */
1106 if (*faila < 0)
1107 *faila = stripe_nr;
1108 else if (*failb < 0)
1109 *failb = stripe_nr;
1113 return found_errors;
1117 * Add a single sector @sector into our list of bios for IO.
1119 * Return 0 if everything went well.
1120 * Return <0 for error.
1122 static int rbio_add_io_sector(struct btrfs_raid_bio *rbio,
1123 struct bio_list *bio_list,
1124 struct sector_ptr *sector,
1125 unsigned int stripe_nr,
1126 unsigned int sector_nr,
1127 enum req_op op)
1129 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1130 struct bio *last = bio_list->tail;
1131 int ret;
1132 struct bio *bio;
1133 struct btrfs_io_stripe *stripe;
1134 u64 disk_start;
1137 * Note: here stripe_nr has taken device replace into consideration,
1138 * thus it can be larger than rbio->real_stripe.
1139 * So here we check against bioc->num_stripes, not rbio->real_stripes.
1141 ASSERT_RBIO_STRIPE(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes,
1142 rbio, stripe_nr);
1143 ASSERT_RBIO_SECTOR(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors,
1144 rbio, sector_nr);
1145 ASSERT(sector->page);
1147 stripe = &rbio->bioc->stripes[stripe_nr];
1148 disk_start = stripe->physical + sector_nr * sectorsize;
1150 /* if the device is missing, just fail this stripe */
1151 if (!stripe->dev->bdev) {
1152 int found_errors;
1154 set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr,
1155 rbio->error_bitmap);
1157 /* Check if we have reached tolerance early. */
1158 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
1159 NULL, NULL);
1160 if (found_errors > rbio->bioc->max_errors)
1161 return -EIO;
1162 return 0;
1165 /* see if we can add this page onto our existing bio */
1166 if (last) {
1167 u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT;
1168 last_end += last->bi_iter.bi_size;
1171 * we can't merge these if they are from different
1172 * devices or if they are not contiguous
1174 if (last_end == disk_start && !last->bi_status &&
1175 last->bi_bdev == stripe->dev->bdev) {
1176 ret = bio_add_page(last, sector->page, sectorsize,
1177 sector->pgoff);
1178 if (ret == sectorsize)
1179 return 0;
1183 /* put a new bio on the list */
1184 bio = bio_alloc(stripe->dev->bdev,
1185 max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1),
1186 op, GFP_NOFS);
1187 bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
1188 bio->bi_private = rbio;
1190 __bio_add_page(bio, sector->page, sectorsize, sector->pgoff);
1191 bio_list_add(bio_list, bio);
1192 return 0;
1195 static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio)
1197 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1198 struct bio_vec bvec;
1199 struct bvec_iter iter;
1200 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1201 rbio->bioc->full_stripe_logical;
1203 bio_for_each_segment(bvec, bio, iter) {
1204 u32 bvec_offset;
1206 for (bvec_offset = 0; bvec_offset < bvec.bv_len;
1207 bvec_offset += sectorsize, offset += sectorsize) {
1208 int index = offset / sectorsize;
1209 struct sector_ptr *sector = &rbio->bio_sectors[index];
1211 sector->page = bvec.bv_page;
1212 sector->pgoff = bvec.bv_offset + bvec_offset;
1213 ASSERT(sector->pgoff < PAGE_SIZE);
1219 * helper function to walk our bio list and populate the bio_pages array with
1220 * the result. This seems expensive, but it is faster than constantly
1221 * searching through the bio list as we setup the IO in finish_rmw or stripe
1222 * reconstruction.
1224 * This must be called before you trust the answers from page_in_rbio
1226 static void index_rbio_pages(struct btrfs_raid_bio *rbio)
1228 struct bio *bio;
1230 spin_lock(&rbio->bio_list_lock);
1231 bio_list_for_each(bio, &rbio->bio_list)
1232 index_one_bio(rbio, bio);
1234 spin_unlock(&rbio->bio_list_lock);
1237 static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio,
1238 struct raid56_bio_trace_info *trace_info)
1240 const struct btrfs_io_context *bioc = rbio->bioc;
1241 int i;
1243 ASSERT(bioc);
1245 /* We rely on bio->bi_bdev to find the stripe number. */
1246 if (!bio->bi_bdev)
1247 goto not_found;
1249 for (i = 0; i < bioc->num_stripes; i++) {
1250 if (bio->bi_bdev != bioc->stripes[i].dev->bdev)
1251 continue;
1252 trace_info->stripe_nr = i;
1253 trace_info->devid = bioc->stripes[i].dev->devid;
1254 trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1255 bioc->stripes[i].physical;
1256 return;
1259 not_found:
1260 trace_info->devid = -1;
1261 trace_info->offset = -1;
1262 trace_info->stripe_nr = -1;
1265 static inline void bio_list_put(struct bio_list *bio_list)
1267 struct bio *bio;
1269 while ((bio = bio_list_pop(bio_list)))
1270 bio_put(bio);
1273 static void assert_rbio(struct btrfs_raid_bio *rbio)
1275 if (!IS_ENABLED(CONFIG_BTRFS_ASSERT))
1276 return;
1279 * At least two stripes (2 disks RAID5), and since real_stripes is U8,
1280 * we won't go beyond 256 disks anyway.
1282 ASSERT_RBIO(rbio->real_stripes >= 2, rbio);
1283 ASSERT_RBIO(rbio->nr_data > 0, rbio);
1286 * This is another check to make sure nr data stripes is smaller
1287 * than total stripes.
1289 ASSERT_RBIO(rbio->nr_data < rbio->real_stripes, rbio);
1292 /* Generate PQ for one vertical stripe. */
1293 static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr)
1295 void **pointers = rbio->finish_pointers;
1296 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1297 struct sector_ptr *sector;
1298 int stripe;
1299 const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6;
1301 /* First collect one sector from each data stripe */
1302 for (stripe = 0; stripe < rbio->nr_data; stripe++) {
1303 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
1304 pointers[stripe] = kmap_local_page(sector->page) +
1305 sector->pgoff;
1308 /* Then add the parity stripe */
1309 sector = rbio_pstripe_sector(rbio, sectornr);
1310 sector->uptodate = 1;
1311 pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff;
1313 if (has_qstripe) {
1315 * RAID6, add the qstripe and call the library function
1316 * to fill in our p/q
1318 sector = rbio_qstripe_sector(rbio, sectornr);
1319 sector->uptodate = 1;
1320 pointers[stripe++] = kmap_local_page(sector->page) +
1321 sector->pgoff;
1323 assert_rbio(rbio);
1324 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
1325 pointers);
1326 } else {
1327 /* raid5 */
1328 memcpy(pointers[rbio->nr_data], pointers[0], sectorsize);
1329 run_xor(pointers + 1, rbio->nr_data - 1, sectorsize);
1331 for (stripe = stripe - 1; stripe >= 0; stripe--)
1332 kunmap_local(pointers[stripe]);
1335 static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio,
1336 struct bio_list *bio_list)
1338 /* The total sector number inside the full stripe. */
1339 int total_sector_nr;
1340 int sectornr;
1341 int stripe;
1342 int ret;
1344 ASSERT(bio_list_size(bio_list) == 0);
1346 /* We should have at least one data sector. */
1347 ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors));
1350 * Reset errors, as we may have errors inherited from from degraded
1351 * write.
1353 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
1356 * Start assembly. Make bios for everything from the higher layers (the
1357 * bio_list in our rbio) and our P/Q. Ignore everything else.
1359 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1360 total_sector_nr++) {
1361 struct sector_ptr *sector;
1363 stripe = total_sector_nr / rbio->stripe_nsectors;
1364 sectornr = total_sector_nr % rbio->stripe_nsectors;
1366 /* This vertical stripe has no data, skip it. */
1367 if (!test_bit(sectornr, &rbio->dbitmap))
1368 continue;
1370 if (stripe < rbio->nr_data) {
1371 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1372 if (!sector)
1373 continue;
1374 } else {
1375 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1378 ret = rbio_add_io_sector(rbio, bio_list, sector, stripe,
1379 sectornr, REQ_OP_WRITE);
1380 if (ret)
1381 goto error;
1384 if (likely(!rbio->bioc->replace_nr_stripes))
1385 return 0;
1388 * Make a copy for the replace target device.
1390 * Thus the source stripe number (in replace_stripe_src) should be valid.
1392 ASSERT(rbio->bioc->replace_stripe_src >= 0);
1394 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
1395 total_sector_nr++) {
1396 struct sector_ptr *sector;
1398 stripe = total_sector_nr / rbio->stripe_nsectors;
1399 sectornr = total_sector_nr % rbio->stripe_nsectors;
1402 * For RAID56, there is only one device that can be replaced,
1403 * and replace_stripe_src[0] indicates the stripe number we
1404 * need to copy from.
1406 if (stripe != rbio->bioc->replace_stripe_src) {
1408 * We can skip the whole stripe completely, note
1409 * total_sector_nr will be increased by one anyway.
1411 ASSERT(sectornr == 0);
1412 total_sector_nr += rbio->stripe_nsectors - 1;
1413 continue;
1416 /* This vertical stripe has no data, skip it. */
1417 if (!test_bit(sectornr, &rbio->dbitmap))
1418 continue;
1420 if (stripe < rbio->nr_data) {
1421 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
1422 if (!sector)
1423 continue;
1424 } else {
1425 sector = rbio_stripe_sector(rbio, stripe, sectornr);
1428 ret = rbio_add_io_sector(rbio, bio_list, sector,
1429 rbio->real_stripes,
1430 sectornr, REQ_OP_WRITE);
1431 if (ret)
1432 goto error;
1435 return 0;
1436 error:
1437 bio_list_put(bio_list);
1438 return -EIO;
1441 static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio)
1443 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1444 u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) -
1445 rbio->bioc->full_stripe_logical;
1446 int total_nr_sector = offset >> fs_info->sectorsize_bits;
1448 ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors);
1450 bitmap_set(rbio->error_bitmap, total_nr_sector,
1451 bio->bi_iter.bi_size >> fs_info->sectorsize_bits);
1454 * Special handling for raid56_alloc_missing_rbio() used by
1455 * scrub/replace. Unlike call path in raid56_parity_recover(), they
1456 * pass an empty bio here. Thus we have to find out the missing device
1457 * and mark the stripe error instead.
1459 if (bio->bi_iter.bi_size == 0) {
1460 bool found_missing = false;
1461 int stripe_nr;
1463 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1464 if (!rbio->bioc->stripes[stripe_nr].dev->bdev) {
1465 found_missing = true;
1466 bitmap_set(rbio->error_bitmap,
1467 stripe_nr * rbio->stripe_nsectors,
1468 rbio->stripe_nsectors);
1471 ASSERT(found_missing);
1476 * For subpage case, we can no longer set page Up-to-date directly for
1477 * stripe_pages[], thus we need to locate the sector.
1479 static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio,
1480 struct page *page,
1481 unsigned int pgoff)
1483 int i;
1485 for (i = 0; i < rbio->nr_sectors; i++) {
1486 struct sector_ptr *sector = &rbio->stripe_sectors[i];
1488 if (sector->page == page && sector->pgoff == pgoff)
1489 return sector;
1491 return NULL;
1495 * this sets each page in the bio uptodate. It should only be used on private
1496 * rbio pages, nothing that comes in from the higher layers
1498 static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio)
1500 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
1501 struct bio_vec *bvec;
1502 struct bvec_iter_all iter_all;
1504 ASSERT(!bio_flagged(bio, BIO_CLONED));
1506 bio_for_each_segment_all(bvec, bio, iter_all) {
1507 struct sector_ptr *sector;
1508 int pgoff;
1510 for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len;
1511 pgoff += sectorsize) {
1512 sector = find_stripe_sector(rbio, bvec->bv_page, pgoff);
1513 ASSERT(sector);
1514 if (sector)
1515 sector->uptodate = 1;
1520 static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio)
1522 struct bio_vec *bv = bio_first_bvec_all(bio);
1523 int i;
1525 for (i = 0; i < rbio->nr_sectors; i++) {
1526 struct sector_ptr *sector;
1528 sector = &rbio->stripe_sectors[i];
1529 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1530 break;
1531 sector = &rbio->bio_sectors[i];
1532 if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset)
1533 break;
1535 ASSERT(i < rbio->nr_sectors);
1536 return i;
1539 static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio)
1541 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1542 u32 bio_size = 0;
1543 struct bio_vec *bvec;
1544 int i;
1546 bio_for_each_bvec_all(bvec, bio, i)
1547 bio_size += bvec->bv_len;
1550 * Since we can have multiple bios touching the error_bitmap, we cannot
1551 * call bitmap_set() without protection.
1553 * Instead use set_bit() for each bit, as set_bit() itself is atomic.
1555 for (i = total_sector_nr; i < total_sector_nr +
1556 (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++)
1557 set_bit(i, rbio->error_bitmap);
1560 /* Verify the data sectors at read time. */
1561 static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio,
1562 struct bio *bio)
1564 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1565 int total_sector_nr = get_bio_sector_nr(rbio, bio);
1566 struct bio_vec *bvec;
1567 struct bvec_iter_all iter_all;
1569 /* No data csum for the whole stripe, no need to verify. */
1570 if (!rbio->csum_bitmap || !rbio->csum_buf)
1571 return;
1573 /* P/Q stripes, they have no data csum to verify against. */
1574 if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors)
1575 return;
1577 bio_for_each_segment_all(bvec, bio, iter_all) {
1578 int bv_offset;
1580 for (bv_offset = bvec->bv_offset;
1581 bv_offset < bvec->bv_offset + bvec->bv_len;
1582 bv_offset += fs_info->sectorsize, total_sector_nr++) {
1583 u8 csum_buf[BTRFS_CSUM_SIZE];
1584 u8 *expected_csum = rbio->csum_buf +
1585 total_sector_nr * fs_info->csum_size;
1586 int ret;
1588 /* No csum for this sector, skip to the next sector. */
1589 if (!test_bit(total_sector_nr, rbio->csum_bitmap))
1590 continue;
1592 ret = btrfs_check_sector_csum(fs_info, bvec->bv_page,
1593 bv_offset, csum_buf, expected_csum);
1594 if (ret < 0)
1595 set_bit(total_sector_nr, rbio->error_bitmap);
1600 static void raid_wait_read_end_io(struct bio *bio)
1602 struct btrfs_raid_bio *rbio = bio->bi_private;
1604 if (bio->bi_status) {
1605 rbio_update_error_bitmap(rbio, bio);
1606 } else {
1607 set_bio_pages_uptodate(rbio, bio);
1608 verify_bio_data_sectors(rbio, bio);
1611 bio_put(bio);
1612 if (atomic_dec_and_test(&rbio->stripes_pending))
1613 wake_up(&rbio->io_wait);
1616 static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio,
1617 struct bio_list *bio_list)
1619 struct bio *bio;
1621 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
1622 while ((bio = bio_list_pop(bio_list))) {
1623 bio->bi_end_io = raid_wait_read_end_io;
1625 if (trace_raid56_read_enabled()) {
1626 struct raid56_bio_trace_info trace_info = { 0 };
1628 bio_get_trace_info(rbio, bio, &trace_info);
1629 trace_raid56_read(rbio, bio, &trace_info);
1631 submit_bio(bio);
1634 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
1637 static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio)
1639 const int data_pages = rbio->nr_data * rbio->stripe_npages;
1640 int ret;
1642 ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages, false);
1643 if (ret < 0)
1644 return ret;
1646 index_stripe_sectors(rbio);
1647 return 0;
1651 * We use plugging call backs to collect full stripes.
1652 * Any time we get a partial stripe write while plugged
1653 * we collect it into a list. When the unplug comes down,
1654 * we sort the list by logical block number and merge
1655 * everything we can into the same rbios
1657 struct btrfs_plug_cb {
1658 struct blk_plug_cb cb;
1659 struct btrfs_fs_info *info;
1660 struct list_head rbio_list;
1664 * rbios on the plug list are sorted for easier merging.
1666 static int plug_cmp(void *priv, const struct list_head *a,
1667 const struct list_head *b)
1669 const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio,
1670 plug_list);
1671 const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio,
1672 plug_list);
1673 u64 a_sector = ra->bio_list.head->bi_iter.bi_sector;
1674 u64 b_sector = rb->bio_list.head->bi_iter.bi_sector;
1676 if (a_sector < b_sector)
1677 return -1;
1678 if (a_sector > b_sector)
1679 return 1;
1680 return 0;
1683 static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule)
1685 struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb);
1686 struct btrfs_raid_bio *cur;
1687 struct btrfs_raid_bio *last = NULL;
1689 list_sort(NULL, &plug->rbio_list, plug_cmp);
1691 while (!list_empty(&plug->rbio_list)) {
1692 cur = list_entry(plug->rbio_list.next,
1693 struct btrfs_raid_bio, plug_list);
1694 list_del_init(&cur->plug_list);
1696 if (rbio_is_full(cur)) {
1697 /* We have a full stripe, queue it down. */
1698 start_async_work(cur, rmw_rbio_work);
1699 continue;
1701 if (last) {
1702 if (rbio_can_merge(last, cur)) {
1703 merge_rbio(last, cur);
1704 free_raid_bio(cur);
1705 continue;
1707 start_async_work(last, rmw_rbio_work);
1709 last = cur;
1711 if (last)
1712 start_async_work(last, rmw_rbio_work);
1713 kfree(plug);
1716 /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */
1717 static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio)
1719 const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1720 const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT;
1721 const u64 full_stripe_start = rbio->bioc->full_stripe_logical;
1722 const u32 orig_len = orig_bio->bi_iter.bi_size;
1723 const u32 sectorsize = fs_info->sectorsize;
1724 u64 cur_logical;
1726 ASSERT_RBIO_LOGICAL(orig_logical >= full_stripe_start &&
1727 orig_logical + orig_len <= full_stripe_start +
1728 rbio->nr_data * BTRFS_STRIPE_LEN,
1729 rbio, orig_logical);
1731 bio_list_add(&rbio->bio_list, orig_bio);
1732 rbio->bio_list_bytes += orig_bio->bi_iter.bi_size;
1734 /* Update the dbitmap. */
1735 for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len;
1736 cur_logical += sectorsize) {
1737 int bit = ((u32)(cur_logical - full_stripe_start) >>
1738 fs_info->sectorsize_bits) % rbio->stripe_nsectors;
1740 set_bit(bit, &rbio->dbitmap);
1745 * our main entry point for writes from the rest of the FS.
1747 void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc)
1749 struct btrfs_fs_info *fs_info = bioc->fs_info;
1750 struct btrfs_raid_bio *rbio;
1751 struct btrfs_plug_cb *plug = NULL;
1752 struct blk_plug_cb *cb;
1754 rbio = alloc_rbio(fs_info, bioc);
1755 if (IS_ERR(rbio)) {
1756 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
1757 bio_endio(bio);
1758 return;
1760 rbio->operation = BTRFS_RBIO_WRITE;
1761 rbio_add_bio(rbio, bio);
1764 * Don't plug on full rbios, just get them out the door
1765 * as quickly as we can
1767 if (!rbio_is_full(rbio)) {
1768 cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug));
1769 if (cb) {
1770 plug = container_of(cb, struct btrfs_plug_cb, cb);
1771 if (!plug->info) {
1772 plug->info = fs_info;
1773 INIT_LIST_HEAD(&plug->rbio_list);
1775 list_add_tail(&rbio->plug_list, &plug->rbio_list);
1776 return;
1781 * Either we don't have any existing plug, or we're doing a full stripe,
1782 * queue the rmw work now.
1784 start_async_work(rbio, rmw_rbio_work);
1787 static int verify_one_sector(struct btrfs_raid_bio *rbio,
1788 int stripe_nr, int sector_nr)
1790 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1791 struct sector_ptr *sector;
1792 u8 csum_buf[BTRFS_CSUM_SIZE];
1793 u8 *csum_expected;
1794 int ret;
1796 if (!rbio->csum_bitmap || !rbio->csum_buf)
1797 return 0;
1799 /* No way to verify P/Q as they are not covered by data csum. */
1800 if (stripe_nr >= rbio->nr_data)
1801 return 0;
1803 * If we're rebuilding a read, we have to use pages from the
1804 * bio list if possible.
1806 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1807 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1808 } else {
1809 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1812 ASSERT(sector->page);
1814 csum_expected = rbio->csum_buf +
1815 (stripe_nr * rbio->stripe_nsectors + sector_nr) *
1816 fs_info->csum_size;
1817 ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff,
1818 csum_buf, csum_expected);
1819 return ret;
1823 * Recover a vertical stripe specified by @sector_nr.
1824 * @*pointers are the pre-allocated pointers by the caller, so we don't
1825 * need to allocate/free the pointers again and again.
1827 static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr,
1828 void **pointers, void **unmap_array)
1830 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
1831 struct sector_ptr *sector;
1832 const u32 sectorsize = fs_info->sectorsize;
1833 int found_errors;
1834 int faila;
1835 int failb;
1836 int stripe_nr;
1837 int ret = 0;
1840 * Now we just use bitmap to mark the horizontal stripes in
1841 * which we have data when doing parity scrub.
1843 if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB &&
1844 !test_bit(sector_nr, &rbio->dbitmap))
1845 return 0;
1847 found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila,
1848 &failb);
1850 * No errors in the vertical stripe, skip it. Can happen for recovery
1851 * which only part of a stripe failed csum check.
1853 if (!found_errors)
1854 return 0;
1856 if (found_errors > rbio->bioc->max_errors)
1857 return -EIO;
1860 * Setup our array of pointers with sectors from each stripe
1862 * NOTE: store a duplicate array of pointers to preserve the
1863 * pointer order.
1865 for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) {
1867 * If we're rebuilding a read, we have to use pages from the
1868 * bio list if possible.
1870 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
1871 sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0);
1872 } else {
1873 sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr);
1875 ASSERT(sector->page);
1876 pointers[stripe_nr] = kmap_local_page(sector->page) +
1877 sector->pgoff;
1878 unmap_array[stripe_nr] = pointers[stripe_nr];
1881 /* All raid6 handling here */
1882 if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) {
1883 /* Single failure, rebuild from parity raid5 style */
1884 if (failb < 0) {
1885 if (faila == rbio->nr_data)
1887 * Just the P stripe has failed, without
1888 * a bad data or Q stripe.
1889 * We have nothing to do, just skip the
1890 * recovery for this stripe.
1892 goto cleanup;
1894 * a single failure in raid6 is rebuilt
1895 * in the pstripe code below
1897 goto pstripe;
1901 * If the q stripe is failed, do a pstripe reconstruction from
1902 * the xors.
1903 * If both the q stripe and the P stripe are failed, we're
1904 * here due to a crc mismatch and we can't give them the
1905 * data they want.
1907 if (failb == rbio->real_stripes - 1) {
1908 if (faila == rbio->real_stripes - 2)
1910 * Only P and Q are corrupted.
1911 * We only care about data stripes recovery,
1912 * can skip this vertical stripe.
1914 goto cleanup;
1916 * Otherwise we have one bad data stripe and
1917 * a good P stripe. raid5!
1919 goto pstripe;
1922 if (failb == rbio->real_stripes - 2) {
1923 raid6_datap_recov(rbio->real_stripes, sectorsize,
1924 faila, pointers);
1925 } else {
1926 raid6_2data_recov(rbio->real_stripes, sectorsize,
1927 faila, failb, pointers);
1929 } else {
1930 void *p;
1932 /* Rebuild from P stripe here (raid5 or raid6). */
1933 ASSERT(failb == -1);
1934 pstripe:
1935 /* Copy parity block into failed block to start with */
1936 memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize);
1938 /* Rearrange the pointer array */
1939 p = pointers[faila];
1940 for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1;
1941 stripe_nr++)
1942 pointers[stripe_nr] = pointers[stripe_nr + 1];
1943 pointers[rbio->nr_data - 1] = p;
1945 /* Xor in the rest */
1946 run_xor(pointers, rbio->nr_data - 1, sectorsize);
1951 * No matter if this is a RMW or recovery, we should have all
1952 * failed sectors repaired in the vertical stripe, thus they are now
1953 * uptodate.
1954 * Especially if we determine to cache the rbio, we need to
1955 * have at least all data sectors uptodate.
1957 * If possible, also check if the repaired sector matches its data
1958 * checksum.
1960 if (faila >= 0) {
1961 ret = verify_one_sector(rbio, faila, sector_nr);
1962 if (ret < 0)
1963 goto cleanup;
1965 sector = rbio_stripe_sector(rbio, faila, sector_nr);
1966 sector->uptodate = 1;
1968 if (failb >= 0) {
1969 ret = verify_one_sector(rbio, failb, sector_nr);
1970 if (ret < 0)
1971 goto cleanup;
1973 sector = rbio_stripe_sector(rbio, failb, sector_nr);
1974 sector->uptodate = 1;
1977 cleanup:
1978 for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--)
1979 kunmap_local(unmap_array[stripe_nr]);
1980 return ret;
1983 static int recover_sectors(struct btrfs_raid_bio *rbio)
1985 void **pointers = NULL;
1986 void **unmap_array = NULL;
1987 int sectornr;
1988 int ret = 0;
1991 * @pointers array stores the pointer for each sector.
1993 * @unmap_array stores copy of pointers that does not get reordered
1994 * during reconstruction so that kunmap_local works.
1996 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1997 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
1998 if (!pointers || !unmap_array) {
1999 ret = -ENOMEM;
2000 goto out;
2003 if (rbio->operation == BTRFS_RBIO_READ_REBUILD) {
2004 spin_lock(&rbio->bio_list_lock);
2005 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2006 spin_unlock(&rbio->bio_list_lock);
2009 index_rbio_pages(rbio);
2011 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2012 ret = recover_vertical(rbio, sectornr, pointers, unmap_array);
2013 if (ret < 0)
2014 break;
2017 out:
2018 kfree(pointers);
2019 kfree(unmap_array);
2020 return ret;
2023 static void recover_rbio(struct btrfs_raid_bio *rbio)
2025 struct bio_list bio_list = BIO_EMPTY_LIST;
2026 int total_sector_nr;
2027 int ret = 0;
2030 * Either we're doing recover for a read failure or degraded write,
2031 * caller should have set error bitmap correctly.
2033 ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors));
2035 /* For recovery, we need to read all sectors including P/Q. */
2036 ret = alloc_rbio_pages(rbio);
2037 if (ret < 0)
2038 goto out;
2040 index_rbio_pages(rbio);
2043 * Read everything that hasn't failed. However this time we will
2044 * not trust any cached sector.
2045 * As we may read out some stale data but higher layer is not reading
2046 * that stale part.
2048 * So here we always re-read everything in recovery path.
2050 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2051 total_sector_nr++) {
2052 int stripe = total_sector_nr / rbio->stripe_nsectors;
2053 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2054 struct sector_ptr *sector;
2057 * Skip the range which has error. It can be a range which is
2058 * marked error (for csum mismatch), or it can be a missing
2059 * device.
2061 if (!rbio->bioc->stripes[stripe].dev->bdev ||
2062 test_bit(total_sector_nr, rbio->error_bitmap)) {
2064 * Also set the error bit for missing device, which
2065 * may not yet have its error bit set.
2067 set_bit(total_sector_nr, rbio->error_bitmap);
2068 continue;
2071 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2072 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2073 sectornr, REQ_OP_READ);
2074 if (ret < 0) {
2075 bio_list_put(&bio_list);
2076 goto out;
2080 submit_read_wait_bio_list(rbio, &bio_list);
2081 ret = recover_sectors(rbio);
2082 out:
2083 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2086 static void recover_rbio_work(struct work_struct *work)
2088 struct btrfs_raid_bio *rbio;
2090 rbio = container_of(work, struct btrfs_raid_bio, work);
2091 if (!lock_stripe_add(rbio))
2092 recover_rbio(rbio);
2095 static void recover_rbio_work_locked(struct work_struct *work)
2097 recover_rbio(container_of(work, struct btrfs_raid_bio, work));
2100 static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num)
2102 bool found = false;
2103 int sector_nr;
2106 * This is for RAID6 extra recovery tries, thus mirror number should
2107 * be large than 2.
2108 * Mirror 1 means read from data stripes. Mirror 2 means rebuild using
2109 * RAID5 methods.
2111 ASSERT(mirror_num > 2);
2112 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2113 int found_errors;
2114 int faila;
2115 int failb;
2117 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2118 &faila, &failb);
2119 /* This vertical stripe doesn't have errors. */
2120 if (!found_errors)
2121 continue;
2124 * If we found errors, there should be only one error marked
2125 * by previous set_rbio_range_error().
2127 ASSERT(found_errors == 1);
2128 found = true;
2130 /* Now select another stripe to mark as error. */
2131 failb = rbio->real_stripes - (mirror_num - 1);
2132 if (failb <= faila)
2133 failb--;
2135 /* Set the extra bit in error bitmap. */
2136 if (failb >= 0)
2137 set_bit(failb * rbio->stripe_nsectors + sector_nr,
2138 rbio->error_bitmap);
2141 /* We should found at least one vertical stripe with error.*/
2142 ASSERT(found);
2146 * the main entry point for reads from the higher layers. This
2147 * is really only called when the normal read path had a failure,
2148 * so we assume the bio they send down corresponds to a failed part
2149 * of the drive.
2151 void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc,
2152 int mirror_num)
2154 struct btrfs_fs_info *fs_info = bioc->fs_info;
2155 struct btrfs_raid_bio *rbio;
2157 rbio = alloc_rbio(fs_info, bioc);
2158 if (IS_ERR(rbio)) {
2159 bio->bi_status = errno_to_blk_status(PTR_ERR(rbio));
2160 bio_endio(bio);
2161 return;
2164 rbio->operation = BTRFS_RBIO_READ_REBUILD;
2165 rbio_add_bio(rbio, bio);
2167 set_rbio_range_error(rbio, bio);
2170 * Loop retry:
2171 * for 'mirror == 2', reconstruct from all other stripes.
2172 * for 'mirror_num > 2', select a stripe to fail on every retry.
2174 if (mirror_num > 2)
2175 set_rbio_raid6_extra_error(rbio, mirror_num);
2177 start_async_work(rbio, recover_rbio_work);
2180 static void fill_data_csums(struct btrfs_raid_bio *rbio)
2182 struct btrfs_fs_info *fs_info = rbio->bioc->fs_info;
2183 struct btrfs_root *csum_root = btrfs_csum_root(fs_info,
2184 rbio->bioc->full_stripe_logical);
2185 const u64 start = rbio->bioc->full_stripe_logical;
2186 const u32 len = (rbio->nr_data * rbio->stripe_nsectors) <<
2187 fs_info->sectorsize_bits;
2188 int ret;
2190 /* The rbio should not have its csum buffer initialized. */
2191 ASSERT(!rbio->csum_buf && !rbio->csum_bitmap);
2194 * Skip the csum search if:
2196 * - The rbio doesn't belong to data block groups
2197 * Then we are doing IO for tree blocks, no need to search csums.
2199 * - The rbio belongs to mixed block groups
2200 * This is to avoid deadlock, as we're already holding the full
2201 * stripe lock, if we trigger a metadata read, and it needs to do
2202 * raid56 recovery, we will deadlock.
2204 if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) ||
2205 rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA)
2206 return;
2208 rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors *
2209 fs_info->csum_size, GFP_NOFS);
2210 rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors,
2211 GFP_NOFS);
2212 if (!rbio->csum_buf || !rbio->csum_bitmap) {
2213 ret = -ENOMEM;
2214 goto error;
2217 ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1,
2218 rbio->csum_buf, rbio->csum_bitmap);
2219 if (ret < 0)
2220 goto error;
2221 if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits))
2222 goto no_csum;
2223 return;
2225 error:
2227 * We failed to allocate memory or grab the csum, but it's not fatal,
2228 * we can still continue. But better to warn users that RMW is no
2229 * longer safe for this particular sub-stripe write.
2231 btrfs_warn_rl(fs_info,
2232 "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d",
2233 rbio->bioc->full_stripe_logical, ret);
2234 no_csum:
2235 kfree(rbio->csum_buf);
2236 bitmap_free(rbio->csum_bitmap);
2237 rbio->csum_buf = NULL;
2238 rbio->csum_bitmap = NULL;
2241 static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio)
2243 struct bio_list bio_list = BIO_EMPTY_LIST;
2244 int total_sector_nr;
2245 int ret = 0;
2248 * Fill the data csums we need for data verification. We need to fill
2249 * the csum_bitmap/csum_buf first, as our endio function will try to
2250 * verify the data sectors.
2252 fill_data_csums(rbio);
2255 * Build a list of bios to read all sectors (including data and P/Q).
2257 * This behavior is to compensate the later csum verification and recovery.
2259 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2260 total_sector_nr++) {
2261 struct sector_ptr *sector;
2262 int stripe = total_sector_nr / rbio->stripe_nsectors;
2263 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2265 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2266 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2267 stripe, sectornr, REQ_OP_READ);
2268 if (ret) {
2269 bio_list_put(&bio_list);
2270 return ret;
2275 * We may or may not have any corrupted sectors (including missing dev
2276 * and csum mismatch), just let recover_sectors() to handle them all.
2278 submit_read_wait_bio_list(rbio, &bio_list);
2279 return recover_sectors(rbio);
2282 static void raid_wait_write_end_io(struct bio *bio)
2284 struct btrfs_raid_bio *rbio = bio->bi_private;
2285 blk_status_t err = bio->bi_status;
2287 if (err)
2288 rbio_update_error_bitmap(rbio, bio);
2289 bio_put(bio);
2290 if (atomic_dec_and_test(&rbio->stripes_pending))
2291 wake_up(&rbio->io_wait);
2294 static void submit_write_bios(struct btrfs_raid_bio *rbio,
2295 struct bio_list *bio_list)
2297 struct bio *bio;
2299 atomic_set(&rbio->stripes_pending, bio_list_size(bio_list));
2300 while ((bio = bio_list_pop(bio_list))) {
2301 bio->bi_end_io = raid_wait_write_end_io;
2303 if (trace_raid56_write_enabled()) {
2304 struct raid56_bio_trace_info trace_info = { 0 };
2306 bio_get_trace_info(rbio, bio, &trace_info);
2307 trace_raid56_write(rbio, bio, &trace_info);
2309 submit_bio(bio);
2314 * To determine if we need to read any sector from the disk.
2315 * Should only be utilized in RMW path, to skip cached rbio.
2317 static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio)
2319 int i;
2321 for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) {
2322 struct sector_ptr *sector = &rbio->stripe_sectors[i];
2325 * We have a sector which doesn't have page nor uptodate,
2326 * thus this rbio can not be cached one, as cached one must
2327 * have all its data sectors present and uptodate.
2329 if (!sector->page || !sector->uptodate)
2330 return true;
2332 return false;
2335 static void rmw_rbio(struct btrfs_raid_bio *rbio)
2337 struct bio_list bio_list;
2338 int sectornr;
2339 int ret = 0;
2342 * Allocate the pages for parity first, as P/Q pages will always be
2343 * needed for both full-stripe and sub-stripe writes.
2345 ret = alloc_rbio_parity_pages(rbio);
2346 if (ret < 0)
2347 goto out;
2350 * Either full stripe write, or we have every data sector already
2351 * cached, can go to write path immediately.
2353 if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) {
2355 * Now we're doing sub-stripe write, also need all data stripes
2356 * to do the full RMW.
2358 ret = alloc_rbio_data_pages(rbio);
2359 if (ret < 0)
2360 goto out;
2362 index_rbio_pages(rbio);
2364 ret = rmw_read_wait_recover(rbio);
2365 if (ret < 0)
2366 goto out;
2370 * At this stage we're not allowed to add any new bios to the
2371 * bio list any more, anyone else that wants to change this stripe
2372 * needs to do their own rmw.
2374 spin_lock(&rbio->bio_list_lock);
2375 set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
2376 spin_unlock(&rbio->bio_list_lock);
2378 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2380 index_rbio_pages(rbio);
2383 * We don't cache full rbios because we're assuming
2384 * the higher layers are unlikely to use this area of
2385 * the disk again soon. If they do use it again,
2386 * hopefully they will send another full bio.
2388 if (!rbio_is_full(rbio))
2389 cache_rbio_pages(rbio);
2390 else
2391 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2393 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++)
2394 generate_pq_vertical(rbio, sectornr);
2396 bio_list_init(&bio_list);
2397 ret = rmw_assemble_write_bios(rbio, &bio_list);
2398 if (ret < 0)
2399 goto out;
2401 /* We should have at least one bio assembled. */
2402 ASSERT(bio_list_size(&bio_list));
2403 submit_write_bios(rbio, &bio_list);
2404 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2406 /* We may have more errors than our tolerance during the read. */
2407 for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) {
2408 int found_errors;
2410 found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL);
2411 if (found_errors > rbio->bioc->max_errors) {
2412 ret = -EIO;
2413 break;
2416 out:
2417 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2420 static void rmw_rbio_work(struct work_struct *work)
2422 struct btrfs_raid_bio *rbio;
2424 rbio = container_of(work, struct btrfs_raid_bio, work);
2425 if (lock_stripe_add(rbio) == 0)
2426 rmw_rbio(rbio);
2429 static void rmw_rbio_work_locked(struct work_struct *work)
2431 rmw_rbio(container_of(work, struct btrfs_raid_bio, work));
2435 * The following code is used to scrub/replace the parity stripe
2437 * Caller must have already increased bio_counter for getting @bioc.
2439 * Note: We need make sure all the pages that add into the scrub/replace
2440 * raid bio are correct and not be changed during the scrub/replace. That
2441 * is those pages just hold metadata or file data with checksum.
2444 struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio,
2445 struct btrfs_io_context *bioc,
2446 struct btrfs_device *scrub_dev,
2447 unsigned long *dbitmap, int stripe_nsectors)
2449 struct btrfs_fs_info *fs_info = bioc->fs_info;
2450 struct btrfs_raid_bio *rbio;
2451 int i;
2453 rbio = alloc_rbio(fs_info, bioc);
2454 if (IS_ERR(rbio))
2455 return NULL;
2456 bio_list_add(&rbio->bio_list, bio);
2458 * This is a special bio which is used to hold the completion handler
2459 * and make the scrub rbio is similar to the other types
2461 ASSERT(!bio->bi_iter.bi_size);
2462 rbio->operation = BTRFS_RBIO_PARITY_SCRUB;
2465 * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted
2466 * to the end position, so this search can start from the first parity
2467 * stripe.
2469 for (i = rbio->nr_data; i < rbio->real_stripes; i++) {
2470 if (bioc->stripes[i].dev == scrub_dev) {
2471 rbio->scrubp = i;
2472 break;
2475 ASSERT_RBIO_STRIPE(i < rbio->real_stripes, rbio, i);
2477 bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors);
2478 return rbio;
2482 * We just scrub the parity that we have correct data on the same horizontal,
2483 * so we needn't allocate all pages for all the stripes.
2485 static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio)
2487 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2488 int total_sector_nr;
2490 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2491 total_sector_nr++) {
2492 struct page *page;
2493 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2494 int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT;
2496 if (!test_bit(sectornr, &rbio->dbitmap))
2497 continue;
2498 if (rbio->stripe_pages[index])
2499 continue;
2500 page = alloc_page(GFP_NOFS);
2501 if (!page)
2502 return -ENOMEM;
2503 rbio->stripe_pages[index] = page;
2505 index_stripe_sectors(rbio);
2506 return 0;
2509 static int finish_parity_scrub(struct btrfs_raid_bio *rbio)
2511 struct btrfs_io_context *bioc = rbio->bioc;
2512 const u32 sectorsize = bioc->fs_info->sectorsize;
2513 void **pointers = rbio->finish_pointers;
2514 unsigned long *pbitmap = &rbio->finish_pbitmap;
2515 int nr_data = rbio->nr_data;
2516 int stripe;
2517 int sectornr;
2518 bool has_qstripe;
2519 struct sector_ptr p_sector = { 0 };
2520 struct sector_ptr q_sector = { 0 };
2521 struct bio_list bio_list;
2522 int is_replace = 0;
2523 int ret;
2525 bio_list_init(&bio_list);
2527 if (rbio->real_stripes - rbio->nr_data == 1)
2528 has_qstripe = false;
2529 else if (rbio->real_stripes - rbio->nr_data == 2)
2530 has_qstripe = true;
2531 else
2532 BUG();
2535 * Replace is running and our P/Q stripe is being replaced, then we
2536 * need to duplicate the final write to replace target.
2538 if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) {
2539 is_replace = 1;
2540 bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors);
2544 * Because the higher layers(scrubber) are unlikely to
2545 * use this area of the disk again soon, so don't cache
2546 * it.
2548 clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
2550 p_sector.page = alloc_page(GFP_NOFS);
2551 if (!p_sector.page)
2552 return -ENOMEM;
2553 p_sector.pgoff = 0;
2554 p_sector.uptodate = 1;
2556 if (has_qstripe) {
2557 /* RAID6, allocate and map temp space for the Q stripe */
2558 q_sector.page = alloc_page(GFP_NOFS);
2559 if (!q_sector.page) {
2560 __free_page(p_sector.page);
2561 p_sector.page = NULL;
2562 return -ENOMEM;
2564 q_sector.pgoff = 0;
2565 q_sector.uptodate = 1;
2566 pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page);
2569 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2571 /* Map the parity stripe just once */
2572 pointers[nr_data] = kmap_local_page(p_sector.page);
2574 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2575 struct sector_ptr *sector;
2576 void *parity;
2578 /* first collect one page from each data stripe */
2579 for (stripe = 0; stripe < nr_data; stripe++) {
2580 sector = sector_in_rbio(rbio, stripe, sectornr, 0);
2581 pointers[stripe] = kmap_local_page(sector->page) +
2582 sector->pgoff;
2585 if (has_qstripe) {
2586 assert_rbio(rbio);
2587 /* RAID6, call the library function to fill in our P/Q */
2588 raid6_call.gen_syndrome(rbio->real_stripes, sectorsize,
2589 pointers);
2590 } else {
2591 /* raid5 */
2592 memcpy(pointers[nr_data], pointers[0], sectorsize);
2593 run_xor(pointers + 1, nr_data - 1, sectorsize);
2596 /* Check scrubbing parity and repair it */
2597 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2598 parity = kmap_local_page(sector->page) + sector->pgoff;
2599 if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0)
2600 memcpy(parity, pointers[rbio->scrubp], sectorsize);
2601 else
2602 /* Parity is right, needn't writeback */
2603 bitmap_clear(&rbio->dbitmap, sectornr, 1);
2604 kunmap_local(parity);
2606 for (stripe = nr_data - 1; stripe >= 0; stripe--)
2607 kunmap_local(pointers[stripe]);
2610 kunmap_local(pointers[nr_data]);
2611 __free_page(p_sector.page);
2612 p_sector.page = NULL;
2613 if (q_sector.page) {
2614 kunmap_local(pointers[rbio->real_stripes - 1]);
2615 __free_page(q_sector.page);
2616 q_sector.page = NULL;
2620 * time to start writing. Make bios for everything from the
2621 * higher layers (the bio_list in our rbio) and our p/q. Ignore
2622 * everything else.
2624 for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) {
2625 struct sector_ptr *sector;
2627 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2628 ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp,
2629 sectornr, REQ_OP_WRITE);
2630 if (ret)
2631 goto cleanup;
2634 if (!is_replace)
2635 goto submit_write;
2638 * Replace is running and our parity stripe needs to be duplicated to
2639 * the target device. Check we have a valid source stripe number.
2641 ASSERT_RBIO(rbio->bioc->replace_stripe_src >= 0, rbio);
2642 for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) {
2643 struct sector_ptr *sector;
2645 sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr);
2646 ret = rbio_add_io_sector(rbio, &bio_list, sector,
2647 rbio->real_stripes,
2648 sectornr, REQ_OP_WRITE);
2649 if (ret)
2650 goto cleanup;
2653 submit_write:
2654 submit_write_bios(rbio, &bio_list);
2655 return 0;
2657 cleanup:
2658 bio_list_put(&bio_list);
2659 return ret;
2662 static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe)
2664 if (stripe >= 0 && stripe < rbio->nr_data)
2665 return 1;
2666 return 0;
2669 static int recover_scrub_rbio(struct btrfs_raid_bio *rbio)
2671 void **pointers = NULL;
2672 void **unmap_array = NULL;
2673 int sector_nr;
2674 int ret = 0;
2677 * @pointers array stores the pointer for each sector.
2679 * @unmap_array stores copy of pointers that does not get reordered
2680 * during reconstruction so that kunmap_local works.
2682 pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2683 unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS);
2684 if (!pointers || !unmap_array) {
2685 ret = -ENOMEM;
2686 goto out;
2689 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2690 int dfail = 0, failp = -1;
2691 int faila;
2692 int failb;
2693 int found_errors;
2695 found_errors = get_rbio_veritical_errors(rbio, sector_nr,
2696 &faila, &failb);
2697 if (found_errors > rbio->bioc->max_errors) {
2698 ret = -EIO;
2699 goto out;
2701 if (found_errors == 0)
2702 continue;
2704 /* We should have at least one error here. */
2705 ASSERT(faila >= 0 || failb >= 0);
2707 if (is_data_stripe(rbio, faila))
2708 dfail++;
2709 else if (is_parity_stripe(faila))
2710 failp = faila;
2712 if (is_data_stripe(rbio, failb))
2713 dfail++;
2714 else if (is_parity_stripe(failb))
2715 failp = failb;
2717 * Because we can not use a scrubbing parity to repair the
2718 * data, so the capability of the repair is declined. (In the
2719 * case of RAID5, we can not repair anything.)
2721 if (dfail > rbio->bioc->max_errors - 1) {
2722 ret = -EIO;
2723 goto out;
2726 * If all data is good, only parity is correctly, just repair
2727 * the parity, no need to recover data stripes.
2729 if (dfail == 0)
2730 continue;
2733 * Here means we got one corrupted data stripe and one
2734 * corrupted parity on RAID6, if the corrupted parity is
2735 * scrubbing parity, luckily, use the other one to repair the
2736 * data, or we can not repair the data stripe.
2738 if (failp != rbio->scrubp) {
2739 ret = -EIO;
2740 goto out;
2743 ret = recover_vertical(rbio, sector_nr, pointers, unmap_array);
2744 if (ret < 0)
2745 goto out;
2747 out:
2748 kfree(pointers);
2749 kfree(unmap_array);
2750 return ret;
2753 static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio)
2755 struct bio_list bio_list = BIO_EMPTY_LIST;
2756 int total_sector_nr;
2757 int ret = 0;
2759 /* Build a list of bios to read all the missing parts. */
2760 for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors;
2761 total_sector_nr++) {
2762 int sectornr = total_sector_nr % rbio->stripe_nsectors;
2763 int stripe = total_sector_nr / rbio->stripe_nsectors;
2764 struct sector_ptr *sector;
2766 /* No data in the vertical stripe, no need to read. */
2767 if (!test_bit(sectornr, &rbio->dbitmap))
2768 continue;
2771 * We want to find all the sectors missing from the rbio and
2772 * read them from the disk. If sector_in_rbio() finds a sector
2773 * in the bio list we don't need to read it off the stripe.
2775 sector = sector_in_rbio(rbio, stripe, sectornr, 1);
2776 if (sector)
2777 continue;
2779 sector = rbio_stripe_sector(rbio, stripe, sectornr);
2781 * The bio cache may have handed us an uptodate sector. If so,
2782 * use it.
2784 if (sector->uptodate)
2785 continue;
2787 ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe,
2788 sectornr, REQ_OP_READ);
2789 if (ret) {
2790 bio_list_put(&bio_list);
2791 return ret;
2795 submit_read_wait_bio_list(rbio, &bio_list);
2796 return 0;
2799 static void scrub_rbio(struct btrfs_raid_bio *rbio)
2801 int sector_nr;
2802 int ret;
2804 ret = alloc_rbio_essential_pages(rbio);
2805 if (ret)
2806 goto out;
2808 bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors);
2810 ret = scrub_assemble_read_bios(rbio);
2811 if (ret < 0)
2812 goto out;
2814 /* We may have some failures, recover the failed sectors first. */
2815 ret = recover_scrub_rbio(rbio);
2816 if (ret < 0)
2817 goto out;
2820 * We have every sector properly prepared. Can finish the scrub
2821 * and writeback the good content.
2823 ret = finish_parity_scrub(rbio);
2824 wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0);
2825 for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) {
2826 int found_errors;
2828 found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL);
2829 if (found_errors > rbio->bioc->max_errors) {
2830 ret = -EIO;
2831 break;
2834 out:
2835 rbio_orig_end_io(rbio, errno_to_blk_status(ret));
2838 static void scrub_rbio_work_locked(struct work_struct *work)
2840 scrub_rbio(container_of(work, struct btrfs_raid_bio, work));
2843 void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio)
2845 if (!lock_stripe_add(rbio))
2846 start_async_work(rbio, scrub_rbio_work_locked);
2850 * This is for scrub call sites where we already have correct data contents.
2851 * This allows us to avoid reading data stripes again.
2853 * Unfortunately here we have to do page copy, other than reusing the pages.
2854 * This is due to the fact rbio has its own page management for its cache.
2856 void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio,
2857 struct page **data_pages, u64 data_logical)
2859 const u64 offset_in_full_stripe = data_logical -
2860 rbio->bioc->full_stripe_logical;
2861 const int page_index = offset_in_full_stripe >> PAGE_SHIFT;
2862 const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
2863 const u32 sectors_per_page = PAGE_SIZE / sectorsize;
2864 int ret;
2867 * If we hit ENOMEM temporarily, but later at
2868 * raid56_parity_submit_scrub_rbio() time it succeeded, we just do
2869 * the extra read, not a big deal.
2871 * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time,
2872 * the bio would got proper error number set.
2874 ret = alloc_rbio_data_pages(rbio);
2875 if (ret < 0)
2876 return;
2878 /* data_logical must be at stripe boundary and inside the full stripe. */
2879 ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN));
2880 ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT));
2882 for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) {
2883 struct page *dst = rbio->stripe_pages[page_nr + page_index];
2884 struct page *src = data_pages[page_nr];
2886 memcpy_page(dst, 0, src, 0, PAGE_SIZE);
2887 for (int sector_nr = sectors_per_page * page_index;
2888 sector_nr < sectors_per_page * (page_index + 1);
2889 sector_nr++)
2890 rbio->stripe_sectors[sector_nr].uptodate = true;