1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2009 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/pagemap.h>
8 #include <linux/writeback.h>
9 #include <linux/blkdev.h>
10 #include <linux/rbtree.h>
11 #include <linux/slab.h>
12 #include <linux/error-injection.h>
15 #include "transaction.h"
18 #include "btrfs_inode.h"
19 #include "async-thread.h"
20 #include "free-space-cache.h"
22 #include "print-tree.h"
23 #include "delalloc-space.h"
24 #include "block-group.h"
29 #include "inode-item.h"
30 #include "space-info.h"
32 #include "accessors.h"
33 #include "extent-tree.h"
34 #include "root-tree.h"
35 #include "file-item.h"
36 #include "relocation.h"
38 #include "tree-checker.h"
39 #include "raid-stripe-tree.h"
44 * [What does relocation do]
46 * The objective of relocation is to relocate all extents of the target block
47 * group to other block groups.
48 * This is utilized by resize (shrink only), profile converting, compacting
49 * space, or balance routine to spread chunks over devices.
52 * ------------------------------------------------------------------
53 * BG A: 10 data extents | BG A: deleted
54 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
55 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
57 * [How does relocation work]
59 * 1. Mark the target block group read-only
60 * New extents won't be allocated from the target block group.
62 * 2.1 Record each extent in the target block group
63 * To build a proper map of extents to be relocated.
65 * 2.2 Build data reloc tree and reloc trees
66 * Data reloc tree will contain an inode, recording all newly relocated
68 * There will be only one data reloc tree for one data block group.
70 * Reloc tree will be a special snapshot of its source tree, containing
71 * relocated tree blocks.
72 * Each tree referring to a tree block in target block group will get its
75 * 2.3 Swap source tree with its corresponding reloc tree
76 * Each involved tree only refers to new extents after swap.
78 * 3. Cleanup reloc trees and data reloc tree.
79 * As old extents in the target block group are still referenced by reloc
80 * trees, we need to clean them up before really freeing the target block
83 * The main complexity is in steps 2.2 and 2.3.
85 * The entry point of relocation is relocate_block_group() function.
88 #define RELOCATION_RESERVED_NODES 256
90 * map address of tree root to tree
94 struct rb_node rb_node
;
96 }; /* Use rb_simle_node for search/insert */
100 struct mapping_tree
{
101 struct rb_root rb_root
;
106 * present a tree block to process
110 struct rb_node rb_node
;
112 }; /* Use rb_simple_node for search/insert */
114 struct btrfs_key key
;
119 #define MAX_EXTENTS 128
121 struct file_extent_cluster
{
124 u64 boundary
[MAX_EXTENTS
];
129 /* Stages of data relocation. */
135 struct reloc_control
{
136 /* block group to relocate */
137 struct btrfs_block_group
*block_group
;
139 struct btrfs_root
*extent_root
;
140 /* inode for moving data */
141 struct inode
*data_inode
;
143 struct btrfs_block_rsv
*block_rsv
;
145 struct btrfs_backref_cache backref_cache
;
147 struct file_extent_cluster cluster
;
148 /* tree blocks have been processed */
149 struct extent_io_tree processed_blocks
;
150 /* map start of tree root to corresponding reloc tree */
151 struct mapping_tree reloc_root_tree
;
152 /* list of reloc trees */
153 struct list_head reloc_roots
;
154 /* list of subvolume trees that get relocated */
155 struct list_head dirty_subvol_roots
;
156 /* size of metadata reservation for merging reloc trees */
157 u64 merging_rsv_size
;
158 /* size of relocated tree nodes */
160 /* reserved size for block group relocation*/
166 enum reloc_stage stage
;
167 bool create_reloc_tree
;
168 bool merge_reloc_tree
;
169 bool found_file_extent
;
172 static void mark_block_processed(struct reloc_control
*rc
,
173 struct btrfs_backref_node
*node
)
177 if (node
->level
== 0 ||
178 in_range(node
->bytenr
, rc
->block_group
->start
,
179 rc
->block_group
->length
)) {
180 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
181 set_extent_bit(&rc
->processed_blocks
, node
->bytenr
,
182 node
->bytenr
+ blocksize
- 1, EXTENT_DIRTY
, NULL
);
188 * walk up backref nodes until reach node presents tree root
190 static struct btrfs_backref_node
*walk_up_backref(
191 struct btrfs_backref_node
*node
,
192 struct btrfs_backref_edge
*edges
[], int *index
)
194 struct btrfs_backref_edge
*edge
;
197 while (!list_empty(&node
->upper
)) {
198 edge
= list_entry(node
->upper
.next
,
199 struct btrfs_backref_edge
, list
[LOWER
]);
201 node
= edge
->node
[UPPER
];
203 BUG_ON(node
->detached
);
209 * walk down backref nodes to find start of next reference path
211 static struct btrfs_backref_node
*walk_down_backref(
212 struct btrfs_backref_edge
*edges
[], int *index
)
214 struct btrfs_backref_edge
*edge
;
215 struct btrfs_backref_node
*lower
;
219 edge
= edges
[idx
- 1];
220 lower
= edge
->node
[LOWER
];
221 if (list_is_last(&edge
->list
[LOWER
], &lower
->upper
)) {
225 edge
= list_entry(edge
->list
[LOWER
].next
,
226 struct btrfs_backref_edge
, list
[LOWER
]);
227 edges
[idx
- 1] = edge
;
229 return edge
->node
[UPPER
];
235 static bool reloc_root_is_dead(const struct btrfs_root
*root
)
238 * Pair with set_bit/clear_bit in clean_dirty_subvols and
239 * btrfs_update_reloc_root. We need to see the updated bit before
240 * trying to access reloc_root
243 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
))
249 * Check if this subvolume tree has valid reloc tree.
251 * Reloc tree after swap is considered dead, thus not considered as valid.
252 * This is enough for most callers, as they don't distinguish dead reloc root
253 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
256 static bool have_reloc_root(const struct btrfs_root
*root
)
258 if (reloc_root_is_dead(root
))
260 if (!root
->reloc_root
)
265 bool btrfs_should_ignore_reloc_root(const struct btrfs_root
*root
)
267 struct btrfs_root
*reloc_root
;
269 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
272 /* This root has been merged with its reloc tree, we can ignore it */
273 if (reloc_root_is_dead(root
))
276 reloc_root
= root
->reloc_root
;
280 if (btrfs_header_generation(reloc_root
->commit_root
) ==
281 root
->fs_info
->running_transaction
->transid
)
284 * If there is reloc tree and it was created in previous transaction
285 * backref lookup can find the reloc tree, so backref node for the fs
286 * tree root is useless for relocation.
292 * find reloc tree by address of tree root
294 struct btrfs_root
*find_reloc_root(struct btrfs_fs_info
*fs_info
, u64 bytenr
)
296 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
297 struct rb_node
*rb_node
;
298 struct mapping_node
*node
;
299 struct btrfs_root
*root
= NULL
;
302 spin_lock(&rc
->reloc_root_tree
.lock
);
303 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
, bytenr
);
305 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
308 spin_unlock(&rc
->reloc_root_tree
.lock
);
309 return btrfs_grab_root(root
);
313 * For useless nodes, do two major clean ups:
315 * - Cleanup the children edges and nodes
316 * If child node is also orphan (no parent) during cleanup, then the child
317 * node will also be cleaned up.
319 * - Freeing up leaves (level 0), keeps nodes detached
320 * For nodes, the node is still cached as "detached"
322 * Return false if @node is not in the @useless_nodes list.
323 * Return true if @node is in the @useless_nodes list.
325 static bool handle_useless_nodes(struct reloc_control
*rc
,
326 struct btrfs_backref_node
*node
)
328 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
329 struct list_head
*useless_node
= &cache
->useless_node
;
332 while (!list_empty(useless_node
)) {
333 struct btrfs_backref_node
*cur
;
335 cur
= list_first_entry(useless_node
, struct btrfs_backref_node
,
337 list_del_init(&cur
->list
);
339 /* Only tree root nodes can be added to @useless_nodes */
340 ASSERT(list_empty(&cur
->upper
));
345 /* The node is the lowest node */
347 list_del_init(&cur
->lower
);
351 /* Cleanup the lower edges */
352 while (!list_empty(&cur
->lower
)) {
353 struct btrfs_backref_edge
*edge
;
354 struct btrfs_backref_node
*lower
;
356 edge
= list_entry(cur
->lower
.next
,
357 struct btrfs_backref_edge
, list
[UPPER
]);
358 list_del(&edge
->list
[UPPER
]);
359 list_del(&edge
->list
[LOWER
]);
360 lower
= edge
->node
[LOWER
];
361 btrfs_backref_free_edge(cache
, edge
);
363 /* Child node is also orphan, queue for cleanup */
364 if (list_empty(&lower
->upper
))
365 list_add(&lower
->list
, useless_node
);
367 /* Mark this block processed for relocation */
368 mark_block_processed(rc
, cur
);
371 * Backref nodes for tree leaves are deleted from the cache.
372 * Backref nodes for upper level tree blocks are left in the
373 * cache to avoid unnecessary backref lookup.
375 if (cur
->level
> 0) {
376 list_add(&cur
->list
, &cache
->detached
);
379 rb_erase(&cur
->rb_node
, &cache
->rb_root
);
380 btrfs_backref_free_node(cache
, cur
);
387 * Build backref tree for a given tree block. Root of the backref tree
388 * corresponds the tree block, leaves of the backref tree correspond roots of
389 * b-trees that reference the tree block.
391 * The basic idea of this function is check backrefs of a given block to find
392 * upper level blocks that reference the block, and then check backrefs of
393 * these upper level blocks recursively. The recursion stops when tree root is
394 * reached or backrefs for the block is cached.
396 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
397 * all upper level blocks that directly/indirectly reference the block are also
400 static noinline_for_stack
struct btrfs_backref_node
*build_backref_tree(
401 struct btrfs_trans_handle
*trans
,
402 struct reloc_control
*rc
, struct btrfs_key
*node_key
,
403 int level
, u64 bytenr
)
405 struct btrfs_backref_iter
*iter
;
406 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
407 /* For searching parent of TREE_BLOCK_REF */
408 struct btrfs_path
*path
;
409 struct btrfs_backref_node
*cur
;
410 struct btrfs_backref_node
*node
= NULL
;
411 struct btrfs_backref_edge
*edge
;
414 iter
= btrfs_backref_iter_alloc(rc
->extent_root
->fs_info
);
416 return ERR_PTR(-ENOMEM
);
417 path
= btrfs_alloc_path();
423 node
= btrfs_backref_alloc_node(cache
, bytenr
, level
);
432 /* Breadth-first search to build backref cache */
434 ret
= btrfs_backref_add_tree_node(trans
, cache
, path
, iter
,
439 edge
= list_first_entry_or_null(&cache
->pending_edge
,
440 struct btrfs_backref_edge
, list
[UPPER
]);
442 * The pending list isn't empty, take the first block to
446 list_del_init(&edge
->list
[UPPER
]);
447 cur
= edge
->node
[UPPER
];
451 /* Finish the upper linkage of newly added edges/nodes */
452 ret
= btrfs_backref_finish_upper_links(cache
, node
);
456 if (handle_useless_nodes(rc
, node
))
459 btrfs_free_path(iter
->path
);
461 btrfs_free_path(path
);
463 btrfs_backref_error_cleanup(cache
, node
);
466 ASSERT(!node
|| !node
->detached
);
467 ASSERT(list_empty(&cache
->useless_node
) &&
468 list_empty(&cache
->pending_edge
));
473 * helper to add backref node for the newly created snapshot.
474 * the backref node is created by cloning backref node that
475 * corresponds to root of source tree
477 static int clone_backref_node(struct btrfs_trans_handle
*trans
,
478 struct reloc_control
*rc
,
479 const struct btrfs_root
*src
,
480 struct btrfs_root
*dest
)
482 struct btrfs_root
*reloc_root
= src
->reloc_root
;
483 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
484 struct btrfs_backref_node
*node
= NULL
;
485 struct btrfs_backref_node
*new_node
;
486 struct btrfs_backref_edge
*edge
;
487 struct btrfs_backref_edge
*new_edge
;
488 struct rb_node
*rb_node
;
490 rb_node
= rb_simple_search(&cache
->rb_root
, src
->commit_root
->start
);
492 node
= rb_entry(rb_node
, struct btrfs_backref_node
, rb_node
);
496 BUG_ON(node
->new_bytenr
!= reloc_root
->node
->start
);
500 rb_node
= rb_simple_search(&cache
->rb_root
,
501 reloc_root
->commit_root
->start
);
503 node
= rb_entry(rb_node
, struct btrfs_backref_node
,
505 BUG_ON(node
->detached
);
512 new_node
= btrfs_backref_alloc_node(cache
, dest
->node
->start
,
517 new_node
->lowest
= node
->lowest
;
518 new_node
->checked
= 1;
519 new_node
->root
= btrfs_grab_root(dest
);
520 ASSERT(new_node
->root
);
523 list_for_each_entry(edge
, &node
->lower
, list
[UPPER
]) {
524 new_edge
= btrfs_backref_alloc_edge(cache
);
528 btrfs_backref_link_edge(new_edge
, edge
->node
[LOWER
],
529 new_node
, LINK_UPPER
);
532 list_add_tail(&new_node
->lower
, &cache
->leaves
);
535 rb_node
= rb_simple_insert(&cache
->rb_root
, new_node
->bytenr
,
538 btrfs_backref_panic(trans
->fs_info
, new_node
->bytenr
, -EEXIST
);
540 if (!new_node
->lowest
) {
541 list_for_each_entry(new_edge
, &new_node
->lower
, list
[UPPER
]) {
542 list_add_tail(&new_edge
->list
[LOWER
],
543 &new_edge
->node
[LOWER
]->upper
);
548 while (!list_empty(&new_node
->lower
)) {
549 new_edge
= list_entry(new_node
->lower
.next
,
550 struct btrfs_backref_edge
, list
[UPPER
]);
551 list_del(&new_edge
->list
[UPPER
]);
552 btrfs_backref_free_edge(cache
, new_edge
);
554 btrfs_backref_free_node(cache
, new_node
);
559 * helper to add 'address of tree root -> reloc tree' mapping
561 static int __add_reloc_root(struct btrfs_root
*root
)
563 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
564 struct rb_node
*rb_node
;
565 struct mapping_node
*node
;
566 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
568 node
= kmalloc(sizeof(*node
), GFP_NOFS
);
572 node
->bytenr
= root
->commit_root
->start
;
575 spin_lock(&rc
->reloc_root_tree
.lock
);
576 rb_node
= rb_simple_insert(&rc
->reloc_root_tree
.rb_root
,
577 node
->bytenr
, &node
->rb_node
);
578 spin_unlock(&rc
->reloc_root_tree
.lock
);
581 "Duplicate root found for start=%llu while inserting into relocation tree",
586 list_add_tail(&root
->root_list
, &rc
->reloc_roots
);
591 * helper to delete the 'address of tree root -> reloc tree'
594 static void __del_reloc_root(struct btrfs_root
*root
)
596 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
597 struct rb_node
*rb_node
;
598 struct mapping_node
*node
= NULL
;
599 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
600 bool put_ref
= false;
602 if (rc
&& root
->node
) {
603 spin_lock(&rc
->reloc_root_tree
.lock
);
604 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
,
605 root
->commit_root
->start
);
607 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
608 rb_erase(&node
->rb_node
, &rc
->reloc_root_tree
.rb_root
);
609 RB_CLEAR_NODE(&node
->rb_node
);
611 spin_unlock(&rc
->reloc_root_tree
.lock
);
612 ASSERT(!node
|| (struct btrfs_root
*)node
->data
== root
);
616 * We only put the reloc root here if it's on the list. There's a lot
617 * of places where the pattern is to splice the rc->reloc_roots, process
618 * the reloc roots, and then add the reloc root back onto
619 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
620 * list we don't want the reference being dropped, because the guy
621 * messing with the list is in charge of the reference.
623 spin_lock(&fs_info
->trans_lock
);
624 if (!list_empty(&root
->root_list
)) {
626 list_del_init(&root
->root_list
);
628 spin_unlock(&fs_info
->trans_lock
);
630 btrfs_put_root(root
);
635 * helper to update the 'address of tree root -> reloc tree'
638 static int __update_reloc_root(struct btrfs_root
*root
)
640 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
641 struct rb_node
*rb_node
;
642 struct mapping_node
*node
= NULL
;
643 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
645 spin_lock(&rc
->reloc_root_tree
.lock
);
646 rb_node
= rb_simple_search(&rc
->reloc_root_tree
.rb_root
,
647 root
->commit_root
->start
);
649 node
= rb_entry(rb_node
, struct mapping_node
, rb_node
);
650 rb_erase(&node
->rb_node
, &rc
->reloc_root_tree
.rb_root
);
652 spin_unlock(&rc
->reloc_root_tree
.lock
);
656 BUG_ON((struct btrfs_root
*)node
->data
!= root
);
658 spin_lock(&rc
->reloc_root_tree
.lock
);
659 node
->bytenr
= root
->node
->start
;
660 rb_node
= rb_simple_insert(&rc
->reloc_root_tree
.rb_root
,
661 node
->bytenr
, &node
->rb_node
);
662 spin_unlock(&rc
->reloc_root_tree
.lock
);
664 btrfs_backref_panic(fs_info
, node
->bytenr
, -EEXIST
);
668 static struct btrfs_root
*create_reloc_root(struct btrfs_trans_handle
*trans
,
669 struct btrfs_root
*root
, u64 objectid
)
671 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
672 struct btrfs_root
*reloc_root
;
673 struct extent_buffer
*eb
;
674 struct btrfs_root_item
*root_item
;
675 struct btrfs_key root_key
;
677 bool must_abort
= false;
679 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
681 return ERR_PTR(-ENOMEM
);
683 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
684 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
685 root_key
.offset
= objectid
;
687 if (btrfs_root_id(root
) == objectid
) {
690 /* called by btrfs_init_reloc_root */
691 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
, &eb
,
692 BTRFS_TREE_RELOC_OBJECTID
);
697 * Set the last_snapshot field to the generation of the commit
698 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
699 * correctly (returns true) when the relocation root is created
700 * either inside the critical section of a transaction commit
701 * (through transaction.c:qgroup_account_snapshot()) and when
702 * it's created before the transaction commit is started.
704 commit_root_gen
= btrfs_header_generation(root
->commit_root
);
705 btrfs_set_root_last_snapshot(&root
->root_item
, commit_root_gen
);
708 * called by btrfs_reloc_post_snapshot_hook.
709 * the source tree is a reloc tree, all tree blocks
710 * modified after it was created have RELOC flag
711 * set in their headers. so it's OK to not update
712 * the 'last_snapshot'.
714 ret
= btrfs_copy_root(trans
, root
, root
->node
, &eb
,
715 BTRFS_TREE_RELOC_OBJECTID
);
721 * We have changed references at this point, we must abort the
722 * transaction if anything fails.
726 memcpy(root_item
, &root
->root_item
, sizeof(*root_item
));
727 btrfs_set_root_bytenr(root_item
, eb
->start
);
728 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
729 btrfs_set_root_generation(root_item
, trans
->transid
);
731 if (btrfs_root_id(root
) == objectid
) {
732 btrfs_set_root_refs(root_item
, 0);
733 memset(&root_item
->drop_progress
, 0,
734 sizeof(struct btrfs_disk_key
));
735 btrfs_set_root_drop_level(root_item
, 0);
738 btrfs_tree_unlock(eb
);
739 free_extent_buffer(eb
);
741 ret
= btrfs_insert_root(trans
, fs_info
->tree_root
,
742 &root_key
, root_item
);
748 reloc_root
= btrfs_read_tree_root(fs_info
->tree_root
, &root_key
);
749 if (IS_ERR(reloc_root
)) {
750 ret
= PTR_ERR(reloc_root
);
753 set_bit(BTRFS_ROOT_SHAREABLE
, &reloc_root
->state
);
754 btrfs_set_root_last_trans(reloc_root
, trans
->transid
);
760 btrfs_abort_transaction(trans
, ret
);
765 * create reloc tree for a given fs tree. reloc tree is just a
766 * snapshot of the fs tree with special root objectid.
768 * The reloc_root comes out of here with two references, one for
769 * root->reloc_root, and another for being on the rc->reloc_roots list.
771 int btrfs_init_reloc_root(struct btrfs_trans_handle
*trans
,
772 struct btrfs_root
*root
)
774 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
775 struct btrfs_root
*reloc_root
;
776 struct reloc_control
*rc
= fs_info
->reloc_ctl
;
777 struct btrfs_block_rsv
*rsv
;
785 * The subvolume has reloc tree but the swap is finished, no need to
786 * create/update the dead reloc tree
788 if (reloc_root_is_dead(root
))
792 * This is subtle but important. We do not do
793 * record_root_in_transaction for reloc roots, instead we record their
794 * corresponding fs root, and then here we update the last trans for the
795 * reloc root. This means that we have to do this for the entire life
796 * of the reloc root, regardless of which stage of the relocation we are
799 if (root
->reloc_root
) {
800 reloc_root
= root
->reloc_root
;
801 btrfs_set_root_last_trans(reloc_root
, trans
->transid
);
806 * We are merging reloc roots, we do not need new reloc trees. Also
807 * reloc trees never need their own reloc tree.
809 if (!rc
->create_reloc_tree
|| btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
)
812 if (!trans
->reloc_reserved
) {
813 rsv
= trans
->block_rsv
;
814 trans
->block_rsv
= rc
->block_rsv
;
817 reloc_root
= create_reloc_root(trans
, root
, btrfs_root_id(root
));
819 trans
->block_rsv
= rsv
;
820 if (IS_ERR(reloc_root
))
821 return PTR_ERR(reloc_root
);
823 ret
= __add_reloc_root(reloc_root
);
824 ASSERT(ret
!= -EEXIST
);
826 /* Pairs with create_reloc_root */
827 btrfs_put_root(reloc_root
);
830 root
->reloc_root
= btrfs_grab_root(reloc_root
);
835 * update root item of reloc tree
837 int btrfs_update_reloc_root(struct btrfs_trans_handle
*trans
,
838 struct btrfs_root
*root
)
840 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
841 struct btrfs_root
*reloc_root
;
842 struct btrfs_root_item
*root_item
;
845 if (!have_reloc_root(root
))
848 reloc_root
= root
->reloc_root
;
849 root_item
= &reloc_root
->root_item
;
852 * We are probably ok here, but __del_reloc_root() will drop its ref of
853 * the root. We have the ref for root->reloc_root, but just in case
854 * hold it while we update the reloc root.
856 btrfs_grab_root(reloc_root
);
858 /* root->reloc_root will stay until current relocation finished */
859 if (fs_info
->reloc_ctl
&& fs_info
->reloc_ctl
->merge_reloc_tree
&&
860 btrfs_root_refs(root_item
) == 0) {
861 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
);
863 * Mark the tree as dead before we change reloc_root so
864 * have_reloc_root will not touch it from now on.
867 __del_reloc_root(reloc_root
);
870 if (reloc_root
->commit_root
!= reloc_root
->node
) {
871 __update_reloc_root(reloc_root
);
872 btrfs_set_root_node(root_item
, reloc_root
->node
);
873 free_extent_buffer(reloc_root
->commit_root
);
874 reloc_root
->commit_root
= btrfs_root_node(reloc_root
);
877 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
878 &reloc_root
->root_key
, root_item
);
879 btrfs_put_root(reloc_root
);
884 * get new location of data
886 static int get_new_location(struct inode
*reloc_inode
, u64
*new_bytenr
,
887 u64 bytenr
, u64 num_bytes
)
889 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
890 struct btrfs_path
*path
;
891 struct btrfs_file_extent_item
*fi
;
892 struct extent_buffer
*leaf
;
895 path
= btrfs_alloc_path();
899 bytenr
-= BTRFS_I(reloc_inode
)->reloc_block_group_start
;
900 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
901 btrfs_ino(BTRFS_I(reloc_inode
)), bytenr
, 0);
909 leaf
= path
->nodes
[0];
910 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
911 struct btrfs_file_extent_item
);
913 BUG_ON(btrfs_file_extent_offset(leaf
, fi
) ||
914 btrfs_file_extent_compression(leaf
, fi
) ||
915 btrfs_file_extent_encryption(leaf
, fi
) ||
916 btrfs_file_extent_other_encoding(leaf
, fi
));
918 if (num_bytes
!= btrfs_file_extent_disk_num_bytes(leaf
, fi
)) {
923 *new_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
926 btrfs_free_path(path
);
931 * update file extent items in the tree leaf to point to
934 static noinline_for_stack
935 int replace_file_extents(struct btrfs_trans_handle
*trans
,
936 struct reloc_control
*rc
,
937 struct btrfs_root
*root
,
938 struct extent_buffer
*leaf
)
940 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
941 struct btrfs_key key
;
942 struct btrfs_file_extent_item
*fi
;
943 struct btrfs_inode
*inode
= NULL
;
955 if (rc
->stage
!= UPDATE_DATA_PTRS
)
958 /* reloc trees always use full backref */
959 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
)
960 parent
= leaf
->start
;
964 nritems
= btrfs_header_nritems(leaf
);
965 for (i
= 0; i
< nritems
; i
++) {
966 struct btrfs_ref ref
= { 0 };
969 btrfs_item_key_to_cpu(leaf
, &key
, i
);
970 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
972 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
973 if (btrfs_file_extent_type(leaf
, fi
) ==
974 BTRFS_FILE_EXTENT_INLINE
)
976 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
977 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
980 if (!in_range(bytenr
, rc
->block_group
->start
,
981 rc
->block_group
->length
))
985 * if we are modifying block in fs tree, wait for read_folio
986 * to complete and drop the extent cache
988 if (btrfs_root_id(root
) != BTRFS_TREE_RELOC_OBJECTID
) {
990 inode
= btrfs_find_first_inode(root
, key
.objectid
);
992 } else if (inode
&& btrfs_ino(inode
) < key
.objectid
) {
993 btrfs_add_delayed_iput(inode
);
994 inode
= btrfs_find_first_inode(root
, key
.objectid
);
996 if (inode
&& btrfs_ino(inode
) == key
.objectid
) {
997 struct extent_state
*cached_state
= NULL
;
1000 btrfs_file_extent_num_bytes(leaf
, fi
);
1001 WARN_ON(!IS_ALIGNED(key
.offset
,
1002 fs_info
->sectorsize
));
1003 WARN_ON(!IS_ALIGNED(end
, fs_info
->sectorsize
));
1005 /* Take mmap lock to serialize with reflinks. */
1006 if (!down_read_trylock(&inode
->i_mmap_lock
))
1008 ret
= try_lock_extent(&inode
->io_tree
, key
.offset
,
1009 end
, &cached_state
);
1011 up_read(&inode
->i_mmap_lock
);
1015 btrfs_drop_extent_map_range(inode
, key
.offset
, end
, true);
1016 unlock_extent(&inode
->io_tree
, key
.offset
, end
,
1018 up_read(&inode
->i_mmap_lock
);
1022 ret
= get_new_location(rc
->data_inode
, &new_bytenr
,
1026 * Don't have to abort since we've not changed anything
1027 * in the file extent yet.
1032 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, new_bytenr
);
1035 key
.offset
-= btrfs_file_extent_offset(leaf
, fi
);
1036 ref
.action
= BTRFS_ADD_DELAYED_REF
;
1037 ref
.bytenr
= new_bytenr
;
1038 ref
.num_bytes
= num_bytes
;
1039 ref
.parent
= parent
;
1040 ref
.owning_root
= btrfs_root_id(root
);
1041 ref
.ref_root
= btrfs_header_owner(leaf
);
1042 btrfs_init_data_ref(&ref
, key
.objectid
, key
.offset
,
1043 btrfs_root_id(root
), false);
1044 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1046 btrfs_abort_transaction(trans
, ret
);
1050 ref
.action
= BTRFS_DROP_DELAYED_REF
;
1051 ref
.bytenr
= bytenr
;
1052 ref
.num_bytes
= num_bytes
;
1053 ref
.parent
= parent
;
1054 ref
.owning_root
= btrfs_root_id(root
);
1055 ref
.ref_root
= btrfs_header_owner(leaf
);
1056 btrfs_init_data_ref(&ref
, key
.objectid
, key
.offset
,
1057 btrfs_root_id(root
), false);
1058 ret
= btrfs_free_extent(trans
, &ref
);
1060 btrfs_abort_transaction(trans
, ret
);
1065 btrfs_mark_buffer_dirty(trans
, leaf
);
1067 btrfs_add_delayed_iput(inode
);
1071 static noinline_for_stack
int memcmp_node_keys(const struct extent_buffer
*eb
,
1072 int slot
, const struct btrfs_path
*path
,
1075 struct btrfs_disk_key key1
;
1076 struct btrfs_disk_key key2
;
1077 btrfs_node_key(eb
, &key1
, slot
);
1078 btrfs_node_key(path
->nodes
[level
], &key2
, path
->slots
[level
]);
1079 return memcmp(&key1
, &key2
, sizeof(key1
));
1083 * try to replace tree blocks in fs tree with the new blocks
1084 * in reloc tree. tree blocks haven't been modified since the
1085 * reloc tree was create can be replaced.
1087 * if a block was replaced, level of the block + 1 is returned.
1088 * if no block got replaced, 0 is returned. if there are other
1089 * errors, a negative error number is returned.
1091 static noinline_for_stack
1092 int replace_path(struct btrfs_trans_handle
*trans
, struct reloc_control
*rc
,
1093 struct btrfs_root
*dest
, struct btrfs_root
*src
,
1094 struct btrfs_path
*path
, struct btrfs_key
*next_key
,
1095 int lowest_level
, int max_level
)
1097 struct btrfs_fs_info
*fs_info
= dest
->fs_info
;
1098 struct extent_buffer
*eb
;
1099 struct extent_buffer
*parent
;
1100 struct btrfs_ref ref
= { 0 };
1101 struct btrfs_key key
;
1113 ASSERT(btrfs_root_id(src
) == BTRFS_TREE_RELOC_OBJECTID
);
1114 ASSERT(btrfs_root_id(dest
) != BTRFS_TREE_RELOC_OBJECTID
);
1116 last_snapshot
= btrfs_root_last_snapshot(&src
->root_item
);
1118 slot
= path
->slots
[lowest_level
];
1119 btrfs_node_key_to_cpu(path
->nodes
[lowest_level
], &key
, slot
);
1121 eb
= btrfs_lock_root_node(dest
);
1122 level
= btrfs_header_level(eb
);
1124 if (level
< lowest_level
) {
1125 btrfs_tree_unlock(eb
);
1126 free_extent_buffer(eb
);
1131 ret
= btrfs_cow_block(trans
, dest
, eb
, NULL
, 0, &eb
,
1134 btrfs_tree_unlock(eb
);
1135 free_extent_buffer(eb
);
1141 next_key
->objectid
= (u64
)-1;
1142 next_key
->type
= (u8
)-1;
1143 next_key
->offset
= (u64
)-1;
1148 level
= btrfs_header_level(parent
);
1149 ASSERT(level
>= lowest_level
);
1151 ret
= btrfs_bin_search(parent
, 0, &key
, &slot
);
1154 if (ret
&& slot
> 0)
1157 if (next_key
&& slot
+ 1 < btrfs_header_nritems(parent
))
1158 btrfs_node_key_to_cpu(parent
, next_key
, slot
+ 1);
1160 old_bytenr
= btrfs_node_blockptr(parent
, slot
);
1161 blocksize
= fs_info
->nodesize
;
1162 old_ptr_gen
= btrfs_node_ptr_generation(parent
, slot
);
1164 if (level
<= max_level
) {
1165 eb
= path
->nodes
[level
];
1166 new_bytenr
= btrfs_node_blockptr(eb
,
1167 path
->slots
[level
]);
1168 new_ptr_gen
= btrfs_node_ptr_generation(eb
,
1169 path
->slots
[level
]);
1175 if (WARN_ON(new_bytenr
> 0 && new_bytenr
== old_bytenr
)) {
1180 if (new_bytenr
== 0 || old_ptr_gen
> last_snapshot
||
1181 memcmp_node_keys(parent
, slot
, path
, level
)) {
1182 if (level
<= lowest_level
) {
1187 eb
= btrfs_read_node_slot(parent
, slot
);
1192 btrfs_tree_lock(eb
);
1194 ret
= btrfs_cow_block(trans
, dest
, eb
, parent
,
1198 btrfs_tree_unlock(eb
);
1199 free_extent_buffer(eb
);
1204 btrfs_tree_unlock(parent
);
1205 free_extent_buffer(parent
);
1212 btrfs_tree_unlock(parent
);
1213 free_extent_buffer(parent
);
1218 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
1219 path
->slots
[level
]);
1220 btrfs_release_path(path
);
1222 path
->lowest_level
= level
;
1223 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS
, &src
->state
);
1224 ret
= btrfs_search_slot(trans
, src
, &key
, path
, 0, 1);
1225 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS
, &src
->state
);
1226 path
->lowest_level
= 0;
1234 * Info qgroup to trace both subtrees.
1236 * We must trace both trees.
1237 * 1) Tree reloc subtree
1238 * If not traced, we will leak data numbers
1240 * If not traced, we will double count old data
1242 * We don't scan the subtree right now, but only record
1243 * the swapped tree blocks.
1244 * The real subtree rescan is delayed until we have new
1245 * CoW on the subtree root node before transaction commit.
1247 ret
= btrfs_qgroup_add_swapped_blocks(dest
,
1248 rc
->block_group
, parent
, slot
,
1249 path
->nodes
[level
], path
->slots
[level
],
1254 * swap blocks in fs tree and reloc tree.
1256 btrfs_set_node_blockptr(parent
, slot
, new_bytenr
);
1257 btrfs_set_node_ptr_generation(parent
, slot
, new_ptr_gen
);
1258 btrfs_mark_buffer_dirty(trans
, parent
);
1260 btrfs_set_node_blockptr(path
->nodes
[level
],
1261 path
->slots
[level
], old_bytenr
);
1262 btrfs_set_node_ptr_generation(path
->nodes
[level
],
1263 path
->slots
[level
], old_ptr_gen
);
1264 btrfs_mark_buffer_dirty(trans
, path
->nodes
[level
]);
1266 ref
.action
= BTRFS_ADD_DELAYED_REF
;
1267 ref
.bytenr
= old_bytenr
;
1268 ref
.num_bytes
= blocksize
;
1269 ref
.parent
= path
->nodes
[level
]->start
;
1270 ref
.owning_root
= btrfs_root_id(src
);
1271 ref
.ref_root
= btrfs_root_id(src
);
1272 btrfs_init_tree_ref(&ref
, level
- 1, 0, true);
1273 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1275 btrfs_abort_transaction(trans
, ret
);
1279 ref
.action
= BTRFS_ADD_DELAYED_REF
;
1280 ref
.bytenr
= new_bytenr
;
1281 ref
.num_bytes
= blocksize
;
1283 ref
.owning_root
= btrfs_root_id(dest
);
1284 ref
.ref_root
= btrfs_root_id(dest
);
1285 btrfs_init_tree_ref(&ref
, level
- 1, 0, true);
1286 ret
= btrfs_inc_extent_ref(trans
, &ref
);
1288 btrfs_abort_transaction(trans
, ret
);
1292 /* We don't know the real owning_root, use 0. */
1293 ref
.action
= BTRFS_DROP_DELAYED_REF
;
1294 ref
.bytenr
= new_bytenr
;
1295 ref
.num_bytes
= blocksize
;
1296 ref
.parent
= path
->nodes
[level
]->start
;
1297 ref
.owning_root
= 0;
1298 ref
.ref_root
= btrfs_root_id(src
);
1299 btrfs_init_tree_ref(&ref
, level
- 1, 0, true);
1300 ret
= btrfs_free_extent(trans
, &ref
);
1302 btrfs_abort_transaction(trans
, ret
);
1306 /* We don't know the real owning_root, use 0. */
1307 ref
.action
= BTRFS_DROP_DELAYED_REF
;
1308 ref
.bytenr
= old_bytenr
;
1309 ref
.num_bytes
= blocksize
;
1311 ref
.owning_root
= 0;
1312 ref
.ref_root
= btrfs_root_id(dest
);
1313 btrfs_init_tree_ref(&ref
, level
- 1, 0, true);
1314 ret
= btrfs_free_extent(trans
, &ref
);
1316 btrfs_abort_transaction(trans
, ret
);
1320 btrfs_unlock_up_safe(path
, 0);
1325 btrfs_tree_unlock(parent
);
1326 free_extent_buffer(parent
);
1331 * helper to find next relocated block in reloc tree
1333 static noinline_for_stack
1334 int walk_up_reloc_tree(struct btrfs_root
*root
, struct btrfs_path
*path
,
1337 struct extent_buffer
*eb
;
1342 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
1344 for (i
= 0; i
< *level
; i
++) {
1345 free_extent_buffer(path
->nodes
[i
]);
1346 path
->nodes
[i
] = NULL
;
1349 for (i
= *level
; i
< BTRFS_MAX_LEVEL
&& path
->nodes
[i
]; i
++) {
1350 eb
= path
->nodes
[i
];
1351 nritems
= btrfs_header_nritems(eb
);
1352 while (path
->slots
[i
] + 1 < nritems
) {
1354 if (btrfs_node_ptr_generation(eb
, path
->slots
[i
]) <=
1361 free_extent_buffer(path
->nodes
[i
]);
1362 path
->nodes
[i
] = NULL
;
1368 * walk down reloc tree to find relocated block of lowest level
1370 static noinline_for_stack
1371 int walk_down_reloc_tree(struct btrfs_root
*root
, struct btrfs_path
*path
,
1374 struct extent_buffer
*eb
= NULL
;
1380 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
1382 for (i
= *level
; i
> 0; i
--) {
1383 eb
= path
->nodes
[i
];
1384 nritems
= btrfs_header_nritems(eb
);
1385 while (path
->slots
[i
] < nritems
) {
1386 ptr_gen
= btrfs_node_ptr_generation(eb
, path
->slots
[i
]);
1387 if (ptr_gen
> last_snapshot
)
1391 if (path
->slots
[i
] >= nritems
) {
1402 eb
= btrfs_read_node_slot(eb
, path
->slots
[i
]);
1405 BUG_ON(btrfs_header_level(eb
) != i
- 1);
1406 path
->nodes
[i
- 1] = eb
;
1407 path
->slots
[i
- 1] = 0;
1413 * invalidate extent cache for file extents whose key in range of
1414 * [min_key, max_key)
1416 static int invalidate_extent_cache(struct btrfs_root
*root
,
1417 const struct btrfs_key
*min_key
,
1418 const struct btrfs_key
*max_key
)
1420 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1421 struct btrfs_inode
*inode
= NULL
;
1426 objectid
= min_key
->objectid
;
1428 struct extent_state
*cached_state
= NULL
;
1432 iput(&inode
->vfs_inode
);
1434 if (objectid
> max_key
->objectid
)
1437 inode
= btrfs_find_first_inode(root
, objectid
);
1440 ino
= btrfs_ino(inode
);
1442 if (ino
> max_key
->objectid
) {
1443 iput(&inode
->vfs_inode
);
1448 if (!S_ISREG(inode
->vfs_inode
.i_mode
))
1451 if (unlikely(min_key
->objectid
== ino
)) {
1452 if (min_key
->type
> BTRFS_EXTENT_DATA_KEY
)
1454 if (min_key
->type
< BTRFS_EXTENT_DATA_KEY
)
1457 start
= min_key
->offset
;
1458 WARN_ON(!IS_ALIGNED(start
, fs_info
->sectorsize
));
1464 if (unlikely(max_key
->objectid
== ino
)) {
1465 if (max_key
->type
< BTRFS_EXTENT_DATA_KEY
)
1467 if (max_key
->type
> BTRFS_EXTENT_DATA_KEY
) {
1470 if (max_key
->offset
== 0)
1472 end
= max_key
->offset
;
1473 WARN_ON(!IS_ALIGNED(end
, fs_info
->sectorsize
));
1480 /* the lock_extent waits for read_folio to complete */
1481 lock_extent(&inode
->io_tree
, start
, end
, &cached_state
);
1482 btrfs_drop_extent_map_range(inode
, start
, end
, true);
1483 unlock_extent(&inode
->io_tree
, start
, end
, &cached_state
);
1488 static int find_next_key(struct btrfs_path
*path
, int level
,
1489 struct btrfs_key
*key
)
1492 while (level
< BTRFS_MAX_LEVEL
) {
1493 if (!path
->nodes
[level
])
1495 if (path
->slots
[level
] + 1 <
1496 btrfs_header_nritems(path
->nodes
[level
])) {
1497 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1498 path
->slots
[level
] + 1);
1507 * Insert current subvolume into reloc_control::dirty_subvol_roots
1509 static int insert_dirty_subvol(struct btrfs_trans_handle
*trans
,
1510 struct reloc_control
*rc
,
1511 struct btrfs_root
*root
)
1513 struct btrfs_root
*reloc_root
= root
->reloc_root
;
1514 struct btrfs_root_item
*reloc_root_item
;
1517 /* @root must be a subvolume tree root with a valid reloc tree */
1518 ASSERT(btrfs_root_id(root
) != BTRFS_TREE_RELOC_OBJECTID
);
1521 reloc_root_item
= &reloc_root
->root_item
;
1522 memset(&reloc_root_item
->drop_progress
, 0,
1523 sizeof(reloc_root_item
->drop_progress
));
1524 btrfs_set_root_drop_level(reloc_root_item
, 0);
1525 btrfs_set_root_refs(reloc_root_item
, 0);
1526 ret
= btrfs_update_reloc_root(trans
, root
);
1530 if (list_empty(&root
->reloc_dirty_list
)) {
1531 btrfs_grab_root(root
);
1532 list_add_tail(&root
->reloc_dirty_list
, &rc
->dirty_subvol_roots
);
1538 static int clean_dirty_subvols(struct reloc_control
*rc
)
1540 struct btrfs_root
*root
;
1541 struct btrfs_root
*next
;
1545 list_for_each_entry_safe(root
, next
, &rc
->dirty_subvol_roots
,
1547 if (btrfs_root_id(root
) != BTRFS_TREE_RELOC_OBJECTID
) {
1548 /* Merged subvolume, cleanup its reloc root */
1549 struct btrfs_root
*reloc_root
= root
->reloc_root
;
1551 list_del_init(&root
->reloc_dirty_list
);
1552 root
->reloc_root
= NULL
;
1554 * Need barrier to ensure clear_bit() only happens after
1555 * root->reloc_root = NULL. Pairs with have_reloc_root.
1558 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE
, &root
->state
);
1561 * btrfs_drop_snapshot drops our ref we hold for
1562 * ->reloc_root. If it fails however we must
1563 * drop the ref ourselves.
1565 ret2
= btrfs_drop_snapshot(reloc_root
, 0, 1);
1567 btrfs_put_root(reloc_root
);
1572 btrfs_put_root(root
);
1574 /* Orphan reloc tree, just clean it up */
1575 ret2
= btrfs_drop_snapshot(root
, 0, 1);
1577 btrfs_put_root(root
);
1587 * merge the relocated tree blocks in reloc tree with corresponding
1590 static noinline_for_stack
int merge_reloc_root(struct reloc_control
*rc
,
1591 struct btrfs_root
*root
)
1593 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
1594 struct btrfs_key key
;
1595 struct btrfs_key next_key
;
1596 struct btrfs_trans_handle
*trans
= NULL
;
1597 struct btrfs_root
*reloc_root
;
1598 struct btrfs_root_item
*root_item
;
1599 struct btrfs_path
*path
;
1600 struct extent_buffer
*leaf
;
1608 path
= btrfs_alloc_path();
1611 path
->reada
= READA_FORWARD
;
1613 reloc_root
= root
->reloc_root
;
1614 root_item
= &reloc_root
->root_item
;
1616 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
1617 level
= btrfs_root_level(root_item
);
1618 atomic_inc(&reloc_root
->node
->refs
);
1619 path
->nodes
[level
] = reloc_root
->node
;
1620 path
->slots
[level
] = 0;
1622 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
1624 level
= btrfs_root_drop_level(root_item
);
1626 path
->lowest_level
= level
;
1627 ret
= btrfs_search_slot(NULL
, reloc_root
, &key
, path
, 0, 0);
1628 path
->lowest_level
= 0;
1630 btrfs_free_path(path
);
1634 btrfs_node_key_to_cpu(path
->nodes
[level
], &next_key
,
1635 path
->slots
[level
]);
1636 WARN_ON(memcmp(&key
, &next_key
, sizeof(key
)));
1638 btrfs_unlock_up_safe(path
, 0);
1642 * In merge_reloc_root(), we modify the upper level pointer to swap the
1643 * tree blocks between reloc tree and subvolume tree. Thus for tree
1644 * block COW, we COW at most from level 1 to root level for each tree.
1646 * Thus the needed metadata size is at most root_level * nodesize,
1647 * and * 2 since we have two trees to COW.
1649 reserve_level
= max_t(int, 1, btrfs_root_level(root_item
));
1650 min_reserved
= fs_info
->nodesize
* reserve_level
* 2;
1651 memset(&next_key
, 0, sizeof(next_key
));
1654 ret
= btrfs_block_rsv_refill(fs_info
, rc
->block_rsv
,
1656 BTRFS_RESERVE_FLUSH_LIMIT
);
1659 trans
= btrfs_start_transaction(root
, 0);
1660 if (IS_ERR(trans
)) {
1661 ret
= PTR_ERR(trans
);
1667 * At this point we no longer have a reloc_control, so we can't
1668 * depend on btrfs_init_reloc_root to update our last_trans.
1670 * But that's ok, we started the trans handle on our
1671 * corresponding fs_root, which means it's been added to the
1672 * dirty list. At commit time we'll still call
1673 * btrfs_update_reloc_root() and update our root item
1676 btrfs_set_root_last_trans(reloc_root
, trans
->transid
);
1677 trans
->block_rsv
= rc
->block_rsv
;
1682 ret
= walk_down_reloc_tree(reloc_root
, path
, &level
);
1688 if (!find_next_key(path
, level
, &key
) &&
1689 btrfs_comp_cpu_keys(&next_key
, &key
) >= 0) {
1692 ret
= replace_path(trans
, rc
, root
, reloc_root
, path
,
1693 &next_key
, level
, max_level
);
1699 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
1700 path
->slots
[level
]);
1704 ret
= walk_up_reloc_tree(reloc_root
, path
, &level
);
1710 * save the merging progress in the drop_progress.
1711 * this is OK since root refs == 1 in this case.
1713 btrfs_node_key(path
->nodes
[level
], &root_item
->drop_progress
,
1714 path
->slots
[level
]);
1715 btrfs_set_root_drop_level(root_item
, level
);
1717 btrfs_end_transaction_throttle(trans
);
1720 btrfs_btree_balance_dirty(fs_info
);
1722 if (replaced
&& rc
->stage
== UPDATE_DATA_PTRS
)
1723 invalidate_extent_cache(root
, &key
, &next_key
);
1727 * handle the case only one block in the fs tree need to be
1728 * relocated and the block is tree root.
1730 leaf
= btrfs_lock_root_node(root
);
1731 ret
= btrfs_cow_block(trans
, root
, leaf
, NULL
, 0, &leaf
,
1733 btrfs_tree_unlock(leaf
);
1734 free_extent_buffer(leaf
);
1736 btrfs_free_path(path
);
1739 ret
= insert_dirty_subvol(trans
, rc
, root
);
1741 btrfs_abort_transaction(trans
, ret
);
1745 btrfs_end_transaction_throttle(trans
);
1747 btrfs_btree_balance_dirty(fs_info
);
1749 if (replaced
&& rc
->stage
== UPDATE_DATA_PTRS
)
1750 invalidate_extent_cache(root
, &key
, &next_key
);
1755 static noinline_for_stack
1756 int prepare_to_merge(struct reloc_control
*rc
, int err
)
1758 struct btrfs_root
*root
= rc
->extent_root
;
1759 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1760 struct btrfs_root
*reloc_root
;
1761 struct btrfs_trans_handle
*trans
;
1762 LIST_HEAD(reloc_roots
);
1766 mutex_lock(&fs_info
->reloc_mutex
);
1767 rc
->merging_rsv_size
+= fs_info
->nodesize
* (BTRFS_MAX_LEVEL
- 1) * 2;
1768 rc
->merging_rsv_size
+= rc
->nodes_relocated
* 2;
1769 mutex_unlock(&fs_info
->reloc_mutex
);
1773 num_bytes
= rc
->merging_rsv_size
;
1774 ret
= btrfs_block_rsv_add(fs_info
, rc
->block_rsv
, num_bytes
,
1775 BTRFS_RESERVE_FLUSH_ALL
);
1780 trans
= btrfs_join_transaction(rc
->extent_root
);
1781 if (IS_ERR(trans
)) {
1783 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
,
1785 return PTR_ERR(trans
);
1789 if (num_bytes
!= rc
->merging_rsv_size
) {
1790 btrfs_end_transaction(trans
);
1791 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
,
1797 rc
->merge_reloc_tree
= true;
1799 while (!list_empty(&rc
->reloc_roots
)) {
1800 reloc_root
= list_entry(rc
->reloc_roots
.next
,
1801 struct btrfs_root
, root_list
);
1802 list_del_init(&reloc_root
->root_list
);
1804 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
1808 * Even if we have an error we need this reloc root
1809 * back on our list so we can clean up properly.
1811 list_add(&reloc_root
->root_list
, &reloc_roots
);
1812 btrfs_abort_transaction(trans
, (int)PTR_ERR(root
));
1814 err
= PTR_ERR(root
);
1818 if (unlikely(root
->reloc_root
!= reloc_root
)) {
1819 if (root
->reloc_root
) {
1821 "reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1822 btrfs_root_id(root
),
1823 btrfs_root_id(root
->reloc_root
),
1824 root
->reloc_root
->root_key
.type
,
1825 root
->reloc_root
->root_key
.offset
,
1826 btrfs_root_generation(
1827 &root
->reloc_root
->root_item
),
1828 btrfs_root_id(reloc_root
),
1829 reloc_root
->root_key
.type
,
1830 reloc_root
->root_key
.offset
,
1831 btrfs_root_generation(
1832 &reloc_root
->root_item
));
1835 "reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1836 btrfs_root_id(root
),
1837 btrfs_root_id(reloc_root
),
1838 reloc_root
->root_key
.type
,
1839 reloc_root
->root_key
.offset
,
1840 btrfs_root_generation(
1841 &reloc_root
->root_item
));
1843 list_add(&reloc_root
->root_list
, &reloc_roots
);
1844 btrfs_put_root(root
);
1845 btrfs_abort_transaction(trans
, -EUCLEAN
);
1852 * set reference count to 1, so btrfs_recover_relocation
1853 * knows it should resumes merging
1856 btrfs_set_root_refs(&reloc_root
->root_item
, 1);
1857 ret
= btrfs_update_reloc_root(trans
, root
);
1860 * Even if we have an error we need this reloc root back on our
1861 * list so we can clean up properly.
1863 list_add(&reloc_root
->root_list
, &reloc_roots
);
1864 btrfs_put_root(root
);
1867 btrfs_abort_transaction(trans
, ret
);
1874 list_splice(&reloc_roots
, &rc
->reloc_roots
);
1877 err
= btrfs_commit_transaction(trans
);
1879 btrfs_end_transaction(trans
);
1883 static noinline_for_stack
1884 void free_reloc_roots(struct list_head
*list
)
1886 struct btrfs_root
*reloc_root
, *tmp
;
1888 list_for_each_entry_safe(reloc_root
, tmp
, list
, root_list
)
1889 __del_reloc_root(reloc_root
);
1892 static noinline_for_stack
1893 void merge_reloc_roots(struct reloc_control
*rc
)
1895 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
1896 struct btrfs_root
*root
;
1897 struct btrfs_root
*reloc_root
;
1898 LIST_HEAD(reloc_roots
);
1902 root
= rc
->extent_root
;
1905 * this serializes us with btrfs_record_root_in_transaction,
1906 * we have to make sure nobody is in the middle of
1907 * adding their roots to the list while we are
1910 mutex_lock(&fs_info
->reloc_mutex
);
1911 list_splice_init(&rc
->reloc_roots
, &reloc_roots
);
1912 mutex_unlock(&fs_info
->reloc_mutex
);
1914 while (!list_empty(&reloc_roots
)) {
1916 reloc_root
= list_entry(reloc_roots
.next
,
1917 struct btrfs_root
, root_list
);
1919 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
1921 if (btrfs_root_refs(&reloc_root
->root_item
) > 0) {
1922 if (WARN_ON(IS_ERR(root
))) {
1924 * For recovery we read the fs roots on mount,
1925 * and if we didn't find the root then we marked
1926 * the reloc root as a garbage root. For normal
1927 * relocation obviously the root should exist in
1928 * memory. However there's no reason we can't
1929 * handle the error properly here just in case.
1931 ret
= PTR_ERR(root
);
1934 if (WARN_ON(root
->reloc_root
!= reloc_root
)) {
1936 * This can happen if on-disk metadata has some
1937 * corruption, e.g. bad reloc tree key offset.
1942 ret
= merge_reloc_root(rc
, root
);
1943 btrfs_put_root(root
);
1945 if (list_empty(&reloc_root
->root_list
))
1946 list_add_tail(&reloc_root
->root_list
,
1951 if (!IS_ERR(root
)) {
1952 if (root
->reloc_root
== reloc_root
) {
1953 root
->reloc_root
= NULL
;
1954 btrfs_put_root(reloc_root
);
1956 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE
,
1958 btrfs_put_root(root
);
1961 list_del_init(&reloc_root
->root_list
);
1962 /* Don't forget to queue this reloc root for cleanup */
1963 list_add_tail(&reloc_root
->reloc_dirty_list
,
1964 &rc
->dirty_subvol_roots
);
1974 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
1975 free_reloc_roots(&reloc_roots
);
1977 /* new reloc root may be added */
1978 mutex_lock(&fs_info
->reloc_mutex
);
1979 list_splice_init(&rc
->reloc_roots
, &reloc_roots
);
1980 mutex_unlock(&fs_info
->reloc_mutex
);
1981 free_reloc_roots(&reloc_roots
);
1987 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
1989 * here, but it's wrong. If we fail to start the transaction in
1990 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
1991 * have actually been removed from the reloc_root_tree rb tree. This is
1992 * fine because we're bailing here, and we hold a reference on the root
1993 * for the list that holds it, so these roots will be cleaned up when we
1994 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
1995 * will be cleaned up on unmount.
1997 * The remaining nodes will be cleaned up by free_reloc_control.
2001 static void free_block_list(struct rb_root
*blocks
)
2003 struct tree_block
*block
;
2004 struct rb_node
*rb_node
;
2005 while ((rb_node
= rb_first(blocks
))) {
2006 block
= rb_entry(rb_node
, struct tree_block
, rb_node
);
2007 rb_erase(rb_node
, blocks
);
2012 static int record_reloc_root_in_trans(struct btrfs_trans_handle
*trans
,
2013 struct btrfs_root
*reloc_root
)
2015 struct btrfs_fs_info
*fs_info
= reloc_root
->fs_info
;
2016 struct btrfs_root
*root
;
2019 if (btrfs_get_root_last_trans(reloc_root
) == trans
->transid
)
2022 root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
, false);
2025 * This should succeed, since we can't have a reloc root without having
2026 * already looked up the actual root and created the reloc root for this
2029 * However if there's some sort of corruption where we have a ref to a
2030 * reloc root without a corresponding root this could return ENOENT.
2034 return PTR_ERR(root
);
2036 if (root
->reloc_root
!= reloc_root
) {
2039 "root %llu has two reloc roots associated with it",
2040 reloc_root
->root_key
.offset
);
2041 btrfs_put_root(root
);
2044 ret
= btrfs_record_root_in_trans(trans
, root
);
2045 btrfs_put_root(root
);
2050 static noinline_for_stack
2051 struct btrfs_root
*select_reloc_root(struct btrfs_trans_handle
*trans
,
2052 struct reloc_control
*rc
,
2053 struct btrfs_backref_node
*node
,
2054 struct btrfs_backref_edge
*edges
[])
2056 struct btrfs_backref_node
*next
;
2057 struct btrfs_root
*root
;
2064 next
= walk_up_backref(next
, edges
, &index
);
2068 * If there is no root, then our references for this block are
2069 * incomplete, as we should be able to walk all the way up to a
2070 * block that is owned by a root.
2072 * This path is only for SHAREABLE roots, so if we come upon a
2073 * non-SHAREABLE root then we have backrefs that resolve
2076 * Both of these cases indicate file system corruption, or a bug
2077 * in the backref walking code.
2081 btrfs_err(trans
->fs_info
,
2082 "bytenr %llu doesn't have a backref path ending in a root",
2084 return ERR_PTR(-EUCLEAN
);
2086 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
)) {
2088 btrfs_err(trans
->fs_info
,
2089 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2091 return ERR_PTR(-EUCLEAN
);
2094 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
) {
2095 ret
= record_reloc_root_in_trans(trans
, root
);
2097 return ERR_PTR(ret
);
2101 ret
= btrfs_record_root_in_trans(trans
, root
);
2103 return ERR_PTR(ret
);
2104 root
= root
->reloc_root
;
2107 * We could have raced with another thread which failed, so
2108 * root->reloc_root may not be set, return ENOENT in this case.
2111 return ERR_PTR(-ENOENT
);
2113 if (next
->new_bytenr
!= root
->node
->start
) {
2115 * We just created the reloc root, so we shouldn't have
2116 * ->new_bytenr set and this shouldn't be in the changed
2117 * list. If it is then we have multiple roots pointing
2118 * at the same bytenr which indicates corruption, or
2119 * we've made a mistake in the backref walking code.
2121 ASSERT(next
->new_bytenr
== 0);
2122 ASSERT(list_empty(&next
->list
));
2123 if (next
->new_bytenr
|| !list_empty(&next
->list
)) {
2124 btrfs_err(trans
->fs_info
,
2125 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2126 node
->bytenr
, next
->bytenr
);
2127 return ERR_PTR(-EUCLEAN
);
2130 next
->new_bytenr
= root
->node
->start
;
2131 btrfs_put_root(next
->root
);
2132 next
->root
= btrfs_grab_root(root
);
2134 list_add_tail(&next
->list
,
2135 &rc
->backref_cache
.changed
);
2136 mark_block_processed(rc
, next
);
2142 next
= walk_down_backref(edges
, &index
);
2143 if (!next
|| next
->level
<= node
->level
)
2148 * This can happen if there's fs corruption or if there's a bug
2149 * in the backref lookup code.
2152 return ERR_PTR(-ENOENT
);
2156 /* setup backref node path for btrfs_reloc_cow_block */
2158 rc
->backref_cache
.path
[next
->level
] = next
;
2161 next
= edges
[index
]->node
[UPPER
];
2167 * Select a tree root for relocation.
2169 * Return NULL if the block is not shareable. We should use do_relocation() in
2172 * Return a tree root pointer if the block is shareable.
2173 * Return -ENOENT if the block is root of reloc tree.
2175 static noinline_for_stack
2176 struct btrfs_root
*select_one_root(struct btrfs_backref_node
*node
)
2178 struct btrfs_backref_node
*next
;
2179 struct btrfs_root
*root
;
2180 struct btrfs_root
*fs_root
= NULL
;
2181 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2187 next
= walk_up_backref(next
, edges
, &index
);
2191 * This can occur if we have incomplete extent refs leading all
2192 * the way up a particular path, in this case return -EUCLEAN.
2195 return ERR_PTR(-EUCLEAN
);
2197 /* No other choice for non-shareable tree */
2198 if (!test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
))
2201 if (btrfs_root_id(root
) != BTRFS_TREE_RELOC_OBJECTID
)
2207 next
= walk_down_backref(edges
, &index
);
2208 if (!next
|| next
->level
<= node
->level
)
2213 return ERR_PTR(-ENOENT
);
2217 static noinline_for_stack u64
calcu_metadata_size(struct reloc_control
*rc
,
2218 struct btrfs_backref_node
*node
)
2220 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2221 struct btrfs_backref_node
*next
= node
;
2222 struct btrfs_backref_edge
*edge
;
2223 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2227 BUG_ON(node
->processed
);
2232 if (next
->processed
)
2235 num_bytes
+= fs_info
->nodesize
;
2237 if (list_empty(&next
->upper
))
2240 edge
= list_entry(next
->upper
.next
,
2241 struct btrfs_backref_edge
, list
[LOWER
]);
2242 edges
[index
++] = edge
;
2243 next
= edge
->node
[UPPER
];
2245 next
= walk_down_backref(edges
, &index
);
2250 static int reserve_metadata_space(struct btrfs_trans_handle
*trans
,
2251 struct reloc_control
*rc
,
2252 struct btrfs_backref_node
*node
)
2254 struct btrfs_root
*root
= rc
->extent_root
;
2255 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2260 num_bytes
= calcu_metadata_size(rc
, node
) * 2;
2262 trans
->block_rsv
= rc
->block_rsv
;
2263 rc
->reserved_bytes
+= num_bytes
;
2266 * We are under a transaction here so we can only do limited flushing.
2267 * If we get an enospc just kick back -EAGAIN so we know to drop the
2268 * transaction and try to refill when we can flush all the things.
2270 ret
= btrfs_block_rsv_refill(fs_info
, rc
->block_rsv
, num_bytes
,
2271 BTRFS_RESERVE_FLUSH_LIMIT
);
2273 tmp
= fs_info
->nodesize
* RELOCATION_RESERVED_NODES
;
2274 while (tmp
<= rc
->reserved_bytes
)
2277 * only one thread can access block_rsv at this point,
2278 * so we don't need hold lock to protect block_rsv.
2279 * we expand more reservation size here to allow enough
2280 * space for relocation and we will return earlier in
2283 rc
->block_rsv
->size
= tmp
+ fs_info
->nodesize
*
2284 RELOCATION_RESERVED_NODES
;
2292 * relocate a block tree, and then update pointers in upper level
2293 * blocks that reference the block to point to the new location.
2295 * if called by link_to_upper, the block has already been relocated.
2296 * in that case this function just updates pointers.
2298 static int do_relocation(struct btrfs_trans_handle
*trans
,
2299 struct reloc_control
*rc
,
2300 struct btrfs_backref_node
*node
,
2301 struct btrfs_key
*key
,
2302 struct btrfs_path
*path
, int lowest
)
2304 struct btrfs_backref_node
*upper
;
2305 struct btrfs_backref_edge
*edge
;
2306 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2307 struct btrfs_root
*root
;
2308 struct extent_buffer
*eb
;
2315 * If we are lowest then this is the first time we're processing this
2316 * block, and thus shouldn't have an eb associated with it yet.
2318 ASSERT(!lowest
|| !node
->eb
);
2320 path
->lowest_level
= node
->level
+ 1;
2321 rc
->backref_cache
.path
[node
->level
] = node
;
2322 list_for_each_entry(edge
, &node
->upper
, list
[LOWER
]) {
2325 upper
= edge
->node
[UPPER
];
2326 root
= select_reloc_root(trans
, rc
, upper
, edges
);
2328 ret
= PTR_ERR(root
);
2332 if (upper
->eb
&& !upper
->locked
) {
2334 ret
= btrfs_bin_search(upper
->eb
, 0, key
, &slot
);
2338 bytenr
= btrfs_node_blockptr(upper
->eb
, slot
);
2339 if (node
->eb
->start
== bytenr
)
2342 btrfs_backref_drop_node_buffer(upper
);
2346 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
2351 btrfs_release_path(path
);
2356 upper
->eb
= path
->nodes
[upper
->level
];
2357 path
->nodes
[upper
->level
] = NULL
;
2359 BUG_ON(upper
->eb
!= path
->nodes
[upper
->level
]);
2363 path
->locks
[upper
->level
] = 0;
2365 slot
= path
->slots
[upper
->level
];
2366 btrfs_release_path(path
);
2368 ret
= btrfs_bin_search(upper
->eb
, 0, key
, &slot
);
2374 bytenr
= btrfs_node_blockptr(upper
->eb
, slot
);
2376 if (bytenr
!= node
->bytenr
) {
2377 btrfs_err(root
->fs_info
,
2378 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2379 bytenr
, node
->bytenr
, slot
,
2385 if (node
->eb
->start
== bytenr
)
2389 blocksize
= root
->fs_info
->nodesize
;
2390 eb
= btrfs_read_node_slot(upper
->eb
, slot
);
2395 btrfs_tree_lock(eb
);
2398 ret
= btrfs_cow_block(trans
, root
, eb
, upper
->eb
,
2399 slot
, &eb
, BTRFS_NESTING_COW
);
2400 btrfs_tree_unlock(eb
);
2401 free_extent_buffer(eb
);
2405 * We've just COWed this block, it should have updated
2406 * the correct backref node entry.
2408 ASSERT(node
->eb
== eb
);
2410 struct btrfs_ref ref
= {
2411 .action
= BTRFS_ADD_DELAYED_REF
,
2412 .bytenr
= node
->eb
->start
,
2413 .num_bytes
= blocksize
,
2414 .parent
= upper
->eb
->start
,
2415 .owning_root
= btrfs_header_owner(upper
->eb
),
2416 .ref_root
= btrfs_header_owner(upper
->eb
),
2419 btrfs_set_node_blockptr(upper
->eb
, slot
,
2421 btrfs_set_node_ptr_generation(upper
->eb
, slot
,
2423 btrfs_mark_buffer_dirty(trans
, upper
->eb
);
2425 btrfs_init_tree_ref(&ref
, node
->level
,
2426 btrfs_root_id(root
), false);
2427 ret
= btrfs_inc_extent_ref(trans
, &ref
);
2429 ret
= btrfs_drop_subtree(trans
, root
, eb
,
2432 btrfs_abort_transaction(trans
, ret
);
2435 if (!upper
->pending
)
2436 btrfs_backref_drop_node_buffer(upper
);
2438 btrfs_backref_unlock_node_buffer(upper
);
2443 if (!ret
&& node
->pending
) {
2444 btrfs_backref_drop_node_buffer(node
);
2445 list_move_tail(&node
->list
, &rc
->backref_cache
.changed
);
2449 path
->lowest_level
= 0;
2452 * We should have allocated all of our space in the block rsv and thus
2455 ASSERT(ret
!= -ENOSPC
);
2459 static int link_to_upper(struct btrfs_trans_handle
*trans
,
2460 struct reloc_control
*rc
,
2461 struct btrfs_backref_node
*node
,
2462 struct btrfs_path
*path
)
2464 struct btrfs_key key
;
2466 btrfs_node_key_to_cpu(node
->eb
, &key
, 0);
2467 return do_relocation(trans
, rc
, node
, &key
, path
, 0);
2470 static int finish_pending_nodes(struct btrfs_trans_handle
*trans
,
2471 struct reloc_control
*rc
,
2472 struct btrfs_path
*path
, int err
)
2475 struct btrfs_backref_cache
*cache
= &rc
->backref_cache
;
2476 struct btrfs_backref_node
*node
;
2480 for (level
= 0; level
< BTRFS_MAX_LEVEL
; level
++) {
2481 while (!list_empty(&cache
->pending
[level
])) {
2482 node
= list_entry(cache
->pending
[level
].next
,
2483 struct btrfs_backref_node
, list
);
2484 list_move_tail(&node
->list
, &list
);
2485 BUG_ON(!node
->pending
);
2488 ret
= link_to_upper(trans
, rc
, node
, path
);
2493 list_splice_init(&list
, &cache
->pending
[level
]);
2499 * mark a block and all blocks directly/indirectly reference the block
2502 static void update_processed_blocks(struct reloc_control
*rc
,
2503 struct btrfs_backref_node
*node
)
2505 struct btrfs_backref_node
*next
= node
;
2506 struct btrfs_backref_edge
*edge
;
2507 struct btrfs_backref_edge
*edges
[BTRFS_MAX_LEVEL
- 1];
2513 if (next
->processed
)
2516 mark_block_processed(rc
, next
);
2518 if (list_empty(&next
->upper
))
2521 edge
= list_entry(next
->upper
.next
,
2522 struct btrfs_backref_edge
, list
[LOWER
]);
2523 edges
[index
++] = edge
;
2524 next
= edge
->node
[UPPER
];
2526 next
= walk_down_backref(edges
, &index
);
2530 static int tree_block_processed(u64 bytenr
, struct reloc_control
*rc
)
2532 u32 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
2534 if (test_range_bit(&rc
->processed_blocks
, bytenr
,
2535 bytenr
+ blocksize
- 1, EXTENT_DIRTY
, NULL
))
2540 static int get_tree_block_key(struct btrfs_fs_info
*fs_info
,
2541 struct tree_block
*block
)
2543 struct btrfs_tree_parent_check check
= {
2544 .level
= block
->level
,
2545 .owner_root
= block
->owner
,
2546 .transid
= block
->key
.offset
2548 struct extent_buffer
*eb
;
2550 eb
= read_tree_block(fs_info
, block
->bytenr
, &check
);
2553 if (!extent_buffer_uptodate(eb
)) {
2554 free_extent_buffer(eb
);
2557 if (block
->level
== 0)
2558 btrfs_item_key_to_cpu(eb
, &block
->key
, 0);
2560 btrfs_node_key_to_cpu(eb
, &block
->key
, 0);
2561 free_extent_buffer(eb
);
2562 block
->key_ready
= true;
2567 * helper function to relocate a tree block
2569 static int relocate_tree_block(struct btrfs_trans_handle
*trans
,
2570 struct reloc_control
*rc
,
2571 struct btrfs_backref_node
*node
,
2572 struct btrfs_key
*key
,
2573 struct btrfs_path
*path
)
2575 struct btrfs_root
*root
;
2582 * If we fail here we want to drop our backref_node because we are going
2583 * to start over and regenerate the tree for it.
2585 ret
= reserve_metadata_space(trans
, rc
, node
);
2589 BUG_ON(node
->processed
);
2590 root
= select_one_root(node
);
2592 ret
= PTR_ERR(root
);
2594 /* See explanation in select_one_root for the -EUCLEAN case. */
2595 ASSERT(ret
== -ENOENT
);
2596 if (ret
== -ENOENT
) {
2598 update_processed_blocks(rc
, node
);
2604 if (test_bit(BTRFS_ROOT_SHAREABLE
, &root
->state
)) {
2606 * This block was the root block of a root, and this is
2607 * the first time we're processing the block and thus it
2608 * should not have had the ->new_bytenr modified and
2609 * should have not been included on the changed list.
2611 * However in the case of corruption we could have
2612 * multiple refs pointing to the same block improperly,
2613 * and thus we would trip over these checks. ASSERT()
2614 * for the developer case, because it could indicate a
2615 * bug in the backref code, however error out for a
2616 * normal user in the case of corruption.
2618 ASSERT(node
->new_bytenr
== 0);
2619 ASSERT(list_empty(&node
->list
));
2620 if (node
->new_bytenr
|| !list_empty(&node
->list
)) {
2621 btrfs_err(root
->fs_info
,
2622 "bytenr %llu has improper references to it",
2627 ret
= btrfs_record_root_in_trans(trans
, root
);
2631 * Another thread could have failed, need to check if we
2632 * have reloc_root actually set.
2634 if (!root
->reloc_root
) {
2638 root
= root
->reloc_root
;
2639 node
->new_bytenr
= root
->node
->start
;
2640 btrfs_put_root(node
->root
);
2641 node
->root
= btrfs_grab_root(root
);
2643 list_add_tail(&node
->list
, &rc
->backref_cache
.changed
);
2645 path
->lowest_level
= node
->level
;
2646 if (root
== root
->fs_info
->chunk_root
)
2647 btrfs_reserve_chunk_metadata(trans
, false);
2648 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
2649 btrfs_release_path(path
);
2650 if (root
== root
->fs_info
->chunk_root
)
2651 btrfs_trans_release_chunk_metadata(trans
);
2656 update_processed_blocks(rc
, node
);
2658 ret
= do_relocation(trans
, rc
, node
, key
, path
, 1);
2661 if (ret
|| node
->level
== 0 || node
->cowonly
)
2662 btrfs_backref_cleanup_node(&rc
->backref_cache
, node
);
2667 * relocate a list of blocks
2669 static noinline_for_stack
2670 int relocate_tree_blocks(struct btrfs_trans_handle
*trans
,
2671 struct reloc_control
*rc
, struct rb_root
*blocks
)
2673 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
2674 struct btrfs_backref_node
*node
;
2675 struct btrfs_path
*path
;
2676 struct tree_block
*block
;
2677 struct tree_block
*next
;
2680 path
= btrfs_alloc_path();
2683 goto out_free_blocks
;
2686 /* Kick in readahead for tree blocks with missing keys */
2687 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2688 if (!block
->key_ready
)
2689 btrfs_readahead_tree_block(fs_info
, block
->bytenr
,
2694 /* Get first keys */
2695 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2696 if (!block
->key_ready
) {
2697 ret
= get_tree_block_key(fs_info
, block
);
2703 /* Do tree relocation */
2704 rbtree_postorder_for_each_entry_safe(block
, next
, blocks
, rb_node
) {
2705 node
= build_backref_tree(trans
, rc
, &block
->key
,
2706 block
->level
, block
->bytenr
);
2708 ret
= PTR_ERR(node
);
2712 ret
= relocate_tree_block(trans
, rc
, node
, &block
->key
,
2718 ret
= finish_pending_nodes(trans
, rc
, path
, ret
);
2721 btrfs_free_path(path
);
2723 free_block_list(blocks
);
2727 static noinline_for_stack
int prealloc_file_extent_cluster(struct reloc_control
*rc
)
2729 const struct file_extent_cluster
*cluster
= &rc
->cluster
;
2730 struct btrfs_inode
*inode
= BTRFS_I(rc
->data_inode
);
2734 u64 offset
= inode
->reloc_block_group_start
;
2738 u64 i_size
= i_size_read(&inode
->vfs_inode
);
2739 u64 prealloc_start
= cluster
->start
- offset
;
2740 u64 prealloc_end
= cluster
->end
- offset
;
2741 u64 cur_offset
= prealloc_start
;
2744 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2745 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2746 * btrfs_do_readpage() call of previously relocated file cluster.
2748 * If the current cluster starts in the above range, btrfs_do_readpage()
2749 * will skip the read, and relocate_one_folio() will later writeback
2750 * the padding zeros as new data, causing data corruption.
2752 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2754 if (!PAGE_ALIGNED(i_size
)) {
2755 struct address_space
*mapping
= inode
->vfs_inode
.i_mapping
;
2756 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
2757 const u32 sectorsize
= fs_info
->sectorsize
;
2758 struct folio
*folio
;
2760 ASSERT(sectorsize
< PAGE_SIZE
);
2761 ASSERT(IS_ALIGNED(i_size
, sectorsize
));
2764 * Subpage can't handle page with DIRTY but without UPTODATE
2765 * bit as it can lead to the following deadlock:
2767 * btrfs_read_folio()
2768 * | Page already *locked*
2769 * |- btrfs_lock_and_flush_ordered_range()
2770 * |- btrfs_start_ordered_extent()
2771 * |- extent_write_cache_pages()
2773 * We try to lock the page we already hold.
2775 * Here we just writeback the whole data reloc inode, so that
2776 * we will be ensured to have no dirty range in the page, and
2777 * are safe to clear the uptodate bits.
2779 * This shouldn't cause too much overhead, as we need to write
2780 * the data back anyway.
2782 ret
= filemap_write_and_wait(mapping
);
2786 clear_extent_bits(&inode
->io_tree
, i_size
,
2787 round_up(i_size
, PAGE_SIZE
) - 1,
2789 folio
= filemap_lock_folio(mapping
, i_size
>> PAGE_SHIFT
);
2791 * If page is freed we don't need to do anything then, as we
2792 * will re-read the whole page anyway.
2794 if (!IS_ERR(folio
)) {
2795 btrfs_subpage_clear_uptodate(fs_info
, folio
, i_size
,
2796 round_up(i_size
, PAGE_SIZE
) - i_size
);
2797 folio_unlock(folio
);
2802 BUG_ON(cluster
->start
!= cluster
->boundary
[0]);
2803 ret
= btrfs_alloc_data_chunk_ondemand(inode
,
2804 prealloc_end
+ 1 - prealloc_start
);
2808 btrfs_inode_lock(inode
, 0);
2809 for (nr
= 0; nr
< cluster
->nr
; nr
++) {
2810 struct extent_state
*cached_state
= NULL
;
2812 start
= cluster
->boundary
[nr
] - offset
;
2813 if (nr
+ 1 < cluster
->nr
)
2814 end
= cluster
->boundary
[nr
+ 1] - 1 - offset
;
2816 end
= cluster
->end
- offset
;
2818 lock_extent(&inode
->io_tree
, start
, end
, &cached_state
);
2819 num_bytes
= end
+ 1 - start
;
2820 ret
= btrfs_prealloc_file_range(&inode
->vfs_inode
, 0, start
,
2821 num_bytes
, num_bytes
,
2822 end
+ 1, &alloc_hint
);
2823 cur_offset
= end
+ 1;
2824 unlock_extent(&inode
->io_tree
, start
, end
, &cached_state
);
2828 btrfs_inode_unlock(inode
, 0);
2830 if (cur_offset
< prealloc_end
)
2831 btrfs_free_reserved_data_space_noquota(inode
->root
->fs_info
,
2832 prealloc_end
+ 1 - cur_offset
);
2836 static noinline_for_stack
int setup_relocation_extent_mapping(struct reloc_control
*rc
)
2838 struct btrfs_inode
*inode
= BTRFS_I(rc
->data_inode
);
2839 struct extent_map
*em
;
2840 struct extent_state
*cached_state
= NULL
;
2841 u64 offset
= inode
->reloc_block_group_start
;
2842 u64 start
= rc
->cluster
.start
- offset
;
2843 u64 end
= rc
->cluster
.end
- offset
;
2846 em
= alloc_extent_map();
2851 em
->len
= end
+ 1 - start
;
2852 em
->disk_bytenr
= rc
->cluster
.start
;
2853 em
->disk_num_bytes
= em
->len
;
2854 em
->ram_bytes
= em
->len
;
2855 em
->flags
|= EXTENT_FLAG_PINNED
;
2857 lock_extent(&inode
->io_tree
, start
, end
, &cached_state
);
2858 ret
= btrfs_replace_extent_map_range(inode
, em
, false);
2859 unlock_extent(&inode
->io_tree
, start
, end
, &cached_state
);
2860 free_extent_map(em
);
2866 * Allow error injection to test balance/relocation cancellation
2868 noinline
int btrfs_should_cancel_balance(const struct btrfs_fs_info
*fs_info
)
2870 return atomic_read(&fs_info
->balance_cancel_req
) ||
2871 atomic_read(&fs_info
->reloc_cancel_req
) ||
2872 fatal_signal_pending(current
);
2874 ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance
, TRUE
);
2876 static u64
get_cluster_boundary_end(const struct file_extent_cluster
*cluster
,
2879 /* Last extent, use cluster end directly */
2880 if (cluster_nr
>= cluster
->nr
- 1)
2881 return cluster
->end
;
2883 /* Use next boundary start*/
2884 return cluster
->boundary
[cluster_nr
+ 1] - 1;
2887 static int relocate_one_folio(struct reloc_control
*rc
,
2888 struct file_ra_state
*ra
,
2889 int *cluster_nr
, unsigned long index
)
2891 const struct file_extent_cluster
*cluster
= &rc
->cluster
;
2892 struct inode
*inode
= rc
->data_inode
;
2893 struct btrfs_fs_info
*fs_info
= inode_to_fs_info(inode
);
2894 u64 offset
= BTRFS_I(inode
)->reloc_block_group_start
;
2895 const unsigned long last_index
= (cluster
->end
- offset
) >> PAGE_SHIFT
;
2896 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
2897 struct folio
*folio
;
2902 const bool use_rst
= btrfs_need_stripe_tree_update(fs_info
, rc
->block_group
->flags
);
2904 ASSERT(index
<= last_index
);
2905 folio
= filemap_lock_folio(inode
->i_mapping
, index
);
2906 if (IS_ERR(folio
)) {
2909 * On relocation we're doing readahead on the relocation inode,
2910 * but if the filesystem is backed by a RAID stripe tree we can
2911 * get ENOENT (e.g. due to preallocated extents not being
2912 * mapped in the RST) from the lookup.
2914 * But readahead doesn't handle the error and submits invalid
2915 * reads to the device, causing a assertion failures.
2918 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
,
2919 index
, last_index
+ 1 - index
);
2920 folio
= __filemap_get_folio(inode
->i_mapping
, index
,
2921 FGP_LOCK
| FGP_ACCESSED
| FGP_CREAT
,
2924 return PTR_ERR(folio
);
2927 WARN_ON(folio_order(folio
));
2929 if (folio_test_readahead(folio
) && !use_rst
)
2930 page_cache_async_readahead(inode
->i_mapping
, ra
, NULL
,
2931 folio
, last_index
+ 1 - index
);
2933 if (!folio_test_uptodate(folio
)) {
2934 btrfs_read_folio(NULL
, folio
);
2936 if (!folio_test_uptodate(folio
)) {
2943 * We could have lost folio private when we dropped the lock to read the
2944 * folio above, make sure we set_page_extent_mapped here so we have any
2945 * of the subpage blocksize stuff we need in place.
2947 ret
= set_folio_extent_mapped(folio
);
2951 folio_start
= folio_pos(folio
);
2952 folio_end
= folio_start
+ PAGE_SIZE
- 1;
2955 * Start from the cluster, as for subpage case, the cluster can start
2958 cur
= max(folio_start
, cluster
->boundary
[*cluster_nr
] - offset
);
2959 while (cur
<= folio_end
) {
2960 struct extent_state
*cached_state
= NULL
;
2961 u64 extent_start
= cluster
->boundary
[*cluster_nr
] - offset
;
2962 u64 extent_end
= get_cluster_boundary_end(cluster
,
2963 *cluster_nr
) - offset
;
2964 u64 clamped_start
= max(folio_start
, extent_start
);
2965 u64 clamped_end
= min(folio_end
, extent_end
);
2966 u32 clamped_len
= clamped_end
+ 1 - clamped_start
;
2968 /* Reserve metadata for this range */
2969 ret
= btrfs_delalloc_reserve_metadata(BTRFS_I(inode
),
2970 clamped_len
, clamped_len
,
2975 /* Mark the range delalloc and dirty for later writeback */
2976 lock_extent(&BTRFS_I(inode
)->io_tree
, clamped_start
, clamped_end
,
2978 ret
= btrfs_set_extent_delalloc(BTRFS_I(inode
), clamped_start
,
2979 clamped_end
, 0, &cached_state
);
2981 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
2982 clamped_start
, clamped_end
,
2983 EXTENT_LOCKED
| EXTENT_BOUNDARY
,
2985 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
2987 btrfs_delalloc_release_extents(BTRFS_I(inode
),
2991 btrfs_folio_set_dirty(fs_info
, folio
, clamped_start
, clamped_len
);
2994 * Set the boundary if it's inside the folio.
2995 * Data relocation requires the destination extents to have the
2996 * same size as the source.
2997 * EXTENT_BOUNDARY bit prevents current extent from being merged
2998 * with previous extent.
3000 if (in_range(cluster
->boundary
[*cluster_nr
] - offset
, folio_start
, PAGE_SIZE
)) {
3001 u64 boundary_start
= cluster
->boundary
[*cluster_nr
] -
3003 u64 boundary_end
= boundary_start
+
3004 fs_info
->sectorsize
- 1;
3006 set_extent_bit(&BTRFS_I(inode
)->io_tree
,
3007 boundary_start
, boundary_end
,
3008 EXTENT_BOUNDARY
, NULL
);
3010 unlock_extent(&BTRFS_I(inode
)->io_tree
, clamped_start
, clamped_end
,
3012 btrfs_delalloc_release_extents(BTRFS_I(inode
), clamped_len
);
3015 /* Crossed extent end, go to next extent */
3016 if (cur
>= extent_end
) {
3018 /* Just finished the last extent of the cluster, exit. */
3019 if (*cluster_nr
>= cluster
->nr
)
3023 folio_unlock(folio
);
3026 balance_dirty_pages_ratelimited(inode
->i_mapping
);
3027 btrfs_throttle(fs_info
);
3028 if (btrfs_should_cancel_balance(fs_info
))
3033 folio_unlock(folio
);
3038 static int relocate_file_extent_cluster(struct reloc_control
*rc
)
3040 struct inode
*inode
= rc
->data_inode
;
3041 const struct file_extent_cluster
*cluster
= &rc
->cluster
;
3042 u64 offset
= BTRFS_I(inode
)->reloc_block_group_start
;
3043 unsigned long index
;
3044 unsigned long last_index
;
3045 struct file_ra_state
*ra
;
3052 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
3056 ret
= prealloc_file_extent_cluster(rc
);
3060 file_ra_state_init(ra
, inode
->i_mapping
);
3062 ret
= setup_relocation_extent_mapping(rc
);
3066 last_index
= (cluster
->end
- offset
) >> PAGE_SHIFT
;
3067 for (index
= (cluster
->start
- offset
) >> PAGE_SHIFT
;
3068 index
<= last_index
&& !ret
; index
++)
3069 ret
= relocate_one_folio(rc
, ra
, &cluster_nr
, index
);
3071 WARN_ON(cluster_nr
!= cluster
->nr
);
3077 static noinline_for_stack
int relocate_data_extent(struct reloc_control
*rc
,
3078 const struct btrfs_key
*extent_key
)
3080 struct inode
*inode
= rc
->data_inode
;
3081 struct file_extent_cluster
*cluster
= &rc
->cluster
;
3083 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3085 if (cluster
->nr
> 0 && extent_key
->objectid
!= cluster
->end
+ 1) {
3086 ret
= relocate_file_extent_cluster(rc
);
3093 * Under simple quotas, we set root->relocation_src_root when we find
3094 * the extent. If adjacent extents have different owners, we can't merge
3095 * them while relocating. Handle this by storing the owning root that
3096 * started a cluster and if we see an extent from a different root break
3097 * cluster formation (just like the above case of non-adjacent extents).
3099 * Without simple quotas, relocation_src_root is always 0, so we should
3100 * never see a mismatch, and it should have no effect on relocation
3103 if (cluster
->nr
> 0 && cluster
->owning_root
!= root
->relocation_src_root
) {
3104 u64 tmp
= root
->relocation_src_root
;
3107 * root->relocation_src_root is the state that actually affects
3108 * the preallocation we do here, so set it to the root owning
3109 * the cluster we need to relocate.
3111 root
->relocation_src_root
= cluster
->owning_root
;
3112 ret
= relocate_file_extent_cluster(rc
);
3116 /* And reset it back for the current extent's owning root. */
3117 root
->relocation_src_root
= tmp
;
3121 cluster
->start
= extent_key
->objectid
;
3122 cluster
->owning_root
= root
->relocation_src_root
;
3125 BUG_ON(cluster
->nr
>= MAX_EXTENTS
);
3126 cluster
->end
= extent_key
->objectid
+ extent_key
->offset
- 1;
3127 cluster
->boundary
[cluster
->nr
] = extent_key
->objectid
;
3130 if (cluster
->nr
>= MAX_EXTENTS
) {
3131 ret
= relocate_file_extent_cluster(rc
);
3140 * helper to add a tree block to the list.
3141 * the major work is getting the generation and level of the block
3143 static int add_tree_block(struct reloc_control
*rc
,
3144 const struct btrfs_key
*extent_key
,
3145 struct btrfs_path
*path
,
3146 struct rb_root
*blocks
)
3148 struct extent_buffer
*eb
;
3149 struct btrfs_extent_item
*ei
;
3150 struct btrfs_tree_block_info
*bi
;
3151 struct tree_block
*block
;
3152 struct rb_node
*rb_node
;
3158 eb
= path
->nodes
[0];
3159 item_size
= btrfs_item_size(eb
, path
->slots
[0]);
3161 if (extent_key
->type
== BTRFS_METADATA_ITEM_KEY
||
3162 item_size
>= sizeof(*ei
) + sizeof(*bi
)) {
3163 unsigned long ptr
= 0, end
;
3165 ei
= btrfs_item_ptr(eb
, path
->slots
[0],
3166 struct btrfs_extent_item
);
3167 end
= (unsigned long)ei
+ item_size
;
3168 if (extent_key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
3169 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
3170 level
= btrfs_tree_block_level(eb
, bi
);
3171 ptr
= (unsigned long)(bi
+ 1);
3173 level
= (int)extent_key
->offset
;
3174 ptr
= (unsigned long)(ei
+ 1);
3176 generation
= btrfs_extent_generation(eb
, ei
);
3179 * We're reading random blocks without knowing their owner ahead
3180 * of time. This is ok most of the time, as all reloc roots and
3181 * fs roots have the same lock type. However normal trees do
3182 * not, and the only way to know ahead of time is to read the
3183 * inline ref offset. We know it's an fs root if
3185 * 1. There's more than one ref.
3186 * 2. There's a SHARED_DATA_REF_KEY set.
3187 * 3. FULL_BACKREF is set on the flags.
3189 * Otherwise it's safe to assume that the ref offset == the
3190 * owner of this block, so we can use that when calling
3193 if (btrfs_extent_refs(eb
, ei
) == 1 &&
3194 !(btrfs_extent_flags(eb
, ei
) &
3195 BTRFS_BLOCK_FLAG_FULL_BACKREF
) &&
3197 struct btrfs_extent_inline_ref
*iref
;
3200 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
3201 type
= btrfs_get_extent_inline_ref_type(eb
, iref
,
3202 BTRFS_REF_TYPE_BLOCK
);
3203 if (type
== BTRFS_REF_TYPE_INVALID
)
3205 if (type
== BTRFS_TREE_BLOCK_REF_KEY
)
3206 owner
= btrfs_extent_inline_ref_offset(eb
, iref
);
3209 btrfs_print_leaf(eb
);
3210 btrfs_err(rc
->block_group
->fs_info
,
3211 "unrecognized tree backref at tree block %llu slot %u",
3212 eb
->start
, path
->slots
[0]);
3213 btrfs_release_path(path
);
3217 btrfs_release_path(path
);
3219 BUG_ON(level
== -1);
3221 block
= kmalloc(sizeof(*block
), GFP_NOFS
);
3225 block
->bytenr
= extent_key
->objectid
;
3226 block
->key
.objectid
= rc
->extent_root
->fs_info
->nodesize
;
3227 block
->key
.offset
= generation
;
3228 block
->level
= level
;
3229 block
->key_ready
= false;
3230 block
->owner
= owner
;
3232 rb_node
= rb_simple_insert(blocks
, block
->bytenr
, &block
->rb_node
);
3234 btrfs_backref_panic(rc
->extent_root
->fs_info
, block
->bytenr
,
3241 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3243 static int __add_tree_block(struct reloc_control
*rc
,
3244 u64 bytenr
, u32 blocksize
,
3245 struct rb_root
*blocks
)
3247 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3248 struct btrfs_path
*path
;
3249 struct btrfs_key key
;
3251 bool skinny
= btrfs_fs_incompat(fs_info
, SKINNY_METADATA
);
3253 if (tree_block_processed(bytenr
, rc
))
3256 if (rb_simple_search(blocks
, bytenr
))
3259 path
= btrfs_alloc_path();
3263 key
.objectid
= bytenr
;
3265 key
.type
= BTRFS_METADATA_ITEM_KEY
;
3266 key
.offset
= (u64
)-1;
3268 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3269 key
.offset
= blocksize
;
3272 path
->search_commit_root
= 1;
3273 path
->skip_locking
= 1;
3274 ret
= btrfs_search_slot(NULL
, rc
->extent_root
, &key
, path
, 0, 0);
3278 if (ret
> 0 && skinny
) {
3279 if (path
->slots
[0]) {
3281 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3283 if (key
.objectid
== bytenr
&&
3284 (key
.type
== BTRFS_METADATA_ITEM_KEY
||
3285 (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3286 key
.offset
== blocksize
)))
3292 btrfs_release_path(path
);
3298 btrfs_print_leaf(path
->nodes
[0]);
3300 "tree block extent item (%llu) is not found in extent tree",
3307 ret
= add_tree_block(rc
, &key
, path
, blocks
);
3309 btrfs_free_path(path
);
3313 static int delete_block_group_cache(struct btrfs_fs_info
*fs_info
,
3314 struct btrfs_block_group
*block_group
,
3315 struct inode
*inode
,
3318 struct btrfs_root
*root
= fs_info
->tree_root
;
3319 struct btrfs_trans_handle
*trans
;
3325 inode
= btrfs_iget(ino
, root
);
3330 ret
= btrfs_check_trunc_cache_free_space(fs_info
,
3331 &fs_info
->global_block_rsv
);
3335 trans
= btrfs_join_transaction(root
);
3336 if (IS_ERR(trans
)) {
3337 ret
= PTR_ERR(trans
);
3341 ret
= btrfs_truncate_free_space_cache(trans
, block_group
, inode
);
3343 btrfs_end_transaction(trans
);
3344 btrfs_btree_balance_dirty(fs_info
);
3351 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3352 * cache inode, to avoid free space cache data extent blocking data relocation.
3354 static int delete_v1_space_cache(struct extent_buffer
*leaf
,
3355 struct btrfs_block_group
*block_group
,
3358 u64 space_cache_ino
;
3359 struct btrfs_file_extent_item
*ei
;
3360 struct btrfs_key key
;
3365 if (btrfs_header_owner(leaf
) != BTRFS_ROOT_TREE_OBJECTID
)
3368 for (i
= 0; i
< btrfs_header_nritems(leaf
); i
++) {
3371 btrfs_item_key_to_cpu(leaf
, &key
, i
);
3372 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
3374 ei
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
3375 type
= btrfs_file_extent_type(leaf
, ei
);
3377 if ((type
== BTRFS_FILE_EXTENT_REG
||
3378 type
== BTRFS_FILE_EXTENT_PREALLOC
) &&
3379 btrfs_file_extent_disk_bytenr(leaf
, ei
) == data_bytenr
) {
3381 space_cache_ino
= key
.objectid
;
3387 ret
= delete_block_group_cache(leaf
->fs_info
, block_group
, NULL
,
3393 * helper to find all tree blocks that reference a given data extent
3395 static noinline_for_stack
int add_data_references(struct reloc_control
*rc
,
3396 const struct btrfs_key
*extent_key
,
3397 struct btrfs_path
*path
,
3398 struct rb_root
*blocks
)
3400 struct btrfs_backref_walk_ctx ctx
= { 0 };
3401 struct ulist_iterator leaf_uiter
;
3402 struct ulist_node
*ref_node
= NULL
;
3403 const u32 blocksize
= rc
->extent_root
->fs_info
->nodesize
;
3406 btrfs_release_path(path
);
3408 ctx
.bytenr
= extent_key
->objectid
;
3409 ctx
.skip_inode_ref_list
= true;
3410 ctx
.fs_info
= rc
->extent_root
->fs_info
;
3412 ret
= btrfs_find_all_leafs(&ctx
);
3416 ULIST_ITER_INIT(&leaf_uiter
);
3417 while ((ref_node
= ulist_next(ctx
.refs
, &leaf_uiter
))) {
3418 struct btrfs_tree_parent_check check
= { 0 };
3419 struct extent_buffer
*eb
;
3421 eb
= read_tree_block(ctx
.fs_info
, ref_node
->val
, &check
);
3426 ret
= delete_v1_space_cache(eb
, rc
->block_group
,
3427 extent_key
->objectid
);
3428 free_extent_buffer(eb
);
3431 ret
= __add_tree_block(rc
, ref_node
->val
, blocksize
, blocks
);
3436 free_block_list(blocks
);
3437 ulist_free(ctx
.refs
);
3442 * helper to find next unprocessed extent
3444 static noinline_for_stack
3445 int find_next_extent(struct reloc_control
*rc
, struct btrfs_path
*path
,
3446 struct btrfs_key
*extent_key
)
3448 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3449 struct btrfs_key key
;
3450 struct extent_buffer
*leaf
;
3451 u64 start
, end
, last
;
3454 last
= rc
->block_group
->start
+ rc
->block_group
->length
;
3459 if (rc
->search_start
>= last
) {
3464 key
.objectid
= rc
->search_start
;
3465 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
3468 path
->search_commit_root
= 1;
3469 path
->skip_locking
= 1;
3470 ret
= btrfs_search_slot(NULL
, rc
->extent_root
, &key
, path
,
3475 leaf
= path
->nodes
[0];
3476 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
3477 ret
= btrfs_next_leaf(rc
->extent_root
, path
);
3480 leaf
= path
->nodes
[0];
3483 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
3484 if (key
.objectid
>= last
) {
3489 if (key
.type
!= BTRFS_EXTENT_ITEM_KEY
&&
3490 key
.type
!= BTRFS_METADATA_ITEM_KEY
) {
3495 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
3496 key
.objectid
+ key
.offset
<= rc
->search_start
) {
3501 if (key
.type
== BTRFS_METADATA_ITEM_KEY
&&
3502 key
.objectid
+ fs_info
->nodesize
<=
3508 block_found
= find_first_extent_bit(&rc
->processed_blocks
,
3509 key
.objectid
, &start
, &end
,
3510 EXTENT_DIRTY
, NULL
);
3512 if (block_found
&& start
<= key
.objectid
) {
3513 btrfs_release_path(path
);
3514 rc
->search_start
= end
+ 1;
3516 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
)
3517 rc
->search_start
= key
.objectid
+ key
.offset
;
3519 rc
->search_start
= key
.objectid
+
3521 memcpy(extent_key
, &key
, sizeof(key
));
3525 btrfs_release_path(path
);
3529 static void set_reloc_control(struct reloc_control
*rc
)
3531 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3533 mutex_lock(&fs_info
->reloc_mutex
);
3534 fs_info
->reloc_ctl
= rc
;
3535 mutex_unlock(&fs_info
->reloc_mutex
);
3538 static void unset_reloc_control(struct reloc_control
*rc
)
3540 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3542 mutex_lock(&fs_info
->reloc_mutex
);
3543 fs_info
->reloc_ctl
= NULL
;
3544 mutex_unlock(&fs_info
->reloc_mutex
);
3547 static noinline_for_stack
3548 int prepare_to_relocate(struct reloc_control
*rc
)
3550 struct btrfs_trans_handle
*trans
;
3553 rc
->block_rsv
= btrfs_alloc_block_rsv(rc
->extent_root
->fs_info
,
3554 BTRFS_BLOCK_RSV_TEMP
);
3558 memset(&rc
->cluster
, 0, sizeof(rc
->cluster
));
3559 rc
->search_start
= rc
->block_group
->start
;
3560 rc
->extents_found
= 0;
3561 rc
->nodes_relocated
= 0;
3562 rc
->merging_rsv_size
= 0;
3563 rc
->reserved_bytes
= 0;
3564 rc
->block_rsv
->size
= rc
->extent_root
->fs_info
->nodesize
*
3565 RELOCATION_RESERVED_NODES
;
3566 ret
= btrfs_block_rsv_refill(rc
->extent_root
->fs_info
,
3567 rc
->block_rsv
, rc
->block_rsv
->size
,
3568 BTRFS_RESERVE_FLUSH_ALL
);
3572 rc
->create_reloc_tree
= true;
3573 set_reloc_control(rc
);
3575 trans
= btrfs_join_transaction(rc
->extent_root
);
3576 if (IS_ERR(trans
)) {
3577 unset_reloc_control(rc
);
3579 * extent tree is not a ref_cow tree and has no reloc_root to
3580 * cleanup. And callers are responsible to free the above
3583 return PTR_ERR(trans
);
3586 ret
= btrfs_commit_transaction(trans
);
3588 unset_reloc_control(rc
);
3593 static noinline_for_stack
int relocate_block_group(struct reloc_control
*rc
)
3595 struct btrfs_fs_info
*fs_info
= rc
->extent_root
->fs_info
;
3596 struct rb_root blocks
= RB_ROOT
;
3597 struct btrfs_key key
;
3598 struct btrfs_trans_handle
*trans
= NULL
;
3599 struct btrfs_path
*path
;
3600 struct btrfs_extent_item
*ei
;
3606 path
= btrfs_alloc_path();
3609 path
->reada
= READA_FORWARD
;
3611 ret
= prepare_to_relocate(rc
);
3618 rc
->reserved_bytes
= 0;
3619 ret
= btrfs_block_rsv_refill(fs_info
, rc
->block_rsv
,
3620 rc
->block_rsv
->size
,
3621 BTRFS_RESERVE_FLUSH_ALL
);
3627 trans
= btrfs_start_transaction(rc
->extent_root
, 0);
3628 if (IS_ERR(trans
)) {
3629 err
= PTR_ERR(trans
);
3634 if (rc
->backref_cache
.last_trans
!= trans
->transid
)
3635 btrfs_backref_release_cache(&rc
->backref_cache
);
3636 rc
->backref_cache
.last_trans
= trans
->transid
;
3638 ret
= find_next_extent(rc
, path
, &key
);
3644 rc
->extents_found
++;
3646 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3647 struct btrfs_extent_item
);
3648 flags
= btrfs_extent_flags(path
->nodes
[0], ei
);
3651 * If we are relocating a simple quota owned extent item, we
3652 * need to note the owner on the reloc data root so that when
3653 * we allocate the replacement item, we can attribute it to the
3654 * correct eventual owner (rather than the reloc data root).
3656 if (btrfs_qgroup_mode(fs_info
) == BTRFS_QGROUP_MODE_SIMPLE
) {
3657 struct btrfs_root
*root
= BTRFS_I(rc
->data_inode
)->root
;
3658 u64 owning_root_id
= btrfs_get_extent_owner_root(fs_info
,
3662 root
->relocation_src_root
= owning_root_id
;
3665 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
3666 ret
= add_tree_block(rc
, &key
, path
, &blocks
);
3667 } else if (rc
->stage
== UPDATE_DATA_PTRS
&&
3668 (flags
& BTRFS_EXTENT_FLAG_DATA
)) {
3669 ret
= add_data_references(rc
, &key
, path
, &blocks
);
3671 btrfs_release_path(path
);
3679 if (!RB_EMPTY_ROOT(&blocks
)) {
3680 ret
= relocate_tree_blocks(trans
, rc
, &blocks
);
3682 if (ret
!= -EAGAIN
) {
3686 rc
->extents_found
--;
3687 rc
->search_start
= key
.objectid
;
3691 btrfs_end_transaction_throttle(trans
);
3692 btrfs_btree_balance_dirty(fs_info
);
3695 if (rc
->stage
== MOVE_DATA_EXTENTS
&&
3696 (flags
& BTRFS_EXTENT_FLAG_DATA
)) {
3697 rc
->found_file_extent
= true;
3698 ret
= relocate_data_extent(rc
, &key
);
3704 if (btrfs_should_cancel_balance(fs_info
)) {
3709 if (trans
&& progress
&& err
== -ENOSPC
) {
3710 ret
= btrfs_force_chunk_alloc(trans
, rc
->block_group
->flags
);
3718 btrfs_release_path(path
);
3719 clear_extent_bits(&rc
->processed_blocks
, 0, (u64
)-1, EXTENT_DIRTY
);
3722 btrfs_end_transaction_throttle(trans
);
3723 btrfs_btree_balance_dirty(fs_info
);
3727 ret
= relocate_file_extent_cluster(rc
);
3732 rc
->create_reloc_tree
= false;
3733 set_reloc_control(rc
);
3735 btrfs_backref_release_cache(&rc
->backref_cache
);
3736 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
, (u64
)-1, NULL
);
3739 * Even in the case when the relocation is cancelled, we should all go
3740 * through prepare_to_merge() and merge_reloc_roots().
3742 * For error (including cancelled balance), prepare_to_merge() will
3743 * mark all reloc trees orphan, then queue them for cleanup in
3744 * merge_reloc_roots()
3746 err
= prepare_to_merge(rc
, err
);
3748 merge_reloc_roots(rc
);
3750 rc
->merge_reloc_tree
= false;
3751 unset_reloc_control(rc
);
3752 btrfs_block_rsv_release(fs_info
, rc
->block_rsv
, (u64
)-1, NULL
);
3754 /* get rid of pinned extents */
3755 trans
= btrfs_join_transaction(rc
->extent_root
);
3756 if (IS_ERR(trans
)) {
3757 err
= PTR_ERR(trans
);
3760 ret
= btrfs_commit_transaction(trans
);
3764 ret
= clean_dirty_subvols(rc
);
3765 if (ret
< 0 && !err
)
3767 btrfs_free_block_rsv(fs_info
, rc
->block_rsv
);
3768 btrfs_free_path(path
);
3772 static int __insert_orphan_inode(struct btrfs_trans_handle
*trans
,
3773 struct btrfs_root
*root
, u64 objectid
)
3775 struct btrfs_path
*path
;
3776 struct btrfs_inode_item
*item
;
3777 struct extent_buffer
*leaf
;
3780 path
= btrfs_alloc_path();
3784 ret
= btrfs_insert_empty_inode(trans
, root
, path
, objectid
);
3788 leaf
= path
->nodes
[0];
3789 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_inode_item
);
3790 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3791 btrfs_set_inode_generation(leaf
, item
, 1);
3792 btrfs_set_inode_size(leaf
, item
, 0);
3793 btrfs_set_inode_mode(leaf
, item
, S_IFREG
| 0600);
3794 btrfs_set_inode_flags(leaf
, item
, BTRFS_INODE_NOCOMPRESS
|
3795 BTRFS_INODE_PREALLOC
);
3796 btrfs_mark_buffer_dirty(trans
, leaf
);
3798 btrfs_free_path(path
);
3802 static void delete_orphan_inode(struct btrfs_trans_handle
*trans
,
3803 struct btrfs_root
*root
, u64 objectid
)
3805 struct btrfs_path
*path
;
3806 struct btrfs_key key
;
3809 path
= btrfs_alloc_path();
3815 key
.objectid
= objectid
;
3816 key
.type
= BTRFS_INODE_ITEM_KEY
;
3818 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3824 ret
= btrfs_del_item(trans
, root
, path
);
3827 btrfs_abort_transaction(trans
, ret
);
3828 btrfs_free_path(path
);
3832 * helper to create inode for data relocation.
3833 * the inode is in data relocation tree and its link count is 0
3835 static noinline_for_stack
struct inode
*create_reloc_inode(
3836 struct btrfs_fs_info
*fs_info
,
3837 const struct btrfs_block_group
*group
)
3839 struct inode
*inode
= NULL
;
3840 struct btrfs_trans_handle
*trans
;
3841 struct btrfs_root
*root
;
3845 root
= btrfs_grab_root(fs_info
->data_reloc_root
);
3846 trans
= btrfs_start_transaction(root
, 6);
3847 if (IS_ERR(trans
)) {
3848 btrfs_put_root(root
);
3849 return ERR_CAST(trans
);
3852 ret
= btrfs_get_free_objectid(root
, &objectid
);
3856 ret
= __insert_orphan_inode(trans
, root
, objectid
);
3860 inode
= btrfs_iget(objectid
, root
);
3861 if (IS_ERR(inode
)) {
3862 delete_orphan_inode(trans
, root
, objectid
);
3863 ret
= PTR_ERR(inode
);
3867 BTRFS_I(inode
)->reloc_block_group_start
= group
->start
;
3869 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3871 btrfs_put_root(root
);
3872 btrfs_end_transaction(trans
);
3873 btrfs_btree_balance_dirty(fs_info
);
3876 inode
= ERR_PTR(ret
);
3882 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3883 * has been requested meanwhile and don't start in that case.
3887 * -EINPROGRESS operation is already in progress, that's probably a bug
3888 * -ECANCELED cancellation request was set before the operation started
3890 static int reloc_chunk_start(struct btrfs_fs_info
*fs_info
)
3892 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING
, &fs_info
->flags
)) {
3893 /* This should not happen */
3894 btrfs_err(fs_info
, "reloc already running, cannot start");
3895 return -EINPROGRESS
;
3898 if (atomic_read(&fs_info
->reloc_cancel_req
) > 0) {
3899 btrfs_info(fs_info
, "chunk relocation canceled on start");
3901 * On cancel, clear all requests but let the caller mark
3902 * the end after cleanup operations.
3904 atomic_set(&fs_info
->reloc_cancel_req
, 0);
3911 * Mark end of chunk relocation that is cancellable and wake any waiters.
3913 static void reloc_chunk_end(struct btrfs_fs_info
*fs_info
)
3915 /* Requested after start, clear bit first so any waiters can continue */
3916 if (atomic_read(&fs_info
->reloc_cancel_req
) > 0)
3917 btrfs_info(fs_info
, "chunk relocation canceled during operation");
3918 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING
, &fs_info
->flags
);
3919 atomic_set(&fs_info
->reloc_cancel_req
, 0);
3922 static struct reloc_control
*alloc_reloc_control(struct btrfs_fs_info
*fs_info
)
3924 struct reloc_control
*rc
;
3926 rc
= kzalloc(sizeof(*rc
), GFP_NOFS
);
3930 INIT_LIST_HEAD(&rc
->reloc_roots
);
3931 INIT_LIST_HEAD(&rc
->dirty_subvol_roots
);
3932 btrfs_backref_init_cache(fs_info
, &rc
->backref_cache
, true);
3933 rc
->reloc_root_tree
.rb_root
= RB_ROOT
;
3934 spin_lock_init(&rc
->reloc_root_tree
.lock
);
3935 extent_io_tree_init(fs_info
, &rc
->processed_blocks
, IO_TREE_RELOC_BLOCKS
);
3939 static void free_reloc_control(struct reloc_control
*rc
)
3941 struct mapping_node
*node
, *tmp
;
3943 free_reloc_roots(&rc
->reloc_roots
);
3944 rbtree_postorder_for_each_entry_safe(node
, tmp
,
3945 &rc
->reloc_root_tree
.rb_root
, rb_node
)
3952 * Print the block group being relocated
3954 static void describe_relocation(struct btrfs_block_group
*block_group
)
3956 char buf
[128] = {'\0'};
3958 btrfs_describe_block_groups(block_group
->flags
, buf
, sizeof(buf
));
3960 btrfs_info(block_group
->fs_info
, "relocating block group %llu flags %s",
3961 block_group
->start
, buf
);
3964 static const char *stage_to_string(enum reloc_stage stage
)
3966 if (stage
== MOVE_DATA_EXTENTS
)
3967 return "move data extents";
3968 if (stage
== UPDATE_DATA_PTRS
)
3969 return "update data pointers";
3974 * function to relocate all extents in a block group.
3976 int btrfs_relocate_block_group(struct btrfs_fs_info
*fs_info
, u64 group_start
)
3978 struct btrfs_block_group
*bg
;
3979 struct btrfs_root
*extent_root
= btrfs_extent_root(fs_info
, group_start
);
3980 struct reloc_control
*rc
;
3981 struct inode
*inode
;
3982 struct btrfs_path
*path
;
3988 * This only gets set if we had a half-deleted snapshot on mount. We
3989 * cannot allow relocation to start while we're still trying to clean up
3990 * these pending deletions.
3992 ret
= wait_on_bit(&fs_info
->flags
, BTRFS_FS_UNFINISHED_DROPS
, TASK_INTERRUPTIBLE
);
3996 /* We may have been woken up by close_ctree, so bail if we're closing. */
3997 if (btrfs_fs_closing(fs_info
))
4000 bg
= btrfs_lookup_block_group(fs_info
, group_start
);
4005 * Relocation of a data block group creates ordered extents. Without
4006 * sb_start_write(), we can freeze the filesystem while unfinished
4007 * ordered extents are left. Such ordered extents can cause a deadlock
4008 * e.g. when syncfs() is waiting for their completion but they can't
4009 * finish because they block when joining a transaction, due to the
4010 * fact that the freeze locks are being held in write mode.
4012 if (bg
->flags
& BTRFS_BLOCK_GROUP_DATA
)
4013 ASSERT(sb_write_started(fs_info
->sb
));
4015 if (btrfs_pinned_by_swapfile(fs_info
, bg
)) {
4016 btrfs_put_block_group(bg
);
4020 rc
= alloc_reloc_control(fs_info
);
4022 btrfs_put_block_group(bg
);
4026 ret
= reloc_chunk_start(fs_info
);
4032 rc
->extent_root
= extent_root
;
4033 rc
->block_group
= bg
;
4035 ret
= btrfs_inc_block_group_ro(rc
->block_group
, true);
4042 path
= btrfs_alloc_path();
4048 inode
= lookup_free_space_inode(rc
->block_group
, path
);
4049 btrfs_free_path(path
);
4052 ret
= delete_block_group_cache(fs_info
, rc
->block_group
, inode
, 0);
4054 ret
= PTR_ERR(inode
);
4056 if (ret
&& ret
!= -ENOENT
) {
4061 rc
->data_inode
= create_reloc_inode(fs_info
, rc
->block_group
);
4062 if (IS_ERR(rc
->data_inode
)) {
4063 err
= PTR_ERR(rc
->data_inode
);
4064 rc
->data_inode
= NULL
;
4068 describe_relocation(rc
->block_group
);
4070 btrfs_wait_block_group_reservations(rc
->block_group
);
4071 btrfs_wait_nocow_writers(rc
->block_group
);
4072 btrfs_wait_ordered_roots(fs_info
, U64_MAX
, rc
->block_group
);
4074 ret
= btrfs_zone_finish(rc
->block_group
);
4075 WARN_ON(ret
&& ret
!= -EAGAIN
);
4078 enum reloc_stage finishes_stage
;
4080 mutex_lock(&fs_info
->cleaner_mutex
);
4081 ret
= relocate_block_group(rc
);
4082 mutex_unlock(&fs_info
->cleaner_mutex
);
4086 finishes_stage
= rc
->stage
;
4088 * We may have gotten ENOSPC after we already dirtied some
4089 * extents. If writeout happens while we're relocating a
4090 * different block group we could end up hitting the
4091 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4092 * btrfs_reloc_cow_block. Make sure we write everything out
4093 * properly so we don't trip over this problem, and then break
4094 * out of the loop if we hit an error.
4096 if (rc
->stage
== MOVE_DATA_EXTENTS
&& rc
->found_file_extent
) {
4097 ret
= btrfs_wait_ordered_range(BTRFS_I(rc
->data_inode
), 0,
4101 invalidate_mapping_pages(rc
->data_inode
->i_mapping
,
4103 rc
->stage
= UPDATE_DATA_PTRS
;
4109 if (rc
->extents_found
== 0)
4112 btrfs_info(fs_info
, "found %llu extents, stage: %s",
4113 rc
->extents_found
, stage_to_string(finishes_stage
));
4116 WARN_ON(rc
->block_group
->pinned
> 0);
4117 WARN_ON(rc
->block_group
->reserved
> 0);
4118 WARN_ON(rc
->block_group
->used
> 0);
4121 btrfs_dec_block_group_ro(rc
->block_group
);
4122 iput(rc
->data_inode
);
4124 btrfs_put_block_group(bg
);
4125 reloc_chunk_end(fs_info
);
4126 free_reloc_control(rc
);
4130 static noinline_for_stack
int mark_garbage_root(struct btrfs_root
*root
)
4132 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4133 struct btrfs_trans_handle
*trans
;
4136 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
4138 return PTR_ERR(trans
);
4140 memset(&root
->root_item
.drop_progress
, 0,
4141 sizeof(root
->root_item
.drop_progress
));
4142 btrfs_set_root_drop_level(&root
->root_item
, 0);
4143 btrfs_set_root_refs(&root
->root_item
, 0);
4144 ret
= btrfs_update_root(trans
, fs_info
->tree_root
,
4145 &root
->root_key
, &root
->root_item
);
4147 err
= btrfs_end_transaction(trans
);
4154 * recover relocation interrupted by system crash.
4156 * this function resumes merging reloc trees with corresponding fs trees.
4157 * this is important for keeping the sharing of tree blocks
4159 int btrfs_recover_relocation(struct btrfs_fs_info
*fs_info
)
4161 LIST_HEAD(reloc_roots
);
4162 struct btrfs_key key
;
4163 struct btrfs_root
*fs_root
;
4164 struct btrfs_root
*reloc_root
;
4165 struct btrfs_path
*path
;
4166 struct extent_buffer
*leaf
;
4167 struct reloc_control
*rc
= NULL
;
4168 struct btrfs_trans_handle
*trans
;
4172 path
= btrfs_alloc_path();
4175 path
->reada
= READA_BACK
;
4177 key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
4178 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4179 key
.offset
= (u64
)-1;
4182 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
,
4187 if (path
->slots
[0] == 0)
4192 leaf
= path
->nodes
[0];
4193 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4194 btrfs_release_path(path
);
4196 if (key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
||
4197 key
.type
!= BTRFS_ROOT_ITEM_KEY
)
4200 reloc_root
= btrfs_read_tree_root(fs_info
->tree_root
, &key
);
4201 if (IS_ERR(reloc_root
)) {
4202 ret
= PTR_ERR(reloc_root
);
4206 set_bit(BTRFS_ROOT_SHAREABLE
, &reloc_root
->state
);
4207 list_add(&reloc_root
->root_list
, &reloc_roots
);
4209 if (btrfs_root_refs(&reloc_root
->root_item
) > 0) {
4210 fs_root
= btrfs_get_fs_root(fs_info
,
4211 reloc_root
->root_key
.offset
, false);
4212 if (IS_ERR(fs_root
)) {
4213 ret
= PTR_ERR(fs_root
);
4216 ret
= mark_garbage_root(reloc_root
);
4221 btrfs_put_root(fs_root
);
4225 if (key
.offset
== 0)
4230 btrfs_release_path(path
);
4232 if (list_empty(&reloc_roots
))
4235 rc
= alloc_reloc_control(fs_info
);
4241 ret
= reloc_chunk_start(fs_info
);
4245 rc
->extent_root
= btrfs_extent_root(fs_info
, 0);
4247 set_reloc_control(rc
);
4249 trans
= btrfs_join_transaction(rc
->extent_root
);
4250 if (IS_ERR(trans
)) {
4251 ret
= PTR_ERR(trans
);
4255 rc
->merge_reloc_tree
= true;
4257 while (!list_empty(&reloc_roots
)) {
4258 reloc_root
= list_entry(reloc_roots
.next
,
4259 struct btrfs_root
, root_list
);
4260 list_del(&reloc_root
->root_list
);
4262 if (btrfs_root_refs(&reloc_root
->root_item
) == 0) {
4263 list_add_tail(&reloc_root
->root_list
,
4268 fs_root
= btrfs_get_fs_root(fs_info
, reloc_root
->root_key
.offset
,
4270 if (IS_ERR(fs_root
)) {
4271 ret
= PTR_ERR(fs_root
);
4272 list_add_tail(&reloc_root
->root_list
, &reloc_roots
);
4273 btrfs_end_transaction(trans
);
4277 ret
= __add_reloc_root(reloc_root
);
4278 ASSERT(ret
!= -EEXIST
);
4280 list_add_tail(&reloc_root
->root_list
, &reloc_roots
);
4281 btrfs_put_root(fs_root
);
4282 btrfs_end_transaction(trans
);
4285 fs_root
->reloc_root
= btrfs_grab_root(reloc_root
);
4286 btrfs_put_root(fs_root
);
4289 ret
= btrfs_commit_transaction(trans
);
4293 merge_reloc_roots(rc
);
4295 unset_reloc_control(rc
);
4297 trans
= btrfs_join_transaction(rc
->extent_root
);
4298 if (IS_ERR(trans
)) {
4299 ret
= PTR_ERR(trans
);
4302 ret
= btrfs_commit_transaction(trans
);
4304 ret2
= clean_dirty_subvols(rc
);
4305 if (ret2
< 0 && !ret
)
4308 unset_reloc_control(rc
);
4310 reloc_chunk_end(fs_info
);
4311 free_reloc_control(rc
);
4313 free_reloc_roots(&reloc_roots
);
4315 btrfs_free_path(path
);
4318 /* cleanup orphan inode in data relocation tree */
4319 fs_root
= btrfs_grab_root(fs_info
->data_reloc_root
);
4321 ret
= btrfs_orphan_cleanup(fs_root
);
4322 btrfs_put_root(fs_root
);
4328 * helper to add ordered checksum for data relocation.
4330 * cloning checksum properly handles the nodatasum extents.
4331 * it also saves CPU time to re-calculate the checksum.
4333 int btrfs_reloc_clone_csums(struct btrfs_ordered_extent
*ordered
)
4335 struct btrfs_inode
*inode
= ordered
->inode
;
4336 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
4337 u64 disk_bytenr
= ordered
->file_offset
+ inode
->reloc_block_group_start
;
4338 struct btrfs_root
*csum_root
= btrfs_csum_root(fs_info
, disk_bytenr
);
4342 ret
= btrfs_lookup_csums_list(csum_root
, disk_bytenr
,
4343 disk_bytenr
+ ordered
->num_bytes
- 1,
4346 btrfs_mark_ordered_extent_error(ordered
);
4350 while (!list_empty(&list
)) {
4351 struct btrfs_ordered_sum
*sums
=
4352 list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
4354 list_del_init(&sums
->list
);
4357 * We need to offset the new_bytenr based on where the csum is.
4358 * We need to do this because we will read in entire prealloc
4359 * extents but we may have written to say the middle of the
4360 * prealloc extent, so we need to make sure the csum goes with
4361 * the right disk offset.
4363 * We can do this because the data reloc inode refers strictly
4364 * to the on disk bytes, so we don't have to worry about
4365 * disk_len vs real len like with real inodes since it's all
4368 sums
->logical
= ordered
->disk_bytenr
+ sums
->logical
- disk_bytenr
;
4369 btrfs_add_ordered_sum(ordered
, sums
);
4375 int btrfs_reloc_cow_block(struct btrfs_trans_handle
*trans
,
4376 struct btrfs_root
*root
,
4377 const struct extent_buffer
*buf
,
4378 struct extent_buffer
*cow
)
4380 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4381 struct reloc_control
*rc
;
4382 struct btrfs_backref_node
*node
;
4387 rc
= fs_info
->reloc_ctl
;
4391 BUG_ON(rc
->stage
== UPDATE_DATA_PTRS
&& btrfs_is_data_reloc_root(root
));
4393 level
= btrfs_header_level(buf
);
4394 if (btrfs_header_generation(buf
) <=
4395 btrfs_root_last_snapshot(&root
->root_item
))
4398 if (btrfs_root_id(root
) == BTRFS_TREE_RELOC_OBJECTID
&& rc
->create_reloc_tree
) {
4399 WARN_ON(!first_cow
&& level
== 0);
4401 node
= rc
->backref_cache
.path
[level
];
4402 BUG_ON(node
->bytenr
!= buf
->start
&&
4403 node
->new_bytenr
!= buf
->start
);
4405 btrfs_backref_drop_node_buffer(node
);
4406 atomic_inc(&cow
->refs
);
4408 node
->new_bytenr
= cow
->start
;
4410 if (!node
->pending
) {
4411 list_move_tail(&node
->list
,
4412 &rc
->backref_cache
.pending
[level
]);
4417 mark_block_processed(rc
, node
);
4419 if (first_cow
&& level
> 0)
4420 rc
->nodes_relocated
+= buf
->len
;
4423 if (level
== 0 && first_cow
&& rc
->stage
== UPDATE_DATA_PTRS
)
4424 ret
= replace_file_extents(trans
, rc
, root
, cow
);
4429 * called before creating snapshot. it calculates metadata reservation
4430 * required for relocating tree blocks in the snapshot
4432 void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot
*pending
,
4433 u64
*bytes_to_reserve
)
4435 struct btrfs_root
*root
= pending
->root
;
4436 struct reloc_control
*rc
= root
->fs_info
->reloc_ctl
;
4438 if (!rc
|| !have_reloc_root(root
))
4441 if (!rc
->merge_reloc_tree
)
4444 root
= root
->reloc_root
;
4445 BUG_ON(btrfs_root_refs(&root
->root_item
) == 0);
4447 * relocation is in the stage of merging trees. the space
4448 * used by merging a reloc tree is twice the size of
4449 * relocated tree nodes in the worst case. half for cowing
4450 * the reloc tree, half for cowing the fs tree. the space
4451 * used by cowing the reloc tree will be freed after the
4452 * tree is dropped. if we create snapshot, cowing the fs
4453 * tree may use more space than it frees. so we need
4454 * reserve extra space.
4456 *bytes_to_reserve
+= rc
->nodes_relocated
;
4460 * called after snapshot is created. migrate block reservation
4461 * and create reloc root for the newly created snapshot
4463 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4464 * references held on the reloc_root, one for root->reloc_root and one for
4467 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle
*trans
,
4468 struct btrfs_pending_snapshot
*pending
)
4470 struct btrfs_root
*root
= pending
->root
;
4471 struct btrfs_root
*reloc_root
;
4472 struct btrfs_root
*new_root
;
4473 struct reloc_control
*rc
= root
->fs_info
->reloc_ctl
;
4476 if (!rc
|| !have_reloc_root(root
))
4479 rc
= root
->fs_info
->reloc_ctl
;
4480 rc
->merging_rsv_size
+= rc
->nodes_relocated
;
4482 if (rc
->merge_reloc_tree
) {
4483 ret
= btrfs_block_rsv_migrate(&pending
->block_rsv
,
4485 rc
->nodes_relocated
, true);
4490 new_root
= pending
->snap
;
4491 reloc_root
= create_reloc_root(trans
, root
->reloc_root
, btrfs_root_id(new_root
));
4492 if (IS_ERR(reloc_root
))
4493 return PTR_ERR(reloc_root
);
4495 ret
= __add_reloc_root(reloc_root
);
4496 ASSERT(ret
!= -EEXIST
);
4498 /* Pairs with create_reloc_root */
4499 btrfs_put_root(reloc_root
);
4502 new_root
->reloc_root
= btrfs_grab_root(reloc_root
);
4504 if (rc
->create_reloc_tree
)
4505 ret
= clone_backref_node(trans
, rc
, root
, reloc_root
);
4510 * Get the current bytenr for the block group which is being relocated.
4512 * Return U64_MAX if no running relocation.
4514 u64
btrfs_get_reloc_bg_bytenr(const struct btrfs_fs_info
*fs_info
)
4516 u64 logical
= U64_MAX
;
4518 lockdep_assert_held(&fs_info
->reloc_mutex
);
4520 if (fs_info
->reloc_ctl
&& fs_info
->reloc_ctl
->block_group
)
4521 logical
= fs_info
->reloc_ctl
->block_group
->start
;