1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
7 #include <linux/uuid.h>
11 #include "transaction.h"
14 #include "space-info.h"
15 #include "accessors.h"
16 #include "root-tree.h"
20 * Read a root item from the tree. In case we detect a root item smaller then
21 * sizeof(root_item), we know it's an old version of the root structure and
22 * initialize all new fields to zero. The same happens if we detect mismatching
23 * generation numbers as then we know the root was once mounted with an older
24 * kernel that was not aware of the root item structure change.
26 static void btrfs_read_root_item(struct extent_buffer
*eb
, int slot
,
27 struct btrfs_root_item
*item
)
32 len
= btrfs_item_size(eb
, slot
);
33 read_extent_buffer(eb
, item
, btrfs_item_ptr_offset(eb
, slot
),
34 min_t(u32
, len
, sizeof(*item
)));
35 if (len
< sizeof(*item
))
37 if (!need_reset
&& btrfs_root_generation(item
)
38 != btrfs_root_generation_v2(item
)) {
39 if (btrfs_root_generation_v2(item
) != 0) {
40 btrfs_warn(eb
->fs_info
,
41 "mismatching generation and generation_v2 found in root item. This root was probably mounted with an older kernel. Resetting all new fields.");
46 /* Clear all members from generation_v2 onwards. */
47 memset_startat(item
, 0, generation_v2
);
48 generate_random_guid(item
->uuid
);
53 * Lookup the root by the key.
55 * root: the root of the root tree
56 * search_key: the key to search
57 * path: the path we search
58 * root_item: the root item of the tree we look for
59 * root_key: the root key of the tree we look for
61 * If ->offset of 'search_key' is -1ULL, it means we are not sure the offset
62 * of the search key, just lookup the root with the highest offset for a
65 * If we find something return 0, otherwise > 0, < 0 on error.
67 int btrfs_find_root(struct btrfs_root
*root
, const struct btrfs_key
*search_key
,
68 struct btrfs_path
*path
, struct btrfs_root_item
*root_item
,
69 struct btrfs_key
*root_key
)
71 struct btrfs_key found_key
;
72 struct extent_buffer
*l
;
76 ret
= btrfs_search_slot(NULL
, root
, search_key
, path
, 0, 0);
80 if (search_key
->offset
!= -1ULL) { /* the search key is exact */
85 * Key with offset -1 found, there would have to exist a root
86 * with such id, but this is out of the valid range.
92 if (path
->slots
[0] == 0)
99 slot
= path
->slots
[0];
101 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
102 if (found_key
.objectid
!= search_key
->objectid
||
103 found_key
.type
!= BTRFS_ROOT_ITEM_KEY
) {
109 btrfs_read_root_item(l
, slot
, root_item
);
111 memcpy(root_key
, &found_key
, sizeof(found_key
));
113 btrfs_release_path(path
);
117 void btrfs_set_root_node(struct btrfs_root_item
*item
,
118 struct extent_buffer
*node
)
120 btrfs_set_root_bytenr(item
, node
->start
);
121 btrfs_set_root_level(item
, btrfs_header_level(node
));
122 btrfs_set_root_generation(item
, btrfs_header_generation(node
));
126 * copy the data in 'item' into the btree
128 int btrfs_update_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
129 *root
, struct btrfs_key
*key
, struct btrfs_root_item
132 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
133 struct btrfs_path
*path
;
134 struct extent_buffer
*l
;
140 path
= btrfs_alloc_path();
144 ret
= btrfs_search_slot(trans
, root
, key
, path
, 0, 1);
150 "unable to find root key (%llu %u %llu) in tree %llu",
151 key
->objectid
, key
->type
, key
->offset
, btrfs_root_id(root
));
153 btrfs_abort_transaction(trans
, ret
);
158 slot
= path
->slots
[0];
159 ptr
= btrfs_item_ptr_offset(l
, slot
);
160 old_len
= btrfs_item_size(l
, slot
);
163 * If this is the first time we update the root item which originated
164 * from an older kernel, we need to enlarge the item size to make room
165 * for the added fields.
167 if (old_len
< sizeof(*item
)) {
168 btrfs_release_path(path
);
169 ret
= btrfs_search_slot(trans
, root
, key
, path
,
172 btrfs_abort_transaction(trans
, ret
);
176 ret
= btrfs_del_item(trans
, root
, path
);
178 btrfs_abort_transaction(trans
, ret
);
181 btrfs_release_path(path
);
182 ret
= btrfs_insert_empty_item(trans
, root
, path
,
185 btrfs_abort_transaction(trans
, ret
);
189 slot
= path
->slots
[0];
190 ptr
= btrfs_item_ptr_offset(l
, slot
);
194 * Update generation_v2 so at the next mount we know the new root
197 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
199 write_extent_buffer(l
, item
, ptr
, sizeof(*item
));
200 btrfs_mark_buffer_dirty(trans
, path
->nodes
[0]);
202 btrfs_free_path(path
);
206 int btrfs_insert_root(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
207 const struct btrfs_key
*key
, struct btrfs_root_item
*item
)
210 * Make sure generation v1 and v2 match. See update_root for details.
212 btrfs_set_root_generation_v2(item
, btrfs_root_generation(item
));
213 return btrfs_insert_item(trans
, root
, key
, item
, sizeof(*item
));
216 int btrfs_find_orphan_roots(struct btrfs_fs_info
*fs_info
)
218 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
219 struct extent_buffer
*leaf
;
220 struct btrfs_path
*path
;
221 struct btrfs_key key
;
222 struct btrfs_root
*root
;
226 path
= btrfs_alloc_path();
230 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
231 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
237 ret
= btrfs_search_slot(NULL
, tree_root
, &key
, path
, 0, 0);
243 leaf
= path
->nodes
[0];
244 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
245 ret
= btrfs_next_leaf(tree_root
, path
);
250 leaf
= path
->nodes
[0];
253 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
254 btrfs_release_path(path
);
256 if (key
.objectid
!= BTRFS_ORPHAN_OBJECTID
||
257 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
260 root_objectid
= key
.offset
;
263 root
= btrfs_get_fs_root(fs_info
, root_objectid
, false);
264 err
= PTR_ERR_OR_ZERO(root
);
265 if (err
&& err
!= -ENOENT
) {
267 } else if (err
== -ENOENT
) {
268 struct btrfs_trans_handle
*trans
;
270 btrfs_release_path(path
);
272 trans
= btrfs_join_transaction(tree_root
);
274 err
= PTR_ERR(trans
);
275 btrfs_handle_fs_error(fs_info
, err
,
276 "Failed to start trans to delete orphan item");
279 err
= btrfs_del_orphan_item(trans
, tree_root
,
281 btrfs_end_transaction(trans
);
283 btrfs_handle_fs_error(fs_info
, err
,
284 "Failed to delete root orphan item");
290 WARN_ON(!test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
));
291 if (btrfs_root_refs(&root
->root_item
) == 0) {
292 struct btrfs_key drop_key
;
294 btrfs_disk_key_to_cpu(&drop_key
, &root
->root_item
.drop_progress
);
296 * If we have a non-zero drop_progress then we know we
297 * made it partly through deleting this snapshot, and
298 * thus we need to make sure we block any balance from
299 * happening until this snapshot is completely dropped.
301 if (drop_key
.objectid
!= 0 || drop_key
.type
!= 0 ||
302 drop_key
.offset
!= 0) {
303 set_bit(BTRFS_FS_UNFINISHED_DROPS
, &fs_info
->flags
);
304 set_bit(BTRFS_ROOT_UNFINISHED_DROP
, &root
->state
);
307 set_bit(BTRFS_ROOT_DEAD_TREE
, &root
->state
);
308 btrfs_add_dead_root(root
);
310 btrfs_put_root(root
);
313 btrfs_free_path(path
);
317 /* drop the root item for 'key' from the tree root */
318 int btrfs_del_root(struct btrfs_trans_handle
*trans
,
319 const struct btrfs_key
*key
)
321 struct btrfs_root
*root
= trans
->fs_info
->tree_root
;
322 struct btrfs_path
*path
;
325 path
= btrfs_alloc_path();
328 ret
= btrfs_search_slot(trans
, root
, key
, path
, -1, 1);
332 /* The root must exist but we did not find it by the key. */
337 ret
= btrfs_del_item(trans
, root
, path
);
339 btrfs_free_path(path
);
343 int btrfs_del_root_ref(struct btrfs_trans_handle
*trans
, u64 root_id
,
344 u64 ref_id
, u64 dirid
, u64
*sequence
,
345 const struct fscrypt_str
*name
)
347 struct btrfs_root
*tree_root
= trans
->fs_info
->tree_root
;
348 struct btrfs_path
*path
;
349 struct btrfs_root_ref
*ref
;
350 struct extent_buffer
*leaf
;
351 struct btrfs_key key
;
355 path
= btrfs_alloc_path();
359 key
.objectid
= root_id
;
360 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
363 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
366 } else if (ret
== 0) {
367 leaf
= path
->nodes
[0];
368 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
369 struct btrfs_root_ref
);
370 ptr
= (unsigned long)(ref
+ 1);
371 if ((btrfs_root_ref_dirid(leaf
, ref
) != dirid
) ||
372 (btrfs_root_ref_name_len(leaf
, ref
) != name
->len
) ||
373 memcmp_extent_buffer(leaf
, name
->name
, ptr
, name
->len
)) {
377 *sequence
= btrfs_root_ref_sequence(leaf
, ref
);
379 ret
= btrfs_del_item(trans
, tree_root
, path
);
387 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
388 btrfs_release_path(path
);
389 key
.objectid
= ref_id
;
390 key
.type
= BTRFS_ROOT_REF_KEY
;
391 key
.offset
= root_id
;
396 btrfs_free_path(path
);
401 * add a btrfs_root_ref item. type is either BTRFS_ROOT_REF_KEY
402 * or BTRFS_ROOT_BACKREF_KEY.
404 * The dirid, sequence, name and name_len refer to the directory entry
405 * that is referencing the root.
407 * For a forward ref, the root_id is the id of the tree referencing
408 * the root and ref_id is the id of the subvol or snapshot.
410 * For a back ref the root_id is the id of the subvol or snapshot and
411 * ref_id is the id of the tree referencing it.
413 * Will return 0, -ENOMEM, or anything from the CoW path
415 int btrfs_add_root_ref(struct btrfs_trans_handle
*trans
, u64 root_id
,
416 u64 ref_id
, u64 dirid
, u64 sequence
,
417 const struct fscrypt_str
*name
)
419 struct btrfs_root
*tree_root
= trans
->fs_info
->tree_root
;
420 struct btrfs_key key
;
422 struct btrfs_path
*path
;
423 struct btrfs_root_ref
*ref
;
424 struct extent_buffer
*leaf
;
427 path
= btrfs_alloc_path();
431 key
.objectid
= root_id
;
432 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
435 ret
= btrfs_insert_empty_item(trans
, tree_root
, path
, &key
,
436 sizeof(*ref
) + name
->len
);
438 btrfs_abort_transaction(trans
, ret
);
439 btrfs_free_path(path
);
443 leaf
= path
->nodes
[0];
444 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
445 btrfs_set_root_ref_dirid(leaf
, ref
, dirid
);
446 btrfs_set_root_ref_sequence(leaf
, ref
, sequence
);
447 btrfs_set_root_ref_name_len(leaf
, ref
, name
->len
);
448 ptr
= (unsigned long)(ref
+ 1);
449 write_extent_buffer(leaf
, name
->name
, ptr
, name
->len
);
450 btrfs_mark_buffer_dirty(trans
, leaf
);
452 if (key
.type
== BTRFS_ROOT_BACKREF_KEY
) {
453 btrfs_release_path(path
);
454 key
.objectid
= ref_id
;
455 key
.type
= BTRFS_ROOT_REF_KEY
;
456 key
.offset
= root_id
;
460 btrfs_free_path(path
);
465 * Old btrfs forgets to init root_item->flags and root_item->byte_limit
466 * for subvolumes. To work around this problem, we steal a bit from
467 * root_item->inode_item->flags, and use it to indicate if those fields
468 * have been properly initialized.
470 void btrfs_check_and_init_root_item(struct btrfs_root_item
*root_item
)
472 u64 inode_flags
= btrfs_stack_inode_flags(&root_item
->inode
);
474 if (!(inode_flags
& BTRFS_INODE_ROOT_ITEM_INIT
)) {
475 inode_flags
|= BTRFS_INODE_ROOT_ITEM_INIT
;
476 btrfs_set_stack_inode_flags(&root_item
->inode
, inode_flags
);
477 btrfs_set_root_flags(root_item
, 0);
478 btrfs_set_root_limit(root_item
, 0);
482 void btrfs_update_root_times(struct btrfs_trans_handle
*trans
,
483 struct btrfs_root
*root
)
485 struct btrfs_root_item
*item
= &root
->root_item
;
486 struct timespec64 ct
;
488 ktime_get_real_ts64(&ct
);
489 spin_lock(&root
->root_item_lock
);
490 btrfs_set_root_ctransid(item
, trans
->transid
);
491 btrfs_set_stack_timespec_sec(&item
->ctime
, ct
.tv_sec
);
492 btrfs_set_stack_timespec_nsec(&item
->ctime
, ct
.tv_nsec
);
493 spin_unlock(&root
->root_item_lock
);
497 * Reserve space for subvolume operation.
499 * root: the root of the parent directory
500 * rsv: block reservation
501 * items: the number of items that we need do reservation
502 * use_global_rsv: allow fallback to the global block reservation
504 * This function is used to reserve the space for snapshot/subvolume
505 * creation and deletion. Those operations are different with the
506 * common file/directory operations, they change two fs/file trees
507 * and root tree, the number of items that the qgroup reserves is
508 * different with the free space reservation. So we can not use
509 * the space reservation mechanism in start_transaction().
511 int btrfs_subvolume_reserve_metadata(struct btrfs_root
*root
,
512 struct btrfs_block_rsv
*rsv
, int items
,
515 u64 qgroup_num_bytes
= 0;
518 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
519 struct btrfs_block_rsv
*global_rsv
= &fs_info
->global_block_rsv
;
521 if (btrfs_qgroup_enabled(fs_info
)) {
522 /* One for parent inode, two for dir entries */
523 qgroup_num_bytes
= 3 * fs_info
->nodesize
;
524 ret
= btrfs_qgroup_reserve_meta_prealloc(root
,
525 qgroup_num_bytes
, true,
531 num_bytes
= btrfs_calc_insert_metadata_size(fs_info
, items
);
532 rsv
->space_info
= btrfs_find_space_info(fs_info
,
533 BTRFS_BLOCK_GROUP_METADATA
);
534 ret
= btrfs_block_rsv_add(fs_info
, rsv
, num_bytes
,
535 BTRFS_RESERVE_FLUSH_ALL
);
537 if (ret
== -ENOSPC
&& use_global_rsv
)
538 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
, num_bytes
, true);
540 if (ret
&& qgroup_num_bytes
)
541 btrfs_qgroup_free_meta_prealloc(root
, qgroup_num_bytes
);
544 spin_lock(&rsv
->lock
);
545 rsv
->qgroup_rsv_reserved
+= qgroup_num_bytes
;
546 spin_unlock(&rsv
->lock
);