1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
17 #include "compression.h"
19 #include "block-group.h"
20 #include "space-info.h"
21 #include "inode-item.h"
23 #include "accessors.h"
24 #include "extent-tree.h"
25 #include "root-tree.h"
27 #include "file-item.h"
30 #include "tree-checker.h"
32 #define MAX_CONFLICT_INODES 10
34 /* magic values for the inode_only field in btrfs_log_inode:
36 * LOG_INODE_ALL means to log everything
37 * LOG_INODE_EXISTS means to log just enough to recreate the inode
46 * directory trouble cases
48 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
49 * log, we must force a full commit before doing an fsync of the directory
50 * where the unlink was done.
51 * ---> record transid of last unlink/rename per directory
55 * rename foo/some_dir foo2/some_dir
57 * fsync foo/some_dir/some_file
59 * The fsync above will unlink the original some_dir without recording
60 * it in its new location (foo2). After a crash, some_dir will be gone
61 * unless the fsync of some_file forces a full commit
63 * 2) we must log any new names for any file or dir that is in the fsync
64 * log. ---> check inode while renaming/linking.
66 * 2a) we must log any new names for any file or dir during rename
67 * when the directory they are being removed from was logged.
68 * ---> check inode and old parent dir during rename
70 * 2a is actually the more important variant. With the extra logging
71 * a crash might unlink the old name without recreating the new one
73 * 3) after a crash, we must go through any directories with a link count
74 * of zero and redo the rm -rf
81 * The directory f1 was fully removed from the FS, but fsync was never
82 * called on f1, only its parent dir. After a crash the rm -rf must
83 * be replayed. This must be able to recurse down the entire
84 * directory tree. The inode link count fixup code takes care of the
89 * stages for the tree walking. The first
90 * stage (0) is to only pin down the blocks we find
91 * the second stage (1) is to make sure that all the inodes
92 * we find in the log are created in the subvolume.
94 * The last stage is to deal with directories and links and extents
95 * and all the other fun semantics
99 LOG_WALK_REPLAY_INODES
,
100 LOG_WALK_REPLAY_DIR_INDEX
,
104 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
105 struct btrfs_inode
*inode
,
107 struct btrfs_log_ctx
*ctx
);
108 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
109 struct btrfs_root
*root
,
110 struct btrfs_path
*path
, u64 objectid
);
111 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
112 struct btrfs_root
*root
,
113 struct btrfs_root
*log
,
114 struct btrfs_path
*path
,
115 u64 dirid
, int del_all
);
116 static void wait_log_commit(struct btrfs_root
*root
, int transid
);
119 * tree logging is a special write ahead log used to make sure that
120 * fsyncs and O_SYNCs can happen without doing full tree commits.
122 * Full tree commits are expensive because they require commonly
123 * modified blocks to be recowed, creating many dirty pages in the
124 * extent tree an 4x-6x higher write load than ext3.
126 * Instead of doing a tree commit on every fsync, we use the
127 * key ranges and transaction ids to find items for a given file or directory
128 * that have changed in this transaction. Those items are copied into
129 * a special tree (one per subvolume root), that tree is written to disk
130 * and then the fsync is considered complete.
132 * After a crash, items are copied out of the log-tree back into the
133 * subvolume tree. Any file data extents found are recorded in the extent
134 * allocation tree, and the log-tree freed.
136 * The log tree is read three times, once to pin down all the extents it is
137 * using in ram and once, once to create all the inodes logged in the tree
138 * and once to do all the other items.
141 static struct inode
*btrfs_iget_logging(u64 objectid
, struct btrfs_root
*root
)
143 unsigned int nofs_flag
;
147 * We're holding a transaction handle whether we are logging or
148 * replaying a log tree, so we must make sure NOFS semantics apply
149 * because btrfs_alloc_inode() may be triggered and it uses GFP_KERNEL
150 * to allocate an inode, which can recurse back into the filesystem and
151 * attempt a transaction commit, resulting in a deadlock.
153 nofs_flag
= memalloc_nofs_save();
154 inode
= btrfs_iget(objectid
, root
);
155 memalloc_nofs_restore(nofs_flag
);
161 * start a sub transaction and setup the log tree
162 * this increments the log tree writer count to make the people
163 * syncing the tree wait for us to finish
165 static int start_log_trans(struct btrfs_trans_handle
*trans
,
166 struct btrfs_root
*root
,
167 struct btrfs_log_ctx
*ctx
)
169 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
170 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
171 const bool zoned
= btrfs_is_zoned(fs_info
);
173 bool created
= false;
176 * First check if the log root tree was already created. If not, create
177 * it before locking the root's log_mutex, just to keep lockdep happy.
179 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE
, &tree_root
->state
)) {
180 mutex_lock(&tree_root
->log_mutex
);
181 if (!fs_info
->log_root_tree
) {
182 ret
= btrfs_init_log_root_tree(trans
, fs_info
);
184 set_bit(BTRFS_ROOT_HAS_LOG_TREE
, &tree_root
->state
);
188 mutex_unlock(&tree_root
->log_mutex
);
193 mutex_lock(&root
->log_mutex
);
196 if (root
->log_root
) {
197 int index
= (root
->log_transid
+ 1) % 2;
199 if (btrfs_need_log_full_commit(trans
)) {
200 ret
= BTRFS_LOG_FORCE_COMMIT
;
204 if (zoned
&& atomic_read(&root
->log_commit
[index
])) {
205 wait_log_commit(root
, root
->log_transid
- 1);
209 if (!root
->log_start_pid
) {
210 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
211 root
->log_start_pid
= current
->pid
;
212 } else if (root
->log_start_pid
!= current
->pid
) {
213 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
217 * This means fs_info->log_root_tree was already created
218 * for some other FS trees. Do the full commit not to mix
219 * nodes from multiple log transactions to do sequential
222 if (zoned
&& !created
) {
223 ret
= BTRFS_LOG_FORCE_COMMIT
;
227 ret
= btrfs_add_log_tree(trans
, root
);
231 set_bit(BTRFS_ROOT_HAS_LOG_TREE
, &root
->state
);
232 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
233 root
->log_start_pid
= current
->pid
;
236 atomic_inc(&root
->log_writers
);
237 if (!ctx
->logging_new_name
) {
238 int index
= root
->log_transid
% 2;
239 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
240 ctx
->log_transid
= root
->log_transid
;
244 mutex_unlock(&root
->log_mutex
);
249 * returns 0 if there was a log transaction running and we were able
250 * to join, or returns -ENOENT if there were not transactions
253 static int join_running_log_trans(struct btrfs_root
*root
)
255 const bool zoned
= btrfs_is_zoned(root
->fs_info
);
258 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE
, &root
->state
))
261 mutex_lock(&root
->log_mutex
);
263 if (root
->log_root
) {
264 int index
= (root
->log_transid
+ 1) % 2;
267 if (zoned
&& atomic_read(&root
->log_commit
[index
])) {
268 wait_log_commit(root
, root
->log_transid
- 1);
271 atomic_inc(&root
->log_writers
);
273 mutex_unlock(&root
->log_mutex
);
278 * This either makes the current running log transaction wait
279 * until you call btrfs_end_log_trans() or it makes any future
280 * log transactions wait until you call btrfs_end_log_trans()
282 void btrfs_pin_log_trans(struct btrfs_root
*root
)
284 atomic_inc(&root
->log_writers
);
288 * indicate we're done making changes to the log tree
289 * and wake up anyone waiting to do a sync
291 void btrfs_end_log_trans(struct btrfs_root
*root
)
293 if (atomic_dec_and_test(&root
->log_writers
)) {
294 /* atomic_dec_and_test implies a barrier */
295 cond_wake_up_nomb(&root
->log_writer_wait
);
300 * the walk control struct is used to pass state down the chain when
301 * processing the log tree. The stage field tells us which part
302 * of the log tree processing we are currently doing. The others
303 * are state fields used for that specific part
305 struct walk_control
{
306 /* should we free the extent on disk when done? This is used
307 * at transaction commit time while freeing a log tree
311 /* pin only walk, we record which extents on disk belong to the
316 /* what stage of the replay code we're currently in */
320 * Ignore any items from the inode currently being processed. Needs
321 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
322 * the LOG_WALK_REPLAY_INODES stage.
324 bool ignore_cur_inode
;
326 /* the root we are currently replaying */
327 struct btrfs_root
*replay_dest
;
329 /* the trans handle for the current replay */
330 struct btrfs_trans_handle
*trans
;
332 /* the function that gets used to process blocks we find in the
333 * tree. Note the extent_buffer might not be up to date when it is
334 * passed in, and it must be checked or read if you need the data
337 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
338 struct walk_control
*wc
, u64 gen
, int level
);
342 * process_func used to pin down extents, write them or wait on them
344 static int process_one_buffer(struct btrfs_root
*log
,
345 struct extent_buffer
*eb
,
346 struct walk_control
*wc
, u64 gen
, int level
)
348 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
352 * If this fs is mixed then we need to be able to process the leaves to
353 * pin down any logged extents, so we have to read the block.
355 if (btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
356 struct btrfs_tree_parent_check check
= {
361 ret
= btrfs_read_extent_buffer(eb
, &check
);
367 ret
= btrfs_pin_extent_for_log_replay(wc
->trans
, eb
);
371 if (btrfs_buffer_uptodate(eb
, gen
, 0) &&
372 btrfs_header_level(eb
) == 0)
373 ret
= btrfs_exclude_logged_extents(eb
);
379 * Item overwrite used by replay and tree logging. eb, slot and key all refer
380 * to the src data we are copying out.
382 * root is the tree we are copying into, and path is a scratch
383 * path for use in this function (it should be released on entry and
384 * will be released on exit).
386 * If the key is already in the destination tree the existing item is
387 * overwritten. If the existing item isn't big enough, it is extended.
388 * If it is too large, it is truncated.
390 * If the key isn't in the destination yet, a new item is inserted.
392 static int overwrite_item(struct btrfs_trans_handle
*trans
,
393 struct btrfs_root
*root
,
394 struct btrfs_path
*path
,
395 struct extent_buffer
*eb
, int slot
,
396 struct btrfs_key
*key
)
400 u64 saved_i_size
= 0;
401 int save_old_i_size
= 0;
402 unsigned long src_ptr
;
403 unsigned long dst_ptr
;
404 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
407 * This is only used during log replay, so the root is always from a
408 * fs/subvolume tree. In case we ever need to support a log root, then
409 * we'll have to clone the leaf in the path, release the path and use
410 * the leaf before writing into the log tree. See the comments at
411 * copy_items() for more details.
413 ASSERT(btrfs_root_id(root
) != BTRFS_TREE_LOG_OBJECTID
);
415 item_size
= btrfs_item_size(eb
, slot
);
416 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
418 /* Look for the key in the destination tree. */
419 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
426 u32 dst_size
= btrfs_item_size(path
->nodes
[0],
428 if (dst_size
!= item_size
)
431 if (item_size
== 0) {
432 btrfs_release_path(path
);
435 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
436 src_copy
= kmalloc(item_size
, GFP_NOFS
);
437 if (!dst_copy
|| !src_copy
) {
438 btrfs_release_path(path
);
444 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
446 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
447 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
449 ret
= memcmp(dst_copy
, src_copy
, item_size
);
454 * they have the same contents, just return, this saves
455 * us from cowing blocks in the destination tree and doing
456 * extra writes that may not have been done by a previous
460 btrfs_release_path(path
);
465 * We need to load the old nbytes into the inode so when we
466 * replay the extents we've logged we get the right nbytes.
469 struct btrfs_inode_item
*item
;
473 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
474 struct btrfs_inode_item
);
475 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
476 item
= btrfs_item_ptr(eb
, slot
,
477 struct btrfs_inode_item
);
478 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
481 * If this is a directory we need to reset the i_size to
482 * 0 so that we can set it up properly when replaying
483 * the rest of the items in this log.
485 mode
= btrfs_inode_mode(eb
, item
);
487 btrfs_set_inode_size(eb
, item
, 0);
489 } else if (inode_item
) {
490 struct btrfs_inode_item
*item
;
494 * New inode, set nbytes to 0 so that the nbytes comes out
495 * properly when we replay the extents.
497 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
498 btrfs_set_inode_nbytes(eb
, item
, 0);
501 * If this is a directory we need to reset the i_size to 0 so
502 * that we can set it up properly when replaying the rest of
503 * the items in this log.
505 mode
= btrfs_inode_mode(eb
, item
);
507 btrfs_set_inode_size(eb
, item
, 0);
510 btrfs_release_path(path
);
511 /* try to insert the key into the destination tree */
512 path
->skip_release_on_error
= 1;
513 ret
= btrfs_insert_empty_item(trans
, root
, path
,
515 path
->skip_release_on_error
= 0;
517 /* make sure any existing item is the correct size */
518 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
520 found_size
= btrfs_item_size(path
->nodes
[0],
522 if (found_size
> item_size
)
523 btrfs_truncate_item(trans
, path
, item_size
, 1);
524 else if (found_size
< item_size
)
525 btrfs_extend_item(trans
, path
, item_size
- found_size
);
529 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
532 /* don't overwrite an existing inode if the generation number
533 * was logged as zero. This is done when the tree logging code
534 * is just logging an inode to make sure it exists after recovery.
536 * Also, don't overwrite i_size on directories during replay.
537 * log replay inserts and removes directory items based on the
538 * state of the tree found in the subvolume, and i_size is modified
541 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
542 struct btrfs_inode_item
*src_item
;
543 struct btrfs_inode_item
*dst_item
;
545 src_item
= (struct btrfs_inode_item
*)src_ptr
;
546 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
548 if (btrfs_inode_generation(eb
, src_item
) == 0) {
549 struct extent_buffer
*dst_eb
= path
->nodes
[0];
550 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
553 * For regular files an ino_size == 0 is used only when
554 * logging that an inode exists, as part of a directory
555 * fsync, and the inode wasn't fsynced before. In this
556 * case don't set the size of the inode in the fs/subvol
557 * tree, otherwise we would be throwing valid data away.
559 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
560 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
562 btrfs_set_inode_size(dst_eb
, dst_item
, ino_size
);
566 if (S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
567 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
569 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
574 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
577 if (save_old_i_size
) {
578 struct btrfs_inode_item
*dst_item
;
579 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
580 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
583 /* make sure the generation is filled in */
584 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
585 struct btrfs_inode_item
*dst_item
;
586 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
587 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
588 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
593 btrfs_mark_buffer_dirty(trans
, path
->nodes
[0]);
594 btrfs_release_path(path
);
598 static int read_alloc_one_name(struct extent_buffer
*eb
, void *start
, int len
,
599 struct fscrypt_str
*name
)
603 buf
= kmalloc(len
, GFP_NOFS
);
607 read_extent_buffer(eb
, buf
, (unsigned long)start
, len
);
614 * simple helper to read an inode off the disk from a given root
615 * This can only be called for subvolume roots and not for the log
617 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
622 inode
= btrfs_iget_logging(objectid
, root
);
628 /* replays a single extent in 'eb' at 'slot' with 'key' into the
629 * subvolume 'root'. path is released on entry and should be released
632 * extents in the log tree have not been allocated out of the extent
633 * tree yet. So, this completes the allocation, taking a reference
634 * as required if the extent already exists or creating a new extent
635 * if it isn't in the extent allocation tree yet.
637 * The extent is inserted into the file, dropping any existing extents
638 * from the file that overlap the new one.
640 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
641 struct btrfs_root
*root
,
642 struct btrfs_path
*path
,
643 struct extent_buffer
*eb
, int slot
,
644 struct btrfs_key
*key
)
646 struct btrfs_drop_extents_args drop_args
= { 0 };
647 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
650 u64 start
= key
->offset
;
652 struct btrfs_file_extent_item
*item
;
653 struct inode
*inode
= NULL
;
657 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
658 found_type
= btrfs_file_extent_type(eb
, item
);
660 if (found_type
== BTRFS_FILE_EXTENT_REG
||
661 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
662 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
663 extent_end
= start
+ nbytes
;
666 * We don't add to the inodes nbytes if we are prealloc or a
669 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
671 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
672 size
= btrfs_file_extent_ram_bytes(eb
, item
);
673 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
674 extent_end
= ALIGN(start
+ size
,
675 fs_info
->sectorsize
);
681 inode
= read_one_inode(root
, key
->objectid
);
688 * first check to see if we already have this extent in the
689 * file. This must be done before the btrfs_drop_extents run
690 * so we don't try to drop this extent.
692 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
693 btrfs_ino(BTRFS_I(inode
)), start
, 0);
696 (found_type
== BTRFS_FILE_EXTENT_REG
||
697 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
698 struct btrfs_file_extent_item cmp1
;
699 struct btrfs_file_extent_item cmp2
;
700 struct btrfs_file_extent_item
*existing
;
701 struct extent_buffer
*leaf
;
703 leaf
= path
->nodes
[0];
704 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
705 struct btrfs_file_extent_item
);
707 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
709 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
713 * we already have a pointer to this exact extent,
714 * we don't have to do anything
716 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
717 btrfs_release_path(path
);
721 btrfs_release_path(path
);
723 /* drop any overlapping extents */
724 drop_args
.start
= start
;
725 drop_args
.end
= extent_end
;
726 drop_args
.drop_cache
= true;
727 ret
= btrfs_drop_extents(trans
, root
, BTRFS_I(inode
), &drop_args
);
731 if (found_type
== BTRFS_FILE_EXTENT_REG
||
732 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
734 unsigned long dest_offset
;
735 struct btrfs_key ins
;
737 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0 &&
738 btrfs_fs_incompat(fs_info
, NO_HOLES
))
741 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
745 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
747 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
748 (unsigned long)item
, sizeof(*item
));
750 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
751 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
752 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
753 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
756 * Manually record dirty extent, as here we did a shallow
757 * file extent item copy and skip normal backref update,
758 * but modifying extent tree all by ourselves.
759 * So need to manually record dirty extent for qgroup,
760 * as the owner of the file extent changed from log tree
761 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
763 ret
= btrfs_qgroup_trace_extent(trans
,
764 btrfs_file_extent_disk_bytenr(eb
, item
),
765 btrfs_file_extent_disk_num_bytes(eb
, item
));
769 if (ins
.objectid
> 0) {
772 LIST_HEAD(ordered_sums
);
775 * is this extent already allocated in the extent
776 * allocation tree? If so, just add a reference
778 ret
= btrfs_lookup_data_extent(fs_info
, ins
.objectid
,
782 } else if (ret
== 0) {
783 struct btrfs_ref ref
= {
784 .action
= BTRFS_ADD_DELAYED_REF
,
785 .bytenr
= ins
.objectid
,
786 .num_bytes
= ins
.offset
,
787 .owning_root
= btrfs_root_id(root
),
788 .ref_root
= btrfs_root_id(root
),
790 btrfs_init_data_ref(&ref
, key
->objectid
, offset
,
792 ret
= btrfs_inc_extent_ref(trans
, &ref
);
797 * insert the extent pointer in the extent
800 ret
= btrfs_alloc_logged_file_extent(trans
,
802 key
->objectid
, offset
, &ins
);
806 btrfs_release_path(path
);
808 if (btrfs_file_extent_compression(eb
, item
)) {
809 csum_start
= ins
.objectid
;
810 csum_end
= csum_start
+ ins
.offset
;
812 csum_start
= ins
.objectid
+
813 btrfs_file_extent_offset(eb
, item
);
814 csum_end
= csum_start
+
815 btrfs_file_extent_num_bytes(eb
, item
);
818 ret
= btrfs_lookup_csums_list(root
->log_root
,
819 csum_start
, csum_end
- 1,
820 &ordered_sums
, false);
825 * Now delete all existing cums in the csum root that
826 * cover our range. We do this because we can have an
827 * extent that is completely referenced by one file
828 * extent item and partially referenced by another
829 * file extent item (like after using the clone or
830 * extent_same ioctls). In this case if we end up doing
831 * the replay of the one that partially references the
832 * extent first, and we do not do the csum deletion
833 * below, we can get 2 csum items in the csum tree that
834 * overlap each other. For example, imagine our log has
835 * the two following file extent items:
837 * key (257 EXTENT_DATA 409600)
838 * extent data disk byte 12845056 nr 102400
839 * extent data offset 20480 nr 20480 ram 102400
841 * key (257 EXTENT_DATA 819200)
842 * extent data disk byte 12845056 nr 102400
843 * extent data offset 0 nr 102400 ram 102400
845 * Where the second one fully references the 100K extent
846 * that starts at disk byte 12845056, and the log tree
847 * has a single csum item that covers the entire range
850 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
852 * After the first file extent item is replayed, the
853 * csum tree gets the following csum item:
855 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
857 * Which covers the 20K sub-range starting at offset 20K
858 * of our extent. Now when we replay the second file
859 * extent item, if we do not delete existing csum items
860 * that cover any of its blocks, we end up getting two
861 * csum items in our csum tree that overlap each other:
863 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
864 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
866 * Which is a problem, because after this anyone trying
867 * to lookup up for the checksum of any block of our
868 * extent starting at an offset of 40K or higher, will
869 * end up looking at the second csum item only, which
870 * does not contain the checksum for any block starting
871 * at offset 40K or higher of our extent.
873 while (!list_empty(&ordered_sums
)) {
874 struct btrfs_ordered_sum
*sums
;
875 struct btrfs_root
*csum_root
;
877 sums
= list_entry(ordered_sums
.next
,
878 struct btrfs_ordered_sum
,
880 csum_root
= btrfs_csum_root(fs_info
,
883 ret
= btrfs_del_csums(trans
, csum_root
,
887 ret
= btrfs_csum_file_blocks(trans
,
890 list_del(&sums
->list
);
896 btrfs_release_path(path
);
898 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
899 /* inline extents are easy, we just overwrite them */
900 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
905 ret
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
), start
,
911 btrfs_update_inode_bytes(BTRFS_I(inode
), nbytes
, drop_args
.bytes_found
);
912 ret
= btrfs_update_inode(trans
, BTRFS_I(inode
));
918 static int unlink_inode_for_log_replay(struct btrfs_trans_handle
*trans
,
919 struct btrfs_inode
*dir
,
920 struct btrfs_inode
*inode
,
921 const struct fscrypt_str
*name
)
925 ret
= btrfs_unlink_inode(trans
, dir
, inode
, name
);
929 * Whenever we need to check if a name exists or not, we check the
930 * fs/subvolume tree. So after an unlink we must run delayed items, so
931 * that future checks for a name during log replay see that the name
932 * does not exists anymore.
934 return btrfs_run_delayed_items(trans
);
938 * when cleaning up conflicts between the directory names in the
939 * subvolume, directory names in the log and directory names in the
940 * inode back references, we may have to unlink inodes from directories.
942 * This is a helper function to do the unlink of a specific directory
945 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
946 struct btrfs_path
*path
,
947 struct btrfs_inode
*dir
,
948 struct btrfs_dir_item
*di
)
950 struct btrfs_root
*root
= dir
->root
;
952 struct fscrypt_str name
;
953 struct extent_buffer
*leaf
;
954 struct btrfs_key location
;
957 leaf
= path
->nodes
[0];
959 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
960 ret
= read_alloc_one_name(leaf
, di
+ 1, btrfs_dir_name_len(leaf
, di
), &name
);
964 btrfs_release_path(path
);
966 inode
= read_one_inode(root
, location
.objectid
);
972 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
976 ret
= unlink_inode_for_log_replay(trans
, dir
, BTRFS_I(inode
), &name
);
984 * See if a given name and sequence number found in an inode back reference are
985 * already in a directory and correctly point to this inode.
987 * Returns: < 0 on error, 0 if the directory entry does not exists and 1 if it
990 static noinline
int inode_in_dir(struct btrfs_root
*root
,
991 struct btrfs_path
*path
,
992 u64 dirid
, u64 objectid
, u64 index
,
993 struct fscrypt_str
*name
)
995 struct btrfs_dir_item
*di
;
996 struct btrfs_key location
;
999 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
1005 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1006 if (location
.objectid
!= objectid
)
1012 btrfs_release_path(path
);
1013 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, 0);
1018 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
1019 if (location
.objectid
== objectid
)
1023 btrfs_release_path(path
);
1028 * helper function to check a log tree for a named back reference in
1029 * an inode. This is used to decide if a back reference that is
1030 * found in the subvolume conflicts with what we find in the log.
1032 * inode backreferences may have multiple refs in a single item,
1033 * during replay we process one reference at a time, and we don't
1034 * want to delete valid links to a file from the subvolume if that
1035 * link is also in the log.
1037 static noinline
int backref_in_log(struct btrfs_root
*log
,
1038 struct btrfs_key
*key
,
1040 const struct fscrypt_str
*name
)
1042 struct btrfs_path
*path
;
1045 path
= btrfs_alloc_path();
1049 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
1052 } else if (ret
== 1) {
1057 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1058 ret
= !!btrfs_find_name_in_ext_backref(path
->nodes
[0],
1060 ref_objectid
, name
);
1062 ret
= !!btrfs_find_name_in_backref(path
->nodes
[0],
1063 path
->slots
[0], name
);
1065 btrfs_free_path(path
);
1069 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
1070 struct btrfs_root
*root
,
1071 struct btrfs_path
*path
,
1072 struct btrfs_root
*log_root
,
1073 struct btrfs_inode
*dir
,
1074 struct btrfs_inode
*inode
,
1075 u64 inode_objectid
, u64 parent_objectid
,
1076 u64 ref_index
, struct fscrypt_str
*name
)
1079 struct extent_buffer
*leaf
;
1080 struct btrfs_dir_item
*di
;
1081 struct btrfs_key search_key
;
1082 struct btrfs_inode_extref
*extref
;
1085 /* Search old style refs */
1086 search_key
.objectid
= inode_objectid
;
1087 search_key
.type
= BTRFS_INODE_REF_KEY
;
1088 search_key
.offset
= parent_objectid
;
1089 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1091 struct btrfs_inode_ref
*victim_ref
;
1093 unsigned long ptr_end
;
1095 leaf
= path
->nodes
[0];
1097 /* are we trying to overwrite a back ref for the root directory
1098 * if so, just jump out, we're done
1100 if (search_key
.objectid
== search_key
.offset
)
1103 /* check all the names in this back reference to see
1104 * if they are in the log. if so, we allow them to stay
1105 * otherwise they must be unlinked as a conflict
1107 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1108 ptr_end
= ptr
+ btrfs_item_size(leaf
, path
->slots
[0]);
1109 while (ptr
< ptr_end
) {
1110 struct fscrypt_str victim_name
;
1112 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1113 ret
= read_alloc_one_name(leaf
, (victim_ref
+ 1),
1114 btrfs_inode_ref_name_len(leaf
, victim_ref
),
1119 ret
= backref_in_log(log_root
, &search_key
,
1120 parent_objectid
, &victim_name
);
1122 kfree(victim_name
.name
);
1125 inc_nlink(&inode
->vfs_inode
);
1126 btrfs_release_path(path
);
1128 ret
= unlink_inode_for_log_replay(trans
, dir
, inode
,
1130 kfree(victim_name
.name
);
1135 kfree(victim_name
.name
);
1137 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name
.len
;
1140 btrfs_release_path(path
);
1142 /* Same search but for extended refs */
1143 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
,
1144 inode_objectid
, parent_objectid
, 0,
1146 if (IS_ERR(extref
)) {
1147 return PTR_ERR(extref
);
1148 } else if (extref
) {
1152 struct inode
*victim_parent
;
1154 leaf
= path
->nodes
[0];
1156 item_size
= btrfs_item_size(leaf
, path
->slots
[0]);
1157 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1159 while (cur_offset
< item_size
) {
1160 struct fscrypt_str victim_name
;
1162 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1164 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1167 ret
= read_alloc_one_name(leaf
, &extref
->name
,
1168 btrfs_inode_extref_name_len(leaf
, extref
),
1173 search_key
.objectid
= inode_objectid
;
1174 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1175 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1178 ret
= backref_in_log(log_root
, &search_key
,
1179 parent_objectid
, &victim_name
);
1181 kfree(victim_name
.name
);
1185 victim_parent
= read_one_inode(root
,
1187 if (victim_parent
) {
1188 inc_nlink(&inode
->vfs_inode
);
1189 btrfs_release_path(path
);
1191 ret
= unlink_inode_for_log_replay(trans
,
1192 BTRFS_I(victim_parent
),
1193 inode
, &victim_name
);
1195 iput(victim_parent
);
1196 kfree(victim_name
.name
);
1201 kfree(victim_name
.name
);
1203 cur_offset
+= victim_name
.len
+ sizeof(*extref
);
1206 btrfs_release_path(path
);
1208 /* look for a conflicting sequence number */
1209 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1210 ref_index
, name
, 0);
1214 ret
= drop_one_dir_item(trans
, path
, dir
, di
);
1218 btrfs_release_path(path
);
1220 /* look for a conflicting name */
1221 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
), name
, 0);
1225 ret
= drop_one_dir_item(trans
, path
, dir
, di
);
1229 btrfs_release_path(path
);
1234 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1235 struct fscrypt_str
*name
, u64
*index
,
1236 u64
*parent_objectid
)
1238 struct btrfs_inode_extref
*extref
;
1241 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1243 ret
= read_alloc_one_name(eb
, &extref
->name
,
1244 btrfs_inode_extref_name_len(eb
, extref
), name
);
1249 *index
= btrfs_inode_extref_index(eb
, extref
);
1250 if (parent_objectid
)
1251 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1256 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1257 struct fscrypt_str
*name
, u64
*index
)
1259 struct btrfs_inode_ref
*ref
;
1262 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1264 ret
= read_alloc_one_name(eb
, ref
+ 1, btrfs_inode_ref_name_len(eb
, ref
),
1270 *index
= btrfs_inode_ref_index(eb
, ref
);
1276 * Take an inode reference item from the log tree and iterate all names from the
1277 * inode reference item in the subvolume tree with the same key (if it exists).
1278 * For any name that is not in the inode reference item from the log tree, do a
1279 * proper unlink of that name (that is, remove its entry from the inode
1280 * reference item and both dir index keys).
1282 static int unlink_old_inode_refs(struct btrfs_trans_handle
*trans
,
1283 struct btrfs_root
*root
,
1284 struct btrfs_path
*path
,
1285 struct btrfs_inode
*inode
,
1286 struct extent_buffer
*log_eb
,
1288 struct btrfs_key
*key
)
1291 unsigned long ref_ptr
;
1292 unsigned long ref_end
;
1293 struct extent_buffer
*eb
;
1296 btrfs_release_path(path
);
1297 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
1305 eb
= path
->nodes
[0];
1306 ref_ptr
= btrfs_item_ptr_offset(eb
, path
->slots
[0]);
1307 ref_end
= ref_ptr
+ btrfs_item_size(eb
, path
->slots
[0]);
1308 while (ref_ptr
< ref_end
) {
1309 struct fscrypt_str name
;
1312 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1313 ret
= extref_get_fields(eb
, ref_ptr
, &name
,
1316 parent_id
= key
->offset
;
1317 ret
= ref_get_fields(eb
, ref_ptr
, &name
, NULL
);
1322 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1323 ret
= !!btrfs_find_name_in_ext_backref(log_eb
, log_slot
,
1326 ret
= !!btrfs_find_name_in_backref(log_eb
, log_slot
, &name
);
1331 btrfs_release_path(path
);
1332 dir
= read_one_inode(root
, parent_id
);
1338 ret
= unlink_inode_for_log_replay(trans
, BTRFS_I(dir
),
1348 ref_ptr
+= name
.len
;
1349 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1350 ref_ptr
+= sizeof(struct btrfs_inode_extref
);
1352 ref_ptr
+= sizeof(struct btrfs_inode_ref
);
1356 btrfs_release_path(path
);
1361 * replay one inode back reference item found in the log tree.
1362 * eb, slot and key refer to the buffer and key found in the log tree.
1363 * root is the destination we are replaying into, and path is for temp
1364 * use by this function. (it should be released on return).
1366 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1367 struct btrfs_root
*root
,
1368 struct btrfs_root
*log
,
1369 struct btrfs_path
*path
,
1370 struct extent_buffer
*eb
, int slot
,
1371 struct btrfs_key
*key
)
1373 struct inode
*dir
= NULL
;
1374 struct inode
*inode
= NULL
;
1375 unsigned long ref_ptr
;
1376 unsigned long ref_end
;
1377 struct fscrypt_str name
= { 0 };
1379 int log_ref_ver
= 0;
1380 u64 parent_objectid
;
1383 int ref_struct_size
;
1385 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1386 ref_end
= ref_ptr
+ btrfs_item_size(eb
, slot
);
1388 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1389 struct btrfs_inode_extref
*r
;
1391 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1393 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1394 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1396 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1397 parent_objectid
= key
->offset
;
1399 inode_objectid
= key
->objectid
;
1402 * it is possible that we didn't log all the parent directories
1403 * for a given inode. If we don't find the dir, just don't
1404 * copy the back ref in. The link count fixup code will take
1407 dir
= read_one_inode(root
, parent_objectid
);
1413 inode
= read_one_inode(root
, inode_objectid
);
1419 while (ref_ptr
< ref_end
) {
1421 ret
= extref_get_fields(eb
, ref_ptr
, &name
,
1422 &ref_index
, &parent_objectid
);
1424 * parent object can change from one array
1428 dir
= read_one_inode(root
, parent_objectid
);
1434 ret
= ref_get_fields(eb
, ref_ptr
, &name
, &ref_index
);
1439 ret
= inode_in_dir(root
, path
, btrfs_ino(BTRFS_I(dir
)),
1440 btrfs_ino(BTRFS_I(inode
)), ref_index
, &name
);
1443 } else if (ret
== 0) {
1445 * look for a conflicting back reference in the
1446 * metadata. if we find one we have to unlink that name
1447 * of the file before we add our new link. Later on, we
1448 * overwrite any existing back reference, and we don't
1449 * want to create dangling pointers in the directory.
1451 ret
= __add_inode_ref(trans
, root
, path
, log
,
1452 BTRFS_I(dir
), BTRFS_I(inode
),
1453 inode_objectid
, parent_objectid
,
1461 /* insert our name */
1462 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
1463 &name
, 0, ref_index
);
1467 ret
= btrfs_update_inode(trans
, BTRFS_I(inode
));
1471 /* Else, ret == 1, we already have a perfect match, we're done. */
1473 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + name
.len
;
1483 * Before we overwrite the inode reference item in the subvolume tree
1484 * with the item from the log tree, we must unlink all names from the
1485 * parent directory that are in the subvolume's tree inode reference
1486 * item, otherwise we end up with an inconsistent subvolume tree where
1487 * dir index entries exist for a name but there is no inode reference
1488 * item with the same name.
1490 ret
= unlink_old_inode_refs(trans
, root
, path
, BTRFS_I(inode
), eb
, slot
,
1495 /* finally write the back reference in the inode */
1496 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1498 btrfs_release_path(path
);
1505 static int count_inode_extrefs(struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1509 unsigned int nlink
= 0;
1512 u64 inode_objectid
= btrfs_ino(inode
);
1515 struct btrfs_inode_extref
*extref
;
1516 struct extent_buffer
*leaf
;
1519 ret
= btrfs_find_one_extref(inode
->root
, inode_objectid
, offset
,
1520 path
, &extref
, &offset
);
1524 leaf
= path
->nodes
[0];
1525 item_size
= btrfs_item_size(leaf
, path
->slots
[0]);
1526 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1529 while (cur_offset
< item_size
) {
1530 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1531 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1535 cur_offset
+= name_len
+ sizeof(*extref
);
1539 btrfs_release_path(path
);
1541 btrfs_release_path(path
);
1543 if (ret
< 0 && ret
!= -ENOENT
)
1548 static int count_inode_refs(struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1551 struct btrfs_key key
;
1552 unsigned int nlink
= 0;
1554 unsigned long ptr_end
;
1556 u64 ino
= btrfs_ino(inode
);
1559 key
.type
= BTRFS_INODE_REF_KEY
;
1560 key
.offset
= (u64
)-1;
1563 ret
= btrfs_search_slot(NULL
, inode
->root
, &key
, path
, 0, 0);
1567 if (path
->slots
[0] == 0)
1572 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1574 if (key
.objectid
!= ino
||
1575 key
.type
!= BTRFS_INODE_REF_KEY
)
1577 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1578 ptr_end
= ptr
+ btrfs_item_size(path
->nodes
[0],
1580 while (ptr
< ptr_end
) {
1581 struct btrfs_inode_ref
*ref
;
1583 ref
= (struct btrfs_inode_ref
*)ptr
;
1584 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1586 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1590 if (key
.offset
== 0)
1592 if (path
->slots
[0] > 0) {
1597 btrfs_release_path(path
);
1599 btrfs_release_path(path
);
1605 * There are a few corners where the link count of the file can't
1606 * be properly maintained during replay. So, instead of adding
1607 * lots of complexity to the log code, we just scan the backrefs
1608 * for any file that has been through replay.
1610 * The scan will update the link count on the inode to reflect the
1611 * number of back refs found. If it goes down to zero, the iput
1612 * will free the inode.
1614 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1615 struct inode
*inode
)
1617 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1618 struct btrfs_path
*path
;
1621 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1623 path
= btrfs_alloc_path();
1627 ret
= count_inode_refs(BTRFS_I(inode
), path
);
1633 ret
= count_inode_extrefs(BTRFS_I(inode
), path
);
1641 if (nlink
!= inode
->i_nlink
) {
1642 set_nlink(inode
, nlink
);
1643 ret
= btrfs_update_inode(trans
, BTRFS_I(inode
));
1647 if (S_ISDIR(inode
->i_mode
))
1648 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1650 if (inode
->i_nlink
== 0) {
1651 if (S_ISDIR(inode
->i_mode
)) {
1652 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1657 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1663 btrfs_free_path(path
);
1667 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1668 struct btrfs_root
*root
,
1669 struct btrfs_path
*path
)
1672 struct btrfs_key key
;
1673 struct inode
*inode
;
1675 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1676 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1677 key
.offset
= (u64
)-1;
1679 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1685 if (path
->slots
[0] == 0)
1690 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1691 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1692 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1695 ret
= btrfs_del_item(trans
, root
, path
);
1699 btrfs_release_path(path
);
1700 inode
= read_one_inode(root
, key
.offset
);
1706 ret
= fixup_inode_link_count(trans
, inode
);
1712 * fixup on a directory may create new entries,
1713 * make sure we always look for the highset possible
1716 key
.offset
= (u64
)-1;
1718 btrfs_release_path(path
);
1724 * record a given inode in the fixup dir so we can check its link
1725 * count when replay is done. The link count is incremented here
1726 * so the inode won't go away until we check it
1728 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1729 struct btrfs_root
*root
,
1730 struct btrfs_path
*path
,
1733 struct btrfs_key key
;
1735 struct inode
*inode
;
1737 inode
= read_one_inode(root
, objectid
);
1741 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1742 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1743 key
.offset
= objectid
;
1745 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1747 btrfs_release_path(path
);
1749 if (!inode
->i_nlink
)
1750 set_nlink(inode
, 1);
1753 ret
= btrfs_update_inode(trans
, BTRFS_I(inode
));
1754 } else if (ret
== -EEXIST
) {
1763 * when replaying the log for a directory, we only insert names
1764 * for inodes that actually exist. This means an fsync on a directory
1765 * does not implicitly fsync all the new files in it
1767 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1768 struct btrfs_root
*root
,
1769 u64 dirid
, u64 index
,
1770 const struct fscrypt_str
*name
,
1771 struct btrfs_key
*location
)
1773 struct inode
*inode
;
1777 inode
= read_one_inode(root
, location
->objectid
);
1781 dir
= read_one_inode(root
, dirid
);
1787 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
), name
,
1790 /* FIXME, put inode into FIXUP list */
1797 static int delete_conflicting_dir_entry(struct btrfs_trans_handle
*trans
,
1798 struct btrfs_inode
*dir
,
1799 struct btrfs_path
*path
,
1800 struct btrfs_dir_item
*dst_di
,
1801 const struct btrfs_key
*log_key
,
1805 struct btrfs_key found_key
;
1807 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1808 /* The existing dentry points to the same inode, don't delete it. */
1809 if (found_key
.objectid
== log_key
->objectid
&&
1810 found_key
.type
== log_key
->type
&&
1811 found_key
.offset
== log_key
->offset
&&
1812 btrfs_dir_flags(path
->nodes
[0], dst_di
) == log_flags
)
1816 * Don't drop the conflicting directory entry if the inode for the new
1817 * entry doesn't exist.
1822 return drop_one_dir_item(trans
, path
, dir
, dst_di
);
1826 * take a single entry in a log directory item and replay it into
1829 * if a conflicting item exists in the subdirectory already,
1830 * the inode it points to is unlinked and put into the link count
1833 * If a name from the log points to a file or directory that does
1834 * not exist in the FS, it is skipped. fsyncs on directories
1835 * do not force down inodes inside that directory, just changes to the
1836 * names or unlinks in a directory.
1838 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1839 * non-existing inode) and 1 if the name was replayed.
1841 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1842 struct btrfs_root
*root
,
1843 struct btrfs_path
*path
,
1844 struct extent_buffer
*eb
,
1845 struct btrfs_dir_item
*di
,
1846 struct btrfs_key
*key
)
1848 struct fscrypt_str name
= { 0 };
1849 struct btrfs_dir_item
*dir_dst_di
;
1850 struct btrfs_dir_item
*index_dst_di
;
1851 bool dir_dst_matches
= false;
1852 bool index_dst_matches
= false;
1853 struct btrfs_key log_key
;
1854 struct btrfs_key search_key
;
1859 bool update_size
= true;
1860 bool name_added
= false;
1862 dir
= read_one_inode(root
, key
->objectid
);
1866 ret
= read_alloc_one_name(eb
, di
+ 1, btrfs_dir_name_len(eb
, di
), &name
);
1870 log_flags
= btrfs_dir_flags(eb
, di
);
1871 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1872 ret
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1873 btrfs_release_path(path
);
1876 exists
= (ret
== 0);
1879 dir_dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1881 if (IS_ERR(dir_dst_di
)) {
1882 ret
= PTR_ERR(dir_dst_di
);
1884 } else if (dir_dst_di
) {
1885 ret
= delete_conflicting_dir_entry(trans
, BTRFS_I(dir
), path
,
1886 dir_dst_di
, &log_key
,
1890 dir_dst_matches
= (ret
== 1);
1893 btrfs_release_path(path
);
1895 index_dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1896 key
->objectid
, key
->offset
,
1898 if (IS_ERR(index_dst_di
)) {
1899 ret
= PTR_ERR(index_dst_di
);
1901 } else if (index_dst_di
) {
1902 ret
= delete_conflicting_dir_entry(trans
, BTRFS_I(dir
), path
,
1903 index_dst_di
, &log_key
,
1907 index_dst_matches
= (ret
== 1);
1910 btrfs_release_path(path
);
1912 if (dir_dst_matches
&& index_dst_matches
) {
1914 update_size
= false;
1919 * Check if the inode reference exists in the log for the given name,
1920 * inode and parent inode
1922 search_key
.objectid
= log_key
.objectid
;
1923 search_key
.type
= BTRFS_INODE_REF_KEY
;
1924 search_key
.offset
= key
->objectid
;
1925 ret
= backref_in_log(root
->log_root
, &search_key
, 0, &name
);
1929 /* The dentry will be added later. */
1931 update_size
= false;
1935 search_key
.objectid
= log_key
.objectid
;
1936 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1937 search_key
.offset
= key
->objectid
;
1938 ret
= backref_in_log(root
->log_root
, &search_key
, key
->objectid
, &name
);
1942 /* The dentry will be added later. */
1944 update_size
= false;
1947 btrfs_release_path(path
);
1948 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
1950 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
1954 update_size
= false;
1958 if (!ret
&& update_size
) {
1959 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ name
.len
* 2);
1960 ret
= btrfs_update_inode(trans
, BTRFS_I(dir
));
1964 if (!ret
&& name_added
)
1969 /* Replay one dir item from a BTRFS_DIR_INDEX_KEY key. */
1970 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1971 struct btrfs_root
*root
,
1972 struct btrfs_path
*path
,
1973 struct extent_buffer
*eb
, int slot
,
1974 struct btrfs_key
*key
)
1977 struct btrfs_dir_item
*di
;
1979 /* We only log dir index keys, which only contain a single dir item. */
1980 ASSERT(key
->type
== BTRFS_DIR_INDEX_KEY
);
1982 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1983 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1988 * If this entry refers to a non-directory (directories can not have a
1989 * link count > 1) and it was added in the transaction that was not
1990 * committed, make sure we fixup the link count of the inode the entry
1991 * points to. Otherwise something like the following would result in a
1992 * directory pointing to an inode with a wrong link that does not account
1993 * for this dir entry:
2000 * ln testdir/bar testdir/bar_link
2001 * ln testdir/foo testdir/foo_link
2002 * xfs_io -c "fsync" testdir/bar
2006 * mount fs, log replay happens
2008 * File foo would remain with a link count of 1 when it has two entries
2009 * pointing to it in the directory testdir. This would make it impossible
2010 * to ever delete the parent directory has it would result in stale
2011 * dentries that can never be deleted.
2013 if (ret
== 1 && btrfs_dir_ftype(eb
, di
) != BTRFS_FT_DIR
) {
2014 struct btrfs_path
*fixup_path
;
2015 struct btrfs_key di_key
;
2017 fixup_path
= btrfs_alloc_path();
2021 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2022 ret
= link_to_fixup_dir(trans
, root
, fixup_path
, di_key
.objectid
);
2023 btrfs_free_path(fixup_path
);
2030 * directory replay has two parts. There are the standard directory
2031 * items in the log copied from the subvolume, and range items
2032 * created in the log while the subvolume was logged.
2034 * The range items tell us which parts of the key space the log
2035 * is authoritative for. During replay, if a key in the subvolume
2036 * directory is in a logged range item, but not actually in the log
2037 * that means it was deleted from the directory before the fsync
2038 * and should be removed.
2040 static noinline
int find_dir_range(struct btrfs_root
*root
,
2041 struct btrfs_path
*path
,
2043 u64
*start_ret
, u64
*end_ret
)
2045 struct btrfs_key key
;
2047 struct btrfs_dir_log_item
*item
;
2051 if (*start_ret
== (u64
)-1)
2054 key
.objectid
= dirid
;
2055 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2056 key
.offset
= *start_ret
;
2058 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2062 if (path
->slots
[0] == 0)
2067 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2069 if (key
.type
!= BTRFS_DIR_LOG_INDEX_KEY
|| key
.objectid
!= dirid
) {
2073 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2074 struct btrfs_dir_log_item
);
2075 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2077 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
2079 *start_ret
= key
.offset
;
2080 *end_ret
= found_end
;
2085 /* check the next slot in the tree to see if it is a valid item */
2086 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2088 if (path
->slots
[0] >= nritems
) {
2089 ret
= btrfs_next_leaf(root
, path
);
2094 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2096 if (key
.type
!= BTRFS_DIR_LOG_INDEX_KEY
|| key
.objectid
!= dirid
) {
2100 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2101 struct btrfs_dir_log_item
);
2102 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2103 *start_ret
= key
.offset
;
2104 *end_ret
= found_end
;
2107 btrfs_release_path(path
);
2112 * this looks for a given directory item in the log. If the directory
2113 * item is not in the log, the item is removed and the inode it points
2116 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
2117 struct btrfs_root
*log
,
2118 struct btrfs_path
*path
,
2119 struct btrfs_path
*log_path
,
2121 struct btrfs_key
*dir_key
)
2123 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2125 struct extent_buffer
*eb
;
2127 struct btrfs_dir_item
*di
;
2128 struct fscrypt_str name
= { 0 };
2129 struct inode
*inode
= NULL
;
2130 struct btrfs_key location
;
2133 * Currently we only log dir index keys. Even if we replay a log created
2134 * by an older kernel that logged both dir index and dir item keys, all
2135 * we need to do is process the dir index keys, we (and our caller) can
2136 * safely ignore dir item keys (key type BTRFS_DIR_ITEM_KEY).
2138 ASSERT(dir_key
->type
== BTRFS_DIR_INDEX_KEY
);
2140 eb
= path
->nodes
[0];
2141 slot
= path
->slots
[0];
2142 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2143 ret
= read_alloc_one_name(eb
, di
+ 1, btrfs_dir_name_len(eb
, di
), &name
);
2148 struct btrfs_dir_item
*log_di
;
2150 log_di
= btrfs_lookup_dir_index_item(trans
, log
, log_path
,
2152 dir_key
->offset
, &name
, 0);
2153 if (IS_ERR(log_di
)) {
2154 ret
= PTR_ERR(log_di
);
2156 } else if (log_di
) {
2157 /* The dentry exists in the log, we have nothing to do. */
2163 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2164 btrfs_release_path(path
);
2165 btrfs_release_path(log_path
);
2166 inode
= read_one_inode(root
, location
.objectid
);
2172 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
2177 ret
= unlink_inode_for_log_replay(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
2180 * Unlike dir item keys, dir index keys can only have one name (entry) in
2181 * them, as there are no key collisions since each key has a unique offset
2182 * (an index number), so we're done.
2185 btrfs_release_path(path
);
2186 btrfs_release_path(log_path
);
2192 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2193 struct btrfs_root
*root
,
2194 struct btrfs_root
*log
,
2195 struct btrfs_path
*path
,
2198 struct btrfs_key search_key
;
2199 struct btrfs_path
*log_path
;
2204 log_path
= btrfs_alloc_path();
2208 search_key
.objectid
= ino
;
2209 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2210 search_key
.offset
= 0;
2212 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2216 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2217 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2218 struct btrfs_key key
;
2219 struct btrfs_dir_item
*di
;
2220 struct btrfs_dir_item
*log_di
;
2224 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2225 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2230 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2231 total_size
= btrfs_item_size(path
->nodes
[0], i
);
2233 while (cur
< total_size
) {
2234 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2235 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2236 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2239 name
= kmalloc(name_len
, GFP_NOFS
);
2244 read_extent_buffer(path
->nodes
[0], name
,
2245 (unsigned long)(di
+ 1), name_len
);
2247 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2249 btrfs_release_path(log_path
);
2251 /* Doesn't exist in log tree, so delete it. */
2252 btrfs_release_path(path
);
2253 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2254 name
, name_len
, -1);
2261 ret
= btrfs_delete_one_dir_name(trans
, root
,
2265 btrfs_release_path(path
);
2270 if (IS_ERR(log_di
)) {
2271 ret
= PTR_ERR(log_di
);
2275 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2278 ret
= btrfs_next_leaf(root
, path
);
2284 btrfs_free_path(log_path
);
2285 btrfs_release_path(path
);
2291 * deletion replay happens before we copy any new directory items
2292 * out of the log or out of backreferences from inodes. It
2293 * scans the log to find ranges of keys that log is authoritative for,
2294 * and then scans the directory to find items in those ranges that are
2295 * not present in the log.
2297 * Anything we don't find in the log is unlinked and removed from the
2300 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2301 struct btrfs_root
*root
,
2302 struct btrfs_root
*log
,
2303 struct btrfs_path
*path
,
2304 u64 dirid
, int del_all
)
2309 struct btrfs_key dir_key
;
2310 struct btrfs_key found_key
;
2311 struct btrfs_path
*log_path
;
2314 dir_key
.objectid
= dirid
;
2315 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2316 log_path
= btrfs_alloc_path();
2320 dir
= read_one_inode(root
, dirid
);
2321 /* it isn't an error if the inode isn't there, that can happen
2322 * because we replay the deletes before we copy in the inode item
2326 btrfs_free_path(log_path
);
2334 range_end
= (u64
)-1;
2336 ret
= find_dir_range(log
, path
, dirid
,
2337 &range_start
, &range_end
);
2344 dir_key
.offset
= range_start
;
2347 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2352 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2353 if (path
->slots
[0] >= nritems
) {
2354 ret
= btrfs_next_leaf(root
, path
);
2360 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2362 if (found_key
.objectid
!= dirid
||
2363 found_key
.type
!= dir_key
.type
) {
2368 if (found_key
.offset
> range_end
)
2371 ret
= check_item_in_log(trans
, log
, path
,
2376 if (found_key
.offset
== (u64
)-1)
2378 dir_key
.offset
= found_key
.offset
+ 1;
2380 btrfs_release_path(path
);
2381 if (range_end
== (u64
)-1)
2383 range_start
= range_end
+ 1;
2387 btrfs_release_path(path
);
2388 btrfs_free_path(log_path
);
2394 * the process_func used to replay items from the log tree. This
2395 * gets called in two different stages. The first stage just looks
2396 * for inodes and makes sure they are all copied into the subvolume.
2398 * The second stage copies all the other item types from the log into
2399 * the subvolume. The two stage approach is slower, but gets rid of
2400 * lots of complexity around inodes referencing other inodes that exist
2401 * only in the log (references come from either directory items or inode
2404 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2405 struct walk_control
*wc
, u64 gen
, int level
)
2408 struct btrfs_tree_parent_check check
= {
2412 struct btrfs_path
*path
;
2413 struct btrfs_root
*root
= wc
->replay_dest
;
2414 struct btrfs_key key
;
2418 ret
= btrfs_read_extent_buffer(eb
, &check
);
2422 level
= btrfs_header_level(eb
);
2427 path
= btrfs_alloc_path();
2431 nritems
= btrfs_header_nritems(eb
);
2432 for (i
= 0; i
< nritems
; i
++) {
2433 btrfs_item_key_to_cpu(eb
, &key
, i
);
2435 /* inode keys are done during the first stage */
2436 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2437 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2438 struct btrfs_inode_item
*inode_item
;
2441 inode_item
= btrfs_item_ptr(eb
, i
,
2442 struct btrfs_inode_item
);
2444 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2445 * and never got linked before the fsync, skip it, as
2446 * replaying it is pointless since it would be deleted
2447 * later. We skip logging tmpfiles, but it's always
2448 * possible we are replaying a log created with a kernel
2449 * that used to log tmpfiles.
2451 if (btrfs_inode_nlink(eb
, inode_item
) == 0) {
2452 wc
->ignore_cur_inode
= true;
2455 wc
->ignore_cur_inode
= false;
2457 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2458 path
, key
.objectid
);
2461 mode
= btrfs_inode_mode(eb
, inode_item
);
2462 if (S_ISDIR(mode
)) {
2463 ret
= replay_dir_deletes(wc
->trans
,
2464 root
, log
, path
, key
.objectid
, 0);
2468 ret
= overwrite_item(wc
->trans
, root
, path
,
2474 * Before replaying extents, truncate the inode to its
2475 * size. We need to do it now and not after log replay
2476 * because before an fsync we can have prealloc extents
2477 * added beyond the inode's i_size. If we did it after,
2478 * through orphan cleanup for example, we would drop
2479 * those prealloc extents just after replaying them.
2481 if (S_ISREG(mode
)) {
2482 struct btrfs_drop_extents_args drop_args
= { 0 };
2483 struct inode
*inode
;
2486 inode
= read_one_inode(root
, key
.objectid
);
2491 from
= ALIGN(i_size_read(inode
),
2492 root
->fs_info
->sectorsize
);
2493 drop_args
.start
= from
;
2494 drop_args
.end
= (u64
)-1;
2495 drop_args
.drop_cache
= true;
2496 ret
= btrfs_drop_extents(wc
->trans
, root
,
2500 inode_sub_bytes(inode
,
2501 drop_args
.bytes_found
);
2502 /* Update the inode's nbytes. */
2503 ret
= btrfs_update_inode(wc
->trans
,
2511 ret
= link_to_fixup_dir(wc
->trans
, root
,
2512 path
, key
.objectid
);
2517 if (wc
->ignore_cur_inode
)
2520 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2521 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2522 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2528 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2531 /* these keys are simply copied */
2532 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2533 ret
= overwrite_item(wc
->trans
, root
, path
,
2537 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2538 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2539 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2541 if (ret
&& ret
!= -ENOENT
)
2544 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2545 ret
= replay_one_extent(wc
->trans
, root
, path
,
2551 * We don't log BTRFS_DIR_ITEM_KEY keys anymore, only the
2552 * BTRFS_DIR_INDEX_KEY items which we use to derive the
2553 * BTRFS_DIR_ITEM_KEY items. If we are replaying a log from an
2554 * older kernel with such keys, ignore them.
2557 btrfs_free_path(path
);
2562 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2564 static void unaccount_log_buffer(struct btrfs_fs_info
*fs_info
, u64 start
)
2566 struct btrfs_block_group
*cache
;
2568 cache
= btrfs_lookup_block_group(fs_info
, start
);
2570 btrfs_err(fs_info
, "unable to find block group for %llu", start
);
2574 spin_lock(&cache
->space_info
->lock
);
2575 spin_lock(&cache
->lock
);
2576 cache
->reserved
-= fs_info
->nodesize
;
2577 cache
->space_info
->bytes_reserved
-= fs_info
->nodesize
;
2578 spin_unlock(&cache
->lock
);
2579 spin_unlock(&cache
->space_info
->lock
);
2581 btrfs_put_block_group(cache
);
2584 static int clean_log_buffer(struct btrfs_trans_handle
*trans
,
2585 struct extent_buffer
*eb
)
2589 btrfs_tree_lock(eb
);
2590 btrfs_clear_buffer_dirty(trans
, eb
);
2591 wait_on_extent_buffer_writeback(eb
);
2592 btrfs_tree_unlock(eb
);
2595 ret
= btrfs_pin_reserved_extent(trans
, eb
);
2599 unaccount_log_buffer(eb
->fs_info
, eb
->start
);
2605 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2606 struct btrfs_root
*root
,
2607 struct btrfs_path
*path
, int *level
,
2608 struct walk_control
*wc
)
2610 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2613 struct extent_buffer
*next
;
2614 struct extent_buffer
*cur
;
2617 while (*level
> 0) {
2618 struct btrfs_tree_parent_check check
= { 0 };
2620 cur
= path
->nodes
[*level
];
2622 WARN_ON(btrfs_header_level(cur
) != *level
);
2624 if (path
->slots
[*level
] >=
2625 btrfs_header_nritems(cur
))
2628 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2629 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2630 check
.transid
= ptr_gen
;
2631 check
.level
= *level
- 1;
2632 check
.has_first_key
= true;
2633 btrfs_node_key_to_cpu(cur
, &check
.first_key
, path
->slots
[*level
]);
2635 next
= btrfs_find_create_tree_block(fs_info
, bytenr
,
2636 btrfs_header_owner(cur
),
2639 return PTR_ERR(next
);
2642 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
,
2645 free_extent_buffer(next
);
2649 path
->slots
[*level
]++;
2651 ret
= btrfs_read_extent_buffer(next
, &check
);
2653 free_extent_buffer(next
);
2657 ret
= clean_log_buffer(trans
, next
);
2659 free_extent_buffer(next
);
2663 free_extent_buffer(next
);
2666 ret
= btrfs_read_extent_buffer(next
, &check
);
2668 free_extent_buffer(next
);
2672 if (path
->nodes
[*level
-1])
2673 free_extent_buffer(path
->nodes
[*level
-1]);
2674 path
->nodes
[*level
-1] = next
;
2675 *level
= btrfs_header_level(next
);
2676 path
->slots
[*level
] = 0;
2679 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2685 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2686 struct btrfs_root
*root
,
2687 struct btrfs_path
*path
, int *level
,
2688 struct walk_control
*wc
)
2694 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2695 slot
= path
->slots
[i
];
2696 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2699 WARN_ON(*level
== 0);
2702 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2703 btrfs_header_generation(path
->nodes
[*level
]),
2709 ret
= clean_log_buffer(trans
, path
->nodes
[*level
]);
2713 free_extent_buffer(path
->nodes
[*level
]);
2714 path
->nodes
[*level
] = NULL
;
2722 * drop the reference count on the tree rooted at 'snap'. This traverses
2723 * the tree freeing any blocks that have a ref count of zero after being
2726 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2727 struct btrfs_root
*log
, struct walk_control
*wc
)
2732 struct btrfs_path
*path
;
2735 path
= btrfs_alloc_path();
2739 level
= btrfs_header_level(log
->node
);
2741 path
->nodes
[level
] = log
->node
;
2742 atomic_inc(&log
->node
->refs
);
2743 path
->slots
[level
] = 0;
2746 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2754 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2763 /* was the root node processed? if not, catch it here */
2764 if (path
->nodes
[orig_level
]) {
2765 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2766 btrfs_header_generation(path
->nodes
[orig_level
]),
2771 ret
= clean_log_buffer(trans
, path
->nodes
[orig_level
]);
2775 btrfs_free_path(path
);
2780 * helper function to update the item for a given subvolumes log root
2781 * in the tree of log roots
2783 static int update_log_root(struct btrfs_trans_handle
*trans
,
2784 struct btrfs_root
*log
,
2785 struct btrfs_root_item
*root_item
)
2787 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2790 if (log
->log_transid
== 1) {
2791 /* insert root item on the first sync */
2792 ret
= btrfs_insert_root(trans
, fs_info
->log_root_tree
,
2793 &log
->root_key
, root_item
);
2795 ret
= btrfs_update_root(trans
, fs_info
->log_root_tree
,
2796 &log
->root_key
, root_item
);
2801 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2804 int index
= transid
% 2;
2807 * we only allow two pending log transactions at a time,
2808 * so we know that if ours is more than 2 older than the
2809 * current transaction, we're done
2812 prepare_to_wait(&root
->log_commit_wait
[index
],
2813 &wait
, TASK_UNINTERRUPTIBLE
);
2815 if (!(root
->log_transid_committed
< transid
&&
2816 atomic_read(&root
->log_commit
[index
])))
2819 mutex_unlock(&root
->log_mutex
);
2821 mutex_lock(&root
->log_mutex
);
2823 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2826 static void wait_for_writer(struct btrfs_root
*root
)
2831 prepare_to_wait(&root
->log_writer_wait
, &wait
,
2832 TASK_UNINTERRUPTIBLE
);
2833 if (!atomic_read(&root
->log_writers
))
2836 mutex_unlock(&root
->log_mutex
);
2838 mutex_lock(&root
->log_mutex
);
2840 finish_wait(&root
->log_writer_wait
, &wait
);
2843 void btrfs_init_log_ctx(struct btrfs_log_ctx
*ctx
, struct btrfs_inode
*inode
)
2846 ctx
->log_transid
= 0;
2847 ctx
->log_new_dentries
= false;
2848 ctx
->logging_new_name
= false;
2849 ctx
->logging_new_delayed_dentries
= false;
2850 ctx
->logged_before
= false;
2852 INIT_LIST_HEAD(&ctx
->list
);
2853 INIT_LIST_HEAD(&ctx
->ordered_extents
);
2854 INIT_LIST_HEAD(&ctx
->conflict_inodes
);
2855 ctx
->num_conflict_inodes
= 0;
2856 ctx
->logging_conflict_inodes
= false;
2857 ctx
->scratch_eb
= NULL
;
2860 void btrfs_init_log_ctx_scratch_eb(struct btrfs_log_ctx
*ctx
)
2862 struct btrfs_inode
*inode
= ctx
->inode
;
2864 if (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
) &&
2865 !test_bit(BTRFS_INODE_COPY_EVERYTHING
, &inode
->runtime_flags
))
2869 * Don't care about allocation failure. This is just for optimization,
2870 * if we fail to allocate here, we will try again later if needed.
2872 ctx
->scratch_eb
= alloc_dummy_extent_buffer(inode
->root
->fs_info
, 0);
2875 void btrfs_release_log_ctx_extents(struct btrfs_log_ctx
*ctx
)
2877 struct btrfs_ordered_extent
*ordered
;
2878 struct btrfs_ordered_extent
*tmp
;
2880 btrfs_assert_inode_locked(ctx
->inode
);
2882 list_for_each_entry_safe(ordered
, tmp
, &ctx
->ordered_extents
, log_list
) {
2883 list_del_init(&ordered
->log_list
);
2884 btrfs_put_ordered_extent(ordered
);
2889 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2890 struct btrfs_log_ctx
*ctx
)
2892 mutex_lock(&root
->log_mutex
);
2893 list_del_init(&ctx
->list
);
2894 mutex_unlock(&root
->log_mutex
);
2898 * Invoked in log mutex context, or be sure there is no other task which
2899 * can access the list.
2901 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2902 int index
, int error
)
2904 struct btrfs_log_ctx
*ctx
;
2905 struct btrfs_log_ctx
*safe
;
2907 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2908 list_del_init(&ctx
->list
);
2909 ctx
->log_ret
= error
;
2914 * Sends a given tree log down to the disk and updates the super blocks to
2915 * record it. When this call is done, you know that any inodes previously
2916 * logged are safely on disk only if it returns 0.
2918 * Any other return value means you need to call btrfs_commit_transaction.
2919 * Some of the edge cases for fsyncing directories that have had unlinks
2920 * or renames done in the past mean that sometimes the only safe
2921 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2922 * that has happened.
2924 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2925 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
2931 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2932 struct btrfs_root
*log
= root
->log_root
;
2933 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
2934 struct btrfs_root_item new_root_item
;
2935 int log_transid
= 0;
2936 struct btrfs_log_ctx root_log_ctx
;
2937 struct blk_plug plug
;
2941 mutex_lock(&root
->log_mutex
);
2942 log_transid
= ctx
->log_transid
;
2943 if (root
->log_transid_committed
>= log_transid
) {
2944 mutex_unlock(&root
->log_mutex
);
2945 return ctx
->log_ret
;
2948 index1
= log_transid
% 2;
2949 if (atomic_read(&root
->log_commit
[index1
])) {
2950 wait_log_commit(root
, log_transid
);
2951 mutex_unlock(&root
->log_mutex
);
2952 return ctx
->log_ret
;
2954 ASSERT(log_transid
== root
->log_transid
);
2955 atomic_set(&root
->log_commit
[index1
], 1);
2957 /* wait for previous tree log sync to complete */
2958 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2959 wait_log_commit(root
, log_transid
- 1);
2962 int batch
= atomic_read(&root
->log_batch
);
2963 /* when we're on an ssd, just kick the log commit out */
2964 if (!btrfs_test_opt(fs_info
, SSD
) &&
2965 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
2966 mutex_unlock(&root
->log_mutex
);
2967 schedule_timeout_uninterruptible(1);
2968 mutex_lock(&root
->log_mutex
);
2970 wait_for_writer(root
);
2971 if (batch
== atomic_read(&root
->log_batch
))
2975 /* bail out if we need to do a full commit */
2976 if (btrfs_need_log_full_commit(trans
)) {
2977 ret
= BTRFS_LOG_FORCE_COMMIT
;
2978 mutex_unlock(&root
->log_mutex
);
2982 if (log_transid
% 2 == 0)
2983 mark
= EXTENT_DIRTY
;
2987 /* we start IO on all the marked extents here, but we don't actually
2988 * wait for them until later.
2990 blk_start_plug(&plug
);
2991 ret
= btrfs_write_marked_extents(fs_info
, &log
->dirty_log_pages
, mark
);
2993 * -EAGAIN happens when someone, e.g., a concurrent transaction
2994 * commit, writes a dirty extent in this tree-log commit. This
2995 * concurrent write will create a hole writing out the extents,
2996 * and we cannot proceed on a zoned filesystem, requiring
2997 * sequential writing. While we can bail out to a full commit
2998 * here, but we can continue hoping the concurrent writing fills
3001 if (ret
== -EAGAIN
&& btrfs_is_zoned(fs_info
))
3004 blk_finish_plug(&plug
);
3005 btrfs_set_log_full_commit(trans
);
3006 mutex_unlock(&root
->log_mutex
);
3011 * We _must_ update under the root->log_mutex in order to make sure we
3012 * have a consistent view of the log root we are trying to commit at
3015 * We _must_ copy this into a local copy, because we are not holding the
3016 * log_root_tree->log_mutex yet. This is important because when we
3017 * commit the log_root_tree we must have a consistent view of the
3018 * log_root_tree when we update the super block to point at the
3019 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3020 * with the commit and possibly point at the new block which we may not
3023 btrfs_set_root_node(&log
->root_item
, log
->node
);
3024 memcpy(&new_root_item
, &log
->root_item
, sizeof(new_root_item
));
3026 btrfs_set_root_log_transid(root
, root
->log_transid
+ 1);
3027 log
->log_transid
= root
->log_transid
;
3028 root
->log_start_pid
= 0;
3030 * IO has been started, blocks of the log tree have WRITTEN flag set
3031 * in their headers. new modifications of the log will be written to
3032 * new positions. so it's safe to allow log writers to go in.
3034 mutex_unlock(&root
->log_mutex
);
3036 if (btrfs_is_zoned(fs_info
)) {
3037 mutex_lock(&fs_info
->tree_root
->log_mutex
);
3038 if (!log_root_tree
->node
) {
3039 ret
= btrfs_alloc_log_tree_node(trans
, log_root_tree
);
3041 mutex_unlock(&fs_info
->tree_root
->log_mutex
);
3042 blk_finish_plug(&plug
);
3046 mutex_unlock(&fs_info
->tree_root
->log_mutex
);
3049 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
3051 mutex_lock(&log_root_tree
->log_mutex
);
3053 index2
= log_root_tree
->log_transid
% 2;
3054 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
3055 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
3058 * Now we are safe to update the log_root_tree because we're under the
3059 * log_mutex, and we're a current writer so we're holding the commit
3060 * open until we drop the log_mutex.
3062 ret
= update_log_root(trans
, log
, &new_root_item
);
3064 list_del_init(&root_log_ctx
.list
);
3065 blk_finish_plug(&plug
);
3066 btrfs_set_log_full_commit(trans
);
3069 "failed to update log for root %llu ret %d",
3070 btrfs_root_id(root
), ret
);
3071 btrfs_wait_tree_log_extents(log
, mark
);
3072 mutex_unlock(&log_root_tree
->log_mutex
);
3076 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
3077 blk_finish_plug(&plug
);
3078 list_del_init(&root_log_ctx
.list
);
3079 mutex_unlock(&log_root_tree
->log_mutex
);
3080 ret
= root_log_ctx
.log_ret
;
3084 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
3085 blk_finish_plug(&plug
);
3086 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3087 wait_log_commit(log_root_tree
,
3088 root_log_ctx
.log_transid
);
3089 mutex_unlock(&log_root_tree
->log_mutex
);
3091 ret
= root_log_ctx
.log_ret
;
3094 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
3095 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
3097 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
3098 wait_log_commit(log_root_tree
,
3099 root_log_ctx
.log_transid
- 1);
3103 * now that we've moved on to the tree of log tree roots,
3104 * check the full commit flag again
3106 if (btrfs_need_log_full_commit(trans
)) {
3107 blk_finish_plug(&plug
);
3108 btrfs_wait_tree_log_extents(log
, mark
);
3109 mutex_unlock(&log_root_tree
->log_mutex
);
3110 ret
= BTRFS_LOG_FORCE_COMMIT
;
3111 goto out_wake_log_root
;
3114 ret
= btrfs_write_marked_extents(fs_info
,
3115 &log_root_tree
->dirty_log_pages
,
3116 EXTENT_DIRTY
| EXTENT_NEW
);
3117 blk_finish_plug(&plug
);
3119 * As described above, -EAGAIN indicates a hole in the extents. We
3120 * cannot wait for these write outs since the waiting cause a
3121 * deadlock. Bail out to the full commit instead.
3123 if (ret
== -EAGAIN
&& btrfs_is_zoned(fs_info
)) {
3124 btrfs_set_log_full_commit(trans
);
3125 btrfs_wait_tree_log_extents(log
, mark
);
3126 mutex_unlock(&log_root_tree
->log_mutex
);
3127 goto out_wake_log_root
;
3129 btrfs_set_log_full_commit(trans
);
3130 mutex_unlock(&log_root_tree
->log_mutex
);
3131 goto out_wake_log_root
;
3133 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3135 ret
= btrfs_wait_tree_log_extents(log_root_tree
,
3136 EXTENT_NEW
| EXTENT_DIRTY
);
3138 btrfs_set_log_full_commit(trans
);
3139 mutex_unlock(&log_root_tree
->log_mutex
);
3140 goto out_wake_log_root
;
3143 log_root_start
= log_root_tree
->node
->start
;
3144 log_root_level
= btrfs_header_level(log_root_tree
->node
);
3145 log_root_tree
->log_transid
++;
3146 mutex_unlock(&log_root_tree
->log_mutex
);
3149 * Here we are guaranteed that nobody is going to write the superblock
3150 * for the current transaction before us and that neither we do write
3151 * our superblock before the previous transaction finishes its commit
3152 * and writes its superblock, because:
3154 * 1) We are holding a handle on the current transaction, so no body
3155 * can commit it until we release the handle;
3157 * 2) Before writing our superblock we acquire the tree_log_mutex, so
3158 * if the previous transaction is still committing, and hasn't yet
3159 * written its superblock, we wait for it to do it, because a
3160 * transaction commit acquires the tree_log_mutex when the commit
3161 * begins and releases it only after writing its superblock.
3163 mutex_lock(&fs_info
->tree_log_mutex
);
3166 * The previous transaction writeout phase could have failed, and thus
3167 * marked the fs in an error state. We must not commit here, as we
3168 * could have updated our generation in the super_for_commit and
3169 * writing the super here would result in transid mismatches. If there
3170 * is an error here just bail.
3172 if (BTRFS_FS_ERROR(fs_info
)) {
3174 btrfs_set_log_full_commit(trans
);
3175 btrfs_abort_transaction(trans
, ret
);
3176 mutex_unlock(&fs_info
->tree_log_mutex
);
3177 goto out_wake_log_root
;
3180 btrfs_set_super_log_root(fs_info
->super_for_commit
, log_root_start
);
3181 btrfs_set_super_log_root_level(fs_info
->super_for_commit
, log_root_level
);
3182 ret
= write_all_supers(fs_info
, 1);
3183 mutex_unlock(&fs_info
->tree_log_mutex
);
3185 btrfs_set_log_full_commit(trans
);
3186 btrfs_abort_transaction(trans
, ret
);
3187 goto out_wake_log_root
;
3191 * We know there can only be one task here, since we have not yet set
3192 * root->log_commit[index1] to 0 and any task attempting to sync the
3193 * log must wait for the previous log transaction to commit if it's
3194 * still in progress or wait for the current log transaction commit if
3195 * someone else already started it. We use <= and not < because the
3196 * first log transaction has an ID of 0.
3198 ASSERT(btrfs_get_root_last_log_commit(root
) <= log_transid
);
3199 btrfs_set_root_last_log_commit(root
, log_transid
);
3202 mutex_lock(&log_root_tree
->log_mutex
);
3203 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
3205 log_root_tree
->log_transid_committed
++;
3206 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
3207 mutex_unlock(&log_root_tree
->log_mutex
);
3210 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3211 * all the updates above are seen by the woken threads. It might not be
3212 * necessary, but proving that seems to be hard.
3214 cond_wake_up(&log_root_tree
->log_commit_wait
[index2
]);
3216 mutex_lock(&root
->log_mutex
);
3217 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
3218 root
->log_transid_committed
++;
3219 atomic_set(&root
->log_commit
[index1
], 0);
3220 mutex_unlock(&root
->log_mutex
);
3223 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3224 * all the updates above are seen by the woken threads. It might not be
3225 * necessary, but proving that seems to be hard.
3227 cond_wake_up(&root
->log_commit_wait
[index1
]);
3231 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3232 struct btrfs_root
*log
)
3235 struct walk_control wc
= {
3237 .process_func
= process_one_buffer
3241 ret
= walk_log_tree(trans
, log
, &wc
);
3244 * We weren't able to traverse the entire log tree, the
3245 * typical scenario is getting an -EIO when reading an
3246 * extent buffer of the tree, due to a previous writeback
3249 set_bit(BTRFS_FS_STATE_LOG_CLEANUP_ERROR
,
3250 &log
->fs_info
->fs_state
);
3253 * Some extent buffers of the log tree may still be dirty
3254 * and not yet written back to storage, because we may
3255 * have updates to a log tree without syncing a log tree,
3256 * such as during rename and link operations. So flush
3257 * them out and wait for their writeback to complete, so
3258 * that we properly cleanup their state and pages.
3260 btrfs_write_marked_extents(log
->fs_info
,
3261 &log
->dirty_log_pages
,
3262 EXTENT_DIRTY
| EXTENT_NEW
);
3263 btrfs_wait_tree_log_extents(log
,
3264 EXTENT_DIRTY
| EXTENT_NEW
);
3267 btrfs_abort_transaction(trans
, ret
);
3269 btrfs_handle_fs_error(log
->fs_info
, ret
, NULL
);
3273 extent_io_tree_release(&log
->dirty_log_pages
);
3274 extent_io_tree_release(&log
->log_csum_range
);
3276 btrfs_put_root(log
);
3280 * free all the extents used by the tree log. This should be called
3281 * at commit time of the full transaction
3283 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3285 if (root
->log_root
) {
3286 free_log_tree(trans
, root
->log_root
);
3287 root
->log_root
= NULL
;
3288 clear_bit(BTRFS_ROOT_HAS_LOG_TREE
, &root
->state
);
3293 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3294 struct btrfs_fs_info
*fs_info
)
3296 if (fs_info
->log_root_tree
) {
3297 free_log_tree(trans
, fs_info
->log_root_tree
);
3298 fs_info
->log_root_tree
= NULL
;
3299 clear_bit(BTRFS_ROOT_HAS_LOG_TREE
, &fs_info
->tree_root
->state
);
3305 * Check if an inode was logged in the current transaction. This correctly deals
3306 * with the case where the inode was logged but has a logged_trans of 0, which
3307 * happens if the inode is evicted and loaded again, as logged_trans is an in
3308 * memory only field (not persisted).
3310 * Returns 1 if the inode was logged before in the transaction, 0 if it was not,
3313 static int inode_logged(const struct btrfs_trans_handle
*trans
,
3314 struct btrfs_inode
*inode
,
3315 struct btrfs_path
*path_in
)
3317 struct btrfs_path
*path
= path_in
;
3318 struct btrfs_key key
;
3321 if (inode
->logged_trans
== trans
->transid
)
3325 * If logged_trans is not 0, then we know the inode logged was not logged
3326 * in this transaction, so we can return false right away.
3328 if (inode
->logged_trans
> 0)
3332 * If no log tree was created for this root in this transaction, then
3333 * the inode can not have been logged in this transaction. In that case
3334 * set logged_trans to anything greater than 0 and less than the current
3335 * transaction's ID, to avoid the search below in a future call in case
3336 * a log tree gets created after this.
3338 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE
, &inode
->root
->state
)) {
3339 inode
->logged_trans
= trans
->transid
- 1;
3344 * We have a log tree and the inode's logged_trans is 0. We can't tell
3345 * for sure if the inode was logged before in this transaction by looking
3346 * only at logged_trans. We could be pessimistic and assume it was, but
3347 * that can lead to unnecessarily logging an inode during rename and link
3348 * operations, and then further updating the log in followup rename and
3349 * link operations, specially if it's a directory, which adds latency
3350 * visible to applications doing a series of rename or link operations.
3352 * A logged_trans of 0 here can mean several things:
3354 * 1) The inode was never logged since the filesystem was mounted, and may
3355 * or may have not been evicted and loaded again;
3357 * 2) The inode was logged in a previous transaction, then evicted and
3358 * then loaded again;
3360 * 3) The inode was logged in the current transaction, then evicted and
3361 * then loaded again.
3363 * For cases 1) and 2) we don't want to return true, but we need to detect
3364 * case 3) and return true. So we do a search in the log root for the inode
3367 key
.objectid
= btrfs_ino(inode
);
3368 key
.type
= BTRFS_INODE_ITEM_KEY
;
3372 path
= btrfs_alloc_path();
3377 ret
= btrfs_search_slot(NULL
, inode
->root
->log_root
, &key
, path
, 0, 0);
3380 btrfs_release_path(path
);
3382 btrfs_free_path(path
);
3385 * Logging an inode always results in logging its inode item. So if we
3386 * did not find the item we know the inode was not logged for sure.
3390 } else if (ret
> 0) {
3392 * Set logged_trans to a value greater than 0 and less then the
3393 * current transaction to avoid doing the search in future calls.
3395 inode
->logged_trans
= trans
->transid
- 1;
3400 * The inode was previously logged and then evicted, set logged_trans to
3401 * the current transacion's ID, to avoid future tree searches as long as
3402 * the inode is not evicted again.
3404 inode
->logged_trans
= trans
->transid
;
3407 * If it's a directory, then we must set last_dir_index_offset to the
3408 * maximum possible value, so that the next attempt to log the inode does
3409 * not skip checking if dir index keys found in modified subvolume tree
3410 * leaves have been logged before, otherwise it would result in attempts
3411 * to insert duplicate dir index keys in the log tree. This must be done
3412 * because last_dir_index_offset is an in-memory only field, not persisted
3413 * in the inode item or any other on-disk structure, so its value is lost
3414 * once the inode is evicted.
3416 if (S_ISDIR(inode
->vfs_inode
.i_mode
))
3417 inode
->last_dir_index_offset
= (u64
)-1;
3423 * Delete a directory entry from the log if it exists.
3425 * Returns < 0 on error
3426 * 1 if the entry does not exists
3427 * 0 if the entry existed and was successfully deleted
3429 static int del_logged_dentry(struct btrfs_trans_handle
*trans
,
3430 struct btrfs_root
*log
,
3431 struct btrfs_path
*path
,
3433 const struct fscrypt_str
*name
,
3436 struct btrfs_dir_item
*di
;
3439 * We only log dir index items of a directory, so we don't need to look
3440 * for dir item keys.
3442 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3450 * We do not need to update the size field of the directory's
3451 * inode item because on log replay we update the field to reflect
3452 * all existing entries in the directory (see overwrite_item()).
3454 return btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3458 * If both a file and directory are logged, and unlinks or renames are
3459 * mixed in, we have a few interesting corners:
3461 * create file X in dir Y
3462 * link file X to X.link in dir Y
3464 * unlink file X but leave X.link
3467 * After a crash we would expect only X.link to exist. But file X
3468 * didn't get fsync'd again so the log has back refs for X and X.link.
3470 * We solve this by removing directory entries and inode backrefs from the
3471 * log when a file that was logged in the current transaction is
3472 * unlinked. Any later fsync will include the updated log entries, and
3473 * we'll be able to reconstruct the proper directory items from backrefs.
3475 * This optimizations allows us to avoid relogging the entire inode
3476 * or the entire directory.
3478 void btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3479 struct btrfs_root
*root
,
3480 const struct fscrypt_str
*name
,
3481 struct btrfs_inode
*dir
, u64 index
)
3483 struct btrfs_path
*path
;
3486 ret
= inode_logged(trans
, dir
, NULL
);
3490 btrfs_set_log_full_commit(trans
);
3494 ret
= join_running_log_trans(root
);
3498 mutex_lock(&dir
->log_mutex
);
3500 path
= btrfs_alloc_path();
3506 ret
= del_logged_dentry(trans
, root
->log_root
, path
, btrfs_ino(dir
),
3508 btrfs_free_path(path
);
3510 mutex_unlock(&dir
->log_mutex
);
3512 btrfs_set_log_full_commit(trans
);
3513 btrfs_end_log_trans(root
);
3516 /* see comments for btrfs_del_dir_entries_in_log */
3517 void btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3518 struct btrfs_root
*root
,
3519 const struct fscrypt_str
*name
,
3520 struct btrfs_inode
*inode
, u64 dirid
)
3522 struct btrfs_root
*log
;
3526 ret
= inode_logged(trans
, inode
, NULL
);
3530 btrfs_set_log_full_commit(trans
);
3534 ret
= join_running_log_trans(root
);
3537 log
= root
->log_root
;
3538 mutex_lock(&inode
->log_mutex
);
3540 ret
= btrfs_del_inode_ref(trans
, log
, name
, btrfs_ino(inode
),
3542 mutex_unlock(&inode
->log_mutex
);
3543 if (ret
< 0 && ret
!= -ENOENT
)
3544 btrfs_set_log_full_commit(trans
);
3545 btrfs_end_log_trans(root
);
3549 * creates a range item in the log for 'dirid'. first_offset and
3550 * last_offset tell us which parts of the key space the log should
3551 * be considered authoritative for.
3553 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3554 struct btrfs_root
*log
,
3555 struct btrfs_path
*path
,
3557 u64 first_offset
, u64 last_offset
)
3560 struct btrfs_key key
;
3561 struct btrfs_dir_log_item
*item
;
3563 key
.objectid
= dirid
;
3564 key
.offset
= first_offset
;
3565 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3566 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3568 * -EEXIST is fine and can happen sporadically when we are logging a
3569 * directory and have concurrent insertions in the subvolume's tree for
3570 * items from other inodes and that result in pushing off some dir items
3571 * from one leaf to another in order to accommodate for the new items.
3572 * This results in logging the same dir index range key.
3574 if (ret
&& ret
!= -EEXIST
)
3577 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3578 struct btrfs_dir_log_item
);
3579 if (ret
== -EEXIST
) {
3580 const u64 curr_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
3583 * btrfs_del_dir_entries_in_log() might have been called during
3584 * an unlink between the initial insertion of this key and the
3585 * current update, or we might be logging a single entry deletion
3586 * during a rename, so set the new last_offset to the max value.
3588 last_offset
= max(last_offset
, curr_end
);
3590 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3591 btrfs_mark_buffer_dirty(trans
, path
->nodes
[0]);
3592 btrfs_release_path(path
);
3596 static int flush_dir_items_batch(struct btrfs_trans_handle
*trans
,
3597 struct btrfs_inode
*inode
,
3598 struct extent_buffer
*src
,
3599 struct btrfs_path
*dst_path
,
3603 struct btrfs_root
*log
= inode
->root
->log_root
;
3604 char *ins_data
= NULL
;
3605 struct btrfs_item_batch batch
;
3606 struct extent_buffer
*dst
;
3607 unsigned long src_offset
;
3608 unsigned long dst_offset
;
3610 struct btrfs_key key
;
3619 btrfs_item_key_to_cpu(src
, &key
, start_slot
);
3620 item_size
= btrfs_item_size(src
, start_slot
);
3622 batch
.data_sizes
= &item_size
;
3623 batch
.total_data_size
= item_size
;
3625 struct btrfs_key
*ins_keys
;
3628 ins_data
= kmalloc(count
* sizeof(u32
) +
3629 count
* sizeof(struct btrfs_key
), GFP_NOFS
);
3633 ins_sizes
= (u32
*)ins_data
;
3634 ins_keys
= (struct btrfs_key
*)(ins_data
+ count
* sizeof(u32
));
3635 batch
.keys
= ins_keys
;
3636 batch
.data_sizes
= ins_sizes
;
3637 batch
.total_data_size
= 0;
3639 for (i
= 0; i
< count
; i
++) {
3640 const int slot
= start_slot
+ i
;
3642 btrfs_item_key_to_cpu(src
, &ins_keys
[i
], slot
);
3643 ins_sizes
[i
] = btrfs_item_size(src
, slot
);
3644 batch
.total_data_size
+= ins_sizes
[i
];
3648 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
, &batch
);
3652 dst
= dst_path
->nodes
[0];
3654 * Copy all the items in bulk, in a single copy operation. Item data is
3655 * organized such that it's placed at the end of a leaf and from right
3656 * to left. For example, the data for the second item ends at an offset
3657 * that matches the offset where the data for the first item starts, the
3658 * data for the third item ends at an offset that matches the offset
3659 * where the data of the second items starts, and so on.
3660 * Therefore our source and destination start offsets for copy match the
3661 * offsets of the last items (highest slots).
3663 dst_offset
= btrfs_item_ptr_offset(dst
, dst_path
->slots
[0] + count
- 1);
3664 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ count
- 1);
3665 copy_extent_buffer(dst
, src
, dst_offset
, src_offset
, batch
.total_data_size
);
3666 btrfs_release_path(dst_path
);
3668 last_index
= batch
.keys
[count
- 1].offset
;
3669 ASSERT(last_index
> inode
->last_dir_index_offset
);
3672 * If for some unexpected reason the last item's index is not greater
3673 * than the last index we logged, warn and force a transaction commit.
3675 if (WARN_ON(last_index
<= inode
->last_dir_index_offset
))
3676 ret
= BTRFS_LOG_FORCE_COMMIT
;
3678 inode
->last_dir_index_offset
= last_index
;
3680 if (btrfs_get_first_dir_index_to_log(inode
) == 0)
3681 btrfs_set_first_dir_index_to_log(inode
, batch
.keys
[0].offset
);
3688 static int clone_leaf(struct btrfs_path
*path
, struct btrfs_log_ctx
*ctx
)
3690 const int slot
= path
->slots
[0];
3692 if (ctx
->scratch_eb
) {
3693 copy_extent_buffer_full(ctx
->scratch_eb
, path
->nodes
[0]);
3695 ctx
->scratch_eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
3696 if (!ctx
->scratch_eb
)
3700 btrfs_release_path(path
);
3701 path
->nodes
[0] = ctx
->scratch_eb
;
3702 path
->slots
[0] = slot
;
3704 * Add extra ref to scratch eb so that it is not freed when callers
3705 * release the path, so we can reuse it later if needed.
3707 atomic_inc(&ctx
->scratch_eb
->refs
);
3712 static int process_dir_items_leaf(struct btrfs_trans_handle
*trans
,
3713 struct btrfs_inode
*inode
,
3714 struct btrfs_path
*path
,
3715 struct btrfs_path
*dst_path
,
3716 struct btrfs_log_ctx
*ctx
,
3717 u64
*last_old_dentry_offset
)
3719 struct btrfs_root
*log
= inode
->root
->log_root
;
3720 struct extent_buffer
*src
;
3721 const int nritems
= btrfs_header_nritems(path
->nodes
[0]);
3722 const u64 ino
= btrfs_ino(inode
);
3723 bool last_found
= false;
3724 int batch_start
= 0;
3729 * We need to clone the leaf, release the read lock on it, and use the
3730 * clone before modifying the log tree. See the comment at copy_items()
3731 * about why we need to do this.
3733 ret
= clone_leaf(path
, ctx
);
3737 src
= path
->nodes
[0];
3739 for (int i
= path
->slots
[0]; i
< nritems
; i
++) {
3740 struct btrfs_dir_item
*di
;
3741 struct btrfs_key key
;
3744 btrfs_item_key_to_cpu(src
, &key
, i
);
3746 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_DIR_INDEX_KEY
) {
3751 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3754 * Skip ranges of items that consist only of dir item keys created
3755 * in past transactions. However if we find a gap, we must log a
3756 * dir index range item for that gap, so that index keys in that
3757 * gap are deleted during log replay.
3759 if (btrfs_dir_transid(src
, di
) < trans
->transid
) {
3760 if (key
.offset
> *last_old_dentry_offset
+ 1) {
3761 ret
= insert_dir_log_key(trans
, log
, dst_path
,
3762 ino
, *last_old_dentry_offset
+ 1,
3768 *last_old_dentry_offset
= key
.offset
;
3772 /* If we logged this dir index item before, we can skip it. */
3773 if (key
.offset
<= inode
->last_dir_index_offset
)
3777 * We must make sure that when we log a directory entry, the
3778 * corresponding inode, after log replay, has a matching link
3779 * count. For example:
3785 * xfs_io -c "fsync" mydir
3787 * <mount fs and log replay>
3789 * Would result in a fsync log that when replayed, our file inode
3790 * would have a link count of 1, but we get two directory entries
3791 * pointing to the same inode. After removing one of the names,
3792 * it would not be possible to remove the other name, which
3793 * resulted always in stale file handle errors, and would not be
3794 * possible to rmdir the parent directory, since its i_size could
3795 * never be decremented to the value BTRFS_EMPTY_DIR_SIZE,
3796 * resulting in -ENOTEMPTY errors.
3798 if (!ctx
->log_new_dentries
) {
3799 struct btrfs_key di_key
;
3801 btrfs_dir_item_key_to_cpu(src
, di
, &di_key
);
3802 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
)
3803 ctx
->log_new_dentries
= true;
3806 if (batch_size
== 0)
3811 if (batch_size
> 0) {
3814 ret
= flush_dir_items_batch(trans
, inode
, src
, dst_path
,
3815 batch_start
, batch_size
);
3820 return last_found
? 1 : 0;
3824 * log all the items included in the current transaction for a given
3825 * directory. This also creates the range items in the log tree required
3826 * to replay anything deleted before the fsync
3828 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3829 struct btrfs_inode
*inode
,
3830 struct btrfs_path
*path
,
3831 struct btrfs_path
*dst_path
,
3832 struct btrfs_log_ctx
*ctx
,
3833 u64 min_offset
, u64
*last_offset_ret
)
3835 struct btrfs_key min_key
;
3836 struct btrfs_root
*root
= inode
->root
;
3837 struct btrfs_root
*log
= root
->log_root
;
3839 u64 last_old_dentry_offset
= min_offset
- 1;
3840 u64 last_offset
= (u64
)-1;
3841 u64 ino
= btrfs_ino(inode
);
3843 min_key
.objectid
= ino
;
3844 min_key
.type
= BTRFS_DIR_INDEX_KEY
;
3845 min_key
.offset
= min_offset
;
3847 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3850 * we didn't find anything from this transaction, see if there
3851 * is anything at all
3853 if (ret
!= 0 || min_key
.objectid
!= ino
||
3854 min_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
3855 min_key
.objectid
= ino
;
3856 min_key
.type
= BTRFS_DIR_INDEX_KEY
;
3857 min_key
.offset
= (u64
)-1;
3858 btrfs_release_path(path
);
3859 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3861 btrfs_release_path(path
);
3864 ret
= btrfs_previous_item(root
, path
, ino
, BTRFS_DIR_INDEX_KEY
);
3866 /* if ret == 0 there are items for this type,
3867 * create a range to tell us the last key of this type.
3868 * otherwise, there are no items in this directory after
3869 * *min_offset, and we create a range to indicate that.
3872 struct btrfs_key tmp
;
3874 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3876 if (tmp
.type
== BTRFS_DIR_INDEX_KEY
)
3877 last_old_dentry_offset
= tmp
.offset
;
3878 } else if (ret
> 0) {
3885 /* go backward to find any previous key */
3886 ret
= btrfs_previous_item(root
, path
, ino
, BTRFS_DIR_INDEX_KEY
);
3888 struct btrfs_key tmp
;
3890 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3892 * The dir index key before the first one we found that needs to
3893 * be logged might be in a previous leaf, and there might be a
3894 * gap between these keys, meaning that we had deletions that
3895 * happened. So the key range item we log (key type
3896 * BTRFS_DIR_LOG_INDEX_KEY) must cover a range that starts at the
3897 * previous key's offset plus 1, so that those deletes are replayed.
3899 if (tmp
.type
== BTRFS_DIR_INDEX_KEY
)
3900 last_old_dentry_offset
= tmp
.offset
;
3901 } else if (ret
< 0) {
3905 btrfs_release_path(path
);
3908 * Find the first key from this transaction again or the one we were at
3909 * in the loop below in case we had to reschedule. We may be logging the
3910 * directory without holding its VFS lock, which happen when logging new
3911 * dentries (through log_new_dir_dentries()) or in some cases when we
3912 * need to log the parent directory of an inode. This means a dir index
3913 * key might be deleted from the inode's root, and therefore we may not
3914 * find it anymore. If we can't find it, just move to the next key. We
3915 * can not bail out and ignore, because if we do that we will simply
3916 * not log dir index keys that come after the one that was just deleted
3917 * and we can end up logging a dir index range that ends at (u64)-1
3918 * (@last_offset is initialized to that), resulting in removing dir
3919 * entries we should not remove at log replay time.
3922 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3924 ret
= btrfs_next_item(root
, path
);
3926 /* There are no more keys in the inode's root. */
3935 * we have a block from this transaction, log every item in it
3936 * from our directory
3939 ret
= process_dir_items_leaf(trans
, inode
, path
, dst_path
, ctx
,
3940 &last_old_dentry_offset
);
3946 path
->slots
[0] = btrfs_header_nritems(path
->nodes
[0]);
3949 * look ahead to the next item and see if it is also
3950 * from this directory and from this transaction
3952 ret
= btrfs_next_leaf(root
, path
);
3955 last_offset
= (u64
)-1;
3960 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
, path
->slots
[0]);
3961 if (min_key
.objectid
!= ino
|| min_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
3962 last_offset
= (u64
)-1;
3965 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3967 * The next leaf was not changed in the current transaction
3968 * and has at least one dir index key.
3969 * We check for the next key because there might have been
3970 * one or more deletions between the last key we logged and
3971 * that next key. So the key range item we log (key type
3972 * BTRFS_DIR_LOG_INDEX_KEY) must end at the next key's
3973 * offset minus 1, so that those deletes are replayed.
3975 last_offset
= min_key
.offset
- 1;
3978 if (need_resched()) {
3979 btrfs_release_path(path
);
3985 btrfs_release_path(path
);
3986 btrfs_release_path(dst_path
);
3989 *last_offset_ret
= last_offset
;
3991 * In case the leaf was changed in the current transaction but
3992 * all its dir items are from a past transaction, the last item
3993 * in the leaf is a dir item and there's no gap between that last
3994 * dir item and the first one on the next leaf (which did not
3995 * change in the current transaction), then we don't need to log
3996 * a range, last_old_dentry_offset is == to last_offset.
3998 ASSERT(last_old_dentry_offset
<= last_offset
);
3999 if (last_old_dentry_offset
< last_offset
)
4000 ret
= insert_dir_log_key(trans
, log
, path
, ino
,
4001 last_old_dentry_offset
+ 1,
4009 * If the inode was logged before and it was evicted, then its
4010 * last_dir_index_offset is (u64)-1, so we don't the value of the last index
4011 * key offset. If that's the case, search for it and update the inode. This
4012 * is to avoid lookups in the log tree every time we try to insert a dir index
4013 * key from a leaf changed in the current transaction, and to allow us to always
4014 * do batch insertions of dir index keys.
4016 static int update_last_dir_index_offset(struct btrfs_inode
*inode
,
4017 struct btrfs_path
*path
,
4018 const struct btrfs_log_ctx
*ctx
)
4020 const u64 ino
= btrfs_ino(inode
);
4021 struct btrfs_key key
;
4024 lockdep_assert_held(&inode
->log_mutex
);
4026 if (inode
->last_dir_index_offset
!= (u64
)-1)
4029 if (!ctx
->logged_before
) {
4030 inode
->last_dir_index_offset
= BTRFS_DIR_START_INDEX
- 1;
4035 key
.type
= BTRFS_DIR_INDEX_KEY
;
4036 key
.offset
= (u64
)-1;
4038 ret
= btrfs_search_slot(NULL
, inode
->root
->log_root
, &key
, path
, 0, 0);
4040 * An error happened or we actually have an index key with an offset
4041 * value of (u64)-1. Bail out, we're done.
4047 inode
->last_dir_index_offset
= BTRFS_DIR_START_INDEX
- 1;
4050 * No dir index items, bail out and leave last_dir_index_offset with
4051 * the value right before the first valid index value.
4053 if (path
->slots
[0] == 0)
4057 * btrfs_search_slot() left us at one slot beyond the slot with the last
4058 * index key, or beyond the last key of the directory that is not an
4059 * index key. If we have an index key before, set last_dir_index_offset
4060 * to its offset value, otherwise leave it with a value right before the
4061 * first valid index value, as it means we have an empty directory.
4063 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
4064 if (key
.objectid
== ino
&& key
.type
== BTRFS_DIR_INDEX_KEY
)
4065 inode
->last_dir_index_offset
= key
.offset
;
4068 btrfs_release_path(path
);
4074 * logging directories is very similar to logging inodes, We find all the items
4075 * from the current transaction and write them to the log.
4077 * The recovery code scans the directory in the subvolume, and if it finds a
4078 * key in the range logged that is not present in the log tree, then it means
4079 * that dir entry was unlinked during the transaction.
4081 * In order for that scan to work, we must include one key smaller than
4082 * the smallest logged by this transaction and one key larger than the largest
4083 * key logged by this transaction.
4085 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
4086 struct btrfs_inode
*inode
,
4087 struct btrfs_path
*path
,
4088 struct btrfs_path
*dst_path
,
4089 struct btrfs_log_ctx
*ctx
)
4095 ret
= update_last_dir_index_offset(inode
, path
, ctx
);
4099 min_key
= BTRFS_DIR_START_INDEX
;
4103 ret
= log_dir_items(trans
, inode
, path
, dst_path
,
4104 ctx
, min_key
, &max_key
);
4107 if (max_key
== (u64
)-1)
4109 min_key
= max_key
+ 1;
4116 * a helper function to drop items from the log before we relog an
4117 * inode. max_key_type indicates the highest item type to remove.
4118 * This cannot be run for file data extents because it does not
4119 * free the extents they point to.
4121 static int drop_inode_items(struct btrfs_trans_handle
*trans
,
4122 struct btrfs_root
*log
,
4123 struct btrfs_path
*path
,
4124 struct btrfs_inode
*inode
,
4128 struct btrfs_key key
;
4129 struct btrfs_key found_key
;
4132 key
.objectid
= btrfs_ino(inode
);
4133 key
.type
= max_key_type
;
4134 key
.offset
= (u64
)-1;
4137 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
4140 } else if (ret
> 0) {
4141 if (path
->slots
[0] == 0)
4146 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
4149 if (found_key
.objectid
!= key
.objectid
)
4152 found_key
.offset
= 0;
4154 ret
= btrfs_bin_search(path
->nodes
[0], 0, &found_key
, &start_slot
);
4158 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
4159 path
->slots
[0] - start_slot
+ 1);
4161 * If start slot isn't 0 then we don't need to re-search, we've
4162 * found the last guy with the objectid in this tree.
4164 if (ret
|| start_slot
!= 0)
4166 btrfs_release_path(path
);
4168 btrfs_release_path(path
);
4174 static int truncate_inode_items(struct btrfs_trans_handle
*trans
,
4175 struct btrfs_root
*log_root
,
4176 struct btrfs_inode
*inode
,
4177 u64 new_size
, u32 min_type
)
4179 struct btrfs_truncate_control control
= {
4180 .new_size
= new_size
,
4181 .ino
= btrfs_ino(inode
),
4182 .min_type
= min_type
,
4183 .skip_ref_updates
= true,
4186 return btrfs_truncate_inode_items(trans
, log_root
, &control
);
4189 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
4190 struct extent_buffer
*leaf
,
4191 struct btrfs_inode_item
*item
,
4192 struct inode
*inode
, int log_inode_only
,
4195 struct btrfs_map_token token
;
4198 btrfs_init_map_token(&token
, leaf
);
4200 if (log_inode_only
) {
4201 /* set the generation to zero so the recover code
4202 * can tell the difference between an logging
4203 * just to say 'this inode exists' and a logging
4204 * to say 'update this inode with these values'
4206 btrfs_set_token_inode_generation(&token
, item
, 0);
4207 btrfs_set_token_inode_size(&token
, item
, logged_isize
);
4209 btrfs_set_token_inode_generation(&token
, item
,
4210 BTRFS_I(inode
)->generation
);
4211 btrfs_set_token_inode_size(&token
, item
, inode
->i_size
);
4214 btrfs_set_token_inode_uid(&token
, item
, i_uid_read(inode
));
4215 btrfs_set_token_inode_gid(&token
, item
, i_gid_read(inode
));
4216 btrfs_set_token_inode_mode(&token
, item
, inode
->i_mode
);
4217 btrfs_set_token_inode_nlink(&token
, item
, inode
->i_nlink
);
4219 btrfs_set_token_timespec_sec(&token
, &item
->atime
,
4220 inode_get_atime_sec(inode
));
4221 btrfs_set_token_timespec_nsec(&token
, &item
->atime
,
4222 inode_get_atime_nsec(inode
));
4224 btrfs_set_token_timespec_sec(&token
, &item
->mtime
,
4225 inode_get_mtime_sec(inode
));
4226 btrfs_set_token_timespec_nsec(&token
, &item
->mtime
,
4227 inode_get_mtime_nsec(inode
));
4229 btrfs_set_token_timespec_sec(&token
, &item
->ctime
,
4230 inode_get_ctime_sec(inode
));
4231 btrfs_set_token_timespec_nsec(&token
, &item
->ctime
,
4232 inode_get_ctime_nsec(inode
));
4235 * We do not need to set the nbytes field, in fact during a fast fsync
4236 * its value may not even be correct, since a fast fsync does not wait
4237 * for ordered extent completion, which is where we update nbytes, it
4238 * only waits for writeback to complete. During log replay as we find
4239 * file extent items and replay them, we adjust the nbytes field of the
4240 * inode item in subvolume tree as needed (see overwrite_item()).
4243 btrfs_set_token_inode_sequence(&token
, item
, inode_peek_iversion(inode
));
4244 btrfs_set_token_inode_transid(&token
, item
, trans
->transid
);
4245 btrfs_set_token_inode_rdev(&token
, item
, inode
->i_rdev
);
4246 flags
= btrfs_inode_combine_flags(BTRFS_I(inode
)->flags
,
4247 BTRFS_I(inode
)->ro_flags
);
4248 btrfs_set_token_inode_flags(&token
, item
, flags
);
4249 btrfs_set_token_inode_block_group(&token
, item
, 0);
4252 static int log_inode_item(struct btrfs_trans_handle
*trans
,
4253 struct btrfs_root
*log
, struct btrfs_path
*path
,
4254 struct btrfs_inode
*inode
, bool inode_item_dropped
)
4256 struct btrfs_inode_item
*inode_item
;
4257 struct btrfs_key key
;
4260 btrfs_get_inode_key(inode
, &key
);
4262 * If we are doing a fast fsync and the inode was logged before in the
4263 * current transaction, then we know the inode was previously logged and
4264 * it exists in the log tree. For performance reasons, in this case use
4265 * btrfs_search_slot() directly with ins_len set to 0 so that we never
4266 * attempt a write lock on the leaf's parent, which adds unnecessary lock
4267 * contention in case there are concurrent fsyncs for other inodes of the
4268 * same subvolume. Using btrfs_insert_empty_item() when the inode item
4269 * already exists can also result in unnecessarily splitting a leaf.
4271 if (!inode_item_dropped
&& inode
->logged_trans
== trans
->transid
) {
4272 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
4278 * This means it is the first fsync in the current transaction,
4279 * so the inode item is not in the log and we need to insert it.
4280 * We can never get -EEXIST because we are only called for a fast
4281 * fsync and in case an inode eviction happens after the inode was
4282 * logged before in the current transaction, when we load again
4283 * the inode, we set BTRFS_INODE_NEEDS_FULL_SYNC on its runtime
4284 * flags and set ->logged_trans to 0.
4286 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4287 sizeof(*inode_item
));
4288 ASSERT(ret
!= -EEXIST
);
4292 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4293 struct btrfs_inode_item
);
4294 fill_inode_item(trans
, path
->nodes
[0], inode_item
, &inode
->vfs_inode
,
4296 btrfs_release_path(path
);
4300 static int log_csums(struct btrfs_trans_handle
*trans
,
4301 struct btrfs_inode
*inode
,
4302 struct btrfs_root
*log_root
,
4303 struct btrfs_ordered_sum
*sums
)
4305 const u64 lock_end
= sums
->logical
+ sums
->len
- 1;
4306 struct extent_state
*cached_state
= NULL
;
4310 * If this inode was not used for reflink operations in the current
4311 * transaction with new extents, then do the fast path, no need to
4312 * worry about logging checksum items with overlapping ranges.
4314 if (inode
->last_reflink_trans
< trans
->transid
)
4315 return btrfs_csum_file_blocks(trans
, log_root
, sums
);
4318 * Serialize logging for checksums. This is to avoid racing with the
4319 * same checksum being logged by another task that is logging another
4320 * file which happens to refer to the same extent as well. Such races
4321 * can leave checksum items in the log with overlapping ranges.
4323 ret
= lock_extent(&log_root
->log_csum_range
, sums
->logical
, lock_end
,
4328 * Due to extent cloning, we might have logged a csum item that covers a
4329 * subrange of a cloned extent, and later we can end up logging a csum
4330 * item for a larger subrange of the same extent or the entire range.
4331 * This would leave csum items in the log tree that cover the same range
4332 * and break the searches for checksums in the log tree, resulting in
4333 * some checksums missing in the fs/subvolume tree. So just delete (or
4334 * trim and adjust) any existing csum items in the log for this range.
4336 ret
= btrfs_del_csums(trans
, log_root
, sums
->logical
, sums
->len
);
4338 ret
= btrfs_csum_file_blocks(trans
, log_root
, sums
);
4340 unlock_extent(&log_root
->log_csum_range
, sums
->logical
, lock_end
,
4346 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
4347 struct btrfs_inode
*inode
,
4348 struct btrfs_path
*dst_path
,
4349 struct btrfs_path
*src_path
,
4350 int start_slot
, int nr
, int inode_only
,
4351 u64 logged_isize
, struct btrfs_log_ctx
*ctx
)
4353 struct btrfs_root
*log
= inode
->root
->log_root
;
4354 struct btrfs_file_extent_item
*extent
;
4355 struct extent_buffer
*src
;
4357 struct btrfs_key
*ins_keys
;
4359 struct btrfs_item_batch batch
;
4362 const bool skip_csum
= (inode
->flags
& BTRFS_INODE_NODATASUM
);
4363 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4366 * To keep lockdep happy and avoid deadlocks, clone the source leaf and
4367 * use the clone. This is because otherwise we would be changing the log
4368 * tree, to insert items from the subvolume tree or insert csum items,
4369 * while holding a read lock on a leaf from the subvolume tree, which
4370 * creates a nasty lock dependency when COWing log tree nodes/leaves:
4372 * 1) Modifying the log tree triggers an extent buffer allocation while
4373 * holding a write lock on a parent extent buffer from the log tree.
4374 * Allocating the pages for an extent buffer, or the extent buffer
4375 * struct, can trigger inode eviction and finally the inode eviction
4376 * will trigger a release/remove of a delayed node, which requires
4377 * taking the delayed node's mutex;
4379 * 2) Allocating a metadata extent for a log tree can trigger the async
4380 * reclaim thread and make us wait for it to release enough space and
4381 * unblock our reservation ticket. The reclaim thread can start
4382 * flushing delayed items, and that in turn results in the need to
4383 * lock delayed node mutexes and in the need to write lock extent
4384 * buffers of a subvolume tree - all this while holding a write lock
4385 * on the parent extent buffer in the log tree.
4387 * So one task in scenario 1) running in parallel with another task in
4388 * scenario 2) could lead to a deadlock, one wanting to lock a delayed
4389 * node mutex while having a read lock on a leaf from the subvolume,
4390 * while the other is holding the delayed node's mutex and wants to
4391 * write lock the same subvolume leaf for flushing delayed items.
4393 ret
= clone_leaf(src_path
, ctx
);
4397 src
= src_path
->nodes
[0];
4399 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
4400 nr
* sizeof(u32
), GFP_NOFS
);
4404 ins_sizes
= (u32
*)ins_data
;
4405 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
4406 batch
.keys
= ins_keys
;
4407 batch
.data_sizes
= ins_sizes
;
4408 batch
.total_data_size
= 0;
4412 for (int i
= 0; i
< nr
; i
++) {
4413 const int src_slot
= start_slot
+ i
;
4414 struct btrfs_root
*csum_root
;
4415 struct btrfs_ordered_sum
*sums
;
4416 struct btrfs_ordered_sum
*sums_next
;
4417 LIST_HEAD(ordered_sums
);
4421 u64 extent_num_bytes
;
4424 btrfs_item_key_to_cpu(src
, &ins_keys
[dst_index
], src_slot
);
4426 if (ins_keys
[dst_index
].type
!= BTRFS_EXTENT_DATA_KEY
)
4429 extent
= btrfs_item_ptr(src
, src_slot
,
4430 struct btrfs_file_extent_item
);
4432 is_old_extent
= (btrfs_file_extent_generation(src
, extent
) <
4436 * Don't copy extents from past generations. That would make us
4437 * log a lot more metadata for common cases like doing only a
4438 * few random writes into a file and then fsync it for the first
4439 * time or after the full sync flag is set on the inode. We can
4440 * get leaves full of extent items, most of which are from past
4441 * generations, so we can skip them - as long as the inode has
4442 * not been the target of a reflink operation in this transaction,
4443 * as in that case it might have had file extent items with old
4444 * generations copied into it. We also must always log prealloc
4445 * extents that start at or beyond eof, otherwise we would lose
4446 * them on log replay.
4448 if (is_old_extent
&&
4449 ins_keys
[dst_index
].offset
< i_size
&&
4450 inode
->last_reflink_trans
< trans
->transid
)
4456 /* Only regular extents have checksums. */
4457 if (btrfs_file_extent_type(src
, extent
) != BTRFS_FILE_EXTENT_REG
)
4461 * If it's an extent created in a past transaction, then its
4462 * checksums are already accessible from the committed csum tree,
4463 * no need to log them.
4468 disk_bytenr
= btrfs_file_extent_disk_bytenr(src
, extent
);
4469 /* If it's an explicit hole, there are no checksums. */
4470 if (disk_bytenr
== 0)
4473 disk_num_bytes
= btrfs_file_extent_disk_num_bytes(src
, extent
);
4475 if (btrfs_file_extent_compression(src
, extent
)) {
4477 extent_num_bytes
= disk_num_bytes
;
4479 extent_offset
= btrfs_file_extent_offset(src
, extent
);
4480 extent_num_bytes
= btrfs_file_extent_num_bytes(src
, extent
);
4483 csum_root
= btrfs_csum_root(trans
->fs_info
, disk_bytenr
);
4484 disk_bytenr
+= extent_offset
;
4485 ret
= btrfs_lookup_csums_list(csum_root
, disk_bytenr
,
4486 disk_bytenr
+ extent_num_bytes
- 1,
4487 &ordered_sums
, false);
4492 list_for_each_entry_safe(sums
, sums_next
, &ordered_sums
, list
) {
4494 ret
= log_csums(trans
, inode
, log
, sums
);
4495 list_del(&sums
->list
);
4502 ins_sizes
[dst_index
] = btrfs_item_size(src
, src_slot
);
4503 batch
.total_data_size
+= ins_sizes
[dst_index
];
4509 * We have a leaf full of old extent items that don't need to be logged,
4510 * so we don't need to do anything.
4515 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
, &batch
);
4520 for (int i
= 0; i
< nr
; i
++) {
4521 const int src_slot
= start_slot
+ i
;
4522 const int dst_slot
= dst_path
->slots
[0] + dst_index
;
4523 struct btrfs_key key
;
4524 unsigned long src_offset
;
4525 unsigned long dst_offset
;
4528 * We're done, all the remaining items in the source leaf
4529 * correspond to old file extent items.
4531 if (dst_index
>= batch
.nr
)
4534 btrfs_item_key_to_cpu(src
, &key
, src_slot
);
4536 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4539 extent
= btrfs_item_ptr(src
, src_slot
,
4540 struct btrfs_file_extent_item
);
4542 /* See the comment in the previous loop, same logic. */
4543 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
&&
4544 key
.offset
< i_size
&&
4545 inode
->last_reflink_trans
< trans
->transid
)
4549 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0], dst_slot
);
4550 src_offset
= btrfs_item_ptr_offset(src
, src_slot
);
4552 if (key
.type
== BTRFS_INODE_ITEM_KEY
) {
4553 struct btrfs_inode_item
*inode_item
;
4555 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0], dst_slot
,
4556 struct btrfs_inode_item
);
4557 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
4559 inode_only
== LOG_INODE_EXISTS
,
4562 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
4563 src_offset
, ins_sizes
[dst_index
]);
4569 btrfs_mark_buffer_dirty(trans
, dst_path
->nodes
[0]);
4570 btrfs_release_path(dst_path
);
4577 static int extent_cmp(void *priv
, const struct list_head
*a
,
4578 const struct list_head
*b
)
4580 const struct extent_map
*em1
, *em2
;
4582 em1
= list_entry(a
, struct extent_map
, list
);
4583 em2
= list_entry(b
, struct extent_map
, list
);
4585 if (em1
->start
< em2
->start
)
4587 else if (em1
->start
> em2
->start
)
4592 static int log_extent_csums(struct btrfs_trans_handle
*trans
,
4593 struct btrfs_inode
*inode
,
4594 struct btrfs_root
*log_root
,
4595 const struct extent_map
*em
,
4596 struct btrfs_log_ctx
*ctx
)
4598 struct btrfs_ordered_extent
*ordered
;
4599 struct btrfs_root
*csum_root
;
4603 u64 mod_start
= em
->start
;
4604 u64 mod_len
= em
->len
;
4605 LIST_HEAD(ordered_sums
);
4608 if (inode
->flags
& BTRFS_INODE_NODATASUM
||
4609 (em
->flags
& EXTENT_FLAG_PREALLOC
) ||
4610 em
->disk_bytenr
== EXTENT_MAP_HOLE
)
4613 list_for_each_entry(ordered
, &ctx
->ordered_extents
, log_list
) {
4614 const u64 ordered_end
= ordered
->file_offset
+ ordered
->num_bytes
;
4615 const u64 mod_end
= mod_start
+ mod_len
;
4616 struct btrfs_ordered_sum
*sums
;
4621 if (ordered_end
<= mod_start
)
4623 if (mod_end
<= ordered
->file_offset
)
4627 * We are going to copy all the csums on this ordered extent, so
4628 * go ahead and adjust mod_start and mod_len in case this ordered
4629 * extent has already been logged.
4631 if (ordered
->file_offset
> mod_start
) {
4632 if (ordered_end
>= mod_end
)
4633 mod_len
= ordered
->file_offset
- mod_start
;
4635 * If we have this case
4637 * |--------- logged extent ---------|
4638 * |----- ordered extent ----|
4640 * Just don't mess with mod_start and mod_len, we'll
4641 * just end up logging more csums than we need and it
4645 if (ordered_end
< mod_end
) {
4646 mod_len
= mod_end
- ordered_end
;
4647 mod_start
= ordered_end
;
4654 * To keep us from looping for the above case of an ordered
4655 * extent that falls inside of the logged extent.
4657 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
, &ordered
->flags
))
4660 list_for_each_entry(sums
, &ordered
->list
, list
) {
4661 ret
= log_csums(trans
, inode
, log_root
, sums
);
4667 /* We're done, found all csums in the ordered extents. */
4671 /* If we're compressed we have to save the entire range of csums. */
4672 if (extent_map_is_compressed(em
)) {
4674 csum_len
= em
->disk_num_bytes
;
4676 csum_offset
= mod_start
- em
->start
;
4680 /* block start is already adjusted for the file extent offset. */
4681 block_start
= extent_map_block_start(em
);
4682 csum_root
= btrfs_csum_root(trans
->fs_info
, block_start
);
4683 ret
= btrfs_lookup_csums_list(csum_root
, block_start
+ csum_offset
,
4684 block_start
+ csum_offset
+ csum_len
- 1,
4685 &ordered_sums
, false);
4690 while (!list_empty(&ordered_sums
)) {
4691 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4692 struct btrfs_ordered_sum
,
4695 ret
= log_csums(trans
, inode
, log_root
, sums
);
4696 list_del(&sums
->list
);
4703 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4704 struct btrfs_inode
*inode
,
4705 const struct extent_map
*em
,
4706 struct btrfs_path
*path
,
4707 struct btrfs_log_ctx
*ctx
)
4709 struct btrfs_drop_extents_args drop_args
= { 0 };
4710 struct btrfs_root
*log
= inode
->root
->log_root
;
4711 struct btrfs_file_extent_item fi
= { 0 };
4712 struct extent_buffer
*leaf
;
4713 struct btrfs_key key
;
4714 enum btrfs_compression_type compress_type
;
4715 u64 extent_offset
= em
->offset
;
4716 u64 block_start
= extent_map_block_start(em
);
4720 btrfs_set_stack_file_extent_generation(&fi
, trans
->transid
);
4721 if (em
->flags
& EXTENT_FLAG_PREALLOC
)
4722 btrfs_set_stack_file_extent_type(&fi
, BTRFS_FILE_EXTENT_PREALLOC
);
4724 btrfs_set_stack_file_extent_type(&fi
, BTRFS_FILE_EXTENT_REG
);
4726 block_len
= em
->disk_num_bytes
;
4727 compress_type
= extent_map_compression(em
);
4728 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
4729 btrfs_set_stack_file_extent_disk_bytenr(&fi
, block_start
);
4730 btrfs_set_stack_file_extent_disk_num_bytes(&fi
, block_len
);
4731 } else if (em
->disk_bytenr
< EXTENT_MAP_LAST_BYTE
) {
4732 btrfs_set_stack_file_extent_disk_bytenr(&fi
, block_start
- extent_offset
);
4733 btrfs_set_stack_file_extent_disk_num_bytes(&fi
, block_len
);
4736 btrfs_set_stack_file_extent_offset(&fi
, extent_offset
);
4737 btrfs_set_stack_file_extent_num_bytes(&fi
, em
->len
);
4738 btrfs_set_stack_file_extent_ram_bytes(&fi
, em
->ram_bytes
);
4739 btrfs_set_stack_file_extent_compression(&fi
, compress_type
);
4741 ret
= log_extent_csums(trans
, inode
, log
, em
, ctx
);
4746 * If this is the first time we are logging the inode in the current
4747 * transaction, we can avoid btrfs_drop_extents(), which is expensive
4748 * because it does a deletion search, which always acquires write locks
4749 * for extent buffers at levels 2, 1 and 0. This not only wastes time
4750 * but also adds significant contention in a log tree, since log trees
4751 * are small, with a root at level 2 or 3 at most, due to their short
4754 if (ctx
->logged_before
) {
4755 drop_args
.path
= path
;
4756 drop_args
.start
= em
->start
;
4757 drop_args
.end
= em
->start
+ em
->len
;
4758 drop_args
.replace_extent
= true;
4759 drop_args
.extent_item_size
= sizeof(fi
);
4760 ret
= btrfs_drop_extents(trans
, log
, inode
, &drop_args
);
4765 if (!drop_args
.extent_inserted
) {
4766 key
.objectid
= btrfs_ino(inode
);
4767 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4768 key
.offset
= em
->start
;
4770 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4775 leaf
= path
->nodes
[0];
4776 write_extent_buffer(leaf
, &fi
,
4777 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
4779 btrfs_mark_buffer_dirty(trans
, leaf
);
4781 btrfs_release_path(path
);
4787 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4788 * lose them after doing a full/fast fsync and replaying the log. We scan the
4789 * subvolume's root instead of iterating the inode's extent map tree because
4790 * otherwise we can log incorrect extent items based on extent map conversion.
4791 * That can happen due to the fact that extent maps are merged when they
4792 * are not in the extent map tree's list of modified extents.
4794 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle
*trans
,
4795 struct btrfs_inode
*inode
,
4796 struct btrfs_path
*path
,
4797 struct btrfs_log_ctx
*ctx
)
4799 struct btrfs_root
*root
= inode
->root
;
4800 struct btrfs_key key
;
4801 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4802 const u64 ino
= btrfs_ino(inode
);
4803 struct btrfs_path
*dst_path
= NULL
;
4804 bool dropped_extents
= false;
4805 u64 truncate_offset
= i_size
;
4806 struct extent_buffer
*leaf
;
4812 if (!(inode
->flags
& BTRFS_INODE_PREALLOC
))
4816 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4817 key
.offset
= i_size
;
4818 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4823 * We must check if there is a prealloc extent that starts before the
4824 * i_size and crosses the i_size boundary. This is to ensure later we
4825 * truncate down to the end of that extent and not to the i_size, as
4826 * otherwise we end up losing part of the prealloc extent after a log
4827 * replay and with an implicit hole if there is another prealloc extent
4828 * that starts at an offset beyond i_size.
4830 ret
= btrfs_previous_item(root
, path
, ino
, BTRFS_EXTENT_DATA_KEY
);
4835 struct btrfs_file_extent_item
*ei
;
4837 leaf
= path
->nodes
[0];
4838 slot
= path
->slots
[0];
4839 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4841 if (btrfs_file_extent_type(leaf
, ei
) ==
4842 BTRFS_FILE_EXTENT_PREALLOC
) {
4845 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4846 extent_end
= key
.offset
+
4847 btrfs_file_extent_num_bytes(leaf
, ei
);
4849 if (extent_end
> i_size
)
4850 truncate_offset
= extent_end
;
4857 leaf
= path
->nodes
[0];
4858 slot
= path
->slots
[0];
4860 if (slot
>= btrfs_header_nritems(leaf
)) {
4862 ret
= copy_items(trans
, inode
, dst_path
, path
,
4863 start_slot
, ins_nr
, 1, 0, ctx
);
4868 ret
= btrfs_next_leaf(root
, path
);
4878 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4879 if (key
.objectid
> ino
)
4881 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
4882 key
.type
< BTRFS_EXTENT_DATA_KEY
||
4883 key
.offset
< i_size
) {
4888 * Avoid overlapping items in the log tree. The first time we
4889 * get here, get rid of everything from a past fsync. After
4890 * that, if the current extent starts before the end of the last
4891 * extent we copied, truncate the last one. This can happen if
4892 * an ordered extent completion modifies the subvolume tree
4893 * while btrfs_next_leaf() has the tree unlocked.
4895 if (!dropped_extents
|| key
.offset
< truncate_offset
) {
4896 ret
= truncate_inode_items(trans
, root
->log_root
, inode
,
4897 min(key
.offset
, truncate_offset
),
4898 BTRFS_EXTENT_DATA_KEY
);
4901 dropped_extents
= true;
4903 truncate_offset
= btrfs_file_extent_end(path
);
4909 dst_path
= btrfs_alloc_path();
4917 ret
= copy_items(trans
, inode
, dst_path
, path
,
4918 start_slot
, ins_nr
, 1, 0, ctx
);
4920 btrfs_release_path(path
);
4921 btrfs_free_path(dst_path
);
4925 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4926 struct btrfs_inode
*inode
,
4927 struct btrfs_path
*path
,
4928 struct btrfs_log_ctx
*ctx
)
4930 struct btrfs_ordered_extent
*ordered
;
4931 struct btrfs_ordered_extent
*tmp
;
4932 struct extent_map
*em
, *n
;
4934 struct extent_map_tree
*tree
= &inode
->extent_tree
;
4938 write_lock(&tree
->lock
);
4940 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4941 list_del_init(&em
->list
);
4943 * Just an arbitrary number, this can be really CPU intensive
4944 * once we start getting a lot of extents, and really once we
4945 * have a bunch of extents we just want to commit since it will
4948 if (++num
> 32768) {
4949 list_del_init(&tree
->modified_extents
);
4954 if (em
->generation
< trans
->transid
)
4957 /* We log prealloc extents beyond eof later. */
4958 if ((em
->flags
& EXTENT_FLAG_PREALLOC
) &&
4959 em
->start
>= i_size_read(&inode
->vfs_inode
))
4962 /* Need a ref to keep it from getting evicted from cache */
4963 refcount_inc(&em
->refs
);
4964 em
->flags
|= EXTENT_FLAG_LOGGING
;
4965 list_add_tail(&em
->list
, &extents
);
4969 list_sort(NULL
, &extents
, extent_cmp
);
4971 while (!list_empty(&extents
)) {
4972 em
= list_entry(extents
.next
, struct extent_map
, list
);
4974 list_del_init(&em
->list
);
4977 * If we had an error we just need to delete everybody from our
4981 clear_em_logging(inode
, em
);
4982 free_extent_map(em
);
4986 write_unlock(&tree
->lock
);
4988 ret
= log_one_extent(trans
, inode
, em
, path
, ctx
);
4989 write_lock(&tree
->lock
);
4990 clear_em_logging(inode
, em
);
4991 free_extent_map(em
);
4993 WARN_ON(!list_empty(&extents
));
4994 write_unlock(&tree
->lock
);
4997 ret
= btrfs_log_prealloc_extents(trans
, inode
, path
, ctx
);
5002 * We have logged all extents successfully, now make sure the commit of
5003 * the current transaction waits for the ordered extents to complete
5004 * before it commits and wipes out the log trees, otherwise we would
5005 * lose data if an ordered extents completes after the transaction
5006 * commits and a power failure happens after the transaction commit.
5008 list_for_each_entry_safe(ordered
, tmp
, &ctx
->ordered_extents
, log_list
) {
5009 list_del_init(&ordered
->log_list
);
5010 set_bit(BTRFS_ORDERED_LOGGED
, &ordered
->flags
);
5012 if (!test_bit(BTRFS_ORDERED_COMPLETE
, &ordered
->flags
)) {
5013 spin_lock_irq(&inode
->ordered_tree_lock
);
5014 if (!test_bit(BTRFS_ORDERED_COMPLETE
, &ordered
->flags
)) {
5015 set_bit(BTRFS_ORDERED_PENDING
, &ordered
->flags
);
5016 atomic_inc(&trans
->transaction
->pending_ordered
);
5018 spin_unlock_irq(&inode
->ordered_tree_lock
);
5020 btrfs_put_ordered_extent(ordered
);
5026 static int logged_inode_size(struct btrfs_root
*log
, struct btrfs_inode
*inode
,
5027 struct btrfs_path
*path
, u64
*size_ret
)
5029 struct btrfs_key key
;
5032 key
.objectid
= btrfs_ino(inode
);
5033 key
.type
= BTRFS_INODE_ITEM_KEY
;
5036 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
5039 } else if (ret
> 0) {
5042 struct btrfs_inode_item
*item
;
5044 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5045 struct btrfs_inode_item
);
5046 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
5048 * If the in-memory inode's i_size is smaller then the inode
5049 * size stored in the btree, return the inode's i_size, so
5050 * that we get a correct inode size after replaying the log
5051 * when before a power failure we had a shrinking truncate
5052 * followed by addition of a new name (rename / new hard link).
5053 * Otherwise return the inode size from the btree, to avoid
5054 * data loss when replaying a log due to previously doing a
5055 * write that expands the inode's size and logging a new name
5056 * immediately after.
5058 if (*size_ret
> inode
->vfs_inode
.i_size
)
5059 *size_ret
= inode
->vfs_inode
.i_size
;
5062 btrfs_release_path(path
);
5067 * At the moment we always log all xattrs. This is to figure out at log replay
5068 * time which xattrs must have their deletion replayed. If a xattr is missing
5069 * in the log tree and exists in the fs/subvol tree, we delete it. This is
5070 * because if a xattr is deleted, the inode is fsynced and a power failure
5071 * happens, causing the log to be replayed the next time the fs is mounted,
5072 * we want the xattr to not exist anymore (same behaviour as other filesystems
5073 * with a journal, ext3/4, xfs, f2fs, etc).
5075 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
5076 struct btrfs_inode
*inode
,
5077 struct btrfs_path
*path
,
5078 struct btrfs_path
*dst_path
,
5079 struct btrfs_log_ctx
*ctx
)
5081 struct btrfs_root
*root
= inode
->root
;
5083 struct btrfs_key key
;
5084 const u64 ino
= btrfs_ino(inode
);
5087 bool found_xattrs
= false;
5089 if (test_bit(BTRFS_INODE_NO_XATTRS
, &inode
->runtime_flags
))
5093 key
.type
= BTRFS_XATTR_ITEM_KEY
;
5096 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5101 int slot
= path
->slots
[0];
5102 struct extent_buffer
*leaf
= path
->nodes
[0];
5103 int nritems
= btrfs_header_nritems(leaf
);
5105 if (slot
>= nritems
) {
5107 ret
= copy_items(trans
, inode
, dst_path
, path
,
5108 start_slot
, ins_nr
, 1, 0, ctx
);
5113 ret
= btrfs_next_leaf(root
, path
);
5121 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5122 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
5129 found_xattrs
= true;
5133 ret
= copy_items(trans
, inode
, dst_path
, path
,
5134 start_slot
, ins_nr
, 1, 0, ctx
);
5140 set_bit(BTRFS_INODE_NO_XATTRS
, &inode
->runtime_flags
);
5146 * When using the NO_HOLES feature if we punched a hole that causes the
5147 * deletion of entire leafs or all the extent items of the first leaf (the one
5148 * that contains the inode item and references) we may end up not processing
5149 * any extents, because there are no leafs with a generation matching the
5150 * current transaction that have extent items for our inode. So we need to find
5151 * if any holes exist and then log them. We also need to log holes after any
5152 * truncate operation that changes the inode's size.
5154 static int btrfs_log_holes(struct btrfs_trans_handle
*trans
,
5155 struct btrfs_inode
*inode
,
5156 struct btrfs_path
*path
)
5158 struct btrfs_root
*root
= inode
->root
;
5159 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5160 struct btrfs_key key
;
5161 const u64 ino
= btrfs_ino(inode
);
5162 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
5163 u64 prev_extent_end
= 0;
5166 if (!btrfs_fs_incompat(fs_info
, NO_HOLES
) || i_size
== 0)
5170 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5173 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5178 struct extent_buffer
*leaf
= path
->nodes
[0];
5180 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
5181 ret
= btrfs_next_leaf(root
, path
);
5188 leaf
= path
->nodes
[0];
5191 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
5192 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5195 /* We have a hole, log it. */
5196 if (prev_extent_end
< key
.offset
) {
5197 const u64 hole_len
= key
.offset
- prev_extent_end
;
5200 * Release the path to avoid deadlocks with other code
5201 * paths that search the root while holding locks on
5202 * leafs from the log root.
5204 btrfs_release_path(path
);
5205 ret
= btrfs_insert_hole_extent(trans
, root
->log_root
,
5206 ino
, prev_extent_end
,
5212 * Search for the same key again in the root. Since it's
5213 * an extent item and we are holding the inode lock, the
5214 * key must still exist. If it doesn't just emit warning
5215 * and return an error to fall back to a transaction
5218 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5221 if (WARN_ON(ret
> 0))
5223 leaf
= path
->nodes
[0];
5226 prev_extent_end
= btrfs_file_extent_end(path
);
5231 if (prev_extent_end
< i_size
) {
5234 btrfs_release_path(path
);
5235 hole_len
= ALIGN(i_size
- prev_extent_end
, fs_info
->sectorsize
);
5236 ret
= btrfs_insert_hole_extent(trans
, root
->log_root
, ino
,
5237 prev_extent_end
, hole_len
);
5246 * When we are logging a new inode X, check if it doesn't have a reference that
5247 * matches the reference from some other inode Y created in a past transaction
5248 * and that was renamed in the current transaction. If we don't do this, then at
5249 * log replay time we can lose inode Y (and all its files if it's a directory):
5252 * echo "hello world" > /mnt/x/foobar
5255 * mkdir /mnt/x # or touch /mnt/x
5256 * xfs_io -c fsync /mnt/x
5258 * mount fs, trigger log replay
5260 * After the log replay procedure, we would lose the first directory and all its
5261 * files (file foobar).
5262 * For the case where inode Y is not a directory we simply end up losing it:
5264 * echo "123" > /mnt/foo
5266 * mv /mnt/foo /mnt/bar
5267 * echo "abc" > /mnt/foo
5268 * xfs_io -c fsync /mnt/foo
5271 * We also need this for cases where a snapshot entry is replaced by some other
5272 * entry (file or directory) otherwise we end up with an unreplayable log due to
5273 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
5274 * if it were a regular entry:
5277 * btrfs subvolume snapshot /mnt /mnt/x/snap
5278 * btrfs subvolume delete /mnt/x/snap
5281 * fsync /mnt/x or fsync some new file inside it
5284 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
5285 * the same transaction.
5287 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
5289 const struct btrfs_key
*key
,
5290 struct btrfs_inode
*inode
,
5291 u64
*other_ino
, u64
*other_parent
)
5294 struct btrfs_path
*search_path
;
5297 u32 item_size
= btrfs_item_size(eb
, slot
);
5299 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
5301 search_path
= btrfs_alloc_path();
5304 search_path
->search_commit_root
= 1;
5305 search_path
->skip_locking
= 1;
5307 while (cur_offset
< item_size
) {
5311 unsigned long name_ptr
;
5312 struct btrfs_dir_item
*di
;
5313 struct fscrypt_str name_str
;
5315 if (key
->type
== BTRFS_INODE_REF_KEY
) {
5316 struct btrfs_inode_ref
*iref
;
5318 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
5319 parent
= key
->offset
;
5320 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
5321 name_ptr
= (unsigned long)(iref
+ 1);
5322 this_len
= sizeof(*iref
) + this_name_len
;
5324 struct btrfs_inode_extref
*extref
;
5326 extref
= (struct btrfs_inode_extref
*)(ptr
+
5328 parent
= btrfs_inode_extref_parent(eb
, extref
);
5329 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
5330 name_ptr
= (unsigned long)&extref
->name
;
5331 this_len
= sizeof(*extref
) + this_name_len
;
5334 if (this_name_len
> name_len
) {
5337 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
5342 name_len
= this_name_len
;
5346 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
5348 name_str
.name
= name
;
5349 name_str
.len
= this_name_len
;
5350 di
= btrfs_lookup_dir_item(NULL
, inode
->root
, search_path
,
5351 parent
, &name_str
, 0);
5352 if (di
&& !IS_ERR(di
)) {
5353 struct btrfs_key di_key
;
5355 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
5357 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
5358 if (di_key
.objectid
!= key
->objectid
) {
5360 *other_ino
= di_key
.objectid
;
5361 *other_parent
= parent
;
5369 } else if (IS_ERR(di
)) {
5373 btrfs_release_path(search_path
);
5375 cur_offset
+= this_len
;
5379 btrfs_free_path(search_path
);
5385 * Check if we need to log an inode. This is used in contexts where while
5386 * logging an inode we need to log another inode (either that it exists or in
5387 * full mode). This is used instead of btrfs_inode_in_log() because the later
5388 * requires the inode to be in the log and have the log transaction committed,
5389 * while here we do not care if the log transaction was already committed - our
5390 * caller will commit the log later - and we want to avoid logging an inode
5391 * multiple times when multiple tasks have joined the same log transaction.
5393 static bool need_log_inode(const struct btrfs_trans_handle
*trans
,
5394 struct btrfs_inode
*inode
)
5397 * If a directory was not modified, no dentries added or removed, we can
5398 * and should avoid logging it.
5400 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && inode
->last_trans
< trans
->transid
)
5404 * If this inode does not have new/updated/deleted xattrs since the last
5405 * time it was logged and is flagged as logged in the current transaction,
5406 * we can skip logging it. As for new/deleted names, those are updated in
5407 * the log by link/unlink/rename operations.
5408 * In case the inode was logged and then evicted and reloaded, its
5409 * logged_trans will be 0, in which case we have to fully log it since
5410 * logged_trans is a transient field, not persisted.
5412 if (inode_logged(trans
, inode
, NULL
) == 1 &&
5413 !test_bit(BTRFS_INODE_COPY_EVERYTHING
, &inode
->runtime_flags
))
5419 struct btrfs_dir_list
{
5421 struct list_head list
;
5425 * Log the inodes of the new dentries of a directory.
5426 * See process_dir_items_leaf() for details about why it is needed.
5427 * This is a recursive operation - if an existing dentry corresponds to a
5428 * directory, that directory's new entries are logged too (same behaviour as
5429 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5430 * the dentries point to we do not acquire their VFS lock, otherwise lockdep
5431 * complains about the following circular lock dependency / possible deadlock:
5435 * lock(&type->i_mutex_dir_key#3/2);
5436 * lock(sb_internal#2);
5437 * lock(&type->i_mutex_dir_key#3/2);
5438 * lock(&sb->s_type->i_mutex_key#14);
5440 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5441 * sb_start_intwrite() in btrfs_start_transaction().
5442 * Not acquiring the VFS lock of the inodes is still safe because:
5444 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5445 * that while logging the inode new references (names) are added or removed
5446 * from the inode, leaving the logged inode item with a link count that does
5447 * not match the number of logged inode reference items. This is fine because
5448 * at log replay time we compute the real number of links and correct the
5449 * link count in the inode item (see replay_one_buffer() and
5450 * link_to_fixup_dir());
5452 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5453 * while logging the inode's items new index items (key type
5454 * BTRFS_DIR_INDEX_KEY) are added to fs/subvol tree and the logged inode item
5455 * has a size that doesn't match the sum of the lengths of all the logged
5456 * names - this is ok, not a problem, because at log replay time we set the
5457 * directory's i_size to the correct value (see replay_one_name() and
5458 * overwrite_item()).
5460 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5461 struct btrfs_inode
*start_inode
,
5462 struct btrfs_log_ctx
*ctx
)
5464 struct btrfs_root
*root
= start_inode
->root
;
5465 struct btrfs_path
*path
;
5466 LIST_HEAD(dir_list
);
5467 struct btrfs_dir_list
*dir_elem
;
5468 u64 ino
= btrfs_ino(start_inode
);
5469 struct btrfs_inode
*curr_inode
= start_inode
;
5473 * If we are logging a new name, as part of a link or rename operation,
5474 * don't bother logging new dentries, as we just want to log the names
5475 * of an inode and that any new parents exist.
5477 if (ctx
->logging_new_name
)
5480 path
= btrfs_alloc_path();
5484 /* Pairs with btrfs_add_delayed_iput below. */
5485 ihold(&curr_inode
->vfs_inode
);
5488 struct inode
*vfs_inode
;
5489 struct btrfs_key key
;
5490 struct btrfs_key found_key
;
5492 bool continue_curr_inode
= true;
5496 key
.type
= BTRFS_DIR_INDEX_KEY
;
5497 key
.offset
= btrfs_get_first_dir_index_to_log(curr_inode
);
5498 next_index
= key
.offset
;
5500 btrfs_for_each_slot(root
->log_root
, &key
, &found_key
, path
, iter_ret
) {
5501 struct extent_buffer
*leaf
= path
->nodes
[0];
5502 struct btrfs_dir_item
*di
;
5503 struct btrfs_key di_key
;
5504 struct inode
*di_inode
;
5505 int log_mode
= LOG_INODE_EXISTS
;
5508 if (found_key
.objectid
!= ino
||
5509 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
5510 continue_curr_inode
= false;
5514 next_index
= found_key
.offset
+ 1;
5516 di
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dir_item
);
5517 type
= btrfs_dir_ftype(leaf
, di
);
5518 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
)
5520 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5521 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5524 btrfs_release_path(path
);
5525 di_inode
= btrfs_iget_logging(di_key
.objectid
, root
);
5526 if (IS_ERR(di_inode
)) {
5527 ret
= PTR_ERR(di_inode
);
5531 if (!need_log_inode(trans
, BTRFS_I(di_inode
))) {
5532 btrfs_add_delayed_iput(BTRFS_I(di_inode
));
5536 ctx
->log_new_dentries
= false;
5537 if (type
== BTRFS_FT_DIR
)
5538 log_mode
= LOG_INODE_ALL
;
5539 ret
= btrfs_log_inode(trans
, BTRFS_I(di_inode
),
5541 btrfs_add_delayed_iput(BTRFS_I(di_inode
));
5544 if (ctx
->log_new_dentries
) {
5545 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5550 dir_elem
->ino
= di_key
.objectid
;
5551 list_add_tail(&dir_elem
->list
, &dir_list
);
5556 btrfs_release_path(path
);
5561 } else if (iter_ret
> 0) {
5562 continue_curr_inode
= false;
5567 if (continue_curr_inode
&& key
.offset
< (u64
)-1) {
5572 btrfs_set_first_dir_index_to_log(curr_inode
, next_index
);
5574 if (list_empty(&dir_list
))
5577 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
, list
);
5578 ino
= dir_elem
->ino
;
5579 list_del(&dir_elem
->list
);
5582 btrfs_add_delayed_iput(curr_inode
);
5585 vfs_inode
= btrfs_iget_logging(ino
, root
);
5586 if (IS_ERR(vfs_inode
)) {
5587 ret
= PTR_ERR(vfs_inode
);
5590 curr_inode
= BTRFS_I(vfs_inode
);
5593 btrfs_free_path(path
);
5595 btrfs_add_delayed_iput(curr_inode
);
5598 struct btrfs_dir_list
*next
;
5600 list_for_each_entry_safe(dir_elem
, next
, &dir_list
, list
)
5607 struct btrfs_ino_list
{
5610 struct list_head list
;
5613 static void free_conflicting_inodes(struct btrfs_log_ctx
*ctx
)
5615 struct btrfs_ino_list
*curr
;
5616 struct btrfs_ino_list
*next
;
5618 list_for_each_entry_safe(curr
, next
, &ctx
->conflict_inodes
, list
) {
5619 list_del(&curr
->list
);
5624 static int conflicting_inode_is_dir(struct btrfs_root
*root
, u64 ino
,
5625 struct btrfs_path
*path
)
5627 struct btrfs_key key
;
5631 key
.type
= BTRFS_INODE_ITEM_KEY
;
5634 path
->search_commit_root
= 1;
5635 path
->skip_locking
= 1;
5637 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5638 if (WARN_ON_ONCE(ret
> 0)) {
5640 * We have previously found the inode through the commit root
5641 * so this should not happen. If it does, just error out and
5642 * fallback to a transaction commit.
5645 } else if (ret
== 0) {
5646 struct btrfs_inode_item
*item
;
5648 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5649 struct btrfs_inode_item
);
5650 if (S_ISDIR(btrfs_inode_mode(path
->nodes
[0], item
)))
5654 btrfs_release_path(path
);
5655 path
->search_commit_root
= 0;
5656 path
->skip_locking
= 0;
5661 static int add_conflicting_inode(struct btrfs_trans_handle
*trans
,
5662 struct btrfs_root
*root
,
5663 struct btrfs_path
*path
,
5664 u64 ino
, u64 parent
,
5665 struct btrfs_log_ctx
*ctx
)
5667 struct btrfs_ino_list
*ino_elem
;
5668 struct inode
*inode
;
5671 * It's rare to have a lot of conflicting inodes, in practice it is not
5672 * common to have more than 1 or 2. We don't want to collect too many,
5673 * as we could end up logging too many inodes (even if only in
5674 * LOG_INODE_EXISTS mode) and slow down other fsyncs or transaction
5677 if (ctx
->num_conflict_inodes
>= MAX_CONFLICT_INODES
)
5678 return BTRFS_LOG_FORCE_COMMIT
;
5680 inode
= btrfs_iget_logging(ino
, root
);
5682 * If the other inode that had a conflicting dir entry was deleted in
5683 * the current transaction then we either:
5685 * 1) Log the parent directory (later after adding it to the list) if
5686 * the inode is a directory. This is because it may be a deleted
5687 * subvolume/snapshot or it may be a regular directory that had
5688 * deleted subvolumes/snapshots (or subdirectories that had them),
5689 * and at the moment we can't deal with dropping subvolumes/snapshots
5690 * during log replay. So we just log the parent, which will result in
5691 * a fallback to a transaction commit if we are dealing with those
5692 * cases (last_unlink_trans will match the current transaction);
5694 * 2) Do nothing if it's not a directory. During log replay we simply
5695 * unlink the conflicting dentry from the parent directory and then
5696 * add the dentry for our inode. Like this we can avoid logging the
5697 * parent directory (and maybe fallback to a transaction commit in
5698 * case it has a last_unlink_trans == trans->transid, due to moving
5699 * some inode from it to some other directory).
5701 if (IS_ERR(inode
)) {
5702 int ret
= PTR_ERR(inode
);
5707 ret
= conflicting_inode_is_dir(root
, ino
, path
);
5708 /* Not a directory or we got an error. */
5712 /* Conflicting inode is a directory, so we'll log its parent. */
5713 ino_elem
= kmalloc(sizeof(*ino_elem
), GFP_NOFS
);
5716 ino_elem
->ino
= ino
;
5717 ino_elem
->parent
= parent
;
5718 list_add_tail(&ino_elem
->list
, &ctx
->conflict_inodes
);
5719 ctx
->num_conflict_inodes
++;
5725 * If the inode was already logged skip it - otherwise we can hit an
5726 * infinite loop. Example:
5728 * From the commit root (previous transaction) we have the following
5731 * inode 257 a directory
5732 * inode 258 with references "zz" and "zz_link" on inode 257
5733 * inode 259 with reference "a" on inode 257
5735 * And in the current (uncommitted) transaction we have:
5737 * inode 257 a directory, unchanged
5738 * inode 258 with references "a" and "a2" on inode 257
5739 * inode 259 with reference "zz_link" on inode 257
5740 * inode 261 with reference "zz" on inode 257
5742 * When logging inode 261 the following infinite loop could
5743 * happen if we don't skip already logged inodes:
5745 * - we detect inode 258 as a conflicting inode, with inode 261
5746 * on reference "zz", and log it;
5748 * - we detect inode 259 as a conflicting inode, with inode 258
5749 * on reference "a", and log it;
5751 * - we detect inode 258 as a conflicting inode, with inode 259
5752 * on reference "zz_link", and log it - again! After this we
5753 * repeat the above steps forever.
5755 * Here we can use need_log_inode() because we only need to log the
5756 * inode in LOG_INODE_EXISTS mode and rename operations update the log,
5757 * so that the log ends up with the new name and without the old name.
5759 if (!need_log_inode(trans
, BTRFS_I(inode
))) {
5760 btrfs_add_delayed_iput(BTRFS_I(inode
));
5764 btrfs_add_delayed_iput(BTRFS_I(inode
));
5766 ino_elem
= kmalloc(sizeof(*ino_elem
), GFP_NOFS
);
5769 ino_elem
->ino
= ino
;
5770 ino_elem
->parent
= parent
;
5771 list_add_tail(&ino_elem
->list
, &ctx
->conflict_inodes
);
5772 ctx
->num_conflict_inodes
++;
5777 static int log_conflicting_inodes(struct btrfs_trans_handle
*trans
,
5778 struct btrfs_root
*root
,
5779 struct btrfs_log_ctx
*ctx
)
5784 * Conflicting inodes are logged by the first call to btrfs_log_inode(),
5785 * otherwise we could have unbounded recursion of btrfs_log_inode()
5786 * calls. This check guarantees we can have only 1 level of recursion.
5788 if (ctx
->logging_conflict_inodes
)
5791 ctx
->logging_conflict_inodes
= true;
5794 * New conflicting inodes may be found and added to the list while we
5795 * are logging a conflicting inode, so keep iterating while the list is
5798 while (!list_empty(&ctx
->conflict_inodes
)) {
5799 struct btrfs_ino_list
*curr
;
5800 struct inode
*inode
;
5804 curr
= list_first_entry(&ctx
->conflict_inodes
,
5805 struct btrfs_ino_list
, list
);
5807 parent
= curr
->parent
;
5808 list_del(&curr
->list
);
5811 inode
= btrfs_iget_logging(ino
, root
);
5813 * If the other inode that had a conflicting dir entry was
5814 * deleted in the current transaction, we need to log its parent
5815 * directory. See the comment at add_conflicting_inode().
5817 if (IS_ERR(inode
)) {
5818 ret
= PTR_ERR(inode
);
5822 inode
= btrfs_iget_logging(parent
, root
);
5823 if (IS_ERR(inode
)) {
5824 ret
= PTR_ERR(inode
);
5829 * Always log the directory, we cannot make this
5830 * conditional on need_log_inode() because the directory
5831 * might have been logged in LOG_INODE_EXISTS mode or
5832 * the dir index of the conflicting inode is not in a
5833 * dir index key range logged for the directory. So we
5834 * must make sure the deletion is recorded.
5836 ret
= btrfs_log_inode(trans
, BTRFS_I(inode
),
5837 LOG_INODE_ALL
, ctx
);
5838 btrfs_add_delayed_iput(BTRFS_I(inode
));
5845 * Here we can use need_log_inode() because we only need to log
5846 * the inode in LOG_INODE_EXISTS mode and rename operations
5847 * update the log, so that the log ends up with the new name and
5848 * without the old name.
5850 * We did this check at add_conflicting_inode(), but here we do
5851 * it again because if some other task logged the inode after
5852 * that, we can avoid doing it again.
5854 if (!need_log_inode(trans
, BTRFS_I(inode
))) {
5855 btrfs_add_delayed_iput(BTRFS_I(inode
));
5860 * We are safe logging the other inode without acquiring its
5861 * lock as long as we log with the LOG_INODE_EXISTS mode. We
5862 * are safe against concurrent renames of the other inode as
5863 * well because during a rename we pin the log and update the
5864 * log with the new name before we unpin it.
5866 ret
= btrfs_log_inode(trans
, BTRFS_I(inode
), LOG_INODE_EXISTS
, ctx
);
5867 btrfs_add_delayed_iput(BTRFS_I(inode
));
5872 ctx
->logging_conflict_inodes
= false;
5874 free_conflicting_inodes(ctx
);
5879 static int copy_inode_items_to_log(struct btrfs_trans_handle
*trans
,
5880 struct btrfs_inode
*inode
,
5881 struct btrfs_key
*min_key
,
5882 const struct btrfs_key
*max_key
,
5883 struct btrfs_path
*path
,
5884 struct btrfs_path
*dst_path
,
5885 const u64 logged_isize
,
5886 const int inode_only
,
5887 struct btrfs_log_ctx
*ctx
,
5888 bool *need_log_inode_item
)
5890 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
5891 struct btrfs_root
*root
= inode
->root
;
5892 int ins_start_slot
= 0;
5897 ret
= btrfs_search_forward(root
, min_key
, path
, trans
->transid
);
5905 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5906 if (min_key
->objectid
!= max_key
->objectid
)
5908 if (min_key
->type
> max_key
->type
)
5911 if (min_key
->type
== BTRFS_INODE_ITEM_KEY
) {
5912 *need_log_inode_item
= false;
5913 } else if (min_key
->type
== BTRFS_EXTENT_DATA_KEY
&&
5914 min_key
->offset
>= i_size
) {
5916 * Extents at and beyond eof are logged with
5917 * btrfs_log_prealloc_extents().
5918 * Only regular files have BTRFS_EXTENT_DATA_KEY keys,
5919 * and no keys greater than that, so bail out.
5922 } else if ((min_key
->type
== BTRFS_INODE_REF_KEY
||
5923 min_key
->type
== BTRFS_INODE_EXTREF_KEY
) &&
5924 (inode
->generation
== trans
->transid
||
5925 ctx
->logging_conflict_inodes
)) {
5927 u64 other_parent
= 0;
5929 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
5930 path
->slots
[0], min_key
, inode
,
5931 &other_ino
, &other_parent
);
5934 } else if (ret
> 0 &&
5935 other_ino
!= btrfs_ino(ctx
->inode
)) {
5940 ins_start_slot
= path
->slots
[0];
5942 ret
= copy_items(trans
, inode
, dst_path
, path
,
5943 ins_start_slot
, ins_nr
,
5944 inode_only
, logged_isize
, ctx
);
5949 btrfs_release_path(path
);
5950 ret
= add_conflicting_inode(trans
, root
, path
,
5957 } else if (min_key
->type
== BTRFS_XATTR_ITEM_KEY
) {
5958 /* Skip xattrs, logged later with btrfs_log_all_xattrs() */
5961 ret
= copy_items(trans
, inode
, dst_path
, path
,
5963 ins_nr
, inode_only
, logged_isize
, ctx
);
5970 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
5973 } else if (!ins_nr
) {
5974 ins_start_slot
= path
->slots
[0];
5979 ret
= copy_items(trans
, inode
, dst_path
, path
, ins_start_slot
,
5980 ins_nr
, inode_only
, logged_isize
, ctx
);
5984 ins_start_slot
= path
->slots
[0];
5987 if (path
->slots
[0] < btrfs_header_nritems(path
->nodes
[0])) {
5988 btrfs_item_key_to_cpu(path
->nodes
[0], min_key
,
5993 ret
= copy_items(trans
, inode
, dst_path
, path
,
5994 ins_start_slot
, ins_nr
, inode_only
,
6000 btrfs_release_path(path
);
6002 if (min_key
->offset
< (u64
)-1) {
6004 } else if (min_key
->type
< max_key
->type
) {
6006 min_key
->offset
= 0;
6012 * We may process many leaves full of items for our inode, so
6013 * avoid monopolizing a cpu for too long by rescheduling while
6014 * not holding locks on any tree.
6019 ret
= copy_items(trans
, inode
, dst_path
, path
, ins_start_slot
,
6020 ins_nr
, inode_only
, logged_isize
, ctx
);
6025 if (inode_only
== LOG_INODE_ALL
&& S_ISREG(inode
->vfs_inode
.i_mode
)) {
6027 * Release the path because otherwise we might attempt to double
6028 * lock the same leaf with btrfs_log_prealloc_extents() below.
6030 btrfs_release_path(path
);
6031 ret
= btrfs_log_prealloc_extents(trans
, inode
, dst_path
, ctx
);
6037 static int insert_delayed_items_batch(struct btrfs_trans_handle
*trans
,
6038 struct btrfs_root
*log
,
6039 struct btrfs_path
*path
,
6040 const struct btrfs_item_batch
*batch
,
6041 const struct btrfs_delayed_item
*first_item
)
6043 const struct btrfs_delayed_item
*curr
= first_item
;
6046 ret
= btrfs_insert_empty_items(trans
, log
, path
, batch
);
6050 for (int i
= 0; i
< batch
->nr
; i
++) {
6053 data_ptr
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0], char);
6054 write_extent_buffer(path
->nodes
[0], &curr
->data
,
6055 (unsigned long)data_ptr
, curr
->data_len
);
6056 curr
= list_next_entry(curr
, log_list
);
6060 btrfs_release_path(path
);
6065 static int log_delayed_insertion_items(struct btrfs_trans_handle
*trans
,
6066 struct btrfs_inode
*inode
,
6067 struct btrfs_path
*path
,
6068 const struct list_head
*delayed_ins_list
,
6069 struct btrfs_log_ctx
*ctx
)
6071 /* 195 (4095 bytes of keys and sizes) fits in a single 4K page. */
6072 const int max_batch_size
= 195;
6073 const int leaf_data_size
= BTRFS_LEAF_DATA_SIZE(trans
->fs_info
);
6074 const u64 ino
= btrfs_ino(inode
);
6075 struct btrfs_root
*log
= inode
->root
->log_root
;
6076 struct btrfs_item_batch batch
= {
6078 .total_data_size
= 0,
6080 const struct btrfs_delayed_item
*first
= NULL
;
6081 const struct btrfs_delayed_item
*curr
;
6083 struct btrfs_key
*ins_keys
;
6085 u64 curr_batch_size
= 0;
6089 /* We are adding dir index items to the log tree. */
6090 lockdep_assert_held(&inode
->log_mutex
);
6093 * We collect delayed items before copying index keys from the subvolume
6094 * to the log tree. However just after we collected them, they may have
6095 * been flushed (all of them or just some of them), and therefore we
6096 * could have copied them from the subvolume tree to the log tree.
6097 * So find the first delayed item that was not yet logged (they are
6098 * sorted by index number).
6100 list_for_each_entry(curr
, delayed_ins_list
, log_list
) {
6101 if (curr
->index
> inode
->last_dir_index_offset
) {
6107 /* Empty list or all delayed items were already logged. */
6111 ins_data
= kmalloc(max_batch_size
* sizeof(u32
) +
6112 max_batch_size
* sizeof(struct btrfs_key
), GFP_NOFS
);
6115 ins_sizes
= (u32
*)ins_data
;
6116 batch
.data_sizes
= ins_sizes
;
6117 ins_keys
= (struct btrfs_key
*)(ins_data
+ max_batch_size
* sizeof(u32
));
6118 batch
.keys
= ins_keys
;
6121 while (!list_entry_is_head(curr
, delayed_ins_list
, log_list
)) {
6122 const u32 curr_size
= curr
->data_len
+ sizeof(struct btrfs_item
);
6124 if (curr_batch_size
+ curr_size
> leaf_data_size
||
6125 batch
.nr
== max_batch_size
) {
6126 ret
= insert_delayed_items_batch(trans
, log
, path
,
6132 batch
.total_data_size
= 0;
6133 curr_batch_size
= 0;
6137 ins_sizes
[batch_idx
] = curr
->data_len
;
6138 ins_keys
[batch_idx
].objectid
= ino
;
6139 ins_keys
[batch_idx
].type
= BTRFS_DIR_INDEX_KEY
;
6140 ins_keys
[batch_idx
].offset
= curr
->index
;
6141 curr_batch_size
+= curr_size
;
6142 batch
.total_data_size
+= curr
->data_len
;
6145 curr
= list_next_entry(curr
, log_list
);
6148 ASSERT(batch
.nr
>= 1);
6149 ret
= insert_delayed_items_batch(trans
, log
, path
, &batch
, first
);
6151 curr
= list_last_entry(delayed_ins_list
, struct btrfs_delayed_item
,
6153 inode
->last_dir_index_offset
= curr
->index
;
6160 static int log_delayed_deletions_full(struct btrfs_trans_handle
*trans
,
6161 struct btrfs_inode
*inode
,
6162 struct btrfs_path
*path
,
6163 const struct list_head
*delayed_del_list
,
6164 struct btrfs_log_ctx
*ctx
)
6166 const u64 ino
= btrfs_ino(inode
);
6167 const struct btrfs_delayed_item
*curr
;
6169 curr
= list_first_entry(delayed_del_list
, struct btrfs_delayed_item
,
6172 while (!list_entry_is_head(curr
, delayed_del_list
, log_list
)) {
6173 u64 first_dir_index
= curr
->index
;
6175 const struct btrfs_delayed_item
*next
;
6179 * Find a range of consecutive dir index items to delete. Like
6180 * this we log a single dir range item spanning several contiguous
6181 * dir items instead of logging one range item per dir index item.
6183 next
= list_next_entry(curr
, log_list
);
6184 while (!list_entry_is_head(next
, delayed_del_list
, log_list
)) {
6185 if (next
->index
!= curr
->index
+ 1)
6188 next
= list_next_entry(next
, log_list
);
6191 last_dir_index
= curr
->index
;
6192 ASSERT(last_dir_index
>= first_dir_index
);
6194 ret
= insert_dir_log_key(trans
, inode
->root
->log_root
, path
,
6195 ino
, first_dir_index
, last_dir_index
);
6198 curr
= list_next_entry(curr
, log_list
);
6204 static int batch_delete_dir_index_items(struct btrfs_trans_handle
*trans
,
6205 struct btrfs_inode
*inode
,
6206 struct btrfs_path
*path
,
6207 const struct list_head
*delayed_del_list
,
6208 const struct btrfs_delayed_item
*first
,
6209 const struct btrfs_delayed_item
**last_ret
)
6211 const struct btrfs_delayed_item
*next
;
6212 struct extent_buffer
*leaf
= path
->nodes
[0];
6213 const int last_slot
= btrfs_header_nritems(leaf
) - 1;
6214 int slot
= path
->slots
[0] + 1;
6215 const u64 ino
= btrfs_ino(inode
);
6217 next
= list_next_entry(first
, log_list
);
6219 while (slot
< last_slot
&&
6220 !list_entry_is_head(next
, delayed_del_list
, log_list
)) {
6221 struct btrfs_key key
;
6223 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
6224 if (key
.objectid
!= ino
||
6225 key
.type
!= BTRFS_DIR_INDEX_KEY
||
6226 key
.offset
!= next
->index
)
6231 next
= list_next_entry(next
, log_list
);
6234 return btrfs_del_items(trans
, inode
->root
->log_root
, path
,
6235 path
->slots
[0], slot
- path
->slots
[0]);
6238 static int log_delayed_deletions_incremental(struct btrfs_trans_handle
*trans
,
6239 struct btrfs_inode
*inode
,
6240 struct btrfs_path
*path
,
6241 const struct list_head
*delayed_del_list
,
6242 struct btrfs_log_ctx
*ctx
)
6244 struct btrfs_root
*log
= inode
->root
->log_root
;
6245 const struct btrfs_delayed_item
*curr
;
6246 u64 last_range_start
= 0;
6247 u64 last_range_end
= 0;
6248 struct btrfs_key key
;
6250 key
.objectid
= btrfs_ino(inode
);
6251 key
.type
= BTRFS_DIR_INDEX_KEY
;
6252 curr
= list_first_entry(delayed_del_list
, struct btrfs_delayed_item
,
6255 while (!list_entry_is_head(curr
, delayed_del_list
, log_list
)) {
6256 const struct btrfs_delayed_item
*last
= curr
;
6257 u64 first_dir_index
= curr
->index
;
6259 bool deleted_items
= false;
6262 key
.offset
= curr
->index
;
6263 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
6266 } else if (ret
== 0) {
6267 ret
= batch_delete_dir_index_items(trans
, inode
, path
,
6268 delayed_del_list
, curr
,
6272 deleted_items
= true;
6275 btrfs_release_path(path
);
6278 * If we deleted items from the leaf, it means we have a range
6279 * item logging their range, so no need to add one or update an
6280 * existing one. Otherwise we have to log a dir range item.
6285 last_dir_index
= last
->index
;
6286 ASSERT(last_dir_index
>= first_dir_index
);
6288 * If this range starts right after where the previous one ends,
6289 * then we want to reuse the previous range item and change its
6290 * end offset to the end of this range. This is just to minimize
6291 * leaf space usage, by avoiding adding a new range item.
6293 if (last_range_end
!= 0 && first_dir_index
== last_range_end
+ 1)
6294 first_dir_index
= last_range_start
;
6296 ret
= insert_dir_log_key(trans
, log
, path
, key
.objectid
,
6297 first_dir_index
, last_dir_index
);
6301 last_range_start
= first_dir_index
;
6302 last_range_end
= last_dir_index
;
6304 curr
= list_next_entry(last
, log_list
);
6310 static int log_delayed_deletion_items(struct btrfs_trans_handle
*trans
,
6311 struct btrfs_inode
*inode
,
6312 struct btrfs_path
*path
,
6313 const struct list_head
*delayed_del_list
,
6314 struct btrfs_log_ctx
*ctx
)
6317 * We are deleting dir index items from the log tree or adding range
6320 lockdep_assert_held(&inode
->log_mutex
);
6322 if (list_empty(delayed_del_list
))
6325 if (ctx
->logged_before
)
6326 return log_delayed_deletions_incremental(trans
, inode
, path
,
6327 delayed_del_list
, ctx
);
6329 return log_delayed_deletions_full(trans
, inode
, path
, delayed_del_list
,
6334 * Similar logic as for log_new_dir_dentries(), but it iterates over the delayed
6335 * items instead of the subvolume tree.
6337 static int log_new_delayed_dentries(struct btrfs_trans_handle
*trans
,
6338 struct btrfs_inode
*inode
,
6339 const struct list_head
*delayed_ins_list
,
6340 struct btrfs_log_ctx
*ctx
)
6342 const bool orig_log_new_dentries
= ctx
->log_new_dentries
;
6343 struct btrfs_delayed_item
*item
;
6347 * No need for the log mutex, plus to avoid potential deadlocks or
6348 * lockdep annotations due to nesting of delayed inode mutexes and log
6351 lockdep_assert_not_held(&inode
->log_mutex
);
6353 ASSERT(!ctx
->logging_new_delayed_dentries
);
6354 ctx
->logging_new_delayed_dentries
= true;
6356 list_for_each_entry(item
, delayed_ins_list
, log_list
) {
6357 struct btrfs_dir_item
*dir_item
;
6358 struct inode
*di_inode
;
6359 struct btrfs_key key
;
6360 int log_mode
= LOG_INODE_EXISTS
;
6362 dir_item
= (struct btrfs_dir_item
*)item
->data
;
6363 btrfs_disk_key_to_cpu(&key
, &dir_item
->location
);
6365 if (key
.type
== BTRFS_ROOT_ITEM_KEY
)
6368 di_inode
= btrfs_iget_logging(key
.objectid
, inode
->root
);
6369 if (IS_ERR(di_inode
)) {
6370 ret
= PTR_ERR(di_inode
);
6374 if (!need_log_inode(trans
, BTRFS_I(di_inode
))) {
6375 btrfs_add_delayed_iput(BTRFS_I(di_inode
));
6379 if (btrfs_stack_dir_ftype(dir_item
) == BTRFS_FT_DIR
)
6380 log_mode
= LOG_INODE_ALL
;
6382 ctx
->log_new_dentries
= false;
6383 ret
= btrfs_log_inode(trans
, BTRFS_I(di_inode
), log_mode
, ctx
);
6385 if (!ret
&& ctx
->log_new_dentries
)
6386 ret
= log_new_dir_dentries(trans
, BTRFS_I(di_inode
), ctx
);
6388 btrfs_add_delayed_iput(BTRFS_I(di_inode
));
6394 ctx
->log_new_dentries
= orig_log_new_dentries
;
6395 ctx
->logging_new_delayed_dentries
= false;
6400 /* log a single inode in the tree log.
6401 * At least one parent directory for this inode must exist in the tree
6402 * or be logged already.
6404 * Any items from this inode changed by the current transaction are copied
6405 * to the log tree. An extra reference is taken on any extents in this
6406 * file, allowing us to avoid a whole pile of corner cases around logging
6407 * blocks that have been removed from the tree.
6409 * See LOG_INODE_ALL and related defines for a description of what inode_only
6412 * This handles both files and directories.
6414 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
6415 struct btrfs_inode
*inode
,
6417 struct btrfs_log_ctx
*ctx
)
6419 struct btrfs_path
*path
;
6420 struct btrfs_path
*dst_path
;
6421 struct btrfs_key min_key
;
6422 struct btrfs_key max_key
;
6423 struct btrfs_root
*log
= inode
->root
->log_root
;
6425 bool fast_search
= false;
6426 u64 ino
= btrfs_ino(inode
);
6427 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6428 u64 logged_isize
= 0;
6429 bool need_log_inode_item
= true;
6430 bool xattrs_logged
= false;
6431 bool inode_item_dropped
= true;
6432 bool full_dir_logging
= false;
6433 LIST_HEAD(delayed_ins_list
);
6434 LIST_HEAD(delayed_del_list
);
6436 path
= btrfs_alloc_path();
6439 dst_path
= btrfs_alloc_path();
6441 btrfs_free_path(path
);
6445 min_key
.objectid
= ino
;
6446 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
6449 max_key
.objectid
= ino
;
6452 /* today the code can only do partial logging of directories */
6453 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
6454 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
6455 &inode
->runtime_flags
) &&
6456 inode_only
>= LOG_INODE_EXISTS
))
6457 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
6459 max_key
.type
= (u8
)-1;
6460 max_key
.offset
= (u64
)-1;
6462 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && inode_only
== LOG_INODE_ALL
)
6463 full_dir_logging
= true;
6466 * If we are logging a directory while we are logging dentries of the
6467 * delayed items of some other inode, then we need to flush the delayed
6468 * items of this directory and not log the delayed items directly. This
6469 * is to prevent more than one level of recursion into btrfs_log_inode()
6470 * by having something like this:
6472 * $ mkdir -p a/b/c/d/e/f/g/h/...
6473 * $ xfs_io -c "fsync" a
6475 * Where all directories in the path did not exist before and are
6476 * created in the current transaction.
6477 * So in such a case we directly log the delayed items of the main
6478 * directory ("a") without flushing them first, while for each of its
6479 * subdirectories we flush their delayed items before logging them.
6480 * This prevents a potential unbounded recursion like this:
6483 * log_new_delayed_dentries()
6485 * log_new_delayed_dentries()
6487 * log_new_delayed_dentries()
6490 * We have thresholds for the maximum number of delayed items to have in
6491 * memory, and once they are hit, the items are flushed asynchronously.
6492 * However the limit is quite high, so lets prevent deep levels of
6493 * recursion to happen by limiting the maximum depth to be 1.
6495 if (full_dir_logging
&& ctx
->logging_new_delayed_dentries
) {
6496 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
6501 mutex_lock(&inode
->log_mutex
);
6504 * For symlinks, we must always log their content, which is stored in an
6505 * inline extent, otherwise we could end up with an empty symlink after
6506 * log replay, which is invalid on linux (symlink(2) returns -ENOENT if
6507 * one attempts to create an empty symlink).
6508 * We don't need to worry about flushing delalloc, because when we create
6509 * the inline extent when the symlink is created (we never have delalloc
6512 if (S_ISLNK(inode
->vfs_inode
.i_mode
))
6513 inode_only
= LOG_INODE_ALL
;
6516 * Before logging the inode item, cache the value returned by
6517 * inode_logged(), because after that we have the need to figure out if
6518 * the inode was previously logged in this transaction.
6520 ret
= inode_logged(trans
, inode
, path
);
6523 ctx
->logged_before
= (ret
== 1);
6527 * This is for cases where logging a directory could result in losing a
6528 * a file after replaying the log. For example, if we move a file from a
6529 * directory A to a directory B, then fsync directory A, we have no way
6530 * to known the file was moved from A to B, so logging just A would
6531 * result in losing the file after a log replay.
6533 if (full_dir_logging
&& inode
->last_unlink_trans
>= trans
->transid
) {
6534 ret
= BTRFS_LOG_FORCE_COMMIT
;
6539 * a brute force approach to making sure we get the most uptodate
6540 * copies of everything.
6542 if (S_ISDIR(inode
->vfs_inode
.i_mode
)) {
6543 clear_bit(BTRFS_INODE_COPY_EVERYTHING
, &inode
->runtime_flags
);
6544 if (ctx
->logged_before
)
6545 ret
= drop_inode_items(trans
, log
, path
, inode
,
6546 BTRFS_XATTR_ITEM_KEY
);
6548 if (inode_only
== LOG_INODE_EXISTS
&& ctx
->logged_before
) {
6550 * Make sure the new inode item we write to the log has
6551 * the same isize as the current one (if it exists).
6552 * This is necessary to prevent data loss after log
6553 * replay, and also to prevent doing a wrong expanding
6554 * truncate - for e.g. create file, write 4K into offset
6555 * 0, fsync, write 4K into offset 4096, add hard link,
6556 * fsync some other file (to sync log), power fail - if
6557 * we use the inode's current i_size, after log replay
6558 * we get a 8Kb file, with the last 4Kb extent as a hole
6559 * (zeroes), as if an expanding truncate happened,
6560 * instead of getting a file of 4Kb only.
6562 ret
= logged_inode_size(log
, inode
, path
, &logged_isize
);
6566 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
6567 &inode
->runtime_flags
)) {
6568 if (inode_only
== LOG_INODE_EXISTS
) {
6569 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
6570 if (ctx
->logged_before
)
6571 ret
= drop_inode_items(trans
, log
, path
,
6572 inode
, max_key
.type
);
6574 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
6575 &inode
->runtime_flags
);
6576 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
6577 &inode
->runtime_flags
);
6578 if (ctx
->logged_before
)
6579 ret
= truncate_inode_items(trans
, log
,
6582 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
6583 &inode
->runtime_flags
) ||
6584 inode_only
== LOG_INODE_EXISTS
) {
6585 if (inode_only
== LOG_INODE_ALL
)
6587 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
6588 if (ctx
->logged_before
)
6589 ret
= drop_inode_items(trans
, log
, path
, inode
,
6592 if (inode_only
== LOG_INODE_ALL
)
6594 inode_item_dropped
= false;
6603 * If we are logging a directory in full mode, collect the delayed items
6604 * before iterating the subvolume tree, so that we don't miss any new
6605 * dir index items in case they get flushed while or right after we are
6606 * iterating the subvolume tree.
6608 if (full_dir_logging
&& !ctx
->logging_new_delayed_dentries
)
6609 btrfs_log_get_delayed_items(inode
, &delayed_ins_list
,
6612 ret
= copy_inode_items_to_log(trans
, inode
, &min_key
, &max_key
,
6613 path
, dst_path
, logged_isize
,
6615 &need_log_inode_item
);
6619 btrfs_release_path(path
);
6620 btrfs_release_path(dst_path
);
6621 ret
= btrfs_log_all_xattrs(trans
, inode
, path
, dst_path
, ctx
);
6624 xattrs_logged
= true;
6625 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
6626 btrfs_release_path(path
);
6627 btrfs_release_path(dst_path
);
6628 ret
= btrfs_log_holes(trans
, inode
, path
);
6633 btrfs_release_path(path
);
6634 btrfs_release_path(dst_path
);
6635 if (need_log_inode_item
) {
6636 ret
= log_inode_item(trans
, log
, dst_path
, inode
, inode_item_dropped
);
6640 * If we are doing a fast fsync and the inode was logged before
6641 * in this transaction, we don't need to log the xattrs because
6642 * they were logged before. If xattrs were added, changed or
6643 * deleted since the last time we logged the inode, then we have
6644 * already logged them because the inode had the runtime flag
6645 * BTRFS_INODE_COPY_EVERYTHING set.
6647 if (!xattrs_logged
&& inode
->logged_trans
< trans
->transid
) {
6648 ret
= btrfs_log_all_xattrs(trans
, inode
, path
, dst_path
, ctx
);
6651 btrfs_release_path(path
);
6655 ret
= btrfs_log_changed_extents(trans
, inode
, dst_path
, ctx
);
6658 } else if (inode_only
== LOG_INODE_ALL
) {
6659 struct extent_map
*em
, *n
;
6661 write_lock(&em_tree
->lock
);
6662 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
, list
)
6663 list_del_init(&em
->list
);
6664 write_unlock(&em_tree
->lock
);
6667 if (full_dir_logging
) {
6668 ret
= log_directory_changes(trans
, inode
, path
, dst_path
, ctx
);
6671 ret
= log_delayed_insertion_items(trans
, inode
, path
,
6672 &delayed_ins_list
, ctx
);
6675 ret
= log_delayed_deletion_items(trans
, inode
, path
,
6676 &delayed_del_list
, ctx
);
6681 spin_lock(&inode
->lock
);
6682 inode
->logged_trans
= trans
->transid
;
6684 * Don't update last_log_commit if we logged that an inode exists.
6685 * We do this for three reasons:
6687 * 1) We might have had buffered writes to this inode that were
6688 * flushed and had their ordered extents completed in this
6689 * transaction, but we did not previously log the inode with
6690 * LOG_INODE_ALL. Later the inode was evicted and after that
6691 * it was loaded again and this LOG_INODE_EXISTS log operation
6692 * happened. We must make sure that if an explicit fsync against
6693 * the inode is performed later, it logs the new extents, an
6694 * updated inode item, etc, and syncs the log. The same logic
6695 * applies to direct IO writes instead of buffered writes.
6697 * 2) When we log the inode with LOG_INODE_EXISTS, its inode item
6698 * is logged with an i_size of 0 or whatever value was logged
6699 * before. If later the i_size of the inode is increased by a
6700 * truncate operation, the log is synced through an fsync of
6701 * some other inode and then finally an explicit fsync against
6702 * this inode is made, we must make sure this fsync logs the
6703 * inode with the new i_size, the hole between old i_size and
6704 * the new i_size, and syncs the log.
6706 * 3) If we are logging that an ancestor inode exists as part of
6707 * logging a new name from a link or rename operation, don't update
6708 * its last_log_commit - otherwise if an explicit fsync is made
6709 * against an ancestor, the fsync considers the inode in the log
6710 * and doesn't sync the log, resulting in the ancestor missing after
6711 * a power failure unless the log was synced as part of an fsync
6712 * against any other unrelated inode.
6714 if (inode_only
!= LOG_INODE_EXISTS
)
6715 inode
->last_log_commit
= inode
->last_sub_trans
;
6716 spin_unlock(&inode
->lock
);
6719 * Reset the last_reflink_trans so that the next fsync does not need to
6720 * go through the slower path when logging extents and their checksums.
6722 if (inode_only
== LOG_INODE_ALL
)
6723 inode
->last_reflink_trans
= 0;
6726 mutex_unlock(&inode
->log_mutex
);
6728 btrfs_free_path(path
);
6729 btrfs_free_path(dst_path
);
6732 free_conflicting_inodes(ctx
);
6734 ret
= log_conflicting_inodes(trans
, inode
->root
, ctx
);
6736 if (full_dir_logging
&& !ctx
->logging_new_delayed_dentries
) {
6738 ret
= log_new_delayed_dentries(trans
, inode
,
6739 &delayed_ins_list
, ctx
);
6741 btrfs_log_put_delayed_items(inode
, &delayed_ins_list
,
6748 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
6749 struct btrfs_inode
*inode
,
6750 struct btrfs_log_ctx
*ctx
)
6753 struct btrfs_path
*path
;
6754 struct btrfs_key key
;
6755 struct btrfs_root
*root
= inode
->root
;
6756 const u64 ino
= btrfs_ino(inode
);
6758 path
= btrfs_alloc_path();
6761 path
->skip_locking
= 1;
6762 path
->search_commit_root
= 1;
6765 key
.type
= BTRFS_INODE_REF_KEY
;
6767 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6772 struct extent_buffer
*leaf
= path
->nodes
[0];
6773 int slot
= path
->slots
[0];
6778 if (slot
>= btrfs_header_nritems(leaf
)) {
6779 ret
= btrfs_next_leaf(root
, path
);
6787 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
6788 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
6789 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
6792 item_size
= btrfs_item_size(leaf
, slot
);
6793 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
6794 while (cur_offset
< item_size
) {
6795 struct btrfs_key inode_key
;
6796 struct inode
*dir_inode
;
6798 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
6799 inode_key
.offset
= 0;
6801 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
6802 struct btrfs_inode_extref
*extref
;
6804 extref
= (struct btrfs_inode_extref
*)
6806 inode_key
.objectid
= btrfs_inode_extref_parent(
6808 cur_offset
+= sizeof(*extref
);
6809 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
6812 inode_key
.objectid
= key
.offset
;
6813 cur_offset
= item_size
;
6816 dir_inode
= btrfs_iget_logging(inode_key
.objectid
, root
);
6818 * If the parent inode was deleted, return an error to
6819 * fallback to a transaction commit. This is to prevent
6820 * getting an inode that was moved from one parent A to
6821 * a parent B, got its former parent A deleted and then
6822 * it got fsync'ed, from existing at both parents after
6823 * a log replay (and the old parent still existing).
6830 * mv /mnt/B/bar /mnt/A/bar
6831 * mv -T /mnt/A /mnt/B
6835 * If we ignore the old parent B which got deleted,
6836 * after a log replay we would have file bar linked
6837 * at both parents and the old parent B would still
6840 if (IS_ERR(dir_inode
)) {
6841 ret
= PTR_ERR(dir_inode
);
6845 if (!need_log_inode(trans
, BTRFS_I(dir_inode
))) {
6846 btrfs_add_delayed_iput(BTRFS_I(dir_inode
));
6850 ctx
->log_new_dentries
= false;
6851 ret
= btrfs_log_inode(trans
, BTRFS_I(dir_inode
),
6852 LOG_INODE_ALL
, ctx
);
6853 if (!ret
&& ctx
->log_new_dentries
)
6854 ret
= log_new_dir_dentries(trans
,
6855 BTRFS_I(dir_inode
), ctx
);
6856 btrfs_add_delayed_iput(BTRFS_I(dir_inode
));
6864 btrfs_free_path(path
);
6868 static int log_new_ancestors(struct btrfs_trans_handle
*trans
,
6869 struct btrfs_root
*root
,
6870 struct btrfs_path
*path
,
6871 struct btrfs_log_ctx
*ctx
)
6873 struct btrfs_key found_key
;
6875 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
6878 struct extent_buffer
*leaf
;
6880 struct btrfs_key search_key
;
6881 struct inode
*inode
;
6885 btrfs_release_path(path
);
6887 ino
= found_key
.offset
;
6889 search_key
.objectid
= found_key
.offset
;
6890 search_key
.type
= BTRFS_INODE_ITEM_KEY
;
6891 search_key
.offset
= 0;
6892 inode
= btrfs_iget_logging(ino
, root
);
6894 return PTR_ERR(inode
);
6896 if (BTRFS_I(inode
)->generation
>= trans
->transid
&&
6897 need_log_inode(trans
, BTRFS_I(inode
)))
6898 ret
= btrfs_log_inode(trans
, BTRFS_I(inode
),
6899 LOG_INODE_EXISTS
, ctx
);
6900 btrfs_add_delayed_iput(BTRFS_I(inode
));
6904 if (search_key
.objectid
== BTRFS_FIRST_FREE_OBJECTID
)
6907 search_key
.type
= BTRFS_INODE_REF_KEY
;
6908 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
6912 leaf
= path
->nodes
[0];
6913 slot
= path
->slots
[0];
6914 if (slot
>= btrfs_header_nritems(leaf
)) {
6915 ret
= btrfs_next_leaf(root
, path
);
6920 leaf
= path
->nodes
[0];
6921 slot
= path
->slots
[0];
6924 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
6925 if (found_key
.objectid
!= search_key
.objectid
||
6926 found_key
.type
!= BTRFS_INODE_REF_KEY
)
6932 static int log_new_ancestors_fast(struct btrfs_trans_handle
*trans
,
6933 struct btrfs_inode
*inode
,
6934 struct dentry
*parent
,
6935 struct btrfs_log_ctx
*ctx
)
6937 struct btrfs_root
*root
= inode
->root
;
6938 struct dentry
*old_parent
= NULL
;
6939 struct super_block
*sb
= inode
->vfs_inode
.i_sb
;
6943 if (!parent
|| d_really_is_negative(parent
) ||
6947 inode
= BTRFS_I(d_inode(parent
));
6948 if (root
!= inode
->root
)
6951 if (inode
->generation
>= trans
->transid
&&
6952 need_log_inode(trans
, inode
)) {
6953 ret
= btrfs_log_inode(trans
, inode
,
6954 LOG_INODE_EXISTS
, ctx
);
6958 if (IS_ROOT(parent
))
6961 parent
= dget_parent(parent
);
6963 old_parent
= parent
;
6970 static int log_all_new_ancestors(struct btrfs_trans_handle
*trans
,
6971 struct btrfs_inode
*inode
,
6972 struct dentry
*parent
,
6973 struct btrfs_log_ctx
*ctx
)
6975 struct btrfs_root
*root
= inode
->root
;
6976 const u64 ino
= btrfs_ino(inode
);
6977 struct btrfs_path
*path
;
6978 struct btrfs_key search_key
;
6982 * For a single hard link case, go through a fast path that does not
6983 * need to iterate the fs/subvolume tree.
6985 if (inode
->vfs_inode
.i_nlink
< 2)
6986 return log_new_ancestors_fast(trans
, inode
, parent
, ctx
);
6988 path
= btrfs_alloc_path();
6992 search_key
.objectid
= ino
;
6993 search_key
.type
= BTRFS_INODE_REF_KEY
;
6994 search_key
.offset
= 0;
6996 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
7003 struct extent_buffer
*leaf
= path
->nodes
[0];
7004 int slot
= path
->slots
[0];
7005 struct btrfs_key found_key
;
7007 if (slot
>= btrfs_header_nritems(leaf
)) {
7008 ret
= btrfs_next_leaf(root
, path
);
7016 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7017 if (found_key
.objectid
!= ino
||
7018 found_key
.type
> BTRFS_INODE_EXTREF_KEY
)
7022 * Don't deal with extended references because they are rare
7023 * cases and too complex to deal with (we would need to keep
7024 * track of which subitem we are processing for each item in
7025 * this loop, etc). So just return some error to fallback to
7026 * a transaction commit.
7028 if (found_key
.type
== BTRFS_INODE_EXTREF_KEY
) {
7034 * Logging ancestors needs to do more searches on the fs/subvol
7035 * tree, so it releases the path as needed to avoid deadlocks.
7036 * Keep track of the last inode ref key and resume from that key
7037 * after logging all new ancestors for the current hard link.
7039 memcpy(&search_key
, &found_key
, sizeof(search_key
));
7041 ret
= log_new_ancestors(trans
, root
, path
, ctx
);
7044 btrfs_release_path(path
);
7049 btrfs_free_path(path
);
7054 * helper function around btrfs_log_inode to make sure newly created
7055 * parent directories also end up in the log. A minimal inode and backref
7056 * only logging is done of any parent directories that are older than
7057 * the last committed transaction
7059 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
7060 struct btrfs_inode
*inode
,
7061 struct dentry
*parent
,
7063 struct btrfs_log_ctx
*ctx
)
7065 struct btrfs_root
*root
= inode
->root
;
7066 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
7068 bool log_dentries
= false;
7070 if (btrfs_test_opt(fs_info
, NOTREELOG
)) {
7071 ret
= BTRFS_LOG_FORCE_COMMIT
;
7075 if (btrfs_root_refs(&root
->root_item
) == 0) {
7076 ret
= BTRFS_LOG_FORCE_COMMIT
;
7081 * If we're logging an inode from a subvolume created in the current
7082 * transaction we must force a commit since the root is not persisted.
7084 if (btrfs_root_generation(&root
->root_item
) == trans
->transid
) {
7085 ret
= BTRFS_LOG_FORCE_COMMIT
;
7090 * Skip already logged inodes or inodes corresponding to tmpfiles
7091 * (since logging them is pointless, a link count of 0 means they
7092 * will never be accessible).
7094 if ((btrfs_inode_in_log(inode
, trans
->transid
) &&
7095 list_empty(&ctx
->ordered_extents
)) ||
7096 inode
->vfs_inode
.i_nlink
== 0) {
7097 ret
= BTRFS_NO_LOG_SYNC
;
7101 ret
= start_log_trans(trans
, root
, ctx
);
7105 ret
= btrfs_log_inode(trans
, inode
, inode_only
, ctx
);
7110 * for regular files, if its inode is already on disk, we don't
7111 * have to worry about the parents at all. This is because
7112 * we can use the last_unlink_trans field to record renames
7113 * and other fun in this file.
7115 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
7116 inode
->generation
< trans
->transid
&&
7117 inode
->last_unlink_trans
< trans
->transid
) {
7122 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && ctx
->log_new_dentries
)
7123 log_dentries
= true;
7126 * On unlink we must make sure all our current and old parent directory
7127 * inodes are fully logged. This is to prevent leaving dangling
7128 * directory index entries in directories that were our parents but are
7129 * not anymore. Not doing this results in old parent directory being
7130 * impossible to delete after log replay (rmdir will always fail with
7131 * error -ENOTEMPTY).
7137 * ln testdir/foo testdir/bar
7139 * unlink testdir/bar
7140 * xfs_io -c fsync testdir/foo
7142 * mount fs, triggers log replay
7144 * If we don't log the parent directory (testdir), after log replay the
7145 * directory still has an entry pointing to the file inode using the bar
7146 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
7147 * the file inode has a link count of 1.
7153 * ln foo testdir/foo2
7154 * ln foo testdir/foo3
7156 * unlink testdir/foo3
7157 * xfs_io -c fsync foo
7159 * mount fs, triggers log replay
7161 * Similar as the first example, after log replay the parent directory
7162 * testdir still has an entry pointing to the inode file with name foo3
7163 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
7164 * and has a link count of 2.
7166 if (inode
->last_unlink_trans
>= trans
->transid
) {
7167 ret
= btrfs_log_all_parents(trans
, inode
, ctx
);
7172 ret
= log_all_new_ancestors(trans
, inode
, parent
, ctx
);
7177 ret
= log_new_dir_dentries(trans
, inode
, ctx
);
7182 btrfs_set_log_full_commit(trans
);
7183 ret
= BTRFS_LOG_FORCE_COMMIT
;
7187 btrfs_remove_log_ctx(root
, ctx
);
7188 btrfs_end_log_trans(root
);
7194 * it is not safe to log dentry if the chunk root has added new
7195 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
7196 * If this returns 1, you must commit the transaction to safely get your
7199 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
7200 struct dentry
*dentry
,
7201 struct btrfs_log_ctx
*ctx
)
7203 struct dentry
*parent
= dget_parent(dentry
);
7206 ret
= btrfs_log_inode_parent(trans
, BTRFS_I(d_inode(dentry
)), parent
,
7207 LOG_INODE_ALL
, ctx
);
7214 * should be called during mount to recover any replay any log trees
7217 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
7220 struct btrfs_path
*path
;
7221 struct btrfs_trans_handle
*trans
;
7222 struct btrfs_key key
;
7223 struct btrfs_key found_key
;
7224 struct btrfs_root
*log
;
7225 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
7226 struct walk_control wc
= {
7227 .process_func
= process_one_buffer
,
7228 .stage
= LOG_WALK_PIN_ONLY
,
7231 path
= btrfs_alloc_path();
7235 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
7237 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
7238 if (IS_ERR(trans
)) {
7239 ret
= PTR_ERR(trans
);
7246 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
7248 btrfs_abort_transaction(trans
, ret
);
7253 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
7254 key
.offset
= (u64
)-1;
7255 key
.type
= BTRFS_ROOT_ITEM_KEY
;
7258 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
7261 btrfs_abort_transaction(trans
, ret
);
7265 if (path
->slots
[0] == 0)
7269 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
7271 btrfs_release_path(path
);
7272 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
7275 log
= btrfs_read_tree_root(log_root_tree
, &found_key
);
7278 btrfs_abort_transaction(trans
, ret
);
7282 wc
.replay_dest
= btrfs_get_fs_root(fs_info
, found_key
.offset
,
7284 if (IS_ERR(wc
.replay_dest
)) {
7285 ret
= PTR_ERR(wc
.replay_dest
);
7288 * We didn't find the subvol, likely because it was
7289 * deleted. This is ok, simply skip this log and go to
7292 * We need to exclude the root because we can't have
7293 * other log replays overwriting this log as we'll read
7294 * it back in a few more times. This will keep our
7295 * block from being modified, and we'll just bail for
7296 * each subsequent pass.
7299 ret
= btrfs_pin_extent_for_log_replay(trans
, log
->node
);
7300 btrfs_put_root(log
);
7304 btrfs_abort_transaction(trans
, ret
);
7308 wc
.replay_dest
->log_root
= log
;
7309 ret
= btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
7311 /* The loop needs to continue due to the root refs */
7312 btrfs_abort_transaction(trans
, ret
);
7314 ret
= walk_log_tree(trans
, log
, &wc
);
7316 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
7317 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
7320 btrfs_abort_transaction(trans
, ret
);
7323 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
7324 struct btrfs_root
*root
= wc
.replay_dest
;
7326 btrfs_release_path(path
);
7329 * We have just replayed everything, and the highest
7330 * objectid of fs roots probably has changed in case
7331 * some inode_item's got replayed.
7333 * root->objectid_mutex is not acquired as log replay
7334 * could only happen during mount.
7336 ret
= btrfs_init_root_free_objectid(root
);
7338 btrfs_abort_transaction(trans
, ret
);
7341 wc
.replay_dest
->log_root
= NULL
;
7342 btrfs_put_root(wc
.replay_dest
);
7343 btrfs_put_root(log
);
7348 if (found_key
.offset
== 0)
7350 key
.offset
= found_key
.offset
- 1;
7352 btrfs_release_path(path
);
7354 /* step one is to pin it all, step two is to replay just inodes */
7357 wc
.process_func
= replay_one_buffer
;
7358 wc
.stage
= LOG_WALK_REPLAY_INODES
;
7361 /* step three is to replay everything */
7362 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
7367 btrfs_free_path(path
);
7369 /* step 4: commit the transaction, which also unpins the blocks */
7370 ret
= btrfs_commit_transaction(trans
);
7374 log_root_tree
->log_root
= NULL
;
7375 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
7376 btrfs_put_root(log_root_tree
);
7381 btrfs_end_transaction(wc
.trans
);
7382 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
7383 btrfs_free_path(path
);
7388 * there are some corner cases where we want to force a full
7389 * commit instead of allowing a directory to be logged.
7391 * They revolve around files there were unlinked from the directory, and
7392 * this function updates the parent directory so that a full commit is
7393 * properly done if it is fsync'd later after the unlinks are done.
7395 * Must be called before the unlink operations (updates to the subvolume tree,
7396 * inodes, etc) are done.
7398 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
7399 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
7403 * when we're logging a file, if it hasn't been renamed
7404 * or unlinked, and its inode is fully committed on disk,
7405 * we don't have to worry about walking up the directory chain
7406 * to log its parents.
7408 * So, we use the last_unlink_trans field to put this transid
7409 * into the file. When the file is logged we check it and
7410 * don't log the parents if the file is fully on disk.
7412 mutex_lock(&inode
->log_mutex
);
7413 inode
->last_unlink_trans
= trans
->transid
;
7414 mutex_unlock(&inode
->log_mutex
);
7420 * If this directory was already logged, any new names will be logged
7421 * with btrfs_log_new_name() and old names will be deleted from the log
7422 * tree with btrfs_del_dir_entries_in_log() or with
7423 * btrfs_del_inode_ref_in_log().
7425 if (inode_logged(trans
, dir
, NULL
) == 1)
7429 * If the inode we're about to unlink was logged before, the log will be
7430 * properly updated with the new name with btrfs_log_new_name() and the
7431 * old name removed with btrfs_del_dir_entries_in_log() or with
7432 * btrfs_del_inode_ref_in_log().
7434 if (inode_logged(trans
, inode
, NULL
) == 1)
7438 * when renaming files across directories, if the directory
7439 * there we're unlinking from gets fsync'd later on, there's
7440 * no way to find the destination directory later and fsync it
7441 * properly. So, we have to be conservative and force commits
7442 * so the new name gets discovered.
7444 mutex_lock(&dir
->log_mutex
);
7445 dir
->last_unlink_trans
= trans
->transid
;
7446 mutex_unlock(&dir
->log_mutex
);
7450 * Make sure that if someone attempts to fsync the parent directory of a deleted
7451 * snapshot, it ends up triggering a transaction commit. This is to guarantee
7452 * that after replaying the log tree of the parent directory's root we will not
7453 * see the snapshot anymore and at log replay time we will not see any log tree
7454 * corresponding to the deleted snapshot's root, which could lead to replaying
7455 * it after replaying the log tree of the parent directory (which would replay
7456 * the snapshot delete operation).
7458 * Must be called before the actual snapshot destroy operation (updates to the
7459 * parent root and tree of tree roots trees, etc) are done.
7461 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
7462 struct btrfs_inode
*dir
)
7464 mutex_lock(&dir
->log_mutex
);
7465 dir
->last_unlink_trans
= trans
->transid
;
7466 mutex_unlock(&dir
->log_mutex
);
7470 * Call this when creating a subvolume in a directory.
7471 * Because we don't commit a transaction when creating a subvolume, we can't
7472 * allow the directory pointing to the subvolume to be logged with an entry that
7473 * points to an unpersisted root if we are still in the transaction used to
7474 * create the subvolume, so make any attempt to log the directory to result in a
7476 * Also we don't need to worry with renames, since btrfs_rename() marks the log
7477 * for full commit when renaming a subvolume.
7479 void btrfs_record_new_subvolume(const struct btrfs_trans_handle
*trans
,
7480 struct btrfs_inode
*dir
)
7482 mutex_lock(&dir
->log_mutex
);
7483 dir
->last_unlink_trans
= trans
->transid
;
7484 mutex_unlock(&dir
->log_mutex
);
7488 * Update the log after adding a new name for an inode.
7490 * @trans: Transaction handle.
7491 * @old_dentry: The dentry associated with the old name and the old
7493 * @old_dir: The inode of the previous parent directory for the case
7494 * of a rename. For a link operation, it must be NULL.
7495 * @old_dir_index: The index number associated with the old name, meaningful
7496 * only for rename operations (when @old_dir is not NULL).
7497 * Ignored for link operations.
7498 * @parent: The dentry associated with the directory under which the
7499 * new name is located.
7501 * Call this after adding a new name for an inode, as a result of a link or
7502 * rename operation, and it will properly update the log to reflect the new name.
7504 void btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
7505 struct dentry
*old_dentry
, struct btrfs_inode
*old_dir
,
7506 u64 old_dir_index
, struct dentry
*parent
)
7508 struct btrfs_inode
*inode
= BTRFS_I(d_inode(old_dentry
));
7509 struct btrfs_root
*root
= inode
->root
;
7510 struct btrfs_log_ctx ctx
;
7511 bool log_pinned
= false;
7515 * this will force the logging code to walk the dentry chain
7518 if (!S_ISDIR(inode
->vfs_inode
.i_mode
))
7519 inode
->last_unlink_trans
= trans
->transid
;
7522 * if this inode hasn't been logged and directory we're renaming it
7523 * from hasn't been logged, we don't need to log it
7525 ret
= inode_logged(trans
, inode
, NULL
);
7528 } else if (ret
== 0) {
7532 * If the inode was not logged and we are doing a rename (old_dir is not
7533 * NULL), check if old_dir was logged - if it was not we can return and
7536 ret
= inode_logged(trans
, old_dir
, NULL
);
7545 * If we are doing a rename (old_dir is not NULL) from a directory that
7546 * was previously logged, make sure that on log replay we get the old
7547 * dir entry deleted. This is needed because we will also log the new
7548 * name of the renamed inode, so we need to make sure that after log
7549 * replay we don't end up with both the new and old dir entries existing.
7551 if (old_dir
&& old_dir
->logged_trans
== trans
->transid
) {
7552 struct btrfs_root
*log
= old_dir
->root
->log_root
;
7553 struct btrfs_path
*path
;
7554 struct fscrypt_name fname
;
7556 ASSERT(old_dir_index
>= BTRFS_DIR_START_INDEX
);
7558 ret
= fscrypt_setup_filename(&old_dir
->vfs_inode
,
7559 &old_dentry
->d_name
, 0, &fname
);
7563 * We have two inodes to update in the log, the old directory and
7564 * the inode that got renamed, so we must pin the log to prevent
7565 * anyone from syncing the log until we have updated both inodes
7568 ret
= join_running_log_trans(root
);
7570 * At least one of the inodes was logged before, so this should
7571 * not fail, but if it does, it's not serious, just bail out and
7572 * mark the log for a full commit.
7574 if (WARN_ON_ONCE(ret
< 0)) {
7575 fscrypt_free_filename(&fname
);
7581 path
= btrfs_alloc_path();
7584 fscrypt_free_filename(&fname
);
7589 * Other concurrent task might be logging the old directory,
7590 * as it can be triggered when logging other inode that had or
7591 * still has a dentry in the old directory. We lock the old
7592 * directory's log_mutex to ensure the deletion of the old
7593 * name is persisted, because during directory logging we
7594 * delete all BTRFS_DIR_LOG_INDEX_KEY keys and the deletion of
7595 * the old name's dir index item is in the delayed items, so
7596 * it could be missed by an in progress directory logging.
7598 mutex_lock(&old_dir
->log_mutex
);
7599 ret
= del_logged_dentry(trans
, log
, path
, btrfs_ino(old_dir
),
7600 &fname
.disk_name
, old_dir_index
);
7603 * The dentry does not exist in the log, so record its
7606 btrfs_release_path(path
);
7607 ret
= insert_dir_log_key(trans
, log
, path
,
7609 old_dir_index
, old_dir_index
);
7611 mutex_unlock(&old_dir
->log_mutex
);
7613 btrfs_free_path(path
);
7614 fscrypt_free_filename(&fname
);
7619 btrfs_init_log_ctx(&ctx
, inode
);
7620 ctx
.logging_new_name
= true;
7621 btrfs_init_log_ctx_scratch_eb(&ctx
);
7623 * We don't care about the return value. If we fail to log the new name
7624 * then we know the next attempt to sync the log will fallback to a full
7625 * transaction commit (due to a call to btrfs_set_log_full_commit()), so
7626 * we don't need to worry about getting a log committed that has an
7627 * inconsistent state after a rename operation.
7629 btrfs_log_inode_parent(trans
, inode
, parent
, LOG_INODE_EXISTS
, &ctx
);
7630 free_extent_buffer(ctx
.scratch_eb
);
7631 ASSERT(list_empty(&ctx
.conflict_inodes
));
7634 * If an error happened mark the log for a full commit because it's not
7635 * consistent and up to date or we couldn't find out if one of the
7636 * inodes was logged before in this transaction. Do it before unpinning
7637 * the log, to avoid any races with someone else trying to commit it.
7640 btrfs_set_log_full_commit(trans
);
7642 btrfs_end_log_trans(root
);