Merge tag 'x86-urgent-2025-01-28' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / fs / dlm / lowcomms.c
blobd28141829c051b5fb7cedf73a27b15c49b3f7307
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *******************************************************************************
4 **
5 ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
6 ** Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
7 **
8 **
9 *******************************************************************************
10 ******************************************************************************/
13 * lowcomms.c
15 * This is the "low-level" comms layer.
17 * It is responsible for sending/receiving messages
18 * from other nodes in the cluster.
20 * Cluster nodes are referred to by their nodeids. nodeids are
21 * simply 32 bit numbers to the locking module - if they need to
22 * be expanded for the cluster infrastructure then that is its
23 * responsibility. It is this layer's
24 * responsibility to resolve these into IP address or
25 * whatever it needs for inter-node communication.
27 * The comms level is two kernel threads that deal mainly with
28 * the receiving of messages from other nodes and passing them
29 * up to the mid-level comms layer (which understands the
30 * message format) for execution by the locking core, and
31 * a send thread which does all the setting up of connections
32 * to remote nodes and the sending of data. Threads are not allowed
33 * to send their own data because it may cause them to wait in times
34 * of high load. Also, this way, the sending thread can collect together
35 * messages bound for one node and send them in one block.
37 * lowcomms will choose to use either TCP or SCTP as its transport layer
38 * depending on the configuration variable 'protocol'. This should be set
39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
41 * for the DLM to function.
45 #include <asm/ioctls.h>
46 #include <net/sock.h>
47 #include <net/tcp.h>
48 #include <linux/pagemap.h>
49 #include <linux/file.h>
50 #include <linux/mutex.h>
51 #include <linux/sctp.h>
52 #include <linux/slab.h>
53 #include <net/sctp/sctp.h>
54 #include <net/ipv6.h>
56 #include <trace/events/dlm.h>
57 #include <trace/events/sock.h>
59 #include "dlm_internal.h"
60 #include "lowcomms.h"
61 #include "midcomms.h"
62 #include "memory.h"
63 #include "config.h"
65 #define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
66 #define DLM_MAX_PROCESS_BUFFERS 24
67 #define NEEDED_RMEM (4*1024*1024)
69 struct connection {
70 struct socket *sock; /* NULL if not connected */
71 uint32_t nodeid; /* So we know who we are in the list */
72 /* this semaphore is used to allow parallel recv/send in read
73 * lock mode. When we release a sock we need to held the write lock.
75 * However this is locking code and not nice. When we remove the
76 * othercon handling we can look into other mechanism to synchronize
77 * io handling to call sock_release() at the right time.
79 struct rw_semaphore sock_lock;
80 unsigned long flags;
81 #define CF_APP_LIMITED 0
82 #define CF_RECV_PENDING 1
83 #define CF_SEND_PENDING 2
84 #define CF_RECV_INTR 3
85 #define CF_IO_STOP 4
86 #define CF_IS_OTHERCON 5
87 struct list_head writequeue; /* List of outgoing writequeue_entries */
88 spinlock_t writequeue_lock;
89 int retries;
90 struct hlist_node list;
91 /* due some connect()/accept() races we currently have this cross over
92 * connection attempt second connection for one node.
94 * There is a solution to avoid the race by introducing a connect
95 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
96 * connect. Otherside can connect but will only be considered that
97 * the other side wants to have a reconnect.
99 * However changing to this behaviour will break backwards compatible.
100 * In a DLM protocol major version upgrade we should remove this!
102 struct connection *othercon;
103 struct work_struct rwork; /* receive worker */
104 struct work_struct swork; /* send worker */
105 wait_queue_head_t shutdown_wait;
106 unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
107 int rx_leftover;
108 int mark;
109 int addr_count;
110 int curr_addr_index;
111 struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
112 spinlock_t addrs_lock;
113 struct rcu_head rcu;
115 #define sock2con(x) ((struct connection *)(x)->sk_user_data)
117 struct listen_connection {
118 struct socket *sock;
119 struct work_struct rwork;
122 #define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
123 #define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
125 /* An entry waiting to be sent */
126 struct writequeue_entry {
127 struct list_head list;
128 struct page *page;
129 int offset;
130 int len;
131 int end;
132 int users;
133 bool dirty;
134 struct connection *con;
135 struct list_head msgs;
136 struct kref ref;
139 struct dlm_msg {
140 struct writequeue_entry *entry;
141 struct dlm_msg *orig_msg;
142 bool retransmit;
143 void *ppc;
144 int len;
145 int idx; /* new()/commit() idx exchange */
147 struct list_head list;
148 struct kref ref;
151 struct processqueue_entry {
152 unsigned char *buf;
153 int nodeid;
154 int buflen;
156 struct list_head list;
159 struct dlm_proto_ops {
160 bool try_new_addr;
161 const char *name;
162 int proto;
164 void (*sockopts)(struct socket *sock);
165 int (*bind)(struct socket *sock);
166 int (*listen_validate)(void);
167 void (*listen_sockopts)(struct socket *sock);
168 int (*listen_bind)(struct socket *sock);
171 static struct listen_sock_callbacks {
172 void (*sk_error_report)(struct sock *);
173 void (*sk_data_ready)(struct sock *);
174 void (*sk_state_change)(struct sock *);
175 void (*sk_write_space)(struct sock *);
176 } listen_sock;
178 static struct listen_connection listen_con;
179 static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
180 static int dlm_local_count;
182 /* Work queues */
183 static struct workqueue_struct *io_workqueue;
184 static struct workqueue_struct *process_workqueue;
186 static struct hlist_head connection_hash[CONN_HASH_SIZE];
187 static DEFINE_SPINLOCK(connections_lock);
188 DEFINE_STATIC_SRCU(connections_srcu);
190 static const struct dlm_proto_ops *dlm_proto_ops;
192 #define DLM_IO_SUCCESS 0
193 #define DLM_IO_END 1
194 #define DLM_IO_EOF 2
195 #define DLM_IO_RESCHED 3
196 #define DLM_IO_FLUSH 4
198 static void process_recv_sockets(struct work_struct *work);
199 static void process_send_sockets(struct work_struct *work);
200 static void process_dlm_messages(struct work_struct *work);
202 static DECLARE_WORK(process_work, process_dlm_messages);
203 static DEFINE_SPINLOCK(processqueue_lock);
204 static bool process_dlm_messages_pending;
205 static DECLARE_WAIT_QUEUE_HEAD(processqueue_wq);
206 static atomic_t processqueue_count;
207 static LIST_HEAD(processqueue);
209 bool dlm_lowcomms_is_running(void)
211 return !!listen_con.sock;
214 static void lowcomms_queue_swork(struct connection *con)
216 assert_spin_locked(&con->writequeue_lock);
218 if (!test_bit(CF_IO_STOP, &con->flags) &&
219 !test_bit(CF_APP_LIMITED, &con->flags) &&
220 !test_and_set_bit(CF_SEND_PENDING, &con->flags))
221 queue_work(io_workqueue, &con->swork);
224 static void lowcomms_queue_rwork(struct connection *con)
226 #ifdef CONFIG_LOCKDEP
227 WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
228 #endif
230 if (!test_bit(CF_IO_STOP, &con->flags) &&
231 !test_and_set_bit(CF_RECV_PENDING, &con->flags))
232 queue_work(io_workqueue, &con->rwork);
235 static void writequeue_entry_ctor(void *data)
237 struct writequeue_entry *entry = data;
239 INIT_LIST_HEAD(&entry->msgs);
242 struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
244 return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
245 0, 0, writequeue_entry_ctor);
248 struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
250 return KMEM_CACHE(dlm_msg, 0);
253 /* need to held writequeue_lock */
254 static struct writequeue_entry *con_next_wq(struct connection *con)
256 struct writequeue_entry *e;
258 e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
259 list);
260 /* if len is zero nothing is to send, if there are users filling
261 * buffers we wait until the users are done so we can send more.
263 if (!e || e->users || e->len == 0)
264 return NULL;
266 return e;
269 static struct connection *__find_con(int nodeid, int r)
271 struct connection *con;
273 hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
274 if (con->nodeid == nodeid)
275 return con;
278 return NULL;
281 static void dlm_con_init(struct connection *con, int nodeid)
283 con->nodeid = nodeid;
284 init_rwsem(&con->sock_lock);
285 INIT_LIST_HEAD(&con->writequeue);
286 spin_lock_init(&con->writequeue_lock);
287 INIT_WORK(&con->swork, process_send_sockets);
288 INIT_WORK(&con->rwork, process_recv_sockets);
289 spin_lock_init(&con->addrs_lock);
290 init_waitqueue_head(&con->shutdown_wait);
294 * If 'allocation' is zero then we don't attempt to create a new
295 * connection structure for this node.
297 static struct connection *nodeid2con(int nodeid, gfp_t alloc)
299 struct connection *con, *tmp;
300 int r;
302 r = nodeid_hash(nodeid);
303 con = __find_con(nodeid, r);
304 if (con || !alloc)
305 return con;
307 con = kzalloc(sizeof(*con), alloc);
308 if (!con)
309 return NULL;
311 dlm_con_init(con, nodeid);
313 spin_lock(&connections_lock);
314 /* Because multiple workqueues/threads calls this function it can
315 * race on multiple cpu's. Instead of locking hot path __find_con()
316 * we just check in rare cases of recently added nodes again
317 * under protection of connections_lock. If this is the case we
318 * abort our connection creation and return the existing connection.
320 tmp = __find_con(nodeid, r);
321 if (tmp) {
322 spin_unlock(&connections_lock);
323 kfree(con);
324 return tmp;
327 hlist_add_head_rcu(&con->list, &connection_hash[r]);
328 spin_unlock(&connections_lock);
330 return con;
333 static int addr_compare(const struct sockaddr_storage *x,
334 const struct sockaddr_storage *y)
336 switch (x->ss_family) {
337 case AF_INET: {
338 struct sockaddr_in *sinx = (struct sockaddr_in *)x;
339 struct sockaddr_in *siny = (struct sockaddr_in *)y;
340 if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
341 return 0;
342 if (sinx->sin_port != siny->sin_port)
343 return 0;
344 break;
346 case AF_INET6: {
347 struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
348 struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
349 if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
350 return 0;
351 if (sinx->sin6_port != siny->sin6_port)
352 return 0;
353 break;
355 default:
356 return 0;
358 return 1;
361 static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
362 struct sockaddr *sa_out, bool try_new_addr,
363 unsigned int *mark)
365 struct sockaddr_storage sas;
366 struct connection *con;
367 int idx;
369 if (!dlm_local_count)
370 return -1;
372 idx = srcu_read_lock(&connections_srcu);
373 con = nodeid2con(nodeid, 0);
374 if (!con) {
375 srcu_read_unlock(&connections_srcu, idx);
376 return -ENOENT;
379 spin_lock(&con->addrs_lock);
380 if (!con->addr_count) {
381 spin_unlock(&con->addrs_lock);
382 srcu_read_unlock(&connections_srcu, idx);
383 return -ENOENT;
386 memcpy(&sas, &con->addr[con->curr_addr_index],
387 sizeof(struct sockaddr_storage));
389 if (try_new_addr) {
390 con->curr_addr_index++;
391 if (con->curr_addr_index == con->addr_count)
392 con->curr_addr_index = 0;
395 *mark = con->mark;
396 spin_unlock(&con->addrs_lock);
398 if (sas_out)
399 memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
401 if (!sa_out) {
402 srcu_read_unlock(&connections_srcu, idx);
403 return 0;
406 if (dlm_local_addr[0].ss_family == AF_INET) {
407 struct sockaddr_in *in4 = (struct sockaddr_in *) &sas;
408 struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
409 ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
410 } else {
411 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &sas;
412 struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
413 ret6->sin6_addr = in6->sin6_addr;
416 srcu_read_unlock(&connections_srcu, idx);
417 return 0;
420 static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
421 unsigned int *mark)
423 struct connection *con;
424 int i, idx, addr_i;
426 idx = srcu_read_lock(&connections_srcu);
427 for (i = 0; i < CONN_HASH_SIZE; i++) {
428 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
429 WARN_ON_ONCE(!con->addr_count);
431 spin_lock(&con->addrs_lock);
432 for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
433 if (addr_compare(&con->addr[addr_i], addr)) {
434 *nodeid = con->nodeid;
435 *mark = con->mark;
436 spin_unlock(&con->addrs_lock);
437 srcu_read_unlock(&connections_srcu, idx);
438 return 0;
441 spin_unlock(&con->addrs_lock);
444 srcu_read_unlock(&connections_srcu, idx);
446 return -ENOENT;
449 static bool dlm_lowcomms_con_has_addr(const struct connection *con,
450 const struct sockaddr_storage *addr)
452 int i;
454 for (i = 0; i < con->addr_count; i++) {
455 if (addr_compare(&con->addr[i], addr))
456 return true;
459 return false;
462 int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr)
464 struct connection *con;
465 bool ret;
466 int idx;
468 idx = srcu_read_lock(&connections_srcu);
469 con = nodeid2con(nodeid, GFP_NOFS);
470 if (!con) {
471 srcu_read_unlock(&connections_srcu, idx);
472 return -ENOMEM;
475 spin_lock(&con->addrs_lock);
476 if (!con->addr_count) {
477 memcpy(&con->addr[0], addr, sizeof(*addr));
478 con->addr_count = 1;
479 con->mark = dlm_config.ci_mark;
480 spin_unlock(&con->addrs_lock);
481 srcu_read_unlock(&connections_srcu, idx);
482 return 0;
485 ret = dlm_lowcomms_con_has_addr(con, addr);
486 if (ret) {
487 spin_unlock(&con->addrs_lock);
488 srcu_read_unlock(&connections_srcu, idx);
489 return -EEXIST;
492 if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
493 spin_unlock(&con->addrs_lock);
494 srcu_read_unlock(&connections_srcu, idx);
495 return -ENOSPC;
498 memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
499 srcu_read_unlock(&connections_srcu, idx);
500 spin_unlock(&con->addrs_lock);
501 return 0;
504 /* Data available on socket or listen socket received a connect */
505 static void lowcomms_data_ready(struct sock *sk)
507 struct connection *con = sock2con(sk);
509 trace_sk_data_ready(sk);
511 set_bit(CF_RECV_INTR, &con->flags);
512 lowcomms_queue_rwork(con);
515 static void lowcomms_write_space(struct sock *sk)
517 struct connection *con = sock2con(sk);
519 clear_bit(SOCK_NOSPACE, &con->sock->flags);
521 spin_lock_bh(&con->writequeue_lock);
522 if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
523 con->sock->sk->sk_write_pending--;
524 clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
527 lowcomms_queue_swork(con);
528 spin_unlock_bh(&con->writequeue_lock);
531 static void lowcomms_state_change(struct sock *sk)
533 /* SCTP layer is not calling sk_data_ready when the connection
534 * is done, so we catch the signal through here.
536 if (sk->sk_shutdown == RCV_SHUTDOWN)
537 lowcomms_data_ready(sk);
540 static void lowcomms_listen_data_ready(struct sock *sk)
542 trace_sk_data_ready(sk);
544 queue_work(io_workqueue, &listen_con.rwork);
547 int dlm_lowcomms_connect_node(int nodeid)
549 struct connection *con;
550 int idx;
552 idx = srcu_read_lock(&connections_srcu);
553 con = nodeid2con(nodeid, 0);
554 if (WARN_ON_ONCE(!con)) {
555 srcu_read_unlock(&connections_srcu, idx);
556 return -ENOENT;
559 down_read(&con->sock_lock);
560 if (!con->sock) {
561 spin_lock_bh(&con->writequeue_lock);
562 lowcomms_queue_swork(con);
563 spin_unlock_bh(&con->writequeue_lock);
565 up_read(&con->sock_lock);
566 srcu_read_unlock(&connections_srcu, idx);
568 cond_resched();
569 return 0;
572 int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
574 struct connection *con;
575 int idx;
577 idx = srcu_read_lock(&connections_srcu);
578 con = nodeid2con(nodeid, 0);
579 if (!con) {
580 srcu_read_unlock(&connections_srcu, idx);
581 return -ENOENT;
584 spin_lock(&con->addrs_lock);
585 con->mark = mark;
586 spin_unlock(&con->addrs_lock);
587 srcu_read_unlock(&connections_srcu, idx);
588 return 0;
591 static void lowcomms_error_report(struct sock *sk)
593 struct connection *con = sock2con(sk);
594 struct inet_sock *inet;
596 inet = inet_sk(sk);
597 switch (sk->sk_family) {
598 case AF_INET:
599 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
600 "sending to node %d at %pI4, dport %d, "
601 "sk_err=%d/%d\n", dlm_our_nodeid(),
602 con->nodeid, &inet->inet_daddr,
603 ntohs(inet->inet_dport), sk->sk_err,
604 READ_ONCE(sk->sk_err_soft));
605 break;
606 #if IS_ENABLED(CONFIG_IPV6)
607 case AF_INET6:
608 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
609 "sending to node %d at %pI6c, "
610 "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
611 con->nodeid, &sk->sk_v6_daddr,
612 ntohs(inet->inet_dport), sk->sk_err,
613 READ_ONCE(sk->sk_err_soft));
614 break;
615 #endif
616 default:
617 printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
618 "invalid socket family %d set, "
619 "sk_err=%d/%d\n", dlm_our_nodeid(),
620 sk->sk_family, sk->sk_err,
621 READ_ONCE(sk->sk_err_soft));
622 break;
625 dlm_midcomms_unack_msg_resend(con->nodeid);
627 listen_sock.sk_error_report(sk);
630 static void restore_callbacks(struct sock *sk)
632 #ifdef CONFIG_LOCKDEP
633 WARN_ON_ONCE(!lockdep_sock_is_held(sk));
634 #endif
636 sk->sk_user_data = NULL;
637 sk->sk_data_ready = listen_sock.sk_data_ready;
638 sk->sk_state_change = listen_sock.sk_state_change;
639 sk->sk_write_space = listen_sock.sk_write_space;
640 sk->sk_error_report = listen_sock.sk_error_report;
643 /* Make a socket active */
644 static void add_sock(struct socket *sock, struct connection *con)
646 struct sock *sk = sock->sk;
648 lock_sock(sk);
649 con->sock = sock;
651 sk->sk_user_data = con;
652 sk->sk_data_ready = lowcomms_data_ready;
653 sk->sk_write_space = lowcomms_write_space;
654 if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
655 sk->sk_state_change = lowcomms_state_change;
656 sk->sk_allocation = GFP_NOFS;
657 sk->sk_use_task_frag = false;
658 sk->sk_error_report = lowcomms_error_report;
659 release_sock(sk);
662 /* Add the port number to an IPv6 or 4 sockaddr and return the address
663 length */
664 static void make_sockaddr(struct sockaddr_storage *saddr, __be16 port,
665 int *addr_len)
667 saddr->ss_family = dlm_local_addr[0].ss_family;
668 if (saddr->ss_family == AF_INET) {
669 struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
670 in4_addr->sin_port = port;
671 *addr_len = sizeof(struct sockaddr_in);
672 memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
673 } else {
674 struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
675 in6_addr->sin6_port = port;
676 *addr_len = sizeof(struct sockaddr_in6);
678 memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
681 static void dlm_page_release(struct kref *kref)
683 struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
684 ref);
686 __free_page(e->page);
687 dlm_free_writequeue(e);
690 static void dlm_msg_release(struct kref *kref)
692 struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
694 kref_put(&msg->entry->ref, dlm_page_release);
695 dlm_free_msg(msg);
698 static void free_entry(struct writequeue_entry *e)
700 struct dlm_msg *msg, *tmp;
702 list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
703 if (msg->orig_msg) {
704 msg->orig_msg->retransmit = false;
705 kref_put(&msg->orig_msg->ref, dlm_msg_release);
708 list_del(&msg->list);
709 kref_put(&msg->ref, dlm_msg_release);
712 list_del(&e->list);
713 kref_put(&e->ref, dlm_page_release);
716 static void dlm_close_sock(struct socket **sock)
718 lock_sock((*sock)->sk);
719 restore_callbacks((*sock)->sk);
720 release_sock((*sock)->sk);
722 sock_release(*sock);
723 *sock = NULL;
726 static void allow_connection_io(struct connection *con)
728 if (con->othercon)
729 clear_bit(CF_IO_STOP, &con->othercon->flags);
730 clear_bit(CF_IO_STOP, &con->flags);
733 static void stop_connection_io(struct connection *con)
735 if (con->othercon)
736 stop_connection_io(con->othercon);
738 spin_lock_bh(&con->writequeue_lock);
739 set_bit(CF_IO_STOP, &con->flags);
740 spin_unlock_bh(&con->writequeue_lock);
742 down_write(&con->sock_lock);
743 if (con->sock) {
744 lock_sock(con->sock->sk);
745 restore_callbacks(con->sock->sk);
746 release_sock(con->sock->sk);
748 up_write(&con->sock_lock);
750 cancel_work_sync(&con->swork);
751 cancel_work_sync(&con->rwork);
754 /* Close a remote connection and tidy up */
755 static void close_connection(struct connection *con, bool and_other)
757 struct writequeue_entry *e;
759 if (con->othercon && and_other)
760 close_connection(con->othercon, false);
762 down_write(&con->sock_lock);
763 if (!con->sock) {
764 up_write(&con->sock_lock);
765 return;
768 dlm_close_sock(&con->sock);
770 /* if we send a writequeue entry only a half way, we drop the
771 * whole entry because reconnection and that we not start of the
772 * middle of a msg which will confuse the other end.
774 * we can always drop messages because retransmits, but what we
775 * cannot allow is to transmit half messages which may be processed
776 * at the other side.
778 * our policy is to start on a clean state when disconnects, we don't
779 * know what's send/received on transport layer in this case.
781 spin_lock_bh(&con->writequeue_lock);
782 if (!list_empty(&con->writequeue)) {
783 e = list_first_entry(&con->writequeue, struct writequeue_entry,
784 list);
785 if (e->dirty)
786 free_entry(e);
788 spin_unlock_bh(&con->writequeue_lock);
790 con->rx_leftover = 0;
791 con->retries = 0;
792 clear_bit(CF_APP_LIMITED, &con->flags);
793 clear_bit(CF_RECV_PENDING, &con->flags);
794 clear_bit(CF_SEND_PENDING, &con->flags);
795 up_write(&con->sock_lock);
798 static void shutdown_connection(struct connection *con, bool and_other)
800 int ret;
802 if (con->othercon && and_other)
803 shutdown_connection(con->othercon, false);
805 flush_workqueue(io_workqueue);
806 down_read(&con->sock_lock);
807 /* nothing to shutdown */
808 if (!con->sock) {
809 up_read(&con->sock_lock);
810 return;
813 ret = kernel_sock_shutdown(con->sock, SHUT_WR);
814 up_read(&con->sock_lock);
815 if (ret) {
816 log_print("Connection %p failed to shutdown: %d will force close",
817 con, ret);
818 goto force_close;
819 } else {
820 ret = wait_event_timeout(con->shutdown_wait, !con->sock,
821 DLM_SHUTDOWN_WAIT_TIMEOUT);
822 if (ret == 0) {
823 log_print("Connection %p shutdown timed out, will force close",
824 con);
825 goto force_close;
829 return;
831 force_close:
832 close_connection(con, false);
835 static struct processqueue_entry *new_processqueue_entry(int nodeid,
836 int buflen)
838 struct processqueue_entry *pentry;
840 pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
841 if (!pentry)
842 return NULL;
844 pentry->buf = kmalloc(buflen, GFP_NOFS);
845 if (!pentry->buf) {
846 kfree(pentry);
847 return NULL;
850 pentry->nodeid = nodeid;
851 return pentry;
854 static void free_processqueue_entry(struct processqueue_entry *pentry)
856 kfree(pentry->buf);
857 kfree(pentry);
860 static void process_dlm_messages(struct work_struct *work)
862 struct processqueue_entry *pentry;
864 spin_lock_bh(&processqueue_lock);
865 pentry = list_first_entry_or_null(&processqueue,
866 struct processqueue_entry, list);
867 if (WARN_ON_ONCE(!pentry)) {
868 process_dlm_messages_pending = false;
869 spin_unlock_bh(&processqueue_lock);
870 return;
873 list_del(&pentry->list);
874 if (atomic_dec_and_test(&processqueue_count))
875 wake_up(&processqueue_wq);
876 spin_unlock_bh(&processqueue_lock);
878 for (;;) {
879 dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
880 pentry->buflen);
881 free_processqueue_entry(pentry);
883 spin_lock_bh(&processqueue_lock);
884 pentry = list_first_entry_or_null(&processqueue,
885 struct processqueue_entry, list);
886 if (!pentry) {
887 process_dlm_messages_pending = false;
888 spin_unlock_bh(&processqueue_lock);
889 break;
892 list_del(&pentry->list);
893 if (atomic_dec_and_test(&processqueue_count))
894 wake_up(&processqueue_wq);
895 spin_unlock_bh(&processqueue_lock);
899 /* Data received from remote end */
900 static int receive_from_sock(struct connection *con, int buflen)
902 struct processqueue_entry *pentry;
903 int ret, buflen_real;
904 struct msghdr msg;
905 struct kvec iov;
907 pentry = new_processqueue_entry(con->nodeid, buflen);
908 if (!pentry)
909 return DLM_IO_RESCHED;
911 memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
913 /* calculate new buffer parameter regarding last receive and
914 * possible leftover bytes
916 iov.iov_base = pentry->buf + con->rx_leftover;
917 iov.iov_len = buflen - con->rx_leftover;
919 memset(&msg, 0, sizeof(msg));
920 msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
921 clear_bit(CF_RECV_INTR, &con->flags);
922 again:
923 ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
924 msg.msg_flags);
925 trace_dlm_recv(con->nodeid, ret);
926 if (ret == -EAGAIN) {
927 lock_sock(con->sock->sk);
928 if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
929 release_sock(con->sock->sk);
930 goto again;
933 clear_bit(CF_RECV_PENDING, &con->flags);
934 release_sock(con->sock->sk);
935 free_processqueue_entry(pentry);
936 return DLM_IO_END;
937 } else if (ret == 0) {
938 /* close will clear CF_RECV_PENDING */
939 free_processqueue_entry(pentry);
940 return DLM_IO_EOF;
941 } else if (ret < 0) {
942 free_processqueue_entry(pentry);
943 return ret;
946 /* new buflen according readed bytes and leftover from last receive */
947 buflen_real = ret + con->rx_leftover;
948 ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
949 buflen_real);
950 if (ret < 0) {
951 free_processqueue_entry(pentry);
952 return ret;
955 pentry->buflen = ret;
957 /* calculate leftover bytes from process and put it into begin of
958 * the receive buffer, so next receive we have the full message
959 * at the start address of the receive buffer.
961 con->rx_leftover = buflen_real - ret;
962 memmove(con->rx_leftover_buf, pentry->buf + ret,
963 con->rx_leftover);
965 spin_lock_bh(&processqueue_lock);
966 ret = atomic_inc_return(&processqueue_count);
967 list_add_tail(&pentry->list, &processqueue);
968 if (!process_dlm_messages_pending) {
969 process_dlm_messages_pending = true;
970 queue_work(process_workqueue, &process_work);
972 spin_unlock_bh(&processqueue_lock);
974 if (ret > DLM_MAX_PROCESS_BUFFERS)
975 return DLM_IO_FLUSH;
977 return DLM_IO_SUCCESS;
980 /* Listening socket is busy, accept a connection */
981 static int accept_from_sock(void)
983 struct sockaddr_storage peeraddr;
984 int len, idx, result, nodeid;
985 struct connection *newcon;
986 struct socket *newsock;
987 unsigned int mark;
989 result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
990 if (result == -EAGAIN)
991 return DLM_IO_END;
992 else if (result < 0)
993 goto accept_err;
995 /* Get the connected socket's peer */
996 memset(&peeraddr, 0, sizeof(peeraddr));
997 len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
998 if (len < 0) {
999 result = -ECONNABORTED;
1000 goto accept_err;
1003 /* Get the new node's NODEID */
1004 make_sockaddr(&peeraddr, 0, &len);
1005 if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1006 switch (peeraddr.ss_family) {
1007 case AF_INET: {
1008 struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1010 log_print("connect from non cluster IPv4 node %pI4",
1011 &sin->sin_addr);
1012 break;
1014 #if IS_ENABLED(CONFIG_IPV6)
1015 case AF_INET6: {
1016 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1018 log_print("connect from non cluster IPv6 node %pI6c",
1019 &sin6->sin6_addr);
1020 break;
1022 #endif
1023 default:
1024 log_print("invalid family from non cluster node");
1025 break;
1028 sock_release(newsock);
1029 return -1;
1032 log_print("got connection from %d", nodeid);
1034 /* Check to see if we already have a connection to this node. This
1035 * could happen if the two nodes initiate a connection at roughly
1036 * the same time and the connections cross on the wire.
1037 * In this case we store the incoming one in "othercon"
1039 idx = srcu_read_lock(&connections_srcu);
1040 newcon = nodeid2con(nodeid, 0);
1041 if (WARN_ON_ONCE(!newcon)) {
1042 srcu_read_unlock(&connections_srcu, idx);
1043 result = -ENOENT;
1044 goto accept_err;
1047 sock_set_mark(newsock->sk, mark);
1049 down_write(&newcon->sock_lock);
1050 if (newcon->sock) {
1051 struct connection *othercon = newcon->othercon;
1053 if (!othercon) {
1054 othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1055 if (!othercon) {
1056 log_print("failed to allocate incoming socket");
1057 up_write(&newcon->sock_lock);
1058 srcu_read_unlock(&connections_srcu, idx);
1059 result = -ENOMEM;
1060 goto accept_err;
1063 dlm_con_init(othercon, nodeid);
1064 lockdep_set_subclass(&othercon->sock_lock, 1);
1065 newcon->othercon = othercon;
1066 set_bit(CF_IS_OTHERCON, &othercon->flags);
1067 } else {
1068 /* close other sock con if we have something new */
1069 close_connection(othercon, false);
1072 down_write(&othercon->sock_lock);
1073 add_sock(newsock, othercon);
1075 /* check if we receved something while adding */
1076 lock_sock(othercon->sock->sk);
1077 lowcomms_queue_rwork(othercon);
1078 release_sock(othercon->sock->sk);
1079 up_write(&othercon->sock_lock);
1081 else {
1082 /* accept copies the sk after we've saved the callbacks, so we
1083 don't want to save them a second time or comm errors will
1084 result in calling sk_error_report recursively. */
1085 add_sock(newsock, newcon);
1087 /* check if we receved something while adding */
1088 lock_sock(newcon->sock->sk);
1089 lowcomms_queue_rwork(newcon);
1090 release_sock(newcon->sock->sk);
1092 up_write(&newcon->sock_lock);
1093 srcu_read_unlock(&connections_srcu, idx);
1095 return DLM_IO_SUCCESS;
1097 accept_err:
1098 if (newsock)
1099 sock_release(newsock);
1101 return result;
1105 * writequeue_entry_complete - try to delete and free write queue entry
1106 * @e: write queue entry to try to delete
1107 * @completed: bytes completed
1109 * writequeue_lock must be held.
1111 static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1113 e->offset += completed;
1114 e->len -= completed;
1115 /* signal that page was half way transmitted */
1116 e->dirty = true;
1118 if (e->len == 0 && e->users == 0)
1119 free_entry(e);
1123 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1125 static int sctp_bind_addrs(struct socket *sock, __be16 port)
1127 struct sockaddr_storage localaddr;
1128 struct sockaddr *addr = (struct sockaddr *)&localaddr;
1129 int i, addr_len, result = 0;
1131 for (i = 0; i < dlm_local_count; i++) {
1132 memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1133 make_sockaddr(&localaddr, port, &addr_len);
1135 if (!i)
1136 result = kernel_bind(sock, addr, addr_len);
1137 else
1138 result = sock_bind_add(sock->sk, addr, addr_len);
1140 if (result < 0) {
1141 log_print("Can't bind to %d addr number %d, %d.\n",
1142 port, i + 1, result);
1143 break;
1146 return result;
1149 /* Get local addresses */
1150 static void init_local(void)
1152 struct sockaddr_storage sas;
1153 int i;
1155 dlm_local_count = 0;
1156 for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1157 if (dlm_our_addr(&sas, i))
1158 break;
1160 memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
1164 static struct writequeue_entry *new_writequeue_entry(struct connection *con)
1166 struct writequeue_entry *entry;
1168 entry = dlm_allocate_writequeue();
1169 if (!entry)
1170 return NULL;
1172 entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1173 if (!entry->page) {
1174 dlm_free_writequeue(entry);
1175 return NULL;
1178 entry->offset = 0;
1179 entry->len = 0;
1180 entry->end = 0;
1181 entry->dirty = false;
1182 entry->con = con;
1183 entry->users = 1;
1184 kref_init(&entry->ref);
1185 return entry;
1188 static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1189 char **ppc, void (*cb)(void *data),
1190 void *data)
1192 struct writequeue_entry *e;
1194 spin_lock_bh(&con->writequeue_lock);
1195 if (!list_empty(&con->writequeue)) {
1196 e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1197 if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1198 kref_get(&e->ref);
1200 *ppc = page_address(e->page) + e->end;
1201 if (cb)
1202 cb(data);
1204 e->end += len;
1205 e->users++;
1206 goto out;
1210 e = new_writequeue_entry(con);
1211 if (!e)
1212 goto out;
1214 kref_get(&e->ref);
1215 *ppc = page_address(e->page);
1216 e->end += len;
1217 if (cb)
1218 cb(data);
1220 list_add_tail(&e->list, &con->writequeue);
1222 out:
1223 spin_unlock_bh(&con->writequeue_lock);
1224 return e;
1227 static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1228 char **ppc, void (*cb)(void *data),
1229 void *data)
1231 struct writequeue_entry *e;
1232 struct dlm_msg *msg;
1234 msg = dlm_allocate_msg();
1235 if (!msg)
1236 return NULL;
1238 kref_init(&msg->ref);
1240 e = new_wq_entry(con, len, ppc, cb, data);
1241 if (!e) {
1242 dlm_free_msg(msg);
1243 return NULL;
1246 msg->retransmit = false;
1247 msg->orig_msg = NULL;
1248 msg->ppc = *ppc;
1249 msg->len = len;
1250 msg->entry = e;
1252 return msg;
1255 /* avoid false positive for nodes_srcu, unlock happens in
1256 * dlm_lowcomms_commit_msg which is a must call if success
1258 #ifndef __CHECKER__
1259 struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, char **ppc,
1260 void (*cb)(void *data), void *data)
1262 struct connection *con;
1263 struct dlm_msg *msg;
1264 int idx;
1266 if (len > DLM_MAX_SOCKET_BUFSIZE ||
1267 len < sizeof(struct dlm_header)) {
1268 BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1269 log_print("failed to allocate a buffer of size %d", len);
1270 WARN_ON_ONCE(1);
1271 return NULL;
1274 idx = srcu_read_lock(&connections_srcu);
1275 con = nodeid2con(nodeid, 0);
1276 if (WARN_ON_ONCE(!con)) {
1277 srcu_read_unlock(&connections_srcu, idx);
1278 return NULL;
1281 msg = dlm_lowcomms_new_msg_con(con, len, ppc, cb, data);
1282 if (!msg) {
1283 srcu_read_unlock(&connections_srcu, idx);
1284 return NULL;
1287 /* for dlm_lowcomms_commit_msg() */
1288 kref_get(&msg->ref);
1289 /* we assume if successful commit must called */
1290 msg->idx = idx;
1291 return msg;
1293 #endif
1295 static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1297 struct writequeue_entry *e = msg->entry;
1298 struct connection *con = e->con;
1299 int users;
1301 spin_lock_bh(&con->writequeue_lock);
1302 kref_get(&msg->ref);
1303 list_add(&msg->list, &e->msgs);
1305 users = --e->users;
1306 if (users)
1307 goto out;
1309 e->len = DLM_WQ_LENGTH_BYTES(e);
1311 lowcomms_queue_swork(con);
1313 out:
1314 spin_unlock_bh(&con->writequeue_lock);
1315 return;
1318 /* avoid false positive for nodes_srcu, lock was happen in
1319 * dlm_lowcomms_new_msg
1321 #ifndef __CHECKER__
1322 void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1324 _dlm_lowcomms_commit_msg(msg);
1325 srcu_read_unlock(&connections_srcu, msg->idx);
1326 /* because dlm_lowcomms_new_msg() */
1327 kref_put(&msg->ref, dlm_msg_release);
1329 #endif
1331 void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1333 kref_put(&msg->ref, dlm_msg_release);
1336 /* does not held connections_srcu, usage lowcomms_error_report only */
1337 int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1339 struct dlm_msg *msg_resend;
1340 char *ppc;
1342 if (msg->retransmit)
1343 return 1;
1345 msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len, &ppc,
1346 NULL, NULL);
1347 if (!msg_resend)
1348 return -ENOMEM;
1350 msg->retransmit = true;
1351 kref_get(&msg->ref);
1352 msg_resend->orig_msg = msg;
1354 memcpy(ppc, msg->ppc, msg->len);
1355 _dlm_lowcomms_commit_msg(msg_resend);
1356 dlm_lowcomms_put_msg(msg_resend);
1358 return 0;
1361 /* Send a message */
1362 static int send_to_sock(struct connection *con)
1364 struct writequeue_entry *e;
1365 struct bio_vec bvec;
1366 struct msghdr msg = {
1367 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1369 int len, offset, ret;
1371 spin_lock_bh(&con->writequeue_lock);
1372 e = con_next_wq(con);
1373 if (!e) {
1374 clear_bit(CF_SEND_PENDING, &con->flags);
1375 spin_unlock_bh(&con->writequeue_lock);
1376 return DLM_IO_END;
1379 len = e->len;
1380 offset = e->offset;
1381 WARN_ON_ONCE(len == 0 && e->users == 0);
1382 spin_unlock_bh(&con->writequeue_lock);
1384 bvec_set_page(&bvec, e->page, len, offset);
1385 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1386 ret = sock_sendmsg(con->sock, &msg);
1387 trace_dlm_send(con->nodeid, ret);
1388 if (ret == -EAGAIN || ret == 0) {
1389 lock_sock(con->sock->sk);
1390 spin_lock_bh(&con->writequeue_lock);
1391 if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1392 !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1393 /* Notify TCP that we're limited by the
1394 * application window size.
1396 set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1397 con->sock->sk->sk_write_pending++;
1399 clear_bit(CF_SEND_PENDING, &con->flags);
1400 spin_unlock_bh(&con->writequeue_lock);
1401 release_sock(con->sock->sk);
1403 /* wait for write_space() event */
1404 return DLM_IO_END;
1406 spin_unlock_bh(&con->writequeue_lock);
1407 release_sock(con->sock->sk);
1409 return DLM_IO_RESCHED;
1410 } else if (ret < 0) {
1411 return ret;
1414 spin_lock_bh(&con->writequeue_lock);
1415 writequeue_entry_complete(e, ret);
1416 spin_unlock_bh(&con->writequeue_lock);
1418 return DLM_IO_SUCCESS;
1421 static void clean_one_writequeue(struct connection *con)
1423 struct writequeue_entry *e, *safe;
1425 spin_lock_bh(&con->writequeue_lock);
1426 list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1427 free_entry(e);
1429 spin_unlock_bh(&con->writequeue_lock);
1432 static void connection_release(struct rcu_head *rcu)
1434 struct connection *con = container_of(rcu, struct connection, rcu);
1436 WARN_ON_ONCE(!list_empty(&con->writequeue));
1437 WARN_ON_ONCE(con->sock);
1438 kfree(con);
1441 /* Called from recovery when it knows that a node has
1442 left the cluster */
1443 int dlm_lowcomms_close(int nodeid)
1445 struct connection *con;
1446 int idx;
1448 log_print("closing connection to node %d", nodeid);
1450 idx = srcu_read_lock(&connections_srcu);
1451 con = nodeid2con(nodeid, 0);
1452 if (WARN_ON_ONCE(!con)) {
1453 srcu_read_unlock(&connections_srcu, idx);
1454 return -ENOENT;
1457 stop_connection_io(con);
1458 log_print("io handling for node: %d stopped", nodeid);
1459 close_connection(con, true);
1461 spin_lock(&connections_lock);
1462 hlist_del_rcu(&con->list);
1463 spin_unlock(&connections_lock);
1465 clean_one_writequeue(con);
1466 call_srcu(&connections_srcu, &con->rcu, connection_release);
1467 if (con->othercon) {
1468 clean_one_writequeue(con->othercon);
1469 call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1471 srcu_read_unlock(&connections_srcu, idx);
1473 /* for debugging we print when we are done to compare with other
1474 * messages in between. This function need to be correctly synchronized
1475 * with io handling
1477 log_print("closing connection to node %d done", nodeid);
1479 return 0;
1482 /* Receive worker function */
1483 static void process_recv_sockets(struct work_struct *work)
1485 struct connection *con = container_of(work, struct connection, rwork);
1486 int ret, buflen;
1488 down_read(&con->sock_lock);
1489 if (!con->sock) {
1490 up_read(&con->sock_lock);
1491 return;
1494 buflen = READ_ONCE(dlm_config.ci_buffer_size);
1495 do {
1496 ret = receive_from_sock(con, buflen);
1497 } while (ret == DLM_IO_SUCCESS);
1498 up_read(&con->sock_lock);
1500 switch (ret) {
1501 case DLM_IO_END:
1502 /* CF_RECV_PENDING cleared */
1503 break;
1504 case DLM_IO_EOF:
1505 close_connection(con, false);
1506 wake_up(&con->shutdown_wait);
1507 /* CF_RECV_PENDING cleared */
1508 break;
1509 case DLM_IO_FLUSH:
1510 /* we can't flush the process_workqueue here because a
1511 * WQ_MEM_RECLAIM workequeue can occurr a deadlock for a non
1512 * WQ_MEM_RECLAIM workqueue such as process_workqueue. Instead
1513 * we have a waitqueue to wait until all messages are
1514 * processed.
1516 * This handling is only necessary to backoff the sender and
1517 * not queue all messages from the socket layer into DLM
1518 * processqueue. When DLM is capable to parse multiple messages
1519 * on an e.g. per socket basis this handling can might be
1520 * removed. Especially in a message burst we are too slow to
1521 * process messages and the queue will fill up memory.
1523 wait_event(processqueue_wq, !atomic_read(&processqueue_count));
1524 fallthrough;
1525 case DLM_IO_RESCHED:
1526 cond_resched();
1527 queue_work(io_workqueue, &con->rwork);
1528 /* CF_RECV_PENDING not cleared */
1529 break;
1530 default:
1531 if (ret < 0) {
1532 if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1533 close_connection(con, false);
1534 } else {
1535 spin_lock_bh(&con->writequeue_lock);
1536 lowcomms_queue_swork(con);
1537 spin_unlock_bh(&con->writequeue_lock);
1540 /* CF_RECV_PENDING cleared for othercon
1541 * we trigger send queue if not already done
1542 * and process_send_sockets will handle it
1544 break;
1547 WARN_ON_ONCE(1);
1548 break;
1552 static void process_listen_recv_socket(struct work_struct *work)
1554 int ret;
1556 if (WARN_ON_ONCE(!listen_con.sock))
1557 return;
1559 do {
1560 ret = accept_from_sock();
1561 } while (ret == DLM_IO_SUCCESS);
1563 if (ret < 0)
1564 log_print("critical error accepting connection: %d", ret);
1567 static int dlm_connect(struct connection *con)
1569 struct sockaddr_storage addr;
1570 int result, addr_len;
1571 struct socket *sock;
1572 unsigned int mark;
1574 memset(&addr, 0, sizeof(addr));
1575 result = nodeid_to_addr(con->nodeid, &addr, NULL,
1576 dlm_proto_ops->try_new_addr, &mark);
1577 if (result < 0) {
1578 log_print("no address for nodeid %d", con->nodeid);
1579 return result;
1582 /* Create a socket to communicate with */
1583 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1584 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1585 if (result < 0)
1586 return result;
1588 sock_set_mark(sock->sk, mark);
1589 dlm_proto_ops->sockopts(sock);
1591 result = dlm_proto_ops->bind(sock);
1592 if (result < 0) {
1593 sock_release(sock);
1594 return result;
1597 add_sock(sock, con);
1599 log_print_ratelimited("connecting to %d", con->nodeid);
1600 make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1601 result = kernel_connect(sock, (struct sockaddr *)&addr, addr_len, 0);
1602 switch (result) {
1603 case -EINPROGRESS:
1604 /* not an error */
1605 fallthrough;
1606 case 0:
1607 break;
1608 default:
1609 if (result < 0)
1610 dlm_close_sock(&con->sock);
1612 break;
1615 return result;
1618 /* Send worker function */
1619 static void process_send_sockets(struct work_struct *work)
1621 struct connection *con = container_of(work, struct connection, swork);
1622 int ret;
1624 WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1626 down_read(&con->sock_lock);
1627 if (!con->sock) {
1628 up_read(&con->sock_lock);
1629 down_write(&con->sock_lock);
1630 if (!con->sock) {
1631 ret = dlm_connect(con);
1632 switch (ret) {
1633 case 0:
1634 break;
1635 default:
1636 /* CF_SEND_PENDING not cleared */
1637 up_write(&con->sock_lock);
1638 log_print("connect to node %d try %d error %d",
1639 con->nodeid, con->retries++, ret);
1640 msleep(1000);
1641 /* For now we try forever to reconnect. In
1642 * future we should send a event to cluster
1643 * manager to fence itself after certain amount
1644 * of retries.
1646 queue_work(io_workqueue, &con->swork);
1647 return;
1650 downgrade_write(&con->sock_lock);
1653 do {
1654 ret = send_to_sock(con);
1655 } while (ret == DLM_IO_SUCCESS);
1656 up_read(&con->sock_lock);
1658 switch (ret) {
1659 case DLM_IO_END:
1660 /* CF_SEND_PENDING cleared */
1661 break;
1662 case DLM_IO_RESCHED:
1663 /* CF_SEND_PENDING not cleared */
1664 cond_resched();
1665 queue_work(io_workqueue, &con->swork);
1666 break;
1667 default:
1668 if (ret < 0) {
1669 close_connection(con, false);
1671 /* CF_SEND_PENDING cleared */
1672 spin_lock_bh(&con->writequeue_lock);
1673 lowcomms_queue_swork(con);
1674 spin_unlock_bh(&con->writequeue_lock);
1675 break;
1678 WARN_ON_ONCE(1);
1679 break;
1683 static void work_stop(void)
1685 if (io_workqueue) {
1686 destroy_workqueue(io_workqueue);
1687 io_workqueue = NULL;
1690 if (process_workqueue) {
1691 destroy_workqueue(process_workqueue);
1692 process_workqueue = NULL;
1696 static int work_start(void)
1698 io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1699 WQ_UNBOUND, 0);
1700 if (!io_workqueue) {
1701 log_print("can't start dlm_io");
1702 return -ENOMEM;
1705 process_workqueue = alloc_workqueue("dlm_process", WQ_HIGHPRI | WQ_BH, 0);
1706 if (!process_workqueue) {
1707 log_print("can't start dlm_process");
1708 destroy_workqueue(io_workqueue);
1709 io_workqueue = NULL;
1710 return -ENOMEM;
1713 return 0;
1716 void dlm_lowcomms_shutdown(void)
1718 struct connection *con;
1719 int i, idx;
1721 /* stop lowcomms_listen_data_ready calls */
1722 lock_sock(listen_con.sock->sk);
1723 listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1724 release_sock(listen_con.sock->sk);
1726 cancel_work_sync(&listen_con.rwork);
1727 dlm_close_sock(&listen_con.sock);
1729 idx = srcu_read_lock(&connections_srcu);
1730 for (i = 0; i < CONN_HASH_SIZE; i++) {
1731 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1732 shutdown_connection(con, true);
1733 stop_connection_io(con);
1734 flush_workqueue(process_workqueue);
1735 close_connection(con, true);
1737 clean_one_writequeue(con);
1738 if (con->othercon)
1739 clean_one_writequeue(con->othercon);
1740 allow_connection_io(con);
1743 srcu_read_unlock(&connections_srcu, idx);
1746 void dlm_lowcomms_stop(void)
1748 work_stop();
1749 dlm_proto_ops = NULL;
1752 static int dlm_listen_for_all(void)
1754 struct socket *sock;
1755 int result;
1757 log_print("Using %s for communications",
1758 dlm_proto_ops->name);
1760 result = dlm_proto_ops->listen_validate();
1761 if (result < 0)
1762 return result;
1764 result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1765 SOCK_STREAM, dlm_proto_ops->proto, &sock);
1766 if (result < 0) {
1767 log_print("Can't create comms socket: %d", result);
1768 return result;
1771 sock_set_mark(sock->sk, dlm_config.ci_mark);
1772 dlm_proto_ops->listen_sockopts(sock);
1774 result = dlm_proto_ops->listen_bind(sock);
1775 if (result < 0)
1776 goto out;
1778 lock_sock(sock->sk);
1779 listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1780 listen_sock.sk_write_space = sock->sk->sk_write_space;
1781 listen_sock.sk_error_report = sock->sk->sk_error_report;
1782 listen_sock.sk_state_change = sock->sk->sk_state_change;
1784 listen_con.sock = sock;
1786 sock->sk->sk_allocation = GFP_NOFS;
1787 sock->sk->sk_use_task_frag = false;
1788 sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1789 release_sock(sock->sk);
1791 result = sock->ops->listen(sock, 128);
1792 if (result < 0) {
1793 dlm_close_sock(&listen_con.sock);
1794 return result;
1797 return 0;
1799 out:
1800 sock_release(sock);
1801 return result;
1804 static int dlm_tcp_bind(struct socket *sock)
1806 struct sockaddr_storage src_addr;
1807 int result, addr_len;
1809 /* Bind to our cluster-known address connecting to avoid
1810 * routing problems.
1812 memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1813 make_sockaddr(&src_addr, 0, &addr_len);
1815 result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1816 addr_len);
1817 if (result < 0) {
1818 /* This *may* not indicate a critical error */
1819 log_print("could not bind for connect: %d", result);
1822 return 0;
1825 static int dlm_tcp_listen_validate(void)
1827 /* We don't support multi-homed hosts */
1828 if (dlm_local_count > 1) {
1829 log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1830 return -EINVAL;
1833 return 0;
1836 static void dlm_tcp_sockopts(struct socket *sock)
1838 /* Turn off Nagle's algorithm */
1839 tcp_sock_set_nodelay(sock->sk);
1842 static void dlm_tcp_listen_sockopts(struct socket *sock)
1844 dlm_tcp_sockopts(sock);
1845 sock_set_reuseaddr(sock->sk);
1848 static int dlm_tcp_listen_bind(struct socket *sock)
1850 int addr_len;
1852 /* Bind to our port */
1853 make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1854 return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1855 addr_len);
1858 static const struct dlm_proto_ops dlm_tcp_ops = {
1859 .name = "TCP",
1860 .proto = IPPROTO_TCP,
1861 .sockopts = dlm_tcp_sockopts,
1862 .bind = dlm_tcp_bind,
1863 .listen_validate = dlm_tcp_listen_validate,
1864 .listen_sockopts = dlm_tcp_listen_sockopts,
1865 .listen_bind = dlm_tcp_listen_bind,
1868 static int dlm_sctp_bind(struct socket *sock)
1870 return sctp_bind_addrs(sock, 0);
1873 static int dlm_sctp_listen_validate(void)
1875 if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1876 log_print("SCTP is not enabled by this kernel");
1877 return -EOPNOTSUPP;
1880 request_module("sctp");
1881 return 0;
1884 static int dlm_sctp_bind_listen(struct socket *sock)
1886 return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1889 static void dlm_sctp_sockopts(struct socket *sock)
1891 /* Turn off Nagle's algorithm */
1892 sctp_sock_set_nodelay(sock->sk);
1893 sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1896 static const struct dlm_proto_ops dlm_sctp_ops = {
1897 .name = "SCTP",
1898 .proto = IPPROTO_SCTP,
1899 .try_new_addr = true,
1900 .sockopts = dlm_sctp_sockopts,
1901 .bind = dlm_sctp_bind,
1902 .listen_validate = dlm_sctp_listen_validate,
1903 .listen_sockopts = dlm_sctp_sockopts,
1904 .listen_bind = dlm_sctp_bind_listen,
1907 int dlm_lowcomms_start(void)
1909 int error;
1911 init_local();
1912 if (!dlm_local_count) {
1913 error = -ENOTCONN;
1914 log_print("no local IP address has been set");
1915 goto fail;
1918 error = work_start();
1919 if (error)
1920 goto fail;
1922 /* Start listening */
1923 switch (dlm_config.ci_protocol) {
1924 case DLM_PROTO_TCP:
1925 dlm_proto_ops = &dlm_tcp_ops;
1926 break;
1927 case DLM_PROTO_SCTP:
1928 dlm_proto_ops = &dlm_sctp_ops;
1929 break;
1930 default:
1931 log_print("Invalid protocol identifier %d set",
1932 dlm_config.ci_protocol);
1933 error = -EINVAL;
1934 goto fail_proto_ops;
1937 error = dlm_listen_for_all();
1938 if (error)
1939 goto fail_listen;
1941 return 0;
1943 fail_listen:
1944 dlm_proto_ops = NULL;
1945 fail_proto_ops:
1946 work_stop();
1947 fail:
1948 return error;
1951 void dlm_lowcomms_init(void)
1953 int i;
1955 for (i = 0; i < CONN_HASH_SIZE; i++)
1956 INIT_HLIST_HEAD(&connection_hash[i]);
1958 INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1961 void dlm_lowcomms_exit(void)
1963 struct connection *con;
1964 int i, idx;
1966 idx = srcu_read_lock(&connections_srcu);
1967 for (i = 0; i < CONN_HASH_SIZE; i++) {
1968 hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1969 spin_lock(&connections_lock);
1970 hlist_del_rcu(&con->list);
1971 spin_unlock(&connections_lock);
1973 if (con->othercon)
1974 call_srcu(&connections_srcu, &con->othercon->rcu,
1975 connection_release);
1976 call_srcu(&connections_srcu, &con->rcu, connection_release);
1979 srcu_read_unlock(&connections_srcu, idx);