Linux 6.13-rc7
[linux.git] / fs / ext4 / fast_commit.c
blob26c4fc37edcf9ab8a1d77a27a59c1452a00506a2
1 // SPDX-License-Identifier: GPL-2.0
3 /*
4 * fs/ext4/fast_commit.c
6 * Written by Harshad Shirwadkar <harshadshirwadkar@gmail.com>
8 * Ext4 fast commits routines.
9 */
10 #include "ext4.h"
11 #include "ext4_jbd2.h"
12 #include "ext4_extents.h"
13 #include "mballoc.h"
16 * Ext4 Fast Commits
17 * -----------------
19 * Ext4 fast commits implement fine grained journalling for Ext4.
21 * Fast commits are organized as a log of tag-length-value (TLV) structs. (See
22 * struct ext4_fc_tl). Each TLV contains some delta that is replayed TLV by
23 * TLV during the recovery phase. For the scenarios for which we currently
24 * don't have replay code, fast commit falls back to full commits.
25 * Fast commits record delta in one of the following three categories.
27 * (A) Directory entry updates:
29 * - EXT4_FC_TAG_UNLINK - records directory entry unlink
30 * - EXT4_FC_TAG_LINK - records directory entry link
31 * - EXT4_FC_TAG_CREAT - records inode and directory entry creation
33 * (B) File specific data range updates:
35 * - EXT4_FC_TAG_ADD_RANGE - records addition of new blocks to an inode
36 * - EXT4_FC_TAG_DEL_RANGE - records deletion of blocks from an inode
38 * (C) Inode metadata (mtime / ctime etc):
40 * - EXT4_FC_TAG_INODE - record the inode that should be replayed
41 * during recovery. Note that iblocks field is
42 * not replayed and instead derived during
43 * replay.
44 * Commit Operation
45 * ----------------
46 * With fast commits, we maintain all the directory entry operations in the
47 * order in which they are issued in an in-memory queue. This queue is flushed
48 * to disk during the commit operation. We also maintain a list of inodes
49 * that need to be committed during a fast commit in another in memory queue of
50 * inodes. During the commit operation, we commit in the following order:
52 * [1] Lock inodes for any further data updates by setting COMMITTING state
53 * [2] Submit data buffers of all the inodes
54 * [3] Wait for [2] to complete
55 * [4] Commit all the directory entry updates in the fast commit space
56 * [5] Commit all the changed inode structures
57 * [6] Write tail tag (this tag ensures the atomicity, please read the following
58 * section for more details).
59 * [7] Wait for [4], [5] and [6] to complete.
61 * All the inode updates must call ext4_fc_start_update() before starting an
62 * update. If such an ongoing update is present, fast commit waits for it to
63 * complete. The completion of such an update is marked by
64 * ext4_fc_stop_update().
66 * Fast Commit Ineligibility
67 * -------------------------
69 * Not all operations are supported by fast commits today (e.g extended
70 * attributes). Fast commit ineligibility is marked by calling
71 * ext4_fc_mark_ineligible(): This makes next fast commit operation to fall back
72 * to full commit.
74 * Atomicity of commits
75 * --------------------
76 * In order to guarantee atomicity during the commit operation, fast commit
77 * uses "EXT4_FC_TAG_TAIL" tag that marks a fast commit as complete. Tail
78 * tag contains CRC of the contents and TID of the transaction after which
79 * this fast commit should be applied. Recovery code replays fast commit
80 * logs only if there's at least 1 valid tail present. For every fast commit
81 * operation, there is 1 tail. This means, we may end up with multiple tails
82 * in the fast commit space. Here's an example:
84 * - Create a new file A and remove existing file B
85 * - fsync()
86 * - Append contents to file A
87 * - Truncate file A
88 * - fsync()
90 * The fast commit space at the end of above operations would look like this:
91 * [HEAD] [CREAT A] [UNLINK B] [TAIL] [ADD_RANGE A] [DEL_RANGE A] [TAIL]
92 * |<--- Fast Commit 1 --->|<--- Fast Commit 2 ---->|
94 * Replay code should thus check for all the valid tails in the FC area.
96 * Fast Commit Replay Idempotence
97 * ------------------------------
99 * Fast commits tags are idempotent in nature provided the recovery code follows
100 * certain rules. The guiding principle that the commit path follows while
101 * committing is that it stores the result of a particular operation instead of
102 * storing the procedure.
104 * Let's consider this rename operation: 'mv /a /b'. Let's assume dirent '/a'
105 * was associated with inode 10. During fast commit, instead of storing this
106 * operation as a procedure "rename a to b", we store the resulting file system
107 * state as a "series" of outcomes:
109 * - Link dirent b to inode 10
110 * - Unlink dirent a
111 * - Inode <10> with valid refcount
113 * Now when recovery code runs, it needs "enforce" this state on the file
114 * system. This is what guarantees idempotence of fast commit replay.
116 * Let's take an example of a procedure that is not idempotent and see how fast
117 * commits make it idempotent. Consider following sequence of operations:
119 * rm A; mv B A; read A
120 * (x) (y) (z)
122 * (x), (y) and (z) are the points at which we can crash. If we store this
123 * sequence of operations as is then the replay is not idempotent. Let's say
124 * while in replay, we crash at (z). During the second replay, file A (which was
125 * actually created as a result of "mv B A" operation) would get deleted. Thus,
126 * file named A would be absent when we try to read A. So, this sequence of
127 * operations is not idempotent. However, as mentioned above, instead of storing
128 * the procedure fast commits store the outcome of each procedure. Thus the fast
129 * commit log for above procedure would be as follows:
131 * (Let's assume dirent A was linked to inode 10 and dirent B was linked to
132 * inode 11 before the replay)
134 * [Unlink A] [Link A to inode 11] [Unlink B] [Inode 11]
135 * (w) (x) (y) (z)
137 * If we crash at (z), we will have file A linked to inode 11. During the second
138 * replay, we will remove file A (inode 11). But we will create it back and make
139 * it point to inode 11. We won't find B, so we'll just skip that step. At this
140 * point, the refcount for inode 11 is not reliable, but that gets fixed by the
141 * replay of last inode 11 tag. Crashes at points (w), (x) and (y) get handled
142 * similarly. Thus, by converting a non-idempotent procedure into a series of
143 * idempotent outcomes, fast commits ensured idempotence during the replay.
145 * TODOs
146 * -----
148 * 0) Fast commit replay path hardening: Fast commit replay code should use
149 * journal handles to make sure all the updates it does during the replay
150 * path are atomic. With that if we crash during fast commit replay, after
151 * trying to do recovery again, we will find a file system where fast commit
152 * area is invalid (because new full commit would be found). In order to deal
153 * with that, fast commit replay code should ensure that the "FC_REPLAY"
154 * superblock state is persisted before starting the replay, so that after
155 * the crash, fast commit recovery code can look at that flag and perform
156 * fast commit recovery even if that area is invalidated by later full
157 * commits.
159 * 1) Fast commit's commit path locks the entire file system during fast
160 * commit. This has significant performance penalty. Instead of that, we
161 * should use ext4_fc_start/stop_update functions to start inode level
162 * updates from ext4_journal_start/stop. Once we do that we can drop file
163 * system locking during commit path.
165 * 2) Handle more ineligible cases.
168 #include <trace/events/ext4.h>
169 static struct kmem_cache *ext4_fc_dentry_cachep;
171 static void ext4_end_buffer_io_sync(struct buffer_head *bh, int uptodate)
173 BUFFER_TRACE(bh, "");
174 if (uptodate) {
175 ext4_debug("%s: Block %lld up-to-date",
176 __func__, bh->b_blocknr);
177 set_buffer_uptodate(bh);
178 } else {
179 ext4_debug("%s: Block %lld not up-to-date",
180 __func__, bh->b_blocknr);
181 clear_buffer_uptodate(bh);
184 unlock_buffer(bh);
187 static inline void ext4_fc_reset_inode(struct inode *inode)
189 struct ext4_inode_info *ei = EXT4_I(inode);
191 ei->i_fc_lblk_start = 0;
192 ei->i_fc_lblk_len = 0;
195 void ext4_fc_init_inode(struct inode *inode)
197 struct ext4_inode_info *ei = EXT4_I(inode);
199 ext4_fc_reset_inode(inode);
200 ext4_clear_inode_state(inode, EXT4_STATE_FC_COMMITTING);
201 INIT_LIST_HEAD(&ei->i_fc_list);
202 INIT_LIST_HEAD(&ei->i_fc_dilist);
203 init_waitqueue_head(&ei->i_fc_wait);
204 atomic_set(&ei->i_fc_updates, 0);
207 /* This function must be called with sbi->s_fc_lock held. */
208 static void ext4_fc_wait_committing_inode(struct inode *inode)
209 __releases(&EXT4_SB(inode->i_sb)->s_fc_lock)
211 wait_queue_head_t *wq;
212 struct ext4_inode_info *ei = EXT4_I(inode);
214 #if (BITS_PER_LONG < 64)
215 DEFINE_WAIT_BIT(wait, &ei->i_state_flags,
216 EXT4_STATE_FC_COMMITTING);
217 wq = bit_waitqueue(&ei->i_state_flags,
218 EXT4_STATE_FC_COMMITTING);
219 #else
220 DEFINE_WAIT_BIT(wait, &ei->i_flags,
221 EXT4_STATE_FC_COMMITTING);
222 wq = bit_waitqueue(&ei->i_flags,
223 EXT4_STATE_FC_COMMITTING);
224 #endif
225 lockdep_assert_held(&EXT4_SB(inode->i_sb)->s_fc_lock);
226 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
227 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
228 schedule();
229 finish_wait(wq, &wait.wq_entry);
232 static bool ext4_fc_disabled(struct super_block *sb)
234 return (!test_opt2(sb, JOURNAL_FAST_COMMIT) ||
235 (EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY));
239 * Inform Ext4's fast about start of an inode update
241 * This function is called by the high level call VFS callbacks before
242 * performing any inode update. This function blocks if there's an ongoing
243 * fast commit on the inode in question.
245 void ext4_fc_start_update(struct inode *inode)
247 struct ext4_inode_info *ei = EXT4_I(inode);
249 if (ext4_fc_disabled(inode->i_sb))
250 return;
252 restart:
253 spin_lock(&EXT4_SB(inode->i_sb)->s_fc_lock);
254 if (list_empty(&ei->i_fc_list))
255 goto out;
257 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
258 ext4_fc_wait_committing_inode(inode);
259 goto restart;
261 out:
262 atomic_inc(&ei->i_fc_updates);
263 spin_unlock(&EXT4_SB(inode->i_sb)->s_fc_lock);
267 * Stop inode update and wake up waiting fast commits if any.
269 void ext4_fc_stop_update(struct inode *inode)
271 struct ext4_inode_info *ei = EXT4_I(inode);
273 if (ext4_fc_disabled(inode->i_sb))
274 return;
276 if (atomic_dec_and_test(&ei->i_fc_updates))
277 wake_up_all(&ei->i_fc_wait);
281 * Remove inode from fast commit list. If the inode is being committed
282 * we wait until inode commit is done.
284 void ext4_fc_del(struct inode *inode)
286 struct ext4_inode_info *ei = EXT4_I(inode);
287 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
288 struct ext4_fc_dentry_update *fc_dentry;
290 if (ext4_fc_disabled(inode->i_sb))
291 return;
293 restart:
294 spin_lock(&sbi->s_fc_lock);
295 if (list_empty(&ei->i_fc_list) && list_empty(&ei->i_fc_dilist)) {
296 spin_unlock(&sbi->s_fc_lock);
297 return;
300 if (ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING)) {
301 ext4_fc_wait_committing_inode(inode);
302 goto restart;
305 if (!list_empty(&ei->i_fc_list))
306 list_del_init(&ei->i_fc_list);
309 * Since this inode is getting removed, let's also remove all FC
310 * dentry create references, since it is not needed to log it anyways.
312 if (list_empty(&ei->i_fc_dilist)) {
313 spin_unlock(&sbi->s_fc_lock);
314 return;
317 fc_dentry = list_first_entry(&ei->i_fc_dilist, struct ext4_fc_dentry_update, fcd_dilist);
318 WARN_ON(fc_dentry->fcd_op != EXT4_FC_TAG_CREAT);
319 list_del_init(&fc_dentry->fcd_list);
320 list_del_init(&fc_dentry->fcd_dilist);
322 WARN_ON(!list_empty(&ei->i_fc_dilist));
323 spin_unlock(&sbi->s_fc_lock);
325 if (fc_dentry->fcd_name.name &&
326 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
327 kfree(fc_dentry->fcd_name.name);
328 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
330 return;
334 * Mark file system as fast commit ineligible, and record latest
335 * ineligible transaction tid. This means until the recorded
336 * transaction, commit operation would result in a full jbd2 commit.
338 void ext4_fc_mark_ineligible(struct super_block *sb, int reason, handle_t *handle)
340 struct ext4_sb_info *sbi = EXT4_SB(sb);
341 tid_t tid;
342 bool has_transaction = true;
343 bool is_ineligible;
345 if (ext4_fc_disabled(sb))
346 return;
348 if (handle && !IS_ERR(handle))
349 tid = handle->h_transaction->t_tid;
350 else {
351 read_lock(&sbi->s_journal->j_state_lock);
352 if (sbi->s_journal->j_running_transaction)
353 tid = sbi->s_journal->j_running_transaction->t_tid;
354 else
355 has_transaction = false;
356 read_unlock(&sbi->s_journal->j_state_lock);
358 spin_lock(&sbi->s_fc_lock);
359 is_ineligible = ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
360 if (has_transaction && (!is_ineligible || tid_gt(tid, sbi->s_fc_ineligible_tid)))
361 sbi->s_fc_ineligible_tid = tid;
362 ext4_set_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
363 spin_unlock(&sbi->s_fc_lock);
364 WARN_ON(reason >= EXT4_FC_REASON_MAX);
365 sbi->s_fc_stats.fc_ineligible_reason_count[reason]++;
369 * Generic fast commit tracking function. If this is the first time this we are
370 * called after a full commit, we initialize fast commit fields and then call
371 * __fc_track_fn() with update = 0. If we have already been called after a full
372 * commit, we pass update = 1. Based on that, the track function can determine
373 * if it needs to track a field for the first time or if it needs to just
374 * update the previously tracked value.
376 * If enqueue is set, this function enqueues the inode in fast commit list.
378 static int ext4_fc_track_template(
379 handle_t *handle, struct inode *inode,
380 int (*__fc_track_fn)(handle_t *handle, struct inode *, void *, bool),
381 void *args, int enqueue)
383 bool update = false;
384 struct ext4_inode_info *ei = EXT4_I(inode);
385 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
386 tid_t tid = 0;
387 int ret;
389 tid = handle->h_transaction->t_tid;
390 mutex_lock(&ei->i_fc_lock);
391 if (tid == ei->i_sync_tid) {
392 update = true;
393 } else {
394 ext4_fc_reset_inode(inode);
395 ei->i_sync_tid = tid;
397 ret = __fc_track_fn(handle, inode, args, update);
398 mutex_unlock(&ei->i_fc_lock);
400 if (!enqueue)
401 return ret;
403 spin_lock(&sbi->s_fc_lock);
404 if (list_empty(&EXT4_I(inode)->i_fc_list))
405 list_add_tail(&EXT4_I(inode)->i_fc_list,
406 (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
407 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING) ?
408 &sbi->s_fc_q[FC_Q_STAGING] :
409 &sbi->s_fc_q[FC_Q_MAIN]);
410 spin_unlock(&sbi->s_fc_lock);
412 return ret;
415 struct __track_dentry_update_args {
416 struct dentry *dentry;
417 int op;
420 /* __track_fn for directory entry updates. Called with ei->i_fc_lock. */
421 static int __track_dentry_update(handle_t *handle, struct inode *inode,
422 void *arg, bool update)
424 struct ext4_fc_dentry_update *node;
425 struct ext4_inode_info *ei = EXT4_I(inode);
426 struct __track_dentry_update_args *dentry_update =
427 (struct __track_dentry_update_args *)arg;
428 struct dentry *dentry = dentry_update->dentry;
429 struct inode *dir = dentry->d_parent->d_inode;
430 struct super_block *sb = inode->i_sb;
431 struct ext4_sb_info *sbi = EXT4_SB(sb);
433 mutex_unlock(&ei->i_fc_lock);
435 if (IS_ENCRYPTED(dir)) {
436 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_ENCRYPTED_FILENAME,
437 handle);
438 mutex_lock(&ei->i_fc_lock);
439 return -EOPNOTSUPP;
442 node = kmem_cache_alloc(ext4_fc_dentry_cachep, GFP_NOFS);
443 if (!node) {
444 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
445 mutex_lock(&ei->i_fc_lock);
446 return -ENOMEM;
449 node->fcd_op = dentry_update->op;
450 node->fcd_parent = dir->i_ino;
451 node->fcd_ino = inode->i_ino;
452 if (dentry->d_name.len > DNAME_INLINE_LEN) {
453 node->fcd_name.name = kmalloc(dentry->d_name.len, GFP_NOFS);
454 if (!node->fcd_name.name) {
455 kmem_cache_free(ext4_fc_dentry_cachep, node);
456 ext4_fc_mark_ineligible(sb, EXT4_FC_REASON_NOMEM, handle);
457 mutex_lock(&ei->i_fc_lock);
458 return -ENOMEM;
460 memcpy((u8 *)node->fcd_name.name, dentry->d_name.name,
461 dentry->d_name.len);
462 } else {
463 memcpy(node->fcd_iname, dentry->d_name.name,
464 dentry->d_name.len);
465 node->fcd_name.name = node->fcd_iname;
467 node->fcd_name.len = dentry->d_name.len;
468 INIT_LIST_HEAD(&node->fcd_dilist);
469 spin_lock(&sbi->s_fc_lock);
470 if (sbi->s_journal->j_flags & JBD2_FULL_COMMIT_ONGOING ||
471 sbi->s_journal->j_flags & JBD2_FAST_COMMIT_ONGOING)
472 list_add_tail(&node->fcd_list,
473 &sbi->s_fc_dentry_q[FC_Q_STAGING]);
474 else
475 list_add_tail(&node->fcd_list, &sbi->s_fc_dentry_q[FC_Q_MAIN]);
478 * This helps us keep a track of all fc_dentry updates which is part of
479 * this ext4 inode. So in case the inode is getting unlinked, before
480 * even we get a chance to fsync, we could remove all fc_dentry
481 * references while evicting the inode in ext4_fc_del().
482 * Also with this, we don't need to loop over all the inodes in
483 * sbi->s_fc_q to get the corresponding inode in
484 * ext4_fc_commit_dentry_updates().
486 if (dentry_update->op == EXT4_FC_TAG_CREAT) {
487 WARN_ON(!list_empty(&ei->i_fc_dilist));
488 list_add_tail(&node->fcd_dilist, &ei->i_fc_dilist);
490 spin_unlock(&sbi->s_fc_lock);
491 mutex_lock(&ei->i_fc_lock);
493 return 0;
496 void __ext4_fc_track_unlink(handle_t *handle,
497 struct inode *inode, struct dentry *dentry)
499 struct __track_dentry_update_args args;
500 int ret;
502 args.dentry = dentry;
503 args.op = EXT4_FC_TAG_UNLINK;
505 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
506 (void *)&args, 0);
507 trace_ext4_fc_track_unlink(handle, inode, dentry, ret);
510 void ext4_fc_track_unlink(handle_t *handle, struct dentry *dentry)
512 struct inode *inode = d_inode(dentry);
514 if (ext4_fc_disabled(inode->i_sb))
515 return;
517 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
518 return;
520 __ext4_fc_track_unlink(handle, inode, dentry);
523 void __ext4_fc_track_link(handle_t *handle,
524 struct inode *inode, struct dentry *dentry)
526 struct __track_dentry_update_args args;
527 int ret;
529 args.dentry = dentry;
530 args.op = EXT4_FC_TAG_LINK;
532 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
533 (void *)&args, 0);
534 trace_ext4_fc_track_link(handle, inode, dentry, ret);
537 void ext4_fc_track_link(handle_t *handle, struct dentry *dentry)
539 struct inode *inode = d_inode(dentry);
541 if (ext4_fc_disabled(inode->i_sb))
542 return;
544 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
545 return;
547 __ext4_fc_track_link(handle, inode, dentry);
550 void __ext4_fc_track_create(handle_t *handle, struct inode *inode,
551 struct dentry *dentry)
553 struct __track_dentry_update_args args;
554 int ret;
556 args.dentry = dentry;
557 args.op = EXT4_FC_TAG_CREAT;
559 ret = ext4_fc_track_template(handle, inode, __track_dentry_update,
560 (void *)&args, 0);
561 trace_ext4_fc_track_create(handle, inode, dentry, ret);
564 void ext4_fc_track_create(handle_t *handle, struct dentry *dentry)
566 struct inode *inode = d_inode(dentry);
568 if (ext4_fc_disabled(inode->i_sb))
569 return;
571 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
572 return;
574 __ext4_fc_track_create(handle, inode, dentry);
577 /* __track_fn for inode tracking */
578 static int __track_inode(handle_t *handle, struct inode *inode, void *arg,
579 bool update)
581 if (update)
582 return -EEXIST;
584 EXT4_I(inode)->i_fc_lblk_len = 0;
586 return 0;
589 void ext4_fc_track_inode(handle_t *handle, struct inode *inode)
591 int ret;
593 if (S_ISDIR(inode->i_mode))
594 return;
596 if (ext4_fc_disabled(inode->i_sb))
597 return;
599 if (ext4_should_journal_data(inode)) {
600 ext4_fc_mark_ineligible(inode->i_sb,
601 EXT4_FC_REASON_INODE_JOURNAL_DATA, handle);
602 return;
605 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
606 return;
608 ret = ext4_fc_track_template(handle, inode, __track_inode, NULL, 1);
609 trace_ext4_fc_track_inode(handle, inode, ret);
612 struct __track_range_args {
613 ext4_lblk_t start, end;
616 /* __track_fn for tracking data updates */
617 static int __track_range(handle_t *handle, struct inode *inode, void *arg,
618 bool update)
620 struct ext4_inode_info *ei = EXT4_I(inode);
621 ext4_lblk_t oldstart;
622 struct __track_range_args *__arg =
623 (struct __track_range_args *)arg;
625 if (inode->i_ino < EXT4_FIRST_INO(inode->i_sb)) {
626 ext4_debug("Special inode %ld being modified\n", inode->i_ino);
627 return -ECANCELED;
630 oldstart = ei->i_fc_lblk_start;
632 if (update && ei->i_fc_lblk_len > 0) {
633 ei->i_fc_lblk_start = min(ei->i_fc_lblk_start, __arg->start);
634 ei->i_fc_lblk_len =
635 max(oldstart + ei->i_fc_lblk_len - 1, __arg->end) -
636 ei->i_fc_lblk_start + 1;
637 } else {
638 ei->i_fc_lblk_start = __arg->start;
639 ei->i_fc_lblk_len = __arg->end - __arg->start + 1;
642 return 0;
645 void ext4_fc_track_range(handle_t *handle, struct inode *inode, ext4_lblk_t start,
646 ext4_lblk_t end)
648 struct __track_range_args args;
649 int ret;
651 if (S_ISDIR(inode->i_mode))
652 return;
654 if (ext4_fc_disabled(inode->i_sb))
655 return;
657 if (ext4_test_mount_flag(inode->i_sb, EXT4_MF_FC_INELIGIBLE))
658 return;
660 if (ext4_has_inline_data(inode)) {
661 ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_XATTR,
662 handle);
663 return;
666 args.start = start;
667 args.end = end;
669 ret = ext4_fc_track_template(handle, inode, __track_range, &args, 1);
671 trace_ext4_fc_track_range(handle, inode, start, end, ret);
674 static void ext4_fc_submit_bh(struct super_block *sb, bool is_tail)
676 blk_opf_t write_flags = REQ_SYNC;
677 struct buffer_head *bh = EXT4_SB(sb)->s_fc_bh;
679 /* Add REQ_FUA | REQ_PREFLUSH only its tail */
680 if (test_opt(sb, BARRIER) && is_tail)
681 write_flags |= REQ_FUA | REQ_PREFLUSH;
682 lock_buffer(bh);
683 set_buffer_dirty(bh);
684 set_buffer_uptodate(bh);
685 bh->b_end_io = ext4_end_buffer_io_sync;
686 submit_bh(REQ_OP_WRITE | write_flags, bh);
687 EXT4_SB(sb)->s_fc_bh = NULL;
690 /* Ext4 commit path routines */
693 * Allocate len bytes on a fast commit buffer.
695 * During the commit time this function is used to manage fast commit
696 * block space. We don't split a fast commit log onto different
697 * blocks. So this function makes sure that if there's not enough space
698 * on the current block, the remaining space in the current block is
699 * marked as unused by adding EXT4_FC_TAG_PAD tag. In that case,
700 * new block is from jbd2 and CRC is updated to reflect the padding
701 * we added.
703 static u8 *ext4_fc_reserve_space(struct super_block *sb, int len, u32 *crc)
705 struct ext4_fc_tl tl;
706 struct ext4_sb_info *sbi = EXT4_SB(sb);
707 struct buffer_head *bh;
708 int bsize = sbi->s_journal->j_blocksize;
709 int ret, off = sbi->s_fc_bytes % bsize;
710 int remaining;
711 u8 *dst;
714 * If 'len' is too long to fit in any block alongside a PAD tlv, then we
715 * cannot fulfill the request.
717 if (len > bsize - EXT4_FC_TAG_BASE_LEN)
718 return NULL;
720 if (!sbi->s_fc_bh) {
721 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
722 if (ret)
723 return NULL;
724 sbi->s_fc_bh = bh;
726 dst = sbi->s_fc_bh->b_data + off;
729 * Allocate the bytes in the current block if we can do so while still
730 * leaving enough space for a PAD tlv.
732 remaining = bsize - EXT4_FC_TAG_BASE_LEN - off;
733 if (len <= remaining) {
734 sbi->s_fc_bytes += len;
735 return dst;
739 * Else, terminate the current block with a PAD tlv, then allocate a new
740 * block and allocate the bytes at the start of that new block.
743 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_PAD);
744 tl.fc_len = cpu_to_le16(remaining);
745 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
746 memset(dst + EXT4_FC_TAG_BASE_LEN, 0, remaining);
747 *crc = ext4_chksum(sbi, *crc, sbi->s_fc_bh->b_data, bsize);
749 ext4_fc_submit_bh(sb, false);
751 ret = jbd2_fc_get_buf(EXT4_SB(sb)->s_journal, &bh);
752 if (ret)
753 return NULL;
754 sbi->s_fc_bh = bh;
755 sbi->s_fc_bytes += bsize - off + len;
756 return sbi->s_fc_bh->b_data;
760 * Complete a fast commit by writing tail tag.
762 * Writing tail tag marks the end of a fast commit. In order to guarantee
763 * atomicity, after writing tail tag, even if there's space remaining
764 * in the block, next commit shouldn't use it. That's why tail tag
765 * has the length as that of the remaining space on the block.
767 static int ext4_fc_write_tail(struct super_block *sb, u32 crc)
769 struct ext4_sb_info *sbi = EXT4_SB(sb);
770 struct ext4_fc_tl tl;
771 struct ext4_fc_tail tail;
772 int off, bsize = sbi->s_journal->j_blocksize;
773 u8 *dst;
776 * ext4_fc_reserve_space takes care of allocating an extra block if
777 * there's no enough space on this block for accommodating this tail.
779 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + sizeof(tail), &crc);
780 if (!dst)
781 return -ENOSPC;
783 off = sbi->s_fc_bytes % bsize;
785 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_TAIL);
786 tl.fc_len = cpu_to_le16(bsize - off + sizeof(struct ext4_fc_tail));
787 sbi->s_fc_bytes = round_up(sbi->s_fc_bytes, bsize);
789 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
790 dst += EXT4_FC_TAG_BASE_LEN;
791 tail.fc_tid = cpu_to_le32(sbi->s_journal->j_running_transaction->t_tid);
792 memcpy(dst, &tail.fc_tid, sizeof(tail.fc_tid));
793 dst += sizeof(tail.fc_tid);
794 crc = ext4_chksum(sbi, crc, sbi->s_fc_bh->b_data,
795 dst - (u8 *)sbi->s_fc_bh->b_data);
796 tail.fc_crc = cpu_to_le32(crc);
797 memcpy(dst, &tail.fc_crc, sizeof(tail.fc_crc));
798 dst += sizeof(tail.fc_crc);
799 memset(dst, 0, bsize - off); /* Don't leak uninitialized memory. */
801 ext4_fc_submit_bh(sb, true);
803 return 0;
807 * Adds tag, length, value and updates CRC. Returns true if tlv was added.
808 * Returns false if there's not enough space.
810 static bool ext4_fc_add_tlv(struct super_block *sb, u16 tag, u16 len, u8 *val,
811 u32 *crc)
813 struct ext4_fc_tl tl;
814 u8 *dst;
816 dst = ext4_fc_reserve_space(sb, EXT4_FC_TAG_BASE_LEN + len, crc);
817 if (!dst)
818 return false;
820 tl.fc_tag = cpu_to_le16(tag);
821 tl.fc_len = cpu_to_le16(len);
823 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
824 memcpy(dst + EXT4_FC_TAG_BASE_LEN, val, len);
826 return true;
829 /* Same as above, but adds dentry tlv. */
830 static bool ext4_fc_add_dentry_tlv(struct super_block *sb, u32 *crc,
831 struct ext4_fc_dentry_update *fc_dentry)
833 struct ext4_fc_dentry_info fcd;
834 struct ext4_fc_tl tl;
835 int dlen = fc_dentry->fcd_name.len;
836 u8 *dst = ext4_fc_reserve_space(sb,
837 EXT4_FC_TAG_BASE_LEN + sizeof(fcd) + dlen, crc);
839 if (!dst)
840 return false;
842 fcd.fc_parent_ino = cpu_to_le32(fc_dentry->fcd_parent);
843 fcd.fc_ino = cpu_to_le32(fc_dentry->fcd_ino);
844 tl.fc_tag = cpu_to_le16(fc_dentry->fcd_op);
845 tl.fc_len = cpu_to_le16(sizeof(fcd) + dlen);
846 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
847 dst += EXT4_FC_TAG_BASE_LEN;
848 memcpy(dst, &fcd, sizeof(fcd));
849 dst += sizeof(fcd);
850 memcpy(dst, fc_dentry->fcd_name.name, dlen);
852 return true;
856 * Writes inode in the fast commit space under TLV with tag @tag.
857 * Returns 0 on success, error on failure.
859 static int ext4_fc_write_inode(struct inode *inode, u32 *crc)
861 struct ext4_inode_info *ei = EXT4_I(inode);
862 int inode_len = EXT4_GOOD_OLD_INODE_SIZE;
863 int ret;
864 struct ext4_iloc iloc;
865 struct ext4_fc_inode fc_inode;
866 struct ext4_fc_tl tl;
867 u8 *dst;
869 ret = ext4_get_inode_loc(inode, &iloc);
870 if (ret)
871 return ret;
873 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
874 inode_len = EXT4_INODE_SIZE(inode->i_sb);
875 else if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE)
876 inode_len += ei->i_extra_isize;
878 fc_inode.fc_ino = cpu_to_le32(inode->i_ino);
879 tl.fc_tag = cpu_to_le16(EXT4_FC_TAG_INODE);
880 tl.fc_len = cpu_to_le16(inode_len + sizeof(fc_inode.fc_ino));
882 ret = -ECANCELED;
883 dst = ext4_fc_reserve_space(inode->i_sb,
884 EXT4_FC_TAG_BASE_LEN + inode_len + sizeof(fc_inode.fc_ino), crc);
885 if (!dst)
886 goto err;
888 memcpy(dst, &tl, EXT4_FC_TAG_BASE_LEN);
889 dst += EXT4_FC_TAG_BASE_LEN;
890 memcpy(dst, &fc_inode, sizeof(fc_inode));
891 dst += sizeof(fc_inode);
892 memcpy(dst, (u8 *)ext4_raw_inode(&iloc), inode_len);
893 ret = 0;
894 err:
895 brelse(iloc.bh);
896 return ret;
900 * Writes updated data ranges for the inode in question. Updates CRC.
901 * Returns 0 on success, error otherwise.
903 static int ext4_fc_write_inode_data(struct inode *inode, u32 *crc)
905 ext4_lblk_t old_blk_size, cur_lblk_off, new_blk_size;
906 struct ext4_inode_info *ei = EXT4_I(inode);
907 struct ext4_map_blocks map;
908 struct ext4_fc_add_range fc_ext;
909 struct ext4_fc_del_range lrange;
910 struct ext4_extent *ex;
911 int ret;
913 mutex_lock(&ei->i_fc_lock);
914 if (ei->i_fc_lblk_len == 0) {
915 mutex_unlock(&ei->i_fc_lock);
916 return 0;
918 old_blk_size = ei->i_fc_lblk_start;
919 new_blk_size = ei->i_fc_lblk_start + ei->i_fc_lblk_len - 1;
920 ei->i_fc_lblk_len = 0;
921 mutex_unlock(&ei->i_fc_lock);
923 cur_lblk_off = old_blk_size;
924 ext4_debug("will try writing %d to %d for inode %ld\n",
925 cur_lblk_off, new_blk_size, inode->i_ino);
927 while (cur_lblk_off <= new_blk_size) {
928 map.m_lblk = cur_lblk_off;
929 map.m_len = new_blk_size - cur_lblk_off + 1;
930 ret = ext4_map_blocks(NULL, inode, &map, 0);
931 if (ret < 0)
932 return -ECANCELED;
934 if (map.m_len == 0) {
935 cur_lblk_off++;
936 continue;
939 if (ret == 0) {
940 lrange.fc_ino = cpu_to_le32(inode->i_ino);
941 lrange.fc_lblk = cpu_to_le32(map.m_lblk);
942 lrange.fc_len = cpu_to_le32(map.m_len);
943 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_DEL_RANGE,
944 sizeof(lrange), (u8 *)&lrange, crc))
945 return -ENOSPC;
946 } else {
947 unsigned int max = (map.m_flags & EXT4_MAP_UNWRITTEN) ?
948 EXT_UNWRITTEN_MAX_LEN : EXT_INIT_MAX_LEN;
950 /* Limit the number of blocks in one extent */
951 map.m_len = min(max, map.m_len);
953 fc_ext.fc_ino = cpu_to_le32(inode->i_ino);
954 ex = (struct ext4_extent *)&fc_ext.fc_ex;
955 ex->ee_block = cpu_to_le32(map.m_lblk);
956 ex->ee_len = cpu_to_le16(map.m_len);
957 ext4_ext_store_pblock(ex, map.m_pblk);
958 if (map.m_flags & EXT4_MAP_UNWRITTEN)
959 ext4_ext_mark_unwritten(ex);
960 else
961 ext4_ext_mark_initialized(ex);
962 if (!ext4_fc_add_tlv(inode->i_sb, EXT4_FC_TAG_ADD_RANGE,
963 sizeof(fc_ext), (u8 *)&fc_ext, crc))
964 return -ENOSPC;
967 cur_lblk_off += map.m_len;
970 return 0;
974 /* Submit data for all the fast commit inodes */
975 static int ext4_fc_submit_inode_data_all(journal_t *journal)
977 struct super_block *sb = journal->j_private;
978 struct ext4_sb_info *sbi = EXT4_SB(sb);
979 struct ext4_inode_info *ei;
980 int ret = 0;
982 spin_lock(&sbi->s_fc_lock);
983 list_for_each_entry(ei, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
984 ext4_set_inode_state(&ei->vfs_inode, EXT4_STATE_FC_COMMITTING);
985 while (atomic_read(&ei->i_fc_updates)) {
986 DEFINE_WAIT(wait);
988 prepare_to_wait(&ei->i_fc_wait, &wait,
989 TASK_UNINTERRUPTIBLE);
990 if (atomic_read(&ei->i_fc_updates)) {
991 spin_unlock(&sbi->s_fc_lock);
992 schedule();
993 spin_lock(&sbi->s_fc_lock);
995 finish_wait(&ei->i_fc_wait, &wait);
997 spin_unlock(&sbi->s_fc_lock);
998 ret = jbd2_submit_inode_data(journal, ei->jinode);
999 if (ret)
1000 return ret;
1001 spin_lock(&sbi->s_fc_lock);
1003 spin_unlock(&sbi->s_fc_lock);
1005 return ret;
1008 /* Wait for completion of data for all the fast commit inodes */
1009 static int ext4_fc_wait_inode_data_all(journal_t *journal)
1011 struct super_block *sb = journal->j_private;
1012 struct ext4_sb_info *sbi = EXT4_SB(sb);
1013 struct ext4_inode_info *pos, *n;
1014 int ret = 0;
1016 spin_lock(&sbi->s_fc_lock);
1017 list_for_each_entry_safe(pos, n, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1018 if (!ext4_test_inode_state(&pos->vfs_inode,
1019 EXT4_STATE_FC_COMMITTING))
1020 continue;
1021 spin_unlock(&sbi->s_fc_lock);
1023 ret = jbd2_wait_inode_data(journal, pos->jinode);
1024 if (ret)
1025 return ret;
1026 spin_lock(&sbi->s_fc_lock);
1028 spin_unlock(&sbi->s_fc_lock);
1030 return 0;
1033 /* Commit all the directory entry updates */
1034 static int ext4_fc_commit_dentry_updates(journal_t *journal, u32 *crc)
1035 __acquires(&sbi->s_fc_lock)
1036 __releases(&sbi->s_fc_lock)
1038 struct super_block *sb = journal->j_private;
1039 struct ext4_sb_info *sbi = EXT4_SB(sb);
1040 struct ext4_fc_dentry_update *fc_dentry, *fc_dentry_n;
1041 struct inode *inode;
1042 struct ext4_inode_info *ei;
1043 int ret;
1045 if (list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN]))
1046 return 0;
1047 list_for_each_entry_safe(fc_dentry, fc_dentry_n,
1048 &sbi->s_fc_dentry_q[FC_Q_MAIN], fcd_list) {
1049 if (fc_dentry->fcd_op != EXT4_FC_TAG_CREAT) {
1050 spin_unlock(&sbi->s_fc_lock);
1051 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1052 ret = -ENOSPC;
1053 goto lock_and_exit;
1055 spin_lock(&sbi->s_fc_lock);
1056 continue;
1059 * With fcd_dilist we need not loop in sbi->s_fc_q to get the
1060 * corresponding inode pointer
1062 WARN_ON(list_empty(&fc_dentry->fcd_dilist));
1063 ei = list_first_entry(&fc_dentry->fcd_dilist,
1064 struct ext4_inode_info, i_fc_dilist);
1065 inode = &ei->vfs_inode;
1066 WARN_ON(inode->i_ino != fc_dentry->fcd_ino);
1068 spin_unlock(&sbi->s_fc_lock);
1071 * We first write the inode and then the create dirent. This
1072 * allows the recovery code to create an unnamed inode first
1073 * and then link it to a directory entry. This allows us
1074 * to use namei.c routines almost as is and simplifies
1075 * the recovery code.
1077 ret = ext4_fc_write_inode(inode, crc);
1078 if (ret)
1079 goto lock_and_exit;
1081 ret = ext4_fc_write_inode_data(inode, crc);
1082 if (ret)
1083 goto lock_and_exit;
1085 if (!ext4_fc_add_dentry_tlv(sb, crc, fc_dentry)) {
1086 ret = -ENOSPC;
1087 goto lock_and_exit;
1090 spin_lock(&sbi->s_fc_lock);
1092 return 0;
1093 lock_and_exit:
1094 spin_lock(&sbi->s_fc_lock);
1095 return ret;
1098 static int ext4_fc_perform_commit(journal_t *journal)
1100 struct super_block *sb = journal->j_private;
1101 struct ext4_sb_info *sbi = EXT4_SB(sb);
1102 struct ext4_inode_info *iter;
1103 struct ext4_fc_head head;
1104 struct inode *inode;
1105 struct blk_plug plug;
1106 int ret = 0;
1107 u32 crc = 0;
1109 ret = ext4_fc_submit_inode_data_all(journal);
1110 if (ret)
1111 return ret;
1113 ret = ext4_fc_wait_inode_data_all(journal);
1114 if (ret)
1115 return ret;
1118 * If file system device is different from journal device, issue a cache
1119 * flush before we start writing fast commit blocks.
1121 if (journal->j_fs_dev != journal->j_dev)
1122 blkdev_issue_flush(journal->j_fs_dev);
1124 blk_start_plug(&plug);
1125 if (sbi->s_fc_bytes == 0) {
1127 * Add a head tag only if this is the first fast commit
1128 * in this TID.
1130 head.fc_features = cpu_to_le32(EXT4_FC_SUPPORTED_FEATURES);
1131 head.fc_tid = cpu_to_le32(
1132 sbi->s_journal->j_running_transaction->t_tid);
1133 if (!ext4_fc_add_tlv(sb, EXT4_FC_TAG_HEAD, sizeof(head),
1134 (u8 *)&head, &crc)) {
1135 ret = -ENOSPC;
1136 goto out;
1140 spin_lock(&sbi->s_fc_lock);
1141 ret = ext4_fc_commit_dentry_updates(journal, &crc);
1142 if (ret) {
1143 spin_unlock(&sbi->s_fc_lock);
1144 goto out;
1147 list_for_each_entry(iter, &sbi->s_fc_q[FC_Q_MAIN], i_fc_list) {
1148 inode = &iter->vfs_inode;
1149 if (!ext4_test_inode_state(inode, EXT4_STATE_FC_COMMITTING))
1150 continue;
1152 spin_unlock(&sbi->s_fc_lock);
1153 ret = ext4_fc_write_inode_data(inode, &crc);
1154 if (ret)
1155 goto out;
1156 ret = ext4_fc_write_inode(inode, &crc);
1157 if (ret)
1158 goto out;
1159 spin_lock(&sbi->s_fc_lock);
1161 spin_unlock(&sbi->s_fc_lock);
1163 ret = ext4_fc_write_tail(sb, crc);
1165 out:
1166 blk_finish_plug(&plug);
1167 return ret;
1170 static void ext4_fc_update_stats(struct super_block *sb, int status,
1171 u64 commit_time, int nblks, tid_t commit_tid)
1173 struct ext4_fc_stats *stats = &EXT4_SB(sb)->s_fc_stats;
1175 ext4_debug("Fast commit ended with status = %d for tid %u",
1176 status, commit_tid);
1177 if (status == EXT4_FC_STATUS_OK) {
1178 stats->fc_num_commits++;
1179 stats->fc_numblks += nblks;
1180 if (likely(stats->s_fc_avg_commit_time))
1181 stats->s_fc_avg_commit_time =
1182 (commit_time +
1183 stats->s_fc_avg_commit_time * 3) / 4;
1184 else
1185 stats->s_fc_avg_commit_time = commit_time;
1186 } else if (status == EXT4_FC_STATUS_FAILED ||
1187 status == EXT4_FC_STATUS_INELIGIBLE) {
1188 if (status == EXT4_FC_STATUS_FAILED)
1189 stats->fc_failed_commits++;
1190 stats->fc_ineligible_commits++;
1191 } else {
1192 stats->fc_skipped_commits++;
1194 trace_ext4_fc_commit_stop(sb, nblks, status, commit_tid);
1198 * The main commit entry point. Performs a fast commit for transaction
1199 * commit_tid if needed. If it's not possible to perform a fast commit
1200 * due to various reasons, we fall back to full commit. Returns 0
1201 * on success, error otherwise.
1203 int ext4_fc_commit(journal_t *journal, tid_t commit_tid)
1205 struct super_block *sb = journal->j_private;
1206 struct ext4_sb_info *sbi = EXT4_SB(sb);
1207 int nblks = 0, ret, bsize = journal->j_blocksize;
1208 int subtid = atomic_read(&sbi->s_fc_subtid);
1209 int status = EXT4_FC_STATUS_OK, fc_bufs_before = 0;
1210 ktime_t start_time, commit_time;
1212 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
1213 return jbd2_complete_transaction(journal, commit_tid);
1215 trace_ext4_fc_commit_start(sb, commit_tid);
1217 start_time = ktime_get();
1219 restart_fc:
1220 ret = jbd2_fc_begin_commit(journal, commit_tid);
1221 if (ret == -EALREADY) {
1222 /* There was an ongoing commit, check if we need to restart */
1223 if (atomic_read(&sbi->s_fc_subtid) <= subtid &&
1224 tid_gt(commit_tid, journal->j_commit_sequence))
1225 goto restart_fc;
1226 ext4_fc_update_stats(sb, EXT4_FC_STATUS_SKIPPED, 0, 0,
1227 commit_tid);
1228 return 0;
1229 } else if (ret) {
1231 * Commit couldn't start. Just update stats and perform a
1232 * full commit.
1234 ext4_fc_update_stats(sb, EXT4_FC_STATUS_FAILED, 0, 0,
1235 commit_tid);
1236 return jbd2_complete_transaction(journal, commit_tid);
1240 * After establishing journal barrier via jbd2_fc_begin_commit(), check
1241 * if we are fast commit ineligible.
1243 if (ext4_test_mount_flag(sb, EXT4_MF_FC_INELIGIBLE)) {
1244 status = EXT4_FC_STATUS_INELIGIBLE;
1245 goto fallback;
1248 fc_bufs_before = (sbi->s_fc_bytes + bsize - 1) / bsize;
1249 ret = ext4_fc_perform_commit(journal);
1250 if (ret < 0) {
1251 status = EXT4_FC_STATUS_FAILED;
1252 goto fallback;
1254 nblks = (sbi->s_fc_bytes + bsize - 1) / bsize - fc_bufs_before;
1255 ret = jbd2_fc_wait_bufs(journal, nblks);
1256 if (ret < 0) {
1257 status = EXT4_FC_STATUS_FAILED;
1258 goto fallback;
1260 atomic_inc(&sbi->s_fc_subtid);
1261 ret = jbd2_fc_end_commit(journal);
1263 * weight the commit time higher than the average time so we
1264 * don't react too strongly to vast changes in the commit time
1266 commit_time = ktime_to_ns(ktime_sub(ktime_get(), start_time));
1267 ext4_fc_update_stats(sb, status, commit_time, nblks, commit_tid);
1268 return ret;
1270 fallback:
1271 ret = jbd2_fc_end_commit_fallback(journal);
1272 ext4_fc_update_stats(sb, status, 0, 0, commit_tid);
1273 return ret;
1277 * Fast commit cleanup routine. This is called after every fast commit and
1278 * full commit. full is true if we are called after a full commit.
1280 static void ext4_fc_cleanup(journal_t *journal, int full, tid_t tid)
1282 struct super_block *sb = journal->j_private;
1283 struct ext4_sb_info *sbi = EXT4_SB(sb);
1284 struct ext4_inode_info *iter, *iter_n;
1285 struct ext4_fc_dentry_update *fc_dentry;
1287 if (full && sbi->s_fc_bh)
1288 sbi->s_fc_bh = NULL;
1290 trace_ext4_fc_cleanup(journal, full, tid);
1291 jbd2_fc_release_bufs(journal);
1293 spin_lock(&sbi->s_fc_lock);
1294 list_for_each_entry_safe(iter, iter_n, &sbi->s_fc_q[FC_Q_MAIN],
1295 i_fc_list) {
1296 list_del_init(&iter->i_fc_list);
1297 ext4_clear_inode_state(&iter->vfs_inode,
1298 EXT4_STATE_FC_COMMITTING);
1299 if (tid_geq(tid, iter->i_sync_tid)) {
1300 ext4_fc_reset_inode(&iter->vfs_inode);
1301 } else if (full) {
1303 * We are called after a full commit, inode has been
1304 * modified while the commit was running. Re-enqueue
1305 * the inode into STAGING, which will then be splice
1306 * back into MAIN. This cannot happen during
1307 * fastcommit because the journal is locked all the
1308 * time in that case (and tid doesn't increase so
1309 * tid check above isn't reliable).
1311 list_add_tail(&EXT4_I(&iter->vfs_inode)->i_fc_list,
1312 &sbi->s_fc_q[FC_Q_STAGING]);
1314 /* Make sure EXT4_STATE_FC_COMMITTING bit is clear */
1315 smp_mb();
1316 #if (BITS_PER_LONG < 64)
1317 wake_up_bit(&iter->i_state_flags, EXT4_STATE_FC_COMMITTING);
1318 #else
1319 wake_up_bit(&iter->i_flags, EXT4_STATE_FC_COMMITTING);
1320 #endif
1323 while (!list_empty(&sbi->s_fc_dentry_q[FC_Q_MAIN])) {
1324 fc_dentry = list_first_entry(&sbi->s_fc_dentry_q[FC_Q_MAIN],
1325 struct ext4_fc_dentry_update,
1326 fcd_list);
1327 list_del_init(&fc_dentry->fcd_list);
1328 list_del_init(&fc_dentry->fcd_dilist);
1329 spin_unlock(&sbi->s_fc_lock);
1331 if (fc_dentry->fcd_name.name &&
1332 fc_dentry->fcd_name.len > DNAME_INLINE_LEN)
1333 kfree(fc_dentry->fcd_name.name);
1334 kmem_cache_free(ext4_fc_dentry_cachep, fc_dentry);
1335 spin_lock(&sbi->s_fc_lock);
1338 list_splice_init(&sbi->s_fc_dentry_q[FC_Q_STAGING],
1339 &sbi->s_fc_dentry_q[FC_Q_MAIN]);
1340 list_splice_init(&sbi->s_fc_q[FC_Q_STAGING],
1341 &sbi->s_fc_q[FC_Q_MAIN]);
1343 if (tid_geq(tid, sbi->s_fc_ineligible_tid)) {
1344 sbi->s_fc_ineligible_tid = 0;
1345 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
1348 if (full)
1349 sbi->s_fc_bytes = 0;
1350 spin_unlock(&sbi->s_fc_lock);
1351 trace_ext4_fc_stats(sb);
1354 /* Ext4 Replay Path Routines */
1356 /* Helper struct for dentry replay routines */
1357 struct dentry_info_args {
1358 int parent_ino, dname_len, ino, inode_len;
1359 char *dname;
1362 /* Same as struct ext4_fc_tl, but uses native endianness fields */
1363 struct ext4_fc_tl_mem {
1364 u16 fc_tag;
1365 u16 fc_len;
1368 static inline void tl_to_darg(struct dentry_info_args *darg,
1369 struct ext4_fc_tl_mem *tl, u8 *val)
1371 struct ext4_fc_dentry_info fcd;
1373 memcpy(&fcd, val, sizeof(fcd));
1375 darg->parent_ino = le32_to_cpu(fcd.fc_parent_ino);
1376 darg->ino = le32_to_cpu(fcd.fc_ino);
1377 darg->dname = val + offsetof(struct ext4_fc_dentry_info, fc_dname);
1378 darg->dname_len = tl->fc_len - sizeof(struct ext4_fc_dentry_info);
1381 static inline void ext4_fc_get_tl(struct ext4_fc_tl_mem *tl, u8 *val)
1383 struct ext4_fc_tl tl_disk;
1385 memcpy(&tl_disk, val, EXT4_FC_TAG_BASE_LEN);
1386 tl->fc_len = le16_to_cpu(tl_disk.fc_len);
1387 tl->fc_tag = le16_to_cpu(tl_disk.fc_tag);
1390 /* Unlink replay function */
1391 static int ext4_fc_replay_unlink(struct super_block *sb,
1392 struct ext4_fc_tl_mem *tl, u8 *val)
1394 struct inode *inode, *old_parent;
1395 struct qstr entry;
1396 struct dentry_info_args darg;
1397 int ret = 0;
1399 tl_to_darg(&darg, tl, val);
1401 trace_ext4_fc_replay(sb, EXT4_FC_TAG_UNLINK, darg.ino,
1402 darg.parent_ino, darg.dname_len);
1404 entry.name = darg.dname;
1405 entry.len = darg.dname_len;
1406 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1408 if (IS_ERR(inode)) {
1409 ext4_debug("Inode %d not found", darg.ino);
1410 return 0;
1413 old_parent = ext4_iget(sb, darg.parent_ino,
1414 EXT4_IGET_NORMAL);
1415 if (IS_ERR(old_parent)) {
1416 ext4_debug("Dir with inode %d not found", darg.parent_ino);
1417 iput(inode);
1418 return 0;
1421 ret = __ext4_unlink(old_parent, &entry, inode, NULL);
1422 /* -ENOENT ok coz it might not exist anymore. */
1423 if (ret == -ENOENT)
1424 ret = 0;
1425 iput(old_parent);
1426 iput(inode);
1427 return ret;
1430 static int ext4_fc_replay_link_internal(struct super_block *sb,
1431 struct dentry_info_args *darg,
1432 struct inode *inode)
1434 struct inode *dir = NULL;
1435 struct dentry *dentry_dir = NULL, *dentry_inode = NULL;
1436 struct qstr qstr_dname = QSTR_INIT(darg->dname, darg->dname_len);
1437 int ret = 0;
1439 dir = ext4_iget(sb, darg->parent_ino, EXT4_IGET_NORMAL);
1440 if (IS_ERR(dir)) {
1441 ext4_debug("Dir with inode %d not found.", darg->parent_ino);
1442 dir = NULL;
1443 goto out;
1446 dentry_dir = d_obtain_alias(dir);
1447 if (IS_ERR(dentry_dir)) {
1448 ext4_debug("Failed to obtain dentry");
1449 dentry_dir = NULL;
1450 goto out;
1453 dentry_inode = d_alloc(dentry_dir, &qstr_dname);
1454 if (!dentry_inode) {
1455 ext4_debug("Inode dentry not created.");
1456 ret = -ENOMEM;
1457 goto out;
1460 ret = __ext4_link(dir, inode, dentry_inode);
1462 * It's possible that link already existed since data blocks
1463 * for the dir in question got persisted before we crashed OR
1464 * we replayed this tag and crashed before the entire replay
1465 * could complete.
1467 if (ret && ret != -EEXIST) {
1468 ext4_debug("Failed to link\n");
1469 goto out;
1472 ret = 0;
1473 out:
1474 if (dentry_dir) {
1475 d_drop(dentry_dir);
1476 dput(dentry_dir);
1477 } else if (dir) {
1478 iput(dir);
1480 if (dentry_inode) {
1481 d_drop(dentry_inode);
1482 dput(dentry_inode);
1485 return ret;
1488 /* Link replay function */
1489 static int ext4_fc_replay_link(struct super_block *sb,
1490 struct ext4_fc_tl_mem *tl, u8 *val)
1492 struct inode *inode;
1493 struct dentry_info_args darg;
1494 int ret = 0;
1496 tl_to_darg(&darg, tl, val);
1497 trace_ext4_fc_replay(sb, EXT4_FC_TAG_LINK, darg.ino,
1498 darg.parent_ino, darg.dname_len);
1500 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1501 if (IS_ERR(inode)) {
1502 ext4_debug("Inode not found.");
1503 return 0;
1506 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1507 iput(inode);
1508 return ret;
1512 * Record all the modified inodes during replay. We use this later to setup
1513 * block bitmaps correctly.
1515 static int ext4_fc_record_modified_inode(struct super_block *sb, int ino)
1517 struct ext4_fc_replay_state *state;
1518 int i;
1520 state = &EXT4_SB(sb)->s_fc_replay_state;
1521 for (i = 0; i < state->fc_modified_inodes_used; i++)
1522 if (state->fc_modified_inodes[i] == ino)
1523 return 0;
1524 if (state->fc_modified_inodes_used == state->fc_modified_inodes_size) {
1525 int *fc_modified_inodes;
1527 fc_modified_inodes = krealloc(state->fc_modified_inodes,
1528 sizeof(int) * (state->fc_modified_inodes_size +
1529 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1530 GFP_KERNEL);
1531 if (!fc_modified_inodes)
1532 return -ENOMEM;
1533 state->fc_modified_inodes = fc_modified_inodes;
1534 state->fc_modified_inodes_size +=
1535 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1537 state->fc_modified_inodes[state->fc_modified_inodes_used++] = ino;
1538 return 0;
1542 * Inode replay function
1544 static int ext4_fc_replay_inode(struct super_block *sb,
1545 struct ext4_fc_tl_mem *tl, u8 *val)
1547 struct ext4_fc_inode fc_inode;
1548 struct ext4_inode *raw_inode;
1549 struct ext4_inode *raw_fc_inode;
1550 struct inode *inode = NULL;
1551 struct ext4_iloc iloc;
1552 int inode_len, ino, ret, tag = tl->fc_tag;
1553 struct ext4_extent_header *eh;
1554 size_t off_gen = offsetof(struct ext4_inode, i_generation);
1556 memcpy(&fc_inode, val, sizeof(fc_inode));
1558 ino = le32_to_cpu(fc_inode.fc_ino);
1559 trace_ext4_fc_replay(sb, tag, ino, 0, 0);
1561 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1562 if (!IS_ERR(inode)) {
1563 ext4_ext_clear_bb(inode);
1564 iput(inode);
1566 inode = NULL;
1568 ret = ext4_fc_record_modified_inode(sb, ino);
1569 if (ret)
1570 goto out;
1572 raw_fc_inode = (struct ext4_inode *)
1573 (val + offsetof(struct ext4_fc_inode, fc_raw_inode));
1574 ret = ext4_get_fc_inode_loc(sb, ino, &iloc);
1575 if (ret)
1576 goto out;
1578 inode_len = tl->fc_len - sizeof(struct ext4_fc_inode);
1579 raw_inode = ext4_raw_inode(&iloc);
1581 memcpy(raw_inode, raw_fc_inode, offsetof(struct ext4_inode, i_block));
1582 memcpy((u8 *)raw_inode + off_gen, (u8 *)raw_fc_inode + off_gen,
1583 inode_len - off_gen);
1584 if (le32_to_cpu(raw_inode->i_flags) & EXT4_EXTENTS_FL) {
1585 eh = (struct ext4_extent_header *)(&raw_inode->i_block[0]);
1586 if (eh->eh_magic != EXT4_EXT_MAGIC) {
1587 memset(eh, 0, sizeof(*eh));
1588 eh->eh_magic = EXT4_EXT_MAGIC;
1589 eh->eh_max = cpu_to_le16(
1590 (sizeof(raw_inode->i_block) -
1591 sizeof(struct ext4_extent_header))
1592 / sizeof(struct ext4_extent));
1594 } else if (le32_to_cpu(raw_inode->i_flags) & EXT4_INLINE_DATA_FL) {
1595 memcpy(raw_inode->i_block, raw_fc_inode->i_block,
1596 sizeof(raw_inode->i_block));
1599 /* Immediately update the inode on disk. */
1600 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1601 if (ret)
1602 goto out;
1603 ret = sync_dirty_buffer(iloc.bh);
1604 if (ret)
1605 goto out;
1606 ret = ext4_mark_inode_used(sb, ino);
1607 if (ret)
1608 goto out;
1610 /* Given that we just wrote the inode on disk, this SHOULD succeed. */
1611 inode = ext4_iget(sb, ino, EXT4_IGET_NORMAL);
1612 if (IS_ERR(inode)) {
1613 ext4_debug("Inode not found.");
1614 return -EFSCORRUPTED;
1618 * Our allocator could have made different decisions than before
1619 * crashing. This should be fixed but until then, we calculate
1620 * the number of blocks the inode.
1622 if (!ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA))
1623 ext4_ext_replay_set_iblocks(inode);
1625 inode->i_generation = le32_to_cpu(ext4_raw_inode(&iloc)->i_generation);
1626 ext4_reset_inode_seed(inode);
1628 ext4_inode_csum_set(inode, ext4_raw_inode(&iloc), EXT4_I(inode));
1629 ret = ext4_handle_dirty_metadata(NULL, NULL, iloc.bh);
1630 sync_dirty_buffer(iloc.bh);
1631 brelse(iloc.bh);
1632 out:
1633 iput(inode);
1634 if (!ret)
1635 blkdev_issue_flush(sb->s_bdev);
1637 return 0;
1641 * Dentry create replay function.
1643 * EXT4_FC_TAG_CREAT is preceded by EXT4_FC_TAG_INODE_FULL. Which means, the
1644 * inode for which we are trying to create a dentry here, should already have
1645 * been replayed before we start here.
1647 static int ext4_fc_replay_create(struct super_block *sb,
1648 struct ext4_fc_tl_mem *tl, u8 *val)
1650 int ret = 0;
1651 struct inode *inode = NULL;
1652 struct inode *dir = NULL;
1653 struct dentry_info_args darg;
1655 tl_to_darg(&darg, tl, val);
1657 trace_ext4_fc_replay(sb, EXT4_FC_TAG_CREAT, darg.ino,
1658 darg.parent_ino, darg.dname_len);
1660 /* This takes care of update group descriptor and other metadata */
1661 ret = ext4_mark_inode_used(sb, darg.ino);
1662 if (ret)
1663 goto out;
1665 inode = ext4_iget(sb, darg.ino, EXT4_IGET_NORMAL);
1666 if (IS_ERR(inode)) {
1667 ext4_debug("inode %d not found.", darg.ino);
1668 inode = NULL;
1669 ret = -EINVAL;
1670 goto out;
1673 if (S_ISDIR(inode->i_mode)) {
1675 * If we are creating a directory, we need to make sure that the
1676 * dot and dot dot dirents are setup properly.
1678 dir = ext4_iget(sb, darg.parent_ino, EXT4_IGET_NORMAL);
1679 if (IS_ERR(dir)) {
1680 ext4_debug("Dir %d not found.", darg.ino);
1681 goto out;
1683 ret = ext4_init_new_dir(NULL, dir, inode);
1684 iput(dir);
1685 if (ret) {
1686 ret = 0;
1687 goto out;
1690 ret = ext4_fc_replay_link_internal(sb, &darg, inode);
1691 if (ret)
1692 goto out;
1693 set_nlink(inode, 1);
1694 ext4_mark_inode_dirty(NULL, inode);
1695 out:
1696 iput(inode);
1697 return ret;
1701 * Record physical disk regions which are in use as per fast commit area,
1702 * and used by inodes during replay phase. Our simple replay phase
1703 * allocator excludes these regions from allocation.
1705 int ext4_fc_record_regions(struct super_block *sb, int ino,
1706 ext4_lblk_t lblk, ext4_fsblk_t pblk, int len, int replay)
1708 struct ext4_fc_replay_state *state;
1709 struct ext4_fc_alloc_region *region;
1711 state = &EXT4_SB(sb)->s_fc_replay_state;
1713 * during replay phase, the fc_regions_valid may not same as
1714 * fc_regions_used, update it when do new additions.
1716 if (replay && state->fc_regions_used != state->fc_regions_valid)
1717 state->fc_regions_used = state->fc_regions_valid;
1718 if (state->fc_regions_used == state->fc_regions_size) {
1719 struct ext4_fc_alloc_region *fc_regions;
1721 fc_regions = krealloc(state->fc_regions,
1722 sizeof(struct ext4_fc_alloc_region) *
1723 (state->fc_regions_size +
1724 EXT4_FC_REPLAY_REALLOC_INCREMENT),
1725 GFP_KERNEL);
1726 if (!fc_regions)
1727 return -ENOMEM;
1728 state->fc_regions_size +=
1729 EXT4_FC_REPLAY_REALLOC_INCREMENT;
1730 state->fc_regions = fc_regions;
1732 region = &state->fc_regions[state->fc_regions_used++];
1733 region->ino = ino;
1734 region->lblk = lblk;
1735 region->pblk = pblk;
1736 region->len = len;
1738 if (replay)
1739 state->fc_regions_valid++;
1741 return 0;
1744 /* Replay add range tag */
1745 static int ext4_fc_replay_add_range(struct super_block *sb,
1746 struct ext4_fc_tl_mem *tl, u8 *val)
1748 struct ext4_fc_add_range fc_add_ex;
1749 struct ext4_extent newex, *ex;
1750 struct inode *inode;
1751 ext4_lblk_t start, cur;
1752 int remaining, len;
1753 ext4_fsblk_t start_pblk;
1754 struct ext4_map_blocks map;
1755 struct ext4_ext_path *path = NULL;
1756 int ret;
1758 memcpy(&fc_add_ex, val, sizeof(fc_add_ex));
1759 ex = (struct ext4_extent *)&fc_add_ex.fc_ex;
1761 trace_ext4_fc_replay(sb, EXT4_FC_TAG_ADD_RANGE,
1762 le32_to_cpu(fc_add_ex.fc_ino), le32_to_cpu(ex->ee_block),
1763 ext4_ext_get_actual_len(ex));
1765 inode = ext4_iget(sb, le32_to_cpu(fc_add_ex.fc_ino), EXT4_IGET_NORMAL);
1766 if (IS_ERR(inode)) {
1767 ext4_debug("Inode not found.");
1768 return 0;
1771 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1772 if (ret)
1773 goto out;
1775 start = le32_to_cpu(ex->ee_block);
1776 start_pblk = ext4_ext_pblock(ex);
1777 len = ext4_ext_get_actual_len(ex);
1779 cur = start;
1780 remaining = len;
1781 ext4_debug("ADD_RANGE, lblk %d, pblk %lld, len %d, unwritten %d, inode %ld\n",
1782 start, start_pblk, len, ext4_ext_is_unwritten(ex),
1783 inode->i_ino);
1785 while (remaining > 0) {
1786 map.m_lblk = cur;
1787 map.m_len = remaining;
1788 map.m_pblk = 0;
1789 ret = ext4_map_blocks(NULL, inode, &map, 0);
1791 if (ret < 0)
1792 goto out;
1794 if (ret == 0) {
1795 /* Range is not mapped */
1796 path = ext4_find_extent(inode, cur, path, 0);
1797 if (IS_ERR(path))
1798 goto out;
1799 memset(&newex, 0, sizeof(newex));
1800 newex.ee_block = cpu_to_le32(cur);
1801 ext4_ext_store_pblock(
1802 &newex, start_pblk + cur - start);
1803 newex.ee_len = cpu_to_le16(map.m_len);
1804 if (ext4_ext_is_unwritten(ex))
1805 ext4_ext_mark_unwritten(&newex);
1806 down_write(&EXT4_I(inode)->i_data_sem);
1807 path = ext4_ext_insert_extent(NULL, inode,
1808 path, &newex, 0);
1809 up_write((&EXT4_I(inode)->i_data_sem));
1810 if (IS_ERR(path))
1811 goto out;
1812 goto next;
1815 if (start_pblk + cur - start != map.m_pblk) {
1817 * Logical to physical mapping changed. This can happen
1818 * if this range was removed and then reallocated to
1819 * map to new physical blocks during a fast commit.
1821 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1822 ext4_ext_is_unwritten(ex),
1823 start_pblk + cur - start);
1824 if (ret)
1825 goto out;
1827 * Mark the old blocks as free since they aren't used
1828 * anymore. We maintain an array of all the modified
1829 * inodes. In case these blocks are still used at either
1830 * a different logical range in the same inode or in
1831 * some different inode, we will mark them as allocated
1832 * at the end of the FC replay using our array of
1833 * modified inodes.
1835 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1836 goto next;
1839 /* Range is mapped and needs a state change */
1840 ext4_debug("Converting from %ld to %d %lld",
1841 map.m_flags & EXT4_MAP_UNWRITTEN,
1842 ext4_ext_is_unwritten(ex), map.m_pblk);
1843 ret = ext4_ext_replay_update_ex(inode, cur, map.m_len,
1844 ext4_ext_is_unwritten(ex), map.m_pblk);
1845 if (ret)
1846 goto out;
1848 * We may have split the extent tree while toggling the state.
1849 * Try to shrink the extent tree now.
1851 ext4_ext_replay_shrink_inode(inode, start + len);
1852 next:
1853 cur += map.m_len;
1854 remaining -= map.m_len;
1856 ext4_ext_replay_shrink_inode(inode, i_size_read(inode) >>
1857 sb->s_blocksize_bits);
1858 out:
1859 ext4_free_ext_path(path);
1860 iput(inode);
1861 return 0;
1864 /* Replay DEL_RANGE tag */
1865 static int
1866 ext4_fc_replay_del_range(struct super_block *sb,
1867 struct ext4_fc_tl_mem *tl, u8 *val)
1869 struct inode *inode;
1870 struct ext4_fc_del_range lrange;
1871 struct ext4_map_blocks map;
1872 ext4_lblk_t cur, remaining;
1873 int ret;
1875 memcpy(&lrange, val, sizeof(lrange));
1876 cur = le32_to_cpu(lrange.fc_lblk);
1877 remaining = le32_to_cpu(lrange.fc_len);
1879 trace_ext4_fc_replay(sb, EXT4_FC_TAG_DEL_RANGE,
1880 le32_to_cpu(lrange.fc_ino), cur, remaining);
1882 inode = ext4_iget(sb, le32_to_cpu(lrange.fc_ino), EXT4_IGET_NORMAL);
1883 if (IS_ERR(inode)) {
1884 ext4_debug("Inode %d not found", le32_to_cpu(lrange.fc_ino));
1885 return 0;
1888 ret = ext4_fc_record_modified_inode(sb, inode->i_ino);
1889 if (ret)
1890 goto out;
1892 ext4_debug("DEL_RANGE, inode %ld, lblk %d, len %d\n",
1893 inode->i_ino, le32_to_cpu(lrange.fc_lblk),
1894 le32_to_cpu(lrange.fc_len));
1895 while (remaining > 0) {
1896 map.m_lblk = cur;
1897 map.m_len = remaining;
1899 ret = ext4_map_blocks(NULL, inode, &map, 0);
1900 if (ret < 0)
1901 goto out;
1902 if (ret > 0) {
1903 remaining -= ret;
1904 cur += ret;
1905 ext4_mb_mark_bb(inode->i_sb, map.m_pblk, map.m_len, false);
1906 } else {
1907 remaining -= map.m_len;
1908 cur += map.m_len;
1912 down_write(&EXT4_I(inode)->i_data_sem);
1913 ret = ext4_ext_remove_space(inode, le32_to_cpu(lrange.fc_lblk),
1914 le32_to_cpu(lrange.fc_lblk) +
1915 le32_to_cpu(lrange.fc_len) - 1);
1916 up_write(&EXT4_I(inode)->i_data_sem);
1917 if (ret)
1918 goto out;
1919 ext4_ext_replay_shrink_inode(inode,
1920 i_size_read(inode) >> sb->s_blocksize_bits);
1921 ext4_mark_inode_dirty(NULL, inode);
1922 out:
1923 iput(inode);
1924 return 0;
1927 static void ext4_fc_set_bitmaps_and_counters(struct super_block *sb)
1929 struct ext4_fc_replay_state *state;
1930 struct inode *inode;
1931 struct ext4_ext_path *path = NULL;
1932 struct ext4_map_blocks map;
1933 int i, ret, j;
1934 ext4_lblk_t cur, end;
1936 state = &EXT4_SB(sb)->s_fc_replay_state;
1937 for (i = 0; i < state->fc_modified_inodes_used; i++) {
1938 inode = ext4_iget(sb, state->fc_modified_inodes[i],
1939 EXT4_IGET_NORMAL);
1940 if (IS_ERR(inode)) {
1941 ext4_debug("Inode %d not found.",
1942 state->fc_modified_inodes[i]);
1943 continue;
1945 cur = 0;
1946 end = EXT_MAX_BLOCKS;
1947 if (ext4_test_inode_flag(inode, EXT4_INODE_INLINE_DATA)) {
1948 iput(inode);
1949 continue;
1951 while (cur < end) {
1952 map.m_lblk = cur;
1953 map.m_len = end - cur;
1955 ret = ext4_map_blocks(NULL, inode, &map, 0);
1956 if (ret < 0)
1957 break;
1959 if (ret > 0) {
1960 path = ext4_find_extent(inode, map.m_lblk, path, 0);
1961 if (!IS_ERR(path)) {
1962 for (j = 0; j < path->p_depth; j++)
1963 ext4_mb_mark_bb(inode->i_sb,
1964 path[j].p_block, 1, true);
1965 } else {
1966 path = NULL;
1968 cur += ret;
1969 ext4_mb_mark_bb(inode->i_sb, map.m_pblk,
1970 map.m_len, true);
1971 } else {
1972 cur = cur + (map.m_len ? map.m_len : 1);
1975 iput(inode);
1978 ext4_free_ext_path(path);
1982 * Check if block is in excluded regions for block allocation. The simple
1983 * allocator that runs during replay phase is calls this function to see
1984 * if it is okay to use a block.
1986 bool ext4_fc_replay_check_excluded(struct super_block *sb, ext4_fsblk_t blk)
1988 int i;
1989 struct ext4_fc_replay_state *state;
1991 state = &EXT4_SB(sb)->s_fc_replay_state;
1992 for (i = 0; i < state->fc_regions_valid; i++) {
1993 if (state->fc_regions[i].ino == 0 ||
1994 state->fc_regions[i].len == 0)
1995 continue;
1996 if (in_range(blk, state->fc_regions[i].pblk,
1997 state->fc_regions[i].len))
1998 return true;
2000 return false;
2003 /* Cleanup function called after replay */
2004 void ext4_fc_replay_cleanup(struct super_block *sb)
2006 struct ext4_sb_info *sbi = EXT4_SB(sb);
2008 sbi->s_mount_state &= ~EXT4_FC_REPLAY;
2009 kfree(sbi->s_fc_replay_state.fc_regions);
2010 kfree(sbi->s_fc_replay_state.fc_modified_inodes);
2013 static bool ext4_fc_value_len_isvalid(struct ext4_sb_info *sbi,
2014 int tag, int len)
2016 switch (tag) {
2017 case EXT4_FC_TAG_ADD_RANGE:
2018 return len == sizeof(struct ext4_fc_add_range);
2019 case EXT4_FC_TAG_DEL_RANGE:
2020 return len == sizeof(struct ext4_fc_del_range);
2021 case EXT4_FC_TAG_CREAT:
2022 case EXT4_FC_TAG_LINK:
2023 case EXT4_FC_TAG_UNLINK:
2024 len -= sizeof(struct ext4_fc_dentry_info);
2025 return len >= 1 && len <= EXT4_NAME_LEN;
2026 case EXT4_FC_TAG_INODE:
2027 len -= sizeof(struct ext4_fc_inode);
2028 return len >= EXT4_GOOD_OLD_INODE_SIZE &&
2029 len <= sbi->s_inode_size;
2030 case EXT4_FC_TAG_PAD:
2031 return true; /* padding can have any length */
2032 case EXT4_FC_TAG_TAIL:
2033 return len >= sizeof(struct ext4_fc_tail);
2034 case EXT4_FC_TAG_HEAD:
2035 return len == sizeof(struct ext4_fc_head);
2037 return false;
2041 * Recovery Scan phase handler
2043 * This function is called during the scan phase and is responsible
2044 * for doing following things:
2045 * - Make sure the fast commit area has valid tags for replay
2046 * - Count number of tags that need to be replayed by the replay handler
2047 * - Verify CRC
2048 * - Create a list of excluded blocks for allocation during replay phase
2050 * This function returns JBD2_FC_REPLAY_CONTINUE to indicate that SCAN is
2051 * incomplete and JBD2 should send more blocks. It returns JBD2_FC_REPLAY_STOP
2052 * to indicate that scan has finished and JBD2 can now start replay phase.
2053 * It returns a negative error to indicate that there was an error. At the end
2054 * of a successful scan phase, sbi->s_fc_replay_state.fc_replay_num_tags is set
2055 * to indicate the number of tags that need to replayed during the replay phase.
2057 static int ext4_fc_replay_scan(journal_t *journal,
2058 struct buffer_head *bh, int off,
2059 tid_t expected_tid)
2061 struct super_block *sb = journal->j_private;
2062 struct ext4_sb_info *sbi = EXT4_SB(sb);
2063 struct ext4_fc_replay_state *state;
2064 int ret = JBD2_FC_REPLAY_CONTINUE;
2065 struct ext4_fc_add_range ext;
2066 struct ext4_fc_tl_mem tl;
2067 struct ext4_fc_tail tail;
2068 __u8 *start, *end, *cur, *val;
2069 struct ext4_fc_head head;
2070 struct ext4_extent *ex;
2072 state = &sbi->s_fc_replay_state;
2074 start = (u8 *)bh->b_data;
2075 end = start + journal->j_blocksize;
2077 if (state->fc_replay_expected_off == 0) {
2078 state->fc_cur_tag = 0;
2079 state->fc_replay_num_tags = 0;
2080 state->fc_crc = 0;
2081 state->fc_regions = NULL;
2082 state->fc_regions_valid = state->fc_regions_used =
2083 state->fc_regions_size = 0;
2084 /* Check if we can stop early */
2085 if (le16_to_cpu(((struct ext4_fc_tl *)start)->fc_tag)
2086 != EXT4_FC_TAG_HEAD)
2087 return 0;
2090 if (off != state->fc_replay_expected_off) {
2091 ret = -EFSCORRUPTED;
2092 goto out_err;
2095 state->fc_replay_expected_off++;
2096 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2097 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2098 ext4_fc_get_tl(&tl, cur);
2099 val = cur + EXT4_FC_TAG_BASE_LEN;
2100 if (tl.fc_len > end - val ||
2101 !ext4_fc_value_len_isvalid(sbi, tl.fc_tag, tl.fc_len)) {
2102 ret = state->fc_replay_num_tags ?
2103 JBD2_FC_REPLAY_STOP : -ECANCELED;
2104 goto out_err;
2106 ext4_debug("Scan phase, tag:%s, blk %lld\n",
2107 tag2str(tl.fc_tag), bh->b_blocknr);
2108 switch (tl.fc_tag) {
2109 case EXT4_FC_TAG_ADD_RANGE:
2110 memcpy(&ext, val, sizeof(ext));
2111 ex = (struct ext4_extent *)&ext.fc_ex;
2112 ret = ext4_fc_record_regions(sb,
2113 le32_to_cpu(ext.fc_ino),
2114 le32_to_cpu(ex->ee_block), ext4_ext_pblock(ex),
2115 ext4_ext_get_actual_len(ex), 0);
2116 if (ret < 0)
2117 break;
2118 ret = JBD2_FC_REPLAY_CONTINUE;
2119 fallthrough;
2120 case EXT4_FC_TAG_DEL_RANGE:
2121 case EXT4_FC_TAG_LINK:
2122 case EXT4_FC_TAG_UNLINK:
2123 case EXT4_FC_TAG_CREAT:
2124 case EXT4_FC_TAG_INODE:
2125 case EXT4_FC_TAG_PAD:
2126 state->fc_cur_tag++;
2127 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2128 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2129 break;
2130 case EXT4_FC_TAG_TAIL:
2131 state->fc_cur_tag++;
2132 memcpy(&tail, val, sizeof(tail));
2133 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2134 EXT4_FC_TAG_BASE_LEN +
2135 offsetof(struct ext4_fc_tail,
2136 fc_crc));
2137 if (le32_to_cpu(tail.fc_tid) == expected_tid &&
2138 le32_to_cpu(tail.fc_crc) == state->fc_crc) {
2139 state->fc_replay_num_tags = state->fc_cur_tag;
2140 state->fc_regions_valid =
2141 state->fc_regions_used;
2142 } else {
2143 ret = state->fc_replay_num_tags ?
2144 JBD2_FC_REPLAY_STOP : -EFSBADCRC;
2146 state->fc_crc = 0;
2147 break;
2148 case EXT4_FC_TAG_HEAD:
2149 memcpy(&head, val, sizeof(head));
2150 if (le32_to_cpu(head.fc_features) &
2151 ~EXT4_FC_SUPPORTED_FEATURES) {
2152 ret = -EOPNOTSUPP;
2153 break;
2155 if (le32_to_cpu(head.fc_tid) != expected_tid) {
2156 ret = JBD2_FC_REPLAY_STOP;
2157 break;
2159 state->fc_cur_tag++;
2160 state->fc_crc = ext4_chksum(sbi, state->fc_crc, cur,
2161 EXT4_FC_TAG_BASE_LEN + tl.fc_len);
2162 break;
2163 default:
2164 ret = state->fc_replay_num_tags ?
2165 JBD2_FC_REPLAY_STOP : -ECANCELED;
2167 if (ret < 0 || ret == JBD2_FC_REPLAY_STOP)
2168 break;
2171 out_err:
2172 trace_ext4_fc_replay_scan(sb, ret, off);
2173 return ret;
2177 * Main recovery path entry point.
2178 * The meaning of return codes is similar as above.
2180 static int ext4_fc_replay(journal_t *journal, struct buffer_head *bh,
2181 enum passtype pass, int off, tid_t expected_tid)
2183 struct super_block *sb = journal->j_private;
2184 struct ext4_sb_info *sbi = EXT4_SB(sb);
2185 struct ext4_fc_tl_mem tl;
2186 __u8 *start, *end, *cur, *val;
2187 int ret = JBD2_FC_REPLAY_CONTINUE;
2188 struct ext4_fc_replay_state *state = &sbi->s_fc_replay_state;
2189 struct ext4_fc_tail tail;
2191 if (pass == PASS_SCAN) {
2192 state->fc_current_pass = PASS_SCAN;
2193 return ext4_fc_replay_scan(journal, bh, off, expected_tid);
2196 if (state->fc_current_pass != pass) {
2197 state->fc_current_pass = pass;
2198 sbi->s_mount_state |= EXT4_FC_REPLAY;
2200 if (!sbi->s_fc_replay_state.fc_replay_num_tags) {
2201 ext4_debug("Replay stops\n");
2202 ext4_fc_set_bitmaps_and_counters(sb);
2203 return 0;
2206 #ifdef CONFIG_EXT4_DEBUG
2207 if (sbi->s_fc_debug_max_replay && off >= sbi->s_fc_debug_max_replay) {
2208 pr_warn("Dropping fc block %d because max_replay set\n", off);
2209 return JBD2_FC_REPLAY_STOP;
2211 #endif
2213 start = (u8 *)bh->b_data;
2214 end = start + journal->j_blocksize;
2216 for (cur = start; cur <= end - EXT4_FC_TAG_BASE_LEN;
2217 cur = cur + EXT4_FC_TAG_BASE_LEN + tl.fc_len) {
2218 ext4_fc_get_tl(&tl, cur);
2219 val = cur + EXT4_FC_TAG_BASE_LEN;
2221 if (state->fc_replay_num_tags == 0) {
2222 ret = JBD2_FC_REPLAY_STOP;
2223 ext4_fc_set_bitmaps_and_counters(sb);
2224 break;
2227 ext4_debug("Replay phase, tag:%s\n", tag2str(tl.fc_tag));
2228 state->fc_replay_num_tags--;
2229 switch (tl.fc_tag) {
2230 case EXT4_FC_TAG_LINK:
2231 ret = ext4_fc_replay_link(sb, &tl, val);
2232 break;
2233 case EXT4_FC_TAG_UNLINK:
2234 ret = ext4_fc_replay_unlink(sb, &tl, val);
2235 break;
2236 case EXT4_FC_TAG_ADD_RANGE:
2237 ret = ext4_fc_replay_add_range(sb, &tl, val);
2238 break;
2239 case EXT4_FC_TAG_CREAT:
2240 ret = ext4_fc_replay_create(sb, &tl, val);
2241 break;
2242 case EXT4_FC_TAG_DEL_RANGE:
2243 ret = ext4_fc_replay_del_range(sb, &tl, val);
2244 break;
2245 case EXT4_FC_TAG_INODE:
2246 ret = ext4_fc_replay_inode(sb, &tl, val);
2247 break;
2248 case EXT4_FC_TAG_PAD:
2249 trace_ext4_fc_replay(sb, EXT4_FC_TAG_PAD, 0,
2250 tl.fc_len, 0);
2251 break;
2252 case EXT4_FC_TAG_TAIL:
2253 trace_ext4_fc_replay(sb, EXT4_FC_TAG_TAIL,
2254 0, tl.fc_len, 0);
2255 memcpy(&tail, val, sizeof(tail));
2256 WARN_ON(le32_to_cpu(tail.fc_tid) != expected_tid);
2257 break;
2258 case EXT4_FC_TAG_HEAD:
2259 break;
2260 default:
2261 trace_ext4_fc_replay(sb, tl.fc_tag, 0, tl.fc_len, 0);
2262 ret = -ECANCELED;
2263 break;
2265 if (ret < 0)
2266 break;
2267 ret = JBD2_FC_REPLAY_CONTINUE;
2269 return ret;
2272 void ext4_fc_init(struct super_block *sb, journal_t *journal)
2275 * We set replay callback even if fast commit disabled because we may
2276 * could still have fast commit blocks that need to be replayed even if
2277 * fast commit has now been turned off.
2279 journal->j_fc_replay_callback = ext4_fc_replay;
2280 if (!test_opt2(sb, JOURNAL_FAST_COMMIT))
2281 return;
2282 journal->j_fc_cleanup_callback = ext4_fc_cleanup;
2285 static const char * const fc_ineligible_reasons[] = {
2286 [EXT4_FC_REASON_XATTR] = "Extended attributes changed",
2287 [EXT4_FC_REASON_CROSS_RENAME] = "Cross rename",
2288 [EXT4_FC_REASON_JOURNAL_FLAG_CHANGE] = "Journal flag changed",
2289 [EXT4_FC_REASON_NOMEM] = "Insufficient memory",
2290 [EXT4_FC_REASON_SWAP_BOOT] = "Swap boot",
2291 [EXT4_FC_REASON_RESIZE] = "Resize",
2292 [EXT4_FC_REASON_RENAME_DIR] = "Dir renamed",
2293 [EXT4_FC_REASON_FALLOC_RANGE] = "Falloc range op",
2294 [EXT4_FC_REASON_INODE_JOURNAL_DATA] = "Data journalling",
2295 [EXT4_FC_REASON_ENCRYPTED_FILENAME] = "Encrypted filename",
2298 int ext4_fc_info_show(struct seq_file *seq, void *v)
2300 struct ext4_sb_info *sbi = EXT4_SB((struct super_block *)seq->private);
2301 struct ext4_fc_stats *stats = &sbi->s_fc_stats;
2302 int i;
2304 if (v != SEQ_START_TOKEN)
2305 return 0;
2307 seq_printf(seq,
2308 "fc stats:\n%ld commits\n%ld ineligible\n%ld numblks\n%lluus avg_commit_time\n",
2309 stats->fc_num_commits, stats->fc_ineligible_commits,
2310 stats->fc_numblks,
2311 div_u64(stats->s_fc_avg_commit_time, 1000));
2312 seq_puts(seq, "Ineligible reasons:\n");
2313 for (i = 0; i < EXT4_FC_REASON_MAX; i++)
2314 seq_printf(seq, "\"%s\":\t%d\n", fc_ineligible_reasons[i],
2315 stats->fc_ineligible_reason_count[i]);
2317 return 0;
2320 int __init ext4_fc_init_dentry_cache(void)
2322 ext4_fc_dentry_cachep = KMEM_CACHE(ext4_fc_dentry_update,
2323 SLAB_RECLAIM_ACCOUNT);
2325 if (ext4_fc_dentry_cachep == NULL)
2326 return -ENOMEM;
2328 return 0;
2331 void ext4_fc_destroy_dentry_cache(void)
2333 kmem_cache_destroy(ext4_fc_dentry_cachep);