Merge tag 'hwmon-for-v6.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / fs / gfs2 / lock_dlm.c
blob58aeeae7ed8cd0624f46fa3d22c55943ec242dd1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
5 */
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/fs.h>
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
17 #include "incore.h"
18 #include "glock.h"
19 #include "glops.h"
20 #include "recovery.h"
21 #include "util.h"
22 #include "sys.h"
23 #include "trace_gfs2.h"
25 /**
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
31 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
32 s64 sample)
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
45 * entry
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
52 s64 delta = sample - s->stats[index];
53 s->stats[index] += (delta >> 3);
54 index++;
55 s->stats[index] += (s64)(abs(delta) - s->stats[index]) >> 2;
58 /**
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
62 * This assumes that gl->gl_dstamp has been set earlier.
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
66 * reply from the dlm.
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
75 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
77 struct gfs2_pcpu_lkstats *lks;
78 const unsigned gltype = gl->gl_name.ln_type;
79 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
80 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
81 s64 rtt;
83 preempt_disable();
84 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
85 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
86 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
87 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
88 preempt_enable();
90 trace_gfs2_glock_lock_time(gl, rtt);
93 /**
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
99 * each dlm call.
102 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
104 struct gfs2_pcpu_lkstats *lks;
105 const unsigned gltype = gl->gl_name.ln_type;
106 ktime_t dstamp;
107 s64 irt;
109 preempt_disable();
110 dstamp = gl->gl_dstamp;
111 gl->gl_dstamp = ktime_get_real();
112 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
113 lks = this_cpu_ptr(gl->gl_name.ln_sbd->sd_lkstats);
114 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
115 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
116 preempt_enable();
119 static void gdlm_ast(void *arg)
121 struct gfs2_glock *gl = arg;
122 unsigned ret = gl->gl_state;
124 /* If the glock is dead, we only react to a dlm_unlock() reply. */
125 if (__lockref_is_dead(&gl->gl_lockref) &&
126 gl->gl_lksb.sb_status != -DLM_EUNLOCK)
127 return;
129 gfs2_update_reply_times(gl);
130 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
132 if ((gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID) && gl->gl_lksb.sb_lvbptr)
133 memset(gl->gl_lksb.sb_lvbptr, 0, GDLM_LVB_SIZE);
135 switch (gl->gl_lksb.sb_status) {
136 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
137 if (gl->gl_ops->go_unlocked)
138 gl->gl_ops->go_unlocked(gl);
139 gfs2_glock_free(gl);
140 return;
141 case -DLM_ECANCEL: /* Cancel while getting lock */
142 ret |= LM_OUT_CANCELED;
143 goto out;
144 case -EAGAIN: /* Try lock fails */
145 case -EDEADLK: /* Deadlock detected */
146 goto out;
147 case -ETIMEDOUT: /* Canceled due to timeout */
148 ret |= LM_OUT_ERROR;
149 goto out;
150 case 0: /* Success */
151 break;
152 default: /* Something unexpected */
153 BUG();
156 ret = gl->gl_req;
157 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
158 if (gl->gl_req == LM_ST_SHARED)
159 ret = LM_ST_DEFERRED;
160 else if (gl->gl_req == LM_ST_DEFERRED)
161 ret = LM_ST_SHARED;
162 else
163 BUG();
167 * The GLF_INITIAL flag is initially set for new glocks. Upon the
168 * first successful new (non-conversion) request, we clear this flag to
169 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
170 * identifier to use for identifying it.
172 * Any failed initial requests do not create a DLM lock, so we ignore
173 * the gl->gl_lksb.sb_lkid values that come with such requests.
176 clear_bit(GLF_INITIAL, &gl->gl_flags);
177 gfs2_glock_complete(gl, ret);
178 return;
179 out:
180 if (test_bit(GLF_INITIAL, &gl->gl_flags))
181 gl->gl_lksb.sb_lkid = 0;
182 gfs2_glock_complete(gl, ret);
185 static void gdlm_bast(void *arg, int mode)
187 struct gfs2_glock *gl = arg;
189 if (__lockref_is_dead(&gl->gl_lockref))
190 return;
192 switch (mode) {
193 case DLM_LOCK_EX:
194 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
195 break;
196 case DLM_LOCK_CW:
197 gfs2_glock_cb(gl, LM_ST_DEFERRED);
198 break;
199 case DLM_LOCK_PR:
200 gfs2_glock_cb(gl, LM_ST_SHARED);
201 break;
202 default:
203 fs_err(gl->gl_name.ln_sbd, "unknown bast mode %d\n", mode);
204 BUG();
208 /* convert gfs lock-state to dlm lock-mode */
210 static int make_mode(struct gfs2_sbd *sdp, const unsigned int lmstate)
212 switch (lmstate) {
213 case LM_ST_UNLOCKED:
214 return DLM_LOCK_NL;
215 case LM_ST_EXCLUSIVE:
216 return DLM_LOCK_EX;
217 case LM_ST_DEFERRED:
218 return DLM_LOCK_CW;
219 case LM_ST_SHARED:
220 return DLM_LOCK_PR;
222 fs_err(sdp, "unknown LM state %d\n", lmstate);
223 BUG();
224 return -1;
227 /* Taken from fs/dlm/lock.c. */
229 static bool middle_conversion(int cur, int req)
231 return (cur == DLM_LOCK_PR && req == DLM_LOCK_CW) ||
232 (cur == DLM_LOCK_CW && req == DLM_LOCK_PR);
235 static bool down_conversion(int cur, int req)
237 return !middle_conversion(cur, req) && req < cur;
240 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
241 const int cur, const int req)
243 u32 lkf = 0;
245 if (gl->gl_lksb.sb_lvbptr)
246 lkf |= DLM_LKF_VALBLK;
248 if (gfs_flags & LM_FLAG_TRY)
249 lkf |= DLM_LKF_NOQUEUE;
251 if (gfs_flags & LM_FLAG_TRY_1CB) {
252 lkf |= DLM_LKF_NOQUEUE;
253 lkf |= DLM_LKF_NOQUEUEBAST;
256 if (gfs_flags & LM_FLAG_ANY) {
257 if (req == DLM_LOCK_PR)
258 lkf |= DLM_LKF_ALTCW;
259 else if (req == DLM_LOCK_CW)
260 lkf |= DLM_LKF_ALTPR;
261 else
262 BUG();
265 if (!test_bit(GLF_INITIAL, &gl->gl_flags)) {
266 lkf |= DLM_LKF_CONVERT;
269 * The DLM_LKF_QUECVT flag needs to be set for "first come,
270 * first served" semantics, but it must only be set for
271 * "upward" lock conversions or else DLM will reject the
272 * request as invalid.
274 if (!down_conversion(cur, req))
275 lkf |= DLM_LKF_QUECVT;
278 return lkf;
281 static void gfs2_reverse_hex(char *c, u64 value)
283 *c = '0';
284 while (value) {
285 *c-- = hex_asc[value & 0x0f];
286 value >>= 4;
290 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
291 unsigned int flags)
293 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
294 int cur, req;
295 u32 lkf;
296 char strname[GDLM_STRNAME_BYTES] = "";
297 int error;
299 cur = make_mode(gl->gl_name.ln_sbd, gl->gl_state);
300 req = make_mode(gl->gl_name.ln_sbd, req_state);
301 lkf = make_flags(gl, flags, cur, req);
302 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
303 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
304 if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
305 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
306 strname[GDLM_STRNAME_BYTES - 1] = '\0';
307 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
308 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
309 gl->gl_dstamp = ktime_get_real();
310 } else {
311 gfs2_update_request_times(gl);
314 * Submit the actual lock request.
317 again:
318 error = dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
319 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
320 if (error == -EBUSY) {
321 msleep(20);
322 goto again;
324 return error;
327 static void gdlm_put_lock(struct gfs2_glock *gl)
329 struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
330 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
331 int error;
333 BUG_ON(!__lockref_is_dead(&gl->gl_lockref));
335 if (test_bit(GLF_INITIAL, &gl->gl_flags)) {
336 gfs2_glock_free(gl);
337 return;
340 clear_bit(GLF_BLOCKING, &gl->gl_flags);
341 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
342 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
343 gfs2_update_request_times(gl);
345 /* don't want to call dlm if we've unmounted the lock protocol */
346 if (test_bit(DFL_UNMOUNT, &ls->ls_recover_flags)) {
347 gfs2_glock_free(gl);
348 return;
352 * When the lockspace is released, all remaining glocks will be
353 * unlocked automatically. This is more efficient than unlocking them
354 * individually, but when the lock is held in DLM_LOCK_EX or
355 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
358 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
359 (!gl->gl_lksb.sb_lvbptr || gl->gl_state != LM_ST_EXCLUSIVE)) {
360 gfs2_glock_free_later(gl);
361 return;
364 again:
365 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
366 NULL, gl);
367 if (error == -EBUSY) {
368 msleep(20);
369 goto again;
372 if (error) {
373 fs_err(sdp, "gdlm_unlock %x,%llx err=%d\n",
374 gl->gl_name.ln_type,
375 (unsigned long long)gl->gl_name.ln_number, error);
379 static void gdlm_cancel(struct gfs2_glock *gl)
381 struct lm_lockstruct *ls = &gl->gl_name.ln_sbd->sd_lockstruct;
382 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
386 * dlm/gfs2 recovery coordination using dlm_recover callbacks
388 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
389 * 1. dlm_controld sees lockspace members change
390 * 2. dlm_controld blocks dlm-kernel locking activity
391 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
392 * 4. dlm_controld starts and finishes its own user level recovery
393 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
394 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
395 * 7. dlm_recoverd does its own lock recovery
396 * 8. dlm_recoverd unblocks dlm-kernel locking activity
397 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
398 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
399 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
400 * 12. gfs2_recover dequeues and recovers journals of failed nodes
401 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
402 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
403 * 15. gfs2_control unblocks normal locking when all journals are recovered
405 * - failures during recovery
407 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
408 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
409 * recovering for a prior failure. gfs2_control needs a way to detect
410 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
411 * the recover_block and recover_start values.
413 * recover_done() provides a new lockspace generation number each time it
414 * is called (step 9). This generation number is saved as recover_start.
415 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
416 * recover_block = recover_start. So, while recover_block is equal to
417 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
418 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
420 * - more specific gfs2 steps in sequence above
422 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
423 * 6. recover_slot records any failed jids (maybe none)
424 * 9. recover_done sets recover_start = new generation number
425 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
426 * 12. gfs2_recover does journal recoveries for failed jids identified above
427 * 14. gfs2_control clears control_lock lvb bits for recovered jids
428 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
429 * again) then do nothing, otherwise if recover_start > recover_block
430 * then clear BLOCK_LOCKS.
432 * - parallel recovery steps across all nodes
434 * All nodes attempt to update the control_lock lvb with the new generation
435 * number and jid bits, but only the first to get the control_lock EX will
436 * do so; others will see that it's already done (lvb already contains new
437 * generation number.)
439 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
440 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
441 * . One node gets control_lock first and writes the lvb, others see it's done
442 * . All nodes attempt to recover jids for which they see control_lock bits set
443 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
444 * . All nodes will eventually see all lvb bits clear and unblock locks
446 * - is there a problem with clearing an lvb bit that should be set
447 * and missing a journal recovery?
449 * 1. jid fails
450 * 2. lvb bit set for step 1
451 * 3. jid recovered for step 1
452 * 4. jid taken again (new mount)
453 * 5. jid fails (for step 4)
454 * 6. lvb bit set for step 5 (will already be set)
455 * 7. lvb bit cleared for step 3
457 * This is not a problem because the failure in step 5 does not
458 * require recovery, because the mount in step 4 could not have
459 * progressed far enough to unblock locks and access the fs. The
460 * control_mount() function waits for all recoveries to be complete
461 * for the latest lockspace generation before ever unblocking locks
462 * and returning. The mount in step 4 waits until the recovery in
463 * step 1 is done.
465 * - special case of first mounter: first node to mount the fs
467 * The first node to mount a gfs2 fs needs to check all the journals
468 * and recover any that need recovery before other nodes are allowed
469 * to mount the fs. (Others may begin mounting, but they must wait
470 * for the first mounter to be done before taking locks on the fs
471 * or accessing the fs.) This has two parts:
473 * 1. The mounted_lock tells a node it's the first to mount the fs.
474 * Each node holds the mounted_lock in PR while it's mounted.
475 * Each node tries to acquire the mounted_lock in EX when it mounts.
476 * If a node is granted the mounted_lock EX it means there are no
477 * other mounted nodes (no PR locks exist), and it is the first mounter.
478 * The mounted_lock is demoted to PR when first recovery is done, so
479 * others will fail to get an EX lock, but will get a PR lock.
481 * 2. The control_lock blocks others in control_mount() while the first
482 * mounter is doing first mount recovery of all journals.
483 * A mounting node needs to acquire control_lock in EX mode before
484 * it can proceed. The first mounter holds control_lock in EX while doing
485 * the first mount recovery, blocking mounts from other nodes, then demotes
486 * control_lock to NL when it's done (others_may_mount/first_done),
487 * allowing other nodes to continue mounting.
489 * first mounter:
490 * control_lock EX/NOQUEUE success
491 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
492 * set first=1
493 * do first mounter recovery
494 * mounted_lock EX->PR
495 * control_lock EX->NL, write lvb generation
497 * other mounter:
498 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
499 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
500 * mounted_lock PR/NOQUEUE success
501 * read lvb generation
502 * control_lock EX->NL
503 * set first=0
505 * - mount during recovery
507 * If a node mounts while others are doing recovery (not first mounter),
508 * the mounting node will get its initial recover_done() callback without
509 * having seen any previous failures/callbacks.
511 * It must wait for all recoveries preceding its mount to be finished
512 * before it unblocks locks. It does this by repeating the "other mounter"
513 * steps above until the lvb generation number is >= its mount generation
514 * number (from initial recover_done) and all lvb bits are clear.
516 * - control_lock lvb format
518 * 4 bytes generation number: the latest dlm lockspace generation number
519 * from recover_done callback. Indicates the jid bitmap has been updated
520 * to reflect all slot failures through that generation.
521 * 4 bytes unused.
522 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
523 * that jid N needs recovery.
526 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
528 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
529 char *lvb_bits)
531 __le32 gen;
532 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
533 memcpy(&gen, lvb_bits, sizeof(__le32));
534 *lvb_gen = le32_to_cpu(gen);
537 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
538 char *lvb_bits)
540 __le32 gen;
541 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
542 gen = cpu_to_le32(lvb_gen);
543 memcpy(ls->ls_control_lvb, &gen, sizeof(__le32));
546 static int all_jid_bits_clear(char *lvb)
548 return !memchr_inv(lvb + JID_BITMAP_OFFSET, 0,
549 GDLM_LVB_SIZE - JID_BITMAP_OFFSET);
552 static void sync_wait_cb(void *arg)
554 struct lm_lockstruct *ls = arg;
555 complete(&ls->ls_sync_wait);
558 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
560 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
561 int error;
563 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
564 if (error) {
565 fs_err(sdp, "%s lkid %x error %d\n",
566 name, lksb->sb_lkid, error);
567 return error;
570 wait_for_completion(&ls->ls_sync_wait);
572 if (lksb->sb_status != -DLM_EUNLOCK) {
573 fs_err(sdp, "%s lkid %x status %d\n",
574 name, lksb->sb_lkid, lksb->sb_status);
575 return -1;
577 return 0;
580 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
581 unsigned int num, struct dlm_lksb *lksb, char *name)
583 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
584 char strname[GDLM_STRNAME_BYTES];
585 int error, status;
587 memset(strname, 0, GDLM_STRNAME_BYTES);
588 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
590 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
591 strname, GDLM_STRNAME_BYTES - 1,
592 0, sync_wait_cb, ls, NULL);
593 if (error) {
594 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
595 name, lksb->sb_lkid, flags, mode, error);
596 return error;
599 wait_for_completion(&ls->ls_sync_wait);
601 status = lksb->sb_status;
603 if (status && status != -EAGAIN) {
604 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
605 name, lksb->sb_lkid, flags, mode, status);
608 return status;
611 static int mounted_unlock(struct gfs2_sbd *sdp)
613 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
614 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
617 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
619 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
620 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
621 &ls->ls_mounted_lksb, "mounted_lock");
624 static int control_unlock(struct gfs2_sbd *sdp)
626 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
627 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
630 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
632 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
633 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
634 &ls->ls_control_lksb, "control_lock");
638 * remote_withdraw - react to a node withdrawing from the file system
639 * @sdp: The superblock
641 static void remote_withdraw(struct gfs2_sbd *sdp)
643 struct gfs2_jdesc *jd;
644 int ret = 0, count = 0;
646 list_for_each_entry(jd, &sdp->sd_jindex_list, jd_list) {
647 if (jd->jd_jid == sdp->sd_lockstruct.ls_jid)
648 continue;
649 ret = gfs2_recover_journal(jd, true);
650 if (ret)
651 break;
652 count++;
655 /* Now drop the additional reference we acquired */
656 fs_err(sdp, "Journals checked: %d, ret = %d.\n", count, ret);
659 static void gfs2_control_func(struct work_struct *work)
661 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
662 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
663 uint32_t block_gen, start_gen, lvb_gen, flags;
664 int recover_set = 0;
665 int write_lvb = 0;
666 int recover_size;
667 int i, error;
669 /* First check for other nodes that may have done a withdraw. */
670 if (test_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags)) {
671 remote_withdraw(sdp);
672 clear_bit(SDF_REMOTE_WITHDRAW, &sdp->sd_flags);
673 return;
676 spin_lock(&ls->ls_recover_spin);
678 * No MOUNT_DONE means we're still mounting; control_mount()
679 * will set this flag, after which this thread will take over
680 * all further clearing of BLOCK_LOCKS.
682 * FIRST_MOUNT means this node is doing first mounter recovery,
683 * for which recovery control is handled by
684 * control_mount()/control_first_done(), not this thread.
686 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
687 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
688 spin_unlock(&ls->ls_recover_spin);
689 return;
691 block_gen = ls->ls_recover_block;
692 start_gen = ls->ls_recover_start;
693 spin_unlock(&ls->ls_recover_spin);
696 * Equal block_gen and start_gen implies we are between
697 * recover_prep and recover_done callbacks, which means
698 * dlm recovery is in progress and dlm locking is blocked.
699 * There's no point trying to do any work until recover_done.
702 if (block_gen == start_gen)
703 return;
706 * Propagate recover_submit[] and recover_result[] to lvb:
707 * dlm_recoverd adds to recover_submit[] jids needing recovery
708 * gfs2_recover adds to recover_result[] journal recovery results
710 * set lvb bit for jids in recover_submit[] if the lvb has not
711 * yet been updated for the generation of the failure
713 * clear lvb bit for jids in recover_result[] if the result of
714 * the journal recovery is SUCCESS
717 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
718 if (error) {
719 fs_err(sdp, "control lock EX error %d\n", error);
720 return;
723 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
725 spin_lock(&ls->ls_recover_spin);
726 if (block_gen != ls->ls_recover_block ||
727 start_gen != ls->ls_recover_start) {
728 fs_info(sdp, "recover generation %u block1 %u %u\n",
729 start_gen, block_gen, ls->ls_recover_block);
730 spin_unlock(&ls->ls_recover_spin);
731 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
732 return;
735 recover_size = ls->ls_recover_size;
737 if (lvb_gen <= start_gen) {
739 * Clear lvb bits for jids we've successfully recovered.
740 * Because all nodes attempt to recover failed journals,
741 * a journal can be recovered multiple times successfully
742 * in succession. Only the first will really do recovery,
743 * the others find it clean, but still report a successful
744 * recovery. So, another node may have already recovered
745 * the jid and cleared the lvb bit for it.
747 for (i = 0; i < recover_size; i++) {
748 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
749 continue;
751 ls->ls_recover_result[i] = 0;
753 if (!test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET))
754 continue;
756 __clear_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
757 write_lvb = 1;
761 if (lvb_gen == start_gen) {
763 * Failed slots before start_gen are already set in lvb.
765 for (i = 0; i < recover_size; i++) {
766 if (!ls->ls_recover_submit[i])
767 continue;
768 if (ls->ls_recover_submit[i] < lvb_gen)
769 ls->ls_recover_submit[i] = 0;
771 } else if (lvb_gen < start_gen) {
773 * Failed slots before start_gen are not yet set in lvb.
775 for (i = 0; i < recover_size; i++) {
776 if (!ls->ls_recover_submit[i])
777 continue;
778 if (ls->ls_recover_submit[i] < start_gen) {
779 ls->ls_recover_submit[i] = 0;
780 __set_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET);
783 /* even if there are no bits to set, we need to write the
784 latest generation to the lvb */
785 write_lvb = 1;
786 } else {
788 * we should be getting a recover_done() for lvb_gen soon
791 spin_unlock(&ls->ls_recover_spin);
793 if (write_lvb) {
794 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
795 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
796 } else {
797 flags = DLM_LKF_CONVERT;
800 error = control_lock(sdp, DLM_LOCK_NL, flags);
801 if (error) {
802 fs_err(sdp, "control lock NL error %d\n", error);
803 return;
807 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
808 * and clear a jid bit in the lvb if the recovery is a success.
809 * Eventually all journals will be recovered, all jid bits will
810 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
813 for (i = 0; i < recover_size; i++) {
814 if (test_bit_le(i, ls->ls_lvb_bits + JID_BITMAP_OFFSET)) {
815 fs_info(sdp, "recover generation %u jid %d\n",
816 start_gen, i);
817 gfs2_recover_set(sdp, i);
818 recover_set++;
821 if (recover_set)
822 return;
825 * No more jid bits set in lvb, all recovery is done, unblock locks
826 * (unless a new recover_prep callback has occured blocking locks
827 * again while working above)
830 spin_lock(&ls->ls_recover_spin);
831 if (ls->ls_recover_block == block_gen &&
832 ls->ls_recover_start == start_gen) {
833 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
834 spin_unlock(&ls->ls_recover_spin);
835 fs_info(sdp, "recover generation %u done\n", start_gen);
836 gfs2_glock_thaw(sdp);
837 } else {
838 fs_info(sdp, "recover generation %u block2 %u %u\n",
839 start_gen, block_gen, ls->ls_recover_block);
840 spin_unlock(&ls->ls_recover_spin);
844 static int control_mount(struct gfs2_sbd *sdp)
846 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
847 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
848 int mounted_mode;
849 int retries = 0;
850 int error;
852 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
853 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
854 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
855 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
856 init_completion(&ls->ls_sync_wait);
858 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
860 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
861 if (error) {
862 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
863 return error;
866 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
867 if (error) {
868 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
869 control_unlock(sdp);
870 return error;
872 mounted_mode = DLM_LOCK_NL;
874 restart:
875 if (retries++ && signal_pending(current)) {
876 error = -EINTR;
877 goto fail;
881 * We always start with both locks in NL. control_lock is
882 * demoted to NL below so we don't need to do it here.
885 if (mounted_mode != DLM_LOCK_NL) {
886 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
887 if (error)
888 goto fail;
889 mounted_mode = DLM_LOCK_NL;
893 * Other nodes need to do some work in dlm recovery and gfs2_control
894 * before the recover_done and control_lock will be ready for us below.
895 * A delay here is not required but often avoids having to retry.
898 msleep_interruptible(500);
901 * Acquire control_lock in EX and mounted_lock in either EX or PR.
902 * control_lock lvb keeps track of any pending journal recoveries.
903 * mounted_lock indicates if any other nodes have the fs mounted.
906 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
907 if (error == -EAGAIN) {
908 goto restart;
909 } else if (error) {
910 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
911 goto fail;
915 * If we're a spectator, we don't want to take the lock in EX because
916 * we cannot do the first-mount responsibility it implies: recovery.
918 if (sdp->sd_args.ar_spectator)
919 goto locks_done;
921 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
922 if (!error) {
923 mounted_mode = DLM_LOCK_EX;
924 goto locks_done;
925 } else if (error != -EAGAIN) {
926 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
927 goto fail;
930 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
931 if (!error) {
932 mounted_mode = DLM_LOCK_PR;
933 goto locks_done;
934 } else {
935 /* not even -EAGAIN should happen here */
936 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
937 goto fail;
940 locks_done:
942 * If we got both locks above in EX, then we're the first mounter.
943 * If not, then we need to wait for the control_lock lvb to be
944 * updated by other mounted nodes to reflect our mount generation.
946 * In simple first mounter cases, first mounter will see zero lvb_gen,
947 * but in cases where all existing nodes leave/fail before mounting
948 * nodes finish control_mount, then all nodes will be mounting and
949 * lvb_gen will be non-zero.
952 control_lvb_read(ls, &lvb_gen, ls->ls_lvb_bits);
954 if (lvb_gen == 0xFFFFFFFF) {
955 /* special value to force mount attempts to fail */
956 fs_err(sdp, "control_mount control_lock disabled\n");
957 error = -EINVAL;
958 goto fail;
961 if (mounted_mode == DLM_LOCK_EX) {
962 /* first mounter, keep both EX while doing first recovery */
963 spin_lock(&ls->ls_recover_spin);
964 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
965 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
966 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
967 spin_unlock(&ls->ls_recover_spin);
968 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
969 return 0;
972 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
973 if (error)
974 goto fail;
977 * We are not first mounter, now we need to wait for the control_lock
978 * lvb generation to be >= the generation from our first recover_done
979 * and all lvb bits to be clear (no pending journal recoveries.)
982 if (!all_jid_bits_clear(ls->ls_lvb_bits)) {
983 /* journals need recovery, wait until all are clear */
984 fs_info(sdp, "control_mount wait for journal recovery\n");
985 goto restart;
988 spin_lock(&ls->ls_recover_spin);
989 block_gen = ls->ls_recover_block;
990 start_gen = ls->ls_recover_start;
991 mount_gen = ls->ls_recover_mount;
993 if (lvb_gen < mount_gen) {
994 /* wait for mounted nodes to update control_lock lvb to our
995 generation, which might include new recovery bits set */
996 if (sdp->sd_args.ar_spectator) {
997 fs_info(sdp, "Recovery is required. Waiting for a "
998 "non-spectator to mount.\n");
999 msleep_interruptible(1000);
1000 } else {
1001 fs_info(sdp, "control_mount wait1 block %u start %u "
1002 "mount %u lvb %u flags %lx\n", block_gen,
1003 start_gen, mount_gen, lvb_gen,
1004 ls->ls_recover_flags);
1006 spin_unlock(&ls->ls_recover_spin);
1007 goto restart;
1010 if (lvb_gen != start_gen) {
1011 /* wait for mounted nodes to update control_lock lvb to the
1012 latest recovery generation */
1013 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
1014 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1015 lvb_gen, ls->ls_recover_flags);
1016 spin_unlock(&ls->ls_recover_spin);
1017 goto restart;
1020 if (block_gen == start_gen) {
1021 /* dlm recovery in progress, wait for it to finish */
1022 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
1023 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
1024 lvb_gen, ls->ls_recover_flags);
1025 spin_unlock(&ls->ls_recover_spin);
1026 goto restart;
1029 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1030 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
1031 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1032 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1033 spin_unlock(&ls->ls_recover_spin);
1034 return 0;
1036 fail:
1037 mounted_unlock(sdp);
1038 control_unlock(sdp);
1039 return error;
1042 static int control_first_done(struct gfs2_sbd *sdp)
1044 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1045 uint32_t start_gen, block_gen;
1046 int error;
1048 restart:
1049 spin_lock(&ls->ls_recover_spin);
1050 start_gen = ls->ls_recover_start;
1051 block_gen = ls->ls_recover_block;
1053 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
1054 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1055 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1056 /* sanity check, should not happen */
1057 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
1058 start_gen, block_gen, ls->ls_recover_flags);
1059 spin_unlock(&ls->ls_recover_spin);
1060 control_unlock(sdp);
1061 return -1;
1064 if (start_gen == block_gen) {
1066 * Wait for the end of a dlm recovery cycle to switch from
1067 * first mounter recovery. We can ignore any recover_slot
1068 * callbacks between the recover_prep and next recover_done
1069 * because we are still the first mounter and any failed nodes
1070 * have not fully mounted, so they don't need recovery.
1072 spin_unlock(&ls->ls_recover_spin);
1073 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
1075 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
1076 TASK_UNINTERRUPTIBLE);
1077 goto restart;
1080 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1081 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
1082 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
1083 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
1084 spin_unlock(&ls->ls_recover_spin);
1086 memset(ls->ls_lvb_bits, 0, GDLM_LVB_SIZE);
1087 control_lvb_write(ls, start_gen, ls->ls_lvb_bits);
1089 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
1090 if (error)
1091 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
1093 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
1094 if (error)
1095 fs_err(sdp, "control_first_done control NL error %d\n", error);
1097 return error;
1101 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1102 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1103 * gfs2 jids start at 0, so jid = slot - 1)
1106 #define RECOVER_SIZE_INC 16
1108 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1109 int num_slots)
1111 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1112 uint32_t *submit = NULL;
1113 uint32_t *result = NULL;
1114 uint32_t old_size, new_size;
1115 int i, max_jid;
1117 if (!ls->ls_lvb_bits) {
1118 ls->ls_lvb_bits = kzalloc(GDLM_LVB_SIZE, GFP_NOFS);
1119 if (!ls->ls_lvb_bits)
1120 return -ENOMEM;
1123 max_jid = 0;
1124 for (i = 0; i < num_slots; i++) {
1125 if (max_jid < slots[i].slot - 1)
1126 max_jid = slots[i].slot - 1;
1129 old_size = ls->ls_recover_size;
1130 new_size = old_size;
1131 while (new_size < max_jid + 1)
1132 new_size += RECOVER_SIZE_INC;
1133 if (new_size == old_size)
1134 return 0;
1136 submit = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1137 result = kcalloc(new_size, sizeof(uint32_t), GFP_NOFS);
1138 if (!submit || !result) {
1139 kfree(submit);
1140 kfree(result);
1141 return -ENOMEM;
1144 spin_lock(&ls->ls_recover_spin);
1145 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1146 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1147 kfree(ls->ls_recover_submit);
1148 kfree(ls->ls_recover_result);
1149 ls->ls_recover_submit = submit;
1150 ls->ls_recover_result = result;
1151 ls->ls_recover_size = new_size;
1152 spin_unlock(&ls->ls_recover_spin);
1153 return 0;
1156 static void free_recover_size(struct lm_lockstruct *ls)
1158 kfree(ls->ls_lvb_bits);
1159 kfree(ls->ls_recover_submit);
1160 kfree(ls->ls_recover_result);
1161 ls->ls_recover_submit = NULL;
1162 ls->ls_recover_result = NULL;
1163 ls->ls_recover_size = 0;
1164 ls->ls_lvb_bits = NULL;
1167 /* dlm calls before it does lock recovery */
1169 static void gdlm_recover_prep(void *arg)
1171 struct gfs2_sbd *sdp = arg;
1172 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1174 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1175 fs_err(sdp, "recover_prep ignored due to withdraw.\n");
1176 return;
1178 spin_lock(&ls->ls_recover_spin);
1179 ls->ls_recover_block = ls->ls_recover_start;
1180 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1182 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1183 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1184 spin_unlock(&ls->ls_recover_spin);
1185 return;
1187 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1188 spin_unlock(&ls->ls_recover_spin);
1191 /* dlm calls after recover_prep has been completed on all lockspace members;
1192 identifies slot/jid of failed member */
1194 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1196 struct gfs2_sbd *sdp = arg;
1197 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1198 int jid = slot->slot - 1;
1200 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1201 fs_err(sdp, "recover_slot jid %d ignored due to withdraw.\n",
1202 jid);
1203 return;
1205 spin_lock(&ls->ls_recover_spin);
1206 if (ls->ls_recover_size < jid + 1) {
1207 fs_err(sdp, "recover_slot jid %d gen %u short size %d\n",
1208 jid, ls->ls_recover_block, ls->ls_recover_size);
1209 spin_unlock(&ls->ls_recover_spin);
1210 return;
1213 if (ls->ls_recover_submit[jid]) {
1214 fs_info(sdp, "recover_slot jid %d gen %u prev %u\n",
1215 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1217 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1218 spin_unlock(&ls->ls_recover_spin);
1221 /* dlm calls after recover_slot and after it completes lock recovery */
1223 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1224 int our_slot, uint32_t generation)
1226 struct gfs2_sbd *sdp = arg;
1227 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1229 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1230 fs_err(sdp, "recover_done ignored due to withdraw.\n");
1231 return;
1233 /* ensure the ls jid arrays are large enough */
1234 set_recover_size(sdp, slots, num_slots);
1236 spin_lock(&ls->ls_recover_spin);
1237 ls->ls_recover_start = generation;
1239 if (!ls->ls_recover_mount) {
1240 ls->ls_recover_mount = generation;
1241 ls->ls_jid = our_slot - 1;
1244 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1245 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1247 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1248 smp_mb__after_atomic();
1249 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1250 spin_unlock(&ls->ls_recover_spin);
1253 /* gfs2_recover thread has a journal recovery result */
1255 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1256 unsigned int result)
1258 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1260 if (gfs2_withdrawing_or_withdrawn(sdp)) {
1261 fs_err(sdp, "recovery_result jid %d ignored due to withdraw.\n",
1262 jid);
1263 return;
1265 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1266 return;
1268 /* don't care about the recovery of own journal during mount */
1269 if (jid == ls->ls_jid)
1270 return;
1272 spin_lock(&ls->ls_recover_spin);
1273 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1274 spin_unlock(&ls->ls_recover_spin);
1275 return;
1277 if (ls->ls_recover_size < jid + 1) {
1278 fs_err(sdp, "recovery_result jid %d short size %d\n",
1279 jid, ls->ls_recover_size);
1280 spin_unlock(&ls->ls_recover_spin);
1281 return;
1284 fs_info(sdp, "recover jid %d result %s\n", jid,
1285 result == LM_RD_GAVEUP ? "busy" : "success");
1287 ls->ls_recover_result[jid] = result;
1289 /* GAVEUP means another node is recovering the journal; delay our
1290 next attempt to recover it, to give the other node a chance to
1291 finish before trying again */
1293 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1294 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1295 result == LM_RD_GAVEUP ? HZ : 0);
1296 spin_unlock(&ls->ls_recover_spin);
1299 static const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1300 .recover_prep = gdlm_recover_prep,
1301 .recover_slot = gdlm_recover_slot,
1302 .recover_done = gdlm_recover_done,
1305 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1307 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1308 char cluster[GFS2_LOCKNAME_LEN];
1309 const char *fsname;
1310 uint32_t flags;
1311 int error, ops_result;
1314 * initialize everything
1317 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1318 spin_lock_init(&ls->ls_recover_spin);
1319 ls->ls_recover_flags = 0;
1320 ls->ls_recover_mount = 0;
1321 ls->ls_recover_start = 0;
1322 ls->ls_recover_block = 0;
1323 ls->ls_recover_size = 0;
1324 ls->ls_recover_submit = NULL;
1325 ls->ls_recover_result = NULL;
1326 ls->ls_lvb_bits = NULL;
1328 error = set_recover_size(sdp, NULL, 0);
1329 if (error)
1330 goto fail;
1333 * prepare dlm_new_lockspace args
1336 fsname = strchr(table, ':');
1337 if (!fsname) {
1338 fs_info(sdp, "no fsname found\n");
1339 error = -EINVAL;
1340 goto fail_free;
1342 memset(cluster, 0, sizeof(cluster));
1343 memcpy(cluster, table, strlen(table) - strlen(fsname));
1344 fsname++;
1346 flags = DLM_LSFL_NEWEXCL;
1349 * create/join lockspace
1352 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1353 &gdlm_lockspace_ops, sdp, &ops_result,
1354 &ls->ls_dlm);
1355 if (error) {
1356 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1357 goto fail_free;
1360 if (ops_result < 0) {
1362 * dlm does not support ops callbacks,
1363 * old dlm_controld/gfs_controld are used, try without ops.
1365 fs_info(sdp, "dlm lockspace ops not used\n");
1366 free_recover_size(ls);
1367 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1368 return 0;
1371 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1372 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1373 error = -EINVAL;
1374 goto fail_release;
1378 * control_mount() uses control_lock to determine first mounter,
1379 * and for later mounts, waits for any recoveries to be cleared.
1382 error = control_mount(sdp);
1383 if (error) {
1384 fs_err(sdp, "mount control error %d\n", error);
1385 goto fail_release;
1388 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1389 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1390 smp_mb__after_atomic();
1391 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1392 return 0;
1394 fail_release:
1395 dlm_release_lockspace(ls->ls_dlm, 2);
1396 fail_free:
1397 free_recover_size(ls);
1398 fail:
1399 return error;
1402 static void gdlm_first_done(struct gfs2_sbd *sdp)
1404 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1405 int error;
1407 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1408 return;
1410 error = control_first_done(sdp);
1411 if (error)
1412 fs_err(sdp, "mount first_done error %d\n", error);
1415 static void gdlm_unmount(struct gfs2_sbd *sdp)
1417 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1419 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1420 goto release;
1422 /* wait for gfs2_control_wq to be done with this mount */
1424 spin_lock(&ls->ls_recover_spin);
1425 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1426 spin_unlock(&ls->ls_recover_spin);
1427 flush_delayed_work(&sdp->sd_control_work);
1429 /* mounted_lock and control_lock will be purged in dlm recovery */
1430 release:
1431 if (ls->ls_dlm) {
1432 dlm_release_lockspace(ls->ls_dlm, 2);
1433 ls->ls_dlm = NULL;
1436 free_recover_size(ls);
1439 static const match_table_t dlm_tokens = {
1440 { Opt_jid, "jid=%d"},
1441 { Opt_id, "id=%d"},
1442 { Opt_first, "first=%d"},
1443 { Opt_nodir, "nodir=%d"},
1444 { Opt_err, NULL },
1447 const struct lm_lockops gfs2_dlm_ops = {
1448 .lm_proto_name = "lock_dlm",
1449 .lm_mount = gdlm_mount,
1450 .lm_first_done = gdlm_first_done,
1451 .lm_recovery_result = gdlm_recovery_result,
1452 .lm_unmount = gdlm_unmount,
1453 .lm_put_lock = gdlm_put_lock,
1454 .lm_lock = gdlm_lock,
1455 .lm_cancel = gdlm_cancel,
1456 .lm_tokens = &dlm_tokens,