1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright 2004-2011 Red Hat, Inc.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 #include <linux/dlm.h>
11 #include <linux/slab.h>
12 #include <linux/types.h>
13 #include <linux/delay.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/sched/signal.h>
23 #include "trace_gfs2.h"
26 * gfs2_update_stats - Update time based stats
27 * @s: The stats to update (local or global)
28 * @index: The index inside @s
29 * @sample: New data to include
31 static inline void gfs2_update_stats(struct gfs2_lkstats
*s
, unsigned index
,
35 * @delta is the difference between the current rtt sample and the
36 * running average srtt. We add 1/8 of that to the srtt in order to
37 * update the current srtt estimate. The variance estimate is a bit
38 * more complicated. We subtract the current variance estimate from
39 * the abs value of the @delta and add 1/4 of that to the running
40 * total. That's equivalent to 3/4 of the current variance
41 * estimate plus 1/4 of the abs of @delta.
43 * Note that the index points at the array entry containing the
44 * smoothed mean value, and the variance is always in the following
47 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
48 * All times are in units of integer nanoseconds. Unlike the TCP/IP
49 * case, they are not scaled fixed point.
52 s64 delta
= sample
- s
->stats
[index
];
53 s
->stats
[index
] += (delta
>> 3);
55 s
->stats
[index
] += (s64
)(abs(delta
) - s
->stats
[index
]) >> 2;
59 * gfs2_update_reply_times - Update locking statistics
60 * @gl: The glock to update
62 * This assumes that gl->gl_dstamp has been set earlier.
64 * The rtt (lock round trip time) is an estimate of the time
65 * taken to perform a dlm lock request. We update it on each
68 * The blocking flag is set on the glock for all dlm requests
69 * which may potentially block due to lock requests from other nodes.
70 * DLM requests where the current lock state is exclusive, the
71 * requested state is null (or unlocked) or where the TRY or
72 * TRY_1CB flags are set are classified as non-blocking. All
73 * other DLM requests are counted as (potentially) blocking.
75 static inline void gfs2_update_reply_times(struct gfs2_glock
*gl
)
77 struct gfs2_pcpu_lkstats
*lks
;
78 const unsigned gltype
= gl
->gl_name
.ln_type
;
79 unsigned index
= test_bit(GLF_BLOCKING
, &gl
->gl_flags
) ?
80 GFS2_LKS_SRTTB
: GFS2_LKS_SRTT
;
84 rtt
= ktime_to_ns(ktime_sub(ktime_get_real(), gl
->gl_dstamp
));
85 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
86 gfs2_update_stats(&gl
->gl_stats
, index
, rtt
); /* Local */
87 gfs2_update_stats(&lks
->lkstats
[gltype
], index
, rtt
); /* Global */
90 trace_gfs2_glock_lock_time(gl
, rtt
);
94 * gfs2_update_request_times - Update locking statistics
95 * @gl: The glock to update
97 * The irt (lock inter-request times) measures the average time
98 * between requests to the dlm. It is updated immediately before
102 static inline void gfs2_update_request_times(struct gfs2_glock
*gl
)
104 struct gfs2_pcpu_lkstats
*lks
;
105 const unsigned gltype
= gl
->gl_name
.ln_type
;
110 dstamp
= gl
->gl_dstamp
;
111 gl
->gl_dstamp
= ktime_get_real();
112 irt
= ktime_to_ns(ktime_sub(gl
->gl_dstamp
, dstamp
));
113 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
114 gfs2_update_stats(&gl
->gl_stats
, GFS2_LKS_SIRT
, irt
); /* Local */
115 gfs2_update_stats(&lks
->lkstats
[gltype
], GFS2_LKS_SIRT
, irt
); /* Global */
119 static void gdlm_ast(void *arg
)
121 struct gfs2_glock
*gl
= arg
;
122 unsigned ret
= gl
->gl_state
;
124 /* If the glock is dead, we only react to a dlm_unlock() reply. */
125 if (__lockref_is_dead(&gl
->gl_lockref
) &&
126 gl
->gl_lksb
.sb_status
!= -DLM_EUNLOCK
)
129 gfs2_update_reply_times(gl
);
130 BUG_ON(gl
->gl_lksb
.sb_flags
& DLM_SBF_DEMOTED
);
132 if ((gl
->gl_lksb
.sb_flags
& DLM_SBF_VALNOTVALID
) && gl
->gl_lksb
.sb_lvbptr
)
133 memset(gl
->gl_lksb
.sb_lvbptr
, 0, GDLM_LVB_SIZE
);
135 switch (gl
->gl_lksb
.sb_status
) {
136 case -DLM_EUNLOCK
: /* Unlocked, so glock can be freed */
137 if (gl
->gl_ops
->go_unlocked
)
138 gl
->gl_ops
->go_unlocked(gl
);
141 case -DLM_ECANCEL
: /* Cancel while getting lock */
142 ret
|= LM_OUT_CANCELED
;
144 case -EAGAIN
: /* Try lock fails */
145 case -EDEADLK
: /* Deadlock detected */
147 case -ETIMEDOUT
: /* Canceled due to timeout */
150 case 0: /* Success */
152 default: /* Something unexpected */
157 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_ALTMODE
) {
158 if (gl
->gl_req
== LM_ST_SHARED
)
159 ret
= LM_ST_DEFERRED
;
160 else if (gl
->gl_req
== LM_ST_DEFERRED
)
167 * The GLF_INITIAL flag is initially set for new glocks. Upon the
168 * first successful new (non-conversion) request, we clear this flag to
169 * indicate that a DLM lock exists and that gl->gl_lksb.sb_lkid is the
170 * identifier to use for identifying it.
172 * Any failed initial requests do not create a DLM lock, so we ignore
173 * the gl->gl_lksb.sb_lkid values that come with such requests.
176 clear_bit(GLF_INITIAL
, &gl
->gl_flags
);
177 gfs2_glock_complete(gl
, ret
);
180 if (test_bit(GLF_INITIAL
, &gl
->gl_flags
))
181 gl
->gl_lksb
.sb_lkid
= 0;
182 gfs2_glock_complete(gl
, ret
);
185 static void gdlm_bast(void *arg
, int mode
)
187 struct gfs2_glock
*gl
= arg
;
189 if (__lockref_is_dead(&gl
->gl_lockref
))
194 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
197 gfs2_glock_cb(gl
, LM_ST_DEFERRED
);
200 gfs2_glock_cb(gl
, LM_ST_SHARED
);
203 fs_err(gl
->gl_name
.ln_sbd
, "unknown bast mode %d\n", mode
);
208 /* convert gfs lock-state to dlm lock-mode */
210 static int make_mode(struct gfs2_sbd
*sdp
, const unsigned int lmstate
)
215 case LM_ST_EXCLUSIVE
:
222 fs_err(sdp
, "unknown LM state %d\n", lmstate
);
227 /* Taken from fs/dlm/lock.c. */
229 static bool middle_conversion(int cur
, int req
)
231 return (cur
== DLM_LOCK_PR
&& req
== DLM_LOCK_CW
) ||
232 (cur
== DLM_LOCK_CW
&& req
== DLM_LOCK_PR
);
235 static bool down_conversion(int cur
, int req
)
237 return !middle_conversion(cur
, req
) && req
< cur
;
240 static u32
make_flags(struct gfs2_glock
*gl
, const unsigned int gfs_flags
,
241 const int cur
, const int req
)
245 if (gl
->gl_lksb
.sb_lvbptr
)
246 lkf
|= DLM_LKF_VALBLK
;
248 if (gfs_flags
& LM_FLAG_TRY
)
249 lkf
|= DLM_LKF_NOQUEUE
;
251 if (gfs_flags
& LM_FLAG_TRY_1CB
) {
252 lkf
|= DLM_LKF_NOQUEUE
;
253 lkf
|= DLM_LKF_NOQUEUEBAST
;
256 if (gfs_flags
& LM_FLAG_ANY
) {
257 if (req
== DLM_LOCK_PR
)
258 lkf
|= DLM_LKF_ALTCW
;
259 else if (req
== DLM_LOCK_CW
)
260 lkf
|= DLM_LKF_ALTPR
;
265 if (!test_bit(GLF_INITIAL
, &gl
->gl_flags
)) {
266 lkf
|= DLM_LKF_CONVERT
;
269 * The DLM_LKF_QUECVT flag needs to be set for "first come,
270 * first served" semantics, but it must only be set for
271 * "upward" lock conversions or else DLM will reject the
272 * request as invalid.
274 if (!down_conversion(cur
, req
))
275 lkf
|= DLM_LKF_QUECVT
;
281 static void gfs2_reverse_hex(char *c
, u64 value
)
285 *c
-- = hex_asc
[value
& 0x0f];
290 static int gdlm_lock(struct gfs2_glock
*gl
, unsigned int req_state
,
293 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
296 char strname
[GDLM_STRNAME_BYTES
] = "";
299 cur
= make_mode(gl
->gl_name
.ln_sbd
, gl
->gl_state
);
300 req
= make_mode(gl
->gl_name
.ln_sbd
, req_state
);
301 lkf
= make_flags(gl
, flags
, cur
, req
);
302 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
303 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
304 if (test_bit(GLF_INITIAL
, &gl
->gl_flags
)) {
305 memset(strname
, ' ', GDLM_STRNAME_BYTES
- 1);
306 strname
[GDLM_STRNAME_BYTES
- 1] = '\0';
307 gfs2_reverse_hex(strname
+ 7, gl
->gl_name
.ln_type
);
308 gfs2_reverse_hex(strname
+ 23, gl
->gl_name
.ln_number
);
309 gl
->gl_dstamp
= ktime_get_real();
311 gfs2_update_request_times(gl
);
314 * Submit the actual lock request.
318 error
= dlm_lock(ls
->ls_dlm
, req
, &gl
->gl_lksb
, lkf
, strname
,
319 GDLM_STRNAME_BYTES
- 1, 0, gdlm_ast
, gl
, gdlm_bast
);
320 if (error
== -EBUSY
) {
327 static void gdlm_put_lock(struct gfs2_glock
*gl
)
329 struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
330 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
333 BUG_ON(!__lockref_is_dead(&gl
->gl_lockref
));
335 if (test_bit(GLF_INITIAL
, &gl
->gl_flags
)) {
340 clear_bit(GLF_BLOCKING
, &gl
->gl_flags
);
341 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
342 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
343 gfs2_update_request_times(gl
);
345 /* don't want to call dlm if we've unmounted the lock protocol */
346 if (test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
)) {
352 * When the lockspace is released, all remaining glocks will be
353 * unlocked automatically. This is more efficient than unlocking them
354 * individually, but when the lock is held in DLM_LOCK_EX or
355 * DLM_LOCK_PW mode, the lock value block (LVB) will be lost.
358 if (test_bit(SDF_SKIP_DLM_UNLOCK
, &sdp
->sd_flags
) &&
359 (!gl
->gl_lksb
.sb_lvbptr
|| gl
->gl_state
!= LM_ST_EXCLUSIVE
)) {
360 gfs2_glock_free_later(gl
);
365 error
= dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_VALBLK
,
367 if (error
== -EBUSY
) {
373 fs_err(sdp
, "gdlm_unlock %x,%llx err=%d\n",
375 (unsigned long long)gl
->gl_name
.ln_number
, error
);
379 static void gdlm_cancel(struct gfs2_glock
*gl
)
381 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
382 dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_CANCEL
, NULL
, gl
);
386 * dlm/gfs2 recovery coordination using dlm_recover callbacks
388 * 0. gfs2 checks for another cluster node withdraw, needing journal replay
389 * 1. dlm_controld sees lockspace members change
390 * 2. dlm_controld blocks dlm-kernel locking activity
391 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
392 * 4. dlm_controld starts and finishes its own user level recovery
393 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
394 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
395 * 7. dlm_recoverd does its own lock recovery
396 * 8. dlm_recoverd unblocks dlm-kernel locking activity
397 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
398 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
399 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
400 * 12. gfs2_recover dequeues and recovers journals of failed nodes
401 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
402 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
403 * 15. gfs2_control unblocks normal locking when all journals are recovered
405 * - failures during recovery
407 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
408 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
409 * recovering for a prior failure. gfs2_control needs a way to detect
410 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
411 * the recover_block and recover_start values.
413 * recover_done() provides a new lockspace generation number each time it
414 * is called (step 9). This generation number is saved as recover_start.
415 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
416 * recover_block = recover_start. So, while recover_block is equal to
417 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
418 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
420 * - more specific gfs2 steps in sequence above
422 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
423 * 6. recover_slot records any failed jids (maybe none)
424 * 9. recover_done sets recover_start = new generation number
425 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
426 * 12. gfs2_recover does journal recoveries for failed jids identified above
427 * 14. gfs2_control clears control_lock lvb bits for recovered jids
428 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
429 * again) then do nothing, otherwise if recover_start > recover_block
430 * then clear BLOCK_LOCKS.
432 * - parallel recovery steps across all nodes
434 * All nodes attempt to update the control_lock lvb with the new generation
435 * number and jid bits, but only the first to get the control_lock EX will
436 * do so; others will see that it's already done (lvb already contains new
437 * generation number.)
439 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
440 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
441 * . One node gets control_lock first and writes the lvb, others see it's done
442 * . All nodes attempt to recover jids for which they see control_lock bits set
443 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
444 * . All nodes will eventually see all lvb bits clear and unblock locks
446 * - is there a problem with clearing an lvb bit that should be set
447 * and missing a journal recovery?
450 * 2. lvb bit set for step 1
451 * 3. jid recovered for step 1
452 * 4. jid taken again (new mount)
453 * 5. jid fails (for step 4)
454 * 6. lvb bit set for step 5 (will already be set)
455 * 7. lvb bit cleared for step 3
457 * This is not a problem because the failure in step 5 does not
458 * require recovery, because the mount in step 4 could not have
459 * progressed far enough to unblock locks and access the fs. The
460 * control_mount() function waits for all recoveries to be complete
461 * for the latest lockspace generation before ever unblocking locks
462 * and returning. The mount in step 4 waits until the recovery in
465 * - special case of first mounter: first node to mount the fs
467 * The first node to mount a gfs2 fs needs to check all the journals
468 * and recover any that need recovery before other nodes are allowed
469 * to mount the fs. (Others may begin mounting, but they must wait
470 * for the first mounter to be done before taking locks on the fs
471 * or accessing the fs.) This has two parts:
473 * 1. The mounted_lock tells a node it's the first to mount the fs.
474 * Each node holds the mounted_lock in PR while it's mounted.
475 * Each node tries to acquire the mounted_lock in EX when it mounts.
476 * If a node is granted the mounted_lock EX it means there are no
477 * other mounted nodes (no PR locks exist), and it is the first mounter.
478 * The mounted_lock is demoted to PR when first recovery is done, so
479 * others will fail to get an EX lock, but will get a PR lock.
481 * 2. The control_lock blocks others in control_mount() while the first
482 * mounter is doing first mount recovery of all journals.
483 * A mounting node needs to acquire control_lock in EX mode before
484 * it can proceed. The first mounter holds control_lock in EX while doing
485 * the first mount recovery, blocking mounts from other nodes, then demotes
486 * control_lock to NL when it's done (others_may_mount/first_done),
487 * allowing other nodes to continue mounting.
490 * control_lock EX/NOQUEUE success
491 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
493 * do first mounter recovery
494 * mounted_lock EX->PR
495 * control_lock EX->NL, write lvb generation
498 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
499 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
500 * mounted_lock PR/NOQUEUE success
501 * read lvb generation
502 * control_lock EX->NL
505 * - mount during recovery
507 * If a node mounts while others are doing recovery (not first mounter),
508 * the mounting node will get its initial recover_done() callback without
509 * having seen any previous failures/callbacks.
511 * It must wait for all recoveries preceding its mount to be finished
512 * before it unblocks locks. It does this by repeating the "other mounter"
513 * steps above until the lvb generation number is >= its mount generation
514 * number (from initial recover_done) and all lvb bits are clear.
516 * - control_lock lvb format
518 * 4 bytes generation number: the latest dlm lockspace generation number
519 * from recover_done callback. Indicates the jid bitmap has been updated
520 * to reflect all slot failures through that generation.
522 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
523 * that jid N needs recovery.
526 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
528 static void control_lvb_read(struct lm_lockstruct
*ls
, uint32_t *lvb_gen
,
532 memcpy(lvb_bits
, ls
->ls_control_lvb
, GDLM_LVB_SIZE
);
533 memcpy(&gen
, lvb_bits
, sizeof(__le32
));
534 *lvb_gen
= le32_to_cpu(gen
);
537 static void control_lvb_write(struct lm_lockstruct
*ls
, uint32_t lvb_gen
,
541 memcpy(ls
->ls_control_lvb
, lvb_bits
, GDLM_LVB_SIZE
);
542 gen
= cpu_to_le32(lvb_gen
);
543 memcpy(ls
->ls_control_lvb
, &gen
, sizeof(__le32
));
546 static int all_jid_bits_clear(char *lvb
)
548 return !memchr_inv(lvb
+ JID_BITMAP_OFFSET
, 0,
549 GDLM_LVB_SIZE
- JID_BITMAP_OFFSET
);
552 static void sync_wait_cb(void *arg
)
554 struct lm_lockstruct
*ls
= arg
;
555 complete(&ls
->ls_sync_wait
);
558 static int sync_unlock(struct gfs2_sbd
*sdp
, struct dlm_lksb
*lksb
, char *name
)
560 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
563 error
= dlm_unlock(ls
->ls_dlm
, lksb
->sb_lkid
, 0, lksb
, ls
);
565 fs_err(sdp
, "%s lkid %x error %d\n",
566 name
, lksb
->sb_lkid
, error
);
570 wait_for_completion(&ls
->ls_sync_wait
);
572 if (lksb
->sb_status
!= -DLM_EUNLOCK
) {
573 fs_err(sdp
, "%s lkid %x status %d\n",
574 name
, lksb
->sb_lkid
, lksb
->sb_status
);
580 static int sync_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
,
581 unsigned int num
, struct dlm_lksb
*lksb
, char *name
)
583 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
584 char strname
[GDLM_STRNAME_BYTES
];
587 memset(strname
, 0, GDLM_STRNAME_BYTES
);
588 snprintf(strname
, GDLM_STRNAME_BYTES
, "%8x%16x", LM_TYPE_NONDISK
, num
);
590 error
= dlm_lock(ls
->ls_dlm
, mode
, lksb
, flags
,
591 strname
, GDLM_STRNAME_BYTES
- 1,
592 0, sync_wait_cb
, ls
, NULL
);
594 fs_err(sdp
, "%s lkid %x flags %x mode %d error %d\n",
595 name
, lksb
->sb_lkid
, flags
, mode
, error
);
599 wait_for_completion(&ls
->ls_sync_wait
);
601 status
= lksb
->sb_status
;
603 if (status
&& status
!= -EAGAIN
) {
604 fs_err(sdp
, "%s lkid %x flags %x mode %d status %d\n",
605 name
, lksb
->sb_lkid
, flags
, mode
, status
);
611 static int mounted_unlock(struct gfs2_sbd
*sdp
)
613 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
614 return sync_unlock(sdp
, &ls
->ls_mounted_lksb
, "mounted_lock");
617 static int mounted_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
619 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
620 return sync_lock(sdp
, mode
, flags
, GFS2_MOUNTED_LOCK
,
621 &ls
->ls_mounted_lksb
, "mounted_lock");
624 static int control_unlock(struct gfs2_sbd
*sdp
)
626 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
627 return sync_unlock(sdp
, &ls
->ls_control_lksb
, "control_lock");
630 static int control_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
632 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
633 return sync_lock(sdp
, mode
, flags
, GFS2_CONTROL_LOCK
,
634 &ls
->ls_control_lksb
, "control_lock");
638 * remote_withdraw - react to a node withdrawing from the file system
639 * @sdp: The superblock
641 static void remote_withdraw(struct gfs2_sbd
*sdp
)
643 struct gfs2_jdesc
*jd
;
644 int ret
= 0, count
= 0;
646 list_for_each_entry(jd
, &sdp
->sd_jindex_list
, jd_list
) {
647 if (jd
->jd_jid
== sdp
->sd_lockstruct
.ls_jid
)
649 ret
= gfs2_recover_journal(jd
, true);
655 /* Now drop the additional reference we acquired */
656 fs_err(sdp
, "Journals checked: %d, ret = %d.\n", count
, ret
);
659 static void gfs2_control_func(struct work_struct
*work
)
661 struct gfs2_sbd
*sdp
= container_of(work
, struct gfs2_sbd
, sd_control_work
.work
);
662 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
663 uint32_t block_gen
, start_gen
, lvb_gen
, flags
;
669 /* First check for other nodes that may have done a withdraw. */
670 if (test_bit(SDF_REMOTE_WITHDRAW
, &sdp
->sd_flags
)) {
671 remote_withdraw(sdp
);
672 clear_bit(SDF_REMOTE_WITHDRAW
, &sdp
->sd_flags
);
676 spin_lock(&ls
->ls_recover_spin
);
678 * No MOUNT_DONE means we're still mounting; control_mount()
679 * will set this flag, after which this thread will take over
680 * all further clearing of BLOCK_LOCKS.
682 * FIRST_MOUNT means this node is doing first mounter recovery,
683 * for which recovery control is handled by
684 * control_mount()/control_first_done(), not this thread.
686 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
687 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
688 spin_unlock(&ls
->ls_recover_spin
);
691 block_gen
= ls
->ls_recover_block
;
692 start_gen
= ls
->ls_recover_start
;
693 spin_unlock(&ls
->ls_recover_spin
);
696 * Equal block_gen and start_gen implies we are between
697 * recover_prep and recover_done callbacks, which means
698 * dlm recovery is in progress and dlm locking is blocked.
699 * There's no point trying to do any work until recover_done.
702 if (block_gen
== start_gen
)
706 * Propagate recover_submit[] and recover_result[] to lvb:
707 * dlm_recoverd adds to recover_submit[] jids needing recovery
708 * gfs2_recover adds to recover_result[] journal recovery results
710 * set lvb bit for jids in recover_submit[] if the lvb has not
711 * yet been updated for the generation of the failure
713 * clear lvb bit for jids in recover_result[] if the result of
714 * the journal recovery is SUCCESS
717 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
719 fs_err(sdp
, "control lock EX error %d\n", error
);
723 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
725 spin_lock(&ls
->ls_recover_spin
);
726 if (block_gen
!= ls
->ls_recover_block
||
727 start_gen
!= ls
->ls_recover_start
) {
728 fs_info(sdp
, "recover generation %u block1 %u %u\n",
729 start_gen
, block_gen
, ls
->ls_recover_block
);
730 spin_unlock(&ls
->ls_recover_spin
);
731 control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
735 recover_size
= ls
->ls_recover_size
;
737 if (lvb_gen
<= start_gen
) {
739 * Clear lvb bits for jids we've successfully recovered.
740 * Because all nodes attempt to recover failed journals,
741 * a journal can be recovered multiple times successfully
742 * in succession. Only the first will really do recovery,
743 * the others find it clean, but still report a successful
744 * recovery. So, another node may have already recovered
745 * the jid and cleared the lvb bit for it.
747 for (i
= 0; i
< recover_size
; i
++) {
748 if (ls
->ls_recover_result
[i
] != LM_RD_SUCCESS
)
751 ls
->ls_recover_result
[i
] = 0;
753 if (!test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
))
756 __clear_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
761 if (lvb_gen
== start_gen
) {
763 * Failed slots before start_gen are already set in lvb.
765 for (i
= 0; i
< recover_size
; i
++) {
766 if (!ls
->ls_recover_submit
[i
])
768 if (ls
->ls_recover_submit
[i
] < lvb_gen
)
769 ls
->ls_recover_submit
[i
] = 0;
771 } else if (lvb_gen
< start_gen
) {
773 * Failed slots before start_gen are not yet set in lvb.
775 for (i
= 0; i
< recover_size
; i
++) {
776 if (!ls
->ls_recover_submit
[i
])
778 if (ls
->ls_recover_submit
[i
] < start_gen
) {
779 ls
->ls_recover_submit
[i
] = 0;
780 __set_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
783 /* even if there are no bits to set, we need to write the
784 latest generation to the lvb */
788 * we should be getting a recover_done() for lvb_gen soon
791 spin_unlock(&ls
->ls_recover_spin
);
794 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
795 flags
= DLM_LKF_CONVERT
| DLM_LKF_VALBLK
;
797 flags
= DLM_LKF_CONVERT
;
800 error
= control_lock(sdp
, DLM_LOCK_NL
, flags
);
802 fs_err(sdp
, "control lock NL error %d\n", error
);
807 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
808 * and clear a jid bit in the lvb if the recovery is a success.
809 * Eventually all journals will be recovered, all jid bits will
810 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
813 for (i
= 0; i
< recover_size
; i
++) {
814 if (test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
)) {
815 fs_info(sdp
, "recover generation %u jid %d\n",
817 gfs2_recover_set(sdp
, i
);
825 * No more jid bits set in lvb, all recovery is done, unblock locks
826 * (unless a new recover_prep callback has occured blocking locks
827 * again while working above)
830 spin_lock(&ls
->ls_recover_spin
);
831 if (ls
->ls_recover_block
== block_gen
&&
832 ls
->ls_recover_start
== start_gen
) {
833 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
834 spin_unlock(&ls
->ls_recover_spin
);
835 fs_info(sdp
, "recover generation %u done\n", start_gen
);
836 gfs2_glock_thaw(sdp
);
838 fs_info(sdp
, "recover generation %u block2 %u %u\n",
839 start_gen
, block_gen
, ls
->ls_recover_block
);
840 spin_unlock(&ls
->ls_recover_spin
);
844 static int control_mount(struct gfs2_sbd
*sdp
)
846 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
847 uint32_t start_gen
, block_gen
, mount_gen
, lvb_gen
;
852 memset(&ls
->ls_mounted_lksb
, 0, sizeof(struct dlm_lksb
));
853 memset(&ls
->ls_control_lksb
, 0, sizeof(struct dlm_lksb
));
854 memset(&ls
->ls_control_lvb
, 0, GDLM_LVB_SIZE
);
855 ls
->ls_control_lksb
.sb_lvbptr
= ls
->ls_control_lvb
;
856 init_completion(&ls
->ls_sync_wait
);
858 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
860 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_VALBLK
);
862 fs_err(sdp
, "control_mount control_lock NL error %d\n", error
);
866 error
= mounted_lock(sdp
, DLM_LOCK_NL
, 0);
868 fs_err(sdp
, "control_mount mounted_lock NL error %d\n", error
);
872 mounted_mode
= DLM_LOCK_NL
;
875 if (retries
++ && signal_pending(current
)) {
881 * We always start with both locks in NL. control_lock is
882 * demoted to NL below so we don't need to do it here.
885 if (mounted_mode
!= DLM_LOCK_NL
) {
886 error
= mounted_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
889 mounted_mode
= DLM_LOCK_NL
;
893 * Other nodes need to do some work in dlm recovery and gfs2_control
894 * before the recover_done and control_lock will be ready for us below.
895 * A delay here is not required but often avoids having to retry.
898 msleep_interruptible(500);
901 * Acquire control_lock in EX and mounted_lock in either EX or PR.
902 * control_lock lvb keeps track of any pending journal recoveries.
903 * mounted_lock indicates if any other nodes have the fs mounted.
906 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
|DLM_LKF_VALBLK
);
907 if (error
== -EAGAIN
) {
910 fs_err(sdp
, "control_mount control_lock EX error %d\n", error
);
915 * If we're a spectator, we don't want to take the lock in EX because
916 * we cannot do the first-mount responsibility it implies: recovery.
918 if (sdp
->sd_args
.ar_spectator
)
921 error
= mounted_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
923 mounted_mode
= DLM_LOCK_EX
;
925 } else if (error
!= -EAGAIN
) {
926 fs_err(sdp
, "control_mount mounted_lock EX error %d\n", error
);
930 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
932 mounted_mode
= DLM_LOCK_PR
;
935 /* not even -EAGAIN should happen here */
936 fs_err(sdp
, "control_mount mounted_lock PR error %d\n", error
);
942 * If we got both locks above in EX, then we're the first mounter.
943 * If not, then we need to wait for the control_lock lvb to be
944 * updated by other mounted nodes to reflect our mount generation.
946 * In simple first mounter cases, first mounter will see zero lvb_gen,
947 * but in cases where all existing nodes leave/fail before mounting
948 * nodes finish control_mount, then all nodes will be mounting and
949 * lvb_gen will be non-zero.
952 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
954 if (lvb_gen
== 0xFFFFFFFF) {
955 /* special value to force mount attempts to fail */
956 fs_err(sdp
, "control_mount control_lock disabled\n");
961 if (mounted_mode
== DLM_LOCK_EX
) {
962 /* first mounter, keep both EX while doing first recovery */
963 spin_lock(&ls
->ls_recover_spin
);
964 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
965 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
966 set_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
967 spin_unlock(&ls
->ls_recover_spin
);
968 fs_info(sdp
, "first mounter control generation %u\n", lvb_gen
);
972 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
977 * We are not first mounter, now we need to wait for the control_lock
978 * lvb generation to be >= the generation from our first recover_done
979 * and all lvb bits to be clear (no pending journal recoveries.)
982 if (!all_jid_bits_clear(ls
->ls_lvb_bits
)) {
983 /* journals need recovery, wait until all are clear */
984 fs_info(sdp
, "control_mount wait for journal recovery\n");
988 spin_lock(&ls
->ls_recover_spin
);
989 block_gen
= ls
->ls_recover_block
;
990 start_gen
= ls
->ls_recover_start
;
991 mount_gen
= ls
->ls_recover_mount
;
993 if (lvb_gen
< mount_gen
) {
994 /* wait for mounted nodes to update control_lock lvb to our
995 generation, which might include new recovery bits set */
996 if (sdp
->sd_args
.ar_spectator
) {
997 fs_info(sdp
, "Recovery is required. Waiting for a "
998 "non-spectator to mount.\n");
999 msleep_interruptible(1000);
1001 fs_info(sdp
, "control_mount wait1 block %u start %u "
1002 "mount %u lvb %u flags %lx\n", block_gen
,
1003 start_gen
, mount_gen
, lvb_gen
,
1004 ls
->ls_recover_flags
);
1006 spin_unlock(&ls
->ls_recover_spin
);
1010 if (lvb_gen
!= start_gen
) {
1011 /* wait for mounted nodes to update control_lock lvb to the
1012 latest recovery generation */
1013 fs_info(sdp
, "control_mount wait2 block %u start %u mount %u "
1014 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
1015 lvb_gen
, ls
->ls_recover_flags
);
1016 spin_unlock(&ls
->ls_recover_spin
);
1020 if (block_gen
== start_gen
) {
1021 /* dlm recovery in progress, wait for it to finish */
1022 fs_info(sdp
, "control_mount wait3 block %u start %u mount %u "
1023 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
1024 lvb_gen
, ls
->ls_recover_flags
);
1025 spin_unlock(&ls
->ls_recover_spin
);
1029 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1030 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
1031 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1032 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1033 spin_unlock(&ls
->ls_recover_spin
);
1037 mounted_unlock(sdp
);
1038 control_unlock(sdp
);
1042 static int control_first_done(struct gfs2_sbd
*sdp
)
1044 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1045 uint32_t start_gen
, block_gen
;
1049 spin_lock(&ls
->ls_recover_spin
);
1050 start_gen
= ls
->ls_recover_start
;
1051 block_gen
= ls
->ls_recover_block
;
1053 if (test_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
) ||
1054 !test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1055 !test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1056 /* sanity check, should not happen */
1057 fs_err(sdp
, "control_first_done start %u block %u flags %lx\n",
1058 start_gen
, block_gen
, ls
->ls_recover_flags
);
1059 spin_unlock(&ls
->ls_recover_spin
);
1060 control_unlock(sdp
);
1064 if (start_gen
== block_gen
) {
1066 * Wait for the end of a dlm recovery cycle to switch from
1067 * first mounter recovery. We can ignore any recover_slot
1068 * callbacks between the recover_prep and next recover_done
1069 * because we are still the first mounter and any failed nodes
1070 * have not fully mounted, so they don't need recovery.
1072 spin_unlock(&ls
->ls_recover_spin
);
1073 fs_info(sdp
, "control_first_done wait gen %u\n", start_gen
);
1075 wait_on_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
,
1076 TASK_UNINTERRUPTIBLE
);
1080 clear_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1081 set_bit(DFL_FIRST_MOUNT_DONE
, &ls
->ls_recover_flags
);
1082 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1083 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
1084 spin_unlock(&ls
->ls_recover_spin
);
1086 memset(ls
->ls_lvb_bits
, 0, GDLM_LVB_SIZE
);
1087 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
1089 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
);
1091 fs_err(sdp
, "control_first_done mounted PR error %d\n", error
);
1093 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
1095 fs_err(sdp
, "control_first_done control NL error %d\n", error
);
1101 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1102 * to accommodate the largest slot number. (NB dlm slot numbers start at 1,
1103 * gfs2 jids start at 0, so jid = slot - 1)
1106 #define RECOVER_SIZE_INC 16
1108 static int set_recover_size(struct gfs2_sbd
*sdp
, struct dlm_slot
*slots
,
1111 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1112 uint32_t *submit
= NULL
;
1113 uint32_t *result
= NULL
;
1114 uint32_t old_size
, new_size
;
1117 if (!ls
->ls_lvb_bits
) {
1118 ls
->ls_lvb_bits
= kzalloc(GDLM_LVB_SIZE
, GFP_NOFS
);
1119 if (!ls
->ls_lvb_bits
)
1124 for (i
= 0; i
< num_slots
; i
++) {
1125 if (max_jid
< slots
[i
].slot
- 1)
1126 max_jid
= slots
[i
].slot
- 1;
1129 old_size
= ls
->ls_recover_size
;
1130 new_size
= old_size
;
1131 while (new_size
< max_jid
+ 1)
1132 new_size
+= RECOVER_SIZE_INC
;
1133 if (new_size
== old_size
)
1136 submit
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1137 result
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1138 if (!submit
|| !result
) {
1144 spin_lock(&ls
->ls_recover_spin
);
1145 memcpy(submit
, ls
->ls_recover_submit
, old_size
* sizeof(uint32_t));
1146 memcpy(result
, ls
->ls_recover_result
, old_size
* sizeof(uint32_t));
1147 kfree(ls
->ls_recover_submit
);
1148 kfree(ls
->ls_recover_result
);
1149 ls
->ls_recover_submit
= submit
;
1150 ls
->ls_recover_result
= result
;
1151 ls
->ls_recover_size
= new_size
;
1152 spin_unlock(&ls
->ls_recover_spin
);
1156 static void free_recover_size(struct lm_lockstruct
*ls
)
1158 kfree(ls
->ls_lvb_bits
);
1159 kfree(ls
->ls_recover_submit
);
1160 kfree(ls
->ls_recover_result
);
1161 ls
->ls_recover_submit
= NULL
;
1162 ls
->ls_recover_result
= NULL
;
1163 ls
->ls_recover_size
= 0;
1164 ls
->ls_lvb_bits
= NULL
;
1167 /* dlm calls before it does lock recovery */
1169 static void gdlm_recover_prep(void *arg
)
1171 struct gfs2_sbd
*sdp
= arg
;
1172 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1174 if (gfs2_withdrawing_or_withdrawn(sdp
)) {
1175 fs_err(sdp
, "recover_prep ignored due to withdraw.\n");
1178 spin_lock(&ls
->ls_recover_spin
);
1179 ls
->ls_recover_block
= ls
->ls_recover_start
;
1180 set_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1182 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1183 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1184 spin_unlock(&ls
->ls_recover_spin
);
1187 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1188 spin_unlock(&ls
->ls_recover_spin
);
1191 /* dlm calls after recover_prep has been completed on all lockspace members;
1192 identifies slot/jid of failed member */
1194 static void gdlm_recover_slot(void *arg
, struct dlm_slot
*slot
)
1196 struct gfs2_sbd
*sdp
= arg
;
1197 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1198 int jid
= slot
->slot
- 1;
1200 if (gfs2_withdrawing_or_withdrawn(sdp
)) {
1201 fs_err(sdp
, "recover_slot jid %d ignored due to withdraw.\n",
1205 spin_lock(&ls
->ls_recover_spin
);
1206 if (ls
->ls_recover_size
< jid
+ 1) {
1207 fs_err(sdp
, "recover_slot jid %d gen %u short size %d\n",
1208 jid
, ls
->ls_recover_block
, ls
->ls_recover_size
);
1209 spin_unlock(&ls
->ls_recover_spin
);
1213 if (ls
->ls_recover_submit
[jid
]) {
1214 fs_info(sdp
, "recover_slot jid %d gen %u prev %u\n",
1215 jid
, ls
->ls_recover_block
, ls
->ls_recover_submit
[jid
]);
1217 ls
->ls_recover_submit
[jid
] = ls
->ls_recover_block
;
1218 spin_unlock(&ls
->ls_recover_spin
);
1221 /* dlm calls after recover_slot and after it completes lock recovery */
1223 static void gdlm_recover_done(void *arg
, struct dlm_slot
*slots
, int num_slots
,
1224 int our_slot
, uint32_t generation
)
1226 struct gfs2_sbd
*sdp
= arg
;
1227 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1229 if (gfs2_withdrawing_or_withdrawn(sdp
)) {
1230 fs_err(sdp
, "recover_done ignored due to withdraw.\n");
1233 /* ensure the ls jid arrays are large enough */
1234 set_recover_size(sdp
, slots
, num_slots
);
1236 spin_lock(&ls
->ls_recover_spin
);
1237 ls
->ls_recover_start
= generation
;
1239 if (!ls
->ls_recover_mount
) {
1240 ls
->ls_recover_mount
= generation
;
1241 ls
->ls_jid
= our_slot
- 1;
1244 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1245 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
, 0);
1247 clear_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1248 smp_mb__after_atomic();
1249 wake_up_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
);
1250 spin_unlock(&ls
->ls_recover_spin
);
1253 /* gfs2_recover thread has a journal recovery result */
1255 static void gdlm_recovery_result(struct gfs2_sbd
*sdp
, unsigned int jid
,
1256 unsigned int result
)
1258 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1260 if (gfs2_withdrawing_or_withdrawn(sdp
)) {
1261 fs_err(sdp
, "recovery_result jid %d ignored due to withdraw.\n",
1265 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1268 /* don't care about the recovery of own journal during mount */
1269 if (jid
== ls
->ls_jid
)
1272 spin_lock(&ls
->ls_recover_spin
);
1273 if (test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1274 spin_unlock(&ls
->ls_recover_spin
);
1277 if (ls
->ls_recover_size
< jid
+ 1) {
1278 fs_err(sdp
, "recovery_result jid %d short size %d\n",
1279 jid
, ls
->ls_recover_size
);
1280 spin_unlock(&ls
->ls_recover_spin
);
1284 fs_info(sdp
, "recover jid %d result %s\n", jid
,
1285 result
== LM_RD_GAVEUP
? "busy" : "success");
1287 ls
->ls_recover_result
[jid
] = result
;
1289 /* GAVEUP means another node is recovering the journal; delay our
1290 next attempt to recover it, to give the other node a chance to
1291 finish before trying again */
1293 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1294 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
,
1295 result
== LM_RD_GAVEUP
? HZ
: 0);
1296 spin_unlock(&ls
->ls_recover_spin
);
1299 static const struct dlm_lockspace_ops gdlm_lockspace_ops
= {
1300 .recover_prep
= gdlm_recover_prep
,
1301 .recover_slot
= gdlm_recover_slot
,
1302 .recover_done
= gdlm_recover_done
,
1305 static int gdlm_mount(struct gfs2_sbd
*sdp
, const char *table
)
1307 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1308 char cluster
[GFS2_LOCKNAME_LEN
];
1311 int error
, ops_result
;
1314 * initialize everything
1317 INIT_DELAYED_WORK(&sdp
->sd_control_work
, gfs2_control_func
);
1318 spin_lock_init(&ls
->ls_recover_spin
);
1319 ls
->ls_recover_flags
= 0;
1320 ls
->ls_recover_mount
= 0;
1321 ls
->ls_recover_start
= 0;
1322 ls
->ls_recover_block
= 0;
1323 ls
->ls_recover_size
= 0;
1324 ls
->ls_recover_submit
= NULL
;
1325 ls
->ls_recover_result
= NULL
;
1326 ls
->ls_lvb_bits
= NULL
;
1328 error
= set_recover_size(sdp
, NULL
, 0);
1333 * prepare dlm_new_lockspace args
1336 fsname
= strchr(table
, ':');
1338 fs_info(sdp
, "no fsname found\n");
1342 memset(cluster
, 0, sizeof(cluster
));
1343 memcpy(cluster
, table
, strlen(table
) - strlen(fsname
));
1346 flags
= DLM_LSFL_NEWEXCL
;
1349 * create/join lockspace
1352 error
= dlm_new_lockspace(fsname
, cluster
, flags
, GDLM_LVB_SIZE
,
1353 &gdlm_lockspace_ops
, sdp
, &ops_result
,
1356 fs_err(sdp
, "dlm_new_lockspace error %d\n", error
);
1360 if (ops_result
< 0) {
1362 * dlm does not support ops callbacks,
1363 * old dlm_controld/gfs_controld are used, try without ops.
1365 fs_info(sdp
, "dlm lockspace ops not used\n");
1366 free_recover_size(ls
);
1367 set_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
);
1371 if (!test_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
)) {
1372 fs_err(sdp
, "dlm lockspace ops disallow jid preset\n");
1378 * control_mount() uses control_lock to determine first mounter,
1379 * and for later mounts, waits for any recoveries to be cleared.
1382 error
= control_mount(sdp
);
1384 fs_err(sdp
, "mount control error %d\n", error
);
1388 ls
->ls_first
= !!test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1389 clear_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
);
1390 smp_mb__after_atomic();
1391 wake_up_bit(&sdp
->sd_flags
, SDF_NOJOURNALID
);
1395 dlm_release_lockspace(ls
->ls_dlm
, 2);
1397 free_recover_size(ls
);
1402 static void gdlm_first_done(struct gfs2_sbd
*sdp
)
1404 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1407 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1410 error
= control_first_done(sdp
);
1412 fs_err(sdp
, "mount first_done error %d\n", error
);
1415 static void gdlm_unmount(struct gfs2_sbd
*sdp
)
1417 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1419 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1422 /* wait for gfs2_control_wq to be done with this mount */
1424 spin_lock(&ls
->ls_recover_spin
);
1425 set_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
);
1426 spin_unlock(&ls
->ls_recover_spin
);
1427 flush_delayed_work(&sdp
->sd_control_work
);
1429 /* mounted_lock and control_lock will be purged in dlm recovery */
1432 dlm_release_lockspace(ls
->ls_dlm
, 2);
1436 free_recover_size(ls
);
1439 static const match_table_t dlm_tokens
= {
1440 { Opt_jid
, "jid=%d"},
1442 { Opt_first
, "first=%d"},
1443 { Opt_nodir
, "nodir=%d"},
1447 const struct lm_lockops gfs2_dlm_ops
= {
1448 .lm_proto_name
= "lock_dlm",
1449 .lm_mount
= gdlm_mount
,
1450 .lm_first_done
= gdlm_first_done
,
1451 .lm_recovery_result
= gdlm_recovery_result
,
1452 .lm_unmount
= gdlm_unmount
,
1453 .lm_put_lock
= gdlm_put_lock
,
1454 .lm_lock
= gdlm_lock
,
1455 .lm_cancel
= gdlm_cancel
,
1456 .lm_tokens
= &dlm_tokens
,