1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
4 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/slab.h>
10 #include <linux/spinlock.h>
11 #include <linux/completion.h>
12 #include <linux/buffer_head.h>
14 #include <linux/gfs2_ondisk.h>
15 #include <linux/prefetch.h>
16 #include <linux/blkdev.h>
17 #include <linux/rbtree.h>
18 #include <linux/random.h>
33 #include "trace_gfs2.h"
36 #define BFITNOENT ((u32)~0)
37 #define NO_BLOCK ((u64)~0)
40 struct gfs2_rgrpd
*rgd
;
41 u32 offset
; /* The offset is bitmap relative */
42 int bii
; /* Bitmap index */
45 static inline struct gfs2_bitmap
*rbm_bi(const struct gfs2_rbm
*rbm
)
47 return rbm
->rgd
->rd_bits
+ rbm
->bii
;
50 static inline u64
gfs2_rbm_to_block(const struct gfs2_rbm
*rbm
)
52 BUG_ON(rbm
->offset
>= rbm
->rgd
->rd_data
);
53 return rbm
->rgd
->rd_data0
+ (rbm_bi(rbm
)->bi_start
* GFS2_NBBY
) +
58 * These routines are used by the resource group routines (rgrp.c)
59 * to keep track of block allocation. Each block is represented by two
60 * bits. So, each byte represents GFS2_NBBY (i.e. 4) blocks.
63 * 1 = Used (not metadata)
64 * 2 = Unlinked (still in use) inode
73 static const char valid_change
[16] = {
81 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
82 struct gfs2_blkreserv
*rs
, bool nowrap
);
86 * gfs2_setbit - Set a bit in the bitmaps
87 * @rbm: The position of the bit to set
88 * @do_clone: Also set the clone bitmap, if it exists
89 * @new_state: the new state of the block
93 static inline void gfs2_setbit(const struct gfs2_rbm
*rbm
, bool do_clone
,
94 unsigned char new_state
)
96 unsigned char *byte1
, *byte2
, *end
, cur_state
;
97 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
98 unsigned int buflen
= bi
->bi_bytes
;
99 const unsigned int bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
101 byte1
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
102 end
= bi
->bi_bh
->b_data
+ bi
->bi_offset
+ buflen
;
104 BUG_ON(byte1
>= end
);
106 cur_state
= (*byte1
>> bit
) & GFS2_BIT_MASK
;
108 if (unlikely(!valid_change
[new_state
* 4 + cur_state
])) {
109 struct gfs2_sbd
*sdp
= rbm
->rgd
->rd_sbd
;
111 fs_warn(sdp
, "buf_blk = 0x%x old_state=%d, new_state=%d\n",
112 rbm
->offset
, cur_state
, new_state
);
113 fs_warn(sdp
, "rgrp=0x%llx bi_start=0x%x biblk: 0x%llx\n",
114 (unsigned long long)rbm
->rgd
->rd_addr
, bi
->bi_start
,
115 (unsigned long long)bi
->bi_bh
->b_blocknr
);
116 fs_warn(sdp
, "bi_offset=0x%x bi_bytes=0x%x block=0x%llx\n",
117 bi
->bi_offset
, bi
->bi_bytes
,
118 (unsigned long long)gfs2_rbm_to_block(rbm
));
120 gfs2_consist_rgrpd(rbm
->rgd
);
123 *byte1
^= (cur_state
^ new_state
) << bit
;
125 if (do_clone
&& bi
->bi_clone
) {
126 byte2
= bi
->bi_clone
+ bi
->bi_offset
+ (rbm
->offset
/ GFS2_NBBY
);
127 cur_state
= (*byte2
>> bit
) & GFS2_BIT_MASK
;
128 *byte2
^= (cur_state
^ new_state
) << bit
;
133 * gfs2_testbit - test a bit in the bitmaps
134 * @rbm: The bit to test
135 * @use_clone: If true, test the clone bitmap, not the official bitmap.
137 * Some callers like gfs2_unaligned_extlen need to test the clone bitmaps,
138 * not the "real" bitmaps, to avoid allocating recently freed blocks.
140 * Returns: The two bit block state of the requested bit
143 static inline u8
gfs2_testbit(const struct gfs2_rbm
*rbm
, bool use_clone
)
145 struct gfs2_bitmap
*bi
= rbm_bi(rbm
);
150 if (use_clone
&& bi
->bi_clone
)
151 buffer
= bi
->bi_clone
;
153 buffer
= bi
->bi_bh
->b_data
;
154 buffer
+= bi
->bi_offset
;
155 byte
= buffer
+ (rbm
->offset
/ GFS2_NBBY
);
156 bit
= (rbm
->offset
% GFS2_NBBY
) * GFS2_BIT_SIZE
;
158 return (*byte
>> bit
) & GFS2_BIT_MASK
;
162 * gfs2_bit_search - search bitmap for a state
163 * @ptr: Pointer to bitmap data
164 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
165 * @state: The state we are searching for
167 * We xor the bitmap data with a pattern which is the bitwise opposite
168 * of what we are looking for. This gives rise to a pattern of ones
169 * wherever there is a match. Since we have two bits per entry, we
170 * take this pattern, shift it down by one place and then and it with
171 * the original. All the even bit positions (0,2,4, etc) then represent
172 * successful matches, so we mask with 0x55555..... to remove the unwanted
175 * This allows searching of a whole u64 at once (32 blocks) with a
176 * single test (on 64 bit arches).
179 static inline u64
gfs2_bit_search(const __le64
*ptr
, u64 mask
, u8 state
)
182 static const u64 search
[] = {
183 [0] = 0xffffffffffffffffULL
,
184 [1] = 0xaaaaaaaaaaaaaaaaULL
,
185 [2] = 0x5555555555555555ULL
,
186 [3] = 0x0000000000000000ULL
,
188 tmp
= le64_to_cpu(*ptr
) ^ search
[state
];
195 * rs_cmp - multi-block reservation range compare
196 * @start: start of the new reservation
197 * @len: number of blocks in the new reservation
198 * @rs: existing reservation to compare against
200 * returns: 1 if the block range is beyond the reach of the reservation
201 * -1 if the block range is before the start of the reservation
202 * 0 if the block range overlaps with the reservation
204 static inline int rs_cmp(u64 start
, u32 len
, struct gfs2_blkreserv
*rs
)
206 if (start
>= rs
->rs_start
+ rs
->rs_requested
)
208 if (rs
->rs_start
>= start
+ len
)
214 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
215 * a block in a given allocation state.
216 * @buf: the buffer that holds the bitmaps
217 * @len: the length (in bytes) of the buffer
218 * @goal: start search at this block's bit-pair (within @buffer)
219 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
221 * Scope of @goal and returned block number is only within this bitmap buffer,
222 * not entire rgrp or filesystem. @buffer will be offset from the actual
223 * beginning of a bitmap block buffer, skipping any header structures, but
224 * headers are always a multiple of 64 bits long so that the buffer is
225 * always aligned to a 64 bit boundary.
227 * The size of the buffer is in bytes, but is it assumed that it is
228 * always ok to read a complete multiple of 64 bits at the end
229 * of the block in case the end is no aligned to a natural boundary.
231 * Return: the block number (bitmap buffer scope) that was found
234 static u32
gfs2_bitfit(const u8
*buf
, const unsigned int len
,
237 u32 spoint
= (goal
<< 1) & ((8*sizeof(u64
)) - 1);
238 const __le64
*ptr
= ((__le64
*)buf
) + (goal
>> 5);
239 const __le64
*end
= (__le64
*)(buf
+ ALIGN(len
, sizeof(u64
)));
241 u64 mask
= 0x5555555555555555ULL
;
244 /* Mask off bits we don't care about at the start of the search */
246 tmp
= gfs2_bit_search(ptr
, mask
, state
);
248 while(tmp
== 0 && ptr
< end
) {
249 tmp
= gfs2_bit_search(ptr
, 0x5555555555555555ULL
, state
);
252 /* Mask off any bits which are more than len bytes from the start */
253 if (ptr
== end
&& (len
& (sizeof(u64
) - 1)))
254 tmp
&= (((u64
)~0) >> (64 - 8*(len
& (sizeof(u64
) - 1))));
255 /* Didn't find anything, so return */
260 bit
/= 2; /* two bits per entry in the bitmap */
261 return (((const unsigned char *)ptr
- buf
) * GFS2_NBBY
) + bit
;
265 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
266 * @rbm: The rbm with rgd already set correctly
267 * @block: The block number (filesystem relative)
269 * This sets the bi and offset members of an rbm based on a
270 * resource group and a filesystem relative block number. The
271 * resource group must be set in the rbm on entry, the bi and
272 * offset members will be set by this function.
274 * Returns: 0 on success, or an error code
277 static int gfs2_rbm_from_block(struct gfs2_rbm
*rbm
, u64 block
)
279 if (!rgrp_contains_block(rbm
->rgd
, block
))
282 rbm
->offset
= block
- rbm
->rgd
->rd_data0
;
283 /* Check if the block is within the first block */
284 if (rbm
->offset
< rbm_bi(rbm
)->bi_blocks
)
287 /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
288 rbm
->offset
+= (sizeof(struct gfs2_rgrp
) -
289 sizeof(struct gfs2_meta_header
)) * GFS2_NBBY
;
290 rbm
->bii
= rbm
->offset
/ rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
291 rbm
->offset
-= rbm
->bii
* rbm
->rgd
->rd_sbd
->sd_blocks_per_bitmap
;
296 * gfs2_rbm_add - add a number of blocks to an rbm
297 * @rbm: The rbm with rgd already set correctly
298 * @blocks: The number of blocks to add to rpm
300 * This function takes an existing rbm structure and adds a number of blocks to
303 * Returns: True if the new rbm would point past the end of the rgrp.
306 static bool gfs2_rbm_add(struct gfs2_rbm
*rbm
, u32 blocks
)
308 struct gfs2_rgrpd
*rgd
= rbm
->rgd
;
309 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ rbm
->bii
;
311 if (rbm
->offset
+ blocks
< bi
->bi_blocks
) {
312 rbm
->offset
+= blocks
;
315 blocks
-= bi
->bi_blocks
- rbm
->offset
;
319 if (bi
== rgd
->rd_bits
+ rgd
->rd_length
)
321 if (blocks
< bi
->bi_blocks
) {
322 rbm
->offset
= blocks
;
323 rbm
->bii
= bi
- rgd
->rd_bits
;
326 blocks
-= bi
->bi_blocks
;
331 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
332 * @rbm: Position to search (value/result)
333 * @n_unaligned: Number of unaligned blocks to check
334 * @len: Decremented for each block found (terminate on zero)
336 * Returns: true if a non-free block is encountered or the end of the resource
340 static bool gfs2_unaligned_extlen(struct gfs2_rbm
*rbm
, u32 n_unaligned
, u32
*len
)
345 for (n
= 0; n
< n_unaligned
; n
++) {
346 res
= gfs2_testbit(rbm
, true);
347 if (res
!= GFS2_BLKST_FREE
)
352 if (gfs2_rbm_add(rbm
, 1))
360 * gfs2_free_extlen - Return extent length of free blocks
361 * @rrbm: Starting position
362 * @len: Max length to check
364 * Starting at the block specified by the rbm, see how many free blocks
365 * there are, not reading more than len blocks ahead. This can be done
366 * using memchr_inv when the blocks are byte aligned, but has to be done
367 * on a block by block basis in case of unaligned blocks. Also this
368 * function can cope with bitmap boundaries (although it must stop on
369 * a resource group boundary)
371 * Returns: Number of free blocks in the extent
374 static u32
gfs2_free_extlen(const struct gfs2_rbm
*rrbm
, u32 len
)
376 struct gfs2_rbm rbm
= *rrbm
;
377 u32 n_unaligned
= rbm
.offset
& 3;
381 u8
*ptr
, *start
, *end
;
383 struct gfs2_bitmap
*bi
;
386 gfs2_unaligned_extlen(&rbm
, 4 - n_unaligned
, &len
))
389 n_unaligned
= len
& 3;
390 /* Start is now byte aligned */
393 start
= bi
->bi_bh
->b_data
;
395 start
= bi
->bi_clone
;
396 start
+= bi
->bi_offset
;
397 end
= start
+ bi
->bi_bytes
;
398 BUG_ON(rbm
.offset
& 3);
399 start
+= (rbm
.offset
/ GFS2_NBBY
);
400 bytes
= min_t(u32
, len
/ GFS2_NBBY
, (end
- start
));
401 ptr
= memchr_inv(start
, 0, bytes
);
402 chunk_size
= ((ptr
== NULL
) ? bytes
: (ptr
- start
));
403 chunk_size
*= GFS2_NBBY
;
404 BUG_ON(len
< chunk_size
);
406 block
= gfs2_rbm_to_block(&rbm
);
407 if (gfs2_rbm_from_block(&rbm
, block
+ chunk_size
)) {
415 n_unaligned
= len
& 3;
418 /* Deal with any bits left over at the end */
420 gfs2_unaligned_extlen(&rbm
, n_unaligned
, &len
);
426 * gfs2_bitcount - count the number of bits in a certain state
427 * @rgd: the resource group descriptor
428 * @buffer: the buffer that holds the bitmaps
429 * @buflen: the length (in bytes) of the buffer
430 * @state: the state of the block we're looking for
432 * Returns: The number of bits
435 static u32
gfs2_bitcount(struct gfs2_rgrpd
*rgd
, const u8
*buffer
,
436 unsigned int buflen
, u8 state
)
438 const u8
*byte
= buffer
;
439 const u8
*end
= buffer
+ buflen
;
440 const u8 state1
= state
<< 2;
441 const u8 state2
= state
<< 4;
442 const u8 state3
= state
<< 6;
445 for (; byte
< end
; byte
++) {
446 if (((*byte
) & 0x03) == state
)
448 if (((*byte
) & 0x0C) == state1
)
450 if (((*byte
) & 0x30) == state2
)
452 if (((*byte
) & 0xC0) == state3
)
460 * gfs2_rgrp_verify - Verify that a resource group is consistent
465 void gfs2_rgrp_verify(struct gfs2_rgrpd
*rgd
)
467 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
468 struct gfs2_bitmap
*bi
= NULL
;
469 u32 length
= rgd
->rd_length
;
473 memset(count
, 0, 4 * sizeof(u32
));
475 /* Count # blocks in each of 4 possible allocation states */
476 for (buf
= 0; buf
< length
; buf
++) {
477 bi
= rgd
->rd_bits
+ buf
;
478 for (x
= 0; x
< 4; x
++)
479 count
[x
] += gfs2_bitcount(rgd
,
485 if (count
[0] != rgd
->rd_free
) {
486 gfs2_lm(sdp
, "free data mismatch: %u != %u\n",
487 count
[0], rgd
->rd_free
);
488 gfs2_consist_rgrpd(rgd
);
492 tmp
= rgd
->rd_data
- rgd
->rd_free
- rgd
->rd_dinodes
;
493 if (count
[1] != tmp
) {
494 gfs2_lm(sdp
, "used data mismatch: %u != %u\n",
496 gfs2_consist_rgrpd(rgd
);
500 if (count
[2] + count
[3] != rgd
->rd_dinodes
) {
501 gfs2_lm(sdp
, "used metadata mismatch: %u != %u\n",
502 count
[2] + count
[3], rgd
->rd_dinodes
);
503 gfs2_consist_rgrpd(rgd
);
509 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
510 * @sdp: The GFS2 superblock
511 * @blk: The data block number
512 * @exact: True if this needs to be an exact match
514 * The @exact argument should be set to true by most callers. The exception
515 * is when we need to match blocks which are not represented by the rgrp
516 * bitmap, but which are part of the rgrp (i.e. padding blocks) which are
517 * there for alignment purposes. Another way of looking at it is that @exact
518 * matches only valid data/metadata blocks, but with @exact false, it will
519 * match any block within the extent of the rgrp.
521 * Returns: The resource group, or NULL if not found
524 struct gfs2_rgrpd
*gfs2_blk2rgrpd(struct gfs2_sbd
*sdp
, u64 blk
, bool exact
)
526 struct rb_node
*n
, *next
;
527 struct gfs2_rgrpd
*cur
;
529 spin_lock(&sdp
->sd_rindex_spin
);
530 n
= sdp
->sd_rindex_tree
.rb_node
;
532 cur
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
534 if (blk
< cur
->rd_addr
)
536 else if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
539 spin_unlock(&sdp
->sd_rindex_spin
);
541 if (blk
< cur
->rd_addr
)
543 if (blk
>= cur
->rd_data0
+ cur
->rd_data
)
550 spin_unlock(&sdp
->sd_rindex_spin
);
556 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
557 * @sdp: The GFS2 superblock
559 * Returns: The first rgrp in the filesystem
562 struct gfs2_rgrpd
*gfs2_rgrpd_get_first(struct gfs2_sbd
*sdp
)
564 const struct rb_node
*n
;
565 struct gfs2_rgrpd
*rgd
;
567 spin_lock(&sdp
->sd_rindex_spin
);
568 n
= rb_first(&sdp
->sd_rindex_tree
);
569 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
570 spin_unlock(&sdp
->sd_rindex_spin
);
576 * gfs2_rgrpd_get_next - get the next RG
577 * @rgd: the resource group descriptor
579 * Returns: The next rgrp
582 struct gfs2_rgrpd
*gfs2_rgrpd_get_next(struct gfs2_rgrpd
*rgd
)
584 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
585 const struct rb_node
*n
;
587 spin_lock(&sdp
->sd_rindex_spin
);
588 n
= rb_next(&rgd
->rd_node
);
590 n
= rb_first(&sdp
->sd_rindex_tree
);
592 if (unlikely(&rgd
->rd_node
== n
)) {
593 spin_unlock(&sdp
->sd_rindex_spin
);
596 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
597 spin_unlock(&sdp
->sd_rindex_spin
);
601 void check_and_update_goal(struct gfs2_inode
*ip
)
603 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
604 if (!ip
->i_goal
|| gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1) == NULL
)
605 ip
->i_goal
= ip
->i_no_addr
;
608 void gfs2_free_clones(struct gfs2_rgrpd
*rgd
)
612 for (x
= 0; x
< rgd
->rd_length
; x
++) {
613 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
619 static void dump_rs(struct seq_file
*seq
, const struct gfs2_blkreserv
*rs
,
620 const char *fs_id_buf
)
622 struct gfs2_inode
*ip
= container_of(rs
, struct gfs2_inode
, i_res
);
624 gfs2_print_dbg(seq
, "%s B: n:%llu s:%llu f:%u\n",
626 (unsigned long long)ip
->i_no_addr
,
627 (unsigned long long)rs
->rs_start
,
632 * __rs_deltree - remove a multi-block reservation from the rgd tree
633 * @rs: The reservation to remove
636 static void __rs_deltree(struct gfs2_blkreserv
*rs
)
638 struct gfs2_rgrpd
*rgd
;
640 if (!gfs2_rs_active(rs
))
644 trace_gfs2_rs(rs
, TRACE_RS_TREEDEL
);
645 rb_erase(&rs
->rs_node
, &rgd
->rd_rstree
);
646 RB_CLEAR_NODE(&rs
->rs_node
);
648 if (rs
->rs_requested
) {
649 /* return requested blocks to the rgrp */
650 BUG_ON(rs
->rs_rgd
->rd_requested
< rs
->rs_requested
);
651 rs
->rs_rgd
->rd_requested
-= rs
->rs_requested
;
653 /* The rgrp extent failure point is likely not to increase;
654 it will only do so if the freed blocks are somehow
655 contiguous with a span of free blocks that follows. Still,
656 it will force the number to be recalculated later. */
657 rgd
->rd_extfail_pt
+= rs
->rs_requested
;
658 rs
->rs_requested
= 0;
663 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
664 * @rs: The reservation to remove
667 void gfs2_rs_deltree(struct gfs2_blkreserv
*rs
)
669 struct gfs2_rgrpd
*rgd
;
673 spin_lock(&rgd
->rd_rsspin
);
675 BUG_ON(rs
->rs_requested
);
676 spin_unlock(&rgd
->rd_rsspin
);
681 * gfs2_rs_delete - delete a multi-block reservation
682 * @ip: The inode for this reservation
685 void gfs2_rs_delete(struct gfs2_inode
*ip
)
687 struct inode
*inode
= &ip
->i_inode
;
689 down_write(&ip
->i_rw_mutex
);
690 if (atomic_read(&inode
->i_writecount
) <= 1)
691 gfs2_rs_deltree(&ip
->i_res
);
692 up_write(&ip
->i_rw_mutex
);
696 * return_all_reservations - return all reserved blocks back to the rgrp.
697 * @rgd: the rgrp that needs its space back
699 * We previously reserved a bunch of blocks for allocation. Now we need to
700 * give them back. This leave the reservation structures in tact, but removes
701 * all of their corresponding "no-fly zones".
703 static void return_all_reservations(struct gfs2_rgrpd
*rgd
)
706 struct gfs2_blkreserv
*rs
;
708 spin_lock(&rgd
->rd_rsspin
);
709 while ((n
= rb_first(&rgd
->rd_rstree
))) {
710 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
713 spin_unlock(&rgd
->rd_rsspin
);
716 void gfs2_clear_rgrpd(struct gfs2_sbd
*sdp
)
719 struct gfs2_rgrpd
*rgd
;
720 struct gfs2_glock
*gl
;
722 while ((n
= rb_first(&sdp
->sd_rindex_tree
))) {
723 rgd
= rb_entry(n
, struct gfs2_rgrpd
, rd_node
);
726 rb_erase(n
, &sdp
->sd_rindex_tree
);
729 if (gl
->gl_state
!= LM_ST_UNLOCKED
) {
730 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
731 flush_delayed_work(&gl
->gl_work
);
733 gfs2_rgrp_brelse(rgd
);
734 glock_clear_object(gl
, rgd
);
738 gfs2_free_clones(rgd
);
739 return_all_reservations(rgd
);
742 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
747 * compute_bitstructs - Compute the bitmap sizes
748 * @rgd: The resource group descriptor
750 * Calculates bitmap descriptors, one for each block that contains bitmap data
755 static int compute_bitstructs(struct gfs2_rgrpd
*rgd
)
757 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
758 struct gfs2_bitmap
*bi
;
759 u32 length
= rgd
->rd_length
; /* # blocks in hdr & bitmap */
760 u32 bytes_left
, bytes
;
766 rgd
->rd_bits
= kcalloc(length
, sizeof(struct gfs2_bitmap
), GFP_NOFS
);
770 bytes_left
= rgd
->rd_bitbytes
;
772 for (x
= 0; x
< length
; x
++) {
773 bi
= rgd
->rd_bits
+ x
;
776 /* small rgrp; bitmap stored completely in header block */
779 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
781 bi
->bi_bytes
= bytes
;
782 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
785 bytes
= sdp
->sd_sb
.sb_bsize
- sizeof(struct gfs2_rgrp
);
786 bi
->bi_offset
= sizeof(struct gfs2_rgrp
);
788 bi
->bi_bytes
= bytes
;
789 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
791 } else if (x
+ 1 == length
) {
793 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
794 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
795 bi
->bi_bytes
= bytes
;
796 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
799 bytes
= sdp
->sd_sb
.sb_bsize
-
800 sizeof(struct gfs2_meta_header
);
801 bi
->bi_offset
= sizeof(struct gfs2_meta_header
);
802 bi
->bi_start
= rgd
->rd_bitbytes
- bytes_left
;
803 bi
->bi_bytes
= bytes
;
804 bi
->bi_blocks
= bytes
* GFS2_NBBY
;
811 gfs2_consist_rgrpd(rgd
);
814 bi
= rgd
->rd_bits
+ (length
- 1);
815 if ((bi
->bi_start
+ bi
->bi_bytes
) * GFS2_NBBY
!= rgd
->rd_data
) {
822 "start=%u len=%u offset=%u\n",
823 (unsigned long long)rgd
->rd_addr
,
825 (unsigned long long)rgd
->rd_data0
,
828 bi
->bi_start
, bi
->bi_bytes
, bi
->bi_offset
);
829 gfs2_consist_rgrpd(rgd
);
837 * gfs2_ri_total - Total up the file system space, according to the rindex.
838 * @sdp: the filesystem
841 u64
gfs2_ri_total(struct gfs2_sbd
*sdp
)
844 struct inode
*inode
= sdp
->sd_rindex
;
845 struct gfs2_inode
*ip
= GFS2_I(inode
);
846 char buf
[sizeof(struct gfs2_rindex
)];
849 for (rgrps
= 0;; rgrps
++) {
850 loff_t pos
= rgrps
* sizeof(struct gfs2_rindex
);
852 if (pos
+ sizeof(struct gfs2_rindex
) > i_size_read(inode
))
854 error
= gfs2_internal_read(ip
, buf
, &pos
,
855 sizeof(struct gfs2_rindex
));
856 if (error
!= sizeof(struct gfs2_rindex
))
858 total_data
+= be32_to_cpu(((struct gfs2_rindex
*)buf
)->ri_data
);
863 static int rgd_insert(struct gfs2_rgrpd
*rgd
)
865 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
866 struct rb_node
**newn
= &sdp
->sd_rindex_tree
.rb_node
, *parent
= NULL
;
868 /* Figure out where to put new node */
870 struct gfs2_rgrpd
*cur
= rb_entry(*newn
, struct gfs2_rgrpd
,
874 if (rgd
->rd_addr
< cur
->rd_addr
)
875 newn
= &((*newn
)->rb_left
);
876 else if (rgd
->rd_addr
> cur
->rd_addr
)
877 newn
= &((*newn
)->rb_right
);
882 rb_link_node(&rgd
->rd_node
, parent
, newn
);
883 rb_insert_color(&rgd
->rd_node
, &sdp
->sd_rindex_tree
);
889 * read_rindex_entry - Pull in a new resource index entry from the disk
890 * @ip: Pointer to the rindex inode
892 * Returns: 0 on success, > 0 on EOF, error code otherwise
895 static int read_rindex_entry(struct gfs2_inode
*ip
)
897 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
898 loff_t pos
= sdp
->sd_rgrps
* sizeof(struct gfs2_rindex
);
899 struct gfs2_rindex buf
;
901 struct gfs2_rgrpd
*rgd
;
903 if (pos
>= i_size_read(&ip
->i_inode
))
906 error
= gfs2_internal_read(ip
, (char *)&buf
, &pos
,
907 sizeof(struct gfs2_rindex
));
909 if (error
!= sizeof(struct gfs2_rindex
))
910 return (error
== 0) ? 1 : error
;
912 rgd
= kmem_cache_zalloc(gfs2_rgrpd_cachep
, GFP_NOFS
);
918 rgd
->rd_addr
= be64_to_cpu(buf
.ri_addr
);
919 rgd
->rd_length
= be32_to_cpu(buf
.ri_length
);
920 rgd
->rd_data0
= be64_to_cpu(buf
.ri_data0
);
921 rgd
->rd_data
= be32_to_cpu(buf
.ri_data
);
922 rgd
->rd_bitbytes
= be32_to_cpu(buf
.ri_bitbytes
);
923 spin_lock_init(&rgd
->rd_rsspin
);
924 mutex_init(&rgd
->rd_mutex
);
926 error
= gfs2_glock_get(sdp
, rgd
->rd_addr
,
927 &gfs2_rgrp_glops
, CREATE
, &rgd
->rd_gl
);
931 error
= compute_bitstructs(rgd
);
935 rgd
->rd_rgl
= (struct gfs2_rgrp_lvb
*)rgd
->rd_gl
->gl_lksb
.sb_lvbptr
;
936 rgd
->rd_flags
&= ~GFS2_RDF_PREFERRED
;
937 if (rgd
->rd_data
> sdp
->sd_max_rg_data
)
938 sdp
->sd_max_rg_data
= rgd
->rd_data
;
939 spin_lock(&sdp
->sd_rindex_spin
);
940 error
= rgd_insert(rgd
);
941 spin_unlock(&sdp
->sd_rindex_spin
);
943 glock_set_object(rgd
->rd_gl
, rgd
);
947 error
= 0; /* someone else read in the rgrp; free it and ignore it */
949 gfs2_glock_put(rgd
->rd_gl
);
954 kmem_cache_free(gfs2_rgrpd_cachep
, rgd
);
959 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
960 * @sdp: the GFS2 superblock
962 * The purpose of this function is to select a subset of the resource groups
963 * and mark them as PREFERRED. We do it in such a way that each node prefers
964 * to use a unique set of rgrps to minimize glock contention.
966 static void set_rgrp_preferences(struct gfs2_sbd
*sdp
)
968 struct gfs2_rgrpd
*rgd
, *first
;
971 /* Skip an initial number of rgrps, based on this node's journal ID.
972 That should start each node out on its own set. */
973 rgd
= gfs2_rgrpd_get_first(sdp
);
974 for (i
= 0; i
< sdp
->sd_lockstruct
.ls_jid
; i
++)
975 rgd
= gfs2_rgrpd_get_next(rgd
);
979 rgd
->rd_flags
|= GFS2_RDF_PREFERRED
;
980 for (i
= 0; i
< sdp
->sd_journals
; i
++) {
981 rgd
= gfs2_rgrpd_get_next(rgd
);
982 if (!rgd
|| rgd
== first
)
985 } while (rgd
&& rgd
!= first
);
989 * gfs2_ri_update - Pull in a new resource index from the disk
990 * @ip: pointer to the rindex inode
992 * Returns: 0 on successful update, error code otherwise
995 static int gfs2_ri_update(struct gfs2_inode
*ip
)
997 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1001 error
= read_rindex_entry(ip
);
1002 } while (error
== 0);
1007 if (RB_EMPTY_ROOT(&sdp
->sd_rindex_tree
)) {
1008 fs_err(sdp
, "no resource groups found in the file system.\n");
1011 set_rgrp_preferences(sdp
);
1013 sdp
->sd_rindex_uptodate
= 1;
1018 * gfs2_rindex_update - Update the rindex if required
1019 * @sdp: The GFS2 superblock
1021 * We grab a lock on the rindex inode to make sure that it doesn't
1022 * change whilst we are performing an operation. We keep this lock
1023 * for quite long periods of time compared to other locks. This
1024 * doesn't matter, since it is shared and it is very, very rarely
1025 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1027 * This makes sure that we're using the latest copy of the resource index
1028 * special file, which might have been updated if someone expanded the
1029 * filesystem (via gfs2_grow utility), which adds new resource groups.
1031 * Returns: 0 on succeess, error code otherwise
1034 int gfs2_rindex_update(struct gfs2_sbd
*sdp
)
1036 struct gfs2_inode
*ip
= GFS2_I(sdp
->sd_rindex
);
1037 struct gfs2_glock
*gl
= ip
->i_gl
;
1038 struct gfs2_holder ri_gh
;
1040 int unlock_required
= 0;
1042 /* Read new copy from disk if we don't have the latest */
1043 if (!sdp
->sd_rindex_uptodate
) {
1044 if (!gfs2_glock_is_locked_by_me(gl
)) {
1045 error
= gfs2_glock_nq_init(gl
, LM_ST_SHARED
, 0, &ri_gh
);
1048 unlock_required
= 1;
1050 if (!sdp
->sd_rindex_uptodate
)
1051 error
= gfs2_ri_update(ip
);
1052 if (unlock_required
)
1053 gfs2_glock_dq_uninit(&ri_gh
);
1059 static void gfs2_rgrp_in(struct gfs2_rgrpd
*rgd
, const void *buf
)
1061 const struct gfs2_rgrp
*str
= buf
;
1064 rg_flags
= be32_to_cpu(str
->rg_flags
);
1065 rg_flags
&= ~GFS2_RDF_MASK
;
1066 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1067 rgd
->rd_flags
|= rg_flags
;
1068 rgd
->rd_free
= be32_to_cpu(str
->rg_free
);
1069 rgd
->rd_dinodes
= be32_to_cpu(str
->rg_dinodes
);
1070 rgd
->rd_igeneration
= be64_to_cpu(str
->rg_igeneration
);
1071 /* rd_data0, rd_data and rd_bitbytes already set from rindex */
1074 static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb
*rgl
, const void *buf
)
1076 const struct gfs2_rgrp
*str
= buf
;
1078 rgl
->rl_magic
= cpu_to_be32(GFS2_MAGIC
);
1079 rgl
->rl_flags
= str
->rg_flags
;
1080 rgl
->rl_free
= str
->rg_free
;
1081 rgl
->rl_dinodes
= str
->rg_dinodes
;
1082 rgl
->rl_igeneration
= str
->rg_igeneration
;
1086 static void gfs2_rgrp_out(struct gfs2_rgrpd
*rgd
, void *buf
)
1088 struct gfs2_rgrpd
*next
= gfs2_rgrpd_get_next(rgd
);
1089 struct gfs2_rgrp
*str
= buf
;
1092 str
->rg_flags
= cpu_to_be32(rgd
->rd_flags
& ~GFS2_RDF_MASK
);
1093 str
->rg_free
= cpu_to_be32(rgd
->rd_free
);
1094 str
->rg_dinodes
= cpu_to_be32(rgd
->rd_dinodes
);
1097 else if (next
->rd_addr
> rgd
->rd_addr
)
1098 str
->rg_skip
= cpu_to_be32(next
->rd_addr
- rgd
->rd_addr
);
1099 str
->rg_igeneration
= cpu_to_be64(rgd
->rd_igeneration
);
1100 str
->rg_data0
= cpu_to_be64(rgd
->rd_data0
);
1101 str
->rg_data
= cpu_to_be32(rgd
->rd_data
);
1102 str
->rg_bitbytes
= cpu_to_be32(rgd
->rd_bitbytes
);
1104 crc
= gfs2_disk_hash(buf
, sizeof(struct gfs2_rgrp
));
1105 str
->rg_crc
= cpu_to_be32(crc
);
1107 memset(&str
->rg_reserved
, 0, sizeof(str
->rg_reserved
));
1108 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
, buf
);
1111 static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd
*rgd
)
1113 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
1114 struct gfs2_rgrp
*str
= (struct gfs2_rgrp
*)rgd
->rd_bits
[0].bi_bh
->b_data
;
1115 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1118 if (rgl
->rl_flags
!= str
->rg_flags
) {
1119 fs_warn(sdp
, "GFS2: rgd: %llu lvb flag mismatch %u/%u",
1120 (unsigned long long)rgd
->rd_addr
,
1121 be32_to_cpu(rgl
->rl_flags
), be32_to_cpu(str
->rg_flags
));
1124 if (rgl
->rl_free
!= str
->rg_free
) {
1125 fs_warn(sdp
, "GFS2: rgd: %llu lvb free mismatch %u/%u",
1126 (unsigned long long)rgd
->rd_addr
,
1127 be32_to_cpu(rgl
->rl_free
), be32_to_cpu(str
->rg_free
));
1130 if (rgl
->rl_dinodes
!= str
->rg_dinodes
) {
1131 fs_warn(sdp
, "GFS2: rgd: %llu lvb dinode mismatch %u/%u",
1132 (unsigned long long)rgd
->rd_addr
,
1133 be32_to_cpu(rgl
->rl_dinodes
),
1134 be32_to_cpu(str
->rg_dinodes
));
1137 if (rgl
->rl_igeneration
!= str
->rg_igeneration
) {
1138 fs_warn(sdp
, "GFS2: rgd: %llu lvb igen mismatch %llu/%llu",
1139 (unsigned long long)rgd
->rd_addr
,
1140 (unsigned long long)be64_to_cpu(rgl
->rl_igeneration
),
1141 (unsigned long long)be64_to_cpu(str
->rg_igeneration
));
1147 static u32
count_unlinked(struct gfs2_rgrpd
*rgd
)
1149 struct gfs2_bitmap
*bi
;
1150 const u32 length
= rgd
->rd_length
;
1151 const u8
*buffer
= NULL
;
1152 u32 i
, goal
, count
= 0;
1154 for (i
= 0, bi
= rgd
->rd_bits
; i
< length
; i
++, bi
++) {
1156 buffer
= bi
->bi_bh
->b_data
+ bi
->bi_offset
;
1157 WARN_ON(!buffer_uptodate(bi
->bi_bh
));
1158 while (goal
< bi
->bi_blocks
) {
1159 goal
= gfs2_bitfit(buffer
, bi
->bi_bytes
, goal
,
1160 GFS2_BLKST_UNLINKED
);
1161 if (goal
== BFITNOENT
)
1171 static void rgrp_set_bitmap_flags(struct gfs2_rgrpd
*rgd
)
1173 struct gfs2_bitmap
*bi
;
1177 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1178 bi
= rgd
->rd_bits
+ x
;
1179 clear_bit(GBF_FULL
, &bi
->bi_flags
);
1182 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1183 bi
= rgd
->rd_bits
+ x
;
1184 set_bit(GBF_FULL
, &bi
->bi_flags
);
1190 * gfs2_rgrp_go_instantiate - Read in a RG's header and bitmaps
1191 * @gl: the glock representing the rgrpd to read in
1193 * Read in all of a Resource Group's header and bitmap blocks.
1194 * Caller must eventually call gfs2_rgrp_brelse() to free the bitmaps.
1199 int gfs2_rgrp_go_instantiate(struct gfs2_glock
*gl
)
1201 struct gfs2_rgrpd
*rgd
= gl
->gl_object
;
1202 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1203 unsigned int length
= rgd
->rd_length
;
1204 struct gfs2_bitmap
*bi
;
1208 if (rgd
->rd_bits
[0].bi_bh
!= NULL
)
1211 for (x
= 0; x
< length
; x
++) {
1212 bi
= rgd
->rd_bits
+ x
;
1213 error
= gfs2_meta_read(gl
, rgd
->rd_addr
+ x
, 0, 0, &bi
->bi_bh
);
1218 for (y
= length
; y
--;) {
1219 bi
= rgd
->rd_bits
+ y
;
1220 error
= gfs2_meta_wait(sdp
, bi
->bi_bh
);
1223 if (gfs2_metatype_check(sdp
, bi
->bi_bh
, y
? GFS2_METATYPE_RB
:
1224 GFS2_METATYPE_RG
)) {
1230 gfs2_rgrp_in(rgd
, (rgd
->rd_bits
[0].bi_bh
)->b_data
);
1231 rgrp_set_bitmap_flags(rgd
);
1232 rgd
->rd_flags
|= GFS2_RDF_CHECK
;
1233 rgd
->rd_free_clone
= rgd
->rd_free
;
1234 GLOCK_BUG_ON(rgd
->rd_gl
, rgd
->rd_reserved
);
1235 /* max out the rgrp allocation failure point */
1236 rgd
->rd_extfail_pt
= rgd
->rd_free
;
1237 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
) {
1238 rgd
->rd_rgl
->rl_unlinked
= cpu_to_be32(count_unlinked(rgd
));
1239 gfs2_rgrp_ondisk2lvb(rgd
->rd_rgl
,
1240 rgd
->rd_bits
[0].bi_bh
->b_data
);
1241 } else if (sdp
->sd_args
.ar_rgrplvb
) {
1242 if (!gfs2_rgrp_lvb_valid(rgd
)){
1243 gfs2_consist_rgrpd(rgd
);
1247 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1248 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1254 bi
= rgd
->rd_bits
+ x
;
1257 gfs2_assert_warn(sdp
, !bi
->bi_clone
);
1262 static int update_rgrp_lvb(struct gfs2_rgrpd
*rgd
, struct gfs2_holder
*gh
)
1266 if (!test_bit(GLF_INSTANTIATE_NEEDED
, &gh
->gh_gl
->gl_flags
))
1269 if (cpu_to_be32(GFS2_MAGIC
) != rgd
->rd_rgl
->rl_magic
)
1270 return gfs2_instantiate(gh
);
1272 rl_flags
= be32_to_cpu(rgd
->rd_rgl
->rl_flags
);
1273 rl_flags
&= ~GFS2_RDF_MASK
;
1274 rgd
->rd_flags
&= GFS2_RDF_MASK
;
1275 rgd
->rd_flags
|= (rl_flags
| GFS2_RDF_CHECK
);
1276 if (rgd
->rd_rgl
->rl_unlinked
== 0)
1277 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1278 rgd
->rd_free
= be32_to_cpu(rgd
->rd_rgl
->rl_free
);
1279 rgrp_set_bitmap_flags(rgd
);
1280 rgd
->rd_free_clone
= rgd
->rd_free
;
1281 GLOCK_BUG_ON(rgd
->rd_gl
, rgd
->rd_reserved
);
1282 /* max out the rgrp allocation failure point */
1283 rgd
->rd_extfail_pt
= rgd
->rd_free
;
1284 rgd
->rd_dinodes
= be32_to_cpu(rgd
->rd_rgl
->rl_dinodes
);
1285 rgd
->rd_igeneration
= be64_to_cpu(rgd
->rd_rgl
->rl_igeneration
);
1290 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1291 * @rgd: The resource group
1295 void gfs2_rgrp_brelse(struct gfs2_rgrpd
*rgd
)
1297 int x
, length
= rgd
->rd_length
;
1299 for (x
= 0; x
< length
; x
++) {
1300 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1306 set_bit(GLF_INSTANTIATE_NEEDED
, &rgd
->rd_gl
->gl_flags
);
1309 int gfs2_rgrp_send_discards(struct gfs2_sbd
*sdp
, u64 offset
,
1310 struct buffer_head
*bh
,
1311 const struct gfs2_bitmap
*bi
, unsigned minlen
, u64
*ptrimmed
)
1313 struct super_block
*sb
= sdp
->sd_vfs
;
1316 sector_t nr_blks
= 0;
1322 for (x
= 0; x
< bi
->bi_bytes
; x
++) {
1323 const u8
*clone
= bi
->bi_clone
? bi
->bi_clone
: bi
->bi_bh
->b_data
;
1324 clone
+= bi
->bi_offset
;
1327 const u8
*orig
= bh
->b_data
+ bi
->bi_offset
+ x
;
1328 diff
= ~(*orig
| (*orig
>> 1)) & (*clone
| (*clone
>> 1));
1330 diff
= ~(*clone
| (*clone
>> 1));
1335 blk
= offset
+ ((bi
->bi_start
+ x
) * GFS2_NBBY
);
1339 goto start_new_extent
;
1340 if ((start
+ nr_blks
) != blk
) {
1341 if (nr_blks
>= minlen
) {
1342 rv
= sb_issue_discard(sb
,
1359 if (nr_blks
>= minlen
) {
1360 rv
= sb_issue_discard(sb
, start
, nr_blks
, GFP_NOFS
, 0);
1366 *ptrimmed
= trimmed
;
1370 if (sdp
->sd_args
.ar_discard
)
1371 fs_warn(sdp
, "error %d on discard request, turning discards off for this filesystem\n", rv
);
1372 sdp
->sd_args
.ar_discard
= 0;
1377 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1378 * @filp: Any file on the filesystem
1379 * @argp: Pointer to the arguments (also used to pass result)
1381 * Returns: 0 on success, otherwise error code
1384 int gfs2_fitrim(struct file
*filp
, void __user
*argp
)
1386 struct inode
*inode
= file_inode(filp
);
1387 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
1388 struct block_device
*bdev
= sdp
->sd_vfs
->s_bdev
;
1389 struct buffer_head
*bh
;
1390 struct gfs2_rgrpd
*rgd
;
1391 struct gfs2_rgrpd
*rgd_end
;
1392 struct gfs2_holder gh
;
1393 struct fstrim_range r
;
1397 u64 start
, end
, minlen
;
1399 unsigned bs_shift
= sdp
->sd_sb
.sb_bsize_shift
;
1401 if (!capable(CAP_SYS_ADMIN
))
1404 if (!test_bit(SDF_JOURNAL_LIVE
, &sdp
->sd_flags
))
1407 if (!bdev_max_discard_sectors(bdev
))
1410 if (copy_from_user(&r
, argp
, sizeof(r
)))
1413 ret
= gfs2_rindex_update(sdp
);
1417 start
= r
.start
>> bs_shift
;
1418 end
= start
+ (r
.len
>> bs_shift
);
1419 minlen
= max_t(u64
, r
.minlen
, sdp
->sd_sb
.sb_bsize
);
1420 minlen
= max_t(u64
, minlen
, bdev_discard_granularity(bdev
)) >> bs_shift
;
1422 if (end
<= start
|| minlen
> sdp
->sd_max_rg_data
)
1425 rgd
= gfs2_blk2rgrpd(sdp
, start
, 0);
1426 rgd_end
= gfs2_blk2rgrpd(sdp
, end
, 0);
1428 if ((gfs2_rgrpd_get_first(sdp
) == gfs2_rgrpd_get_next(rgd_end
))
1429 && (start
> rgd_end
->rd_data0
+ rgd_end
->rd_data
))
1430 return -EINVAL
; /* start is beyond the end of the fs */
1434 ret
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_EXCLUSIVE
,
1435 LM_FLAG_NODE_SCOPE
, &gh
);
1439 if (!(rgd
->rd_flags
& GFS2_RGF_TRIMMED
)) {
1440 /* Trim each bitmap in the rgrp */
1441 for (x
= 0; x
< rgd
->rd_length
; x
++) {
1442 struct gfs2_bitmap
*bi
= rgd
->rd_bits
+ x
;
1443 rgrp_lock_local(rgd
);
1444 ret
= gfs2_rgrp_send_discards(sdp
,
1445 rgd
->rd_data0
, NULL
, bi
, minlen
,
1447 rgrp_unlock_local(rgd
);
1449 gfs2_glock_dq_uninit(&gh
);
1455 /* Mark rgrp as having been trimmed */
1456 ret
= gfs2_trans_begin(sdp
, RES_RG_HDR
, 0);
1458 bh
= rgd
->rd_bits
[0].bi_bh
;
1459 rgrp_lock_local(rgd
);
1460 rgd
->rd_flags
|= GFS2_RGF_TRIMMED
;
1461 gfs2_trans_add_meta(rgd
->rd_gl
, bh
);
1462 gfs2_rgrp_out(rgd
, bh
->b_data
);
1463 rgrp_unlock_local(rgd
);
1464 gfs2_trans_end(sdp
);
1467 gfs2_glock_dq_uninit(&gh
);
1472 rgd
= gfs2_rgrpd_get_next(rgd
);
1476 r
.len
= trimmed
<< bs_shift
;
1477 if (copy_to_user(argp
, &r
, sizeof(r
)))
1484 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1485 * @ip: the inode structure
1488 static void rs_insert(struct gfs2_inode
*ip
)
1490 struct rb_node
**newn
, *parent
= NULL
;
1492 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
1493 struct gfs2_rgrpd
*rgd
= rs
->rs_rgd
;
1495 BUG_ON(gfs2_rs_active(rs
));
1497 spin_lock(&rgd
->rd_rsspin
);
1498 newn
= &rgd
->rd_rstree
.rb_node
;
1500 struct gfs2_blkreserv
*cur
=
1501 rb_entry(*newn
, struct gfs2_blkreserv
, rs_node
);
1504 rc
= rs_cmp(rs
->rs_start
, rs
->rs_requested
, cur
);
1506 newn
= &((*newn
)->rb_right
);
1508 newn
= &((*newn
)->rb_left
);
1510 spin_unlock(&rgd
->rd_rsspin
);
1516 rb_link_node(&rs
->rs_node
, parent
, newn
);
1517 rb_insert_color(&rs
->rs_node
, &rgd
->rd_rstree
);
1519 /* Do our rgrp accounting for the reservation */
1520 rgd
->rd_requested
+= rs
->rs_requested
; /* blocks requested */
1521 spin_unlock(&rgd
->rd_rsspin
);
1522 trace_gfs2_rs(rs
, TRACE_RS_INSERT
);
1526 * rgd_free - return the number of free blocks we can allocate
1527 * @rgd: the resource group
1528 * @rs: The reservation to free
1530 * This function returns the number of free blocks for an rgrp.
1531 * That's the clone-free blocks (blocks that are free, not including those
1532 * still being used for unlinked files that haven't been deleted.)
1534 * It also subtracts any blocks reserved by someone else, but does not
1535 * include free blocks that are still part of our current reservation,
1536 * because obviously we can (and will) allocate them.
1538 static inline u32
rgd_free(struct gfs2_rgrpd
*rgd
, struct gfs2_blkreserv
*rs
)
1540 u32 tot_reserved
, tot_free
;
1542 if (WARN_ON_ONCE(rgd
->rd_requested
< rs
->rs_requested
))
1544 tot_reserved
= rgd
->rd_requested
- rs
->rs_requested
;
1546 if (rgd
->rd_free_clone
< tot_reserved
)
1549 tot_free
= rgd
->rd_free_clone
- tot_reserved
;
1555 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1556 * @rgd: the resource group descriptor
1557 * @ip: pointer to the inode for which we're reserving blocks
1558 * @ap: the allocation parameters
1562 static void rg_mblk_search(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
,
1563 const struct gfs2_alloc_parms
*ap
)
1565 struct gfs2_rbm rbm
= { .rgd
= rgd
, };
1567 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
1569 u32 free_blocks
, blocks_available
;
1571 struct inode
*inode
= &ip
->i_inode
;
1573 spin_lock(&rgd
->rd_rsspin
);
1574 free_blocks
= rgd_free(rgd
, rs
);
1575 if (rgd
->rd_free_clone
< rgd
->rd_requested
)
1577 blocks_available
= rgd
->rd_free_clone
- rgd
->rd_reserved
;
1578 if (rgd
== rs
->rs_rgd
)
1579 blocks_available
+= rs
->rs_reserved
;
1580 spin_unlock(&rgd
->rd_rsspin
);
1582 if (S_ISDIR(inode
->i_mode
))
1585 extlen
= max_t(u32
, atomic_read(&ip
->i_sizehint
), ap
->target
);
1586 extlen
= clamp(extlen
, (u32
)RGRP_RSRV_MINBLKS
, free_blocks
);
1588 if (free_blocks
< extlen
|| blocks_available
< extlen
)
1591 /* Find bitmap block that contains bits for goal block */
1592 if (rgrp_contains_block(rgd
, ip
->i_goal
))
1595 goal
= rgd
->rd_last_alloc
+ rgd
->rd_data0
;
1597 if (WARN_ON(gfs2_rbm_from_block(&rbm
, goal
)))
1600 ret
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &extlen
, &ip
->i_res
, true);
1602 rs
->rs_start
= gfs2_rbm_to_block(&rbm
);
1603 rs
->rs_requested
= extlen
;
1606 if (goal
== rgd
->rd_last_alloc
+ rgd
->rd_data0
)
1607 rgd
->rd_last_alloc
= 0;
1612 * gfs2_next_unreserved_block - Return next block that is not reserved
1613 * @rgd: The resource group
1614 * @block: The starting block
1615 * @length: The required length
1616 * @ignore_rs: Reservation to ignore
1618 * If the block does not appear in any reservation, then return the
1619 * block number unchanged. If it does appear in the reservation, then
1620 * keep looking through the tree of reservations in order to find the
1621 * first block number which is not reserved.
1624 static u64
gfs2_next_unreserved_block(struct gfs2_rgrpd
*rgd
, u64 block
,
1626 struct gfs2_blkreserv
*ignore_rs
)
1628 struct gfs2_blkreserv
*rs
;
1632 spin_lock(&rgd
->rd_rsspin
);
1633 n
= rgd
->rd_rstree
.rb_node
;
1635 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1636 rc
= rs_cmp(block
, length
, rs
);
1646 while (rs_cmp(block
, length
, rs
) == 0 && rs
!= ignore_rs
) {
1647 block
= rs
->rs_start
+ rs
->rs_requested
;
1651 rs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
1655 spin_unlock(&rgd
->rd_rsspin
);
1660 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1661 * @rbm: The current position in the resource group
1662 * @rs: Our own reservation
1663 * @minext: The minimum extent length
1664 * @maxext: A pointer to the maximum extent structure
1666 * This checks the current position in the rgrp to see whether there is
1667 * a reservation covering this block. If not then this function is a
1668 * no-op. If there is, then the position is moved to the end of the
1669 * contiguous reservation(s) so that we are pointing at the first
1670 * non-reserved block.
1672 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1675 static int gfs2_reservation_check_and_update(struct gfs2_rbm
*rbm
,
1676 struct gfs2_blkreserv
*rs
,
1678 struct gfs2_extent
*maxext
)
1680 u64 block
= gfs2_rbm_to_block(rbm
);
1685 * If we have a minimum extent length, then skip over any extent
1686 * which is less than the min extent length in size.
1689 extlen
= gfs2_free_extlen(rbm
, minext
);
1690 if (extlen
<= maxext
->len
)
1695 * Check the extent which has been found against the reservations
1696 * and skip if parts of it are already reserved
1698 nblock
= gfs2_next_unreserved_block(rbm
->rgd
, block
, extlen
, rs
);
1699 if (nblock
== block
) {
1700 if (!minext
|| extlen
>= minext
)
1703 if (extlen
> maxext
->len
) {
1704 maxext
->len
= extlen
;
1708 u64 len
= nblock
- block
;
1709 if (len
>= (u64
)1 << 32)
1714 if (gfs2_rbm_add(rbm
, extlen
))
1720 * gfs2_rbm_find - Look for blocks of a particular state
1721 * @rbm: Value/result starting position and final position
1722 * @state: The state which we want to find
1723 * @minext: Pointer to the requested extent length
1724 * This is updated to be the actual reservation size.
1725 * @rs: Our own reservation (NULL to skip checking for reservations)
1726 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1727 * around until we've reached the starting point.
1730 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1731 * has no free blocks in it.
1732 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1733 * has come up short on a free block search.
1735 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1738 static int gfs2_rbm_find(struct gfs2_rbm
*rbm
, u8 state
, u32
*minext
,
1739 struct gfs2_blkreserv
*rs
, bool nowrap
)
1741 bool scan_from_start
= rbm
->bii
== 0 && rbm
->offset
== 0;
1742 struct buffer_head
*bh
;
1746 bool wrapped
= false;
1748 struct gfs2_bitmap
*bi
;
1749 struct gfs2_extent maxext
= { .rbm
.rgd
= rbm
->rgd
, };
1752 * Determine the last bitmap to search. If we're not starting at the
1753 * beginning of a bitmap, we need to search that bitmap twice to scan
1754 * the entire resource group.
1756 last_bii
= rbm
->bii
- (rbm
->offset
== 0);
1760 if (test_bit(GBF_FULL
, &bi
->bi_flags
) &&
1761 (state
== GFS2_BLKST_FREE
))
1765 buffer
= bh
->b_data
+ bi
->bi_offset
;
1766 WARN_ON(!buffer_uptodate(bh
));
1767 if (state
!= GFS2_BLKST_UNLINKED
&& bi
->bi_clone
)
1768 buffer
= bi
->bi_clone
+ bi
->bi_offset
;
1769 offset
= gfs2_bitfit(buffer
, bi
->bi_bytes
, rbm
->offset
, state
);
1770 if (offset
== BFITNOENT
) {
1771 if (state
== GFS2_BLKST_FREE
&& rbm
->offset
== 0)
1772 set_bit(GBF_FULL
, &bi
->bi_flags
);
1775 rbm
->offset
= offset
;
1779 ret
= gfs2_reservation_check_and_update(rbm
, rs
, *minext
,
1785 if (ret
== -E2BIG
) {
1788 goto res_covered_end_of_rgrp
;
1792 next_bitmap
: /* Find next bitmap in the rgrp */
1795 if (rbm
->bii
== rbm
->rgd
->rd_length
)
1797 res_covered_end_of_rgrp
:
1798 if (rbm
->bii
== 0) {
1806 /* Have we scanned the entire resource group? */
1807 if (wrapped
&& rbm
->bii
> last_bii
)
1811 if (state
!= GFS2_BLKST_FREE
)
1814 /* If the extent was too small, and it's smaller than the smallest
1815 to have failed before, remember for future reference that it's
1816 useless to search this rgrp again for this amount or more. */
1817 if (wrapped
&& (scan_from_start
|| rbm
->bii
> last_bii
) &&
1818 *minext
< rbm
->rgd
->rd_extfail_pt
)
1819 rbm
->rgd
->rd_extfail_pt
= *minext
- 1;
1821 /* If the maximum extent we found is big enough to fulfill the
1822 minimum requirements, use it anyway. */
1825 *minext
= maxext
.len
;
1833 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1835 * @last_unlinked: block address of the last dinode we unlinked
1836 * @skip: block address we should explicitly not unlink
1838 * Returns: 0 if no error
1839 * The inode, if one has been found, in inode.
1842 static void try_rgrp_unlink(struct gfs2_rgrpd
*rgd
, u64
*last_unlinked
, u64 skip
)
1845 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1846 struct gfs2_glock
*gl
;
1847 struct gfs2_inode
*ip
;
1850 struct gfs2_rbm rbm
= { .rgd
= rgd
, .bii
= 0, .offset
= 0 };
1853 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_UNLINKED
, NULL
, NULL
,
1855 if (error
== -ENOSPC
)
1857 if (WARN_ON_ONCE(error
))
1860 block
= gfs2_rbm_to_block(&rbm
);
1861 if (gfs2_rbm_from_block(&rbm
, block
+ 1))
1863 if (*last_unlinked
!= NO_BLOCK
&& block
<= *last_unlinked
)
1867 *last_unlinked
= block
;
1869 error
= gfs2_glock_get(sdp
, block
, &gfs2_iopen_glops
, CREATE
, &gl
);
1873 /* If the inode is already in cache, we can ignore it here
1874 * because the existing inode disposal code will deal with
1875 * it when all refs have gone away. Accessing gl_object like
1876 * this is not safe in general. Here it is ok because we do
1877 * not dereference the pointer, and we only need an approx
1878 * answer to whether it is NULL or not.
1882 if (ip
|| !gfs2_queue_verify_delete(gl
, false))
1887 /* Limit reclaim to sensible number of tasks */
1888 if (found
> NR_CPUS
)
1892 rgd
->rd_flags
&= ~GFS2_RDF_CHECK
;
1897 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1898 * @rgd: The rgrp in question
1899 * @loops: An indication of how picky we can be (0=very, 1=less so)
1901 * This function uses the recently added glock statistics in order to
1902 * figure out whether a parciular resource group is suffering from
1903 * contention from multiple nodes. This is done purely on the basis
1904 * of timings, since this is the only data we have to work with and
1905 * our aim here is to reject a resource group which is highly contended
1906 * but (very important) not to do this too often in order to ensure that
1907 * we do not land up introducing fragmentation by changing resource
1908 * groups when not actually required.
1910 * The calculation is fairly simple, we want to know whether the SRTTB
1911 * (i.e. smoothed round trip time for blocking operations) to acquire
1912 * the lock for this rgrp's glock is significantly greater than the
1913 * time taken for resource groups on average. We introduce a margin in
1914 * the form of the variable @var which is computed as the sum of the two
1915 * respective variences, and multiplied by a factor depending on @loops
1916 * and whether we have a lot of data to base the decision on. This is
1917 * then tested against the square difference of the means in order to
1918 * decide whether the result is statistically significant or not.
1920 * Returns: A boolean verdict on the congestion status
1923 static bool gfs2_rgrp_congested(const struct gfs2_rgrpd
*rgd
, int loops
)
1925 const struct gfs2_glock
*gl
= rgd
->rd_gl
;
1926 const struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
1927 struct gfs2_lkstats
*st
;
1928 u64 r_dcount
, l_dcount
;
1929 u64 l_srttb
, a_srttb
= 0;
1933 int cpu
, nonzero
= 0;
1936 for_each_present_cpu(cpu
) {
1937 st
= &per_cpu_ptr(sdp
->sd_lkstats
, cpu
)->lkstats
[LM_TYPE_RGRP
];
1938 if (st
->stats
[GFS2_LKS_SRTTB
]) {
1939 a_srttb
+= st
->stats
[GFS2_LKS_SRTTB
];
1943 st
= &this_cpu_ptr(sdp
->sd_lkstats
)->lkstats
[LM_TYPE_RGRP
];
1945 do_div(a_srttb
, nonzero
);
1946 r_dcount
= st
->stats
[GFS2_LKS_DCOUNT
];
1947 var
= st
->stats
[GFS2_LKS_SRTTVARB
] +
1948 gl
->gl_stats
.stats
[GFS2_LKS_SRTTVARB
];
1951 l_srttb
= gl
->gl_stats
.stats
[GFS2_LKS_SRTTB
];
1952 l_dcount
= gl
->gl_stats
.stats
[GFS2_LKS_DCOUNT
];
1954 if ((l_dcount
< 1) || (r_dcount
< 1) || (a_srttb
== 0))
1957 srttb_diff
= a_srttb
- l_srttb
;
1958 sqr_diff
= srttb_diff
* srttb_diff
;
1961 if (l_dcount
< 8 || r_dcount
< 8)
1966 return ((srttb_diff
< 0) && (sqr_diff
> var
));
1970 * gfs2_rgrp_used_recently - test if an rgrp has been used recently
1971 * @rs: The block reservation with the rgrp to test
1972 * @msecs: The time limit in milliseconds
1974 * Returns: True if the rgrp glock has been used within the time limit
1976 static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv
*rs
,
1981 tdiff
= ktime_to_ns(ktime_sub(ktime_get_real(),
1982 rs
->rs_rgd
->rd_gl
->gl_dstamp
));
1984 return tdiff
> (msecs
* 1000 * 1000);
1987 static u32
gfs2_orlov_skip(const struct gfs2_inode
*ip
)
1989 const struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
1991 return get_random_u32() % sdp
->sd_rgrps
;
1994 static bool gfs2_select_rgrp(struct gfs2_rgrpd
**pos
, const struct gfs2_rgrpd
*begin
)
1996 struct gfs2_rgrpd
*rgd
= *pos
;
1997 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
1999 rgd
= gfs2_rgrpd_get_next(rgd
);
2001 rgd
= gfs2_rgrpd_get_first(sdp
);
2003 if (rgd
!= begin
) /* If we didn't wrap */
2009 * fast_to_acquire - determine if a resource group will be fast to acquire
2012 * If this is one of our preferred rgrps, it should be quicker to acquire,
2013 * because we tried to set ourselves up as dlm lock master.
2015 static inline int fast_to_acquire(struct gfs2_rgrpd
*rgd
)
2017 struct gfs2_glock
*gl
= rgd
->rd_gl
;
2019 if (gl
->gl_state
!= LM_ST_UNLOCKED
&& list_empty(&gl
->gl_holders
) &&
2020 !test_bit(GLF_DEMOTE_IN_PROGRESS
, &gl
->gl_flags
) &&
2021 !test_bit(GLF_DEMOTE
, &gl
->gl_flags
))
2023 if (rgd
->rd_flags
& GFS2_RDF_PREFERRED
)
2029 * gfs2_inplace_reserve - Reserve space in the filesystem
2030 * @ip: the inode to reserve space for
2031 * @ap: the allocation parameters
2033 * We try our best to find an rgrp that has at least ap->target blocks
2034 * available. After a couple of passes (loops == 2), the prospects of finding
2035 * such an rgrp diminish. At this stage, we return the first rgrp that has
2036 * at least ap->min_target blocks available.
2038 * Returns: 0 on success,
2039 * -ENOMEM if a suitable rgrp can't be found
2043 int gfs2_inplace_reserve(struct gfs2_inode
*ip
, struct gfs2_alloc_parms
*ap
)
2045 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2046 struct gfs2_rgrpd
*begin
= NULL
;
2047 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2048 int error
= 0, flags
= LM_FLAG_NODE_SCOPE
;
2050 u64 last_unlinked
= NO_BLOCK
;
2051 u32 target
= ap
->target
;
2053 u32 free_blocks
, blocks_available
, skip
= 0;
2055 BUG_ON(rs
->rs_reserved
);
2057 if (sdp
->sd_args
.ar_rgrplvb
)
2059 if (gfs2_assert_warn(sdp
, target
))
2061 if (gfs2_rs_active(rs
)) {
2063 } else if (rs
->rs_rgd
&&
2064 rgrp_contains_block(rs
->rs_rgd
, ip
->i_goal
)) {
2067 check_and_update_goal(ip
);
2068 rs
->rs_rgd
= begin
= gfs2_blk2rgrpd(sdp
, ip
->i_goal
, 1);
2070 if (S_ISDIR(ip
->i_inode
.i_mode
) && (ap
->aflags
& GFS2_AF_ORLOV
))
2071 skip
= gfs2_orlov_skip(ip
);
2072 if (rs
->rs_rgd
== NULL
)
2076 struct gfs2_rgrpd
*rgd
;
2078 rg_locked
= gfs2_glock_is_locked_by_me(rs
->rs_rgd
->rd_gl
);
2080 rgrp_lock_local(rs
->rs_rgd
);
2084 if (!gfs2_rs_active(rs
)) {
2086 !fast_to_acquire(rs
->rs_rgd
))
2089 gfs2_rgrp_used_recently(rs
, 1000) &&
2090 gfs2_rgrp_congested(rs
->rs_rgd
, loops
))
2093 error
= gfs2_glock_nq_init(rs
->rs_rgd
->rd_gl
,
2094 LM_ST_EXCLUSIVE
, flags
,
2096 if (unlikely(error
))
2098 rgrp_lock_local(rs
->rs_rgd
);
2099 if (!gfs2_rs_active(rs
) && (loops
< 2) &&
2100 gfs2_rgrp_congested(rs
->rs_rgd
, loops
))
2102 if (sdp
->sd_args
.ar_rgrplvb
) {
2103 error
= update_rgrp_lvb(rs
->rs_rgd
,
2105 if (unlikely(error
)) {
2106 rgrp_unlock_local(rs
->rs_rgd
);
2107 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2113 /* Skip unusable resource groups */
2114 if ((rs
->rs_rgd
->rd_flags
& (GFS2_RGF_NOALLOC
|
2116 (loops
== 0 && target
> rs
->rs_rgd
->rd_extfail_pt
))
2119 if (sdp
->sd_args
.ar_rgrplvb
) {
2120 error
= gfs2_instantiate(&ip
->i_rgd_gh
);
2125 /* Get a reservation if we don't already have one */
2126 if (!gfs2_rs_active(rs
))
2127 rg_mblk_search(rs
->rs_rgd
, ip
, ap
);
2129 /* Skip rgrps when we can't get a reservation on first pass */
2130 if (!gfs2_rs_active(rs
) && (loops
< 1))
2133 /* If rgrp has enough free space, use it */
2135 spin_lock(&rgd
->rd_rsspin
);
2136 free_blocks
= rgd_free(rgd
, rs
);
2137 blocks_available
= rgd
->rd_free_clone
- rgd
->rd_reserved
;
2138 if (free_blocks
< target
|| blocks_available
< target
) {
2139 spin_unlock(&rgd
->rd_rsspin
);
2142 rs
->rs_reserved
= ap
->target
;
2143 if (rs
->rs_reserved
> blocks_available
)
2144 rs
->rs_reserved
= blocks_available
;
2145 rgd
->rd_reserved
+= rs
->rs_reserved
;
2146 spin_unlock(&rgd
->rd_rsspin
);
2147 rgrp_unlock_local(rs
->rs_rgd
);
2150 /* Check for unlinked inodes which can be reclaimed */
2151 if (rs
->rs_rgd
->rd_flags
& GFS2_RDF_CHECK
)
2152 try_rgrp_unlink(rs
->rs_rgd
, &last_unlinked
,
2155 rgrp_unlock_local(rs
->rs_rgd
);
2157 /* Drop reservation, if we couldn't use reserved rgrp */
2158 if (gfs2_rs_active(rs
))
2159 gfs2_rs_deltree(rs
);
2161 /* Unlock rgrp if required */
2163 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2165 /* Find the next rgrp, and continue looking */
2166 if (gfs2_select_rgrp(&rs
->rs_rgd
, begin
))
2171 /* If we've scanned all the rgrps, but found no free blocks
2172 * then this checks for some less likely conditions before
2176 /* Check that fs hasn't grown if writing to rindex */
2177 if (ip
== GFS2_I(sdp
->sd_rindex
) && !sdp
->sd_rindex_uptodate
) {
2178 error
= gfs2_ri_update(ip
);
2182 /* Flushing the log may release space */
2185 target
= ap
->min_target
;
2186 gfs2_log_flush(sdp
, NULL
, GFS2_LOG_HEAD_FLUSH_NORMAL
|
2187 GFS2_LFC_INPLACE_RESERVE
);
2195 * gfs2_inplace_release - release an inplace reservation
2196 * @ip: the inode the reservation was taken out on
2198 * Release a reservation made by gfs2_inplace_reserve().
2201 void gfs2_inplace_release(struct gfs2_inode
*ip
)
2203 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2205 if (rs
->rs_reserved
) {
2206 struct gfs2_rgrpd
*rgd
= rs
->rs_rgd
;
2208 spin_lock(&rgd
->rd_rsspin
);
2209 GLOCK_BUG_ON(rgd
->rd_gl
, rgd
->rd_reserved
< rs
->rs_reserved
);
2210 rgd
->rd_reserved
-= rs
->rs_reserved
;
2211 spin_unlock(&rgd
->rd_rsspin
);
2212 rs
->rs_reserved
= 0;
2214 if (gfs2_holder_initialized(&ip
->i_rgd_gh
))
2215 gfs2_glock_dq_uninit(&ip
->i_rgd_gh
);
2219 * gfs2_alloc_extent - allocate an extent from a given bitmap
2220 * @rbm: the resource group information
2221 * @dinode: TRUE if the first block we allocate is for a dinode
2222 * @n: The extent length (value/result)
2224 * Add the bitmap buffer to the transaction.
2225 * Set the found bits to @new_state to change block's allocation state.
2227 static void gfs2_alloc_extent(const struct gfs2_rbm
*rbm
, bool dinode
,
2230 struct gfs2_rbm pos
= { .rgd
= rbm
->rgd
, };
2231 const unsigned int elen
= *n
;
2236 block
= gfs2_rbm_to_block(rbm
);
2237 gfs2_trans_add_meta(rbm
->rgd
->rd_gl
, rbm_bi(rbm
)->bi_bh
);
2238 gfs2_setbit(rbm
, true, dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2241 ret
= gfs2_rbm_from_block(&pos
, block
);
2242 if (ret
|| gfs2_testbit(&pos
, true) != GFS2_BLKST_FREE
)
2244 gfs2_trans_add_meta(pos
.rgd
->rd_gl
, rbm_bi(&pos
)->bi_bh
);
2245 gfs2_setbit(&pos
, true, GFS2_BLKST_USED
);
2252 * rgblk_free - Change alloc state of given block(s)
2253 * @sdp: the filesystem
2254 * @rgd: the resource group the blocks are in
2255 * @bstart: the start of a run of blocks to free
2256 * @blen: the length of the block run (all must lie within ONE RG!)
2257 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2260 static void rgblk_free(struct gfs2_sbd
*sdp
, struct gfs2_rgrpd
*rgd
,
2261 u64 bstart
, u32 blen
, unsigned char new_state
)
2263 struct gfs2_rbm rbm
;
2264 struct gfs2_bitmap
*bi
, *bi_prev
= NULL
;
2267 if (WARN_ON_ONCE(gfs2_rbm_from_block(&rbm
, bstart
)))
2271 if (bi
!= bi_prev
) {
2272 if (!bi
->bi_clone
) {
2273 bi
->bi_clone
= kmalloc(bi
->bi_bh
->b_size
,
2274 GFP_NOFS
| __GFP_NOFAIL
);
2275 memcpy(bi
->bi_clone
+ bi
->bi_offset
,
2276 bi
->bi_bh
->b_data
+ bi
->bi_offset
,
2279 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, bi
->bi_bh
);
2282 gfs2_setbit(&rbm
, false, new_state
);
2283 gfs2_rbm_add(&rbm
, 1);
2288 * gfs2_rgrp_dump - print out an rgrp
2289 * @seq: The iterator
2290 * @rgd: The rgrp in question
2291 * @fs_id_buf: pointer to file system id (if requested)
2295 void gfs2_rgrp_dump(struct seq_file
*seq
, struct gfs2_rgrpd
*rgd
,
2296 const char *fs_id_buf
)
2298 struct gfs2_blkreserv
*trs
;
2299 const struct rb_node
*n
;
2301 spin_lock(&rgd
->rd_rsspin
);
2302 gfs2_print_dbg(seq
, "%s R: n:%llu f:%02x b:%u/%u i:%u q:%u r:%u e:%u\n",
2304 (unsigned long long)rgd
->rd_addr
, rgd
->rd_flags
,
2305 rgd
->rd_free
, rgd
->rd_free_clone
, rgd
->rd_dinodes
,
2306 rgd
->rd_requested
, rgd
->rd_reserved
, rgd
->rd_extfail_pt
);
2307 if (rgd
->rd_sbd
->sd_args
.ar_rgrplvb
&& rgd
->rd_rgl
) {
2308 struct gfs2_rgrp_lvb
*rgl
= rgd
->rd_rgl
;
2310 gfs2_print_dbg(seq
, "%s L: f:%02x b:%u i:%u\n", fs_id_buf
,
2311 be32_to_cpu(rgl
->rl_flags
),
2312 be32_to_cpu(rgl
->rl_free
),
2313 be32_to_cpu(rgl
->rl_dinodes
));
2315 for (n
= rb_first(&rgd
->rd_rstree
); n
; n
= rb_next(&trs
->rs_node
)) {
2316 trs
= rb_entry(n
, struct gfs2_blkreserv
, rs_node
);
2317 dump_rs(seq
, trs
, fs_id_buf
);
2319 spin_unlock(&rgd
->rd_rsspin
);
2322 static void gfs2_rgrp_error(struct gfs2_rgrpd
*rgd
)
2324 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2325 char fs_id_buf
[sizeof(sdp
->sd_fsname
) + 7];
2327 fs_warn(sdp
, "rgrp %llu has an error, marking it readonly until umount\n",
2328 (unsigned long long)rgd
->rd_addr
);
2329 fs_warn(sdp
, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2330 sprintf(fs_id_buf
, "fsid=%s: ", sdp
->sd_fsname
);
2331 gfs2_rgrp_dump(NULL
, rgd
, fs_id_buf
);
2332 rgd
->rd_flags
|= GFS2_RDF_ERROR
;
2336 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2337 * @ip: The inode we have just allocated blocks for
2338 * @rbm: The start of the allocated blocks
2339 * @len: The extent length
2341 * Adjusts a reservation after an allocation has taken place. If the
2342 * reservation does not match the allocation, or if it is now empty
2343 * then it is removed.
2346 static void gfs2_adjust_reservation(struct gfs2_inode
*ip
,
2347 const struct gfs2_rbm
*rbm
, unsigned len
)
2349 struct gfs2_blkreserv
*rs
= &ip
->i_res
;
2350 struct gfs2_rgrpd
*rgd
= rbm
->rgd
;
2352 BUG_ON(rs
->rs_reserved
< len
);
2353 rs
->rs_reserved
-= len
;
2354 if (gfs2_rs_active(rs
)) {
2355 u64 start
= gfs2_rbm_to_block(rbm
);
2357 if (rs
->rs_start
== start
) {
2360 rs
->rs_start
+= len
;
2361 rlen
= min(rs
->rs_requested
, len
);
2362 rs
->rs_requested
-= rlen
;
2363 rgd
->rd_requested
-= rlen
;
2364 trace_gfs2_rs(rs
, TRACE_RS_CLAIM
);
2365 if (rs
->rs_start
< rgd
->rd_data0
+ rgd
->rd_data
&&
2368 /* We used up our block reservation, so we should
2369 reserve more blocks next time. */
2370 atomic_add(RGRP_RSRV_ADDBLKS
, &ip
->i_sizehint
);
2377 * gfs2_set_alloc_start - Set starting point for block allocation
2378 * @rbm: The rbm which will be set to the required location
2379 * @ip: The gfs2 inode
2380 * @dinode: Flag to say if allocation includes a new inode
2382 * This sets the starting point from the reservation if one is active
2383 * otherwise it falls back to guessing a start point based on the
2384 * inode's goal block or the last allocation point in the rgrp.
2387 static void gfs2_set_alloc_start(struct gfs2_rbm
*rbm
,
2388 const struct gfs2_inode
*ip
, bool dinode
)
2392 if (gfs2_rs_active(&ip
->i_res
)) {
2393 goal
= ip
->i_res
.rs_start
;
2395 if (!dinode
&& rgrp_contains_block(rbm
->rgd
, ip
->i_goal
))
2398 goal
= rbm
->rgd
->rd_last_alloc
+ rbm
->rgd
->rd_data0
;
2400 if (WARN_ON_ONCE(gfs2_rbm_from_block(rbm
, goal
))) {
2407 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2408 * @ip: the inode to allocate the block for
2409 * @bn: Used to return the starting block number
2410 * @nblocks: requested number of blocks/extent length (value/result)
2411 * @dinode: 1 if we're allocating a dinode block, else 0
2413 * Returns: 0 or error
2416 int gfs2_alloc_blocks(struct gfs2_inode
*ip
, u64
*bn
, unsigned int *nblocks
,
2419 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2420 struct buffer_head
*dibh
;
2421 struct gfs2_rbm rbm
= { .rgd
= ip
->i_res
.rs_rgd
, };
2422 u64 block
; /* block, within the file system scope */
2424 int error
= -ENOSPC
;
2426 BUG_ON(ip
->i_res
.rs_reserved
< *nblocks
);
2428 rgrp_lock_local(rbm
.rgd
);
2429 if (gfs2_rs_active(&ip
->i_res
)) {
2430 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2431 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &minext
, &ip
->i_res
, false);
2433 if (error
== -ENOSPC
) {
2434 gfs2_set_alloc_start(&rbm
, ip
, dinode
);
2435 error
= gfs2_rbm_find(&rbm
, GFS2_BLKST_FREE
, &minext
, NULL
, false);
2438 /* Since all blocks are reserved in advance, this shouldn't happen */
2440 fs_warn(sdp
, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2441 (unsigned long long)ip
->i_no_addr
, error
, *nblocks
,
2442 test_bit(GBF_FULL
, &rbm
.rgd
->rd_bits
->bi_flags
),
2443 rbm
.rgd
->rd_extfail_pt
);
2447 gfs2_alloc_extent(&rbm
, dinode
, nblocks
);
2448 block
= gfs2_rbm_to_block(&rbm
);
2449 rbm
.rgd
->rd_last_alloc
= block
- rbm
.rgd
->rd_data0
;
2451 ip
->i_goal
= block
+ *nblocks
- 1;
2452 error
= gfs2_meta_inode_buffer(ip
, &dibh
);
2454 struct gfs2_dinode
*di
=
2455 (struct gfs2_dinode
*)dibh
->b_data
;
2456 gfs2_trans_add_meta(ip
->i_gl
, dibh
);
2457 di
->di_goal_meta
= di
->di_goal_data
=
2458 cpu_to_be64(ip
->i_goal
);
2462 spin_lock(&rbm
.rgd
->rd_rsspin
);
2463 gfs2_adjust_reservation(ip
, &rbm
, *nblocks
);
2464 if (rbm
.rgd
->rd_free
< *nblocks
|| rbm
.rgd
->rd_reserved
< *nblocks
) {
2465 fs_warn(sdp
, "nblocks=%u\n", *nblocks
);
2466 spin_unlock(&rbm
.rgd
->rd_rsspin
);
2469 GLOCK_BUG_ON(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_reserved
< *nblocks
);
2470 GLOCK_BUG_ON(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_free_clone
< *nblocks
);
2471 GLOCK_BUG_ON(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_free
< *nblocks
);
2472 rbm
.rgd
->rd_reserved
-= *nblocks
;
2473 rbm
.rgd
->rd_free_clone
-= *nblocks
;
2474 rbm
.rgd
->rd_free
-= *nblocks
;
2475 spin_unlock(&rbm
.rgd
->rd_rsspin
);
2479 rbm
.rgd
->rd_dinodes
++;
2480 generation
= rbm
.rgd
->rd_igeneration
++;
2481 if (generation
== 0)
2482 generation
= rbm
.rgd
->rd_igeneration
++;
2483 ip
->i_generation
= generation
;
2486 gfs2_trans_add_meta(rbm
.rgd
->rd_gl
, rbm
.rgd
->rd_bits
[0].bi_bh
);
2487 gfs2_rgrp_out(rbm
.rgd
, rbm
.rgd
->rd_bits
[0].bi_bh
->b_data
);
2488 rgrp_unlock_local(rbm
.rgd
);
2490 gfs2_statfs_change(sdp
, 0, -(s64
)*nblocks
, dinode
? 1 : 0);
2492 gfs2_trans_remove_revoke(sdp
, block
, *nblocks
);
2494 gfs2_quota_change(ip
, *nblocks
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2496 trace_gfs2_block_alloc(ip
, rbm
.rgd
, block
, *nblocks
,
2497 dinode
? GFS2_BLKST_DINODE
: GFS2_BLKST_USED
);
2502 rgrp_unlock_local(rbm
.rgd
);
2503 gfs2_rgrp_error(rbm
.rgd
);
2508 * __gfs2_free_blocks - free a contiguous run of block(s)
2509 * @ip: the inode these blocks are being freed from
2510 * @rgd: the resource group the blocks are in
2511 * @bstart: first block of a run of contiguous blocks
2512 * @blen: the length of the block run
2513 * @meta: 1 if the blocks represent metadata
2517 void __gfs2_free_blocks(struct gfs2_inode
*ip
, struct gfs2_rgrpd
*rgd
,
2518 u64 bstart
, u32 blen
, int meta
)
2520 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2522 rgrp_lock_local(rgd
);
2523 rgblk_free(sdp
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2524 trace_gfs2_block_alloc(ip
, rgd
, bstart
, blen
, GFS2_BLKST_FREE
);
2525 rgd
->rd_free
+= blen
;
2526 rgd
->rd_flags
&= ~GFS2_RGF_TRIMMED
;
2527 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2528 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2529 rgrp_unlock_local(rgd
);
2531 /* Directories keep their data in the metadata address space */
2532 if (meta
|| ip
->i_depth
|| gfs2_is_jdata(ip
))
2533 gfs2_journal_wipe(ip
, bstart
, blen
);
2537 * gfs2_free_meta - free a contiguous run of data block(s)
2538 * @ip: the inode these blocks are being freed from
2539 * @rgd: the resource group the blocks are in
2540 * @bstart: first block of a run of contiguous blocks
2541 * @blen: the length of the block run
2545 void gfs2_free_meta(struct gfs2_inode
*ip
, struct gfs2_rgrpd
*rgd
,
2546 u64 bstart
, u32 blen
)
2548 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2550 __gfs2_free_blocks(ip
, rgd
, bstart
, blen
, 1);
2551 gfs2_statfs_change(sdp
, 0, +blen
, 0);
2552 gfs2_quota_change(ip
, -(s64
)blen
, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2555 void gfs2_unlink_di(struct inode
*inode
)
2557 struct gfs2_inode
*ip
= GFS2_I(inode
);
2558 struct gfs2_sbd
*sdp
= GFS2_SB(inode
);
2559 struct gfs2_rgrpd
*rgd
;
2560 u64 blkno
= ip
->i_no_addr
;
2562 rgd
= gfs2_blk2rgrpd(sdp
, blkno
, true);
2565 rgrp_lock_local(rgd
);
2566 rgblk_free(sdp
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2567 trace_gfs2_block_alloc(ip
, rgd
, blkno
, 1, GFS2_BLKST_UNLINKED
);
2568 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2569 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2570 be32_add_cpu(&rgd
->rd_rgl
->rl_unlinked
, 1);
2571 rgrp_unlock_local(rgd
);
2574 void gfs2_free_di(struct gfs2_rgrpd
*rgd
, struct gfs2_inode
*ip
)
2576 struct gfs2_sbd
*sdp
= rgd
->rd_sbd
;
2578 rgrp_lock_local(rgd
);
2579 rgblk_free(sdp
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2580 if (!rgd
->rd_dinodes
)
2581 gfs2_consist_rgrpd(rgd
);
2585 gfs2_trans_add_meta(rgd
->rd_gl
, rgd
->rd_bits
[0].bi_bh
);
2586 gfs2_rgrp_out(rgd
, rgd
->rd_bits
[0].bi_bh
->b_data
);
2587 be32_add_cpu(&rgd
->rd_rgl
->rl_unlinked
, -1);
2588 rgrp_unlock_local(rgd
);
2590 gfs2_statfs_change(sdp
, 0, +1, -1);
2591 trace_gfs2_block_alloc(ip
, rgd
, ip
->i_no_addr
, 1, GFS2_BLKST_FREE
);
2592 gfs2_quota_change(ip
, -1, ip
->i_inode
.i_uid
, ip
->i_inode
.i_gid
);
2593 gfs2_journal_wipe(ip
, ip
->i_no_addr
, 1);
2597 * gfs2_check_blk_type - Check the type of a block
2598 * @sdp: The superblock
2599 * @no_addr: The block number to check
2600 * @type: The block type we are looking for
2602 * The inode glock of @no_addr must be held. The @type to check for is either
2603 * GFS2_BLKST_DINODE or GFS2_BLKST_UNLINKED; checking for type GFS2_BLKST_FREE
2604 * or GFS2_BLKST_USED would make no sense.
2606 * Returns: 0 if the block type matches the expected type
2607 * -ESTALE if it doesn't match
2608 * or -ve errno if something went wrong while checking
2611 int gfs2_check_blk_type(struct gfs2_sbd
*sdp
, u64 no_addr
, unsigned int type
)
2613 struct gfs2_rgrpd
*rgd
;
2614 struct gfs2_holder rgd_gh
;
2615 struct gfs2_rbm rbm
;
2616 int error
= -EINVAL
;
2618 rgd
= gfs2_blk2rgrpd(sdp
, no_addr
, 1);
2622 error
= gfs2_glock_nq_init(rgd
->rd_gl
, LM_ST_SHARED
, 0, &rgd_gh
);
2627 error
= gfs2_rbm_from_block(&rbm
, no_addr
);
2628 if (!WARN_ON_ONCE(error
)) {
2630 * No need to take the local resource group lock here; the
2631 * inode glock of @no_addr provides the necessary
2632 * synchronization in case the block is an inode. (In case
2633 * the block is not an inode, the block type will not match
2634 * the @type we are looking for.)
2636 if (gfs2_testbit(&rbm
, false) != type
)
2640 gfs2_glock_dq_uninit(&rgd_gh
);
2647 * gfs2_rlist_add - add a RG to a list of RGs
2649 * @rlist: the list of resource groups
2652 * Figure out what RG a block belongs to and add that RG to the list
2654 * FIXME: Don't use NOFAIL
2658 void gfs2_rlist_add(struct gfs2_inode
*ip
, struct gfs2_rgrp_list
*rlist
,
2661 struct gfs2_sbd
*sdp
= GFS2_SB(&ip
->i_inode
);
2662 struct gfs2_rgrpd
*rgd
;
2663 struct gfs2_rgrpd
**tmp
;
2664 unsigned int new_space
;
2667 if (gfs2_assert_warn(sdp
, !rlist
->rl_ghs
))
2671 * The resource group last accessed is kept in the last position.
2674 if (rlist
->rl_rgrps
) {
2675 rgd
= rlist
->rl_rgd
[rlist
->rl_rgrps
- 1];
2676 if (rgrp_contains_block(rgd
, block
))
2678 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2680 rgd
= ip
->i_res
.rs_rgd
;
2681 if (!rgd
|| !rgrp_contains_block(rgd
, block
))
2682 rgd
= gfs2_blk2rgrpd(sdp
, block
, 1);
2686 fs_err(sdp
, "rlist_add: no rgrp for block %llu\n",
2687 (unsigned long long)block
);
2691 for (x
= 0; x
< rlist
->rl_rgrps
; x
++) {
2692 if (rlist
->rl_rgd
[x
] == rgd
) {
2693 swap(rlist
->rl_rgd
[x
],
2694 rlist
->rl_rgd
[rlist
->rl_rgrps
- 1]);
2699 if (rlist
->rl_rgrps
== rlist
->rl_space
) {
2700 new_space
= rlist
->rl_space
+ 10;
2702 tmp
= kcalloc(new_space
, sizeof(struct gfs2_rgrpd
*),
2703 GFP_NOFS
| __GFP_NOFAIL
);
2705 if (rlist
->rl_rgd
) {
2706 memcpy(tmp
, rlist
->rl_rgd
,
2707 rlist
->rl_space
* sizeof(struct gfs2_rgrpd
*));
2708 kfree(rlist
->rl_rgd
);
2711 rlist
->rl_space
= new_space
;
2712 rlist
->rl_rgd
= tmp
;
2715 rlist
->rl_rgd
[rlist
->rl_rgrps
++] = rgd
;
2719 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2720 * and initialize an array of glock holders for them
2721 * @rlist: the list of resource groups
2722 * @state: the state we're requesting
2723 * @flags: the modifier flags
2725 * FIXME: Don't use NOFAIL
2729 void gfs2_rlist_alloc(struct gfs2_rgrp_list
*rlist
,
2730 unsigned int state
, u16 flags
)
2734 rlist
->rl_ghs
= kmalloc_array(rlist
->rl_rgrps
,
2735 sizeof(struct gfs2_holder
),
2736 GFP_NOFS
| __GFP_NOFAIL
);
2737 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2738 gfs2_holder_init(rlist
->rl_rgd
[x
]->rd_gl
, state
, flags
,
2743 * gfs2_rlist_free - free a resource group list
2744 * @rlist: the list of resource groups
2748 void gfs2_rlist_free(struct gfs2_rgrp_list
*rlist
)
2752 kfree(rlist
->rl_rgd
);
2754 if (rlist
->rl_ghs
) {
2755 for (x
= 0; x
< rlist
->rl_rgrps
; x
++)
2756 gfs2_holder_uninit(&rlist
->rl_ghs
[x
]);
2757 kfree(rlist
->rl_ghs
);
2758 rlist
->rl_ghs
= NULL
;
2762 void rgrp_lock_local(struct gfs2_rgrpd
*rgd
)
2764 mutex_lock(&rgd
->rd_mutex
);
2767 void rgrp_unlock_local(struct gfs2_rgrpd
*rgd
)
2769 mutex_unlock(&rgd
->rd_mutex
);