1 // SPDX-License-Identifier: GPL-2.0+
3 * NILFS segment constructor.
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
7 * Written by Ryusuke Konishi.
11 #include <linux/pagemap.h>
12 #include <linux/buffer_head.h>
13 #include <linux/writeback.h>
14 #include <linux/bitops.h>
15 #include <linux/bio.h>
16 #include <linux/completion.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/freezer.h>
20 #include <linux/kthread.h>
21 #include <linux/crc32.h>
22 #include <linux/pagevec.h>
23 #include <linux/slab.h>
24 #include <linux/sched/signal.h>
39 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
41 #define SC_MAX_SEGDELTA 64 /*
42 * Upper limit of the number of segments
43 * appended in collection retry loop
46 /* Construction mode */
48 SC_LSEG_SR
= 1, /* Make a logical segment having a super root */
50 * Flush data blocks of a given file and make
51 * a logical segment without a super root.
54 * Flush data files, leads to segment writes without
55 * creating a checkpoint.
58 * Flush DAT file. This also creates segments
59 * without a checkpoint.
63 /* Stage numbers of dirty block collection */
66 NILFS_ST_GC
, /* Collecting dirty blocks for GC */
72 NILFS_ST_SR
, /* Super root */
73 NILFS_ST_DSYNC
, /* Data sync blocks */
77 #define CREATE_TRACE_POINTS
78 #include <trace/events/nilfs2.h>
81 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
82 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
83 * the variable must use them because transition of stage count must involve
84 * trace events (trace_nilfs2_collection_stage_transition).
86 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
87 * produce tracepoint events. It is provided just for making the intention
90 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info
*sci
)
93 trace_nilfs2_collection_stage_transition(sci
);
96 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info
*sci
, int next_scnt
)
98 sci
->sc_stage
.scnt
= next_scnt
;
99 trace_nilfs2_collection_stage_transition(sci
);
102 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info
*sci
)
104 return sci
->sc_stage
.scnt
;
107 /* State flags of collection */
108 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
109 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
110 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
111 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
113 /* Operations depending on the construction mode and file type */
114 struct nilfs_sc_operations
{
115 int (*collect_data
)(struct nilfs_sc_info
*, struct buffer_head
*,
117 int (*collect_node
)(struct nilfs_sc_info
*, struct buffer_head
*,
119 int (*collect_bmap
)(struct nilfs_sc_info
*, struct buffer_head
*,
121 void (*write_data_binfo
)(struct nilfs_sc_info
*,
122 struct nilfs_segsum_pointer
*,
123 union nilfs_binfo
*);
124 void (*write_node_binfo
)(struct nilfs_sc_info
*,
125 struct nilfs_segsum_pointer
*,
126 union nilfs_binfo
*);
132 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*);
133 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*, int);
134 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*);
135 static void nilfs_dispose_list(struct the_nilfs
*, struct list_head
*, int);
137 #define nilfs_cnt32_ge(a, b) \
138 (typecheck(__u32, a) && typecheck(__u32, b) && \
139 ((__s32)((a) - (b)) >= 0))
141 static int nilfs_prepare_segment_lock(struct super_block
*sb
,
142 struct nilfs_transaction_info
*ti
)
144 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
148 if (cur_ti
->ti_magic
== NILFS_TI_MAGIC
)
149 return ++cur_ti
->ti_count
;
152 * If journal_info field is occupied by other FS,
153 * it is saved and will be restored on
154 * nilfs_transaction_commit().
156 nilfs_warn(sb
, "journal info from a different FS");
157 save
= current
->journal_info
;
160 ti
= kmem_cache_alloc(nilfs_transaction_cachep
, GFP_NOFS
);
163 ti
->ti_flags
= NILFS_TI_DYNAMIC_ALLOC
;
169 ti
->ti_magic
= NILFS_TI_MAGIC
;
170 current
->journal_info
= ti
;
175 * nilfs_transaction_begin - start indivisible file operations.
177 * @ti: nilfs_transaction_info
178 * @vacancy_check: flags for vacancy rate checks
180 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
181 * the segment semaphore, to make a segment construction and write tasks
182 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
183 * The region enclosed by these two functions can be nested. To avoid a
184 * deadlock, the semaphore is only acquired or released in the outermost call.
186 * This function allocates a nilfs_transaction_info struct to keep context
187 * information on it. It is initialized and hooked onto the current task in
188 * the outermost call. If a pre-allocated struct is given to @ti, it is used
189 * instead; otherwise a new struct is assigned from a slab.
191 * When @vacancy_check flag is set, this function will check the amount of
192 * free space, and will wait for the GC to reclaim disk space if low capacity.
194 * Return Value: On success, 0 is returned. On error, one of the following
195 * negative error code is returned.
197 * %-ENOMEM - Insufficient memory available.
199 * %-ENOSPC - No space left on device
201 int nilfs_transaction_begin(struct super_block
*sb
,
202 struct nilfs_transaction_info
*ti
,
205 struct the_nilfs
*nilfs
;
206 int ret
= nilfs_prepare_segment_lock(sb
, ti
);
207 struct nilfs_transaction_info
*trace_ti
;
209 if (unlikely(ret
< 0))
212 trace_ti
= current
->journal_info
;
214 trace_nilfs2_transaction_transition(sb
, trace_ti
,
215 trace_ti
->ti_count
, trace_ti
->ti_flags
,
216 TRACE_NILFS2_TRANSACTION_BEGIN
);
220 sb_start_intwrite(sb
);
222 nilfs
= sb
->s_fs_info
;
223 down_read(&nilfs
->ns_segctor_sem
);
224 if (vacancy_check
&& nilfs_near_disk_full(nilfs
)) {
225 up_read(&nilfs
->ns_segctor_sem
);
230 trace_ti
= current
->journal_info
;
231 trace_nilfs2_transaction_transition(sb
, trace_ti
, trace_ti
->ti_count
,
233 TRACE_NILFS2_TRANSACTION_BEGIN
);
237 ti
= current
->journal_info
;
238 current
->journal_info
= ti
->ti_save
;
239 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
240 kmem_cache_free(nilfs_transaction_cachep
, ti
);
246 * nilfs_transaction_commit - commit indivisible file operations.
249 * nilfs_transaction_commit() releases the read semaphore which is
250 * acquired by nilfs_transaction_begin(). This is only performed
251 * in outermost call of this function. If a commit flag is set,
252 * nilfs_transaction_commit() sets a timer to start the segment
253 * constructor. If a sync flag is set, it starts construction
256 int nilfs_transaction_commit(struct super_block
*sb
)
258 struct nilfs_transaction_info
*ti
= current
->journal_info
;
259 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
262 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
263 ti
->ti_flags
|= NILFS_TI_COMMIT
;
264 if (ti
->ti_count
> 0) {
266 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
267 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_COMMIT
);
270 if (nilfs
->ns_writer
) {
271 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
273 if (ti
->ti_flags
& NILFS_TI_COMMIT
)
274 nilfs_segctor_start_timer(sci
);
275 if (atomic_read(&nilfs
->ns_ndirtyblks
) > sci
->sc_watermark
)
276 nilfs_segctor_do_flush(sci
, 0);
278 up_read(&nilfs
->ns_segctor_sem
);
279 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
280 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_COMMIT
);
282 current
->journal_info
= ti
->ti_save
;
284 if (ti
->ti_flags
& NILFS_TI_SYNC
)
285 err
= nilfs_construct_segment(sb
);
286 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
287 kmem_cache_free(nilfs_transaction_cachep
, ti
);
292 void nilfs_transaction_abort(struct super_block
*sb
)
294 struct nilfs_transaction_info
*ti
= current
->journal_info
;
295 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
297 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
298 if (ti
->ti_count
> 0) {
300 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
301 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_ABORT
);
304 up_read(&nilfs
->ns_segctor_sem
);
306 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
307 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_ABORT
);
309 current
->journal_info
= ti
->ti_save
;
310 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
311 kmem_cache_free(nilfs_transaction_cachep
, ti
);
315 void nilfs_relax_pressure_in_lock(struct super_block
*sb
)
317 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
318 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
320 if (sb_rdonly(sb
) || unlikely(!sci
) || !sci
->sc_flush_request
)
323 set_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
324 up_read(&nilfs
->ns_segctor_sem
);
326 down_write(&nilfs
->ns_segctor_sem
);
327 if (sci
->sc_flush_request
&&
328 test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
)) {
329 struct nilfs_transaction_info
*ti
= current
->journal_info
;
331 ti
->ti_flags
|= NILFS_TI_WRITER
;
332 nilfs_segctor_do_immediate_flush(sci
);
333 ti
->ti_flags
&= ~NILFS_TI_WRITER
;
335 downgrade_write(&nilfs
->ns_segctor_sem
);
338 static void nilfs_transaction_lock(struct super_block
*sb
,
339 struct nilfs_transaction_info
*ti
,
342 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
343 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
344 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
347 ti
->ti_flags
= NILFS_TI_WRITER
;
349 ti
->ti_save
= cur_ti
;
350 ti
->ti_magic
= NILFS_TI_MAGIC
;
351 current
->journal_info
= ti
;
354 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
355 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_TRYLOCK
);
357 down_write(&nilfs
->ns_segctor_sem
);
358 if (!test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
))
361 nilfs_segctor_do_immediate_flush(sci
);
363 up_write(&nilfs
->ns_segctor_sem
);
367 ti
->ti_flags
|= NILFS_TI_GC
;
369 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
370 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_LOCK
);
373 static void nilfs_transaction_unlock(struct super_block
*sb
)
375 struct nilfs_transaction_info
*ti
= current
->journal_info
;
376 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
378 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
379 BUG_ON(ti
->ti_count
> 0);
381 up_write(&nilfs
->ns_segctor_sem
);
382 current
->journal_info
= ti
->ti_save
;
384 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
385 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_UNLOCK
);
388 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info
*sci
,
389 struct nilfs_segsum_pointer
*ssp
,
392 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
393 unsigned int blocksize
= sci
->sc_super
->s_blocksize
;
396 if (unlikely(ssp
->offset
+ bytes
> blocksize
)) {
398 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp
->bh
,
399 &segbuf
->sb_segsum_buffers
));
400 ssp
->bh
= NILFS_SEGBUF_NEXT_BH(ssp
->bh
);
402 p
= ssp
->bh
->b_data
+ ssp
->offset
;
403 ssp
->offset
+= bytes
;
408 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
409 * @sci: nilfs_sc_info
411 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info
*sci
)
413 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
414 struct buffer_head
*sumbh
;
415 unsigned int sumbytes
;
416 unsigned int flags
= 0;
419 if (nilfs_doing_gc())
421 err
= nilfs_segbuf_reset(segbuf
, flags
, sci
->sc_seg_ctime
, sci
->sc_cno
);
425 sumbh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
426 sumbytes
= segbuf
->sb_sum
.sumbytes
;
427 sci
->sc_finfo_ptr
.bh
= sumbh
; sci
->sc_finfo_ptr
.offset
= sumbytes
;
428 sci
->sc_binfo_ptr
.bh
= sumbh
; sci
->sc_binfo_ptr
.offset
= sumbytes
;
429 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
434 * nilfs_segctor_zeropad_segsum - zero pad the rest of the segment summary area
435 * @sci: segment constructor object
437 * nilfs_segctor_zeropad_segsum() zero-fills unallocated space at the end of
438 * the current segment summary block.
440 static void nilfs_segctor_zeropad_segsum(struct nilfs_sc_info
*sci
)
442 struct nilfs_segsum_pointer
*ssp
;
444 ssp
= sci
->sc_blk_cnt
> 0 ? &sci
->sc_binfo_ptr
: &sci
->sc_finfo_ptr
;
445 if (ssp
->offset
< ssp
->bh
->b_size
)
446 memset(ssp
->bh
->b_data
+ ssp
->offset
, 0,
447 ssp
->bh
->b_size
- ssp
->offset
);
450 static int nilfs_segctor_feed_segment(struct nilfs_sc_info
*sci
)
452 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
453 if (NILFS_SEGBUF_IS_LAST(sci
->sc_curseg
, &sci
->sc_segbufs
))
455 * The current segment is filled up
458 nilfs_segctor_zeropad_segsum(sci
);
459 sci
->sc_curseg
= NILFS_NEXT_SEGBUF(sci
->sc_curseg
);
460 return nilfs_segctor_reset_segment_buffer(sci
);
463 static int nilfs_segctor_add_super_root(struct nilfs_sc_info
*sci
)
465 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
468 if (segbuf
->sb_sum
.nblocks
>= segbuf
->sb_rest_blocks
) {
469 err
= nilfs_segctor_feed_segment(sci
);
472 segbuf
= sci
->sc_curseg
;
474 err
= nilfs_segbuf_extend_payload(segbuf
, &segbuf
->sb_super_root
);
476 segbuf
->sb_sum
.flags
|= NILFS_SS_SR
;
481 * Functions for making segment summary and payloads
483 static int nilfs_segctor_segsum_block_required(
484 struct nilfs_sc_info
*sci
, const struct nilfs_segsum_pointer
*ssp
,
485 unsigned int binfo_size
)
487 unsigned int blocksize
= sci
->sc_super
->s_blocksize
;
488 /* Size of finfo and binfo is enough small against blocksize */
490 return ssp
->offset
+ binfo_size
+
491 (!sci
->sc_blk_cnt
? sizeof(struct nilfs_finfo
) : 0) >
495 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info
*sci
,
498 sci
->sc_curseg
->sb_sum
.nfinfo
++;
499 sci
->sc_binfo_ptr
= sci
->sc_finfo_ptr
;
500 nilfs_segctor_map_segsum_entry(
501 sci
, &sci
->sc_binfo_ptr
, sizeof(struct nilfs_finfo
));
503 if (NILFS_I(inode
)->i_root
&&
504 !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
505 set_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
509 static void nilfs_segctor_end_finfo(struct nilfs_sc_info
*sci
,
512 struct nilfs_finfo
*finfo
;
513 struct nilfs_inode_info
*ii
;
514 struct nilfs_segment_buffer
*segbuf
;
517 if (sci
->sc_blk_cnt
== 0)
522 if (ii
->i_type
& NILFS_I_TYPE_GC
)
524 else if (NILFS_ROOT_METADATA_FILE(inode
->i_ino
))
529 finfo
= nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_finfo_ptr
,
531 finfo
->fi_ino
= cpu_to_le64(inode
->i_ino
);
532 finfo
->fi_nblocks
= cpu_to_le32(sci
->sc_blk_cnt
);
533 finfo
->fi_ndatablk
= cpu_to_le32(sci
->sc_datablk_cnt
);
534 finfo
->fi_cno
= cpu_to_le64(cno
);
536 segbuf
= sci
->sc_curseg
;
537 segbuf
->sb_sum
.sumbytes
= sci
->sc_binfo_ptr
.offset
+
538 sci
->sc_super
->s_blocksize
* (segbuf
->sb_sum
.nsumblk
- 1);
539 sci
->sc_finfo_ptr
= sci
->sc_binfo_ptr
;
540 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
543 static int nilfs_segctor_add_file_block(struct nilfs_sc_info
*sci
,
544 struct buffer_head
*bh
,
546 unsigned int binfo_size
)
548 struct nilfs_segment_buffer
*segbuf
;
549 int required
, err
= 0;
552 segbuf
= sci
->sc_curseg
;
553 required
= nilfs_segctor_segsum_block_required(
554 sci
, &sci
->sc_binfo_ptr
, binfo_size
);
555 if (segbuf
->sb_sum
.nblocks
+ required
+ 1 > segbuf
->sb_rest_blocks
) {
556 nilfs_segctor_end_finfo(sci
, inode
);
557 err
= nilfs_segctor_feed_segment(sci
);
562 if (unlikely(required
)) {
563 nilfs_segctor_zeropad_segsum(sci
);
564 err
= nilfs_segbuf_extend_segsum(segbuf
);
568 if (sci
->sc_blk_cnt
== 0)
569 nilfs_segctor_begin_finfo(sci
, inode
);
571 nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_binfo_ptr
, binfo_size
);
572 /* Substitution to vblocknr is delayed until update_blocknr() */
573 nilfs_segbuf_add_file_buffer(segbuf
, bh
);
580 * Callback functions that enumerate, mark, and collect dirty blocks
582 static int nilfs_collect_file_data(struct nilfs_sc_info
*sci
,
583 struct buffer_head
*bh
, struct inode
*inode
)
587 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
591 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
,
592 sizeof(struct nilfs_binfo_v
));
594 sci
->sc_datablk_cnt
++;
598 static int nilfs_collect_file_node(struct nilfs_sc_info
*sci
,
599 struct buffer_head
*bh
,
602 return nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
605 static int nilfs_collect_file_bmap(struct nilfs_sc_info
*sci
,
606 struct buffer_head
*bh
,
609 WARN_ON(!buffer_dirty(bh
));
610 return nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
613 static void nilfs_write_file_data_binfo(struct nilfs_sc_info
*sci
,
614 struct nilfs_segsum_pointer
*ssp
,
615 union nilfs_binfo
*binfo
)
617 struct nilfs_binfo_v
*binfo_v
= nilfs_segctor_map_segsum_entry(
618 sci
, ssp
, sizeof(*binfo_v
));
619 *binfo_v
= binfo
->bi_v
;
622 static void nilfs_write_file_node_binfo(struct nilfs_sc_info
*sci
,
623 struct nilfs_segsum_pointer
*ssp
,
624 union nilfs_binfo
*binfo
)
626 __le64
*vblocknr
= nilfs_segctor_map_segsum_entry(
627 sci
, ssp
, sizeof(*vblocknr
));
628 *vblocknr
= binfo
->bi_v
.bi_vblocknr
;
631 static const struct nilfs_sc_operations nilfs_sc_file_ops
= {
632 .collect_data
= nilfs_collect_file_data
,
633 .collect_node
= nilfs_collect_file_node
,
634 .collect_bmap
= nilfs_collect_file_bmap
,
635 .write_data_binfo
= nilfs_write_file_data_binfo
,
636 .write_node_binfo
= nilfs_write_file_node_binfo
,
639 static int nilfs_collect_dat_data(struct nilfs_sc_info
*sci
,
640 struct buffer_head
*bh
, struct inode
*inode
)
644 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
648 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
650 sci
->sc_datablk_cnt
++;
654 static int nilfs_collect_dat_bmap(struct nilfs_sc_info
*sci
,
655 struct buffer_head
*bh
, struct inode
*inode
)
657 WARN_ON(!buffer_dirty(bh
));
658 return nilfs_segctor_add_file_block(sci
, bh
, inode
,
659 sizeof(struct nilfs_binfo_dat
));
662 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info
*sci
,
663 struct nilfs_segsum_pointer
*ssp
,
664 union nilfs_binfo
*binfo
)
666 __le64
*blkoff
= nilfs_segctor_map_segsum_entry(sci
, ssp
,
668 *blkoff
= binfo
->bi_dat
.bi_blkoff
;
671 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info
*sci
,
672 struct nilfs_segsum_pointer
*ssp
,
673 union nilfs_binfo
*binfo
)
675 struct nilfs_binfo_dat
*binfo_dat
=
676 nilfs_segctor_map_segsum_entry(sci
, ssp
, sizeof(*binfo_dat
));
677 *binfo_dat
= binfo
->bi_dat
;
680 static const struct nilfs_sc_operations nilfs_sc_dat_ops
= {
681 .collect_data
= nilfs_collect_dat_data
,
682 .collect_node
= nilfs_collect_file_node
,
683 .collect_bmap
= nilfs_collect_dat_bmap
,
684 .write_data_binfo
= nilfs_write_dat_data_binfo
,
685 .write_node_binfo
= nilfs_write_dat_node_binfo
,
688 static const struct nilfs_sc_operations nilfs_sc_dsync_ops
= {
689 .collect_data
= nilfs_collect_file_data
,
690 .collect_node
= NULL
,
691 .collect_bmap
= NULL
,
692 .write_data_binfo
= nilfs_write_file_data_binfo
,
693 .write_node_binfo
= NULL
,
696 static size_t nilfs_lookup_dirty_data_buffers(struct inode
*inode
,
697 struct list_head
*listp
,
699 loff_t start
, loff_t end
)
701 struct address_space
*mapping
= inode
->i_mapping
;
702 struct folio_batch fbatch
;
703 pgoff_t index
= 0, last
= ULONG_MAX
;
707 if (unlikely(start
!= 0 || end
!= LLONG_MAX
)) {
709 * A valid range is given for sync-ing data pages. The
710 * range is rounded to per-page; extra dirty buffers
711 * may be included if blocksize < pagesize.
713 index
= start
>> PAGE_SHIFT
;
714 last
= end
>> PAGE_SHIFT
;
716 folio_batch_init(&fbatch
);
718 if (unlikely(index
> last
) ||
719 !filemap_get_folios_tag(mapping
, &index
, last
,
720 PAGECACHE_TAG_DIRTY
, &fbatch
))
723 for (i
= 0; i
< folio_batch_count(&fbatch
); i
++) {
724 struct buffer_head
*bh
, *head
;
725 struct folio
*folio
= fbatch
.folios
[i
];
728 if (unlikely(folio
->mapping
!= mapping
)) {
729 /* Exclude folios removed from the address space */
733 head
= folio_buffers(folio
);
735 head
= create_empty_buffers(folio
,
736 i_blocksize(inode
), 0);
741 if (!buffer_dirty(bh
) || buffer_async_write(bh
))
744 list_add_tail(&bh
->b_assoc_buffers
, listp
);
746 if (unlikely(ndirties
>= nlimit
)) {
747 folio_batch_release(&fbatch
);
751 } while (bh
= bh
->b_this_page
, bh
!= head
);
753 folio_batch_release(&fbatch
);
758 static void nilfs_lookup_dirty_node_buffers(struct inode
*inode
,
759 struct list_head
*listp
)
761 struct nilfs_inode_info
*ii
= NILFS_I(inode
);
762 struct inode
*btnc_inode
= ii
->i_assoc_inode
;
763 struct folio_batch fbatch
;
764 struct buffer_head
*bh
, *head
;
770 folio_batch_init(&fbatch
);
772 while (filemap_get_folios_tag(btnc_inode
->i_mapping
, &index
,
773 (pgoff_t
)-1, PAGECACHE_TAG_DIRTY
, &fbatch
)) {
774 for (i
= 0; i
< folio_batch_count(&fbatch
); i
++) {
775 bh
= head
= folio_buffers(fbatch
.folios
[i
]);
777 if (buffer_dirty(bh
) &&
778 !buffer_async_write(bh
)) {
780 list_add_tail(&bh
->b_assoc_buffers
,
783 bh
= bh
->b_this_page
;
784 } while (bh
!= head
);
786 folio_batch_release(&fbatch
);
791 static void nilfs_dispose_list(struct the_nilfs
*nilfs
,
792 struct list_head
*head
, int force
)
794 struct nilfs_inode_info
*ii
, *n
;
795 struct nilfs_inode_info
*ivec
[SC_N_INODEVEC
], **pii
;
798 while (!list_empty(head
)) {
799 spin_lock(&nilfs
->ns_inode_lock
);
800 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
801 list_del_init(&ii
->i_dirty
);
803 if (unlikely(ii
->i_bh
)) {
807 } else if (test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
808 set_bit(NILFS_I_QUEUED
, &ii
->i_state
);
809 list_add_tail(&ii
->i_dirty
,
810 &nilfs
->ns_dirty_files
);
814 if (nv
== SC_N_INODEVEC
)
817 spin_unlock(&nilfs
->ns_inode_lock
);
819 for (pii
= ivec
; nv
> 0; pii
++, nv
--)
820 iput(&(*pii
)->vfs_inode
);
824 static void nilfs_iput_work_func(struct work_struct
*work
)
826 struct nilfs_sc_info
*sci
= container_of(work
, struct nilfs_sc_info
,
828 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
830 nilfs_dispose_list(nilfs
, &sci
->sc_iput_queue
, 0);
833 static int nilfs_test_metadata_dirty(struct the_nilfs
*nilfs
,
834 struct nilfs_root
*root
)
838 if (nilfs_mdt_fetch_dirty(root
->ifile
))
840 if (nilfs_mdt_fetch_dirty(nilfs
->ns_cpfile
))
842 if (nilfs_mdt_fetch_dirty(nilfs
->ns_sufile
))
844 if ((ret
|| nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs
->ns_dat
))
849 static int nilfs_segctor_clean(struct nilfs_sc_info
*sci
)
851 return list_empty(&sci
->sc_dirty_files
) &&
852 !test_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
) &&
853 sci
->sc_nfreesegs
== 0 &&
854 (!nilfs_doing_gc() || list_empty(&sci
->sc_gc_inodes
));
857 static int nilfs_segctor_confirm(struct nilfs_sc_info
*sci
)
859 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
862 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
863 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
865 spin_lock(&nilfs
->ns_inode_lock
);
866 if (list_empty(&nilfs
->ns_dirty_files
) && nilfs_segctor_clean(sci
))
869 spin_unlock(&nilfs
->ns_inode_lock
);
873 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info
*sci
)
875 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
877 nilfs_mdt_clear_dirty(sci
->sc_root
->ifile
);
878 nilfs_mdt_clear_dirty(nilfs
->ns_cpfile
);
879 nilfs_mdt_clear_dirty(nilfs
->ns_sufile
);
880 nilfs_mdt_clear_dirty(nilfs
->ns_dat
);
883 static void nilfs_fill_in_file_bmap(struct inode
*ifile
,
884 struct nilfs_inode_info
*ii
)
887 struct buffer_head
*ibh
;
888 struct nilfs_inode
*raw_inode
;
890 if (test_bit(NILFS_I_BMAP
, &ii
->i_state
)) {
893 raw_inode
= nilfs_ifile_map_inode(ifile
, ii
->vfs_inode
.i_ino
,
895 nilfs_bmap_write(ii
->i_bmap
, raw_inode
);
896 nilfs_ifile_unmap_inode(raw_inode
);
900 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info
*sci
)
902 struct nilfs_inode_info
*ii
;
904 list_for_each_entry(ii
, &sci
->sc_dirty_files
, i_dirty
) {
905 nilfs_fill_in_file_bmap(sci
->sc_root
->ifile
, ii
);
906 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
911 * nilfs_write_root_mdt_inode - export root metadata inode information to
913 * @inode: inode object of the root metadata file
914 * @raw_inode: on-disk inode
916 * nilfs_write_root_mdt_inode() writes inode information and bmap data of
917 * @inode to the inode area of the metadata file allocated on the super root
918 * block created to finalize the log. Since super root blocks are configured
919 * each time, this function zero-fills the unused area of @raw_inode.
921 static void nilfs_write_root_mdt_inode(struct inode
*inode
,
922 struct nilfs_inode
*raw_inode
)
924 struct the_nilfs
*nilfs
= inode
->i_sb
->s_fs_info
;
926 nilfs_write_inode_common(inode
, raw_inode
);
928 /* zero-fill unused portion of raw_inode */
929 raw_inode
->i_xattr
= 0;
930 raw_inode
->i_pad
= 0;
931 memset((void *)raw_inode
+ sizeof(*raw_inode
), 0,
932 nilfs
->ns_inode_size
- sizeof(*raw_inode
));
934 nilfs_bmap_write(NILFS_I(inode
)->i_bmap
, raw_inode
);
937 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info
*sci
,
938 struct the_nilfs
*nilfs
)
940 struct buffer_head
*bh_sr
;
941 struct nilfs_super_root
*raw_sr
;
942 unsigned int isz
, srsz
;
944 bh_sr
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
)->sb_super_root
;
947 raw_sr
= (struct nilfs_super_root
*)bh_sr
->b_data
;
948 isz
= nilfs
->ns_inode_size
;
949 srsz
= NILFS_SR_BYTES(isz
);
951 raw_sr
->sr_sum
= 0; /* Ensure initialization within this update */
952 raw_sr
->sr_bytes
= cpu_to_le16(srsz
);
953 raw_sr
->sr_nongc_ctime
954 = cpu_to_le64(nilfs_doing_gc() ?
955 nilfs
->ns_nongc_ctime
: sci
->sc_seg_ctime
);
956 raw_sr
->sr_flags
= 0;
958 nilfs_write_root_mdt_inode(nilfs
->ns_dat
, (void *)raw_sr
+
959 NILFS_SR_DAT_OFFSET(isz
));
960 nilfs_write_root_mdt_inode(nilfs
->ns_cpfile
, (void *)raw_sr
+
961 NILFS_SR_CPFILE_OFFSET(isz
));
962 nilfs_write_root_mdt_inode(nilfs
->ns_sufile
, (void *)raw_sr
+
963 NILFS_SR_SUFILE_OFFSET(isz
));
965 memset((void *)raw_sr
+ srsz
, 0, nilfs
->ns_blocksize
- srsz
);
966 set_buffer_uptodate(bh_sr
);
967 unlock_buffer(bh_sr
);
970 static void nilfs_redirty_inodes(struct list_head
*head
)
972 struct nilfs_inode_info
*ii
;
974 list_for_each_entry(ii
, head
, i_dirty
) {
975 if (test_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
976 clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
980 static void nilfs_drop_collected_inodes(struct list_head
*head
)
982 struct nilfs_inode_info
*ii
;
984 list_for_each_entry(ii
, head
, i_dirty
) {
985 if (!test_and_clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
988 clear_bit(NILFS_I_INODE_SYNC
, &ii
->i_state
);
989 set_bit(NILFS_I_UPDATED
, &ii
->i_state
);
993 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info
*sci
,
995 struct list_head
*listp
,
996 int (*collect
)(struct nilfs_sc_info
*,
997 struct buffer_head
*,
1000 struct buffer_head
*bh
, *n
;
1004 list_for_each_entry_safe(bh
, n
, listp
, b_assoc_buffers
) {
1005 list_del_init(&bh
->b_assoc_buffers
);
1006 err
= collect(sci
, bh
, inode
);
1009 goto dispose_buffers
;
1015 while (!list_empty(listp
)) {
1016 bh
= list_first_entry(listp
, struct buffer_head
,
1018 list_del_init(&bh
->b_assoc_buffers
);
1024 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info
*sci
)
1026 /* Remaining number of blocks within segment buffer */
1027 return sci
->sc_segbuf_nblocks
-
1028 (sci
->sc_nblk_this_inc
+ sci
->sc_curseg
->sb_sum
.nblocks
);
1031 static int nilfs_segctor_scan_file(struct nilfs_sc_info
*sci
,
1032 struct inode
*inode
,
1033 const struct nilfs_sc_operations
*sc_ops
)
1035 LIST_HEAD(data_buffers
);
1036 LIST_HEAD(node_buffers
);
1039 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1040 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1042 n
= nilfs_lookup_dirty_data_buffers(
1043 inode
, &data_buffers
, rest
+ 1, 0, LLONG_MAX
);
1045 err
= nilfs_segctor_apply_buffers(
1046 sci
, inode
, &data_buffers
,
1047 sc_ops
->collect_data
);
1048 BUG_ON(!err
); /* always receive -E2BIG or true error */
1052 nilfs_lookup_dirty_node_buffers(inode
, &node_buffers
);
1054 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1055 err
= nilfs_segctor_apply_buffers(
1056 sci
, inode
, &data_buffers
, sc_ops
->collect_data
);
1057 if (unlikely(err
)) {
1058 /* dispose node list */
1059 nilfs_segctor_apply_buffers(
1060 sci
, inode
, &node_buffers
, NULL
);
1063 sci
->sc_stage
.flags
|= NILFS_CF_NODE
;
1066 err
= nilfs_segctor_apply_buffers(
1067 sci
, inode
, &node_buffers
, sc_ops
->collect_node
);
1071 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode
)->i_bmap
, &node_buffers
);
1072 err
= nilfs_segctor_apply_buffers(
1073 sci
, inode
, &node_buffers
, sc_ops
->collect_bmap
);
1077 nilfs_segctor_end_finfo(sci
, inode
);
1078 sci
->sc_stage
.flags
&= ~NILFS_CF_NODE
;
1084 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info
*sci
,
1085 struct inode
*inode
)
1087 LIST_HEAD(data_buffers
);
1088 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1091 n
= nilfs_lookup_dirty_data_buffers(inode
, &data_buffers
, rest
+ 1,
1092 sci
->sc_dsync_start
,
1095 err
= nilfs_segctor_apply_buffers(sci
, inode
, &data_buffers
,
1096 nilfs_collect_file_data
);
1098 nilfs_segctor_end_finfo(sci
, inode
);
1100 /* always receive -E2BIG or true error if n > rest */
1106 * nilfs_free_segments - free the segments given by an array of segment numbers
1107 * @nilfs: nilfs object
1108 * @segnumv: array of segment numbers to be freed
1109 * @nsegs: number of segments to be freed in @segnumv
1111 * nilfs_free_segments() wraps nilfs_sufile_freev() and
1112 * nilfs_sufile_cancel_freev(), and edits the segment usage metadata file
1113 * (sufile) to free all segments given by @segnumv and @nsegs at once. If
1114 * it fails midway, it cancels the changes so that none of the segments are
1115 * freed. If @nsegs is 0, this function does nothing.
1117 * The freeing of segments is not finalized until the writing of a log with
1118 * a super root block containing this sufile change is complete, and it can
1119 * be canceled with nilfs_sufile_cancel_freev() until then.
1121 * Return: 0 on success, or the following negative error code on failure.
1122 * * %-EINVAL - Invalid segment number.
1123 * * %-EIO - I/O error (including metadata corruption).
1124 * * %-ENOMEM - Insufficient memory available.
1126 static int nilfs_free_segments(struct the_nilfs
*nilfs
, __u64
*segnumv
,
1135 ret
= nilfs_sufile_freev(nilfs
->ns_sufile
, segnumv
, nsegs
, &ndone
);
1136 if (unlikely(ret
)) {
1137 nilfs_sufile_cancel_freev(nilfs
->ns_sufile
, segnumv
, ndone
,
1140 * If a segment usage of the segments to be freed is in a
1141 * hole block, nilfs_sufile_freev() will return -ENOENT.
1142 * In this case, -EINVAL should be returned to the caller
1143 * since there is something wrong with the given segment
1144 * number array. This error can only occur during GC, so
1145 * there is no need to worry about it propagating to other
1146 * callers (such as fsync).
1148 if (ret
== -ENOENT
) {
1149 nilfs_err(nilfs
->ns_sb
,
1150 "The segment usage entry %llu to be freed is invalid (in a hole)",
1151 (unsigned long long)segnumv
[ndone
]);
1158 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info
*sci
, int mode
)
1160 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1161 struct list_head
*head
;
1162 struct nilfs_inode_info
*ii
;
1165 switch (nilfs_sc_cstage_get(sci
)) {
1168 sci
->sc_stage
.flags
= 0;
1170 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
)) {
1171 sci
->sc_nblk_inc
= 0;
1172 sci
->sc_curseg
->sb_sum
.flags
= NILFS_SS_LOGBGN
;
1173 if (mode
== SC_LSEG_DSYNC
) {
1174 nilfs_sc_cstage_set(sci
, NILFS_ST_DSYNC
);
1179 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1180 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1181 if (mode
== SC_FLUSH_DAT
) {
1182 nilfs_sc_cstage_set(sci
, NILFS_ST_DAT
);
1185 nilfs_sc_cstage_inc(sci
);
1188 if (nilfs_doing_gc()) {
1189 head
= &sci
->sc_gc_inodes
;
1190 ii
= list_prepare_entry(sci
->sc_stage
.gc_inode_ptr
,
1192 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1193 err
= nilfs_segctor_scan_file(
1194 sci
, &ii
->vfs_inode
,
1195 &nilfs_sc_file_ops
);
1196 if (unlikely(err
)) {
1197 sci
->sc_stage
.gc_inode_ptr
= list_entry(
1199 struct nilfs_inode_info
,
1203 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
1205 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1207 nilfs_sc_cstage_inc(sci
);
1210 head
= &sci
->sc_dirty_files
;
1211 ii
= list_prepare_entry(sci
->sc_stage
.dirty_file_ptr
, head
,
1213 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1214 clear_bit(NILFS_I_DIRTY
, &ii
->i_state
);
1216 err
= nilfs_segctor_scan_file(sci
, &ii
->vfs_inode
,
1217 &nilfs_sc_file_ops
);
1218 if (unlikely(err
)) {
1219 sci
->sc_stage
.dirty_file_ptr
=
1220 list_entry(ii
->i_dirty
.prev
,
1221 struct nilfs_inode_info
,
1225 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1226 /* XXX: required ? */
1228 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1229 if (mode
== SC_FLUSH_FILE
) {
1230 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1233 nilfs_sc_cstage_inc(sci
);
1234 sci
->sc_stage
.flags
|= NILFS_CF_IFILE_STARTED
;
1236 case NILFS_ST_IFILE
:
1237 err
= nilfs_segctor_scan_file(sci
, sci
->sc_root
->ifile
,
1238 &nilfs_sc_file_ops
);
1241 nilfs_sc_cstage_inc(sci
);
1242 /* Creating a checkpoint */
1243 err
= nilfs_cpfile_create_checkpoint(nilfs
->ns_cpfile
,
1248 case NILFS_ST_CPFILE
:
1249 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_cpfile
,
1250 &nilfs_sc_file_ops
);
1253 nilfs_sc_cstage_inc(sci
);
1255 case NILFS_ST_SUFILE
:
1256 err
= nilfs_free_segments(nilfs
, sci
->sc_freesegs
,
1260 sci
->sc_stage
.flags
|= NILFS_CF_SUFREED
;
1262 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_sufile
,
1263 &nilfs_sc_file_ops
);
1266 nilfs_sc_cstage_inc(sci
);
1270 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_dat
,
1274 if (mode
== SC_FLUSH_DAT
) {
1275 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1278 nilfs_sc_cstage_inc(sci
);
1281 if (mode
== SC_LSEG_SR
) {
1282 /* Appending a super root */
1283 err
= nilfs_segctor_add_super_root(sci
);
1287 /* End of a logical segment */
1288 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1289 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1291 case NILFS_ST_DSYNC
:
1293 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_SYNDT
;
1294 ii
= sci
->sc_dsync_inode
;
1295 if (!test_bit(NILFS_I_BUSY
, &ii
->i_state
))
1298 err
= nilfs_segctor_scan_file_dsync(sci
, &ii
->vfs_inode
);
1301 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1302 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1315 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1316 * @sci: nilfs_sc_info
1317 * @nilfs: nilfs object
1319 static int nilfs_segctor_begin_construction(struct nilfs_sc_info
*sci
,
1320 struct the_nilfs
*nilfs
)
1322 struct nilfs_segment_buffer
*segbuf
, *prev
;
1326 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1327 if (unlikely(!segbuf
))
1330 if (list_empty(&sci
->sc_write_logs
)) {
1331 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
,
1332 nilfs
->ns_pseg_offset
, nilfs
);
1333 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1334 nilfs_shift_to_next_segment(nilfs
);
1335 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, 0, nilfs
);
1338 segbuf
->sb_sum
.seg_seq
= nilfs
->ns_seg_seq
;
1339 nextnum
= nilfs
->ns_nextnum
;
1341 if (nilfs
->ns_segnum
== nilfs
->ns_nextnum
)
1342 /* Start from the head of a new full segment */
1346 prev
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1347 nilfs_segbuf_map_cont(segbuf
, prev
);
1348 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
;
1349 nextnum
= prev
->sb_nextnum
;
1351 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1352 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1353 segbuf
->sb_sum
.seg_seq
++;
1358 err
= nilfs_sufile_mark_dirty(nilfs
->ns_sufile
, segbuf
->sb_segnum
);
1363 err
= nilfs_sufile_alloc(nilfs
->ns_sufile
, &nextnum
);
1367 nilfs_segbuf_set_next_segnum(segbuf
, nextnum
, nilfs
);
1369 BUG_ON(!list_empty(&sci
->sc_segbufs
));
1370 list_add_tail(&segbuf
->sb_list
, &sci
->sc_segbufs
);
1371 sci
->sc_segbuf_nblocks
= segbuf
->sb_rest_blocks
;
1375 nilfs_segbuf_free(segbuf
);
1379 static int nilfs_segctor_extend_segments(struct nilfs_sc_info
*sci
,
1380 struct the_nilfs
*nilfs
, int nadd
)
1382 struct nilfs_segment_buffer
*segbuf
, *prev
;
1383 struct inode
*sufile
= nilfs
->ns_sufile
;
1388 prev
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
1390 * Since the segment specified with nextnum might be allocated during
1391 * the previous construction, the buffer including its segusage may
1392 * not be dirty. The following call ensures that the buffer is dirty
1393 * and will pin the buffer on memory until the sufile is written.
1395 err
= nilfs_sufile_mark_dirty(sufile
, prev
->sb_nextnum
);
1399 for (i
= 0; i
< nadd
; i
++) {
1400 /* extend segment info */
1402 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1403 if (unlikely(!segbuf
))
1406 /* map this buffer to region of segment on-disk */
1407 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1408 sci
->sc_segbuf_nblocks
+= segbuf
->sb_rest_blocks
;
1410 /* allocate the next next full segment */
1411 err
= nilfs_sufile_alloc(sufile
, &nextnextnum
);
1415 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
+ 1;
1416 nilfs_segbuf_set_next_segnum(segbuf
, nextnextnum
, nilfs
);
1418 list_add_tail(&segbuf
->sb_list
, &list
);
1421 list_splice_tail(&list
, &sci
->sc_segbufs
);
1425 nilfs_segbuf_free(segbuf
);
1427 list_for_each_entry(segbuf
, &list
, sb_list
) {
1428 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1429 WARN_ON(ret
); /* never fails */
1431 nilfs_destroy_logs(&list
);
1435 static void nilfs_free_incomplete_logs(struct list_head
*logs
,
1436 struct the_nilfs
*nilfs
)
1438 struct nilfs_segment_buffer
*segbuf
, *prev
;
1439 struct inode
*sufile
= nilfs
->ns_sufile
;
1442 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1443 if (nilfs
->ns_nextnum
!= segbuf
->sb_nextnum
) {
1444 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1445 WARN_ON(ret
); /* never fails */
1447 if (atomic_read(&segbuf
->sb_err
)) {
1448 /* Case 1: The first segment failed */
1449 if (segbuf
->sb_pseg_start
!= segbuf
->sb_fseg_start
)
1451 * Case 1a: Partial segment appended into an existing
1454 nilfs_terminate_segment(nilfs
, segbuf
->sb_fseg_start
,
1455 segbuf
->sb_fseg_end
);
1456 else /* Case 1b: New full segment */
1457 set_nilfs_discontinued(nilfs
);
1461 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1462 if (prev
->sb_nextnum
!= segbuf
->sb_nextnum
) {
1463 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1464 WARN_ON(ret
); /* never fails */
1466 if (atomic_read(&segbuf
->sb_err
) &&
1467 segbuf
->sb_segnum
!= nilfs
->ns_nextnum
)
1468 /* Case 2: extended segment (!= next) failed */
1469 nilfs_sufile_set_error(sufile
, segbuf
->sb_segnum
);
1474 static void nilfs_segctor_update_segusage(struct nilfs_sc_info
*sci
,
1475 struct inode
*sufile
)
1477 struct nilfs_segment_buffer
*segbuf
;
1478 unsigned long live_blocks
;
1481 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1482 live_blocks
= segbuf
->sb_sum
.nblocks
+
1483 (segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
);
1484 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1487 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1491 static void nilfs_cancel_segusage(struct list_head
*logs
, struct inode
*sufile
)
1493 struct nilfs_segment_buffer
*segbuf
;
1496 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1497 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1498 segbuf
->sb_pseg_start
-
1499 segbuf
->sb_fseg_start
, 0);
1500 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1502 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1503 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1505 WARN_ON(ret
); /* always succeed */
1509 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info
*sci
,
1510 struct nilfs_segment_buffer
*last
,
1511 struct inode
*sufile
)
1513 struct nilfs_segment_buffer
*segbuf
= last
;
1516 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1517 sci
->sc_segbuf_nblocks
-= segbuf
->sb_rest_blocks
;
1518 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1521 nilfs_truncate_logs(&sci
->sc_segbufs
, last
);
1525 static int nilfs_segctor_collect(struct nilfs_sc_info
*sci
,
1526 struct the_nilfs
*nilfs
, int mode
)
1528 struct nilfs_cstage prev_stage
= sci
->sc_stage
;
1531 /* Collection retry loop */
1533 sci
->sc_nblk_this_inc
= 0;
1534 sci
->sc_curseg
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1536 err
= nilfs_segctor_reset_segment_buffer(sci
);
1540 err
= nilfs_segctor_collect_blocks(sci
, mode
);
1541 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
1545 if (unlikely(err
!= -E2BIG
))
1548 /* The current segment is filled up */
1549 if (mode
!= SC_LSEG_SR
||
1550 nilfs_sc_cstage_get(sci
) < NILFS_ST_CPFILE
)
1553 nilfs_clear_logs(&sci
->sc_segbufs
);
1555 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1556 err
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1560 WARN_ON(err
); /* do not happen */
1561 sci
->sc_stage
.flags
&= ~NILFS_CF_SUFREED
;
1564 err
= nilfs_segctor_extend_segments(sci
, nilfs
, nadd
);
1568 nadd
= min_t(int, nadd
<< 1, SC_MAX_SEGDELTA
);
1569 sci
->sc_stage
= prev_stage
;
1571 nilfs_segctor_zeropad_segsum(sci
);
1572 nilfs_segctor_truncate_segments(sci
, sci
->sc_curseg
, nilfs
->ns_sufile
);
1579 static void nilfs_list_replace_buffer(struct buffer_head
*old_bh
,
1580 struct buffer_head
*new_bh
)
1582 BUG_ON(!list_empty(&new_bh
->b_assoc_buffers
));
1584 list_replace_init(&old_bh
->b_assoc_buffers
, &new_bh
->b_assoc_buffers
);
1585 /* The caller must release old_bh */
1589 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info
*sci
,
1590 struct nilfs_segment_buffer
*segbuf
,
1593 struct inode
*inode
= NULL
;
1595 unsigned long nfinfo
= segbuf
->sb_sum
.nfinfo
;
1596 unsigned long nblocks
= 0, ndatablk
= 0;
1597 const struct nilfs_sc_operations
*sc_op
= NULL
;
1598 struct nilfs_segsum_pointer ssp
;
1599 struct nilfs_finfo
*finfo
= NULL
;
1600 union nilfs_binfo binfo
;
1601 struct buffer_head
*bh
, *bh_org
;
1608 blocknr
= segbuf
->sb_pseg_start
+ segbuf
->sb_sum
.nsumblk
;
1609 ssp
.bh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
1610 ssp
.offset
= sizeof(struct nilfs_segment_summary
);
1612 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
, b_assoc_buffers
) {
1613 if (bh
== segbuf
->sb_super_root
)
1616 finfo
= nilfs_segctor_map_segsum_entry(
1617 sci
, &ssp
, sizeof(*finfo
));
1618 ino
= le64_to_cpu(finfo
->fi_ino
);
1619 nblocks
= le32_to_cpu(finfo
->fi_nblocks
);
1620 ndatablk
= le32_to_cpu(finfo
->fi_ndatablk
);
1622 inode
= bh
->b_folio
->mapping
->host
;
1624 if (mode
== SC_LSEG_DSYNC
)
1625 sc_op
= &nilfs_sc_dsync_ops
;
1626 else if (ino
== NILFS_DAT_INO
)
1627 sc_op
= &nilfs_sc_dat_ops
;
1628 else /* file blocks */
1629 sc_op
= &nilfs_sc_file_ops
;
1633 err
= nilfs_bmap_assign(NILFS_I(inode
)->i_bmap
, &bh
, blocknr
,
1636 nilfs_list_replace_buffer(bh_org
, bh
);
1642 sc_op
->write_data_binfo(sci
, &ssp
, &binfo
);
1644 sc_op
->write_node_binfo(sci
, &ssp
, &binfo
);
1647 if (--nblocks
== 0) {
1651 } else if (ndatablk
> 0)
1661 static int nilfs_segctor_assign(struct nilfs_sc_info
*sci
, int mode
)
1663 struct nilfs_segment_buffer
*segbuf
;
1666 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1667 err
= nilfs_segctor_update_payload_blocknr(sci
, segbuf
, mode
);
1670 nilfs_segbuf_fill_in_segsum(segbuf
);
1675 static void nilfs_begin_folio_io(struct folio
*folio
)
1677 if (!folio
|| folio_test_writeback(folio
))
1679 * For split b-tree node pages, this function may be called
1680 * twice. We ignore the 2nd or later calls by this check.
1685 folio_clear_dirty_for_io(folio
);
1686 folio_start_writeback(folio
);
1687 folio_unlock(folio
);
1691 * nilfs_prepare_write_logs - prepare to write logs
1692 * @logs: logs to prepare for writing
1693 * @seed: checksum seed value
1695 * nilfs_prepare_write_logs() adds checksums and prepares the block
1696 * buffers/folios for writing logs. In order to stabilize folios of
1697 * memory-mapped file blocks by putting them in writeback state before
1698 * calculating the checksums, first prepare to write payload blocks other
1699 * than segment summary and super root blocks in which the checksums will
1702 static void nilfs_prepare_write_logs(struct list_head
*logs
, u32 seed
)
1704 struct nilfs_segment_buffer
*segbuf
;
1705 struct folio
*bd_folio
= NULL
, *fs_folio
= NULL
;
1706 struct buffer_head
*bh
;
1708 /* Prepare to write payload blocks */
1709 list_for_each_entry(segbuf
, logs
, sb_list
) {
1710 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1712 if (bh
== segbuf
->sb_super_root
)
1714 set_buffer_async_write(bh
);
1715 if (bh
->b_folio
!= fs_folio
) {
1716 nilfs_begin_folio_io(fs_folio
);
1717 fs_folio
= bh
->b_folio
;
1721 nilfs_begin_folio_io(fs_folio
);
1723 nilfs_add_checksums_on_logs(logs
, seed
);
1725 /* Prepare to write segment summary blocks */
1726 list_for_each_entry(segbuf
, logs
, sb_list
) {
1727 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1729 mark_buffer_dirty(bh
);
1730 if (bh
->b_folio
== bd_folio
)
1733 folio_lock(bd_folio
);
1734 folio_wait_writeback(bd_folio
);
1735 folio_clear_dirty_for_io(bd_folio
);
1736 folio_start_writeback(bd_folio
);
1737 folio_unlock(bd_folio
);
1739 bd_folio
= bh
->b_folio
;
1743 /* Prepare to write super root block */
1744 bh
= NILFS_LAST_SEGBUF(logs
)->sb_super_root
;
1746 mark_buffer_dirty(bh
);
1747 if (bh
->b_folio
!= bd_folio
) {
1748 folio_lock(bd_folio
);
1749 folio_wait_writeback(bd_folio
);
1750 folio_clear_dirty_for_io(bd_folio
);
1751 folio_start_writeback(bd_folio
);
1752 folio_unlock(bd_folio
);
1753 bd_folio
= bh
->b_folio
;
1758 folio_lock(bd_folio
);
1759 folio_wait_writeback(bd_folio
);
1760 folio_clear_dirty_for_io(bd_folio
);
1761 folio_start_writeback(bd_folio
);
1762 folio_unlock(bd_folio
);
1766 static int nilfs_segctor_write(struct nilfs_sc_info
*sci
,
1767 struct the_nilfs
*nilfs
)
1771 ret
= nilfs_write_logs(&sci
->sc_segbufs
, nilfs
);
1772 list_splice_tail_init(&sci
->sc_segbufs
, &sci
->sc_write_logs
);
1776 static void nilfs_end_folio_io(struct folio
*folio
, int err
)
1781 if (buffer_nilfs_node(folio_buffers(folio
)) &&
1782 !folio_test_writeback(folio
)) {
1784 * For b-tree node pages, this function may be called twice
1785 * or more because they might be split in a segment.
1787 if (folio_test_dirty(folio
)) {
1789 * For pages holding split b-tree node buffers, dirty
1790 * flag on the buffers may be cleared discretely.
1791 * In that case, the page is once redirtied for
1792 * remaining buffers, and it must be cancelled if
1793 * all the buffers get cleaned later.
1796 if (nilfs_folio_buffers_clean(folio
))
1797 __nilfs_clear_folio_dirty(folio
);
1798 folio_unlock(folio
);
1803 if (err
|| !nilfs_folio_buffers_clean(folio
))
1804 filemap_dirty_folio(folio
->mapping
, folio
);
1806 folio_end_writeback(folio
);
1809 static void nilfs_abort_logs(struct list_head
*logs
, int err
)
1811 struct nilfs_segment_buffer
*segbuf
;
1812 struct folio
*bd_folio
= NULL
, *fs_folio
= NULL
;
1813 struct buffer_head
*bh
;
1815 if (list_empty(logs
))
1818 list_for_each_entry(segbuf
, logs
, sb_list
) {
1819 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1821 clear_buffer_uptodate(bh
);
1822 if (bh
->b_folio
!= bd_folio
) {
1824 folio_end_writeback(bd_folio
);
1825 bd_folio
= bh
->b_folio
;
1829 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1831 if (bh
== segbuf
->sb_super_root
) {
1832 clear_buffer_uptodate(bh
);
1833 if (bh
->b_folio
!= bd_folio
) {
1834 folio_end_writeback(bd_folio
);
1835 bd_folio
= bh
->b_folio
;
1839 clear_buffer_async_write(bh
);
1840 if (bh
->b_folio
!= fs_folio
) {
1841 nilfs_end_folio_io(fs_folio
, err
);
1842 fs_folio
= bh
->b_folio
;
1847 folio_end_writeback(bd_folio
);
1849 nilfs_end_folio_io(fs_folio
, err
);
1852 static void nilfs_segctor_abort_construction(struct nilfs_sc_info
*sci
,
1853 struct the_nilfs
*nilfs
, int err
)
1858 list_splice_tail_init(&sci
->sc_write_logs
, &logs
);
1859 ret
= nilfs_wait_on_logs(&logs
);
1860 nilfs_abort_logs(&logs
, ret
? : err
);
1862 list_splice_tail_init(&sci
->sc_segbufs
, &logs
);
1863 if (list_empty(&logs
))
1864 return; /* if the first segment buffer preparation failed */
1866 nilfs_cancel_segusage(&logs
, nilfs
->ns_sufile
);
1867 nilfs_free_incomplete_logs(&logs
, nilfs
);
1869 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1870 ret
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1874 WARN_ON(ret
); /* do not happen */
1877 nilfs_destroy_logs(&logs
);
1880 static void nilfs_set_next_segment(struct the_nilfs
*nilfs
,
1881 struct nilfs_segment_buffer
*segbuf
)
1883 nilfs
->ns_segnum
= segbuf
->sb_segnum
;
1884 nilfs
->ns_nextnum
= segbuf
->sb_nextnum
;
1885 nilfs
->ns_pseg_offset
= segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
1886 + segbuf
->sb_sum
.nblocks
;
1887 nilfs
->ns_seg_seq
= segbuf
->sb_sum
.seg_seq
;
1888 nilfs
->ns_ctime
= segbuf
->sb_sum
.ctime
;
1891 static void nilfs_segctor_complete_write(struct nilfs_sc_info
*sci
)
1893 struct nilfs_segment_buffer
*segbuf
;
1894 struct folio
*bd_folio
= NULL
, *fs_folio
= NULL
;
1895 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1896 int update_sr
= false;
1898 list_for_each_entry(segbuf
, &sci
->sc_write_logs
, sb_list
) {
1899 struct buffer_head
*bh
;
1901 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1903 set_buffer_uptodate(bh
);
1904 clear_buffer_dirty(bh
);
1905 if (bh
->b_folio
!= bd_folio
) {
1907 folio_end_writeback(bd_folio
);
1908 bd_folio
= bh
->b_folio
;
1912 * We assume that the buffers which belong to the same folio
1913 * continue over the buffer list.
1914 * Under this assumption, the last BHs of folios is
1915 * identifiable by the discontinuity of bh->b_folio
1916 * (folio != fs_folio).
1918 * For B-tree node blocks, however, this assumption is not
1919 * guaranteed. The cleanup code of B-tree node folios needs
1922 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1924 const unsigned long set_bits
= BIT(BH_Uptodate
);
1925 const unsigned long clear_bits
=
1926 (BIT(BH_Dirty
) | BIT(BH_Async_Write
) |
1927 BIT(BH_Delay
) | BIT(BH_NILFS_Volatile
) |
1928 BIT(BH_NILFS_Redirected
));
1930 if (bh
== segbuf
->sb_super_root
) {
1931 set_buffer_uptodate(bh
);
1932 clear_buffer_dirty(bh
);
1933 if (bh
->b_folio
!= bd_folio
) {
1934 folio_end_writeback(bd_folio
);
1935 bd_folio
= bh
->b_folio
;
1940 set_mask_bits(&bh
->b_state
, clear_bits
, set_bits
);
1941 if (bh
->b_folio
!= fs_folio
) {
1942 nilfs_end_folio_io(fs_folio
, 0);
1943 fs_folio
= bh
->b_folio
;
1947 if (!nilfs_segbuf_simplex(segbuf
)) {
1948 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGBGN
) {
1949 set_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1950 sci
->sc_lseg_stime
= jiffies
;
1952 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGEND
)
1953 clear_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1957 * Since folios may continue over multiple segment buffers,
1958 * end of the last folio must be checked outside of the loop.
1961 folio_end_writeback(bd_folio
);
1963 nilfs_end_folio_io(fs_folio
, 0);
1965 nilfs_drop_collected_inodes(&sci
->sc_dirty_files
);
1967 if (nilfs_doing_gc())
1968 nilfs_drop_collected_inodes(&sci
->sc_gc_inodes
);
1970 nilfs
->ns_nongc_ctime
= sci
->sc_seg_ctime
;
1972 sci
->sc_nblk_inc
+= sci
->sc_nblk_this_inc
;
1974 segbuf
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1975 nilfs_set_next_segment(nilfs
, segbuf
);
1978 nilfs
->ns_flushed_device
= 0;
1979 nilfs_set_last_segment(nilfs
, segbuf
->sb_pseg_start
,
1980 segbuf
->sb_sum
.seg_seq
, nilfs
->ns_cno
++);
1982 clear_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
1983 clear_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
1984 set_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1985 nilfs_segctor_clear_metadata_dirty(sci
);
1987 clear_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1990 static int nilfs_segctor_wait(struct nilfs_sc_info
*sci
)
1994 ret
= nilfs_wait_on_logs(&sci
->sc_write_logs
);
1996 nilfs_segctor_complete_write(sci
);
1997 nilfs_destroy_logs(&sci
->sc_write_logs
);
2002 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info
*sci
,
2003 struct the_nilfs
*nilfs
)
2005 struct nilfs_inode_info
*ii
, *n
;
2006 struct inode
*ifile
= sci
->sc_root
->ifile
;
2008 spin_lock(&nilfs
->ns_inode_lock
);
2010 list_for_each_entry_safe(ii
, n
, &nilfs
->ns_dirty_files
, i_dirty
) {
2012 struct buffer_head
*ibh
;
2015 spin_unlock(&nilfs
->ns_inode_lock
);
2016 err
= nilfs_ifile_get_inode_block(
2017 ifile
, ii
->vfs_inode
.i_ino
, &ibh
);
2018 if (unlikely(err
)) {
2019 nilfs_warn(sci
->sc_super
,
2020 "log writer: error %d getting inode block (ino=%lu)",
2021 err
, ii
->vfs_inode
.i_ino
);
2024 spin_lock(&nilfs
->ns_inode_lock
);
2025 if (likely(!ii
->i_bh
))
2032 // Always redirty the buffer to avoid race condition
2033 mark_buffer_dirty(ii
->i_bh
);
2034 nilfs_mdt_mark_dirty(ifile
);
2036 clear_bit(NILFS_I_QUEUED
, &ii
->i_state
);
2037 set_bit(NILFS_I_BUSY
, &ii
->i_state
);
2038 list_move_tail(&ii
->i_dirty
, &sci
->sc_dirty_files
);
2040 spin_unlock(&nilfs
->ns_inode_lock
);
2045 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info
*sci
,
2046 struct the_nilfs
*nilfs
)
2048 struct nilfs_inode_info
*ii
, *n
;
2049 int during_mount
= !(sci
->sc_super
->s_flags
& SB_ACTIVE
);
2050 int defer_iput
= false;
2052 spin_lock(&nilfs
->ns_inode_lock
);
2053 list_for_each_entry_safe(ii
, n
, &sci
->sc_dirty_files
, i_dirty
) {
2054 if (!test_and_clear_bit(NILFS_I_UPDATED
, &ii
->i_state
) ||
2055 test_bit(NILFS_I_DIRTY
, &ii
->i_state
))
2058 clear_bit(NILFS_I_BUSY
, &ii
->i_state
);
2061 list_del_init(&ii
->i_dirty
);
2062 if (!ii
->vfs_inode
.i_nlink
|| during_mount
) {
2064 * Defer calling iput() to avoid deadlocks if
2065 * i_nlink == 0 or mount is not yet finished.
2067 list_add_tail(&ii
->i_dirty
, &sci
->sc_iput_queue
);
2070 spin_unlock(&nilfs
->ns_inode_lock
);
2071 iput(&ii
->vfs_inode
);
2072 spin_lock(&nilfs
->ns_inode_lock
);
2075 spin_unlock(&nilfs
->ns_inode_lock
);
2078 schedule_work(&sci
->sc_iput_work
);
2082 * Main procedure of segment constructor
2084 static int nilfs_segctor_do_construct(struct nilfs_sc_info
*sci
, int mode
)
2086 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2089 if (sb_rdonly(sci
->sc_super
))
2092 nilfs_sc_cstage_set(sci
, NILFS_ST_INIT
);
2093 sci
->sc_cno
= nilfs
->ns_cno
;
2095 err
= nilfs_segctor_collect_dirty_files(sci
, nilfs
);
2099 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
2100 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2102 if (nilfs_segctor_clean(sci
))
2106 sci
->sc_stage
.flags
&= ~NILFS_CF_HISTORY_MASK
;
2108 err
= nilfs_segctor_begin_construction(sci
, nilfs
);
2112 /* Update time stamp */
2113 sci
->sc_seg_ctime
= ktime_get_real_seconds();
2115 err
= nilfs_segctor_collect(sci
, nilfs
, mode
);
2119 /* Avoid empty segment */
2120 if (nilfs_sc_cstage_get(sci
) == NILFS_ST_DONE
&&
2121 nilfs_segbuf_empty(sci
->sc_curseg
)) {
2122 nilfs_segctor_abort_construction(sci
, nilfs
, 1);
2126 err
= nilfs_segctor_assign(sci
, mode
);
2130 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2131 nilfs_segctor_fill_in_file_bmap(sci
);
2133 if (mode
== SC_LSEG_SR
&&
2134 nilfs_sc_cstage_get(sci
) >= NILFS_ST_CPFILE
) {
2135 err
= nilfs_cpfile_finalize_checkpoint(
2136 nilfs
->ns_cpfile
, nilfs
->ns_cno
, sci
->sc_root
,
2137 sci
->sc_nblk_inc
+ sci
->sc_nblk_this_inc
,
2139 !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
));
2141 goto failed_to_write
;
2143 nilfs_segctor_fill_in_super_root(sci
, nilfs
);
2145 nilfs_segctor_update_segusage(sci
, nilfs
->ns_sufile
);
2147 /* Write partial segments */
2148 nilfs_prepare_write_logs(&sci
->sc_segbufs
, nilfs
->ns_crc_seed
);
2150 err
= nilfs_segctor_write(sci
, nilfs
);
2152 goto failed_to_write
;
2154 if (nilfs_sc_cstage_get(sci
) == NILFS_ST_DONE
||
2155 nilfs
->ns_blocksize_bits
!= PAGE_SHIFT
) {
2157 * At this point, we avoid double buffering
2158 * for blocksize < pagesize because page dirty
2159 * flag is turned off during write and dirty
2160 * buffers are not properly collected for
2161 * pages crossing over segments.
2163 err
= nilfs_segctor_wait(sci
);
2165 goto failed_to_write
;
2167 } while (nilfs_sc_cstage_get(sci
) != NILFS_ST_DONE
);
2170 nilfs_segctor_drop_written_files(sci
, nilfs
);
2175 if (mode
== SC_LSEG_SR
&& nilfs_sc_cstage_get(sci
) >= NILFS_ST_IFILE
)
2176 nilfs_redirty_inodes(&sci
->sc_dirty_files
);
2177 if (nilfs_doing_gc())
2178 nilfs_redirty_inodes(&sci
->sc_gc_inodes
);
2179 nilfs_segctor_abort_construction(sci
, nilfs
, err
);
2184 * nilfs_segctor_start_timer - set timer of background write
2185 * @sci: nilfs_sc_info
2187 * If the timer has already been set, it ignores the new request.
2188 * This function MUST be called within a section locking the segment
2191 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*sci
)
2193 spin_lock(&sci
->sc_state_lock
);
2194 if (!(sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)) {
2196 sci
->sc_timer
.expires
= jiffies
+ sci
->sc_interval
;
2197 add_timer(&sci
->sc_timer
);
2199 sci
->sc_state
|= NILFS_SEGCTOR_COMMIT
;
2201 spin_unlock(&sci
->sc_state_lock
);
2204 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*sci
, int bn
)
2206 spin_lock(&sci
->sc_state_lock
);
2207 if (!(sci
->sc_flush_request
& BIT(bn
))) {
2208 unsigned long prev_req
= sci
->sc_flush_request
;
2210 sci
->sc_flush_request
|= BIT(bn
);
2212 wake_up(&sci
->sc_wait_daemon
);
2214 spin_unlock(&sci
->sc_state_lock
);
2218 * nilfs_flush_segment - trigger a segment construction for resource control
2220 * @ino: inode number of the file to be flushed out.
2222 void nilfs_flush_segment(struct super_block
*sb
, ino_t ino
)
2224 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2225 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2227 if (!sci
|| nilfs_doing_construction())
2229 nilfs_segctor_do_flush(sci
, NILFS_MDT_INODE(sb
, ino
) ? ino
: 0);
2230 /* assign bit 0 to data files */
2233 struct nilfs_segctor_wait_request
{
2234 wait_queue_entry_t wq
;
2240 static int nilfs_segctor_sync(struct nilfs_sc_info
*sci
)
2242 struct nilfs_segctor_wait_request wait_req
;
2245 init_wait(&wait_req
.wq
);
2247 atomic_set(&wait_req
.done
, 0);
2248 init_waitqueue_entry(&wait_req
.wq
, current
);
2251 * To prevent a race issue where completion notifications from the
2252 * log writer thread are missed, increment the request sequence count
2253 * "sc_seq_request" and insert a wait queue entry using the current
2254 * sequence number into the "sc_wait_request" queue at the same time
2255 * within the lock section of "sc_state_lock".
2257 spin_lock(&sci
->sc_state_lock
);
2258 wait_req
.seq
= ++sci
->sc_seq_request
;
2259 add_wait_queue(&sci
->sc_wait_request
, &wait_req
.wq
);
2260 spin_unlock(&sci
->sc_state_lock
);
2262 wake_up(&sci
->sc_wait_daemon
);
2265 set_current_state(TASK_INTERRUPTIBLE
);
2268 * Synchronize only while the log writer thread is alive.
2269 * Leave flushing out after the log writer thread exits to
2270 * the cleanup work in nilfs_segctor_destroy().
2275 if (atomic_read(&wait_req
.done
)) {
2279 if (!signal_pending(current
)) {
2286 finish_wait(&sci
->sc_wait_request
, &wait_req
.wq
);
2290 static void nilfs_segctor_wakeup(struct nilfs_sc_info
*sci
, int err
, bool force
)
2292 struct nilfs_segctor_wait_request
*wrq
, *n
;
2293 unsigned long flags
;
2295 spin_lock_irqsave(&sci
->sc_wait_request
.lock
, flags
);
2296 list_for_each_entry_safe(wrq
, n
, &sci
->sc_wait_request
.head
, wq
.entry
) {
2297 if (!atomic_read(&wrq
->done
) &&
2298 (force
|| nilfs_cnt32_ge(sci
->sc_seq_done
, wrq
->seq
))) {
2300 atomic_set(&wrq
->done
, 1);
2302 if (atomic_read(&wrq
->done
)) {
2303 wrq
->wq
.func(&wrq
->wq
,
2304 TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
2308 spin_unlock_irqrestore(&sci
->sc_wait_request
.lock
, flags
);
2312 * nilfs_construct_segment - construct a logical segment
2315 * Return Value: On success, 0 is returned. On errors, one of the following
2316 * negative error code is returned.
2318 * %-EROFS - Read only filesystem.
2322 * %-ENOSPC - No space left on device (only in a panic state).
2324 * %-ERESTARTSYS - Interrupted.
2326 * %-ENOMEM - Insufficient memory available.
2328 int nilfs_construct_segment(struct super_block
*sb
)
2330 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2331 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2332 struct nilfs_transaction_info
*ti
;
2334 if (sb_rdonly(sb
) || unlikely(!sci
))
2337 /* A call inside transactions causes a deadlock. */
2338 BUG_ON((ti
= current
->journal_info
) && ti
->ti_magic
== NILFS_TI_MAGIC
);
2340 return nilfs_segctor_sync(sci
);
2344 * nilfs_construct_dsync_segment - construct a data-only logical segment
2346 * @inode: inode whose data blocks should be written out
2347 * @start: start byte offset
2348 * @end: end byte offset (inclusive)
2350 * Return Value: On success, 0 is returned. On errors, one of the following
2351 * negative error code is returned.
2353 * %-EROFS - Read only filesystem.
2357 * %-ENOSPC - No space left on device (only in a panic state).
2359 * %-ERESTARTSYS - Interrupted.
2361 * %-ENOMEM - Insufficient memory available.
2363 int nilfs_construct_dsync_segment(struct super_block
*sb
, struct inode
*inode
,
2364 loff_t start
, loff_t end
)
2366 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2367 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2368 struct nilfs_inode_info
*ii
;
2369 struct nilfs_transaction_info ti
;
2372 if (sb_rdonly(sb
) || unlikely(!sci
))
2375 nilfs_transaction_lock(sb
, &ti
, 0);
2377 ii
= NILFS_I(inode
);
2378 if (test_bit(NILFS_I_INODE_SYNC
, &ii
->i_state
) ||
2379 nilfs_test_opt(nilfs
, STRICT_ORDER
) ||
2380 test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2381 nilfs_discontinued(nilfs
)) {
2382 nilfs_transaction_unlock(sb
);
2383 err
= nilfs_segctor_sync(sci
);
2387 spin_lock(&nilfs
->ns_inode_lock
);
2388 if (!test_bit(NILFS_I_QUEUED
, &ii
->i_state
) &&
2389 !test_bit(NILFS_I_BUSY
, &ii
->i_state
)) {
2390 spin_unlock(&nilfs
->ns_inode_lock
);
2391 nilfs_transaction_unlock(sb
);
2394 spin_unlock(&nilfs
->ns_inode_lock
);
2395 sci
->sc_dsync_inode
= ii
;
2396 sci
->sc_dsync_start
= start
;
2397 sci
->sc_dsync_end
= end
;
2399 err
= nilfs_segctor_do_construct(sci
, SC_LSEG_DSYNC
);
2401 nilfs
->ns_flushed_device
= 0;
2403 nilfs_transaction_unlock(sb
);
2407 #define FLUSH_FILE_BIT (0x1) /* data file only */
2408 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
2411 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2412 * @sci: segment constructor object
2414 static void nilfs_segctor_accept(struct nilfs_sc_info
*sci
)
2416 bool thread_is_alive
;
2418 spin_lock(&sci
->sc_state_lock
);
2419 sci
->sc_seq_accepted
= sci
->sc_seq_request
;
2420 thread_is_alive
= (bool)sci
->sc_task
;
2421 spin_unlock(&sci
->sc_state_lock
);
2424 * This function does not race with the log writer thread's
2425 * termination. Therefore, deleting sc_timer, which should not be
2426 * done after the log writer thread exits, can be done safely outside
2427 * the area protected by sc_state_lock.
2429 if (thread_is_alive
)
2430 del_timer_sync(&sci
->sc_timer
);
2434 * nilfs_segctor_notify - notify the result of request to caller threads
2435 * @sci: segment constructor object
2436 * @mode: mode of log forming
2437 * @err: error code to be notified
2439 static void nilfs_segctor_notify(struct nilfs_sc_info
*sci
, int mode
, int err
)
2441 /* Clear requests (even when the construction failed) */
2442 spin_lock(&sci
->sc_state_lock
);
2444 if (mode
== SC_LSEG_SR
) {
2445 sci
->sc_state
&= ~NILFS_SEGCTOR_COMMIT
;
2446 sci
->sc_seq_done
= sci
->sc_seq_accepted
;
2447 nilfs_segctor_wakeup(sci
, err
, false);
2448 sci
->sc_flush_request
= 0;
2450 if (mode
== SC_FLUSH_FILE
)
2451 sci
->sc_flush_request
&= ~FLUSH_FILE_BIT
;
2452 else if (mode
== SC_FLUSH_DAT
)
2453 sci
->sc_flush_request
&= ~FLUSH_DAT_BIT
;
2455 /* re-enable timer if checkpoint creation was not done */
2456 if ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) && sci
->sc_task
&&
2457 time_before(jiffies
, sci
->sc_timer
.expires
))
2458 add_timer(&sci
->sc_timer
);
2460 spin_unlock(&sci
->sc_state_lock
);
2464 * nilfs_segctor_construct - form logs and write them to disk
2465 * @sci: segment constructor object
2466 * @mode: mode of log forming
2468 static int nilfs_segctor_construct(struct nilfs_sc_info
*sci
, int mode
)
2470 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2471 struct nilfs_super_block
**sbp
;
2474 nilfs_segctor_accept(sci
);
2476 if (nilfs_discontinued(nilfs
))
2478 if (!nilfs_segctor_confirm(sci
))
2479 err
= nilfs_segctor_do_construct(sci
, mode
);
2482 if (mode
!= SC_FLUSH_DAT
)
2483 atomic_set(&nilfs
->ns_ndirtyblks
, 0);
2484 if (test_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
) &&
2485 nilfs_discontinued(nilfs
)) {
2486 down_write(&nilfs
->ns_sem
);
2488 sbp
= nilfs_prepare_super(sci
->sc_super
,
2489 nilfs_sb_will_flip(nilfs
));
2491 nilfs_set_log_cursor(sbp
[0], nilfs
);
2492 err
= nilfs_commit_super(sci
->sc_super
,
2495 up_write(&nilfs
->ns_sem
);
2499 nilfs_segctor_notify(sci
, mode
, err
);
2503 static void nilfs_construction_timeout(struct timer_list
*t
)
2505 struct nilfs_sc_info
*sci
= from_timer(sci
, t
, sc_timer
);
2507 wake_up_process(sci
->sc_task
);
2511 nilfs_remove_written_gcinodes(struct the_nilfs
*nilfs
, struct list_head
*head
)
2513 struct nilfs_inode_info
*ii
, *n
;
2515 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
2516 if (!test_bit(NILFS_I_UPDATED
, &ii
->i_state
))
2518 list_del_init(&ii
->i_dirty
);
2519 truncate_inode_pages(&ii
->vfs_inode
.i_data
, 0);
2520 nilfs_btnode_cache_clear(ii
->i_assoc_inode
->i_mapping
);
2521 iput(&ii
->vfs_inode
);
2525 int nilfs_clean_segments(struct super_block
*sb
, struct nilfs_argv
*argv
,
2528 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2529 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2530 struct nilfs_transaction_info ti
;
2536 nilfs_transaction_lock(sb
, &ti
, 1);
2538 err
= nilfs_mdt_save_to_shadow_map(nilfs
->ns_dat
);
2542 err
= nilfs_ioctl_prepare_clean_segments(nilfs
, argv
, kbufs
);
2543 if (unlikely(err
)) {
2544 nilfs_mdt_restore_from_shadow_map(nilfs
->ns_dat
);
2548 sci
->sc_freesegs
= kbufs
[4];
2549 sci
->sc_nfreesegs
= argv
[4].v_nmembs
;
2550 list_splice_tail_init(&nilfs
->ns_gc_inodes
, &sci
->sc_gc_inodes
);
2553 err
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2554 nilfs_remove_written_gcinodes(nilfs
, &sci
->sc_gc_inodes
);
2559 nilfs_warn(sb
, "error %d cleaning segments", err
);
2560 set_current_state(TASK_INTERRUPTIBLE
);
2561 schedule_timeout(sci
->sc_interval
);
2563 if (nilfs_test_opt(nilfs
, DISCARD
)) {
2564 int ret
= nilfs_discard_segments(nilfs
, sci
->sc_freesegs
,
2568 "error %d on discard request, turning discards off for the device",
2570 nilfs_clear_opt(nilfs
, DISCARD
);
2575 sci
->sc_freesegs
= NULL
;
2576 sci
->sc_nfreesegs
= 0;
2577 nilfs_mdt_clear_shadow_map(nilfs
->ns_dat
);
2578 nilfs_transaction_unlock(sb
);
2582 static void nilfs_segctor_thread_construct(struct nilfs_sc_info
*sci
, int mode
)
2584 struct nilfs_transaction_info ti
;
2586 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2587 nilfs_segctor_construct(sci
, mode
);
2590 * Unclosed segment should be retried. We do this using sc_timer.
2591 * Timeout of sc_timer will invoke complete construction which leads
2592 * to close the current logical segment.
2594 if (test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
))
2595 nilfs_segctor_start_timer(sci
);
2597 nilfs_transaction_unlock(sci
->sc_super
);
2600 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*sci
)
2604 spin_lock(&sci
->sc_state_lock
);
2605 mode
= (sci
->sc_flush_request
& FLUSH_DAT_BIT
) ?
2606 SC_FLUSH_DAT
: SC_FLUSH_FILE
;
2607 spin_unlock(&sci
->sc_state_lock
);
2610 nilfs_segctor_do_construct(sci
, mode
);
2612 spin_lock(&sci
->sc_state_lock
);
2613 sci
->sc_flush_request
&= (mode
== SC_FLUSH_FILE
) ?
2614 ~FLUSH_FILE_BIT
: ~FLUSH_DAT_BIT
;
2615 spin_unlock(&sci
->sc_state_lock
);
2617 clear_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
2620 static int nilfs_segctor_flush_mode(struct nilfs_sc_info
*sci
)
2622 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2623 time_before(jiffies
, sci
->sc_lseg_stime
+ sci
->sc_mjcp_freq
)) {
2624 if (!(sci
->sc_flush_request
& ~FLUSH_FILE_BIT
))
2625 return SC_FLUSH_FILE
;
2626 else if (!(sci
->sc_flush_request
& ~FLUSH_DAT_BIT
))
2627 return SC_FLUSH_DAT
;
2633 * nilfs_log_write_required - determine whether log writing is required
2634 * @sci: nilfs_sc_info struct
2635 * @modep: location for storing log writing mode
2637 * Return: true if log writing is required, false otherwise. If log writing
2638 * is required, the mode is stored in the location pointed to by @modep.
2640 static bool nilfs_log_write_required(struct nilfs_sc_info
*sci
, int *modep
)
2642 bool timedout
, ret
= true;
2644 spin_lock(&sci
->sc_state_lock
);
2645 timedout
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2646 time_after_eq(jiffies
, sci
->sc_timer
.expires
));
2647 if (timedout
|| sci
->sc_seq_request
!= sci
->sc_seq_done
)
2648 *modep
= SC_LSEG_SR
;
2649 else if (sci
->sc_flush_request
)
2650 *modep
= nilfs_segctor_flush_mode(sci
);
2654 spin_unlock(&sci
->sc_state_lock
);
2659 * nilfs_segctor_thread - main loop of the log writer thread
2660 * @arg: pointer to a struct nilfs_sc_info.
2662 * nilfs_segctor_thread() is the main loop function of the log writer kernel
2663 * thread, which determines whether log writing is necessary, and if so,
2664 * performs the log write in the background, or waits if not. It is also
2665 * used to decide the background writeback of the superblock.
2669 static int nilfs_segctor_thread(void *arg
)
2671 struct nilfs_sc_info
*sci
= (struct nilfs_sc_info
*)arg
;
2672 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2674 nilfs_info(sci
->sc_super
,
2675 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2676 sci
->sc_interval
/ HZ
, sci
->sc_mjcp_freq
/ HZ
);
2680 while (!kthread_should_stop()) {
2685 if (freezing(current
)) {
2690 prepare_to_wait(&sci
->sc_wait_daemon
, &wait
,
2691 TASK_INTERRUPTIBLE
);
2692 should_write
= nilfs_log_write_required(sci
, &mode
);
2695 finish_wait(&sci
->sc_wait_daemon
, &wait
);
2697 if (nilfs_sb_dirty(nilfs
) && nilfs_sb_need_update(nilfs
))
2698 set_nilfs_discontinued(nilfs
);
2701 nilfs_segctor_thread_construct(sci
, mode
);
2705 spin_lock(&sci
->sc_state_lock
);
2706 sci
->sc_task
= NULL
;
2707 timer_shutdown_sync(&sci
->sc_timer
);
2708 spin_unlock(&sci
->sc_state_lock
);
2713 * Setup & clean-up functions
2715 static struct nilfs_sc_info
*nilfs_segctor_new(struct super_block
*sb
,
2716 struct nilfs_root
*root
)
2718 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2719 struct nilfs_sc_info
*sci
;
2721 sci
= kzalloc(sizeof(*sci
), GFP_KERNEL
);
2727 nilfs_get_root(root
);
2728 sci
->sc_root
= root
;
2730 init_waitqueue_head(&sci
->sc_wait_request
);
2731 init_waitqueue_head(&sci
->sc_wait_daemon
);
2732 spin_lock_init(&sci
->sc_state_lock
);
2733 INIT_LIST_HEAD(&sci
->sc_dirty_files
);
2734 INIT_LIST_HEAD(&sci
->sc_segbufs
);
2735 INIT_LIST_HEAD(&sci
->sc_write_logs
);
2736 INIT_LIST_HEAD(&sci
->sc_gc_inodes
);
2737 INIT_LIST_HEAD(&sci
->sc_iput_queue
);
2738 INIT_WORK(&sci
->sc_iput_work
, nilfs_iput_work_func
);
2740 sci
->sc_interval
= HZ
* NILFS_SC_DEFAULT_TIMEOUT
;
2741 sci
->sc_mjcp_freq
= HZ
* NILFS_SC_DEFAULT_SR_FREQ
;
2742 sci
->sc_watermark
= NILFS_SC_DEFAULT_WATERMARK
;
2744 if (nilfs
->ns_interval
)
2745 sci
->sc_interval
= HZ
* nilfs
->ns_interval
;
2746 if (nilfs
->ns_watermark
)
2747 sci
->sc_watermark
= nilfs
->ns_watermark
;
2751 static void nilfs_segctor_write_out(struct nilfs_sc_info
*sci
)
2753 int ret
, retrycount
= NILFS_SC_CLEANUP_RETRY
;
2756 * The segctord thread was stopped and its timer was removed.
2757 * But some tasks remain.
2760 struct nilfs_transaction_info ti
;
2762 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2763 ret
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2764 nilfs_transaction_unlock(sci
->sc_super
);
2766 flush_work(&sci
->sc_iput_work
);
2768 } while (ret
&& ret
!= -EROFS
&& retrycount
-- > 0);
2772 * nilfs_segctor_destroy - destroy the segment constructor.
2773 * @sci: nilfs_sc_info
2775 * nilfs_segctor_destroy() kills the segctord thread and frees
2776 * the nilfs_sc_info struct.
2777 * Caller must hold the segment semaphore.
2779 static void nilfs_segctor_destroy(struct nilfs_sc_info
*sci
)
2781 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2784 up_write(&nilfs
->ns_segctor_sem
);
2787 wake_up(&sci
->sc_wait_daemon
);
2788 kthread_stop(sci
->sc_task
);
2791 spin_lock(&sci
->sc_state_lock
);
2792 flag
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) || sci
->sc_flush_request
2793 || sci
->sc_seq_request
!= sci
->sc_seq_done
);
2794 spin_unlock(&sci
->sc_state_lock
);
2797 * Forcibly wake up tasks waiting in nilfs_segctor_sync(), which can
2798 * be called from delayed iput() via nilfs_evict_inode() and can race
2799 * with the above log writer thread termination.
2801 nilfs_segctor_wakeup(sci
, 0, true);
2803 if (flush_work(&sci
->sc_iput_work
))
2806 if (flag
|| !nilfs_segctor_confirm(sci
))
2807 nilfs_segctor_write_out(sci
);
2809 if (!list_empty(&sci
->sc_dirty_files
)) {
2810 nilfs_warn(sci
->sc_super
,
2811 "disposed unprocessed dirty file(s) when stopping log writer");
2812 nilfs_dispose_list(nilfs
, &sci
->sc_dirty_files
, 1);
2815 if (!list_empty(&sci
->sc_iput_queue
)) {
2816 nilfs_warn(sci
->sc_super
,
2817 "disposed unprocessed inode(s) in iput queue when stopping log writer");
2818 nilfs_dispose_list(nilfs
, &sci
->sc_iput_queue
, 1);
2821 WARN_ON(!list_empty(&sci
->sc_segbufs
));
2822 WARN_ON(!list_empty(&sci
->sc_write_logs
));
2824 nilfs_put_root(sci
->sc_root
);
2826 down_write(&nilfs
->ns_segctor_sem
);
2832 * nilfs_attach_log_writer - attach log writer
2833 * @sb: super block instance
2834 * @root: root object of the current filesystem tree
2836 * This allocates a log writer object, initializes it, and starts the
2839 * Return: 0 on success, or the following negative error code on failure.
2840 * * %-EINTR - Log writer thread creation failed due to interruption.
2841 * * %-ENOMEM - Insufficient memory available.
2843 int nilfs_attach_log_writer(struct super_block
*sb
, struct nilfs_root
*root
)
2845 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2846 struct nilfs_sc_info
*sci
;
2847 struct task_struct
*t
;
2850 if (nilfs
->ns_writer
) {
2852 * This happens if the filesystem is made read-only by
2853 * __nilfs_error or nilfs_remount and then remounted
2854 * read/write. In these cases, reuse the existing
2860 sci
= nilfs_segctor_new(sb
, root
);
2864 nilfs
->ns_writer
= sci
;
2865 t
= kthread_create(nilfs_segctor_thread
, sci
, "segctord");
2868 nilfs_err(sb
, "error %d creating segctord thread", err
);
2869 nilfs_detach_log_writer(sb
);
2873 timer_setup(&sci
->sc_timer
, nilfs_construction_timeout
, 0);
2875 wake_up_process(sci
->sc_task
);
2880 * nilfs_detach_log_writer - destroy log writer
2881 * @sb: super block instance
2883 * This kills log writer daemon, frees the log writer object, and
2884 * destroys list of dirty files.
2886 void nilfs_detach_log_writer(struct super_block
*sb
)
2888 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2889 LIST_HEAD(garbage_list
);
2891 down_write(&nilfs
->ns_segctor_sem
);
2892 if (nilfs
->ns_writer
) {
2893 nilfs_segctor_destroy(nilfs
->ns_writer
);
2894 nilfs
->ns_writer
= NULL
;
2896 set_nilfs_purging(nilfs
);
2898 /* Force to free the list of dirty files */
2899 spin_lock(&nilfs
->ns_inode_lock
);
2900 if (!list_empty(&nilfs
->ns_dirty_files
)) {
2901 list_splice_init(&nilfs
->ns_dirty_files
, &garbage_list
);
2903 "disposed unprocessed dirty file(s) when detaching log writer");
2905 spin_unlock(&nilfs
->ns_inode_lock
);
2906 up_write(&nilfs
->ns_segctor_sem
);
2908 nilfs_dispose_list(nilfs
, &garbage_list
, 1);
2909 clear_nilfs_purging(nilfs
);