1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements most of the debugging stuff which is compiled in only
13 * when it is enabled. But some debugging check functions are implemented in
14 * corresponding subsystem, just because they are closely related and utilize
15 * various local functions of those subsystems.
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
26 static DEFINE_SPINLOCK(dbg_lock
);
28 static const char *get_key_fmt(int fmt
)
31 case UBIFS_SIMPLE_KEY_FMT
:
34 return "unknown/invalid format";
38 static const char *get_key_hash(int hash
)
41 case UBIFS_KEY_HASH_R5
:
43 case UBIFS_KEY_HASH_TEST
:
46 return "unknown/invalid name hash";
50 static const char *get_key_type(int type
)
64 return "unknown/invalid key";
68 static const char *get_dent_type(int type
)
81 case UBIFS_ITYPE_FIFO
:
83 case UBIFS_ITYPE_SOCK
:
86 return "unknown/invalid type";
90 const char *dbg_snprintf_key(const struct ubifs_info
*c
,
91 const union ubifs_key
*key
, char *buffer
, int len
)
94 int type
= key_type(c
, key
);
96 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
99 len
-= snprintf(p
, len
, "(%lu, %s)",
100 (unsigned long)key_inum(c
, key
),
105 len
-= snprintf(p
, len
, "(%lu, %s, %#08x)",
106 (unsigned long)key_inum(c
, key
),
107 get_key_type(type
), key_hash(c
, key
));
110 len
-= snprintf(p
, len
, "(%lu, %s, %u)",
111 (unsigned long)key_inum(c
, key
),
112 get_key_type(type
), key_block(c
, key
));
115 len
-= snprintf(p
, len
, "(%lu, %s)",
116 (unsigned long)key_inum(c
, key
),
120 len
-= snprintf(p
, len
, "(bad key type: %#08x, %#08x)",
121 key
->u32
[0], key
->u32
[1]);
124 len
-= snprintf(p
, len
, "bad key format %d", c
->key_fmt
);
125 ubifs_assert(c
, len
> 0);
129 const char *dbg_ntype(int type
)
133 return "padding node";
135 return "superblock node";
137 return "master node";
139 return "reference node";
142 case UBIFS_DENT_NODE
:
143 return "direntry node";
144 case UBIFS_XENT_NODE
:
145 return "xentry node";
146 case UBIFS_DATA_NODE
:
148 case UBIFS_TRUN_NODE
:
149 return "truncate node";
151 return "indexing node";
153 return "commit start node";
154 case UBIFS_ORPH_NODE
:
155 return "orphan node";
156 case UBIFS_AUTH_NODE
:
159 return "unknown node";
163 static const char *dbg_gtype(int type
)
166 case UBIFS_NO_NODE_GROUP
:
167 return "no node group";
168 case UBIFS_IN_NODE_GROUP
:
169 return "in node group";
170 case UBIFS_LAST_OF_NODE_GROUP
:
171 return "last of node group";
177 const char *dbg_cstate(int cmt_state
)
181 return "commit resting";
182 case COMMIT_BACKGROUND
:
183 return "background commit requested";
184 case COMMIT_REQUIRED
:
185 return "commit required";
186 case COMMIT_RUNNING_BACKGROUND
:
187 return "BACKGROUND commit running";
188 case COMMIT_RUNNING_REQUIRED
:
189 return "commit running and required";
191 return "broken commit";
193 return "unknown commit state";
197 const char *dbg_jhead(int jhead
)
207 return "unknown journal head";
211 static void dump_ch(const struct ubifs_ch
*ch
)
213 pr_err("\tmagic %#x\n", le32_to_cpu(ch
->magic
));
214 pr_err("\tcrc %#x\n", le32_to_cpu(ch
->crc
));
215 pr_err("\tnode_type %d (%s)\n", ch
->node_type
,
216 dbg_ntype(ch
->node_type
));
217 pr_err("\tgroup_type %d (%s)\n", ch
->group_type
,
218 dbg_gtype(ch
->group_type
));
219 pr_err("\tsqnum %llu\n",
220 (unsigned long long)le64_to_cpu(ch
->sqnum
));
221 pr_err("\tlen %u\n", le32_to_cpu(ch
->len
));
224 void ubifs_dump_inode(struct ubifs_info
*c
, const struct inode
*inode
)
226 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
227 struct fscrypt_name nm
= {0};
229 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
232 pr_err("Dump in-memory inode:");
233 pr_err("\tinode %lu\n", inode
->i_ino
);
234 pr_err("\tsize %llu\n",
235 (unsigned long long)i_size_read(inode
));
236 pr_err("\tnlink %u\n", inode
->i_nlink
);
237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode
));
238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode
));
239 pr_err("\tatime %u.%u\n",
240 (unsigned int) inode_get_atime_sec(inode
),
241 (unsigned int) inode_get_atime_nsec(inode
));
242 pr_err("\tmtime %u.%u\n",
243 (unsigned int) inode_get_mtime_sec(inode
),
244 (unsigned int) inode_get_mtime_nsec(inode
));
245 pr_err("\tctime %u.%u\n",
246 (unsigned int) inode_get_ctime_sec(inode
),
247 (unsigned int) inode_get_ctime_nsec(inode
));
248 pr_err("\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
249 pr_err("\txattr_size %u\n", ui
->xattr_size
);
250 pr_err("\txattr_cnt %u\n", ui
->xattr_cnt
);
251 pr_err("\txattr_names %u\n", ui
->xattr_names
);
252 pr_err("\tdirty %u\n", ui
->dirty
);
253 pr_err("\txattr %u\n", ui
->xattr
);
254 pr_err("\tbulk_read %u\n", ui
->bulk_read
);
255 pr_err("\tsynced_i_size %llu\n",
256 (unsigned long long)ui
->synced_i_size
);
257 pr_err("\tui_size %llu\n",
258 (unsigned long long)ui
->ui_size
);
259 pr_err("\tflags %d\n", ui
->flags
);
260 pr_err("\tcompr_type %d\n", ui
->compr_type
);
261 pr_err("\tlast_page_read %lu\n", ui
->last_page_read
);
262 pr_err("\tread_in_a_row %lu\n", ui
->read_in_a_row
);
263 pr_err("\tdata_len %d\n", ui
->data_len
);
265 if (!S_ISDIR(inode
->i_mode
))
268 pr_err("List of directory entries:\n");
269 ubifs_assert(c
, !mutex_is_locked(&c
->tnc_mutex
));
271 lowest_dent_key(c
, &key
, inode
->i_ino
);
273 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
275 if (PTR_ERR(dent
) != -ENOENT
)
276 pr_err("error %ld\n", PTR_ERR(dent
));
280 pr_err("\t%d: inode %llu, type %s, len %d\n",
281 count
++, (unsigned long long) le64_to_cpu(dent
->inum
),
282 get_dent_type(dent
->type
),
283 le16_to_cpu(dent
->nlen
));
285 fname_name(&nm
) = dent
->name
;
286 fname_len(&nm
) = le16_to_cpu(dent
->nlen
);
289 key_read(c
, &dent
->key
, &key
);
294 void ubifs_dump_node(const struct ubifs_info
*c
, const void *node
, int node_len
)
296 int i
, n
, type
, safe_len
, max_node_len
, min_node_len
;
298 const struct ubifs_ch
*ch
= node
;
299 char key_buf
[DBG_KEY_BUF_LEN
];
301 /* If the magic is incorrect, just hexdump the first bytes */
302 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ
);
304 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 32, 1,
305 (void *)node
, UBIFS_CH_SZ
, 1);
309 /* Skip dumping unknown type node */
310 type
= ch
->node_type
;
311 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
312 pr_err("node type %d was not recognized\n", type
);
316 spin_lock(&dbg_lock
);
319 if (c
->ranges
[type
].max_len
== 0) {
320 max_node_len
= min_node_len
= c
->ranges
[type
].len
;
322 max_node_len
= c
->ranges
[type
].max_len
;
323 min_node_len
= c
->ranges
[type
].min_len
;
325 safe_len
= le32_to_cpu(ch
->len
);
326 safe_len
= safe_len
> 0 ? safe_len
: 0;
327 safe_len
= min3(safe_len
, max_node_len
, node_len
);
328 if (safe_len
< min_node_len
) {
329 pr_err("node len(%d) is too short for %s, left %d bytes:\n",
330 safe_len
, dbg_ntype(type
),
331 safe_len
> UBIFS_CH_SZ
?
332 safe_len
- (int)UBIFS_CH_SZ
: 0);
333 if (safe_len
> UBIFS_CH_SZ
)
334 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 32, 1,
335 (void *)node
+ UBIFS_CH_SZ
,
336 safe_len
- UBIFS_CH_SZ
, 0);
339 if (safe_len
!= le32_to_cpu(ch
->len
))
340 pr_err("\ttruncated node length %d\n", safe_len
);
345 const struct ubifs_pad_node
*pad
= node
;
347 pr_err("\tpad_len %u\n", le32_to_cpu(pad
->pad_len
));
352 const struct ubifs_sb_node
*sup
= node
;
353 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
355 pr_err("\tkey_hash %d (%s)\n",
356 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
357 pr_err("\tkey_fmt %d (%s)\n",
358 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
359 pr_err("\tflags %#x\n", sup_flags
);
360 pr_err("\tbig_lpt %u\n",
361 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
362 pr_err("\tspace_fixup %u\n",
363 !!(sup_flags
& UBIFS_FLG_SPACE_FIXUP
));
364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup
->min_io_size
));
365 pr_err("\tleb_size %u\n", le32_to_cpu(sup
->leb_size
));
366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup
->leb_cnt
));
367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup
->max_leb_cnt
));
368 pr_err("\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup
->log_lebs
));
371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup
->lpt_lebs
));
372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup
->orph_lebs
));
373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup
->jhead_cnt
));
374 pr_err("\tfanout %u\n", le32_to_cpu(sup
->fanout
));
375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup
->lsave_cnt
));
376 pr_err("\tdefault_compr %u\n",
377 (int)le16_to_cpu(sup
->default_compr
));
378 pr_err("\trp_size %llu\n",
379 (unsigned long long)le64_to_cpu(sup
->rp_size
));
380 pr_err("\trp_uid %u\n", le32_to_cpu(sup
->rp_uid
));
381 pr_err("\trp_gid %u\n", le32_to_cpu(sup
->rp_gid
));
382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup
->fmt_version
));
383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup
->time_gran
));
384 pr_err("\tUUID %pUB\n", sup
->uuid
);
389 const struct ubifs_mst_node
*mst
= node
;
391 pr_err("\thighest_inum %llu\n",
392 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
393 pr_err("\tcommit number %llu\n",
394 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
395 pr_err("\tflags %#x\n", le32_to_cpu(mst
->flags
));
396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst
->log_lnum
));
397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst
->root_lnum
));
398 pr_err("\troot_offs %u\n", le32_to_cpu(mst
->root_offs
));
399 pr_err("\troot_len %u\n", le32_to_cpu(mst
->root_len
));
400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst
->gc_lnum
));
401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst
->ihead_lnum
));
402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst
->ihead_offs
));
403 pr_err("\tindex_size %llu\n",
404 (unsigned long long)le64_to_cpu(mst
->index_size
));
405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst
->lpt_lnum
));
406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst
->lpt_offs
));
407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst
->nhead_lnum
));
408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst
->nhead_offs
));
409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst
->ltab_lnum
));
410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst
->ltab_offs
));
411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst
->lsave_lnum
));
412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst
->lsave_offs
));
413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst
->lscan_lnum
));
414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst
->leb_cnt
));
415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst
->empty_lebs
));
416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst
->idx_lebs
));
417 pr_err("\ttotal_free %llu\n",
418 (unsigned long long)le64_to_cpu(mst
->total_free
));
419 pr_err("\ttotal_dirty %llu\n",
420 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
421 pr_err("\ttotal_used %llu\n",
422 (unsigned long long)le64_to_cpu(mst
->total_used
));
423 pr_err("\ttotal_dead %llu\n",
424 (unsigned long long)le64_to_cpu(mst
->total_dead
));
425 pr_err("\ttotal_dark %llu\n",
426 (unsigned long long)le64_to_cpu(mst
->total_dark
));
431 const struct ubifs_ref_node
*ref
= node
;
433 pr_err("\tlnum %u\n", le32_to_cpu(ref
->lnum
));
434 pr_err("\toffs %u\n", le32_to_cpu(ref
->offs
));
435 pr_err("\tjhead %u\n", le32_to_cpu(ref
->jhead
));
440 const struct ubifs_ino_node
*ino
= node
;
442 key_read(c
, &ino
->key
, &key
);
444 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
445 pr_err("\tcreat_sqnum %llu\n",
446 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
447 pr_err("\tsize %llu\n",
448 (unsigned long long)le64_to_cpu(ino
->size
));
449 pr_err("\tnlink %u\n", le32_to_cpu(ino
->nlink
));
450 pr_err("\tatime %lld.%u\n",
451 (long long)le64_to_cpu(ino
->atime_sec
),
452 le32_to_cpu(ino
->atime_nsec
));
453 pr_err("\tmtime %lld.%u\n",
454 (long long)le64_to_cpu(ino
->mtime_sec
),
455 le32_to_cpu(ino
->mtime_nsec
));
456 pr_err("\tctime %lld.%u\n",
457 (long long)le64_to_cpu(ino
->ctime_sec
),
458 le32_to_cpu(ino
->ctime_nsec
));
459 pr_err("\tuid %u\n", le32_to_cpu(ino
->uid
));
460 pr_err("\tgid %u\n", le32_to_cpu(ino
->gid
));
461 pr_err("\tmode %u\n", le32_to_cpu(ino
->mode
));
462 pr_err("\tflags %#x\n", le32_to_cpu(ino
->flags
));
463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino
->xattr_cnt
));
464 pr_err("\txattr_size %u\n", le32_to_cpu(ino
->xattr_size
));
465 pr_err("\txattr_names %u\n", le32_to_cpu(ino
->xattr_names
));
466 pr_err("\tcompr_type %#x\n",
467 (int)le16_to_cpu(ino
->compr_type
));
468 pr_err("\tdata len %u\n", le32_to_cpu(ino
->data_len
));
471 case UBIFS_DENT_NODE
:
472 case UBIFS_XENT_NODE
:
474 const struct ubifs_dent_node
*dent
= node
;
475 int nlen
= le16_to_cpu(dent
->nlen
);
477 key_read(c
, &dent
->key
, &key
);
479 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
480 pr_err("\tinum %llu\n",
481 (unsigned long long)le64_to_cpu(dent
->inum
));
482 pr_err("\ttype %d\n", (int)dent
->type
);
483 pr_err("\tnlen %d\n", nlen
);
486 if (nlen
> UBIFS_MAX_NLEN
||
487 nlen
> safe_len
- UBIFS_DENT_NODE_SZ
)
488 pr_err("(bad name length, not printing, bad or corrupted node)");
490 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
491 pr_cont("%c", isprint(dent
->name
[i
]) ?
492 dent
->name
[i
] : '?');
498 case UBIFS_DATA_NODE
:
500 const struct ubifs_data_node
*dn
= node
;
502 key_read(c
, &dn
->key
, &key
);
504 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
505 pr_err("\tsize %u\n", le32_to_cpu(dn
->size
));
506 pr_err("\tcompr_typ %d\n",
507 (int)le16_to_cpu(dn
->compr_type
));
508 pr_err("\tdata size %u\n",
509 le32_to_cpu(ch
->len
) - (unsigned int)UBIFS_DATA_NODE_SZ
);
510 pr_err("\tdata (length = %d):\n",
511 safe_len
- (int)UBIFS_DATA_NODE_SZ
);
512 print_hex_dump(KERN_ERR
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
514 safe_len
- (int)UBIFS_DATA_NODE_SZ
, 0);
517 case UBIFS_TRUN_NODE
:
519 const struct ubifs_trun_node
*trun
= node
;
521 pr_err("\tinum %u\n", le32_to_cpu(trun
->inum
));
522 pr_err("\told_size %llu\n",
523 (unsigned long long)le64_to_cpu(trun
->old_size
));
524 pr_err("\tnew_size %llu\n",
525 (unsigned long long)le64_to_cpu(trun
->new_size
));
530 const struct ubifs_idx_node
*idx
= node
;
531 int max_child_cnt
= (safe_len
- UBIFS_IDX_NODE_SZ
) /
532 (ubifs_idx_node_sz(c
, 1) -
535 n
= min_t(int, le16_to_cpu(idx
->child_cnt
), max_child_cnt
);
536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx
->child_cnt
));
537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx
->level
));
538 pr_err("\tBranches:\n");
540 for (i
= 0; i
< n
&& i
< c
->fanout
; i
++) {
541 const struct ubifs_branch
*br
;
543 br
= ubifs_idx_branch(c
, idx
, i
);
544 key_read(c
, &br
->key
, &key
);
545 pr_err("\t%d: LEB %d:%d len %d key %s\n",
546 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
547 le32_to_cpu(br
->len
),
548 dbg_snprintf_key(c
, &key
, key_buf
,
555 case UBIFS_ORPH_NODE
:
557 const struct ubifs_orph_node
*orph
= node
;
559 pr_err("\tcommit number %llu\n",
561 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
562 pr_err("\tlast node flag %llu\n",
563 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
564 n
= (safe_len
- UBIFS_ORPH_NODE_SZ
) >> 3;
565 pr_err("\t%d orphan inode numbers:\n", n
);
566 for (i
= 0; i
< n
; i
++)
567 pr_err("\t ino %llu\n",
568 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
571 case UBIFS_AUTH_NODE
:
576 pr_err("node type %d was not recognized\n", type
);
580 spin_unlock(&dbg_lock
);
583 void ubifs_dump_budget_req(const struct ubifs_budget_req
*req
)
585 spin_lock(&dbg_lock
);
586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
587 req
->new_ino
, req
->dirtied_ino
);
588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n",
589 req
->new_ino_d
, req
->dirtied_ino_d
);
590 pr_err("\tnew_page %d, dirtied_page %d\n",
591 req
->new_page
, req
->dirtied_page
);
592 pr_err("\tnew_dent %d, mod_dent %d\n",
593 req
->new_dent
, req
->mod_dent
);
594 pr_err("\tidx_growth %d\n", req
->idx_growth
);
595 pr_err("\tdata_growth %d dd_growth %d\n",
596 req
->data_growth
, req
->dd_growth
);
597 spin_unlock(&dbg_lock
);
600 void ubifs_dump_lstats(const struct ubifs_lp_stats
*lst
)
602 spin_lock(&dbg_lock
);
603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n",
604 current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
606 lst
->taken_empty_lebs
, lst
->total_free
, lst
->total_dirty
);
607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
608 lst
->total_used
, lst
->total_dark
, lst
->total_dead
);
609 spin_unlock(&dbg_lock
);
612 void ubifs_dump_budg(struct ubifs_info
*c
, const struct ubifs_budg_info
*bi
)
616 struct ubifs_bud
*bud
;
617 struct ubifs_gced_idx_leb
*idx_gc
;
618 long long available
, outstanding
, free
;
620 spin_lock(&c
->space_lock
);
621 spin_lock(&dbg_lock
);
622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
623 current
->pid
, bi
->data_growth
+ bi
->dd_growth
,
624 bi
->data_growth
+ bi
->dd_growth
+ bi
->idx_growth
);
625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
626 bi
->data_growth
, bi
->dd_growth
, bi
->idx_growth
);
627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
628 bi
->min_idx_lebs
, bi
->old_idx_sz
, bi
->uncommitted_idx
);
629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
630 bi
->page_budget
, bi
->inode_budget
, bi
->dent_budget
);
631 pr_err("\tnospace %u, nospace_rp %u\n", bi
->nospace
, bi
->nospace_rp
);
632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
633 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
637 * If we are dumping saved budgeting data, do not print
638 * additional information which is about the current state, not
639 * the old one which corresponded to the saved budgeting data.
643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
644 c
->freeable_cnt
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
646 atomic_long_read(&c
->dirty_pg_cnt
),
647 atomic_long_read(&c
->dirty_zn_cnt
),
648 atomic_long_read(&c
->clean_zn_cnt
));
649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c
->gc_lnum
, c
->ihead_lnum
);
651 /* If we are in R/O mode, journal heads do not exist */
653 for (i
= 0; i
< c
->jhead_cnt
; i
++)
654 pr_err("\tjhead %s\t LEB %d\n",
655 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
656 c
->jheads
[i
].wbuf
.lnum
);
657 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
658 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
659 pr_err("\tbud LEB %d\n", bud
->lnum
);
661 list_for_each_entry(bud
, &c
->old_buds
, list
)
662 pr_err("\told bud LEB %d\n", bud
->lnum
);
663 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
664 pr_err("\tGC'ed idx LEB %d unmap %d\n",
665 idx_gc
->lnum
, idx_gc
->unmap
);
666 pr_err("\tcommit state %d\n", c
->cmt_state
);
668 /* Print budgeting predictions */
669 available
= ubifs_calc_available(c
, c
->bi
.min_idx_lebs
);
670 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
671 free
= ubifs_get_free_space_nolock(c
);
672 pr_err("Budgeting predictions:\n");
673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
674 available
, outstanding
, free
);
676 spin_unlock(&dbg_lock
);
677 spin_unlock(&c
->space_lock
);
680 void ubifs_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
682 int i
, spc
, dark
= 0, dead
= 0;
684 struct ubifs_bud
*bud
;
686 spc
= lp
->free
+ lp
->dirty
;
687 if (spc
< c
->dead_wm
)
690 dark
= ubifs_calc_dark(c
, spc
);
692 if (lp
->flags
& LPROPS_INDEX
)
693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
694 lp
->lnum
, lp
->free
, lp
->dirty
, c
->leb_size
- spc
, spc
,
697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
698 lp
->lnum
, lp
->free
, lp
->dirty
, c
->leb_size
- spc
, spc
,
699 dark
, dead
, (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
701 if (lp
->flags
& LPROPS_TAKEN
) {
702 if (lp
->flags
& LPROPS_INDEX
)
703 pr_cont("index, taken");
709 if (lp
->flags
& LPROPS_INDEX
) {
710 switch (lp
->flags
& LPROPS_CAT_MASK
) {
711 case LPROPS_DIRTY_IDX
:
714 case LPROPS_FRDI_IDX
:
715 s
= "freeable index";
721 switch (lp
->flags
& LPROPS_CAT_MASK
) {
723 s
= "not categorized";
734 case LPROPS_FREEABLE
:
745 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
746 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
747 if (bud
->lnum
== lp
->lnum
) {
749 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
751 * Note, if we are in R/O mode or in the middle
752 * of mounting/re-mounting, the write-buffers do
756 lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
757 pr_cont(", jhead %s", dbg_jhead(i
));
762 pr_cont(", bud of jhead %s",
763 dbg_jhead(bud
->jhead
));
766 if (lp
->lnum
== c
->gc_lnum
)
771 void ubifs_dump_lprops(struct ubifs_info
*c
)
774 struct ubifs_lprops lp
;
775 struct ubifs_lp_stats lst
;
777 pr_err("(pid %d) start dumping LEB properties\n", current
->pid
);
778 ubifs_get_lp_stats(c
, &lst
);
779 ubifs_dump_lstats(&lst
);
781 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
782 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
784 ubifs_err(c
, "cannot read lprops for LEB %d", lnum
);
788 ubifs_dump_lprop(c
, &lp
);
790 pr_err("(pid %d) finish dumping LEB properties\n", current
->pid
);
793 void ubifs_dump_lpt_info(struct ubifs_info
*c
)
797 spin_lock(&dbg_lock
);
798 pr_err("(pid %d) dumping LPT information\n", current
->pid
);
799 pr_err("\tlpt_sz: %lld\n", c
->lpt_sz
);
800 pr_err("\tpnode_sz: %d\n", c
->pnode_sz
);
801 pr_err("\tnnode_sz: %d\n", c
->nnode_sz
);
802 pr_err("\tltab_sz: %d\n", c
->ltab_sz
);
803 pr_err("\tlsave_sz: %d\n", c
->lsave_sz
);
804 pr_err("\tbig_lpt: %u\n", c
->big_lpt
);
805 pr_err("\tlpt_hght: %d\n", c
->lpt_hght
);
806 pr_err("\tpnode_cnt: %d\n", c
->pnode_cnt
);
807 pr_err("\tnnode_cnt: %d\n", c
->nnode_cnt
);
808 pr_err("\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
809 pr_err("\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
810 pr_err("\tlsave_cnt: %d\n", c
->lsave_cnt
);
811 pr_err("\tspace_bits: %d\n", c
->space_bits
);
812 pr_err("\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
813 pr_err("\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
814 pr_err("\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
815 pr_err("\tpcnt_bits: %d\n", c
->pcnt_bits
);
816 pr_err("\tlnum_bits: %d\n", c
->lnum_bits
);
817 pr_err("\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
818 pr_err("\tLPT head is at %d:%d\n",
819 c
->nhead_lnum
, c
->nhead_offs
);
820 pr_err("\tLPT ltab is at %d:%d\n", c
->ltab_lnum
, c
->ltab_offs
);
822 pr_err("\tLPT lsave is at %d:%d\n",
823 c
->lsave_lnum
, c
->lsave_offs
);
824 for (i
= 0; i
< c
->lpt_lebs
; i
++)
825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
826 i
+ c
->lpt_first
, c
->ltab
[i
].free
, c
->ltab
[i
].dirty
,
827 c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
828 spin_unlock(&dbg_lock
);
831 void ubifs_dump_leb(const struct ubifs_info
*c
, int lnum
)
833 struct ubifs_scan_leb
*sleb
;
834 struct ubifs_scan_node
*snod
;
837 pr_err("(pid %d) start dumping LEB %d\n", current
->pid
, lnum
);
839 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
);
841 ubifs_err(c
, "cannot allocate memory for dumping LEB %d", lnum
);
845 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
847 ubifs_err(c
, "scan error %d", (int)PTR_ERR(sleb
));
851 pr_err("LEB %d has %d nodes ending at %d\n", lnum
,
852 sleb
->nodes_cnt
, sleb
->endpt
);
854 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
856 pr_err("Dumping node at LEB %d:%d len %d\n", lnum
,
857 snod
->offs
, snod
->len
);
858 ubifs_dump_node(c
, snod
->node
, c
->leb_size
- snod
->offs
);
861 pr_err("(pid %d) finish dumping LEB %d\n", current
->pid
, lnum
);
862 ubifs_scan_destroy(sleb
);
869 void ubifs_dump_znode(const struct ubifs_info
*c
,
870 const struct ubifs_znode
*znode
)
873 const struct ubifs_zbranch
*zbr
;
874 char key_buf
[DBG_KEY_BUF_LEN
];
876 spin_lock(&dbg_lock
);
878 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
882 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
883 znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
, znode
->parent
, znode
->iip
,
884 znode
->level
, znode
->child_cnt
, znode
->flags
);
886 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
887 spin_unlock(&dbg_lock
);
891 pr_err("zbranches:\n");
892 for (n
= 0; n
< znode
->child_cnt
; n
++) {
893 zbr
= &znode
->zbranch
[n
];
894 if (znode
->level
> 0)
895 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
896 n
, zbr
->znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
,
897 dbg_snprintf_key(c
, &zbr
->key
, key_buf
,
900 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
901 n
, zbr
->znode
, zbr
->lnum
, zbr
->offs
, zbr
->len
,
902 dbg_snprintf_key(c
, &zbr
->key
, key_buf
,
905 spin_unlock(&dbg_lock
);
908 void ubifs_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
912 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
913 current
->pid
, cat
, heap
->cnt
);
914 for (i
= 0; i
< heap
->cnt
; i
++) {
915 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
917 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
918 i
, lprops
->lnum
, lprops
->hpos
, lprops
->free
,
919 lprops
->dirty
, lprops
->flags
);
921 pr_err("(pid %d) finish dumping heap\n", current
->pid
);
924 void ubifs_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
925 struct ubifs_nnode
*parent
, int iip
)
929 pr_err("(pid %d) dumping pnode:\n", current
->pid
);
930 pr_err("\taddress %zx parent %zx cnext %zx\n",
931 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
932 pr_err("\tflags %lu iip %d level %d num %d\n",
933 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
934 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
935 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
937 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
938 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
942 void ubifs_dump_tnc(struct ubifs_info
*c
)
944 struct ubifs_znode
*znode
;
948 pr_err("(pid %d) start dumping TNC tree\n", current
->pid
);
949 znode
= ubifs_tnc_levelorder_next(c
, c
->zroot
.znode
, NULL
);
950 level
= znode
->level
;
951 pr_err("== Level %d ==\n", level
);
953 if (level
!= znode
->level
) {
954 level
= znode
->level
;
955 pr_err("== Level %d ==\n", level
);
957 ubifs_dump_znode(c
, znode
);
958 znode
= ubifs_tnc_levelorder_next(c
, c
->zroot
.znode
, znode
);
960 pr_err("(pid %d) finish dumping TNC tree\n", current
->pid
);
963 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
966 ubifs_dump_znode(c
, znode
);
971 * ubifs_dump_index - dump the on-flash index.
972 * @c: UBIFS file-system description object
974 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
975 * which dumps only in-memory znodes and does not read znodes which from flash.
977 void ubifs_dump_index(struct ubifs_info
*c
)
979 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
983 * dbg_save_space_info - save information about flash space.
984 * @c: UBIFS file-system description object
986 * This function saves information about UBIFS free space, dirty space, etc, in
987 * order to check it later.
989 void dbg_save_space_info(struct ubifs_info
*c
)
991 struct ubifs_debug_info
*d
= c
->dbg
;
994 spin_lock(&c
->space_lock
);
995 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
996 memcpy(&d
->saved_bi
, &c
->bi
, sizeof(struct ubifs_budg_info
));
997 d
->saved_idx_gc_cnt
= c
->idx_gc_cnt
;
1000 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1001 * affects the free space calculations, and UBIFS might not know about
1002 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1003 * only when we read their lprops, and we do this only lazily, upon the
1004 * need. So at any given point of time @c->freeable_cnt might be not
1007 * Just one example about the issue we hit when we did not zero
1009 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1010 * amount of free space in @d->saved_free
1011 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1012 * information from flash, where we cache LEBs from various
1013 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1014 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1015 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1016 * -> 'ubifs_add_to_cat()').
1017 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1019 * 4. We calculate the amount of free space when the re-mount is
1020 * finished in 'dbg_check_space_info()' and it does not match
1023 freeable_cnt
= c
->freeable_cnt
;
1024 c
->freeable_cnt
= 0;
1025 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1026 c
->freeable_cnt
= freeable_cnt
;
1027 spin_unlock(&c
->space_lock
);
1031 * dbg_check_space_info - check flash space information.
1032 * @c: UBIFS file-system description object
1034 * This function compares current flash space information with the information
1035 * which was saved when the 'dbg_save_space_info()' function was called.
1036 * Returns zero if the information has not changed, and %-EINVAL if it has
1039 int dbg_check_space_info(struct ubifs_info
*c
)
1041 struct ubifs_debug_info
*d
= c
->dbg
;
1042 struct ubifs_lp_stats lst
;
1046 spin_lock(&c
->space_lock
);
1047 freeable_cnt
= c
->freeable_cnt
;
1048 c
->freeable_cnt
= 0;
1049 free
= ubifs_get_free_space_nolock(c
);
1050 c
->freeable_cnt
= freeable_cnt
;
1051 spin_unlock(&c
->space_lock
);
1053 if (free
!= d
->saved_free
) {
1054 ubifs_err(c
, "free space changed from %lld to %lld",
1055 d
->saved_free
, free
);
1062 ubifs_msg(c
, "saved lprops statistics dump");
1063 ubifs_dump_lstats(&d
->saved_lst
);
1064 ubifs_msg(c
, "saved budgeting info dump");
1065 ubifs_dump_budg(c
, &d
->saved_bi
);
1066 ubifs_msg(c
, "saved idx_gc_cnt %d", d
->saved_idx_gc_cnt
);
1067 ubifs_msg(c
, "current lprops statistics dump");
1068 ubifs_get_lp_stats(c
, &lst
);
1069 ubifs_dump_lstats(&lst
);
1070 ubifs_msg(c
, "current budgeting info dump");
1071 ubifs_dump_budg(c
, &c
->bi
);
1077 * dbg_check_synced_i_size - check synchronized inode size.
1078 * @c: UBIFS file-system description object
1079 * @inode: inode to check
1081 * If inode is clean, synchronized inode size has to be equivalent to current
1082 * inode size. This function has to be called only for locked inodes (@i_mutex
1083 * has to be locked). Returns %0 if synchronized inode size if correct, and
1086 int dbg_check_synced_i_size(const struct ubifs_info
*c
, struct inode
*inode
)
1089 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1091 if (!dbg_is_chk_gen(c
))
1093 if (!S_ISREG(inode
->i_mode
))
1096 mutex_lock(&ui
->ui_mutex
);
1097 spin_lock(&ui
->ui_lock
);
1098 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1099 ubifs_err(c
, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1100 ui
->ui_size
, ui
->synced_i_size
);
1101 ubifs_err(c
, "i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1102 inode
->i_mode
, i_size_read(inode
));
1106 spin_unlock(&ui
->ui_lock
);
1107 mutex_unlock(&ui
->ui_mutex
);
1112 * dbg_check_dir - check directory inode size and link count.
1113 * @c: UBIFS file-system description object
1114 * @dir: the directory to calculate size for
1115 * @size: the result is returned here
1117 * This function makes sure that directory size and link count are correct.
1118 * Returns zero in case of success and a negative error code in case of
1121 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1122 * calling this function.
1124 int dbg_check_dir(struct ubifs_info
*c
, const struct inode
*dir
)
1126 unsigned int nlink
= 2;
1127 union ubifs_key key
;
1128 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1129 struct fscrypt_name nm
= {0};
1130 loff_t size
= UBIFS_INO_NODE_SZ
;
1132 if (!dbg_is_chk_gen(c
))
1135 if (!S_ISDIR(dir
->i_mode
))
1138 lowest_dent_key(c
, &key
, dir
->i_ino
);
1142 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1144 err
= PTR_ERR(dent
);
1151 fname_name(&nm
) = dent
->name
;
1152 fname_len(&nm
) = le16_to_cpu(dent
->nlen
);
1153 size
+= CALC_DENT_SIZE(fname_len(&nm
));
1154 if (dent
->type
== UBIFS_ITYPE_DIR
)
1158 key_read(c
, &dent
->key
, &key
);
1162 if (i_size_read(dir
) != size
) {
1163 ubifs_err(c
, "directory inode %lu has size %llu, but calculated size is %llu",
1164 dir
->i_ino
, (unsigned long long)i_size_read(dir
),
1165 (unsigned long long)size
);
1166 ubifs_dump_inode(c
, dir
);
1170 if (dir
->i_nlink
!= nlink
) {
1171 ubifs_err(c
, "directory inode %lu has nlink %u, but calculated nlink is %u",
1172 dir
->i_ino
, dir
->i_nlink
, nlink
);
1173 ubifs_dump_inode(c
, dir
);
1182 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1183 * @c: UBIFS file-system description object
1184 * @zbr1: first zbranch
1185 * @zbr2: following zbranch
1187 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1188 * names of the direntries/xentries which are referred by the keys. This
1189 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1190 * sure the name of direntry/xentry referred by @zbr1 is less than
1191 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1192 * and a negative error code in case of failure.
1194 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1195 struct ubifs_zbranch
*zbr2
)
1197 int err
, nlen1
, nlen2
, cmp
;
1198 struct ubifs_dent_node
*dent1
, *dent2
;
1199 union ubifs_key key
;
1200 char key_buf
[DBG_KEY_BUF_LEN
];
1202 ubifs_assert(c
, !keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1203 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1206 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1212 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1215 err
= ubifs_validate_entry(c
, dent1
);
1219 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1222 err
= ubifs_validate_entry(c
, dent2
);
1226 /* Make sure node keys are the same as in zbranch */
1228 key_read(c
, &dent1
->key
, &key
);
1229 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1230 ubifs_err(c
, "1st entry at %d:%d has key %s", zbr1
->lnum
,
1231 zbr1
->offs
, dbg_snprintf_key(c
, &key
, key_buf
,
1233 ubifs_err(c
, "but it should have key %s according to tnc",
1234 dbg_snprintf_key(c
, &zbr1
->key
, key_buf
,
1236 ubifs_dump_node(c
, dent1
, UBIFS_MAX_DENT_NODE_SZ
);
1240 key_read(c
, &dent2
->key
, &key
);
1241 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1242 ubifs_err(c
, "2nd entry at %d:%d has key %s", zbr1
->lnum
,
1243 zbr1
->offs
, dbg_snprintf_key(c
, &key
, key_buf
,
1245 ubifs_err(c
, "but it should have key %s according to tnc",
1246 dbg_snprintf_key(c
, &zbr2
->key
, key_buf
,
1248 ubifs_dump_node(c
, dent2
, UBIFS_MAX_DENT_NODE_SZ
);
1252 nlen1
= le16_to_cpu(dent1
->nlen
);
1253 nlen2
= le16_to_cpu(dent2
->nlen
);
1255 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1256 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1260 if (cmp
== 0 && nlen1
== nlen2
)
1261 ubifs_err(c
, "2 xent/dent nodes with the same name");
1263 ubifs_err(c
, "bad order of colliding key %s",
1264 dbg_snprintf_key(c
, &key
, key_buf
, DBG_KEY_BUF_LEN
));
1266 ubifs_msg(c
, "first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1267 ubifs_dump_node(c
, dent1
, UBIFS_MAX_DENT_NODE_SZ
);
1268 ubifs_msg(c
, "second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1269 ubifs_dump_node(c
, dent2
, UBIFS_MAX_DENT_NODE_SZ
);
1278 * dbg_check_znode - check if znode is all right.
1279 * @c: UBIFS file-system description object
1280 * @zbr: zbranch which points to this znode
1282 * This function makes sure that znode referred to by @zbr is all right.
1283 * Returns zero if it is, and %-EINVAL if it is not.
1285 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1287 struct ubifs_znode
*znode
= zbr
->znode
;
1288 struct ubifs_znode
*zp
= znode
->parent
;
1291 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1295 if (znode
->level
< 0) {
1299 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1305 /* Only dirty zbranch may have no on-flash nodes */
1306 if (!ubifs_zn_dirty(znode
)) {
1311 if (ubifs_zn_dirty(znode
)) {
1313 * If znode is dirty, its parent has to be dirty as well. The
1314 * order of the operation is important, so we have to have
1318 if (zp
&& !ubifs_zn_dirty(zp
)) {
1320 * The dirty flag is atomic and is cleared outside the
1321 * TNC mutex, so znode's dirty flag may now have
1322 * been cleared. The child is always cleared before the
1323 * parent, so we just need to check again.
1326 if (ubifs_zn_dirty(znode
)) {
1334 const union ubifs_key
*min
, *max
;
1336 if (znode
->level
!= zp
->level
- 1) {
1341 /* Make sure the 'parent' pointer in our znode is correct */
1342 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1344 /* This zbranch does not exist in the parent */
1349 if (znode
->iip
>= zp
->child_cnt
) {
1354 if (znode
->iip
!= n
) {
1355 /* This may happen only in case of collisions */
1356 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1357 &zp
->zbranch
[znode
->iip
].key
)) {
1365 * Make sure that the first key in our znode is greater than or
1366 * equal to the key in the pointing zbranch.
1369 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1375 if (n
+ 1 < zp
->child_cnt
) {
1376 max
= &zp
->zbranch
[n
+ 1].key
;
1379 * Make sure the last key in our znode is less or
1380 * equivalent than the key in the zbranch which goes
1381 * after our pointing zbranch.
1383 cmp
= keys_cmp(c
, max
,
1384 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1391 /* This may only be root znode */
1392 if (zbr
!= &c
->zroot
) {
1399 * Make sure that next key is greater or equivalent then the previous
1402 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1403 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1404 &znode
->zbranch
[n
].key
);
1410 /* This can only be keys with colliding hash */
1411 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1416 if (znode
->level
!= 0 || c
->replaying
)
1420 * Colliding keys should follow binary order of
1421 * corresponding xentry/dentry names.
1423 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1424 &znode
->zbranch
[n
]);
1434 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1435 if (!znode
->zbranch
[n
].znode
&&
1436 (znode
->zbranch
[n
].lnum
== 0 ||
1437 znode
->zbranch
[n
].len
== 0)) {
1442 if (znode
->zbranch
[n
].lnum
!= 0 &&
1443 znode
->zbranch
[n
].len
== 0) {
1448 if (znode
->zbranch
[n
].lnum
== 0 &&
1449 znode
->zbranch
[n
].len
!= 0) {
1454 if (znode
->zbranch
[n
].lnum
== 0 &&
1455 znode
->zbranch
[n
].offs
!= 0) {
1460 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1461 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1470 ubifs_err(c
, "failed, error %d", err
);
1471 ubifs_msg(c
, "dump of the znode");
1472 ubifs_dump_znode(c
, znode
);
1474 ubifs_msg(c
, "dump of the parent znode");
1475 ubifs_dump_znode(c
, zp
);
1482 * dbg_check_tnc - check TNC tree.
1483 * @c: UBIFS file-system description object
1484 * @extra: do extra checks that are possible at start commit
1486 * This function traverses whole TNC tree and checks every znode. Returns zero
1487 * if everything is all right and %-EINVAL if something is wrong with TNC.
1489 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1491 struct ubifs_znode
*znode
;
1492 long clean_cnt
= 0, dirty_cnt
= 0;
1495 if (!dbg_is_chk_index(c
))
1498 ubifs_assert(c
, mutex_is_locked(&c
->tnc_mutex
));
1499 if (!c
->zroot
.znode
)
1502 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1504 struct ubifs_znode
*prev
;
1505 struct ubifs_zbranch
*zbr
;
1510 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1512 err
= dbg_check_znode(c
, zbr
);
1517 if (ubifs_zn_dirty(znode
))
1524 znode
= ubifs_tnc_postorder_next(c
, znode
);
1529 * If the last key of this znode is equivalent to the first key
1530 * of the next znode (collision), then check order of the keys.
1532 last
= prev
->child_cnt
- 1;
1533 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1534 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1535 &znode
->zbranch
[0].key
)) {
1536 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1537 &znode
->zbranch
[0]);
1541 ubifs_msg(c
, "first znode");
1542 ubifs_dump_znode(c
, prev
);
1543 ubifs_msg(c
, "second znode");
1544 ubifs_dump_znode(c
, znode
);
1551 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1552 ubifs_err(c
, "incorrect clean_zn_cnt %ld, calculated %ld",
1553 atomic_long_read(&c
->clean_zn_cnt
),
1557 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1558 ubifs_err(c
, "incorrect dirty_zn_cnt %ld, calculated %ld",
1559 atomic_long_read(&c
->dirty_zn_cnt
),
1569 * dbg_walk_index - walk the on-flash index.
1570 * @c: UBIFS file-system description object
1571 * @leaf_cb: called for each leaf node
1572 * @znode_cb: called for each indexing node
1573 * @priv: private data which is passed to callbacks
1575 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1576 * node and @znode_cb for each indexing node. Returns zero in case of success
1577 * and a negative error code in case of failure.
1579 * It would be better if this function removed every znode it pulled to into
1580 * the TNC, so that the behavior more closely matched the non-debugging
1583 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1584 dbg_znode_callback znode_cb
, void *priv
)
1587 struct ubifs_zbranch
*zbr
;
1588 struct ubifs_znode
*znode
, *child
;
1590 mutex_lock(&c
->tnc_mutex
);
1591 /* If the root indexing node is not in TNC - pull it */
1592 if (!c
->zroot
.znode
) {
1593 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1594 if (IS_ERR(c
->zroot
.znode
)) {
1595 err
= PTR_ERR(c
->zroot
.znode
);
1596 c
->zroot
.znode
= NULL
;
1602 * We are going to traverse the indexing tree in the postorder manner.
1603 * Go down and find the leftmost indexing node where we are going to
1606 znode
= c
->zroot
.znode
;
1607 while (znode
->level
> 0) {
1608 zbr
= &znode
->zbranch
[0];
1611 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1612 if (IS_ERR(child
)) {
1613 err
= PTR_ERR(child
);
1621 /* Iterate over all indexing nodes */
1628 err
= znode_cb(c
, znode
, priv
);
1630 ubifs_err(c
, "znode checking function returned error %d",
1632 ubifs_dump_znode(c
, znode
);
1636 if (leaf_cb
&& znode
->level
== 0) {
1637 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1638 zbr
= &znode
->zbranch
[idx
];
1639 err
= leaf_cb(c
, zbr
, priv
);
1641 ubifs_err(c
, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1642 err
, zbr
->lnum
, zbr
->offs
);
1651 idx
= znode
->iip
+ 1;
1652 znode
= znode
->parent
;
1653 if (idx
< znode
->child_cnt
) {
1654 /* Switch to the next index in the parent */
1655 zbr
= &znode
->zbranch
[idx
];
1658 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1659 if (IS_ERR(child
)) {
1660 err
= PTR_ERR(child
);
1668 * This is the last child, switch to the parent and
1673 /* Go to the lowest leftmost znode in the new sub-tree */
1674 while (znode
->level
> 0) {
1675 zbr
= &znode
->zbranch
[0];
1678 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1679 if (IS_ERR(child
)) {
1680 err
= PTR_ERR(child
);
1689 mutex_unlock(&c
->tnc_mutex
);
1694 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1697 ubifs_msg(c
, "dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1698 ubifs_dump_znode(c
, znode
);
1700 mutex_unlock(&c
->tnc_mutex
);
1705 * add_size - add znode size to partially calculated index size.
1706 * @c: UBIFS file-system description object
1707 * @znode: znode to add size for
1708 * @priv: partially calculated index size
1710 * This is a helper function for 'dbg_check_idx_size()' which is called for
1711 * every indexing node and adds its size to the 'long long' variable pointed to
1714 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1716 long long *idx_size
= priv
;
1719 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1720 add
= ALIGN(add
, 8);
1726 * dbg_check_idx_size - check index size.
1727 * @c: UBIFS file-system description object
1728 * @idx_size: size to check
1730 * This function walks the UBIFS index, calculates its size and checks that the
1731 * size is equivalent to @idx_size. Returns zero in case of success and a
1732 * negative error code in case of failure.
1734 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1739 if (!dbg_is_chk_index(c
))
1742 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1744 ubifs_err(c
, "error %d while walking the index", err
);
1748 if (calc
!= idx_size
) {
1749 ubifs_err(c
, "index size check failed: calculated size is %lld, should be %lld",
1759 ubifs_destroy_tnc_tree(c
);
1764 * struct fsck_inode - information about an inode used when checking the file-system.
1765 * @rb: link in the RB-tree of inodes
1766 * @inum: inode number
1767 * @mode: inode type, permissions, etc
1768 * @nlink: inode link count
1769 * @xattr_cnt: count of extended attributes
1770 * @references: how many directory/xattr entries refer this inode (calculated
1771 * while walking the index)
1772 * @calc_cnt: for directory inode count of child directories
1773 * @size: inode size (read from on-flash inode)
1774 * @xattr_sz: summary size of all extended attributes (read from on-flash
1776 * @calc_sz: for directories calculated directory size
1777 * @calc_xcnt: count of extended attributes
1778 * @calc_xsz: calculated summary size of all extended attributes
1779 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1780 * inode (read from on-flash inode)
1781 * @calc_xnms: calculated sum of lengths of all extended attribute names
1788 unsigned int xattr_cnt
;
1792 unsigned int xattr_sz
;
1794 long long calc_xcnt
;
1796 unsigned int xattr_nms
;
1797 long long calc_xnms
;
1801 * struct fsck_data - private FS checking information.
1802 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1805 struct rb_root inodes
;
1809 * add_inode - add inode information to RB-tree of inodes.
1810 * @c: UBIFS file-system description object
1811 * @fsckd: FS checking information
1812 * @ino: raw UBIFS inode to add
1814 * This is a helper function for 'check_leaf()' which adds information about
1815 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1816 * case of success and a negative error code in case of failure.
1818 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1819 struct fsck_data
*fsckd
,
1820 struct ubifs_ino_node
*ino
)
1822 struct rb_node
**p
, *parent
= NULL
;
1823 struct fsck_inode
*fscki
;
1824 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1825 struct inode
*inode
;
1826 struct ubifs_inode
*ui
;
1828 p
= &fsckd
->inodes
.rb_node
;
1831 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1832 if (inum
< fscki
->inum
)
1834 else if (inum
> fscki
->inum
)
1835 p
= &(*p
)->rb_right
;
1840 if (inum
> c
->highest_inum
) {
1841 ubifs_err(c
, "too high inode number, max. is %lu",
1842 (unsigned long)c
->highest_inum
);
1843 return ERR_PTR(-EINVAL
);
1846 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1848 return ERR_PTR(-ENOMEM
);
1850 inode
= ilookup(c
->vfs_sb
, inum
);
1854 * If the inode is present in the VFS inode cache, use it instead of
1855 * the on-flash inode which might be out-of-date. E.g., the size might
1856 * be out-of-date. If we do not do this, the following may happen, for
1858 * 1. A power cut happens
1859 * 2. We mount the file-system R/O, the replay process fixes up the
1860 * inode size in the VFS cache, but on on-flash.
1861 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1865 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1866 fscki
->size
= le64_to_cpu(ino
->size
);
1867 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1868 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1869 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1870 fscki
->mode
= le32_to_cpu(ino
->mode
);
1872 ui
= ubifs_inode(inode
);
1873 fscki
->nlink
= inode
->i_nlink
;
1874 fscki
->size
= inode
->i_size
;
1875 fscki
->xattr_cnt
= ui
->xattr_cnt
;
1876 fscki
->xattr_sz
= ui
->xattr_size
;
1877 fscki
->xattr_nms
= ui
->xattr_names
;
1878 fscki
->mode
= inode
->i_mode
;
1882 if (S_ISDIR(fscki
->mode
)) {
1883 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1884 fscki
->calc_cnt
= 2;
1887 rb_link_node(&fscki
->rb
, parent
, p
);
1888 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1894 * search_inode - search inode in the RB-tree of inodes.
1895 * @fsckd: FS checking information
1896 * @inum: inode number to search
1898 * This is a helper function for 'check_leaf()' which searches inode @inum in
1899 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1900 * the inode was not found.
1902 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1905 struct fsck_inode
*fscki
;
1907 p
= fsckd
->inodes
.rb_node
;
1909 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1910 if (inum
< fscki
->inum
)
1912 else if (inum
> fscki
->inum
)
1921 * read_add_inode - read inode node and add it to RB-tree of inodes.
1922 * @c: UBIFS file-system description object
1923 * @fsckd: FS checking information
1924 * @inum: inode number to read
1926 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1927 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1928 * information pointer in case of success and a negative error code in case of
1931 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1932 struct fsck_data
*fsckd
, ino_t inum
)
1935 union ubifs_key key
;
1936 struct ubifs_znode
*znode
;
1937 struct ubifs_zbranch
*zbr
;
1938 struct ubifs_ino_node
*ino
;
1939 struct fsck_inode
*fscki
;
1941 fscki
= search_inode(fsckd
, inum
);
1945 ino_key_init(c
, &key
, inum
);
1946 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1948 ubifs_err(c
, "inode %lu not found in index", (unsigned long)inum
);
1949 return ERR_PTR(-ENOENT
);
1950 } else if (err
< 0) {
1951 ubifs_err(c
, "error %d while looking up inode %lu",
1952 err
, (unsigned long)inum
);
1953 return ERR_PTR(err
);
1956 zbr
= &znode
->zbranch
[n
];
1957 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1958 ubifs_err(c
, "bad node %lu node length %d",
1959 (unsigned long)inum
, zbr
->len
);
1960 return ERR_PTR(-EINVAL
);
1963 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
1965 return ERR_PTR(-ENOMEM
);
1967 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
1969 ubifs_err(c
, "cannot read inode node at LEB %d:%d, error %d",
1970 zbr
->lnum
, zbr
->offs
, err
);
1972 return ERR_PTR(err
);
1975 fscki
= add_inode(c
, fsckd
, ino
);
1977 if (IS_ERR(fscki
)) {
1978 ubifs_err(c
, "error %ld while adding inode %lu node",
1979 PTR_ERR(fscki
), (unsigned long)inum
);
1987 * check_leaf - check leaf node.
1988 * @c: UBIFS file-system description object
1989 * @zbr: zbranch of the leaf node to check
1990 * @priv: FS checking information
1992 * This is a helper function for 'dbg_check_filesystem()' which is called for
1993 * every single leaf node while walking the indexing tree. It checks that the
1994 * leaf node referred from the indexing tree exists, has correct CRC, and does
1995 * some other basic validation. This function is also responsible for building
1996 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1997 * calculates reference count, size, etc for each inode in order to later
1998 * compare them to the information stored inside the inodes and detect possible
1999 * inconsistencies. Returns zero in case of success and a negative error code
2000 * in case of failure.
2002 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
2007 struct ubifs_ch
*ch
;
2008 int err
, type
= key_type(c
, &zbr
->key
);
2009 struct fsck_inode
*fscki
;
2011 if (zbr
->len
< UBIFS_CH_SZ
) {
2012 ubifs_err(c
, "bad leaf length %d (LEB %d:%d)",
2013 zbr
->len
, zbr
->lnum
, zbr
->offs
);
2017 node
= kmalloc(zbr
->len
, GFP_NOFS
);
2021 err
= ubifs_tnc_read_node(c
, zbr
, node
);
2023 ubifs_err(c
, "cannot read leaf node at LEB %d:%d, error %d",
2024 zbr
->lnum
, zbr
->offs
, err
);
2028 /* If this is an inode node, add it to RB-tree of inodes */
2029 if (type
== UBIFS_INO_KEY
) {
2030 fscki
= add_inode(c
, priv
, node
);
2031 if (IS_ERR(fscki
)) {
2032 err
= PTR_ERR(fscki
);
2033 ubifs_err(c
, "error %d while adding inode node", err
);
2039 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
2040 type
!= UBIFS_DATA_KEY
) {
2041 ubifs_err(c
, "unexpected node type %d at LEB %d:%d",
2042 type
, zbr
->lnum
, zbr
->offs
);
2048 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
2049 ubifs_err(c
, "too high sequence number, max. is %llu",
2055 if (type
== UBIFS_DATA_KEY
) {
2057 struct ubifs_data_node
*dn
= node
;
2059 ubifs_assert(c
, zbr
->len
>= UBIFS_DATA_NODE_SZ
);
2062 * Search the inode node this data node belongs to and insert
2063 * it to the RB-tree of inodes.
2065 inum
= key_inum_flash(c
, &dn
->key
);
2066 fscki
= read_add_inode(c
, priv
, inum
);
2067 if (IS_ERR(fscki
)) {
2068 err
= PTR_ERR(fscki
);
2069 ubifs_err(c
, "error %d while processing data node and trying to find inode node %lu",
2070 err
, (unsigned long)inum
);
2074 /* Make sure the data node is within inode size */
2075 blk_offs
= key_block_flash(c
, &dn
->key
);
2076 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2077 blk_offs
+= le32_to_cpu(dn
->size
);
2078 if (blk_offs
> fscki
->size
) {
2079 ubifs_err(c
, "data node at LEB %d:%d is not within inode size %lld",
2080 zbr
->lnum
, zbr
->offs
, fscki
->size
);
2086 struct ubifs_dent_node
*dent
= node
;
2087 struct fsck_inode
*fscki1
;
2089 ubifs_assert(c
, zbr
->len
>= UBIFS_DENT_NODE_SZ
);
2091 err
= ubifs_validate_entry(c
, dent
);
2096 * Search the inode node this entry refers to and the parent
2097 * inode node and insert them to the RB-tree of inodes.
2099 inum
= le64_to_cpu(dent
->inum
);
2100 fscki
= read_add_inode(c
, priv
, inum
);
2101 if (IS_ERR(fscki
)) {
2102 err
= PTR_ERR(fscki
);
2103 ubifs_err(c
, "error %d while processing entry node and trying to find inode node %lu",
2104 err
, (unsigned long)inum
);
2108 /* Count how many direntries or xentries refers this inode */
2109 fscki
->references
+= 1;
2111 inum
= key_inum_flash(c
, &dent
->key
);
2112 fscki1
= read_add_inode(c
, priv
, inum
);
2113 if (IS_ERR(fscki1
)) {
2114 err
= PTR_ERR(fscki1
);
2115 ubifs_err(c
, "error %d while processing entry node and trying to find parent inode node %lu",
2116 err
, (unsigned long)inum
);
2120 nlen
= le16_to_cpu(dent
->nlen
);
2121 if (type
== UBIFS_XENT_KEY
) {
2122 fscki1
->calc_xcnt
+= 1;
2123 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2124 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2125 fscki1
->calc_xnms
+= nlen
;
2127 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2128 if (dent
->type
== UBIFS_ITYPE_DIR
)
2129 fscki1
->calc_cnt
+= 1;
2138 ubifs_msg(c
, "dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2139 ubifs_dump_node(c
, node
, zbr
->len
);
2146 * free_inodes - free RB-tree of inodes.
2147 * @fsckd: FS checking information
2149 static void free_inodes(struct fsck_data
*fsckd
)
2151 struct fsck_inode
*fscki
, *n
;
2153 rbtree_postorder_for_each_entry_safe(fscki
, n
, &fsckd
->inodes
, rb
)
2158 * check_inodes - checks all inodes.
2159 * @c: UBIFS file-system description object
2160 * @fsckd: FS checking information
2162 * This is a helper function for 'dbg_check_filesystem()' which walks the
2163 * RB-tree of inodes after the index scan has been finished, and checks that
2164 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2165 * %-EINVAL if not, and a negative error code in case of failure.
2167 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2170 union ubifs_key key
;
2171 struct ubifs_znode
*znode
;
2172 struct ubifs_zbranch
*zbr
;
2173 struct ubifs_ino_node
*ino
;
2174 struct fsck_inode
*fscki
;
2175 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2178 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2179 this = rb_next(this);
2181 if (S_ISDIR(fscki
->mode
)) {
2183 * Directories have to have exactly one reference (they
2184 * cannot have hardlinks), although root inode is an
2187 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2188 fscki
->references
!= 1) {
2189 ubifs_err(c
, "directory inode %lu has %d direntries which refer it, but should be 1",
2190 (unsigned long)fscki
->inum
,
2194 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2195 fscki
->references
!= 0) {
2196 ubifs_err(c
, "root inode %lu has non-zero (%d) direntries which refer it",
2197 (unsigned long)fscki
->inum
,
2201 if (fscki
->calc_sz
!= fscki
->size
) {
2202 ubifs_err(c
, "directory inode %lu size is %lld, but calculated size is %lld",
2203 (unsigned long)fscki
->inum
,
2204 fscki
->size
, fscki
->calc_sz
);
2207 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2208 ubifs_err(c
, "directory inode %lu nlink is %d, but calculated nlink is %d",
2209 (unsigned long)fscki
->inum
,
2210 fscki
->nlink
, fscki
->calc_cnt
);
2214 if (fscki
->references
!= fscki
->nlink
) {
2215 ubifs_err(c
, "inode %lu nlink is %d, but calculated nlink is %d",
2216 (unsigned long)fscki
->inum
,
2217 fscki
->nlink
, fscki
->references
);
2221 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2222 ubifs_err(c
, "inode %lu has xattr size %u, but calculated size is %lld",
2223 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2227 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2228 ubifs_err(c
, "inode %lu has %u xattrs, but calculated count is %lld",
2229 (unsigned long)fscki
->inum
,
2230 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2233 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2234 ubifs_err(c
, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2235 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2244 /* Read the bad inode and dump it */
2245 ino_key_init(c
, &key
, fscki
->inum
);
2246 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2248 ubifs_err(c
, "inode %lu not found in index",
2249 (unsigned long)fscki
->inum
);
2251 } else if (err
< 0) {
2252 ubifs_err(c
, "error %d while looking up inode %lu",
2253 err
, (unsigned long)fscki
->inum
);
2257 zbr
= &znode
->zbranch
[n
];
2258 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2262 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2264 ubifs_err(c
, "cannot read inode node at LEB %d:%d, error %d",
2265 zbr
->lnum
, zbr
->offs
, err
);
2270 ubifs_msg(c
, "dump of the inode %lu sitting in LEB %d:%d",
2271 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2272 ubifs_dump_node(c
, ino
, zbr
->len
);
2278 * dbg_check_filesystem - check the file-system.
2279 * @c: UBIFS file-system description object
2281 * This function checks the file system, namely:
2282 * o makes sure that all leaf nodes exist and their CRCs are correct;
2283 * o makes sure inode nlink, size, xattr size/count are correct (for all
2286 * The function reads whole indexing tree and all nodes, so it is pretty
2287 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2288 * not, and a negative error code in case of failure.
2290 int dbg_check_filesystem(struct ubifs_info
*c
)
2293 struct fsck_data fsckd
;
2295 if (!dbg_is_chk_fs(c
))
2298 fsckd
.inodes
= RB_ROOT
;
2299 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2303 err
= check_inodes(c
, &fsckd
);
2307 free_inodes(&fsckd
);
2311 ubifs_err(c
, "file-system check failed with error %d", err
);
2313 free_inodes(&fsckd
);
2318 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2319 * @c: UBIFS file-system description object
2320 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2322 * This function returns zero if the list of data nodes is sorted correctly,
2323 * and %-EINVAL if not.
2325 int dbg_check_data_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2327 struct list_head
*cur
;
2328 struct ubifs_scan_node
*sa
, *sb
;
2330 if (!dbg_is_chk_gen(c
))
2333 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2335 uint32_t blka
, blkb
;
2338 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2339 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2341 if (sa
->type
!= UBIFS_DATA_NODE
) {
2342 ubifs_err(c
, "bad node type %d", sa
->type
);
2343 ubifs_dump_node(c
, sa
->node
, c
->leb_size
- sa
->offs
);
2346 if (sb
->type
!= UBIFS_DATA_NODE
) {
2347 ubifs_err(c
, "bad node type %d", sb
->type
);
2348 ubifs_dump_node(c
, sb
->node
, c
->leb_size
- sb
->offs
);
2352 inuma
= key_inum(c
, &sa
->key
);
2353 inumb
= key_inum(c
, &sb
->key
);
2357 if (inuma
> inumb
) {
2358 ubifs_err(c
, "larger inum %lu goes before inum %lu",
2359 (unsigned long)inuma
, (unsigned long)inumb
);
2363 blka
= key_block(c
, &sa
->key
);
2364 blkb
= key_block(c
, &sb
->key
);
2367 ubifs_err(c
, "larger block %u goes before %u", blka
, blkb
);
2371 ubifs_err(c
, "two data nodes for the same block");
2379 ubifs_dump_node(c
, sa
->node
, c
->leb_size
- sa
->offs
);
2380 ubifs_dump_node(c
, sb
->node
, c
->leb_size
- sb
->offs
);
2385 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2386 * @c: UBIFS file-system description object
2387 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2389 * This function returns zero if the list of non-data nodes is sorted correctly,
2390 * and %-EINVAL if not.
2392 int dbg_check_nondata_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2394 struct list_head
*cur
;
2395 struct ubifs_scan_node
*sa
, *sb
;
2397 if (!dbg_is_chk_gen(c
))
2400 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2402 uint32_t hasha
, hashb
;
2405 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2406 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2408 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2409 sa
->type
!= UBIFS_XENT_NODE
) {
2410 ubifs_err(c
, "bad node type %d", sa
->type
);
2411 ubifs_dump_node(c
, sa
->node
, c
->leb_size
- sa
->offs
);
2414 if (sb
->type
!= UBIFS_INO_NODE
&& sb
->type
!= UBIFS_DENT_NODE
&&
2415 sb
->type
!= UBIFS_XENT_NODE
) {
2416 ubifs_err(c
, "bad node type %d", sb
->type
);
2417 ubifs_dump_node(c
, sb
->node
, c
->leb_size
- sb
->offs
);
2421 if (sa
->type
!= UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2422 ubifs_err(c
, "non-inode node goes before inode node");
2426 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
!= UBIFS_INO_NODE
)
2429 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2430 /* Inode nodes are sorted in descending size order */
2431 if (sa
->len
< sb
->len
) {
2432 ubifs_err(c
, "smaller inode node goes first");
2439 * This is either a dentry or xentry, which should be sorted in
2440 * ascending (parent ino, hash) order.
2442 inuma
= key_inum(c
, &sa
->key
);
2443 inumb
= key_inum(c
, &sb
->key
);
2447 if (inuma
> inumb
) {
2448 ubifs_err(c
, "larger inum %lu goes before inum %lu",
2449 (unsigned long)inuma
, (unsigned long)inumb
);
2453 hasha
= key_block(c
, &sa
->key
);
2454 hashb
= key_block(c
, &sb
->key
);
2456 if (hasha
> hashb
) {
2457 ubifs_err(c
, "larger hash %u goes before %u",
2466 ubifs_msg(c
, "dumping first node");
2467 ubifs_dump_node(c
, sa
->node
, c
->leb_size
- sa
->offs
);
2468 ubifs_msg(c
, "dumping second node");
2469 ubifs_dump_node(c
, sb
->node
, c
->leb_size
- sb
->offs
);
2473 static inline int chance(unsigned int n
, unsigned int out_of
)
2475 return !!(get_random_u32_below(out_of
) + 1 <= n
);
2479 static int power_cut_emulated(struct ubifs_info
*c
, int lnum
, int write
)
2481 struct ubifs_debug_info
*d
= c
->dbg
;
2483 ubifs_assert(c
, dbg_is_tst_rcvry(c
));
2486 /* First call - decide delay to the power cut */
2488 unsigned long delay
;
2492 /* Fail within 1 minute */
2493 delay
= get_random_u32_below(60000);
2494 d
->pc_timeout
= jiffies
;
2495 d
->pc_timeout
+= msecs_to_jiffies(delay
);
2496 ubifs_warn(c
, "failing after %lums", delay
);
2499 delay
= get_random_u32_below(10000);
2500 /* Fail within 10000 operations */
2501 d
->pc_cnt_max
= delay
;
2502 ubifs_warn(c
, "failing after %lu calls", delay
);
2509 /* Determine if failure delay has expired */
2510 if (d
->pc_delay
== 1 && time_before(jiffies
, d
->pc_timeout
))
2512 if (d
->pc_delay
== 2 && d
->pc_cnt
++ < d
->pc_cnt_max
)
2515 if (lnum
== UBIFS_SB_LNUM
) {
2516 if (write
&& chance(1, 2))
2520 ubifs_warn(c
, "failing in super block LEB %d", lnum
);
2521 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2524 ubifs_warn(c
, "failing in master LEB %d", lnum
);
2525 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2526 if (write
&& chance(99, 100))
2528 if (chance(399, 400))
2530 ubifs_warn(c
, "failing in log LEB %d", lnum
);
2531 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2532 if (write
&& chance(7, 8))
2536 ubifs_warn(c
, "failing in LPT LEB %d", lnum
);
2537 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2538 if (write
&& chance(1, 2))
2542 ubifs_warn(c
, "failing in orphan LEB %d", lnum
);
2543 } else if (lnum
== c
->ihead_lnum
) {
2544 if (chance(99, 100))
2546 ubifs_warn(c
, "failing in index head LEB %d", lnum
);
2547 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2550 ubifs_warn(c
, "failing in GC head LEB %d", lnum
);
2551 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2552 !ubifs_search_bud(c
, lnum
)) {
2555 ubifs_warn(c
, "failing in non-bud LEB %d", lnum
);
2556 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2557 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2558 if (chance(999, 1000))
2560 ubifs_warn(c
, "failing in bud LEB %d commit running", lnum
);
2562 if (chance(9999, 10000))
2564 ubifs_warn(c
, "failing in bud LEB %d commit not running", lnum
);
2568 ubifs_warn(c
, "========== Power cut emulated ==========");
2573 static int corrupt_data(const struct ubifs_info
*c
, const void *buf
,
2576 unsigned int from
, to
, ffs
= chance(1, 2);
2577 unsigned char *p
= (void *)buf
;
2579 from
= get_random_u32_below(len
);
2580 /* Corruption span max to end of write unit */
2581 to
= min(len
, ALIGN(from
+ 1, c
->max_write_size
));
2583 ubifs_warn(c
, "filled bytes %u-%u with %s", from
, to
- 1,
2584 ffs
? "0xFFs" : "random data");
2587 memset(p
+ from
, 0xFF, to
- from
);
2589 get_random_bytes(p
+ from
, to
- from
);
2594 int dbg_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
,
2599 if (dbg_is_power_cut(c
))
2602 failing
= power_cut_emulated(c
, lnum
, 1);
2604 len
= corrupt_data(c
, buf
, len
);
2605 ubifs_warn(c
, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2608 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
);
2616 int dbg_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
,
2621 if (dbg_is_power_cut(c
))
2623 if (power_cut_emulated(c
, lnum
, 1))
2625 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
);
2628 if (power_cut_emulated(c
, lnum
, 1))
2633 int dbg_leb_unmap(struct ubifs_info
*c
, int lnum
)
2637 if (dbg_is_power_cut(c
))
2639 if (power_cut_emulated(c
, lnum
, 0))
2641 err
= ubi_leb_unmap(c
->ubi
, lnum
);
2644 if (power_cut_emulated(c
, lnum
, 0))
2649 int dbg_leb_map(struct ubifs_info
*c
, int lnum
)
2653 if (dbg_is_power_cut(c
))
2655 if (power_cut_emulated(c
, lnum
, 0))
2657 err
= ubi_leb_map(c
->ubi
, lnum
);
2660 if (power_cut_emulated(c
, lnum
, 0))
2666 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2667 * contain the stuff specific to particular file-system mounts.
2669 static struct dentry
*dfs_rootdir
;
2671 static int dfs_file_open(struct inode
*inode
, struct file
*file
)
2673 file
->private_data
= inode
->i_private
;
2674 return nonseekable_open(inode
, file
);
2678 * provide_user_output - provide output to the user reading a debugfs file.
2679 * @val: boolean value for the answer
2680 * @u: the buffer to store the answer at
2681 * @count: size of the buffer
2682 * @ppos: position in the @u output buffer
2684 * This is a simple helper function which stores @val boolean value in the user
2685 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2686 * bytes written to @u in case of success and a negative error code in case of
2689 static int provide_user_output(int val
, char __user
*u
, size_t count
,
2701 return simple_read_from_buffer(u
, count
, ppos
, buf
, 2);
2704 static ssize_t
dfs_file_read(struct file
*file
, char __user
*u
, size_t count
,
2707 struct dentry
*dent
= file
->f_path
.dentry
;
2708 struct ubifs_info
*c
= file
->private_data
;
2709 struct ubifs_debug_info
*d
= c
->dbg
;
2712 if (dent
== d
->dfs_chk_gen
)
2714 else if (dent
== d
->dfs_chk_index
)
2716 else if (dent
== d
->dfs_chk_orph
)
2718 else if (dent
== d
->dfs_chk_lprops
)
2719 val
= d
->chk_lprops
;
2720 else if (dent
== d
->dfs_chk_fs
)
2722 else if (dent
== d
->dfs_tst_rcvry
)
2724 else if (dent
== d
->dfs_ro_error
)
2729 return provide_user_output(val
, u
, count
, ppos
);
2733 * interpret_user_input - interpret user debugfs file input.
2734 * @u: user-provided buffer with the input
2735 * @count: buffer size
2737 * This is a helper function which interpret user input to a boolean UBIFS
2738 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2739 * in case of failure.
2741 static int interpret_user_input(const char __user
*u
, size_t count
)
2746 buf_size
= min_t(size_t, count
, (sizeof(buf
) - 1));
2747 if (copy_from_user(buf
, u
, buf_size
))
2752 else if (buf
[0] == '0')
2758 static ssize_t
dfs_file_write(struct file
*file
, const char __user
*u
,
2759 size_t count
, loff_t
*ppos
)
2761 struct ubifs_info
*c
= file
->private_data
;
2762 struct ubifs_debug_info
*d
= c
->dbg
;
2763 struct dentry
*dent
= file
->f_path
.dentry
;
2766 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
) {
2767 ubifs_dump_lprops(c
);
2770 if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2771 ubifs_dump_budg(c
, &c
->bi
);
2774 if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2775 mutex_lock(&c
->tnc_mutex
);
2777 mutex_unlock(&c
->tnc_mutex
);
2781 val
= interpret_user_input(u
, count
);
2785 if (dent
== d
->dfs_chk_gen
)
2787 else if (dent
== d
->dfs_chk_index
)
2789 else if (dent
== d
->dfs_chk_orph
)
2791 else if (dent
== d
->dfs_chk_lprops
)
2792 d
->chk_lprops
= val
;
2793 else if (dent
== d
->dfs_chk_fs
)
2795 else if (dent
== d
->dfs_tst_rcvry
)
2797 else if (dent
== d
->dfs_ro_error
)
2798 c
->ro_error
= !!val
;
2805 static const struct file_operations dfs_fops
= {
2806 .open
= dfs_file_open
,
2807 .read
= dfs_file_read
,
2808 .write
= dfs_file_write
,
2809 .owner
= THIS_MODULE
,
2813 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2814 * @c: UBIFS file-system description object
2816 * This function creates all debugfs files for this instance of UBIFS.
2818 * Note, the only reason we have not merged this function with the
2819 * 'ubifs_debugging_init()' function is because it is better to initialize
2820 * debugfs interfaces at the very end of the mount process, and remove them at
2821 * the very beginning of the mount process.
2823 void dbg_debugfs_init_fs(struct ubifs_info
*c
)
2827 struct ubifs_debug_info
*d
= c
->dbg
;
2829 n
= snprintf(d
->dfs_dir_name
, UBIFS_DFS_DIR_LEN
, UBIFS_DFS_DIR_NAME
,
2830 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2831 if (n
>= UBIFS_DFS_DIR_LEN
) {
2832 /* The array size is too small */
2836 fname
= d
->dfs_dir_name
;
2837 d
->dfs_dir
= debugfs_create_dir(fname
, dfs_rootdir
);
2839 fname
= "dump_lprops";
2840 d
->dfs_dump_lprops
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
,
2843 fname
= "dump_budg";
2844 d
->dfs_dump_budg
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
,
2848 d
->dfs_dump_tnc
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
,
2851 fname
= "chk_general";
2852 d
->dfs_chk_gen
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2853 d
->dfs_dir
, c
, &dfs_fops
);
2855 fname
= "chk_index";
2856 d
->dfs_chk_index
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2857 d
->dfs_dir
, c
, &dfs_fops
);
2859 fname
= "chk_orphans";
2860 d
->dfs_chk_orph
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2861 d
->dfs_dir
, c
, &dfs_fops
);
2863 fname
= "chk_lprops";
2864 d
->dfs_chk_lprops
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2865 d
->dfs_dir
, c
, &dfs_fops
);
2868 d
->dfs_chk_fs
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2869 d
->dfs_dir
, c
, &dfs_fops
);
2871 fname
= "tst_recovery";
2872 d
->dfs_tst_rcvry
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2873 d
->dfs_dir
, c
, &dfs_fops
);
2876 d
->dfs_ro_error
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2877 d
->dfs_dir
, c
, &dfs_fops
);
2881 * dbg_debugfs_exit_fs - remove all debugfs files.
2882 * @c: UBIFS file-system description object
2884 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2886 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
2889 struct ubifs_global_debug_info ubifs_dbg
;
2891 static struct dentry
*dfs_chk_gen
;
2892 static struct dentry
*dfs_chk_index
;
2893 static struct dentry
*dfs_chk_orph
;
2894 static struct dentry
*dfs_chk_lprops
;
2895 static struct dentry
*dfs_chk_fs
;
2896 static struct dentry
*dfs_tst_rcvry
;
2898 static ssize_t
dfs_global_file_read(struct file
*file
, char __user
*u
,
2899 size_t count
, loff_t
*ppos
)
2901 struct dentry
*dent
= file
->f_path
.dentry
;
2904 if (dent
== dfs_chk_gen
)
2905 val
= ubifs_dbg
.chk_gen
;
2906 else if (dent
== dfs_chk_index
)
2907 val
= ubifs_dbg
.chk_index
;
2908 else if (dent
== dfs_chk_orph
)
2909 val
= ubifs_dbg
.chk_orph
;
2910 else if (dent
== dfs_chk_lprops
)
2911 val
= ubifs_dbg
.chk_lprops
;
2912 else if (dent
== dfs_chk_fs
)
2913 val
= ubifs_dbg
.chk_fs
;
2914 else if (dent
== dfs_tst_rcvry
)
2915 val
= ubifs_dbg
.tst_rcvry
;
2919 return provide_user_output(val
, u
, count
, ppos
);
2922 static ssize_t
dfs_global_file_write(struct file
*file
, const char __user
*u
,
2923 size_t count
, loff_t
*ppos
)
2925 struct dentry
*dent
= file
->f_path
.dentry
;
2928 val
= interpret_user_input(u
, count
);
2932 if (dent
== dfs_chk_gen
)
2933 ubifs_dbg
.chk_gen
= val
;
2934 else if (dent
== dfs_chk_index
)
2935 ubifs_dbg
.chk_index
= val
;
2936 else if (dent
== dfs_chk_orph
)
2937 ubifs_dbg
.chk_orph
= val
;
2938 else if (dent
== dfs_chk_lprops
)
2939 ubifs_dbg
.chk_lprops
= val
;
2940 else if (dent
== dfs_chk_fs
)
2941 ubifs_dbg
.chk_fs
= val
;
2942 else if (dent
== dfs_tst_rcvry
)
2943 ubifs_dbg
.tst_rcvry
= val
;
2950 static const struct file_operations dfs_global_fops
= {
2951 .read
= dfs_global_file_read
,
2952 .write
= dfs_global_file_write
,
2953 .owner
= THIS_MODULE
,
2957 * dbg_debugfs_init - initialize debugfs file-system.
2959 * UBIFS uses debugfs file-system to expose various debugging knobs to
2960 * user-space. This function creates "ubifs" directory in the debugfs
2963 void dbg_debugfs_init(void)
2968 dfs_rootdir
= debugfs_create_dir(fname
, NULL
);
2970 fname
= "chk_general";
2971 dfs_chk_gen
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
,
2972 NULL
, &dfs_global_fops
);
2974 fname
= "chk_index";
2975 dfs_chk_index
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2976 dfs_rootdir
, NULL
, &dfs_global_fops
);
2978 fname
= "chk_orphans";
2979 dfs_chk_orph
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2980 dfs_rootdir
, NULL
, &dfs_global_fops
);
2982 fname
= "chk_lprops";
2983 dfs_chk_lprops
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2984 dfs_rootdir
, NULL
, &dfs_global_fops
);
2987 dfs_chk_fs
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
,
2988 NULL
, &dfs_global_fops
);
2990 fname
= "tst_recovery";
2991 dfs_tst_rcvry
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
,
2992 dfs_rootdir
, NULL
, &dfs_global_fops
);
2996 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2998 void dbg_debugfs_exit(void)
3000 debugfs_remove_recursive(dfs_rootdir
);
3003 void ubifs_assert_failed(struct ubifs_info
*c
, const char *expr
,
3004 const char *file
, int line
)
3006 ubifs_err(c
, "UBIFS assert failed: %s, in %s:%u", expr
, file
, line
);
3008 switch (c
->assert_action
) {
3014 ubifs_ro_mode(c
, -EINVAL
);
3026 * ubifs_debugging_init - initialize UBIFS debugging.
3027 * @c: UBIFS file-system description object
3029 * This function initializes debugging-related data for the file system.
3030 * Returns zero in case of success and a negative error code in case of
3033 int ubifs_debugging_init(struct ubifs_info
*c
)
3035 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
3043 * ubifs_debugging_exit - free debugging data.
3044 * @c: UBIFS file-system description object
3046 void ubifs_debugging_exit(struct ubifs_info
*c
)