1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
12 * This file implements VFS file and inode operations for regular files, device
13 * nodes and symlinks as well as address space operations.
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
37 * set as well. However, UBIFS disables readahead.
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
45 static int read_block(struct inode
*inode
, void *addr
, unsigned int block
,
46 struct ubifs_data_node
*dn
)
48 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
49 int err
, len
, out_len
;
53 data_key_init(c
, &key
, inode
->i_ino
, block
);
54 err
= ubifs_tnc_lookup(c
, &key
, dn
);
57 /* Not found, so it must be a hole */
58 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
62 ubifs_assert(c
, le64_to_cpu(dn
->ch
.sqnum
) >
63 ubifs_inode(inode
)->creat_sqnum
);
64 len
= le32_to_cpu(dn
->size
);
65 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
68 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
70 if (IS_ENCRYPTED(inode
)) {
71 err
= ubifs_decrypt(inode
, dn
, &dlen
, block
);
76 out_len
= UBIFS_BLOCK_SIZE
;
77 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
78 le16_to_cpu(dn
->compr_type
));
79 if (err
|| len
!= out_len
)
83 * Data length can be less than a full block, even for blocks that are
84 * not the last in the file (e.g., as a result of making a hole and
85 * appending data). Ensure that the remainder is zeroed out.
87 if (len
< UBIFS_BLOCK_SIZE
)
88 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
93 ubifs_err(c
, "bad data node (block %u, inode %lu)",
95 ubifs_dump_node(c
, dn
, UBIFS_MAX_DATA_NODE_SZ
);
99 static int do_readpage(struct folio
*folio
)
103 unsigned int block
, beyond
;
104 struct ubifs_data_node
*dn
= NULL
;
105 struct inode
*inode
= folio
->mapping
->host
;
106 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
107 loff_t i_size
= i_size_read(inode
);
109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 inode
->i_ino
, folio
->index
, i_size
, folio
->flags
);
111 ubifs_assert(c
, !folio_test_checked(folio
));
112 ubifs_assert(c
, !folio
->private);
114 addr
= kmap_local_folio(folio
, 0);
116 block
= folio
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
117 beyond
= (i_size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
118 if (block
>= beyond
) {
119 /* Reading beyond inode */
120 folio_set_checked(folio
);
121 addr
= folio_zero_tail(folio
, 0, addr
);
125 dn
= kmalloc(UBIFS_MAX_DATA_NODE_SZ
, GFP_NOFS
);
135 if (block
>= beyond
) {
136 /* Reading beyond inode */
138 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
140 ret
= read_block(inode
, addr
, block
, dn
);
145 } else if (block
+ 1 == beyond
) {
146 int dlen
= le32_to_cpu(dn
->size
);
147 int ilen
= i_size
& (UBIFS_BLOCK_SIZE
- 1);
149 if (ilen
&& ilen
< dlen
)
150 memset(addr
+ ilen
, 0, dlen
- ilen
);
153 if (++i
>= (UBIFS_BLOCKS_PER_PAGE
<< folio_order(folio
)))
156 addr
+= UBIFS_BLOCK_SIZE
;
157 if (folio_test_highmem(folio
) && (offset_in_page(addr
) == 0)) {
158 kunmap_local(addr
- UBIFS_BLOCK_SIZE
);
159 addr
= kmap_local_folio(folio
, i
* UBIFS_BLOCK_SIZE
);
164 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
165 if (err
== -ENOENT
) {
166 /* Not found, so it must be a hole */
167 folio_set_checked(folio
);
171 ubifs_err(c
, "cannot read page %lu of inode %lu, error %d",
172 folio
->index
, inode
->i_ino
, err
);
179 folio_mark_uptodate(folio
);
180 flush_dcache_folio(folio
);
186 * release_new_page_budget - release budget of a new page.
187 * @c: UBIFS file-system description object
189 * This is a helper function which releases budget corresponding to the budget
190 * of one new page of data.
192 static void release_new_page_budget(struct ubifs_info
*c
)
194 struct ubifs_budget_req req
= { .recalculate
= 1, .new_page
= 1 };
196 ubifs_release_budget(c
, &req
);
200 * release_existing_page_budget - release budget of an existing page.
201 * @c: UBIFS file-system description object
203 * This is a helper function which releases budget corresponding to the budget
204 * of changing one page of data which already exists on the flash media.
206 static void release_existing_page_budget(struct ubifs_info
*c
)
208 struct ubifs_budget_req req
= { .dd_growth
= c
->bi
.page_budget
};
210 ubifs_release_budget(c
, &req
);
213 static int write_begin_slow(struct address_space
*mapping
,
214 loff_t pos
, unsigned len
, struct folio
**foliop
)
216 struct inode
*inode
= mapping
->host
;
217 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
218 pgoff_t index
= pos
>> PAGE_SHIFT
;
219 struct ubifs_budget_req req
= { .new_page
= 1 };
220 int err
, appending
= !!(pos
+ len
> inode
->i_size
);
223 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
224 inode
->i_ino
, pos
, len
, inode
->i_size
);
227 * At the slow path we have to budget before locking the folio, because
228 * budgeting may force write-back, which would wait on locked folios and
229 * deadlock if we had the folio locked. At this point we do not know
230 * anything about the folio, so assume that this is a new folio which is
231 * written to a hole. This corresponds to largest budget. Later the
232 * budget will be amended if this is not true.
235 /* We are appending data, budget for inode change */
238 err
= ubifs_budget_space(c
, &req
);
242 folio
= __filemap_get_folio(mapping
, index
, FGP_WRITEBEGIN
,
243 mapping_gfp_mask(mapping
));
245 ubifs_release_budget(c
, &req
);
246 return PTR_ERR(folio
);
249 if (!folio_test_uptodate(folio
)) {
250 if (pos
== folio_pos(folio
) && len
>= folio_size(folio
))
251 folio_set_checked(folio
);
253 err
= do_readpage(folio
);
257 ubifs_release_budget(c
, &req
);
265 * The folio is dirty, which means it was budgeted twice:
266 * o first time the budget was allocated by the task which
267 * made the folio dirty and set the private field;
268 * o and then we budgeted for it for the second time at the
269 * very beginning of this function.
271 * So what we have to do is to release the folio budget we
274 release_new_page_budget(c
);
275 else if (!folio_test_checked(folio
))
277 * We are changing a folio which already exists on the media.
278 * This means that changing the folio does not make the amount
279 * of indexing information larger, and this part of the budget
280 * which we have already acquired may be released.
282 ubifs_convert_page_budget(c
);
285 struct ubifs_inode
*ui
= ubifs_inode(inode
);
288 * 'ubifs_write_end()' is optimized from the fast-path part of
289 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
290 * if data is appended.
292 mutex_lock(&ui
->ui_mutex
);
295 * The inode is dirty already, so we may free the
296 * budget we allocated.
298 ubifs_release_dirty_inode_budget(c
, ui
);
306 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
307 * @c: UBIFS file-system description object
308 * @folio: folio to allocate budget for
309 * @ui: UBIFS inode object the page belongs to
310 * @appending: non-zero if the page is appended
312 * This is a helper function for 'ubifs_write_begin()' which allocates budget
313 * for the operation. The budget is allocated differently depending on whether
314 * this is appending, whether the page is dirty or not, and so on. This
315 * function leaves the @ui->ui_mutex locked in case of appending.
317 * Returns: %0 in case of success and %-ENOSPC in case of failure.
319 static int allocate_budget(struct ubifs_info
*c
, struct folio
*folio
,
320 struct ubifs_inode
*ui
, int appending
)
322 struct ubifs_budget_req req
= { .fast
= 1 };
324 if (folio
->private) {
327 * The folio is dirty and we are not appending, which
328 * means no budget is needed at all.
332 mutex_lock(&ui
->ui_mutex
);
335 * The page is dirty and we are appending, so the inode
336 * has to be marked as dirty. However, it is already
337 * dirty, so we do not need any budget. We may return,
338 * but @ui->ui_mutex hast to be left locked because we
339 * should prevent write-back from flushing the inode
340 * and freeing the budget. The lock will be released in
341 * 'ubifs_write_end()'.
346 * The page is dirty, we are appending, the inode is clean, so
347 * we need to budget the inode change.
351 if (folio_test_checked(folio
))
353 * The page corresponds to a hole and does not
354 * exist on the media. So changing it makes
355 * the amount of indexing information
356 * larger, and we have to budget for a new
362 * Not a hole, the change will not add any new
363 * indexing information, budget for page
366 req
.dirtied_page
= 1;
369 mutex_lock(&ui
->ui_mutex
);
372 * The inode is clean but we will have to mark
373 * it as dirty because we are appending. This
380 return ubifs_budget_space(c
, &req
);
384 * This function is called when a page of data is going to be written. Since
385 * the page of data will not necessarily go to the flash straight away, UBIFS
386 * has to reserve space on the media for it, which is done by means of
389 * This is the hot-path of the file-system and we are trying to optimize it as
390 * much as possible. For this reasons it is split on 2 parts - slow and fast.
392 * There many budgeting cases:
393 * o a new page is appended - we have to budget for a new page and for
394 * changing the inode; however, if the inode is already dirty, there is
395 * no need to budget for it;
396 * o an existing clean page is changed - we have budget for it; if the page
397 * does not exist on the media (a hole), we have to budget for a new
398 * page; otherwise, we may budget for changing an existing page; the
399 * difference between these cases is that changing an existing page does
400 * not introduce anything new to the FS indexing information, so it does
401 * not grow, and smaller budget is acquired in this case;
402 * o an existing dirty page is changed - no need to budget at all, because
403 * the page budget has been acquired by earlier, when the page has been
406 * UBIFS budgeting sub-system may force write-back if it thinks there is no
407 * space to reserve. This imposes some locking restrictions and makes it
408 * impossible to take into account the above cases, and makes it impossible to
409 * optimize budgeting.
411 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
412 * there is a plenty of flash space and the budget will be acquired quickly,
413 * without forcing write-back. The slow path does not make this assumption.
415 static int ubifs_write_begin(struct file
*file
, struct address_space
*mapping
,
416 loff_t pos
, unsigned len
,
417 struct folio
**foliop
, void **fsdata
)
419 struct inode
*inode
= mapping
->host
;
420 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
421 struct ubifs_inode
*ui
= ubifs_inode(inode
);
422 pgoff_t index
= pos
>> PAGE_SHIFT
;
423 int err
, appending
= !!(pos
+ len
> inode
->i_size
);
424 int skipped_read
= 0;
427 ubifs_assert(c
, ubifs_inode(inode
)->ui_size
== inode
->i_size
);
428 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
430 if (unlikely(c
->ro_error
))
433 /* Try out the fast-path part first */
434 folio
= __filemap_get_folio(mapping
, index
, FGP_WRITEBEGIN
,
435 mapping_gfp_mask(mapping
));
437 return PTR_ERR(folio
);
439 if (!folio_test_uptodate(folio
)) {
440 /* The page is not loaded from the flash */
441 if (pos
== folio_pos(folio
) && len
>= folio_size(folio
)) {
443 * We change whole page so no need to load it. But we
444 * do not know whether this page exists on the media or
445 * not, so we assume the latter because it requires
446 * larger budget. The assumption is that it is better
447 * to budget a bit more than to read the page from the
448 * media. Thus, we are setting the @PG_checked flag
451 folio_set_checked(folio
);
454 err
= do_readpage(folio
);
463 err
= allocate_budget(c
, folio
, ui
, appending
);
465 ubifs_assert(c
, err
== -ENOSPC
);
467 * If we skipped reading the page because we were going to
468 * write all of it, then it is not up to date.
471 folio_clear_checked(folio
);
473 * Budgeting failed which means it would have to force
474 * write-back but didn't, because we set the @fast flag in the
475 * request. Write-back cannot be done now, while we have the
476 * page locked, because it would deadlock. Unlock and free
477 * everything and fall-back to slow-path.
480 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
481 mutex_unlock(&ui
->ui_mutex
);
486 return write_begin_slow(mapping
, pos
, len
, foliop
);
490 * Whee, we acquired budgeting quickly - without involving
491 * garbage-collection, committing or forcing write-back. We return
492 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 * otherwise. This is an optimization (slightly hacky though).
500 * cancel_budget - cancel budget.
501 * @c: UBIFS file-system description object
502 * @folio: folio to cancel budget for
503 * @ui: UBIFS inode object the page belongs to
504 * @appending: non-zero if the page is appended
506 * This is a helper function for a page write operation. It unlocks the
507 * @ui->ui_mutex in case of appending.
509 static void cancel_budget(struct ubifs_info
*c
, struct folio
*folio
,
510 struct ubifs_inode
*ui
, int appending
)
514 ubifs_release_dirty_inode_budget(c
, ui
);
515 mutex_unlock(&ui
->ui_mutex
);
517 if (!folio
->private) {
518 if (folio_test_checked(folio
))
519 release_new_page_budget(c
);
521 release_existing_page_budget(c
);
525 static int ubifs_write_end(struct file
*file
, struct address_space
*mapping
,
526 loff_t pos
, unsigned len
, unsigned copied
,
527 struct folio
*folio
, void *fsdata
)
529 struct inode
*inode
= mapping
->host
;
530 struct ubifs_inode
*ui
= ubifs_inode(inode
);
531 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
532 loff_t end_pos
= pos
+ len
;
533 int appending
= !!(end_pos
> inode
->i_size
);
535 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
536 inode
->i_ino
, pos
, folio
->index
, len
, copied
, inode
->i_size
);
538 if (unlikely(copied
< len
&& !folio_test_uptodate(folio
))) {
540 * VFS copied less data to the folio than it intended and
541 * declared in its '->write_begin()' call via the @len
542 * argument. If the folio was not up-to-date,
543 * the 'ubifs_write_begin()' function did
544 * not load it from the media (for optimization reasons). This
545 * means that part of the folio contains garbage. So read the
548 dbg_gen("copied %d instead of %d, read page and repeat",
550 cancel_budget(c
, folio
, ui
, appending
);
551 folio_clear_checked(folio
);
554 * Return 0 to force VFS to repeat the whole operation, or the
555 * error code if 'do_readpage()' fails.
557 copied
= do_readpage(folio
);
561 if (len
== folio_size(folio
))
562 folio_mark_uptodate(folio
);
564 if (!folio
->private) {
565 folio_attach_private(folio
, (void *)1);
566 atomic_long_inc(&c
->dirty_pg_cnt
);
567 filemap_dirty_folio(mapping
, folio
);
571 i_size_write(inode
, end_pos
);
572 ui
->ui_size
= end_pos
;
574 * We do not set @I_DIRTY_PAGES (which means that
575 * the inode has dirty pages), this was done in
576 * filemap_dirty_folio().
578 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
579 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
580 mutex_unlock(&ui
->ui_mutex
);
590 * populate_page - copy data nodes into a page for bulk-read.
591 * @c: UBIFS file-system description object
593 * @bu: bulk-read information
594 * @n: next zbranch slot
596 * Returns: %0 on success and a negative error code on failure.
598 static int populate_page(struct ubifs_info
*c
, struct folio
*folio
,
599 struct bu_info
*bu
, int *n
)
601 int i
= 0, nn
= *n
, offs
= bu
->zbranch
[0].offs
, hole
= 0, read
= 0;
602 struct inode
*inode
= folio
->mapping
->host
;
603 loff_t i_size
= i_size_read(inode
);
604 unsigned int page_block
;
608 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
609 inode
->i_ino
, folio
->index
, i_size
, folio
->flags
);
611 addr
= zaddr
= kmap_local_folio(folio
, 0);
613 end_index
= (i_size
- 1) >> PAGE_SHIFT
;
614 if (!i_size
|| folio
->index
> end_index
) {
616 addr
= folio_zero_tail(folio
, 0, addr
);
620 page_block
= folio
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
622 int err
, len
, out_len
, dlen
;
626 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
627 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) == page_block
) {
628 struct ubifs_data_node
*dn
;
630 dn
= bu
->buf
+ (bu
->zbranch
[nn
].offs
- offs
);
632 ubifs_assert(c
, le64_to_cpu(dn
->ch
.sqnum
) >
633 ubifs_inode(inode
)->creat_sqnum
);
635 len
= le32_to_cpu(dn
->size
);
636 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
639 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
640 out_len
= UBIFS_BLOCK_SIZE
;
642 if (IS_ENCRYPTED(inode
)) {
643 err
= ubifs_decrypt(inode
, dn
, &dlen
, page_block
);
648 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
649 le16_to_cpu(dn
->compr_type
));
650 if (err
|| len
!= out_len
)
653 if (len
< UBIFS_BLOCK_SIZE
)
654 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
657 read
= (i
<< UBIFS_BLOCK_SHIFT
) + len
;
658 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) < page_block
) {
663 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
665 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
667 addr
+= UBIFS_BLOCK_SIZE
;
669 if (folio_test_highmem(folio
) && (offset_in_page(addr
) == 0)) {
670 kunmap_local(addr
- UBIFS_BLOCK_SIZE
);
671 addr
= kmap_local_folio(folio
, i
* UBIFS_BLOCK_SIZE
);
675 if (end_index
== folio
->index
) {
676 int len
= i_size
& (PAGE_SIZE
- 1);
678 if (len
&& len
< read
)
679 memset(zaddr
+ len
, 0, read
- len
);
684 folio_set_checked(folio
);
688 folio_mark_uptodate(folio
);
689 flush_dcache_folio(folio
);
695 flush_dcache_folio(folio
);
697 ubifs_err(c
, "bad data node (block %u, inode %lu)",
698 page_block
, inode
->i_ino
);
703 * ubifs_do_bulk_read - do bulk-read.
704 * @c: UBIFS file-system description object
705 * @bu: bulk-read information
706 * @folio1: first folio to read
708 * Returns: %1 if the bulk-read is done, otherwise %0 is returned.
710 static int ubifs_do_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
,
711 struct folio
*folio1
)
713 pgoff_t offset
= folio1
->index
, end_index
;
714 struct address_space
*mapping
= folio1
->mapping
;
715 struct inode
*inode
= mapping
->host
;
716 struct ubifs_inode
*ui
= ubifs_inode(inode
);
717 int err
, page_idx
, page_cnt
, ret
= 0, n
= 0;
718 int allocate
= bu
->buf
? 0 : 1;
720 gfp_t ra_gfp_mask
= readahead_gfp_mask(mapping
) & ~__GFP_FS
;
722 err
= ubifs_tnc_get_bu_keys(c
, bu
);
727 /* Turn off bulk-read at the end of the file */
728 ui
->read_in_a_row
= 1;
732 page_cnt
= bu
->blk_cnt
>> UBIFS_BLOCKS_PER_PAGE_SHIFT
;
735 * This happens when there are multiple blocks per page and the
736 * blocks for the first page we are looking for, are not
737 * together. If all the pages were like this, bulk-read would
738 * reduce performance, so we turn it off for a while.
746 * Allocate bulk-read buffer depending on how many data
747 * nodes we are going to read.
749 bu
->buf_len
= bu
->zbranch
[bu
->cnt
- 1].offs
+
750 bu
->zbranch
[bu
->cnt
- 1].len
-
752 ubifs_assert(c
, bu
->buf_len
> 0);
753 ubifs_assert(c
, bu
->buf_len
<= c
->leb_size
);
754 bu
->buf
= kmalloc(bu
->buf_len
, GFP_NOFS
| __GFP_NOWARN
);
759 err
= ubifs_tnc_bulk_read(c
, bu
);
764 err
= populate_page(c
, folio1
, bu
, &n
);
768 folio_unlock(folio1
);
771 isize
= i_size_read(inode
);
774 end_index
= ((isize
- 1) >> PAGE_SHIFT
);
776 for (page_idx
= 1; page_idx
< page_cnt
; page_idx
++) {
777 pgoff_t page_offset
= offset
+ page_idx
;
780 if (page_offset
> end_index
)
782 folio
= __filemap_get_folio(mapping
, page_offset
,
783 FGP_LOCK
|FGP_ACCESSED
|FGP_CREAT
|FGP_NOWAIT
,
787 if (!folio_test_uptodate(folio
))
788 err
= populate_page(c
, folio
, bu
, &n
);
795 ui
->last_page_read
= offset
+ page_idx
- 1;
803 ubifs_warn(c
, "ignoring error %d and skipping bulk-read", err
);
807 ui
->read_in_a_row
= ui
->bulk_read
= 0;
812 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
813 * @folio: folio from which to start bulk-read.
815 * Some flash media are capable of reading sequentially at faster rates. UBIFS
816 * bulk-read facility is designed to take advantage of that, by reading in one
817 * go consecutive data nodes that are also located consecutively in the same
820 * Returns: %1 if a bulk-read is done and %0 otherwise.
822 static int ubifs_bulk_read(struct folio
*folio
)
824 struct inode
*inode
= folio
->mapping
->host
;
825 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
826 struct ubifs_inode
*ui
= ubifs_inode(inode
);
827 pgoff_t index
= folio
->index
, last_page_read
= ui
->last_page_read
;
829 int err
= 0, allocated
= 0;
831 ui
->last_page_read
= index
;
836 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
837 * so don't bother if we cannot lock the mutex.
839 if (!mutex_trylock(&ui
->ui_mutex
))
842 if (index
!= last_page_read
+ 1) {
843 /* Turn off bulk-read if we stop reading sequentially */
844 ui
->read_in_a_row
= 1;
850 if (!ui
->bulk_read
) {
851 ui
->read_in_a_row
+= 1;
852 if (ui
->read_in_a_row
< 3)
854 /* Three reads in a row, so switch on bulk-read */
859 * If possible, try to use pre-allocated bulk-read information, which
860 * is protected by @c->bu_mutex.
862 if (mutex_trylock(&c
->bu_mutex
))
865 bu
= kmalloc(sizeof(struct bu_info
), GFP_NOFS
| __GFP_NOWARN
);
873 bu
->buf_len
= c
->max_bu_buf_len
;
874 data_key_init(c
, &bu
->key
, inode
->i_ino
,
875 folio
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
);
876 err
= ubifs_do_bulk_read(c
, bu
, folio
);
879 mutex_unlock(&c
->bu_mutex
);
884 mutex_unlock(&ui
->ui_mutex
);
888 static int ubifs_read_folio(struct file
*file
, struct folio
*folio
)
890 if (ubifs_bulk_read(folio
))
897 static int do_writepage(struct folio
*folio
, size_t len
)
904 struct inode
*inode
= folio
->mapping
->host
;
905 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
908 struct ubifs_inode
*ui
= ubifs_inode(inode
);
909 spin_lock(&ui
->ui_lock
);
910 ubifs_assert(c
, folio
->index
<= ui
->synced_i_size
>> PAGE_SHIFT
);
911 spin_unlock(&ui
->ui_lock
);
914 folio_start_writeback(folio
);
916 addr
= kmap_local_folio(folio
, offset
);
917 block
= folio
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
919 blen
= min_t(size_t, len
, UBIFS_BLOCK_SIZE
);
920 data_key_init(c
, &key
, inode
->i_ino
, block
);
921 err
= ubifs_jnl_write_data(c
, inode
, &key
, addr
, blen
);
929 if (folio_test_highmem(folio
) && !offset_in_page(addr
)) {
930 kunmap_local(addr
- blen
);
932 addr
= kmap_local_folio(folio
, offset
);
937 mapping_set_error(folio
->mapping
, err
);
938 ubifs_err(c
, "cannot write folio %lu of inode %lu, error %d",
939 folio
->index
, inode
->i_ino
, err
);
940 ubifs_ro_mode(c
, err
);
943 ubifs_assert(c
, folio
->private != NULL
);
944 if (folio_test_checked(folio
))
945 release_new_page_budget(c
);
947 release_existing_page_budget(c
);
949 atomic_long_dec(&c
->dirty_pg_cnt
);
950 folio_detach_private(folio
);
951 folio_clear_checked(folio
);
954 folio_end_writeback(folio
);
959 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
960 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
961 * situation when a we have an inode with size 0, then a megabyte of data is
962 * appended to the inode, then write-back starts and flushes some amount of the
963 * dirty pages, the journal becomes full, commit happens and finishes, and then
964 * an unclean reboot happens. When the file system is mounted next time, the
965 * inode size would still be 0, but there would be many pages which are beyond
966 * the inode size, they would be indexed and consume flash space. Because the
967 * journal has been committed, the replay would not be able to detect this
968 * situation and correct the inode size. This means UBIFS would have to scan
969 * whole index and correct all inode sizes, which is long an unacceptable.
971 * To prevent situations like this, UBIFS writes pages back only if they are
972 * within the last synchronized inode size, i.e. the size which has been
973 * written to the flash media last time. Otherwise, UBIFS forces inode
974 * write-back, thus making sure the on-flash inode contains current inode size,
975 * and then keeps writing pages back.
977 * Some locking issues explanation. 'ubifs_writepage()' first is called with
978 * the page locked, and it locks @ui_mutex. However, write-back does take inode
979 * @i_mutex, which means other VFS operations may be run on this inode at the
980 * same time. And the problematic one is truncation to smaller size, from where
981 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
982 * then drops the truncated pages. And while dropping the pages, it takes the
983 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
984 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
985 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
987 * XXX(truncate): with the new truncate sequence this is not true anymore,
988 * and the calls to truncate_setsize can be move around freely. They should
989 * be moved to the very end of the truncate sequence.
991 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
992 * inode size. How do we do this if @inode->i_size may became smaller while we
993 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
994 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
995 * internally and updates it under @ui_mutex.
997 * Q: why we do not worry that if we race with truncation, we may end up with a
998 * situation when the inode is truncated while we are in the middle of
999 * 'do_writepage()', so we do write beyond inode size?
1000 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1001 * on the page lock and it would not write the truncated inode node to the
1002 * journal before we have finished.
1004 static int ubifs_writepage(struct folio
*folio
, struct writeback_control
*wbc
,
1007 struct inode
*inode
= folio
->mapping
->host
;
1008 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1009 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1010 loff_t i_size
= i_size_read(inode
), synced_i_size
;
1011 int err
, len
= folio_size(folio
);
1013 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1014 inode
->i_ino
, folio
->index
, folio
->flags
);
1015 ubifs_assert(c
, folio
->private != NULL
);
1017 /* Is the folio fully outside @i_size? (truncate in progress) */
1018 if (folio_pos(folio
) >= i_size
) {
1023 spin_lock(&ui
->ui_lock
);
1024 synced_i_size
= ui
->synced_i_size
;
1025 spin_unlock(&ui
->ui_lock
);
1027 /* Is the folio fully inside i_size? */
1028 if (folio_pos(folio
) + len
<= i_size
) {
1029 if (folio_pos(folio
) + len
> synced_i_size
) {
1030 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1034 * The inode has been written, but the write-buffer has
1035 * not been synchronized, so in case of an unclean
1036 * reboot we may end up with some pages beyond inode
1037 * size, but they would be in the journal (because
1038 * commit flushes write buffers) and recovery would deal
1042 return do_writepage(folio
, len
);
1046 * The folio straddles @i_size. It must be zeroed out on each and every
1047 * writepage invocation because it may be mmapped. "A file is mapped
1048 * in multiples of the page size. For a file that is not a multiple of
1049 * the page size, the remaining memory is zeroed when mapped, and
1050 * writes to that region are not written out to the file."
1052 len
= i_size
- folio_pos(folio
);
1053 folio_zero_segment(folio
, len
, folio_size(folio
));
1055 if (i_size
> synced_i_size
) {
1056 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1061 return do_writepage(folio
, len
);
1064 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because
1065 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1066 * there is no need to do space budget for dirty inode.
1068 folio_redirty_for_writepage(wbc
, folio
);
1070 folio_unlock(folio
);
1074 static int ubifs_writepages(struct address_space
*mapping
,
1075 struct writeback_control
*wbc
)
1077 return write_cache_pages(mapping
, wbc
, ubifs_writepage
, NULL
);
1081 * do_attr_changes - change inode attributes.
1082 * @inode: inode to change attributes for
1083 * @attr: describes attributes to change
1085 static void do_attr_changes(struct inode
*inode
, const struct iattr
*attr
)
1087 if (attr
->ia_valid
& ATTR_UID
)
1088 inode
->i_uid
= attr
->ia_uid
;
1089 if (attr
->ia_valid
& ATTR_GID
)
1090 inode
->i_gid
= attr
->ia_gid
;
1091 if (attr
->ia_valid
& ATTR_ATIME
)
1092 inode_set_atime_to_ts(inode
, attr
->ia_atime
);
1093 if (attr
->ia_valid
& ATTR_MTIME
)
1094 inode_set_mtime_to_ts(inode
, attr
->ia_mtime
);
1095 if (attr
->ia_valid
& ATTR_CTIME
)
1096 inode_set_ctime_to_ts(inode
, attr
->ia_ctime
);
1097 if (attr
->ia_valid
& ATTR_MODE
) {
1098 umode_t mode
= attr
->ia_mode
;
1100 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
1102 inode
->i_mode
= mode
;
1107 * do_truncation - truncate an inode.
1108 * @c: UBIFS file-system description object
1109 * @inode: inode to truncate
1110 * @attr: inode attribute changes description
1112 * This function implements VFS '->setattr()' call when the inode is truncated
1113 * to a smaller size.
1115 * Returns: %0 in case of success and a negative error code
1116 * in case of failure.
1118 static int do_truncation(struct ubifs_info
*c
, struct inode
*inode
,
1119 const struct iattr
*attr
)
1122 struct ubifs_budget_req req
;
1123 loff_t old_size
= inode
->i_size
, new_size
= attr
->ia_size
;
1124 int offset
= new_size
& (UBIFS_BLOCK_SIZE
- 1), budgeted
= 1;
1125 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1127 dbg_gen("ino %lu, size %lld -> %lld", inode
->i_ino
, old_size
, new_size
);
1128 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
1131 * If this is truncation to a smaller size, and we do not truncate on a
1132 * block boundary, budget for changing one data block, because the last
1133 * block will be re-written.
1135 if (new_size
& (UBIFS_BLOCK_SIZE
- 1))
1136 req
.dirtied_page
= 1;
1138 req
.dirtied_ino
= 1;
1139 /* A funny way to budget for truncation node */
1140 req
.dirtied_ino_d
= UBIFS_TRUN_NODE_SZ
;
1141 err
= ubifs_budget_space(c
, &req
);
1144 * Treat truncations to zero as deletion and always allow them,
1145 * just like we do for '->unlink()'.
1147 if (new_size
|| err
!= -ENOSPC
)
1152 truncate_setsize(inode
, new_size
);
1155 pgoff_t index
= new_size
>> PAGE_SHIFT
;
1156 struct folio
*folio
;
1158 folio
= filemap_lock_folio(inode
->i_mapping
, index
);
1159 if (!IS_ERR(folio
)) {
1160 if (folio_test_dirty(folio
)) {
1162 * 'ubifs_jnl_truncate()' will try to truncate
1163 * the last data node, but it contains
1164 * out-of-date data because the page is dirty.
1165 * Write the page now, so that
1166 * 'ubifs_jnl_truncate()' will see an already
1167 * truncated (and up to date) data node.
1169 ubifs_assert(c
, folio
->private != NULL
);
1171 folio_clear_dirty_for_io(folio
);
1172 if (UBIFS_BLOCKS_PER_PAGE_SHIFT
)
1173 offset
= offset_in_folio(folio
,
1175 err
= do_writepage(folio
, offset
);
1180 * We could now tell 'ubifs_jnl_truncate()' not
1181 * to read the last block.
1185 * We could 'kmap()' the page and pass the data
1186 * to 'ubifs_jnl_truncate()' to save it from
1187 * having to read it.
1189 folio_unlock(folio
);
1195 mutex_lock(&ui
->ui_mutex
);
1196 ui
->ui_size
= inode
->i_size
;
1197 /* Truncation changes inode [mc]time */
1198 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
1199 /* Other attributes may be changed at the same time as well */
1200 do_attr_changes(inode
, attr
);
1201 err
= ubifs_jnl_truncate(c
, inode
, old_size
, new_size
);
1202 mutex_unlock(&ui
->ui_mutex
);
1206 ubifs_release_budget(c
, &req
);
1208 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
1215 * do_setattr - change inode attributes.
1216 * @c: UBIFS file-system description object
1217 * @inode: inode to change attributes for
1218 * @attr: inode attribute changes description
1220 * This function implements VFS '->setattr()' call for all cases except
1221 * truncations to smaller size.
1223 * Returns: %0 in case of success and a negative
1224 * error code in case of failure.
1226 static int do_setattr(struct ubifs_info
*c
, struct inode
*inode
,
1227 const struct iattr
*attr
)
1230 loff_t new_size
= attr
->ia_size
;
1231 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1232 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1233 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1235 err
= ubifs_budget_space(c
, &req
);
1239 if (attr
->ia_valid
& ATTR_SIZE
) {
1240 dbg_gen("size %lld -> %lld", inode
->i_size
, new_size
);
1241 truncate_setsize(inode
, new_size
);
1244 mutex_lock(&ui
->ui_mutex
);
1245 if (attr
->ia_valid
& ATTR_SIZE
) {
1246 /* Truncation changes inode [mc]time */
1247 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
1248 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1249 ui
->ui_size
= inode
->i_size
;
1252 do_attr_changes(inode
, attr
);
1254 release
= ui
->dirty
;
1255 if (attr
->ia_valid
& ATTR_SIZE
)
1257 * Inode length changed, so we have to make sure
1258 * @I_DIRTY_DATASYNC is set.
1260 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
1262 mark_inode_dirty_sync(inode
);
1263 mutex_unlock(&ui
->ui_mutex
);
1266 ubifs_release_budget(c
, &req
);
1268 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1272 int ubifs_setattr(struct mnt_idmap
*idmap
, struct dentry
*dentry
,
1276 struct inode
*inode
= d_inode(dentry
);
1277 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1279 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1280 inode
->i_ino
, inode
->i_mode
, attr
->ia_valid
);
1281 err
= setattr_prepare(&nop_mnt_idmap
, dentry
, attr
);
1285 err
= dbg_check_synced_i_size(c
, inode
);
1289 err
= fscrypt_prepare_setattr(dentry
, attr
);
1293 if ((attr
->ia_valid
& ATTR_SIZE
) && attr
->ia_size
< inode
->i_size
)
1294 /* Truncation to a smaller size */
1295 err
= do_truncation(c
, inode
, attr
);
1297 err
= do_setattr(c
, inode
, attr
);
1302 static void ubifs_invalidate_folio(struct folio
*folio
, size_t offset
,
1305 struct inode
*inode
= folio
->mapping
->host
;
1306 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1308 ubifs_assert(c
, folio_test_private(folio
));
1309 if (offset
|| length
< folio_size(folio
))
1310 /* Partial folio remains dirty */
1313 if (folio_test_checked(folio
))
1314 release_new_page_budget(c
);
1316 release_existing_page_budget(c
);
1318 atomic_long_dec(&c
->dirty_pg_cnt
);
1319 folio_detach_private(folio
);
1320 folio_clear_checked(folio
);
1323 int ubifs_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1325 struct inode
*inode
= file
->f_mapping
->host
;
1326 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1329 dbg_gen("syncing inode %lu", inode
->i_ino
);
1333 * For some really strange reasons VFS does not filter out
1334 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1338 err
= file_write_and_wait_range(file
, start
, end
);
1343 /* Synchronize the inode unless this is a 'datasync()' call. */
1344 if (!datasync
|| (inode
->i_state
& I_DIRTY_DATASYNC
)) {
1345 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1351 * Nodes related to this inode may still sit in a write-buffer. Flush
1354 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1356 inode_unlock(inode
);
1361 * mctime_update_needed - check if mtime or ctime update is needed.
1362 * @inode: the inode to do the check for
1363 * @now: current time
1365 * This helper function checks if the inode mtime/ctime should be updated or
1366 * not. If current values of the time-stamps are within the UBIFS inode time
1367 * granularity, they are not updated. This is an optimization.
1369 * Returns: %1 if time update is needed, %0 if not
1371 static inline int mctime_update_needed(const struct inode
*inode
,
1372 const struct timespec64
*now
)
1374 struct timespec64 ctime
= inode_get_ctime(inode
);
1375 struct timespec64 mtime
= inode_get_mtime(inode
);
1377 if (!timespec64_equal(&mtime
, now
) || !timespec64_equal(&ctime
, now
))
1383 * ubifs_update_time - update time of inode.
1384 * @inode: inode to update
1385 * @flags: time updating control flag determines updating
1386 * which time fields of @inode
1388 * This function updates time of the inode.
1390 * Returns: %0 for success or a negative error code otherwise.
1392 int ubifs_update_time(struct inode
*inode
, int flags
)
1394 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1395 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1396 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1397 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1400 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
)) {
1401 generic_update_time(inode
, flags
);
1405 err
= ubifs_budget_space(c
, &req
);
1409 mutex_lock(&ui
->ui_mutex
);
1410 inode_update_timestamps(inode
, flags
);
1411 release
= ui
->dirty
;
1412 __mark_inode_dirty(inode
, I_DIRTY_SYNC
);
1413 mutex_unlock(&ui
->ui_mutex
);
1415 ubifs_release_budget(c
, &req
);
1420 * update_mctime - update mtime and ctime of an inode.
1421 * @inode: inode to update
1423 * This function updates mtime and ctime of the inode if it is not equivalent to
1426 * Returns: %0 in case of success and a negative error code in
1429 static int update_mctime(struct inode
*inode
)
1431 struct timespec64 now
= current_time(inode
);
1432 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1433 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1435 if (mctime_update_needed(inode
, &now
)) {
1437 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1438 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1440 err
= ubifs_budget_space(c
, &req
);
1444 mutex_lock(&ui
->ui_mutex
);
1445 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
1446 release
= ui
->dirty
;
1447 mark_inode_dirty_sync(inode
);
1448 mutex_unlock(&ui
->ui_mutex
);
1450 ubifs_release_budget(c
, &req
);
1456 static ssize_t
ubifs_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1458 int err
= update_mctime(file_inode(iocb
->ki_filp
));
1462 return generic_file_write_iter(iocb
, from
);
1465 static bool ubifs_dirty_folio(struct address_space
*mapping
,
1466 struct folio
*folio
)
1469 struct ubifs_info
*c
= mapping
->host
->i_sb
->s_fs_info
;
1471 ret
= filemap_dirty_folio(mapping
, folio
);
1473 * An attempt to dirty a page without budgeting for it - should not
1476 ubifs_assert(c
, ret
== false);
1480 static bool ubifs_release_folio(struct folio
*folio
, gfp_t unused_gfp_flags
)
1482 struct inode
*inode
= folio
->mapping
->host
;
1483 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1485 if (folio_test_writeback(folio
))
1489 * Page is private but not dirty, weird? There is one condition
1490 * making it happened. ubifs_writepage skipped the page because
1491 * page index beyonds isize (for example. truncated by other
1492 * process named A), then the page is invalidated by fadvise64
1493 * syscall before being truncated by process A.
1495 ubifs_assert(c
, folio_test_private(folio
));
1496 if (folio_test_checked(folio
))
1497 release_new_page_budget(c
);
1499 release_existing_page_budget(c
);
1501 atomic_long_dec(&c
->dirty_pg_cnt
);
1502 folio_detach_private(folio
);
1503 folio_clear_checked(folio
);
1508 * mmap()d file has taken write protection fault and is being made writable.
1509 * UBIFS must ensure page is budgeted for.
1511 static vm_fault_t
ubifs_vm_page_mkwrite(struct vm_fault
*vmf
)
1513 struct folio
*folio
= page_folio(vmf
->page
);
1514 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1515 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1516 struct timespec64 now
= current_time(inode
);
1517 struct ubifs_budget_req req
= { .new_page
= 1 };
1518 int err
, update_time
;
1520 dbg_gen("ino %lu, pg %lu, i_size %lld", inode
->i_ino
, folio
->index
,
1521 i_size_read(inode
));
1522 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
1524 if (unlikely(c
->ro_error
))
1525 return VM_FAULT_SIGBUS
; /* -EROFS */
1528 * We have not locked @folio so far so we may budget for changing the
1529 * folio. Note, we cannot do this after we locked the folio, because
1530 * budgeting may cause write-back which would cause deadlock.
1532 * At the moment we do not know whether the folio is dirty or not, so we
1533 * assume that it is not and budget for a new folio. We could look at
1534 * the @PG_private flag and figure this out, but we may race with write
1535 * back and the folio state may change by the time we lock it, so this
1536 * would need additional care. We do not bother with this at the
1537 * moment, although it might be good idea to do. Instead, we allocate
1538 * budget for a new folio and amend it later on if the folio was in fact
1541 * The budgeting-related logic of this function is similar to what we
1542 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1543 * for more comments.
1545 update_time
= mctime_update_needed(inode
, &now
);
1548 * We have to change inode time stamp which requires extra
1551 req
.dirtied_ino
= 1;
1553 err
= ubifs_budget_space(c
, &req
);
1554 if (unlikely(err
)) {
1556 ubifs_warn(c
, "out of space for mmapped file (inode number %lu)",
1558 return VM_FAULT_SIGBUS
;
1562 if (unlikely(folio
->mapping
!= inode
->i_mapping
||
1563 folio_pos(folio
) >= i_size_read(inode
))) {
1564 /* Folio got truncated out from underneath us */
1569 release_new_page_budget(c
);
1571 if (!folio_test_checked(folio
))
1572 ubifs_convert_page_budget(c
);
1573 folio_attach_private(folio
, (void *)1);
1574 atomic_long_inc(&c
->dirty_pg_cnt
);
1575 filemap_dirty_folio(folio
->mapping
, folio
);
1580 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1582 mutex_lock(&ui
->ui_mutex
);
1583 inode_set_mtime_to_ts(inode
, inode_set_ctime_current(inode
));
1584 release
= ui
->dirty
;
1585 mark_inode_dirty_sync(inode
);
1586 mutex_unlock(&ui
->ui_mutex
);
1588 ubifs_release_dirty_inode_budget(c
, ui
);
1591 folio_wait_stable(folio
);
1592 return VM_FAULT_LOCKED
;
1595 folio_unlock(folio
);
1596 ubifs_release_budget(c
, &req
);
1597 return VM_FAULT_SIGBUS
;
1600 static const struct vm_operations_struct ubifs_file_vm_ops
= {
1601 .fault
= filemap_fault
,
1602 .map_pages
= filemap_map_pages
,
1603 .page_mkwrite
= ubifs_vm_page_mkwrite
,
1606 static int ubifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1610 err
= generic_file_mmap(file
, vma
);
1613 vma
->vm_ops
= &ubifs_file_vm_ops
;
1615 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT
))
1616 file_accessed(file
);
1621 static const char *ubifs_get_link(struct dentry
*dentry
,
1622 struct inode
*inode
,
1623 struct delayed_call
*done
)
1625 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1627 if (!IS_ENCRYPTED(inode
))
1631 return ERR_PTR(-ECHILD
);
1633 return fscrypt_get_symlink(inode
, ui
->data
, ui
->data_len
, done
);
1636 static int ubifs_symlink_getattr(struct mnt_idmap
*idmap
,
1637 const struct path
*path
, struct kstat
*stat
,
1638 u32 request_mask
, unsigned int query_flags
)
1640 ubifs_getattr(idmap
, path
, stat
, request_mask
, query_flags
);
1642 if (IS_ENCRYPTED(d_inode(path
->dentry
)))
1643 return fscrypt_symlink_getattr(path
, stat
);
1647 const struct address_space_operations ubifs_file_address_operations
= {
1648 .read_folio
= ubifs_read_folio
,
1649 .writepages
= ubifs_writepages
,
1650 .write_begin
= ubifs_write_begin
,
1651 .write_end
= ubifs_write_end
,
1652 .invalidate_folio
= ubifs_invalidate_folio
,
1653 .dirty_folio
= ubifs_dirty_folio
,
1654 .migrate_folio
= filemap_migrate_folio
,
1655 .release_folio
= ubifs_release_folio
,
1658 const struct inode_operations ubifs_file_inode_operations
= {
1659 .setattr
= ubifs_setattr
,
1660 .getattr
= ubifs_getattr
,
1661 .listxattr
= ubifs_listxattr
,
1662 .update_time
= ubifs_update_time
,
1663 .fileattr_get
= ubifs_fileattr_get
,
1664 .fileattr_set
= ubifs_fileattr_set
,
1667 const struct inode_operations ubifs_symlink_inode_operations
= {
1668 .get_link
= ubifs_get_link
,
1669 .setattr
= ubifs_setattr
,
1670 .getattr
= ubifs_symlink_getattr
,
1671 .listxattr
= ubifs_listxattr
,
1672 .update_time
= ubifs_update_time
,
1675 const struct file_operations ubifs_file_operations
= {
1676 .llseek
= generic_file_llseek
,
1677 .read_iter
= generic_file_read_iter
,
1678 .write_iter
= ubifs_write_iter
,
1679 .mmap
= ubifs_file_mmap
,
1680 .fsync
= ubifs_fsync
,
1681 .unlocked_ioctl
= ubifs_ioctl
,
1682 .splice_read
= filemap_splice_read
,
1683 .splice_write
= iter_file_splice_write
,
1684 .open
= fscrypt_file_open
,
1685 #ifdef CONFIG_COMPAT
1686 .compat_ioctl
= ubifs_compat_ioctl
,