Linux 6.14-rc2
[linux.git] / fs / xfs / xfs_buf.c
blob15bb790359f8117fdde7bd814e012b06d31aaf83
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/backing-dev.h>
8 #include <linux/dax.h>
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
16 #include "xfs_log.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
23 #include "xfs_ag.h"
24 #include "xfs_buf_mem.h"
25 #include "xfs_notify_failure.h"
27 struct kmem_cache *xfs_buf_cache;
30 * Locking orders
32 * xfs_buf_ioacct_inc:
33 * xfs_buf_ioacct_dec:
34 * b_sema (caller holds)
35 * b_lock
37 * xfs_buf_stale:
38 * b_sema (caller holds)
39 * b_lock
40 * lru_lock
42 * xfs_buf_rele:
43 * b_lock
44 * lru_lock
46 * xfs_buftarg_drain_rele
47 * lru_lock
48 * b_lock (trylock due to inversion)
50 * xfs_buftarg_isolate
51 * lru_lock
52 * b_lock (trylock due to inversion)
55 static void xfs_buf_submit(struct xfs_buf *bp);
56 static int xfs_buf_iowait(struct xfs_buf *bp);
58 static inline bool xfs_buf_is_uncached(struct xfs_buf *bp)
60 return bp->b_rhash_key == XFS_BUF_DADDR_NULL;
63 static inline int
64 xfs_buf_is_vmapped(
65 struct xfs_buf *bp)
68 * Return true if the buffer is vmapped.
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
74 return bp->b_addr && bp->b_page_count > 1;
77 static inline int
78 xfs_buf_vmap_len(
79 struct xfs_buf *bp)
81 return (bp->b_page_count * PAGE_SIZE);
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
91 * in-flight buffers.
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
97 static inline void
98 xfs_buf_ioacct_inc(
99 struct xfs_buf *bp)
101 if (bp->b_flags & XBF_NO_IOACCT)
102 return;
104 ASSERT(bp->b_flags & XBF_ASYNC);
105 spin_lock(&bp->b_lock);
106 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
107 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
108 percpu_counter_inc(&bp->b_target->bt_io_count);
110 spin_unlock(&bp->b_lock);
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
117 static inline void
118 __xfs_buf_ioacct_dec(
119 struct xfs_buf *bp)
121 lockdep_assert_held(&bp->b_lock);
123 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
124 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
125 percpu_counter_dec(&bp->b_target->bt_io_count);
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
135 * This prevents build-up of stale buffers on the LRU.
137 void
138 xfs_buf_stale(
139 struct xfs_buf *bp)
141 ASSERT(xfs_buf_islocked(bp));
143 bp->b_flags |= XBF_STALE;
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
150 bp->b_flags &= ~_XBF_DELWRI_Q;
153 * Once the buffer is marked stale and unlocked, a subsequent lookup
154 * could reset b_flags. There is no guarantee that the buffer is
155 * unaccounted (released to LRU) before that occurs. Drop in-flight
156 * status now to preserve accounting consistency.
158 spin_lock(&bp->b_lock);
159 __xfs_buf_ioacct_dec(bp);
161 atomic_set(&bp->b_lru_ref, 0);
162 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
163 (list_lru_del_obj(&bp->b_target->bt_lru, &bp->b_lru)))
164 bp->b_hold--;
166 ASSERT(bp->b_hold >= 1);
167 spin_unlock(&bp->b_lock);
170 static int
171 xfs_buf_get_maps(
172 struct xfs_buf *bp,
173 int map_count)
175 ASSERT(bp->b_maps == NULL);
176 bp->b_map_count = map_count;
178 if (map_count == 1) {
179 bp->b_maps = &bp->__b_map;
180 return 0;
183 bp->b_maps = kzalloc(map_count * sizeof(struct xfs_buf_map),
184 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
185 if (!bp->b_maps)
186 return -ENOMEM;
187 return 0;
190 static void
191 xfs_buf_free_maps(
192 struct xfs_buf *bp)
194 if (bp->b_maps != &bp->__b_map) {
195 kfree(bp->b_maps);
196 bp->b_maps = NULL;
200 static int
201 _xfs_buf_alloc(
202 struct xfs_buftarg *target,
203 struct xfs_buf_map *map,
204 int nmaps,
205 xfs_buf_flags_t flags,
206 struct xfs_buf **bpp)
208 struct xfs_buf *bp;
209 int error;
210 int i;
212 *bpp = NULL;
213 bp = kmem_cache_zalloc(xfs_buf_cache,
214 GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL);
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
220 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
223 * A new buffer is held and locked by the owner. This ensures that the
224 * buffer is owned by the caller and racing RCU lookups right after
225 * inserting into the hash table are safe (and will have to wait for
226 * the unlock to do anything non-trivial).
228 bp->b_hold = 1;
229 sema_init(&bp->b_sema, 0); /* held, no waiters */
231 spin_lock_init(&bp->b_lock);
232 atomic_set(&bp->b_lru_ref, 1);
233 init_completion(&bp->b_iowait);
234 INIT_LIST_HEAD(&bp->b_lru);
235 INIT_LIST_HEAD(&bp->b_list);
236 INIT_LIST_HEAD(&bp->b_li_list);
237 bp->b_target = target;
238 bp->b_mount = target->bt_mount;
239 bp->b_flags = flags;
241 error = xfs_buf_get_maps(bp, nmaps);
242 if (error) {
243 kmem_cache_free(xfs_buf_cache, bp);
244 return error;
247 bp->b_rhash_key = map[0].bm_bn;
248 bp->b_length = 0;
249 for (i = 0; i < nmaps; i++) {
250 bp->b_maps[i].bm_bn = map[i].bm_bn;
251 bp->b_maps[i].bm_len = map[i].bm_len;
252 bp->b_length += map[i].bm_len;
255 atomic_set(&bp->b_pin_count, 0);
256 init_waitqueue_head(&bp->b_waiters);
258 XFS_STATS_INC(bp->b_mount, xb_create);
259 trace_xfs_buf_init(bp, _RET_IP_);
261 *bpp = bp;
262 return 0;
265 static void
266 xfs_buf_free_pages(
267 struct xfs_buf *bp)
269 uint i;
271 ASSERT(bp->b_flags & _XBF_PAGES);
273 if (xfs_buf_is_vmapped(bp))
274 vm_unmap_ram(bp->b_addr, bp->b_page_count);
276 for (i = 0; i < bp->b_page_count; i++) {
277 if (bp->b_pages[i])
278 __free_page(bp->b_pages[i]);
280 mm_account_reclaimed_pages(bp->b_page_count);
282 if (bp->b_pages != bp->b_page_array)
283 kfree(bp->b_pages);
284 bp->b_pages = NULL;
285 bp->b_flags &= ~_XBF_PAGES;
288 static void
289 xfs_buf_free_callback(
290 struct callback_head *cb)
292 struct xfs_buf *bp = container_of(cb, struct xfs_buf, b_rcu);
294 xfs_buf_free_maps(bp);
295 kmem_cache_free(xfs_buf_cache, bp);
298 static void
299 xfs_buf_free(
300 struct xfs_buf *bp)
302 trace_xfs_buf_free(bp, _RET_IP_);
304 ASSERT(list_empty(&bp->b_lru));
306 if (xfs_buftarg_is_mem(bp->b_target))
307 xmbuf_unmap_page(bp);
308 else if (bp->b_flags & _XBF_PAGES)
309 xfs_buf_free_pages(bp);
310 else if (bp->b_flags & _XBF_KMEM)
311 kfree(bp->b_addr);
313 call_rcu(&bp->b_rcu, xfs_buf_free_callback);
316 static int
317 xfs_buf_alloc_kmem(
318 struct xfs_buf *bp,
319 xfs_buf_flags_t flags)
321 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOFAIL;
322 size_t size = BBTOB(bp->b_length);
324 /* Assure zeroed buffer for non-read cases. */
325 if (!(flags & XBF_READ))
326 gfp_mask |= __GFP_ZERO;
328 bp->b_addr = kmalloc(size, gfp_mask);
329 if (!bp->b_addr)
330 return -ENOMEM;
332 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
333 ((unsigned long)bp->b_addr & PAGE_MASK)) {
334 /* b_addr spans two pages - use alloc_page instead */
335 kfree(bp->b_addr);
336 bp->b_addr = NULL;
337 return -ENOMEM;
339 bp->b_offset = offset_in_page(bp->b_addr);
340 bp->b_pages = bp->b_page_array;
341 bp->b_pages[0] = kmem_to_page(bp->b_addr);
342 bp->b_page_count = 1;
343 bp->b_flags |= _XBF_KMEM;
344 return 0;
347 static int
348 xfs_buf_alloc_pages(
349 struct xfs_buf *bp,
350 xfs_buf_flags_t flags)
352 gfp_t gfp_mask = GFP_KERNEL | __GFP_NOLOCKDEP | __GFP_NOWARN;
353 long filled = 0;
355 if (flags & XBF_READ_AHEAD)
356 gfp_mask |= __GFP_NORETRY;
358 /* Make sure that we have a page list */
359 bp->b_page_count = DIV_ROUND_UP(BBTOB(bp->b_length), PAGE_SIZE);
360 if (bp->b_page_count <= XB_PAGES) {
361 bp->b_pages = bp->b_page_array;
362 } else {
363 bp->b_pages = kzalloc(sizeof(struct page *) * bp->b_page_count,
364 gfp_mask);
365 if (!bp->b_pages)
366 return -ENOMEM;
368 bp->b_flags |= _XBF_PAGES;
370 /* Assure zeroed buffer for non-read cases. */
371 if (!(flags & XBF_READ))
372 gfp_mask |= __GFP_ZERO;
375 * Bulk filling of pages can take multiple calls. Not filling the entire
376 * array is not an allocation failure, so don't back off if we get at
377 * least one extra page.
379 for (;;) {
380 long last = filled;
382 filled = alloc_pages_bulk(gfp_mask, bp->b_page_count,
383 bp->b_pages);
384 if (filled == bp->b_page_count) {
385 XFS_STATS_INC(bp->b_mount, xb_page_found);
386 break;
389 if (filled != last)
390 continue;
392 if (flags & XBF_READ_AHEAD) {
393 xfs_buf_free_pages(bp);
394 return -ENOMEM;
397 XFS_STATS_INC(bp->b_mount, xb_page_retries);
398 memalloc_retry_wait(gfp_mask);
400 return 0;
404 * Map buffer into kernel address-space if necessary.
406 STATIC int
407 _xfs_buf_map_pages(
408 struct xfs_buf *bp,
409 xfs_buf_flags_t flags)
411 ASSERT(bp->b_flags & _XBF_PAGES);
412 if (bp->b_page_count == 1) {
413 /* A single page buffer is always mappable */
414 bp->b_addr = page_address(bp->b_pages[0]);
415 } else if (flags & XBF_UNMAPPED) {
416 bp->b_addr = NULL;
417 } else {
418 int retried = 0;
419 unsigned nofs_flag;
422 * vm_map_ram() will allocate auxiliary structures (e.g.
423 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
424 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
425 * from the same call site that can be run from both above and
426 * below memory reclaim causes lockdep false positives. Hence we
427 * always need to force this allocation to nofs context because
428 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
429 * prevent false positive lockdep reports.
431 * XXX(dgc): I think dquot reclaim is the only place we can get
432 * to this function from memory reclaim context now. If we fix
433 * that like we've fixed inode reclaim to avoid writeback from
434 * reclaim, this nofs wrapping can go away.
436 nofs_flag = memalloc_nofs_save();
437 do {
438 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
439 -1);
440 if (bp->b_addr)
441 break;
442 vm_unmap_aliases();
443 } while (retried++ <= 1);
444 memalloc_nofs_restore(nofs_flag);
446 if (!bp->b_addr)
447 return -ENOMEM;
450 return 0;
454 * Finding and Reading Buffers
456 static int
457 _xfs_buf_obj_cmp(
458 struct rhashtable_compare_arg *arg,
459 const void *obj)
461 const struct xfs_buf_map *map = arg->key;
462 const struct xfs_buf *bp = obj;
465 * The key hashing in the lookup path depends on the key being the
466 * first element of the compare_arg, make sure to assert this.
468 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
470 if (bp->b_rhash_key != map->bm_bn)
471 return 1;
473 if (unlikely(bp->b_length != map->bm_len)) {
475 * found a block number match. If the range doesn't
476 * match, the only way this is allowed is if the buffer
477 * in the cache is stale and the transaction that made
478 * it stale has not yet committed. i.e. we are
479 * reallocating a busy extent. Skip this buffer and
480 * continue searching for an exact match.
482 * Note: If we're scanning for incore buffers to stale, don't
483 * complain if we find non-stale buffers.
485 if (!(map->bm_flags & XBM_LIVESCAN))
486 ASSERT(bp->b_flags & XBF_STALE);
487 return 1;
489 return 0;
492 static const struct rhashtable_params xfs_buf_hash_params = {
493 .min_size = 32, /* empty AGs have minimal footprint */
494 .nelem_hint = 16,
495 .key_len = sizeof(xfs_daddr_t),
496 .key_offset = offsetof(struct xfs_buf, b_rhash_key),
497 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
498 .automatic_shrinking = true,
499 .obj_cmpfn = _xfs_buf_obj_cmp,
503 xfs_buf_cache_init(
504 struct xfs_buf_cache *bch)
506 return rhashtable_init(&bch->bc_hash, &xfs_buf_hash_params);
509 void
510 xfs_buf_cache_destroy(
511 struct xfs_buf_cache *bch)
513 rhashtable_destroy(&bch->bc_hash);
516 static int
517 xfs_buf_map_verify(
518 struct xfs_buftarg *btp,
519 struct xfs_buf_map *map)
521 xfs_daddr_t eofs;
523 /* Check for IOs smaller than the sector size / not sector aligned */
524 ASSERT(!(BBTOB(map->bm_len) < btp->bt_meta_sectorsize));
525 ASSERT(!(BBTOB(map->bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
528 * Corrupted block numbers can get through to here, unfortunately, so we
529 * have to check that the buffer falls within the filesystem bounds.
531 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
532 if (map->bm_bn < 0 || map->bm_bn >= eofs) {
533 xfs_alert(btp->bt_mount,
534 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535 __func__, map->bm_bn, eofs);
536 WARN_ON(1);
537 return -EFSCORRUPTED;
539 return 0;
542 static int
543 xfs_buf_find_lock(
544 struct xfs_buf *bp,
545 xfs_buf_flags_t flags)
547 if (flags & XBF_TRYLOCK) {
548 if (!xfs_buf_trylock(bp)) {
549 XFS_STATS_INC(bp->b_mount, xb_busy_locked);
550 return -EAGAIN;
552 } else {
553 xfs_buf_lock(bp);
554 XFS_STATS_INC(bp->b_mount, xb_get_locked_waited);
558 * if the buffer is stale, clear all the external state associated with
559 * it. We need to keep flags such as how we allocated the buffer memory
560 * intact here.
562 if (bp->b_flags & XBF_STALE) {
563 if (flags & XBF_LIVESCAN) {
564 xfs_buf_unlock(bp);
565 return -ENOENT;
567 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
568 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
569 bp->b_ops = NULL;
571 return 0;
574 static bool
575 xfs_buf_try_hold(
576 struct xfs_buf *bp)
578 spin_lock(&bp->b_lock);
579 if (bp->b_hold == 0) {
580 spin_unlock(&bp->b_lock);
581 return false;
583 bp->b_hold++;
584 spin_unlock(&bp->b_lock);
585 return true;
588 static inline int
589 xfs_buf_lookup(
590 struct xfs_buf_cache *bch,
591 struct xfs_buf_map *map,
592 xfs_buf_flags_t flags,
593 struct xfs_buf **bpp)
595 struct xfs_buf *bp;
596 int error;
598 rcu_read_lock();
599 bp = rhashtable_lookup(&bch->bc_hash, map, xfs_buf_hash_params);
600 if (!bp || !xfs_buf_try_hold(bp)) {
601 rcu_read_unlock();
602 return -ENOENT;
604 rcu_read_unlock();
606 error = xfs_buf_find_lock(bp, flags);
607 if (error) {
608 xfs_buf_rele(bp);
609 return error;
612 trace_xfs_buf_find(bp, flags, _RET_IP_);
613 *bpp = bp;
614 return 0;
618 * Insert the new_bp into the hash table. This consumes the perag reference
619 * taken for the lookup regardless of the result of the insert.
621 static int
622 xfs_buf_find_insert(
623 struct xfs_buftarg *btp,
624 struct xfs_buf_cache *bch,
625 struct xfs_perag *pag,
626 struct xfs_buf_map *cmap,
627 struct xfs_buf_map *map,
628 int nmaps,
629 xfs_buf_flags_t flags,
630 struct xfs_buf **bpp)
632 struct xfs_buf *new_bp;
633 struct xfs_buf *bp;
634 int error;
636 error = _xfs_buf_alloc(btp, map, nmaps, flags, &new_bp);
637 if (error)
638 goto out_drop_pag;
640 if (xfs_buftarg_is_mem(new_bp->b_target)) {
641 error = xmbuf_map_page(new_bp);
642 } else if (BBTOB(new_bp->b_length) >= PAGE_SIZE ||
643 xfs_buf_alloc_kmem(new_bp, flags) < 0) {
645 * For buffers that fit entirely within a single page, first
646 * attempt to allocate the memory from the heap to minimise
647 * memory usage. If we can't get heap memory for these small
648 * buffers, we fall back to using the page allocator.
650 error = xfs_buf_alloc_pages(new_bp, flags);
652 if (error)
653 goto out_free_buf;
655 /* The new buffer keeps the perag reference until it is freed. */
656 new_bp->b_pag = pag;
658 rcu_read_lock();
659 bp = rhashtable_lookup_get_insert_fast(&bch->bc_hash,
660 &new_bp->b_rhash_head, xfs_buf_hash_params);
661 if (IS_ERR(bp)) {
662 rcu_read_unlock();
663 error = PTR_ERR(bp);
664 goto out_free_buf;
666 if (bp && xfs_buf_try_hold(bp)) {
667 /* found an existing buffer */
668 rcu_read_unlock();
669 error = xfs_buf_find_lock(bp, flags);
670 if (error)
671 xfs_buf_rele(bp);
672 else
673 *bpp = bp;
674 goto out_free_buf;
676 rcu_read_unlock();
678 *bpp = new_bp;
679 return 0;
681 out_free_buf:
682 xfs_buf_free(new_bp);
683 out_drop_pag:
684 if (pag)
685 xfs_perag_put(pag);
686 return error;
689 static inline struct xfs_perag *
690 xfs_buftarg_get_pag(
691 struct xfs_buftarg *btp,
692 const struct xfs_buf_map *map)
694 struct xfs_mount *mp = btp->bt_mount;
696 if (xfs_buftarg_is_mem(btp))
697 return NULL;
698 return xfs_perag_get(mp, xfs_daddr_to_agno(mp, map->bm_bn));
701 static inline struct xfs_buf_cache *
702 xfs_buftarg_buf_cache(
703 struct xfs_buftarg *btp,
704 struct xfs_perag *pag)
706 if (pag)
707 return &pag->pag_bcache;
708 return btp->bt_cache;
712 * Assembles a buffer covering the specified range. The code is optimised for
713 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
714 * more hits than misses.
717 xfs_buf_get_map(
718 struct xfs_buftarg *btp,
719 struct xfs_buf_map *map,
720 int nmaps,
721 xfs_buf_flags_t flags,
722 struct xfs_buf **bpp)
724 struct xfs_buf_cache *bch;
725 struct xfs_perag *pag;
726 struct xfs_buf *bp = NULL;
727 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
728 int error;
729 int i;
731 if (flags & XBF_LIVESCAN)
732 cmap.bm_flags |= XBM_LIVESCAN;
733 for (i = 0; i < nmaps; i++)
734 cmap.bm_len += map[i].bm_len;
736 error = xfs_buf_map_verify(btp, &cmap);
737 if (error)
738 return error;
740 pag = xfs_buftarg_get_pag(btp, &cmap);
741 bch = xfs_buftarg_buf_cache(btp, pag);
743 error = xfs_buf_lookup(bch, &cmap, flags, &bp);
744 if (error && error != -ENOENT)
745 goto out_put_perag;
747 /* cache hits always outnumber misses by at least 10:1 */
748 if (unlikely(!bp)) {
749 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
751 if (flags & XBF_INCORE)
752 goto out_put_perag;
754 /* xfs_buf_find_insert() consumes the perag reference. */
755 error = xfs_buf_find_insert(btp, bch, pag, &cmap, map, nmaps,
756 flags, &bp);
757 if (error)
758 return error;
759 } else {
760 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
761 if (pag)
762 xfs_perag_put(pag);
765 /* We do not hold a perag reference anymore. */
766 if (!bp->b_addr) {
767 error = _xfs_buf_map_pages(bp, flags);
768 if (unlikely(error)) {
769 xfs_warn_ratelimited(btp->bt_mount,
770 "%s: failed to map %u pages", __func__,
771 bp->b_page_count);
772 xfs_buf_relse(bp);
773 return error;
778 * Clear b_error if this is a lookup from a caller that doesn't expect
779 * valid data to be found in the buffer.
781 if (!(flags & XBF_READ))
782 xfs_buf_ioerror(bp, 0);
784 XFS_STATS_INC(btp->bt_mount, xb_get);
785 trace_xfs_buf_get(bp, flags, _RET_IP_);
786 *bpp = bp;
787 return 0;
789 out_put_perag:
790 if (pag)
791 xfs_perag_put(pag);
792 return error;
796 _xfs_buf_read(
797 struct xfs_buf *bp,
798 xfs_buf_flags_t flags)
800 ASSERT(!(flags & XBF_WRITE));
801 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
803 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD | XBF_DONE);
804 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
806 xfs_buf_submit(bp);
807 if (flags & XBF_ASYNC)
808 return 0;
809 return xfs_buf_iowait(bp);
813 * Reverify a buffer found in cache without an attached ->b_ops.
815 * If the caller passed an ops structure and the buffer doesn't have ops
816 * assigned, set the ops and use it to verify the contents. If verification
817 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
818 * already in XBF_DONE state on entry.
820 * Under normal operations, every in-core buffer is verified on read I/O
821 * completion. There are two scenarios that can lead to in-core buffers without
822 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
823 * filesystem, though these buffers are purged at the end of recovery. The
824 * other is online repair, which intentionally reads with a NULL buffer ops to
825 * run several verifiers across an in-core buffer in order to establish buffer
826 * type. If repair can't establish that, the buffer will be left in memory
827 * with NULL buffer ops.
830 xfs_buf_reverify(
831 struct xfs_buf *bp,
832 const struct xfs_buf_ops *ops)
834 ASSERT(bp->b_flags & XBF_DONE);
835 ASSERT(bp->b_error == 0);
837 if (!ops || bp->b_ops)
838 return 0;
840 bp->b_ops = ops;
841 bp->b_ops->verify_read(bp);
842 if (bp->b_error)
843 bp->b_flags &= ~XBF_DONE;
844 return bp->b_error;
848 xfs_buf_read_map(
849 struct xfs_buftarg *target,
850 struct xfs_buf_map *map,
851 int nmaps,
852 xfs_buf_flags_t flags,
853 struct xfs_buf **bpp,
854 const struct xfs_buf_ops *ops,
855 xfs_failaddr_t fa)
857 struct xfs_buf *bp;
858 int error;
860 flags |= XBF_READ;
861 *bpp = NULL;
863 error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
864 if (error)
865 return error;
867 trace_xfs_buf_read(bp, flags, _RET_IP_);
869 if (!(bp->b_flags & XBF_DONE)) {
870 /* Initiate the buffer read and wait. */
871 XFS_STATS_INC(target->bt_mount, xb_get_read);
872 bp->b_ops = ops;
873 error = _xfs_buf_read(bp, flags);
875 /* Readahead iodone already dropped the buffer, so exit. */
876 if (flags & XBF_ASYNC)
877 return 0;
878 } else {
879 /* Buffer already read; all we need to do is check it. */
880 error = xfs_buf_reverify(bp, ops);
882 /* Readahead already finished; drop the buffer and exit. */
883 if (flags & XBF_ASYNC) {
884 xfs_buf_relse(bp);
885 return 0;
888 /* We do not want read in the flags */
889 bp->b_flags &= ~XBF_READ;
890 ASSERT(bp->b_ops != NULL || ops == NULL);
894 * If we've had a read error, then the contents of the buffer are
895 * invalid and should not be used. To ensure that a followup read tries
896 * to pull the buffer from disk again, we clear the XBF_DONE flag and
897 * mark the buffer stale. This ensures that anyone who has a current
898 * reference to the buffer will interpret it's contents correctly and
899 * future cache lookups will also treat it as an empty, uninitialised
900 * buffer.
902 if (error) {
904 * Check against log shutdown for error reporting because
905 * metadata writeback may require a read first and we need to
906 * report errors in metadata writeback until the log is shut
907 * down. High level transaction read functions already check
908 * against mount shutdown, anyway, so we only need to be
909 * concerned about low level IO interactions here.
911 if (!xlog_is_shutdown(target->bt_mount->m_log))
912 xfs_buf_ioerror_alert(bp, fa);
914 bp->b_flags &= ~XBF_DONE;
915 xfs_buf_stale(bp);
916 xfs_buf_relse(bp);
918 /* bad CRC means corrupted metadata */
919 if (error == -EFSBADCRC)
920 error = -EFSCORRUPTED;
921 return error;
924 *bpp = bp;
925 return 0;
929 * If we are not low on memory then do the readahead in a deadlock
930 * safe manner.
932 void
933 xfs_buf_readahead_map(
934 struct xfs_buftarg *target,
935 struct xfs_buf_map *map,
936 int nmaps,
937 const struct xfs_buf_ops *ops)
939 struct xfs_buf *bp;
942 * Currently we don't have a good means or justification for performing
943 * xmbuf_map_page asynchronously, so we don't do readahead.
945 if (xfs_buftarg_is_mem(target))
946 return;
948 xfs_buf_read_map(target, map, nmaps,
949 XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD, &bp, ops,
950 __this_address);
954 * Read an uncached buffer from disk. Allocates and returns a locked
955 * buffer containing the disk contents or nothing. Uncached buffers always have
956 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
957 * is cached or uncached during fault diagnosis.
960 xfs_buf_read_uncached(
961 struct xfs_buftarg *target,
962 xfs_daddr_t daddr,
963 size_t numblks,
964 xfs_buf_flags_t flags,
965 struct xfs_buf **bpp,
966 const struct xfs_buf_ops *ops)
968 struct xfs_buf *bp;
969 int error;
971 *bpp = NULL;
973 error = xfs_buf_get_uncached(target, numblks, flags, &bp);
974 if (error)
975 return error;
977 /* set up the buffer for a read IO */
978 ASSERT(bp->b_map_count == 1);
979 bp->b_rhash_key = XFS_BUF_DADDR_NULL;
980 bp->b_maps[0].bm_bn = daddr;
981 bp->b_flags |= XBF_READ;
982 bp->b_ops = ops;
984 xfs_buf_submit(bp);
985 error = xfs_buf_iowait(bp);
986 if (error) {
987 xfs_buf_relse(bp);
988 return error;
991 *bpp = bp;
992 return 0;
996 xfs_buf_get_uncached(
997 struct xfs_buftarg *target,
998 size_t numblks,
999 xfs_buf_flags_t flags,
1000 struct xfs_buf **bpp)
1002 int error;
1003 struct xfs_buf *bp;
1004 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
1006 *bpp = NULL;
1008 /* flags might contain irrelevant bits, pass only what we care about */
1009 error = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT, &bp);
1010 if (error)
1011 return error;
1013 if (xfs_buftarg_is_mem(bp->b_target))
1014 error = xmbuf_map_page(bp);
1015 else
1016 error = xfs_buf_alloc_pages(bp, flags);
1017 if (error)
1018 goto fail_free_buf;
1020 error = _xfs_buf_map_pages(bp, 0);
1021 if (unlikely(error)) {
1022 xfs_warn(target->bt_mount,
1023 "%s: failed to map pages", __func__);
1024 goto fail_free_buf;
1027 trace_xfs_buf_get_uncached(bp, _RET_IP_);
1028 *bpp = bp;
1029 return 0;
1031 fail_free_buf:
1032 xfs_buf_free(bp);
1033 return error;
1037 * Increment reference count on buffer, to hold the buffer concurrently
1038 * with another thread which may release (free) the buffer asynchronously.
1039 * Must hold the buffer already to call this function.
1041 void
1042 xfs_buf_hold(
1043 struct xfs_buf *bp)
1045 trace_xfs_buf_hold(bp, _RET_IP_);
1047 spin_lock(&bp->b_lock);
1048 bp->b_hold++;
1049 spin_unlock(&bp->b_lock);
1052 static void
1053 xfs_buf_rele_uncached(
1054 struct xfs_buf *bp)
1056 ASSERT(list_empty(&bp->b_lru));
1058 spin_lock(&bp->b_lock);
1059 if (--bp->b_hold) {
1060 spin_unlock(&bp->b_lock);
1061 return;
1063 __xfs_buf_ioacct_dec(bp);
1064 spin_unlock(&bp->b_lock);
1065 xfs_buf_free(bp);
1068 static void
1069 xfs_buf_rele_cached(
1070 struct xfs_buf *bp)
1072 struct xfs_buftarg *btp = bp->b_target;
1073 struct xfs_perag *pag = bp->b_pag;
1074 struct xfs_buf_cache *bch = xfs_buftarg_buf_cache(btp, pag);
1075 bool freebuf = false;
1077 trace_xfs_buf_rele(bp, _RET_IP_);
1079 spin_lock(&bp->b_lock);
1080 ASSERT(bp->b_hold >= 1);
1081 if (bp->b_hold > 1) {
1083 * Drop the in-flight state if the buffer is already on the LRU
1084 * and it holds the only reference. This is racy because we
1085 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1086 * ensures the decrement occurs only once per-buf.
1088 if (--bp->b_hold == 1 && !list_empty(&bp->b_lru))
1089 __xfs_buf_ioacct_dec(bp);
1090 goto out_unlock;
1093 /* we are asked to drop the last reference */
1094 __xfs_buf_ioacct_dec(bp);
1095 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1097 * If the buffer is added to the LRU, keep the reference to the
1098 * buffer for the LRU and clear the (now stale) dispose list
1099 * state flag, else drop the reference.
1101 if (list_lru_add_obj(&btp->bt_lru, &bp->b_lru))
1102 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1103 else
1104 bp->b_hold--;
1105 } else {
1106 bp->b_hold--;
1108 * most of the time buffers will already be removed from the
1109 * LRU, so optimise that case by checking for the
1110 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1111 * was on was the disposal list
1113 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1114 list_lru_del_obj(&btp->bt_lru, &bp->b_lru);
1115 } else {
1116 ASSERT(list_empty(&bp->b_lru));
1119 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1120 rhashtable_remove_fast(&bch->bc_hash, &bp->b_rhash_head,
1121 xfs_buf_hash_params);
1122 if (pag)
1123 xfs_perag_put(pag);
1124 freebuf = true;
1127 out_unlock:
1128 spin_unlock(&bp->b_lock);
1130 if (freebuf)
1131 xfs_buf_free(bp);
1135 * Release a hold on the specified buffer.
1137 void
1138 xfs_buf_rele(
1139 struct xfs_buf *bp)
1141 trace_xfs_buf_rele(bp, _RET_IP_);
1142 if (xfs_buf_is_uncached(bp))
1143 xfs_buf_rele_uncached(bp);
1144 else
1145 xfs_buf_rele_cached(bp);
1149 * Lock a buffer object, if it is not already locked.
1151 * If we come across a stale, pinned, locked buffer, we know that we are
1152 * being asked to lock a buffer that has been reallocated. Because it is
1153 * pinned, we know that the log has not been pushed to disk and hence it
1154 * will still be locked. Rather than continuing to have trylock attempts
1155 * fail until someone else pushes the log, push it ourselves before
1156 * returning. This means that the xfsaild will not get stuck trying
1157 * to push on stale inode buffers.
1160 xfs_buf_trylock(
1161 struct xfs_buf *bp)
1163 int locked;
1165 locked = down_trylock(&bp->b_sema) == 0;
1166 if (locked)
1167 trace_xfs_buf_trylock(bp, _RET_IP_);
1168 else
1169 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1170 return locked;
1174 * Lock a buffer object.
1176 * If we come across a stale, pinned, locked buffer, we know that we
1177 * are being asked to lock a buffer that has been reallocated. Because
1178 * it is pinned, we know that the log has not been pushed to disk and
1179 * hence it will still be locked. Rather than sleeping until someone
1180 * else pushes the log, push it ourselves before trying to get the lock.
1182 void
1183 xfs_buf_lock(
1184 struct xfs_buf *bp)
1186 trace_xfs_buf_lock(bp, _RET_IP_);
1188 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1189 xfs_log_force(bp->b_mount, 0);
1190 down(&bp->b_sema);
1192 trace_xfs_buf_lock_done(bp, _RET_IP_);
1195 void
1196 xfs_buf_unlock(
1197 struct xfs_buf *bp)
1199 ASSERT(xfs_buf_islocked(bp));
1201 up(&bp->b_sema);
1202 trace_xfs_buf_unlock(bp, _RET_IP_);
1205 STATIC void
1206 xfs_buf_wait_unpin(
1207 struct xfs_buf *bp)
1209 DECLARE_WAITQUEUE (wait, current);
1211 if (atomic_read(&bp->b_pin_count) == 0)
1212 return;
1214 add_wait_queue(&bp->b_waiters, &wait);
1215 for (;;) {
1216 set_current_state(TASK_UNINTERRUPTIBLE);
1217 if (atomic_read(&bp->b_pin_count) == 0)
1218 break;
1219 io_schedule();
1221 remove_wait_queue(&bp->b_waiters, &wait);
1222 set_current_state(TASK_RUNNING);
1225 static void
1226 xfs_buf_ioerror_alert_ratelimited(
1227 struct xfs_buf *bp)
1229 static unsigned long lasttime;
1230 static struct xfs_buftarg *lasttarg;
1232 if (bp->b_target != lasttarg ||
1233 time_after(jiffies, (lasttime + 5*HZ))) {
1234 lasttime = jiffies;
1235 xfs_buf_ioerror_alert(bp, __this_address);
1237 lasttarg = bp->b_target;
1241 * Account for this latest trip around the retry handler, and decide if
1242 * we've failed enough times to constitute a permanent failure.
1244 static bool
1245 xfs_buf_ioerror_permanent(
1246 struct xfs_buf *bp,
1247 struct xfs_error_cfg *cfg)
1249 struct xfs_mount *mp = bp->b_mount;
1251 if (cfg->max_retries != XFS_ERR_RETRY_FOREVER &&
1252 ++bp->b_retries > cfg->max_retries)
1253 return true;
1254 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1255 time_after(jiffies, cfg->retry_timeout + bp->b_first_retry_time))
1256 return true;
1258 /* At unmount we may treat errors differently */
1259 if (xfs_is_unmounting(mp) && mp->m_fail_unmount)
1260 return true;
1262 return false;
1266 * On a sync write or shutdown we just want to stale the buffer and let the
1267 * caller handle the error in bp->b_error appropriately.
1269 * If the write was asynchronous then no one will be looking for the error. If
1270 * this is the first failure of this type, clear the error state and write the
1271 * buffer out again. This means we always retry an async write failure at least
1272 * once, but we also need to set the buffer up to behave correctly now for
1273 * repeated failures.
1275 * If we get repeated async write failures, then we take action according to the
1276 * error configuration we have been set up to use.
1278 * Returns true if this function took care of error handling and the caller must
1279 * not touch the buffer again. Return false if the caller should proceed with
1280 * normal I/O completion handling.
1282 static bool
1283 xfs_buf_ioend_handle_error(
1284 struct xfs_buf *bp)
1286 struct xfs_mount *mp = bp->b_mount;
1287 struct xfs_error_cfg *cfg;
1288 struct xfs_log_item *lip;
1291 * If we've already shutdown the journal because of I/O errors, there's
1292 * no point in giving this a retry.
1294 if (xlog_is_shutdown(mp->m_log))
1295 goto out_stale;
1297 xfs_buf_ioerror_alert_ratelimited(bp);
1300 * We're not going to bother about retrying this during recovery.
1301 * One strike!
1303 if (bp->b_flags & _XBF_LOGRECOVERY) {
1304 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1305 return false;
1309 * Synchronous writes will have callers process the error.
1311 if (!(bp->b_flags & XBF_ASYNC))
1312 goto out_stale;
1314 trace_xfs_buf_iodone_async(bp, _RET_IP_);
1316 cfg = xfs_error_get_cfg(mp, XFS_ERR_METADATA, bp->b_error);
1317 if (bp->b_last_error != bp->b_error ||
1318 !(bp->b_flags & (XBF_STALE | XBF_WRITE_FAIL))) {
1319 bp->b_last_error = bp->b_error;
1320 if (cfg->retry_timeout != XFS_ERR_RETRY_FOREVER &&
1321 !bp->b_first_retry_time)
1322 bp->b_first_retry_time = jiffies;
1323 goto resubmit;
1327 * Permanent error - we need to trigger a shutdown if we haven't already
1328 * to indicate that inconsistency will result from this action.
1330 if (xfs_buf_ioerror_permanent(bp, cfg)) {
1331 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1332 goto out_stale;
1335 /* Still considered a transient error. Caller will schedule retries. */
1336 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
1337 set_bit(XFS_LI_FAILED, &lip->li_flags);
1338 clear_bit(XFS_LI_FLUSHING, &lip->li_flags);
1341 xfs_buf_ioerror(bp, 0);
1342 xfs_buf_relse(bp);
1343 return true;
1345 resubmit:
1346 xfs_buf_ioerror(bp, 0);
1347 bp->b_flags |= (XBF_DONE | XBF_WRITE_FAIL);
1348 xfs_buf_submit(bp);
1349 return true;
1350 out_stale:
1351 xfs_buf_stale(bp);
1352 bp->b_flags |= XBF_DONE;
1353 bp->b_flags &= ~XBF_WRITE;
1354 trace_xfs_buf_error_relse(bp, _RET_IP_);
1355 return false;
1358 static void
1359 xfs_buf_ioend(
1360 struct xfs_buf *bp)
1362 trace_xfs_buf_iodone(bp, _RET_IP_);
1364 if (bp->b_flags & XBF_READ) {
1365 if (!bp->b_error && xfs_buf_is_vmapped(bp))
1366 invalidate_kernel_vmap_range(bp->b_addr,
1367 xfs_buf_vmap_len(bp));
1368 if (!bp->b_error && bp->b_ops)
1369 bp->b_ops->verify_read(bp);
1370 if (!bp->b_error)
1371 bp->b_flags |= XBF_DONE;
1372 } else {
1373 if (!bp->b_error) {
1374 bp->b_flags &= ~XBF_WRITE_FAIL;
1375 bp->b_flags |= XBF_DONE;
1378 if (unlikely(bp->b_error) && xfs_buf_ioend_handle_error(bp))
1379 return;
1381 /* clear the retry state */
1382 bp->b_last_error = 0;
1383 bp->b_retries = 0;
1384 bp->b_first_retry_time = 0;
1387 * Note that for things like remote attribute buffers, there may
1388 * not be a buffer log item here, so processing the buffer log
1389 * item must remain optional.
1391 if (bp->b_log_item)
1392 xfs_buf_item_done(bp);
1394 if (bp->b_iodone)
1395 bp->b_iodone(bp);
1398 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD |
1399 _XBF_LOGRECOVERY);
1401 if (bp->b_flags & XBF_ASYNC)
1402 xfs_buf_relse(bp);
1403 else
1404 complete(&bp->b_iowait);
1407 static void
1408 xfs_buf_ioend_work(
1409 struct work_struct *work)
1411 struct xfs_buf *bp =
1412 container_of(work, struct xfs_buf, b_ioend_work);
1414 xfs_buf_ioend(bp);
1417 static void
1418 xfs_buf_ioend_async(
1419 struct xfs_buf *bp)
1421 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1422 queue_work(bp->b_mount->m_buf_workqueue, &bp->b_ioend_work);
1425 void
1426 __xfs_buf_ioerror(
1427 struct xfs_buf *bp,
1428 int error,
1429 xfs_failaddr_t failaddr)
1431 ASSERT(error <= 0 && error >= -1000);
1432 bp->b_error = error;
1433 trace_xfs_buf_ioerror(bp, error, failaddr);
1436 void
1437 xfs_buf_ioerror_alert(
1438 struct xfs_buf *bp,
1439 xfs_failaddr_t func)
1441 xfs_buf_alert_ratelimited(bp, "XFS: metadata IO error",
1442 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1443 func, (uint64_t)xfs_buf_daddr(bp),
1444 bp->b_length, -bp->b_error);
1448 * To simulate an I/O failure, the buffer must be locked and held with at least
1449 * three references. The LRU reference is dropped by the stale call. The buf
1450 * item reference is dropped via ioend processing. The third reference is owned
1451 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1453 void
1454 xfs_buf_ioend_fail(
1455 struct xfs_buf *bp)
1457 bp->b_flags &= ~XBF_DONE;
1458 xfs_buf_stale(bp);
1459 xfs_buf_ioerror(bp, -EIO);
1460 xfs_buf_ioend(bp);
1464 xfs_bwrite(
1465 struct xfs_buf *bp)
1467 int error;
1469 ASSERT(xfs_buf_islocked(bp));
1471 bp->b_flags |= XBF_WRITE;
1472 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1473 XBF_DONE);
1475 xfs_buf_submit(bp);
1476 error = xfs_buf_iowait(bp);
1477 if (error)
1478 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
1479 return error;
1482 static void
1483 xfs_buf_bio_end_io(
1484 struct bio *bio)
1486 struct xfs_buf *bp = bio->bi_private;
1488 if (bio->bi_status)
1489 xfs_buf_ioerror(bp, blk_status_to_errno(bio->bi_status));
1490 else if ((bp->b_flags & XBF_WRITE) && (bp->b_flags & XBF_ASYNC) &&
1491 XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_IOERROR))
1492 xfs_buf_ioerror(bp, -EIO);
1494 xfs_buf_ioend_async(bp);
1495 bio_put(bio);
1498 static inline blk_opf_t
1499 xfs_buf_bio_op(
1500 struct xfs_buf *bp)
1502 blk_opf_t op;
1504 if (bp->b_flags & XBF_WRITE) {
1505 op = REQ_OP_WRITE;
1506 } else {
1507 op = REQ_OP_READ;
1508 if (bp->b_flags & XBF_READ_AHEAD)
1509 op |= REQ_RAHEAD;
1512 return op | REQ_META;
1515 static void
1516 xfs_buf_submit_bio(
1517 struct xfs_buf *bp)
1519 unsigned int size = BBTOB(bp->b_length);
1520 unsigned int map = 0, p;
1521 struct blk_plug plug;
1522 struct bio *bio;
1524 bio = bio_alloc(bp->b_target->bt_bdev, bp->b_page_count,
1525 xfs_buf_bio_op(bp), GFP_NOIO);
1526 bio->bi_private = bp;
1527 bio->bi_end_io = xfs_buf_bio_end_io;
1529 if (bp->b_flags & _XBF_KMEM) {
1530 __bio_add_page(bio, virt_to_page(bp->b_addr), size,
1531 bp->b_offset);
1532 } else {
1533 for (p = 0; p < bp->b_page_count; p++)
1534 __bio_add_page(bio, bp->b_pages[p], PAGE_SIZE, 0);
1535 bio->bi_iter.bi_size = size; /* limit to the actual size used */
1537 if (xfs_buf_is_vmapped(bp))
1538 flush_kernel_vmap_range(bp->b_addr,
1539 xfs_buf_vmap_len(bp));
1543 * If there is more than one map segment, split out a new bio for each
1544 * map except of the last one. The last map is handled by the
1545 * remainder of the original bio outside the loop.
1547 blk_start_plug(&plug);
1548 for (map = 0; map < bp->b_map_count - 1; map++) {
1549 struct bio *split;
1551 split = bio_split(bio, bp->b_maps[map].bm_len, GFP_NOFS,
1552 &fs_bio_set);
1553 split->bi_iter.bi_sector = bp->b_maps[map].bm_bn;
1554 bio_chain(split, bio);
1555 submit_bio(split);
1557 bio->bi_iter.bi_sector = bp->b_maps[map].bm_bn;
1558 submit_bio(bio);
1559 blk_finish_plug(&plug);
1563 * Wait for I/O completion of a sync buffer and return the I/O error code.
1565 static int
1566 xfs_buf_iowait(
1567 struct xfs_buf *bp)
1569 ASSERT(!(bp->b_flags & XBF_ASYNC));
1571 trace_xfs_buf_iowait(bp, _RET_IP_);
1572 wait_for_completion(&bp->b_iowait);
1573 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1575 return bp->b_error;
1579 * Run the write verifier callback function if it exists. If this fails, mark
1580 * the buffer with an error and do not dispatch the I/O.
1582 static bool
1583 xfs_buf_verify_write(
1584 struct xfs_buf *bp)
1586 if (bp->b_ops) {
1587 bp->b_ops->verify_write(bp);
1588 if (bp->b_error)
1589 return false;
1590 } else if (bp->b_rhash_key != XFS_BUF_DADDR_NULL) {
1592 * Non-crc filesystems don't attach verifiers during log
1593 * recovery, so don't warn for such filesystems.
1595 if (xfs_has_crc(bp->b_mount)) {
1596 xfs_warn(bp->b_mount,
1597 "%s: no buf ops on daddr 0x%llx len %d",
1598 __func__, xfs_buf_daddr(bp),
1599 bp->b_length);
1600 xfs_hex_dump(bp->b_addr, XFS_CORRUPTION_DUMP_LEN);
1601 dump_stack();
1605 return true;
1609 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1610 * the buffer lock ownership and the current reference to the IO. It is not
1611 * safe to reference the buffer after a call to this function unless the caller
1612 * holds an additional reference itself.
1614 static void
1615 xfs_buf_submit(
1616 struct xfs_buf *bp)
1618 trace_xfs_buf_submit(bp, _RET_IP_);
1620 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1623 * On log shutdown we stale and complete the buffer immediately. We can
1624 * be called to read the superblock before the log has been set up, so
1625 * be careful checking the log state.
1627 * Checking the mount shutdown state here can result in the log tail
1628 * moving inappropriately on disk as the log may not yet be shut down.
1629 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1630 * and move the tail of the log forwards without having written this
1631 * buffer to disk. This corrupts the log tail state in memory, and
1632 * because the log may not be shut down yet, it can then be propagated
1633 * to disk before the log is shutdown. Hence we check log shutdown
1634 * state here rather than mount state to avoid corrupting the log tail
1635 * on shutdown.
1637 if (bp->b_mount->m_log && xlog_is_shutdown(bp->b_mount->m_log)) {
1638 xfs_buf_ioend_fail(bp);
1639 return;
1642 if (bp->b_flags & XBF_WRITE)
1643 xfs_buf_wait_unpin(bp);
1646 * Make sure we capture only current IO errors rather than stale errors
1647 * left over from previous use of the buffer (e.g. failed readahead).
1649 bp->b_error = 0;
1651 if (bp->b_flags & XBF_ASYNC)
1652 xfs_buf_ioacct_inc(bp);
1654 if ((bp->b_flags & XBF_WRITE) && !xfs_buf_verify_write(bp)) {
1655 xfs_force_shutdown(bp->b_mount, SHUTDOWN_CORRUPT_INCORE);
1656 xfs_buf_ioend(bp);
1657 return;
1660 /* In-memory targets are directly mapped, no I/O required. */
1661 if (xfs_buftarg_is_mem(bp->b_target)) {
1662 xfs_buf_ioend(bp);
1663 return;
1666 xfs_buf_submit_bio(bp);
1669 void *
1670 xfs_buf_offset(
1671 struct xfs_buf *bp,
1672 size_t offset)
1674 struct page *page;
1676 if (bp->b_addr)
1677 return bp->b_addr + offset;
1679 page = bp->b_pages[offset >> PAGE_SHIFT];
1680 return page_address(page) + (offset & (PAGE_SIZE-1));
1683 void
1684 xfs_buf_zero(
1685 struct xfs_buf *bp,
1686 size_t boff,
1687 size_t bsize)
1689 size_t bend;
1691 bend = boff + bsize;
1692 while (boff < bend) {
1693 struct page *page;
1694 int page_index, page_offset, csize;
1696 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1697 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1698 page = bp->b_pages[page_index];
1699 csize = min_t(size_t, PAGE_SIZE - page_offset,
1700 BBTOB(bp->b_length) - boff);
1702 ASSERT((csize + page_offset) <= PAGE_SIZE);
1704 memset(page_address(page) + page_offset, 0, csize);
1706 boff += csize;
1711 * Log a message about and stale a buffer that a caller has decided is corrupt.
1713 * This function should be called for the kinds of metadata corruption that
1714 * cannot be detect from a verifier, such as incorrect inter-block relationship
1715 * data. Do /not/ call this function from a verifier function.
1717 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1718 * be marked stale, but b_error will not be set. The caller is responsible for
1719 * releasing the buffer or fixing it.
1721 void
1722 __xfs_buf_mark_corrupt(
1723 struct xfs_buf *bp,
1724 xfs_failaddr_t fa)
1726 ASSERT(bp->b_flags & XBF_DONE);
1728 xfs_buf_corruption_error(bp, fa);
1729 xfs_buf_stale(bp);
1733 * Handling of buffer targets (buftargs).
1737 * Wait for any bufs with callbacks that have been submitted but have not yet
1738 * returned. These buffers will have an elevated hold count, so wait on those
1739 * while freeing all the buffers only held by the LRU.
1741 static enum lru_status
1742 xfs_buftarg_drain_rele(
1743 struct list_head *item,
1744 struct list_lru_one *lru,
1745 void *arg)
1748 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1749 struct list_head *dispose = arg;
1751 if (!spin_trylock(&bp->b_lock))
1752 return LRU_SKIP;
1753 if (bp->b_hold > 1) {
1754 /* need to wait, so skip it this pass */
1755 spin_unlock(&bp->b_lock);
1756 trace_xfs_buf_drain_buftarg(bp, _RET_IP_);
1757 return LRU_SKIP;
1761 * clear the LRU reference count so the buffer doesn't get
1762 * ignored in xfs_buf_rele().
1764 atomic_set(&bp->b_lru_ref, 0);
1765 bp->b_state |= XFS_BSTATE_DISPOSE;
1766 list_lru_isolate_move(lru, item, dispose);
1767 spin_unlock(&bp->b_lock);
1768 return LRU_REMOVED;
1772 * Wait for outstanding I/O on the buftarg to complete.
1774 void
1775 xfs_buftarg_wait(
1776 struct xfs_buftarg *btp)
1779 * First wait on the buftarg I/O count for all in-flight buffers to be
1780 * released. This is critical as new buffers do not make the LRU until
1781 * they are released.
1783 * Next, flush the buffer workqueue to ensure all completion processing
1784 * has finished. Just waiting on buffer locks is not sufficient for
1785 * async IO as the reference count held over IO is not released until
1786 * after the buffer lock is dropped. Hence we need to ensure here that
1787 * all reference counts have been dropped before we start walking the
1788 * LRU list.
1790 while (percpu_counter_sum(&btp->bt_io_count))
1791 delay(100);
1792 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1795 void
1796 xfs_buftarg_drain(
1797 struct xfs_buftarg *btp)
1799 LIST_HEAD(dispose);
1800 int loop = 0;
1801 bool write_fail = false;
1803 xfs_buftarg_wait(btp);
1805 /* loop until there is nothing left on the lru list. */
1806 while (list_lru_count(&btp->bt_lru)) {
1807 list_lru_walk(&btp->bt_lru, xfs_buftarg_drain_rele,
1808 &dispose, LONG_MAX);
1810 while (!list_empty(&dispose)) {
1811 struct xfs_buf *bp;
1812 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1813 list_del_init(&bp->b_lru);
1814 if (bp->b_flags & XBF_WRITE_FAIL) {
1815 write_fail = true;
1816 xfs_buf_alert_ratelimited(bp,
1817 "XFS: Corruption Alert",
1818 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1819 (long long)xfs_buf_daddr(bp));
1821 xfs_buf_rele(bp);
1823 if (loop++ != 0)
1824 delay(100);
1828 * If one or more failed buffers were freed, that means dirty metadata
1829 * was thrown away. This should only ever happen after I/O completion
1830 * handling has elevated I/O error(s) to permanent failures and shuts
1831 * down the journal.
1833 if (write_fail) {
1834 ASSERT(xlog_is_shutdown(btp->bt_mount->m_log));
1835 xfs_alert(btp->bt_mount,
1836 "Please run xfs_repair to determine the extent of the problem.");
1840 static enum lru_status
1841 xfs_buftarg_isolate(
1842 struct list_head *item,
1843 struct list_lru_one *lru,
1844 void *arg)
1846 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1847 struct list_head *dispose = arg;
1850 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1851 * If we fail to get the lock, just skip it.
1853 if (!spin_trylock(&bp->b_lock))
1854 return LRU_SKIP;
1856 * Decrement the b_lru_ref count unless the value is already
1857 * zero. If the value is already zero, we need to reclaim the
1858 * buffer, otherwise it gets another trip through the LRU.
1860 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1861 spin_unlock(&bp->b_lock);
1862 return LRU_ROTATE;
1865 bp->b_state |= XFS_BSTATE_DISPOSE;
1866 list_lru_isolate_move(lru, item, dispose);
1867 spin_unlock(&bp->b_lock);
1868 return LRU_REMOVED;
1871 static unsigned long
1872 xfs_buftarg_shrink_scan(
1873 struct shrinker *shrink,
1874 struct shrink_control *sc)
1876 struct xfs_buftarg *btp = shrink->private_data;
1877 LIST_HEAD(dispose);
1878 unsigned long freed;
1880 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1881 xfs_buftarg_isolate, &dispose);
1883 while (!list_empty(&dispose)) {
1884 struct xfs_buf *bp;
1885 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1886 list_del_init(&bp->b_lru);
1887 xfs_buf_rele(bp);
1890 return freed;
1893 static unsigned long
1894 xfs_buftarg_shrink_count(
1895 struct shrinker *shrink,
1896 struct shrink_control *sc)
1898 struct xfs_buftarg *btp = shrink->private_data;
1899 return list_lru_shrink_count(&btp->bt_lru, sc);
1902 void
1903 xfs_destroy_buftarg(
1904 struct xfs_buftarg *btp)
1906 shrinker_free(btp->bt_shrinker);
1907 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1908 percpu_counter_destroy(&btp->bt_io_count);
1909 list_lru_destroy(&btp->bt_lru);
1912 void
1913 xfs_free_buftarg(
1914 struct xfs_buftarg *btp)
1916 xfs_destroy_buftarg(btp);
1917 fs_put_dax(btp->bt_daxdev, btp->bt_mount);
1918 /* the main block device is closed by kill_block_super */
1919 if (btp->bt_bdev != btp->bt_mount->m_super->s_bdev)
1920 bdev_fput(btp->bt_bdev_file);
1921 kfree(btp);
1925 xfs_setsize_buftarg(
1926 struct xfs_buftarg *btp,
1927 unsigned int sectorsize)
1929 /* Set up metadata sector size info */
1930 btp->bt_meta_sectorsize = sectorsize;
1931 btp->bt_meta_sectormask = sectorsize - 1;
1933 if (set_blocksize(btp->bt_bdev_file, sectorsize)) {
1934 xfs_warn(btp->bt_mount,
1935 "Cannot set_blocksize to %u on device %pg",
1936 sectorsize, btp->bt_bdev);
1937 return -EINVAL;
1940 return 0;
1944 xfs_init_buftarg(
1945 struct xfs_buftarg *btp,
1946 size_t logical_sectorsize,
1947 const char *descr)
1949 /* Set up device logical sector size mask */
1950 btp->bt_logical_sectorsize = logical_sectorsize;
1951 btp->bt_logical_sectormask = logical_sectorsize - 1;
1954 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1955 * per 30 seconds so as to not spam logs too much on repeated errors.
1957 ratelimit_state_init(&btp->bt_ioerror_rl, 30 * HZ,
1958 DEFAULT_RATELIMIT_BURST);
1960 if (list_lru_init(&btp->bt_lru))
1961 return -ENOMEM;
1962 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1963 goto out_destroy_lru;
1965 btp->bt_shrinker =
1966 shrinker_alloc(SHRINKER_NUMA_AWARE, "xfs-buf:%s", descr);
1967 if (!btp->bt_shrinker)
1968 goto out_destroy_io_count;
1969 btp->bt_shrinker->count_objects = xfs_buftarg_shrink_count;
1970 btp->bt_shrinker->scan_objects = xfs_buftarg_shrink_scan;
1971 btp->bt_shrinker->private_data = btp;
1972 shrinker_register(btp->bt_shrinker);
1973 return 0;
1975 out_destroy_io_count:
1976 percpu_counter_destroy(&btp->bt_io_count);
1977 out_destroy_lru:
1978 list_lru_destroy(&btp->bt_lru);
1979 return -ENOMEM;
1982 struct xfs_buftarg *
1983 xfs_alloc_buftarg(
1984 struct xfs_mount *mp,
1985 struct file *bdev_file)
1987 struct xfs_buftarg *btp;
1988 const struct dax_holder_operations *ops = NULL;
1990 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
1991 ops = &xfs_dax_holder_operations;
1992 #endif
1993 btp = kzalloc(sizeof(*btp), GFP_KERNEL | __GFP_NOFAIL);
1995 btp->bt_mount = mp;
1996 btp->bt_bdev_file = bdev_file;
1997 btp->bt_bdev = file_bdev(bdev_file);
1998 btp->bt_dev = btp->bt_bdev->bd_dev;
1999 btp->bt_daxdev = fs_dax_get_by_bdev(btp->bt_bdev, &btp->bt_dax_part_off,
2000 mp, ops);
2002 if (bdev_can_atomic_write(btp->bt_bdev)) {
2003 btp->bt_bdev_awu_min = bdev_atomic_write_unit_min_bytes(
2004 btp->bt_bdev);
2005 btp->bt_bdev_awu_max = bdev_atomic_write_unit_max_bytes(
2006 btp->bt_bdev);
2010 * When allocating the buftargs we have not yet read the super block and
2011 * thus don't know the file system sector size yet.
2013 if (xfs_setsize_buftarg(btp, bdev_logical_block_size(btp->bt_bdev)))
2014 goto error_free;
2015 if (xfs_init_buftarg(btp, bdev_logical_block_size(btp->bt_bdev),
2016 mp->m_super->s_id))
2017 goto error_free;
2019 return btp;
2021 error_free:
2022 kfree(btp);
2023 return NULL;
2026 static inline void
2027 xfs_buf_list_del(
2028 struct xfs_buf *bp)
2030 list_del_init(&bp->b_list);
2031 wake_up_var(&bp->b_list);
2035 * Cancel a delayed write list.
2037 * Remove each buffer from the list, clear the delwri queue flag and drop the
2038 * associated buffer reference.
2040 void
2041 xfs_buf_delwri_cancel(
2042 struct list_head *list)
2044 struct xfs_buf *bp;
2046 while (!list_empty(list)) {
2047 bp = list_first_entry(list, struct xfs_buf, b_list);
2049 xfs_buf_lock(bp);
2050 bp->b_flags &= ~_XBF_DELWRI_Q;
2051 xfs_buf_list_del(bp);
2052 xfs_buf_relse(bp);
2057 * Add a buffer to the delayed write list.
2059 * This queues a buffer for writeout if it hasn't already been. Note that
2060 * neither this routine nor the buffer list submission functions perform
2061 * any internal synchronization. It is expected that the lists are thread-local
2062 * to the callers.
2064 * Returns true if we queued up the buffer, or false if it already had
2065 * been on the buffer list.
2067 bool
2068 xfs_buf_delwri_queue(
2069 struct xfs_buf *bp,
2070 struct list_head *list)
2072 ASSERT(xfs_buf_islocked(bp));
2073 ASSERT(!(bp->b_flags & XBF_READ));
2076 * If the buffer is already marked delwri it already is queued up
2077 * by someone else for imediate writeout. Just ignore it in that
2078 * case.
2080 if (bp->b_flags & _XBF_DELWRI_Q) {
2081 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
2082 return false;
2085 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
2088 * If a buffer gets written out synchronously or marked stale while it
2089 * is on a delwri list we lazily remove it. To do this, the other party
2090 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2091 * It remains referenced and on the list. In a rare corner case it
2092 * might get readded to a delwri list after the synchronous writeout, in
2093 * which case we need just need to re-add the flag here.
2095 bp->b_flags |= _XBF_DELWRI_Q;
2096 if (list_empty(&bp->b_list)) {
2097 xfs_buf_hold(bp);
2098 list_add_tail(&bp->b_list, list);
2101 return true;
2105 * Queue a buffer to this delwri list as part of a data integrity operation.
2106 * If the buffer is on any other delwri list, we'll wait for that to clear
2107 * so that the caller can submit the buffer for IO and wait for the result.
2108 * Callers must ensure the buffer is not already on the list.
2110 void
2111 xfs_buf_delwri_queue_here(
2112 struct xfs_buf *bp,
2113 struct list_head *buffer_list)
2116 * We need this buffer to end up on the /caller's/ delwri list, not any
2117 * old list. This can happen if the buffer is marked stale (which
2118 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2119 * before the AIL has a chance to submit the list.
2121 while (!list_empty(&bp->b_list)) {
2122 xfs_buf_unlock(bp);
2123 wait_var_event(&bp->b_list, list_empty(&bp->b_list));
2124 xfs_buf_lock(bp);
2127 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
2129 xfs_buf_delwri_queue(bp, buffer_list);
2133 * Compare function is more complex than it needs to be because
2134 * the return value is only 32 bits and we are doing comparisons
2135 * on 64 bit values
2137 static int
2138 xfs_buf_cmp(
2139 void *priv,
2140 const struct list_head *a,
2141 const struct list_head *b)
2143 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
2144 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
2145 xfs_daddr_t diff;
2147 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
2148 if (diff < 0)
2149 return -1;
2150 if (diff > 0)
2151 return 1;
2152 return 0;
2155 static bool
2156 xfs_buf_delwri_submit_prep(
2157 struct xfs_buf *bp)
2160 * Someone else might have written the buffer synchronously or marked it
2161 * stale in the meantime. In that case only the _XBF_DELWRI_Q flag got
2162 * cleared, and we have to drop the reference and remove it from the
2163 * list here.
2165 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
2166 xfs_buf_list_del(bp);
2167 xfs_buf_relse(bp);
2168 return false;
2171 trace_xfs_buf_delwri_split(bp, _RET_IP_);
2172 bp->b_flags &= ~_XBF_DELWRI_Q;
2173 bp->b_flags |= XBF_WRITE;
2174 return true;
2178 * Write out a buffer list asynchronously.
2180 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2181 * out and not wait for I/O completion on any of the buffers. This interface
2182 * is only safely useable for callers that can track I/O completion by higher
2183 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2184 * function.
2186 * Note: this function will skip buffers it would block on, and in doing so
2187 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2188 * it is up to the caller to ensure that the buffer list is fully submitted or
2189 * cancelled appropriately when they are finished with the list. Failure to
2190 * cancel or resubmit the list until it is empty will result in leaked buffers
2191 * at unmount time.
2194 xfs_buf_delwri_submit_nowait(
2195 struct list_head *buffer_list)
2197 struct xfs_buf *bp, *n;
2198 int pinned = 0;
2199 struct blk_plug plug;
2201 list_sort(NULL, buffer_list, xfs_buf_cmp);
2203 blk_start_plug(&plug);
2204 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2205 if (!xfs_buf_trylock(bp))
2206 continue;
2207 if (xfs_buf_ispinned(bp)) {
2208 xfs_buf_unlock(bp);
2209 pinned++;
2210 continue;
2212 if (!xfs_buf_delwri_submit_prep(bp))
2213 continue;
2214 bp->b_flags |= XBF_ASYNC;
2215 xfs_buf_list_del(bp);
2216 xfs_buf_submit(bp);
2218 blk_finish_plug(&plug);
2220 return pinned;
2224 * Write out a buffer list synchronously.
2226 * This will take the @buffer_list, write all buffers out and wait for I/O
2227 * completion on all of the buffers. @buffer_list is consumed by the function,
2228 * so callers must have some other way of tracking buffers if they require such
2229 * functionality.
2232 xfs_buf_delwri_submit(
2233 struct list_head *buffer_list)
2235 LIST_HEAD (wait_list);
2236 int error = 0, error2;
2237 struct xfs_buf *bp, *n;
2238 struct blk_plug plug;
2240 list_sort(NULL, buffer_list, xfs_buf_cmp);
2242 blk_start_plug(&plug);
2243 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
2244 xfs_buf_lock(bp);
2245 if (!xfs_buf_delwri_submit_prep(bp))
2246 continue;
2247 bp->b_flags &= ~XBF_ASYNC;
2248 list_move_tail(&bp->b_list, &wait_list);
2249 xfs_buf_submit(bp);
2251 blk_finish_plug(&plug);
2253 /* Wait for IO to complete. */
2254 while (!list_empty(&wait_list)) {
2255 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2257 xfs_buf_list_del(bp);
2260 * Wait on the locked buffer, check for errors and unlock and
2261 * release the delwri queue reference.
2263 error2 = xfs_buf_iowait(bp);
2264 xfs_buf_relse(bp);
2265 if (!error)
2266 error = error2;
2269 return error;
2273 * Push a single buffer on a delwri queue.
2275 * The purpose of this function is to submit a single buffer of a delwri queue
2276 * and return with the buffer still on the original queue.
2278 * The buffer locking and queue management logic between _delwri_pushbuf() and
2279 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2280 * before returning.
2283 xfs_buf_delwri_pushbuf(
2284 struct xfs_buf *bp,
2285 struct list_head *buffer_list)
2287 int error;
2289 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2291 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2293 xfs_buf_lock(bp);
2294 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_ASYNC);
2295 bp->b_flags |= XBF_WRITE;
2296 xfs_buf_submit(bp);
2299 * The buffer is now locked, under I/O but still on the original delwri
2300 * queue. Wait for I/O completion, restore the DELWRI_Q flag and
2301 * return with the buffer unlocked and still on the original queue.
2303 error = xfs_buf_iowait(bp);
2304 bp->b_flags |= _XBF_DELWRI_Q;
2305 xfs_buf_unlock(bp);
2307 return error;
2310 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2313 * Set the lru reference count to 0 based on the error injection tag.
2314 * This allows userspace to disrupt buffer caching for debug/testing
2315 * purposes.
2317 if (XFS_TEST_ERROR(false, bp->b_mount, XFS_ERRTAG_BUF_LRU_REF))
2318 lru_ref = 0;
2320 atomic_set(&bp->b_lru_ref, lru_ref);
2324 * Verify an on-disk magic value against the magic value specified in the
2325 * verifier structure. The verifier magic is in disk byte order so the caller is
2326 * expected to pass the value directly from disk.
2328 bool
2329 xfs_verify_magic(
2330 struct xfs_buf *bp,
2331 __be32 dmagic)
2333 struct xfs_mount *mp = bp->b_mount;
2334 int idx;
2336 idx = xfs_has_crc(mp);
2337 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic[idx]))
2338 return false;
2339 return dmagic == bp->b_ops->magic[idx];
2342 * Verify an on-disk magic value against the magic value specified in the
2343 * verifier structure. The verifier magic is in disk byte order so the caller is
2344 * expected to pass the value directly from disk.
2346 bool
2347 xfs_verify_magic16(
2348 struct xfs_buf *bp,
2349 __be16 dmagic)
2351 struct xfs_mount *mp = bp->b_mount;
2352 int idx;
2354 idx = xfs_has_crc(mp);
2355 if (WARN_ON(!bp->b_ops || !bp->b_ops->magic16[idx]))
2356 return false;
2357 return dmagic == bp->b_ops->magic16[idx];