1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7 #include <linux/backing-dev.h>
10 #include "xfs_shared.h"
11 #include "xfs_format.h"
12 #include "xfs_log_format.h"
13 #include "xfs_trans_resv.h"
14 #include "xfs_mount.h"
15 #include "xfs_trace.h"
17 #include "xfs_log_recover.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trans.h"
20 #include "xfs_buf_item.h"
21 #include "xfs_errortag.h"
22 #include "xfs_error.h"
24 #include "xfs_buf_mem.h"
25 #include "xfs_notify_failure.h"
27 struct kmem_cache
*xfs_buf_cache
;
34 * b_sema (caller holds)
38 * b_sema (caller holds)
46 * xfs_buftarg_drain_rele
48 * b_lock (trylock due to inversion)
52 * b_lock (trylock due to inversion)
55 static void xfs_buf_submit(struct xfs_buf
*bp
);
56 static int xfs_buf_iowait(struct xfs_buf
*bp
);
58 static inline bool xfs_buf_is_uncached(struct xfs_buf
*bp
)
60 return bp
->b_rhash_key
== XFS_BUF_DADDR_NULL
;
68 * Return true if the buffer is vmapped.
70 * b_addr is null if the buffer is not mapped, but the code is clever
71 * enough to know it doesn't have to map a single page, so the check has
72 * to be both for b_addr and bp->b_page_count > 1.
74 return bp
->b_addr
&& bp
->b_page_count
> 1;
81 return (bp
->b_page_count
* PAGE_SIZE
);
85 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
86 * this buffer. The count is incremented once per buffer (per hold cycle)
87 * because the corresponding decrement is deferred to buffer release. Buffers
88 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
89 * tracking adds unnecessary overhead. This is used for sychronization purposes
90 * with unmount (see xfs_buftarg_drain()), so all we really need is a count of
93 * Buffers that are never released (e.g., superblock, iclog buffers) must set
94 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
95 * never reaches zero and unmount hangs indefinitely.
101 if (bp
->b_flags
& XBF_NO_IOACCT
)
104 ASSERT(bp
->b_flags
& XBF_ASYNC
);
105 spin_lock(&bp
->b_lock
);
106 if (!(bp
->b_state
& XFS_BSTATE_IN_FLIGHT
)) {
107 bp
->b_state
|= XFS_BSTATE_IN_FLIGHT
;
108 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
110 spin_unlock(&bp
->b_lock
);
114 * Clear the in-flight state on a buffer about to be released to the LRU or
115 * freed and unaccount from the buftarg.
118 __xfs_buf_ioacct_dec(
121 lockdep_assert_held(&bp
->b_lock
);
123 if (bp
->b_state
& XFS_BSTATE_IN_FLIGHT
) {
124 bp
->b_state
&= ~XFS_BSTATE_IN_FLIGHT
;
125 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
130 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
131 * b_lru_ref count so that the buffer is freed immediately when the buffer
132 * reference count falls to zero. If the buffer is already on the LRU, we need
133 * to remove the reference that LRU holds on the buffer.
135 * This prevents build-up of stale buffers on the LRU.
141 ASSERT(xfs_buf_islocked(bp
));
143 bp
->b_flags
|= XBF_STALE
;
146 * Clear the delwri status so that a delwri queue walker will not
147 * flush this buffer to disk now that it is stale. The delwri queue has
148 * a reference to the buffer, so this is safe to do.
150 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
153 * Once the buffer is marked stale and unlocked, a subsequent lookup
154 * could reset b_flags. There is no guarantee that the buffer is
155 * unaccounted (released to LRU) before that occurs. Drop in-flight
156 * status now to preserve accounting consistency.
158 spin_lock(&bp
->b_lock
);
159 __xfs_buf_ioacct_dec(bp
);
161 atomic_set(&bp
->b_lru_ref
, 0);
162 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
163 (list_lru_del_obj(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
166 ASSERT(bp
->b_hold
>= 1);
167 spin_unlock(&bp
->b_lock
);
175 ASSERT(bp
->b_maps
== NULL
);
176 bp
->b_map_count
= map_count
;
178 if (map_count
== 1) {
179 bp
->b_maps
= &bp
->__b_map
;
183 bp
->b_maps
= kzalloc(map_count
* sizeof(struct xfs_buf_map
),
184 GFP_KERNEL
| __GFP_NOLOCKDEP
| __GFP_NOFAIL
);
194 if (bp
->b_maps
!= &bp
->__b_map
) {
202 struct xfs_buftarg
*target
,
203 struct xfs_buf_map
*map
,
205 xfs_buf_flags_t flags
,
206 struct xfs_buf
**bpp
)
213 bp
= kmem_cache_zalloc(xfs_buf_cache
,
214 GFP_KERNEL
| __GFP_NOLOCKDEP
| __GFP_NOFAIL
);
217 * We don't want certain flags to appear in b_flags unless they are
218 * specifically set by later operations on the buffer.
220 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
223 * A new buffer is held and locked by the owner. This ensures that the
224 * buffer is owned by the caller and racing RCU lookups right after
225 * inserting into the hash table are safe (and will have to wait for
226 * the unlock to do anything non-trivial).
229 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
231 spin_lock_init(&bp
->b_lock
);
232 atomic_set(&bp
->b_lru_ref
, 1);
233 init_completion(&bp
->b_iowait
);
234 INIT_LIST_HEAD(&bp
->b_lru
);
235 INIT_LIST_HEAD(&bp
->b_list
);
236 INIT_LIST_HEAD(&bp
->b_li_list
);
237 bp
->b_target
= target
;
238 bp
->b_mount
= target
->bt_mount
;
241 error
= xfs_buf_get_maps(bp
, nmaps
);
243 kmem_cache_free(xfs_buf_cache
, bp
);
247 bp
->b_rhash_key
= map
[0].bm_bn
;
249 for (i
= 0; i
< nmaps
; i
++) {
250 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
251 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
252 bp
->b_length
+= map
[i
].bm_len
;
255 atomic_set(&bp
->b_pin_count
, 0);
256 init_waitqueue_head(&bp
->b_waiters
);
258 XFS_STATS_INC(bp
->b_mount
, xb_create
);
259 trace_xfs_buf_init(bp
, _RET_IP_
);
271 ASSERT(bp
->b_flags
& _XBF_PAGES
);
273 if (xfs_buf_is_vmapped(bp
))
274 vm_unmap_ram(bp
->b_addr
, bp
->b_page_count
);
276 for (i
= 0; i
< bp
->b_page_count
; i
++) {
278 __free_page(bp
->b_pages
[i
]);
280 mm_account_reclaimed_pages(bp
->b_page_count
);
282 if (bp
->b_pages
!= bp
->b_page_array
)
285 bp
->b_flags
&= ~_XBF_PAGES
;
289 xfs_buf_free_callback(
290 struct callback_head
*cb
)
292 struct xfs_buf
*bp
= container_of(cb
, struct xfs_buf
, b_rcu
);
294 xfs_buf_free_maps(bp
);
295 kmem_cache_free(xfs_buf_cache
, bp
);
302 trace_xfs_buf_free(bp
, _RET_IP_
);
304 ASSERT(list_empty(&bp
->b_lru
));
306 if (xfs_buftarg_is_mem(bp
->b_target
))
307 xmbuf_unmap_page(bp
);
308 else if (bp
->b_flags
& _XBF_PAGES
)
309 xfs_buf_free_pages(bp
);
310 else if (bp
->b_flags
& _XBF_KMEM
)
313 call_rcu(&bp
->b_rcu
, xfs_buf_free_callback
);
319 xfs_buf_flags_t flags
)
321 gfp_t gfp_mask
= GFP_KERNEL
| __GFP_NOLOCKDEP
| __GFP_NOFAIL
;
322 size_t size
= BBTOB(bp
->b_length
);
324 /* Assure zeroed buffer for non-read cases. */
325 if (!(flags
& XBF_READ
))
326 gfp_mask
|= __GFP_ZERO
;
328 bp
->b_addr
= kmalloc(size
, gfp_mask
);
332 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
333 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
334 /* b_addr spans two pages - use alloc_page instead */
339 bp
->b_offset
= offset_in_page(bp
->b_addr
);
340 bp
->b_pages
= bp
->b_page_array
;
341 bp
->b_pages
[0] = kmem_to_page(bp
->b_addr
);
342 bp
->b_page_count
= 1;
343 bp
->b_flags
|= _XBF_KMEM
;
350 xfs_buf_flags_t flags
)
352 gfp_t gfp_mask
= GFP_KERNEL
| __GFP_NOLOCKDEP
| __GFP_NOWARN
;
355 if (flags
& XBF_READ_AHEAD
)
356 gfp_mask
|= __GFP_NORETRY
;
358 /* Make sure that we have a page list */
359 bp
->b_page_count
= DIV_ROUND_UP(BBTOB(bp
->b_length
), PAGE_SIZE
);
360 if (bp
->b_page_count
<= XB_PAGES
) {
361 bp
->b_pages
= bp
->b_page_array
;
363 bp
->b_pages
= kzalloc(sizeof(struct page
*) * bp
->b_page_count
,
368 bp
->b_flags
|= _XBF_PAGES
;
370 /* Assure zeroed buffer for non-read cases. */
371 if (!(flags
& XBF_READ
))
372 gfp_mask
|= __GFP_ZERO
;
375 * Bulk filling of pages can take multiple calls. Not filling the entire
376 * array is not an allocation failure, so don't back off if we get at
377 * least one extra page.
382 filled
= alloc_pages_bulk(gfp_mask
, bp
->b_page_count
,
384 if (filled
== bp
->b_page_count
) {
385 XFS_STATS_INC(bp
->b_mount
, xb_page_found
);
392 if (flags
& XBF_READ_AHEAD
) {
393 xfs_buf_free_pages(bp
);
397 XFS_STATS_INC(bp
->b_mount
, xb_page_retries
);
398 memalloc_retry_wait(gfp_mask
);
404 * Map buffer into kernel address-space if necessary.
409 xfs_buf_flags_t flags
)
411 ASSERT(bp
->b_flags
& _XBF_PAGES
);
412 if (bp
->b_page_count
== 1) {
413 /* A single page buffer is always mappable */
414 bp
->b_addr
= page_address(bp
->b_pages
[0]);
415 } else if (flags
& XBF_UNMAPPED
) {
422 * vm_map_ram() will allocate auxiliary structures (e.g.
423 * pagetables) with GFP_KERNEL, yet we often under a scoped nofs
424 * context here. Mixing GFP_KERNEL with GFP_NOFS allocations
425 * from the same call site that can be run from both above and
426 * below memory reclaim causes lockdep false positives. Hence we
427 * always need to force this allocation to nofs context because
428 * we can't pass __GFP_NOLOCKDEP down to auxillary structures to
429 * prevent false positive lockdep reports.
431 * XXX(dgc): I think dquot reclaim is the only place we can get
432 * to this function from memory reclaim context now. If we fix
433 * that like we've fixed inode reclaim to avoid writeback from
434 * reclaim, this nofs wrapping can go away.
436 nofs_flag
= memalloc_nofs_save();
438 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
443 } while (retried
++ <= 1);
444 memalloc_nofs_restore(nofs_flag
);
454 * Finding and Reading Buffers
458 struct rhashtable_compare_arg
*arg
,
461 const struct xfs_buf_map
*map
= arg
->key
;
462 const struct xfs_buf
*bp
= obj
;
465 * The key hashing in the lookup path depends on the key being the
466 * first element of the compare_arg, make sure to assert this.
468 BUILD_BUG_ON(offsetof(struct xfs_buf_map
, bm_bn
) != 0);
470 if (bp
->b_rhash_key
!= map
->bm_bn
)
473 if (unlikely(bp
->b_length
!= map
->bm_len
)) {
475 * found a block number match. If the range doesn't
476 * match, the only way this is allowed is if the buffer
477 * in the cache is stale and the transaction that made
478 * it stale has not yet committed. i.e. we are
479 * reallocating a busy extent. Skip this buffer and
480 * continue searching for an exact match.
482 * Note: If we're scanning for incore buffers to stale, don't
483 * complain if we find non-stale buffers.
485 if (!(map
->bm_flags
& XBM_LIVESCAN
))
486 ASSERT(bp
->b_flags
& XBF_STALE
);
492 static const struct rhashtable_params xfs_buf_hash_params
= {
493 .min_size
= 32, /* empty AGs have minimal footprint */
495 .key_len
= sizeof(xfs_daddr_t
),
496 .key_offset
= offsetof(struct xfs_buf
, b_rhash_key
),
497 .head_offset
= offsetof(struct xfs_buf
, b_rhash_head
),
498 .automatic_shrinking
= true,
499 .obj_cmpfn
= _xfs_buf_obj_cmp
,
504 struct xfs_buf_cache
*bch
)
506 return rhashtable_init(&bch
->bc_hash
, &xfs_buf_hash_params
);
510 xfs_buf_cache_destroy(
511 struct xfs_buf_cache
*bch
)
513 rhashtable_destroy(&bch
->bc_hash
);
518 struct xfs_buftarg
*btp
,
519 struct xfs_buf_map
*map
)
523 /* Check for IOs smaller than the sector size / not sector aligned */
524 ASSERT(!(BBTOB(map
->bm_len
) < btp
->bt_meta_sectorsize
));
525 ASSERT(!(BBTOB(map
->bm_bn
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
528 * Corrupted block numbers can get through to here, unfortunately, so we
529 * have to check that the buffer falls within the filesystem bounds.
531 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
532 if (map
->bm_bn
< 0 || map
->bm_bn
>= eofs
) {
533 xfs_alert(btp
->bt_mount
,
534 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
535 __func__
, map
->bm_bn
, eofs
);
537 return -EFSCORRUPTED
;
545 xfs_buf_flags_t flags
)
547 if (flags
& XBF_TRYLOCK
) {
548 if (!xfs_buf_trylock(bp
)) {
549 XFS_STATS_INC(bp
->b_mount
, xb_busy_locked
);
554 XFS_STATS_INC(bp
->b_mount
, xb_get_locked_waited
);
558 * if the buffer is stale, clear all the external state associated with
559 * it. We need to keep flags such as how we allocated the buffer memory
562 if (bp
->b_flags
& XBF_STALE
) {
563 if (flags
& XBF_LIVESCAN
) {
567 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
568 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
578 spin_lock(&bp
->b_lock
);
579 if (bp
->b_hold
== 0) {
580 spin_unlock(&bp
->b_lock
);
584 spin_unlock(&bp
->b_lock
);
590 struct xfs_buf_cache
*bch
,
591 struct xfs_buf_map
*map
,
592 xfs_buf_flags_t flags
,
593 struct xfs_buf
**bpp
)
599 bp
= rhashtable_lookup(&bch
->bc_hash
, map
, xfs_buf_hash_params
);
600 if (!bp
|| !xfs_buf_try_hold(bp
)) {
606 error
= xfs_buf_find_lock(bp
, flags
);
612 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
618 * Insert the new_bp into the hash table. This consumes the perag reference
619 * taken for the lookup regardless of the result of the insert.
623 struct xfs_buftarg
*btp
,
624 struct xfs_buf_cache
*bch
,
625 struct xfs_perag
*pag
,
626 struct xfs_buf_map
*cmap
,
627 struct xfs_buf_map
*map
,
629 xfs_buf_flags_t flags
,
630 struct xfs_buf
**bpp
)
632 struct xfs_buf
*new_bp
;
636 error
= _xfs_buf_alloc(btp
, map
, nmaps
, flags
, &new_bp
);
640 if (xfs_buftarg_is_mem(new_bp
->b_target
)) {
641 error
= xmbuf_map_page(new_bp
);
642 } else if (BBTOB(new_bp
->b_length
) >= PAGE_SIZE
||
643 xfs_buf_alloc_kmem(new_bp
, flags
) < 0) {
645 * For buffers that fit entirely within a single page, first
646 * attempt to allocate the memory from the heap to minimise
647 * memory usage. If we can't get heap memory for these small
648 * buffers, we fall back to using the page allocator.
650 error
= xfs_buf_alloc_pages(new_bp
, flags
);
655 /* The new buffer keeps the perag reference until it is freed. */
659 bp
= rhashtable_lookup_get_insert_fast(&bch
->bc_hash
,
660 &new_bp
->b_rhash_head
, xfs_buf_hash_params
);
666 if (bp
&& xfs_buf_try_hold(bp
)) {
667 /* found an existing buffer */
669 error
= xfs_buf_find_lock(bp
, flags
);
682 xfs_buf_free(new_bp
);
689 static inline struct xfs_perag
*
691 struct xfs_buftarg
*btp
,
692 const struct xfs_buf_map
*map
)
694 struct xfs_mount
*mp
= btp
->bt_mount
;
696 if (xfs_buftarg_is_mem(btp
))
698 return xfs_perag_get(mp
, xfs_daddr_to_agno(mp
, map
->bm_bn
));
701 static inline struct xfs_buf_cache
*
702 xfs_buftarg_buf_cache(
703 struct xfs_buftarg
*btp
,
704 struct xfs_perag
*pag
)
707 return &pag
->pag_bcache
;
708 return btp
->bt_cache
;
712 * Assembles a buffer covering the specified range. The code is optimised for
713 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
714 * more hits than misses.
718 struct xfs_buftarg
*btp
,
719 struct xfs_buf_map
*map
,
721 xfs_buf_flags_t flags
,
722 struct xfs_buf
**bpp
)
724 struct xfs_buf_cache
*bch
;
725 struct xfs_perag
*pag
;
726 struct xfs_buf
*bp
= NULL
;
727 struct xfs_buf_map cmap
= { .bm_bn
= map
[0].bm_bn
};
731 if (flags
& XBF_LIVESCAN
)
732 cmap
.bm_flags
|= XBM_LIVESCAN
;
733 for (i
= 0; i
< nmaps
; i
++)
734 cmap
.bm_len
+= map
[i
].bm_len
;
736 error
= xfs_buf_map_verify(btp
, &cmap
);
740 pag
= xfs_buftarg_get_pag(btp
, &cmap
);
741 bch
= xfs_buftarg_buf_cache(btp
, pag
);
743 error
= xfs_buf_lookup(bch
, &cmap
, flags
, &bp
);
744 if (error
&& error
!= -ENOENT
)
747 /* cache hits always outnumber misses by at least 10:1 */
749 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
751 if (flags
& XBF_INCORE
)
754 /* xfs_buf_find_insert() consumes the perag reference. */
755 error
= xfs_buf_find_insert(btp
, bch
, pag
, &cmap
, map
, nmaps
,
760 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
765 /* We do not hold a perag reference anymore. */
767 error
= _xfs_buf_map_pages(bp
, flags
);
768 if (unlikely(error
)) {
769 xfs_warn_ratelimited(btp
->bt_mount
,
770 "%s: failed to map %u pages", __func__
,
778 * Clear b_error if this is a lookup from a caller that doesn't expect
779 * valid data to be found in the buffer.
781 if (!(flags
& XBF_READ
))
782 xfs_buf_ioerror(bp
, 0);
784 XFS_STATS_INC(btp
->bt_mount
, xb_get
);
785 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
798 xfs_buf_flags_t flags
)
800 ASSERT(!(flags
& XBF_WRITE
));
801 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
803 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
| XBF_DONE
);
804 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
807 if (flags
& XBF_ASYNC
)
809 return xfs_buf_iowait(bp
);
813 * Reverify a buffer found in cache without an attached ->b_ops.
815 * If the caller passed an ops structure and the buffer doesn't have ops
816 * assigned, set the ops and use it to verify the contents. If verification
817 * fails, clear XBF_DONE. We assume the buffer has no recorded errors and is
818 * already in XBF_DONE state on entry.
820 * Under normal operations, every in-core buffer is verified on read I/O
821 * completion. There are two scenarios that can lead to in-core buffers without
822 * an assigned ->b_ops. The first is during log recovery of buffers on a V4
823 * filesystem, though these buffers are purged at the end of recovery. The
824 * other is online repair, which intentionally reads with a NULL buffer ops to
825 * run several verifiers across an in-core buffer in order to establish buffer
826 * type. If repair can't establish that, the buffer will be left in memory
827 * with NULL buffer ops.
832 const struct xfs_buf_ops
*ops
)
834 ASSERT(bp
->b_flags
& XBF_DONE
);
835 ASSERT(bp
->b_error
== 0);
837 if (!ops
|| bp
->b_ops
)
841 bp
->b_ops
->verify_read(bp
);
843 bp
->b_flags
&= ~XBF_DONE
;
849 struct xfs_buftarg
*target
,
850 struct xfs_buf_map
*map
,
852 xfs_buf_flags_t flags
,
853 struct xfs_buf
**bpp
,
854 const struct xfs_buf_ops
*ops
,
863 error
= xfs_buf_get_map(target
, map
, nmaps
, flags
, &bp
);
867 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
869 if (!(bp
->b_flags
& XBF_DONE
)) {
870 /* Initiate the buffer read and wait. */
871 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
873 error
= _xfs_buf_read(bp
, flags
);
875 /* Readahead iodone already dropped the buffer, so exit. */
876 if (flags
& XBF_ASYNC
)
879 /* Buffer already read; all we need to do is check it. */
880 error
= xfs_buf_reverify(bp
, ops
);
882 /* Readahead already finished; drop the buffer and exit. */
883 if (flags
& XBF_ASYNC
) {
888 /* We do not want read in the flags */
889 bp
->b_flags
&= ~XBF_READ
;
890 ASSERT(bp
->b_ops
!= NULL
|| ops
== NULL
);
894 * If we've had a read error, then the contents of the buffer are
895 * invalid and should not be used. To ensure that a followup read tries
896 * to pull the buffer from disk again, we clear the XBF_DONE flag and
897 * mark the buffer stale. This ensures that anyone who has a current
898 * reference to the buffer will interpret it's contents correctly and
899 * future cache lookups will also treat it as an empty, uninitialised
904 * Check against log shutdown for error reporting because
905 * metadata writeback may require a read first and we need to
906 * report errors in metadata writeback until the log is shut
907 * down. High level transaction read functions already check
908 * against mount shutdown, anyway, so we only need to be
909 * concerned about low level IO interactions here.
911 if (!xlog_is_shutdown(target
->bt_mount
->m_log
))
912 xfs_buf_ioerror_alert(bp
, fa
);
914 bp
->b_flags
&= ~XBF_DONE
;
918 /* bad CRC means corrupted metadata */
919 if (error
== -EFSBADCRC
)
920 error
= -EFSCORRUPTED
;
929 * If we are not low on memory then do the readahead in a deadlock
933 xfs_buf_readahead_map(
934 struct xfs_buftarg
*target
,
935 struct xfs_buf_map
*map
,
937 const struct xfs_buf_ops
*ops
)
942 * Currently we don't have a good means or justification for performing
943 * xmbuf_map_page asynchronously, so we don't do readahead.
945 if (xfs_buftarg_is_mem(target
))
948 xfs_buf_read_map(target
, map
, nmaps
,
949 XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
, &bp
, ops
,
954 * Read an uncached buffer from disk. Allocates and returns a locked
955 * buffer containing the disk contents or nothing. Uncached buffers always have
956 * a cache index of XFS_BUF_DADDR_NULL so we can easily determine if the buffer
957 * is cached or uncached during fault diagnosis.
960 xfs_buf_read_uncached(
961 struct xfs_buftarg
*target
,
964 xfs_buf_flags_t flags
,
965 struct xfs_buf
**bpp
,
966 const struct xfs_buf_ops
*ops
)
973 error
= xfs_buf_get_uncached(target
, numblks
, flags
, &bp
);
977 /* set up the buffer for a read IO */
978 ASSERT(bp
->b_map_count
== 1);
979 bp
->b_rhash_key
= XFS_BUF_DADDR_NULL
;
980 bp
->b_maps
[0].bm_bn
= daddr
;
981 bp
->b_flags
|= XBF_READ
;
985 error
= xfs_buf_iowait(bp
);
996 xfs_buf_get_uncached(
997 struct xfs_buftarg
*target
,
999 xfs_buf_flags_t flags
,
1000 struct xfs_buf
**bpp
)
1004 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
1008 /* flags might contain irrelevant bits, pass only what we care about */
1009 error
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
, &bp
);
1013 if (xfs_buftarg_is_mem(bp
->b_target
))
1014 error
= xmbuf_map_page(bp
);
1016 error
= xfs_buf_alloc_pages(bp
, flags
);
1020 error
= _xfs_buf_map_pages(bp
, 0);
1021 if (unlikely(error
)) {
1022 xfs_warn(target
->bt_mount
,
1023 "%s: failed to map pages", __func__
);
1027 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
1037 * Increment reference count on buffer, to hold the buffer concurrently
1038 * with another thread which may release (free) the buffer asynchronously.
1039 * Must hold the buffer already to call this function.
1045 trace_xfs_buf_hold(bp
, _RET_IP_
);
1047 spin_lock(&bp
->b_lock
);
1049 spin_unlock(&bp
->b_lock
);
1053 xfs_buf_rele_uncached(
1056 ASSERT(list_empty(&bp
->b_lru
));
1058 spin_lock(&bp
->b_lock
);
1060 spin_unlock(&bp
->b_lock
);
1063 __xfs_buf_ioacct_dec(bp
);
1064 spin_unlock(&bp
->b_lock
);
1069 xfs_buf_rele_cached(
1072 struct xfs_buftarg
*btp
= bp
->b_target
;
1073 struct xfs_perag
*pag
= bp
->b_pag
;
1074 struct xfs_buf_cache
*bch
= xfs_buftarg_buf_cache(btp
, pag
);
1075 bool freebuf
= false;
1077 trace_xfs_buf_rele(bp
, _RET_IP_
);
1079 spin_lock(&bp
->b_lock
);
1080 ASSERT(bp
->b_hold
>= 1);
1081 if (bp
->b_hold
> 1) {
1083 * Drop the in-flight state if the buffer is already on the LRU
1084 * and it holds the only reference. This is racy because we
1085 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1086 * ensures the decrement occurs only once per-buf.
1088 if (--bp
->b_hold
== 1 && !list_empty(&bp
->b_lru
))
1089 __xfs_buf_ioacct_dec(bp
);
1093 /* we are asked to drop the last reference */
1094 __xfs_buf_ioacct_dec(bp
);
1095 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
1097 * If the buffer is added to the LRU, keep the reference to the
1098 * buffer for the LRU and clear the (now stale) dispose list
1099 * state flag, else drop the reference.
1101 if (list_lru_add_obj(&btp
->bt_lru
, &bp
->b_lru
))
1102 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
1108 * most of the time buffers will already be removed from the
1109 * LRU, so optimise that case by checking for the
1110 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1111 * was on was the disposal list
1113 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
1114 list_lru_del_obj(&btp
->bt_lru
, &bp
->b_lru
);
1116 ASSERT(list_empty(&bp
->b_lru
));
1119 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1120 rhashtable_remove_fast(&bch
->bc_hash
, &bp
->b_rhash_head
,
1121 xfs_buf_hash_params
);
1128 spin_unlock(&bp
->b_lock
);
1135 * Release a hold on the specified buffer.
1141 trace_xfs_buf_rele(bp
, _RET_IP_
);
1142 if (xfs_buf_is_uncached(bp
))
1143 xfs_buf_rele_uncached(bp
);
1145 xfs_buf_rele_cached(bp
);
1149 * Lock a buffer object, if it is not already locked.
1151 * If we come across a stale, pinned, locked buffer, we know that we are
1152 * being asked to lock a buffer that has been reallocated. Because it is
1153 * pinned, we know that the log has not been pushed to disk and hence it
1154 * will still be locked. Rather than continuing to have trylock attempts
1155 * fail until someone else pushes the log, push it ourselves before
1156 * returning. This means that the xfsaild will not get stuck trying
1157 * to push on stale inode buffers.
1165 locked
= down_trylock(&bp
->b_sema
) == 0;
1167 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1169 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1174 * Lock a buffer object.
1176 * If we come across a stale, pinned, locked buffer, we know that we
1177 * are being asked to lock a buffer that has been reallocated. Because
1178 * it is pinned, we know that the log has not been pushed to disk and
1179 * hence it will still be locked. Rather than sleeping until someone
1180 * else pushes the log, push it ourselves before trying to get the lock.
1186 trace_xfs_buf_lock(bp
, _RET_IP_
);
1188 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1189 xfs_log_force(bp
->b_mount
, 0);
1192 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1199 ASSERT(xfs_buf_islocked(bp
));
1202 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1209 DECLARE_WAITQUEUE (wait
, current
);
1211 if (atomic_read(&bp
->b_pin_count
) == 0)
1214 add_wait_queue(&bp
->b_waiters
, &wait
);
1216 set_current_state(TASK_UNINTERRUPTIBLE
);
1217 if (atomic_read(&bp
->b_pin_count
) == 0)
1221 remove_wait_queue(&bp
->b_waiters
, &wait
);
1222 set_current_state(TASK_RUNNING
);
1226 xfs_buf_ioerror_alert_ratelimited(
1229 static unsigned long lasttime
;
1230 static struct xfs_buftarg
*lasttarg
;
1232 if (bp
->b_target
!= lasttarg
||
1233 time_after(jiffies
, (lasttime
+ 5*HZ
))) {
1235 xfs_buf_ioerror_alert(bp
, __this_address
);
1237 lasttarg
= bp
->b_target
;
1241 * Account for this latest trip around the retry handler, and decide if
1242 * we've failed enough times to constitute a permanent failure.
1245 xfs_buf_ioerror_permanent(
1247 struct xfs_error_cfg
*cfg
)
1249 struct xfs_mount
*mp
= bp
->b_mount
;
1251 if (cfg
->max_retries
!= XFS_ERR_RETRY_FOREVER
&&
1252 ++bp
->b_retries
> cfg
->max_retries
)
1254 if (cfg
->retry_timeout
!= XFS_ERR_RETRY_FOREVER
&&
1255 time_after(jiffies
, cfg
->retry_timeout
+ bp
->b_first_retry_time
))
1258 /* At unmount we may treat errors differently */
1259 if (xfs_is_unmounting(mp
) && mp
->m_fail_unmount
)
1266 * On a sync write or shutdown we just want to stale the buffer and let the
1267 * caller handle the error in bp->b_error appropriately.
1269 * If the write was asynchronous then no one will be looking for the error. If
1270 * this is the first failure of this type, clear the error state and write the
1271 * buffer out again. This means we always retry an async write failure at least
1272 * once, but we also need to set the buffer up to behave correctly now for
1273 * repeated failures.
1275 * If we get repeated async write failures, then we take action according to the
1276 * error configuration we have been set up to use.
1278 * Returns true if this function took care of error handling and the caller must
1279 * not touch the buffer again. Return false if the caller should proceed with
1280 * normal I/O completion handling.
1283 xfs_buf_ioend_handle_error(
1286 struct xfs_mount
*mp
= bp
->b_mount
;
1287 struct xfs_error_cfg
*cfg
;
1288 struct xfs_log_item
*lip
;
1291 * If we've already shutdown the journal because of I/O errors, there's
1292 * no point in giving this a retry.
1294 if (xlog_is_shutdown(mp
->m_log
))
1297 xfs_buf_ioerror_alert_ratelimited(bp
);
1300 * We're not going to bother about retrying this during recovery.
1303 if (bp
->b_flags
& _XBF_LOGRECOVERY
) {
1304 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1309 * Synchronous writes will have callers process the error.
1311 if (!(bp
->b_flags
& XBF_ASYNC
))
1314 trace_xfs_buf_iodone_async(bp
, _RET_IP_
);
1316 cfg
= xfs_error_get_cfg(mp
, XFS_ERR_METADATA
, bp
->b_error
);
1317 if (bp
->b_last_error
!= bp
->b_error
||
1318 !(bp
->b_flags
& (XBF_STALE
| XBF_WRITE_FAIL
))) {
1319 bp
->b_last_error
= bp
->b_error
;
1320 if (cfg
->retry_timeout
!= XFS_ERR_RETRY_FOREVER
&&
1321 !bp
->b_first_retry_time
)
1322 bp
->b_first_retry_time
= jiffies
;
1327 * Permanent error - we need to trigger a shutdown if we haven't already
1328 * to indicate that inconsistency will result from this action.
1330 if (xfs_buf_ioerror_permanent(bp
, cfg
)) {
1331 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1335 /* Still considered a transient error. Caller will schedule retries. */
1336 list_for_each_entry(lip
, &bp
->b_li_list
, li_bio_list
) {
1337 set_bit(XFS_LI_FAILED
, &lip
->li_flags
);
1338 clear_bit(XFS_LI_FLUSHING
, &lip
->li_flags
);
1341 xfs_buf_ioerror(bp
, 0);
1346 xfs_buf_ioerror(bp
, 0);
1347 bp
->b_flags
|= (XBF_DONE
| XBF_WRITE_FAIL
);
1352 bp
->b_flags
|= XBF_DONE
;
1353 bp
->b_flags
&= ~XBF_WRITE
;
1354 trace_xfs_buf_error_relse(bp
, _RET_IP_
);
1362 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1364 if (bp
->b_flags
& XBF_READ
) {
1365 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
))
1366 invalidate_kernel_vmap_range(bp
->b_addr
,
1367 xfs_buf_vmap_len(bp
));
1368 if (!bp
->b_error
&& bp
->b_ops
)
1369 bp
->b_ops
->verify_read(bp
);
1371 bp
->b_flags
|= XBF_DONE
;
1374 bp
->b_flags
&= ~XBF_WRITE_FAIL
;
1375 bp
->b_flags
|= XBF_DONE
;
1378 if (unlikely(bp
->b_error
) && xfs_buf_ioend_handle_error(bp
))
1381 /* clear the retry state */
1382 bp
->b_last_error
= 0;
1384 bp
->b_first_retry_time
= 0;
1387 * Note that for things like remote attribute buffers, there may
1388 * not be a buffer log item here, so processing the buffer log
1389 * item must remain optional.
1392 xfs_buf_item_done(bp
);
1398 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
|
1401 if (bp
->b_flags
& XBF_ASYNC
)
1404 complete(&bp
->b_iowait
);
1409 struct work_struct
*work
)
1411 struct xfs_buf
*bp
=
1412 container_of(work
, struct xfs_buf
, b_ioend_work
);
1418 xfs_buf_ioend_async(
1421 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1422 queue_work(bp
->b_mount
->m_buf_workqueue
, &bp
->b_ioend_work
);
1429 xfs_failaddr_t failaddr
)
1431 ASSERT(error
<= 0 && error
>= -1000);
1432 bp
->b_error
= error
;
1433 trace_xfs_buf_ioerror(bp
, error
, failaddr
);
1437 xfs_buf_ioerror_alert(
1439 xfs_failaddr_t func
)
1441 xfs_buf_alert_ratelimited(bp
, "XFS: metadata IO error",
1442 "metadata I/O error in \"%pS\" at daddr 0x%llx len %d error %d",
1443 func
, (uint64_t)xfs_buf_daddr(bp
),
1444 bp
->b_length
, -bp
->b_error
);
1448 * To simulate an I/O failure, the buffer must be locked and held with at least
1449 * three references. The LRU reference is dropped by the stale call. The buf
1450 * item reference is dropped via ioend processing. The third reference is owned
1451 * by the caller and is dropped on I/O completion if the buffer is XBF_ASYNC.
1457 bp
->b_flags
&= ~XBF_DONE
;
1459 xfs_buf_ioerror(bp
, -EIO
);
1469 ASSERT(xfs_buf_islocked(bp
));
1471 bp
->b_flags
|= XBF_WRITE
;
1472 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1476 error
= xfs_buf_iowait(bp
);
1478 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_META_IO_ERROR
);
1486 struct xfs_buf
*bp
= bio
->bi_private
;
1489 xfs_buf_ioerror(bp
, blk_status_to_errno(bio
->bi_status
));
1490 else if ((bp
->b_flags
& XBF_WRITE
) && (bp
->b_flags
& XBF_ASYNC
) &&
1491 XFS_TEST_ERROR(false, bp
->b_mount
, XFS_ERRTAG_BUF_IOERROR
))
1492 xfs_buf_ioerror(bp
, -EIO
);
1494 xfs_buf_ioend_async(bp
);
1498 static inline blk_opf_t
1504 if (bp
->b_flags
& XBF_WRITE
) {
1508 if (bp
->b_flags
& XBF_READ_AHEAD
)
1512 return op
| REQ_META
;
1519 unsigned int size
= BBTOB(bp
->b_length
);
1520 unsigned int map
= 0, p
;
1521 struct blk_plug plug
;
1524 bio
= bio_alloc(bp
->b_target
->bt_bdev
, bp
->b_page_count
,
1525 xfs_buf_bio_op(bp
), GFP_NOIO
);
1526 bio
->bi_private
= bp
;
1527 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1529 if (bp
->b_flags
& _XBF_KMEM
) {
1530 __bio_add_page(bio
, virt_to_page(bp
->b_addr
), size
,
1533 for (p
= 0; p
< bp
->b_page_count
; p
++)
1534 __bio_add_page(bio
, bp
->b_pages
[p
], PAGE_SIZE
, 0);
1535 bio
->bi_iter
.bi_size
= size
; /* limit to the actual size used */
1537 if (xfs_buf_is_vmapped(bp
))
1538 flush_kernel_vmap_range(bp
->b_addr
,
1539 xfs_buf_vmap_len(bp
));
1543 * If there is more than one map segment, split out a new bio for each
1544 * map except of the last one. The last map is handled by the
1545 * remainder of the original bio outside the loop.
1547 blk_start_plug(&plug
);
1548 for (map
= 0; map
< bp
->b_map_count
- 1; map
++) {
1551 split
= bio_split(bio
, bp
->b_maps
[map
].bm_len
, GFP_NOFS
,
1553 split
->bi_iter
.bi_sector
= bp
->b_maps
[map
].bm_bn
;
1554 bio_chain(split
, bio
);
1557 bio
->bi_iter
.bi_sector
= bp
->b_maps
[map
].bm_bn
;
1559 blk_finish_plug(&plug
);
1563 * Wait for I/O completion of a sync buffer and return the I/O error code.
1569 ASSERT(!(bp
->b_flags
& XBF_ASYNC
));
1571 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1572 wait_for_completion(&bp
->b_iowait
);
1573 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1579 * Run the write verifier callback function if it exists. If this fails, mark
1580 * the buffer with an error and do not dispatch the I/O.
1583 xfs_buf_verify_write(
1587 bp
->b_ops
->verify_write(bp
);
1590 } else if (bp
->b_rhash_key
!= XFS_BUF_DADDR_NULL
) {
1592 * Non-crc filesystems don't attach verifiers during log
1593 * recovery, so don't warn for such filesystems.
1595 if (xfs_has_crc(bp
->b_mount
)) {
1596 xfs_warn(bp
->b_mount
,
1597 "%s: no buf ops on daddr 0x%llx len %d",
1598 __func__
, xfs_buf_daddr(bp
),
1600 xfs_hex_dump(bp
->b_addr
, XFS_CORRUPTION_DUMP_LEN
);
1609 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1610 * the buffer lock ownership and the current reference to the IO. It is not
1611 * safe to reference the buffer after a call to this function unless the caller
1612 * holds an additional reference itself.
1618 trace_xfs_buf_submit(bp
, _RET_IP_
);
1620 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1623 * On log shutdown we stale and complete the buffer immediately. We can
1624 * be called to read the superblock before the log has been set up, so
1625 * be careful checking the log state.
1627 * Checking the mount shutdown state here can result in the log tail
1628 * moving inappropriately on disk as the log may not yet be shut down.
1629 * i.e. failing this buffer on mount shutdown can remove it from the AIL
1630 * and move the tail of the log forwards without having written this
1631 * buffer to disk. This corrupts the log tail state in memory, and
1632 * because the log may not be shut down yet, it can then be propagated
1633 * to disk before the log is shutdown. Hence we check log shutdown
1634 * state here rather than mount state to avoid corrupting the log tail
1637 if (bp
->b_mount
->m_log
&& xlog_is_shutdown(bp
->b_mount
->m_log
)) {
1638 xfs_buf_ioend_fail(bp
);
1642 if (bp
->b_flags
& XBF_WRITE
)
1643 xfs_buf_wait_unpin(bp
);
1646 * Make sure we capture only current IO errors rather than stale errors
1647 * left over from previous use of the buffer (e.g. failed readahead).
1651 if (bp
->b_flags
& XBF_ASYNC
)
1652 xfs_buf_ioacct_inc(bp
);
1654 if ((bp
->b_flags
& XBF_WRITE
) && !xfs_buf_verify_write(bp
)) {
1655 xfs_force_shutdown(bp
->b_mount
, SHUTDOWN_CORRUPT_INCORE
);
1660 /* In-memory targets are directly mapped, no I/O required. */
1661 if (xfs_buftarg_is_mem(bp
->b_target
)) {
1666 xfs_buf_submit_bio(bp
);
1677 return bp
->b_addr
+ offset
;
1679 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1680 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1691 bend
= boff
+ bsize
;
1692 while (boff
< bend
) {
1694 int page_index
, page_offset
, csize
;
1696 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1697 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1698 page
= bp
->b_pages
[page_index
];
1699 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1700 BBTOB(bp
->b_length
) - boff
);
1702 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1704 memset(page_address(page
) + page_offset
, 0, csize
);
1711 * Log a message about and stale a buffer that a caller has decided is corrupt.
1713 * This function should be called for the kinds of metadata corruption that
1714 * cannot be detect from a verifier, such as incorrect inter-block relationship
1715 * data. Do /not/ call this function from a verifier function.
1717 * The buffer must be XBF_DONE prior to the call. Afterwards, the buffer will
1718 * be marked stale, but b_error will not be set. The caller is responsible for
1719 * releasing the buffer or fixing it.
1722 __xfs_buf_mark_corrupt(
1726 ASSERT(bp
->b_flags
& XBF_DONE
);
1728 xfs_buf_corruption_error(bp
, fa
);
1733 * Handling of buffer targets (buftargs).
1737 * Wait for any bufs with callbacks that have been submitted but have not yet
1738 * returned. These buffers will have an elevated hold count, so wait on those
1739 * while freeing all the buffers only held by the LRU.
1741 static enum lru_status
1742 xfs_buftarg_drain_rele(
1743 struct list_head
*item
,
1744 struct list_lru_one
*lru
,
1748 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1749 struct list_head
*dispose
= arg
;
1751 if (!spin_trylock(&bp
->b_lock
))
1753 if (bp
->b_hold
> 1) {
1754 /* need to wait, so skip it this pass */
1755 spin_unlock(&bp
->b_lock
);
1756 trace_xfs_buf_drain_buftarg(bp
, _RET_IP_
);
1761 * clear the LRU reference count so the buffer doesn't get
1762 * ignored in xfs_buf_rele().
1764 atomic_set(&bp
->b_lru_ref
, 0);
1765 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1766 list_lru_isolate_move(lru
, item
, dispose
);
1767 spin_unlock(&bp
->b_lock
);
1772 * Wait for outstanding I/O on the buftarg to complete.
1776 struct xfs_buftarg
*btp
)
1779 * First wait on the buftarg I/O count for all in-flight buffers to be
1780 * released. This is critical as new buffers do not make the LRU until
1781 * they are released.
1783 * Next, flush the buffer workqueue to ensure all completion processing
1784 * has finished. Just waiting on buffer locks is not sufficient for
1785 * async IO as the reference count held over IO is not released until
1786 * after the buffer lock is dropped. Hence we need to ensure here that
1787 * all reference counts have been dropped before we start walking the
1790 while (percpu_counter_sum(&btp
->bt_io_count
))
1792 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1797 struct xfs_buftarg
*btp
)
1801 bool write_fail
= false;
1803 xfs_buftarg_wait(btp
);
1805 /* loop until there is nothing left on the lru list. */
1806 while (list_lru_count(&btp
->bt_lru
)) {
1807 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_drain_rele
,
1808 &dispose
, LONG_MAX
);
1810 while (!list_empty(&dispose
)) {
1812 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1813 list_del_init(&bp
->b_lru
);
1814 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1816 xfs_buf_alert_ratelimited(bp
,
1817 "XFS: Corruption Alert",
1818 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1819 (long long)xfs_buf_daddr(bp
));
1828 * If one or more failed buffers were freed, that means dirty metadata
1829 * was thrown away. This should only ever happen after I/O completion
1830 * handling has elevated I/O error(s) to permanent failures and shuts
1834 ASSERT(xlog_is_shutdown(btp
->bt_mount
->m_log
));
1835 xfs_alert(btp
->bt_mount
,
1836 "Please run xfs_repair to determine the extent of the problem.");
1840 static enum lru_status
1841 xfs_buftarg_isolate(
1842 struct list_head
*item
,
1843 struct list_lru_one
*lru
,
1846 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1847 struct list_head
*dispose
= arg
;
1850 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1851 * If we fail to get the lock, just skip it.
1853 if (!spin_trylock(&bp
->b_lock
))
1856 * Decrement the b_lru_ref count unless the value is already
1857 * zero. If the value is already zero, we need to reclaim the
1858 * buffer, otherwise it gets another trip through the LRU.
1860 if (atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1861 spin_unlock(&bp
->b_lock
);
1865 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1866 list_lru_isolate_move(lru
, item
, dispose
);
1867 spin_unlock(&bp
->b_lock
);
1871 static unsigned long
1872 xfs_buftarg_shrink_scan(
1873 struct shrinker
*shrink
,
1874 struct shrink_control
*sc
)
1876 struct xfs_buftarg
*btp
= shrink
->private_data
;
1878 unsigned long freed
;
1880 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1881 xfs_buftarg_isolate
, &dispose
);
1883 while (!list_empty(&dispose
)) {
1885 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1886 list_del_init(&bp
->b_lru
);
1893 static unsigned long
1894 xfs_buftarg_shrink_count(
1895 struct shrinker
*shrink
,
1896 struct shrink_control
*sc
)
1898 struct xfs_buftarg
*btp
= shrink
->private_data
;
1899 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1903 xfs_destroy_buftarg(
1904 struct xfs_buftarg
*btp
)
1906 shrinker_free(btp
->bt_shrinker
);
1907 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1908 percpu_counter_destroy(&btp
->bt_io_count
);
1909 list_lru_destroy(&btp
->bt_lru
);
1914 struct xfs_buftarg
*btp
)
1916 xfs_destroy_buftarg(btp
);
1917 fs_put_dax(btp
->bt_daxdev
, btp
->bt_mount
);
1918 /* the main block device is closed by kill_block_super */
1919 if (btp
->bt_bdev
!= btp
->bt_mount
->m_super
->s_bdev
)
1920 bdev_fput(btp
->bt_bdev_file
);
1925 xfs_setsize_buftarg(
1926 struct xfs_buftarg
*btp
,
1927 unsigned int sectorsize
)
1929 /* Set up metadata sector size info */
1930 btp
->bt_meta_sectorsize
= sectorsize
;
1931 btp
->bt_meta_sectormask
= sectorsize
- 1;
1933 if (set_blocksize(btp
->bt_bdev_file
, sectorsize
)) {
1934 xfs_warn(btp
->bt_mount
,
1935 "Cannot set_blocksize to %u on device %pg",
1936 sectorsize
, btp
->bt_bdev
);
1945 struct xfs_buftarg
*btp
,
1946 size_t logical_sectorsize
,
1949 /* Set up device logical sector size mask */
1950 btp
->bt_logical_sectorsize
= logical_sectorsize
;
1951 btp
->bt_logical_sectormask
= logical_sectorsize
- 1;
1954 * Buffer IO error rate limiting. Limit it to no more than 10 messages
1955 * per 30 seconds so as to not spam logs too much on repeated errors.
1957 ratelimit_state_init(&btp
->bt_ioerror_rl
, 30 * HZ
,
1958 DEFAULT_RATELIMIT_BURST
);
1960 if (list_lru_init(&btp
->bt_lru
))
1962 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1963 goto out_destroy_lru
;
1966 shrinker_alloc(SHRINKER_NUMA_AWARE
, "xfs-buf:%s", descr
);
1967 if (!btp
->bt_shrinker
)
1968 goto out_destroy_io_count
;
1969 btp
->bt_shrinker
->count_objects
= xfs_buftarg_shrink_count
;
1970 btp
->bt_shrinker
->scan_objects
= xfs_buftarg_shrink_scan
;
1971 btp
->bt_shrinker
->private_data
= btp
;
1972 shrinker_register(btp
->bt_shrinker
);
1975 out_destroy_io_count
:
1976 percpu_counter_destroy(&btp
->bt_io_count
);
1978 list_lru_destroy(&btp
->bt_lru
);
1982 struct xfs_buftarg
*
1984 struct xfs_mount
*mp
,
1985 struct file
*bdev_file
)
1987 struct xfs_buftarg
*btp
;
1988 const struct dax_holder_operations
*ops
= NULL
;
1990 #if defined(CONFIG_FS_DAX) && defined(CONFIG_MEMORY_FAILURE)
1991 ops
= &xfs_dax_holder_operations
;
1993 btp
= kzalloc(sizeof(*btp
), GFP_KERNEL
| __GFP_NOFAIL
);
1996 btp
->bt_bdev_file
= bdev_file
;
1997 btp
->bt_bdev
= file_bdev(bdev_file
);
1998 btp
->bt_dev
= btp
->bt_bdev
->bd_dev
;
1999 btp
->bt_daxdev
= fs_dax_get_by_bdev(btp
->bt_bdev
, &btp
->bt_dax_part_off
,
2002 if (bdev_can_atomic_write(btp
->bt_bdev
)) {
2003 btp
->bt_bdev_awu_min
= bdev_atomic_write_unit_min_bytes(
2005 btp
->bt_bdev_awu_max
= bdev_atomic_write_unit_max_bytes(
2010 * When allocating the buftargs we have not yet read the super block and
2011 * thus don't know the file system sector size yet.
2013 if (xfs_setsize_buftarg(btp
, bdev_logical_block_size(btp
->bt_bdev
)))
2015 if (xfs_init_buftarg(btp
, bdev_logical_block_size(btp
->bt_bdev
),
2030 list_del_init(&bp
->b_list
);
2031 wake_up_var(&bp
->b_list
);
2035 * Cancel a delayed write list.
2037 * Remove each buffer from the list, clear the delwri queue flag and drop the
2038 * associated buffer reference.
2041 xfs_buf_delwri_cancel(
2042 struct list_head
*list
)
2046 while (!list_empty(list
)) {
2047 bp
= list_first_entry(list
, struct xfs_buf
, b_list
);
2050 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
2051 xfs_buf_list_del(bp
);
2057 * Add a buffer to the delayed write list.
2059 * This queues a buffer for writeout if it hasn't already been. Note that
2060 * neither this routine nor the buffer list submission functions perform
2061 * any internal synchronization. It is expected that the lists are thread-local
2064 * Returns true if we queued up the buffer, or false if it already had
2065 * been on the buffer list.
2068 xfs_buf_delwri_queue(
2070 struct list_head
*list
)
2072 ASSERT(xfs_buf_islocked(bp
));
2073 ASSERT(!(bp
->b_flags
& XBF_READ
));
2076 * If the buffer is already marked delwri it already is queued up
2077 * by someone else for imediate writeout. Just ignore it in that
2080 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
2081 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
2085 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
2088 * If a buffer gets written out synchronously or marked stale while it
2089 * is on a delwri list we lazily remove it. To do this, the other party
2090 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
2091 * It remains referenced and on the list. In a rare corner case it
2092 * might get readded to a delwri list after the synchronous writeout, in
2093 * which case we need just need to re-add the flag here.
2095 bp
->b_flags
|= _XBF_DELWRI_Q
;
2096 if (list_empty(&bp
->b_list
)) {
2098 list_add_tail(&bp
->b_list
, list
);
2105 * Queue a buffer to this delwri list as part of a data integrity operation.
2106 * If the buffer is on any other delwri list, we'll wait for that to clear
2107 * so that the caller can submit the buffer for IO and wait for the result.
2108 * Callers must ensure the buffer is not already on the list.
2111 xfs_buf_delwri_queue_here(
2113 struct list_head
*buffer_list
)
2116 * We need this buffer to end up on the /caller's/ delwri list, not any
2117 * old list. This can happen if the buffer is marked stale (which
2118 * clears DELWRI_Q) after the AIL queues the buffer to its list but
2119 * before the AIL has a chance to submit the list.
2121 while (!list_empty(&bp
->b_list
)) {
2123 wait_var_event(&bp
->b_list
, list_empty(&bp
->b_list
));
2127 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
2129 xfs_buf_delwri_queue(bp
, buffer_list
);
2133 * Compare function is more complex than it needs to be because
2134 * the return value is only 32 bits and we are doing comparisons
2140 const struct list_head
*a
,
2141 const struct list_head
*b
)
2143 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
2144 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
2147 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
2156 xfs_buf_delwri_submit_prep(
2160 * Someone else might have written the buffer synchronously or marked it
2161 * stale in the meantime. In that case only the _XBF_DELWRI_Q flag got
2162 * cleared, and we have to drop the reference and remove it from the
2165 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
2166 xfs_buf_list_del(bp
);
2171 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
2172 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
2173 bp
->b_flags
|= XBF_WRITE
;
2178 * Write out a buffer list asynchronously.
2180 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2181 * out and not wait for I/O completion on any of the buffers. This interface
2182 * is only safely useable for callers that can track I/O completion by higher
2183 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2186 * Note: this function will skip buffers it would block on, and in doing so
2187 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2188 * it is up to the caller to ensure that the buffer list is fully submitted or
2189 * cancelled appropriately when they are finished with the list. Failure to
2190 * cancel or resubmit the list until it is empty will result in leaked buffers
2194 xfs_buf_delwri_submit_nowait(
2195 struct list_head
*buffer_list
)
2197 struct xfs_buf
*bp
, *n
;
2199 struct blk_plug plug
;
2201 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
2203 blk_start_plug(&plug
);
2204 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
2205 if (!xfs_buf_trylock(bp
))
2207 if (xfs_buf_ispinned(bp
)) {
2212 if (!xfs_buf_delwri_submit_prep(bp
))
2214 bp
->b_flags
|= XBF_ASYNC
;
2215 xfs_buf_list_del(bp
);
2218 blk_finish_plug(&plug
);
2224 * Write out a buffer list synchronously.
2226 * This will take the @buffer_list, write all buffers out and wait for I/O
2227 * completion on all of the buffers. @buffer_list is consumed by the function,
2228 * so callers must have some other way of tracking buffers if they require such
2232 xfs_buf_delwri_submit(
2233 struct list_head
*buffer_list
)
2235 LIST_HEAD (wait_list
);
2236 int error
= 0, error2
;
2237 struct xfs_buf
*bp
, *n
;
2238 struct blk_plug plug
;
2240 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
2242 blk_start_plug(&plug
);
2243 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
2245 if (!xfs_buf_delwri_submit_prep(bp
))
2247 bp
->b_flags
&= ~XBF_ASYNC
;
2248 list_move_tail(&bp
->b_list
, &wait_list
);
2251 blk_finish_plug(&plug
);
2253 /* Wait for IO to complete. */
2254 while (!list_empty(&wait_list
)) {
2255 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
2257 xfs_buf_list_del(bp
);
2260 * Wait on the locked buffer, check for errors and unlock and
2261 * release the delwri queue reference.
2263 error2
= xfs_buf_iowait(bp
);
2273 * Push a single buffer on a delwri queue.
2275 * The purpose of this function is to submit a single buffer of a delwri queue
2276 * and return with the buffer still on the original queue.
2278 * The buffer locking and queue management logic between _delwri_pushbuf() and
2279 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2283 xfs_buf_delwri_pushbuf(
2285 struct list_head
*buffer_list
)
2289 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
2291 trace_xfs_buf_delwri_pushbuf(bp
, _RET_IP_
);
2294 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_ASYNC
);
2295 bp
->b_flags
|= XBF_WRITE
;
2299 * The buffer is now locked, under I/O but still on the original delwri
2300 * queue. Wait for I/O completion, restore the DELWRI_Q flag and
2301 * return with the buffer unlocked and still on the original queue.
2303 error
= xfs_buf_iowait(bp
);
2304 bp
->b_flags
|= _XBF_DELWRI_Q
;
2310 void xfs_buf_set_ref(struct xfs_buf
*bp
, int lru_ref
)
2313 * Set the lru reference count to 0 based on the error injection tag.
2314 * This allows userspace to disrupt buffer caching for debug/testing
2317 if (XFS_TEST_ERROR(false, bp
->b_mount
, XFS_ERRTAG_BUF_LRU_REF
))
2320 atomic_set(&bp
->b_lru_ref
, lru_ref
);
2324 * Verify an on-disk magic value against the magic value specified in the
2325 * verifier structure. The verifier magic is in disk byte order so the caller is
2326 * expected to pass the value directly from disk.
2333 struct xfs_mount
*mp
= bp
->b_mount
;
2336 idx
= xfs_has_crc(mp
);
2337 if (WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic
[idx
]))
2339 return dmagic
== bp
->b_ops
->magic
[idx
];
2342 * Verify an on-disk magic value against the magic value specified in the
2343 * verifier structure. The verifier magic is in disk byte order so the caller is
2344 * expected to pass the value directly from disk.
2351 struct xfs_mount
*mp
= bp
->b_mount
;
2354 idx
= xfs_has_crc(mp
);
2355 if (WARN_ON(!bp
->b_ops
|| !bp
->b_ops
->magic16
[idx
]))
2357 return dmagic
== bp
->b_ops
->magic16
[idx
];