Linux 6.14-rc1
[linux.git] / include / linux / pgtable.h
blob94d267d02372e43351c4ae05d7fb1b4c5ee7f2e7
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING 0UL
33 #endif
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS 0UL
42 #endif
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
53 #define pmd_folio(pmd) page_folio(pmd_page(pmd))
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
67 static inline unsigned long pte_index(unsigned long address)
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
72 #ifndef pmd_index
73 static inline unsigned long pmd_index(unsigned long address)
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
77 #define pmd_index pmd_index
78 #endif
80 #ifndef pud_index
81 static inline unsigned long pud_index(unsigned long address)
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
85 #define pud_index pud_index
86 #endif
88 #ifndef pgd_index
89 /* Must be a compile-time constant, so implement it as a macro */
90 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91 #endif
93 #ifndef kernel_pte_init
94 static inline void kernel_pte_init(void *addr)
97 #define kernel_pte_init kernel_pte_init
98 #endif
100 #ifndef pmd_init
101 static inline void pmd_init(void *addr)
104 #define pmd_init pmd_init
105 #endif
107 #ifndef pud_init
108 static inline void pud_init(void *addr)
111 #define pud_init pud_init
112 #endif
114 #ifndef pte_offset_kernel
115 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
119 #define pte_offset_kernel pte_offset_kernel
120 #endif
122 #ifdef CONFIG_HIGHPTE
123 #define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125 #define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128 } while (0)
129 #else
130 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
132 return pte_offset_kernel(pmd, address);
134 static inline void pte_unmap(pte_t *pte)
136 rcu_read_unlock();
138 #endif
140 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
142 /* Find an entry in the second-level page table.. */
143 #ifndef pmd_offset
144 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
146 return pud_pgtable(*pud) + pmd_index(address);
148 #define pmd_offset pmd_offset
149 #endif
151 #ifndef pud_offset
152 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
154 return p4d_pgtable(*p4d) + pud_index(address);
156 #define pud_offset pud_offset
157 #endif
159 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
161 return (pgd + pgd_index(address));
165 * a shortcut to get a pgd_t in a given mm
167 #ifndef pgd_offset
168 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169 #endif
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
175 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
184 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
189 static inline pmd_t *pmd_off_k(unsigned long va)
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
194 static inline pte_t *virt_to_kpte(unsigned long vaddr)
196 pmd_t *pmd = pmd_off_k(vaddr);
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
201 #ifndef pmd_young
202 static inline int pmd_young(pmd_t pmd)
204 return 0;
206 #endif
208 #ifndef pmd_dirty
209 static inline int pmd_dirty(pmd_t pmd)
211 return 0;
213 #endif
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date. This mode can only be entered and left under the protection of
226 * the page table locks for all page tables which may be modified. In the UP
227 * case, this is required so that preemption is disabled, and in the SMP case,
228 * it must synchronize the delayed page table writes properly on other CPUs.
230 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
231 #define arch_enter_lazy_mmu_mode() do {} while (0)
232 #define arch_leave_lazy_mmu_mode() do {} while (0)
233 #define arch_flush_lazy_mmu_mode() do {} while (0)
234 #endif
236 #ifndef pte_batch_hint
238 * pte_batch_hint - Number of pages that can be added to batch without scanning.
239 * @ptep: Page table pointer for the entry.
240 * @pte: Page table entry.
242 * Some architectures know that a set of contiguous ptes all map the same
243 * contiguous memory with the same permissions. In this case, it can provide a
244 * hint to aid pte batching without the core code needing to scan every pte.
246 * An architecture implementation may ignore the PTE accessed state. Further,
247 * the dirty state must apply atomically to all the PTEs described by the hint.
249 * May be overridden by the architecture, else pte_batch_hint is always 1.
251 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
253 return 1;
255 #endif
257 #ifndef pte_advance_pfn
258 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
260 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
262 #endif
264 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
266 #ifndef set_ptes
268 * set_ptes - Map consecutive pages to a contiguous range of addresses.
269 * @mm: Address space to map the pages into.
270 * @addr: Address to map the first page at.
271 * @ptep: Page table pointer for the first entry.
272 * @pte: Page table entry for the first page.
273 * @nr: Number of pages to map.
275 * When nr==1, initial state of pte may be present or not present, and new state
276 * may be present or not present. When nr>1, initial state of all ptes must be
277 * not present, and new state must be present.
279 * May be overridden by the architecture, or the architecture can define
280 * set_pte() and PFN_PTE_SHIFT.
282 * Context: The caller holds the page table lock. The pages all belong
283 * to the same folio. The PTEs are all in the same PMD.
285 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
286 pte_t *ptep, pte_t pte, unsigned int nr)
288 page_table_check_ptes_set(mm, ptep, pte, nr);
290 arch_enter_lazy_mmu_mode();
291 for (;;) {
292 set_pte(ptep, pte);
293 if (--nr == 0)
294 break;
295 ptep++;
296 pte = pte_next_pfn(pte);
298 arch_leave_lazy_mmu_mode();
300 #endif
301 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
303 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
304 extern int ptep_set_access_flags(struct vm_area_struct *vma,
305 unsigned long address, pte_t *ptep,
306 pte_t entry, int dirty);
307 #endif
309 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
311 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
312 unsigned long address, pmd_t *pmdp,
313 pmd_t entry, int dirty);
314 extern int pudp_set_access_flags(struct vm_area_struct *vma,
315 unsigned long address, pud_t *pudp,
316 pud_t entry, int dirty);
317 #else
318 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
319 unsigned long address, pmd_t *pmdp,
320 pmd_t entry, int dirty)
322 BUILD_BUG();
323 return 0;
325 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
326 unsigned long address, pud_t *pudp,
327 pud_t entry, int dirty)
329 BUILD_BUG();
330 return 0;
332 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
333 #endif
335 #ifndef ptep_get
336 static inline pte_t ptep_get(pte_t *ptep)
338 return READ_ONCE(*ptep);
340 #endif
342 #ifndef pmdp_get
343 static inline pmd_t pmdp_get(pmd_t *pmdp)
345 return READ_ONCE(*pmdp);
347 #endif
349 #ifndef pudp_get
350 static inline pud_t pudp_get(pud_t *pudp)
352 return READ_ONCE(*pudp);
354 #endif
356 #ifndef p4dp_get
357 static inline p4d_t p4dp_get(p4d_t *p4dp)
359 return READ_ONCE(*p4dp);
361 #endif
363 #ifndef pgdp_get
364 static inline pgd_t pgdp_get(pgd_t *pgdp)
366 return READ_ONCE(*pgdp);
368 #endif
370 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
371 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
372 unsigned long address,
373 pte_t *ptep)
375 pte_t pte = ptep_get(ptep);
376 int r = 1;
377 if (!pte_young(pte))
378 r = 0;
379 else
380 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
381 return r;
383 #endif
385 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
386 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
387 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
388 unsigned long address,
389 pmd_t *pmdp)
391 pmd_t pmd = *pmdp;
392 int r = 1;
393 if (!pmd_young(pmd))
394 r = 0;
395 else
396 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
397 return r;
399 #else
400 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
401 unsigned long address,
402 pmd_t *pmdp)
404 BUILD_BUG();
405 return 0;
407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
408 #endif
410 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
411 int ptep_clear_flush_young(struct vm_area_struct *vma,
412 unsigned long address, pte_t *ptep);
413 #endif
415 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
416 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
417 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
418 unsigned long address, pmd_t *pmdp);
419 #else
421 * Despite relevant to THP only, this API is called from generic rmap code
422 * under PageTransHuge(), hence needs a dummy implementation for !THP
424 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
425 unsigned long address, pmd_t *pmdp)
427 BUILD_BUG();
428 return 0;
430 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
431 #endif
433 #ifndef arch_has_hw_nonleaf_pmd_young
435 * Return whether the accessed bit in non-leaf PMD entries is supported on the
436 * local CPU.
438 static inline bool arch_has_hw_nonleaf_pmd_young(void)
440 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
442 #endif
444 #ifndef arch_has_hw_pte_young
446 * Return whether the accessed bit is supported on the local CPU.
448 * This stub assumes accessing through an old PTE triggers a page fault.
449 * Architectures that automatically set the access bit should overwrite it.
451 static inline bool arch_has_hw_pte_young(void)
453 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
455 #endif
457 #ifndef arch_check_zapped_pte
458 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
459 pte_t pte)
462 #endif
464 #ifndef arch_check_zapped_pmd
465 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
466 pmd_t pmd)
469 #endif
471 #ifndef arch_check_zapped_pud
472 static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
475 #endif
477 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
478 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
479 unsigned long address,
480 pte_t *ptep)
482 pte_t pte = ptep_get(ptep);
483 pte_clear(mm, address, ptep);
484 page_table_check_pte_clear(mm, pte);
485 return pte;
487 #endif
489 #ifndef clear_young_dirty_ptes
491 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
492 * same folio as old/clean.
493 * @mm: Address space the pages are mapped into.
494 * @addr: Address the first page is mapped at.
495 * @ptep: Page table pointer for the first entry.
496 * @nr: Number of entries to mark old/clean.
497 * @flags: Flags to modify the PTE batch semantics.
499 * May be overridden by the architecture; otherwise, implemented by
500 * get_and_clear/modify/set for each pte in the range.
502 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
503 * some PTEs might be write-protected.
505 * Context: The caller holds the page table lock. The PTEs map consecutive
506 * pages that belong to the same folio. The PTEs are all in the same PMD.
508 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
509 unsigned long addr, pte_t *ptep,
510 unsigned int nr, cydp_t flags)
512 pte_t pte;
514 for (;;) {
515 if (flags == CYDP_CLEAR_YOUNG)
516 ptep_test_and_clear_young(vma, addr, ptep);
517 else {
518 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
519 if (flags & CYDP_CLEAR_YOUNG)
520 pte = pte_mkold(pte);
521 if (flags & CYDP_CLEAR_DIRTY)
522 pte = pte_mkclean(pte);
523 set_pte_at(vma->vm_mm, addr, ptep, pte);
525 if (--nr == 0)
526 break;
527 ptep++;
528 addr += PAGE_SIZE;
531 #endif
533 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
534 pte_t *ptep)
536 pte_t pte = ptep_get(ptep);
538 pte_clear(mm, addr, ptep);
540 * No need for ptep_get_and_clear(): page table check doesn't care about
541 * any bits that could have been set by HW concurrently.
543 page_table_check_pte_clear(mm, pte);
546 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
548 * For walking the pagetables without holding any locks. Some architectures
549 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
550 * instructions. We are guaranteed that a PTE will only either go from not
551 * present to present, or present to not present -- it will not switch to a
552 * completely different present page without a TLB flush inbetween; which we
553 * are blocking by holding interrupts off.
555 * Setting ptes from not present to present goes:
557 * ptep->pte_high = h;
558 * smp_wmb();
559 * ptep->pte_low = l;
561 * And present to not present goes:
563 * ptep->pte_low = 0;
564 * smp_wmb();
565 * ptep->pte_high = 0;
567 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
568 * We load pte_high *after* loading pte_low, which ensures we don't see an older
569 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
570 * picked up a changed pte high. We might have gotten rubbish values from
571 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
572 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
573 * operates on present ptes we're safe.
575 static inline pte_t ptep_get_lockless(pte_t *ptep)
577 pte_t pte;
579 do {
580 pte.pte_low = ptep->pte_low;
581 smp_rmb();
582 pte.pte_high = ptep->pte_high;
583 smp_rmb();
584 } while (unlikely(pte.pte_low != ptep->pte_low));
586 return pte;
588 #define ptep_get_lockless ptep_get_lockless
590 #if CONFIG_PGTABLE_LEVELS > 2
591 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
593 pmd_t pmd;
595 do {
596 pmd.pmd_low = pmdp->pmd_low;
597 smp_rmb();
598 pmd.pmd_high = pmdp->pmd_high;
599 smp_rmb();
600 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
602 return pmd;
604 #define pmdp_get_lockless pmdp_get_lockless
605 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
606 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
607 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
610 * We require that the PTE can be read atomically.
612 #ifndef ptep_get_lockless
613 static inline pte_t ptep_get_lockless(pte_t *ptep)
615 return ptep_get(ptep);
617 #endif
619 #ifndef pmdp_get_lockless
620 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
622 return pmdp_get(pmdp);
624 static inline void pmdp_get_lockless_sync(void)
627 #endif
629 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
630 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
631 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
632 unsigned long address,
633 pmd_t *pmdp)
635 pmd_t pmd = *pmdp;
637 pmd_clear(pmdp);
638 page_table_check_pmd_clear(mm, pmd);
640 return pmd;
642 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
643 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
644 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
645 unsigned long address,
646 pud_t *pudp)
648 pud_t pud = *pudp;
650 pud_clear(pudp);
651 page_table_check_pud_clear(mm, pud);
653 return pud;
655 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
656 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
659 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
660 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
661 unsigned long address, pmd_t *pmdp,
662 int full)
664 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
666 #endif
668 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
669 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
670 unsigned long address, pud_t *pudp,
671 int full)
673 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
675 #endif
676 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
678 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
679 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
680 unsigned long address, pte_t *ptep,
681 int full)
683 return ptep_get_and_clear(mm, address, ptep);
685 #endif
687 #ifndef get_and_clear_full_ptes
689 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
690 * the same folio, collecting dirty/accessed bits.
691 * @mm: Address space the pages are mapped into.
692 * @addr: Address the first page is mapped at.
693 * @ptep: Page table pointer for the first entry.
694 * @nr: Number of entries to clear.
695 * @full: Whether we are clearing a full mm.
697 * May be overridden by the architecture; otherwise, implemented as a simple
698 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
699 * returned PTE.
701 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
702 * some PTEs might be write-protected.
704 * Context: The caller holds the page table lock. The PTEs map consecutive
705 * pages that belong to the same folio. The PTEs are all in the same PMD.
707 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
708 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
710 pte_t pte, tmp_pte;
712 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
713 while (--nr) {
714 ptep++;
715 addr += PAGE_SIZE;
716 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
717 if (pte_dirty(tmp_pte))
718 pte = pte_mkdirty(pte);
719 if (pte_young(tmp_pte))
720 pte = pte_mkyoung(pte);
722 return pte;
724 #endif
726 #ifndef clear_full_ptes
728 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
729 * folio.
730 * @mm: Address space the pages are mapped into.
731 * @addr: Address the first page is mapped at.
732 * @ptep: Page table pointer for the first entry.
733 * @nr: Number of entries to clear.
734 * @full: Whether we are clearing a full mm.
736 * May be overridden by the architecture; otherwise, implemented as a simple
737 * loop over ptep_get_and_clear_full().
739 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
740 * some PTEs might be write-protected.
742 * Context: The caller holds the page table lock. The PTEs map consecutive
743 * pages that belong to the same folio. The PTEs are all in the same PMD.
745 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
746 pte_t *ptep, unsigned int nr, int full)
748 for (;;) {
749 ptep_get_and_clear_full(mm, addr, ptep, full);
750 if (--nr == 0)
751 break;
752 ptep++;
753 addr += PAGE_SIZE;
756 #endif
759 * If two threads concurrently fault at the same page, the thread that
760 * won the race updates the PTE and its local TLB/Cache. The other thread
761 * gives up, simply does nothing, and continues; on architectures where
762 * software can update TLB, local TLB can be updated here to avoid next page
763 * fault. This function updates TLB only, do nothing with cache or others.
764 * It is the difference with function update_mmu_cache.
766 #ifndef update_mmu_tlb_range
767 static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
768 unsigned long address, pte_t *ptep, unsigned int nr)
771 #endif
773 static inline void update_mmu_tlb(struct vm_area_struct *vma,
774 unsigned long address, pte_t *ptep)
776 update_mmu_tlb_range(vma, address, ptep, 1);
780 * Some architectures may be able to avoid expensive synchronization
781 * primitives when modifications are made to PTE's which are already
782 * not present, or in the process of an address space destruction.
784 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
785 static inline void pte_clear_not_present_full(struct mm_struct *mm,
786 unsigned long address,
787 pte_t *ptep,
788 int full)
790 pte_clear(mm, address, ptep);
792 #endif
794 #ifndef clear_not_present_full_ptes
796 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
797 * consecutive in the pgtable.
798 * @mm: Address space the ptes represent.
799 * @addr: Address of the first pte.
800 * @ptep: Page table pointer for the first entry.
801 * @nr: Number of entries to clear.
802 * @full: Whether we are clearing a full mm.
804 * May be overridden by the architecture; otherwise, implemented as a simple
805 * loop over pte_clear_not_present_full().
807 * Context: The caller holds the page table lock. The PTEs are all not present.
808 * The PTEs are all in the same PMD.
810 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
811 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
813 for (;;) {
814 pte_clear_not_present_full(mm, addr, ptep, full);
815 if (--nr == 0)
816 break;
817 ptep++;
818 addr += PAGE_SIZE;
821 #endif
823 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
824 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
825 unsigned long address,
826 pte_t *ptep);
827 #endif
829 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
830 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
831 unsigned long address,
832 pmd_t *pmdp);
833 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
834 unsigned long address,
835 pud_t *pudp);
836 #endif
838 #ifndef pte_mkwrite
839 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
841 return pte_mkwrite_novma(pte);
843 #endif
845 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
846 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
848 return pmd_mkwrite_novma(pmd);
850 #endif
852 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
853 struct mm_struct;
854 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
856 pte_t old_pte = ptep_get(ptep);
857 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
859 #endif
861 #ifndef wrprotect_ptes
863 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
864 * folio.
865 * @mm: Address space the pages are mapped into.
866 * @addr: Address the first page is mapped at.
867 * @ptep: Page table pointer for the first entry.
868 * @nr: Number of entries to write-protect.
870 * May be overridden by the architecture; otherwise, implemented as a simple
871 * loop over ptep_set_wrprotect().
873 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
874 * some PTEs might be write-protected.
876 * Context: The caller holds the page table lock. The PTEs map consecutive
877 * pages that belong to the same folio. The PTEs are all in the same PMD.
879 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
880 pte_t *ptep, unsigned int nr)
882 for (;;) {
883 ptep_set_wrprotect(mm, addr, ptep);
884 if (--nr == 0)
885 break;
886 ptep++;
887 addr += PAGE_SIZE;
890 #endif
893 * On some architectures hardware does not set page access bit when accessing
894 * memory page, it is responsibility of software setting this bit. It brings
895 * out extra page fault penalty to track page access bit. For optimization page
896 * access bit can be set during all page fault flow on these arches.
897 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
898 * where software maintains page access bit.
900 #ifndef pte_sw_mkyoung
901 static inline pte_t pte_sw_mkyoung(pte_t pte)
903 return pte;
905 #define pte_sw_mkyoung pte_sw_mkyoung
906 #endif
908 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
910 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
911 unsigned long address, pmd_t *pmdp)
913 pmd_t old_pmd = *pmdp;
914 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
916 #else
917 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
918 unsigned long address, pmd_t *pmdp)
920 BUILD_BUG();
922 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
923 #endif
924 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
925 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
926 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
927 static inline void pudp_set_wrprotect(struct mm_struct *mm,
928 unsigned long address, pud_t *pudp)
930 pud_t old_pud = *pudp;
932 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
934 #else
935 static inline void pudp_set_wrprotect(struct mm_struct *mm,
936 unsigned long address, pud_t *pudp)
938 BUILD_BUG();
940 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
941 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
942 #endif
944 #ifndef pmdp_collapse_flush
945 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
946 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
947 unsigned long address, pmd_t *pmdp);
948 #else
949 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
950 unsigned long address,
951 pmd_t *pmdp)
953 BUILD_BUG();
954 return *pmdp;
956 #define pmdp_collapse_flush pmdp_collapse_flush
957 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
958 #endif
960 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
961 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
962 pgtable_t pgtable);
963 #endif
965 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
966 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
967 #endif
969 #ifndef arch_needs_pgtable_deposit
970 #define arch_needs_pgtable_deposit() (false)
971 #endif
973 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
975 * This is an implementation of pmdp_establish() that is only suitable for an
976 * architecture that doesn't have hardware dirty/accessed bits. In this case we
977 * can't race with CPU which sets these bits and non-atomic approach is fine.
979 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
980 unsigned long address, pmd_t *pmdp, pmd_t pmd)
982 pmd_t old_pmd = *pmdp;
983 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
984 return old_pmd;
986 #endif
988 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
989 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
990 pmd_t *pmdp);
991 #endif
993 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
996 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
997 * hugepage mapping in the page tables. This function is similar to
998 * pmdp_invalidate(), but should only be used if the access and dirty bits would
999 * not be cleared by the software in the new PMD value. The function ensures
1000 * that hardware changes of the access and dirty bits updates would not be lost.
1002 * Doing so can allow in certain architectures to avoid a TLB flush in most
1003 * cases. Yet, another TLB flush might be necessary later if the PMD update
1004 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
1005 * even when a TLB flush is needed because of the update, the caller may be able
1006 * to batch these TLB flushing operations, so fewer TLB flush operations are
1007 * needed.
1009 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1010 unsigned long address, pmd_t *pmdp);
1011 #endif
1013 #ifndef __HAVE_ARCH_PTE_SAME
1014 static inline int pte_same(pte_t pte_a, pte_t pte_b)
1016 return pte_val(pte_a) == pte_val(pte_b);
1018 #endif
1020 #ifndef __HAVE_ARCH_PTE_UNUSED
1022 * Some architectures provide facilities to virtualization guests
1023 * so that they can flag allocated pages as unused. This allows the
1024 * host to transparently reclaim unused pages. This function returns
1025 * whether the pte's page is unused.
1027 static inline int pte_unused(pte_t pte)
1029 return 0;
1031 #endif
1033 #ifndef pte_access_permitted
1034 #define pte_access_permitted(pte, write) \
1035 (pte_present(pte) && (!(write) || pte_write(pte)))
1036 #endif
1038 #ifndef pmd_access_permitted
1039 #define pmd_access_permitted(pmd, write) \
1040 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1041 #endif
1043 #ifndef pud_access_permitted
1044 #define pud_access_permitted(pud, write) \
1045 (pud_present(pud) && (!(write) || pud_write(pud)))
1046 #endif
1048 #ifndef p4d_access_permitted
1049 #define p4d_access_permitted(p4d, write) \
1050 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1051 #endif
1053 #ifndef pgd_access_permitted
1054 #define pgd_access_permitted(pgd, write) \
1055 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1056 #endif
1058 #ifndef __HAVE_ARCH_PMD_SAME
1059 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1061 return pmd_val(pmd_a) == pmd_val(pmd_b);
1063 #endif
1065 #ifndef pud_same
1066 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1068 return pud_val(pud_a) == pud_val(pud_b);
1070 #define pud_same pud_same
1071 #endif
1073 #ifndef __HAVE_ARCH_P4D_SAME
1074 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1076 return p4d_val(p4d_a) == p4d_val(p4d_b);
1078 #endif
1080 #ifndef __HAVE_ARCH_PGD_SAME
1081 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1083 return pgd_val(pgd_a) == pgd_val(pgd_b);
1085 #endif
1087 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
1088 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1089 struct vm_area_struct *vma,
1090 unsigned long addr,
1091 pte_t pte, pte_t oldpte,
1092 int nr)
1096 #else
1098 * Some architectures support metadata associated with a page. When a
1099 * page is being swapped out, this metadata must be saved so it can be
1100 * restored when the page is swapped back in. SPARC M7 and newer
1101 * processors support an ADI (Application Data Integrity) tag for the
1102 * page as metadata for the page. arch_do_swap_page() can restore this
1103 * metadata when a page is swapped back in.
1105 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1106 struct vm_area_struct *vma,
1107 unsigned long addr,
1108 pte_t pte, pte_t oldpte,
1109 int nr)
1111 for (int i = 0; i < nr; i++) {
1112 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1113 pte_advance_pfn(pte, i),
1114 pte_advance_pfn(oldpte, i));
1117 #endif
1119 #ifndef __HAVE_ARCH_UNMAP_ONE
1121 * Some architectures support metadata associated with a page. When a
1122 * page is being swapped out, this metadata must be saved so it can be
1123 * restored when the page is swapped back in. SPARC M7 and newer
1124 * processors support an ADI (Application Data Integrity) tag for the
1125 * page as metadata for the page. arch_unmap_one() can save this
1126 * metadata on a swap-out of a page.
1128 static inline int arch_unmap_one(struct mm_struct *mm,
1129 struct vm_area_struct *vma,
1130 unsigned long addr,
1131 pte_t orig_pte)
1133 return 0;
1135 #endif
1138 * Allow architectures to preserve additional metadata associated with
1139 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1140 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1142 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
1143 static inline int arch_prepare_to_swap(struct folio *folio)
1145 return 0;
1147 #endif
1149 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
1150 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1154 static inline void arch_swap_invalidate_area(int type)
1157 #endif
1159 #ifndef __HAVE_ARCH_SWAP_RESTORE
1160 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1163 #endif
1165 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1166 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1167 #endif
1169 #ifndef __HAVE_ARCH_MOVE_PTE
1170 #define move_pte(pte, old_addr, new_addr) (pte)
1171 #endif
1173 #ifndef pte_accessible
1174 # define pte_accessible(mm, pte) ((void)(pte), 1)
1175 #endif
1177 #ifndef flush_tlb_fix_spurious_fault
1178 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1179 #endif
1182 * When walking page tables, get the address of the next boundary,
1183 * or the end address of the range if that comes earlier. Although no
1184 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1187 #define pgd_addr_end(addr, end) \
1188 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1189 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1192 #ifndef p4d_addr_end
1193 #define p4d_addr_end(addr, end) \
1194 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1195 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1197 #endif
1199 #ifndef pud_addr_end
1200 #define pud_addr_end(addr, end) \
1201 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1202 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1204 #endif
1206 #ifndef pmd_addr_end
1207 #define pmd_addr_end(addr, end) \
1208 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1209 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1211 #endif
1214 * When walking page tables, we usually want to skip any p?d_none entries;
1215 * and any p?d_bad entries - reporting the error before resetting to none.
1216 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1218 void pgd_clear_bad(pgd_t *);
1220 #ifndef __PAGETABLE_P4D_FOLDED
1221 void p4d_clear_bad(p4d_t *);
1222 #else
1223 #define p4d_clear_bad(p4d) do { } while (0)
1224 #endif
1226 #ifndef __PAGETABLE_PUD_FOLDED
1227 void pud_clear_bad(pud_t *);
1228 #else
1229 #define pud_clear_bad(p4d) do { } while (0)
1230 #endif
1232 void pmd_clear_bad(pmd_t *);
1234 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1236 if (pgd_none(*pgd))
1237 return 1;
1238 if (unlikely(pgd_bad(*pgd))) {
1239 pgd_clear_bad(pgd);
1240 return 1;
1242 return 0;
1245 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1247 if (p4d_none(*p4d))
1248 return 1;
1249 if (unlikely(p4d_bad(*p4d))) {
1250 p4d_clear_bad(p4d);
1251 return 1;
1253 return 0;
1256 static inline int pud_none_or_clear_bad(pud_t *pud)
1258 if (pud_none(*pud))
1259 return 1;
1260 if (unlikely(pud_bad(*pud))) {
1261 pud_clear_bad(pud);
1262 return 1;
1264 return 0;
1267 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1269 if (pmd_none(*pmd))
1270 return 1;
1271 if (unlikely(pmd_bad(*pmd))) {
1272 pmd_clear_bad(pmd);
1273 return 1;
1275 return 0;
1278 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1279 unsigned long addr,
1280 pte_t *ptep)
1283 * Get the current pte state, but zero it out to make it
1284 * non-present, preventing the hardware from asynchronously
1285 * updating it.
1287 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1290 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1291 unsigned long addr,
1292 pte_t *ptep, pte_t pte)
1295 * The pte is non-present, so there's no hardware state to
1296 * preserve.
1298 set_pte_at(vma->vm_mm, addr, ptep, pte);
1301 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1303 * Start a pte protection read-modify-write transaction, which
1304 * protects against asynchronous hardware modifications to the pte.
1305 * The intention is not to prevent the hardware from making pte
1306 * updates, but to prevent any updates it may make from being lost.
1308 * This does not protect against other software modifications of the
1309 * pte; the appropriate pte lock must be held over the transaction.
1311 * Note that this interface is intended to be batchable, meaning that
1312 * ptep_modify_prot_commit may not actually update the pte, but merely
1313 * queue the update to be done at some later time. The update must be
1314 * actually committed before the pte lock is released, however.
1316 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1317 unsigned long addr,
1318 pte_t *ptep)
1320 return __ptep_modify_prot_start(vma, addr, ptep);
1324 * Commit an update to a pte, leaving any hardware-controlled bits in
1325 * the PTE unmodified.
1327 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1328 unsigned long addr,
1329 pte_t *ptep, pte_t old_pte, pte_t pte)
1331 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1333 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1334 #endif /* CONFIG_MMU */
1337 * No-op macros that just return the current protection value. Defined here
1338 * because these macros can be used even if CONFIG_MMU is not defined.
1341 #ifndef pgprot_nx
1342 #define pgprot_nx(prot) (prot)
1343 #endif
1345 #ifndef pgprot_noncached
1346 #define pgprot_noncached(prot) (prot)
1347 #endif
1349 #ifndef pgprot_writecombine
1350 #define pgprot_writecombine pgprot_noncached
1351 #endif
1353 #ifndef pgprot_writethrough
1354 #define pgprot_writethrough pgprot_noncached
1355 #endif
1357 #ifndef pgprot_device
1358 #define pgprot_device pgprot_noncached
1359 #endif
1361 #ifndef pgprot_mhp
1362 #define pgprot_mhp(prot) (prot)
1363 #endif
1365 #ifdef CONFIG_MMU
1366 #ifndef pgprot_modify
1367 #define pgprot_modify pgprot_modify
1368 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1370 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1371 newprot = pgprot_noncached(newprot);
1372 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1373 newprot = pgprot_writecombine(newprot);
1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1375 newprot = pgprot_device(newprot);
1376 return newprot;
1378 #endif
1379 #endif /* CONFIG_MMU */
1381 #ifndef pgprot_encrypted
1382 #define pgprot_encrypted(prot) (prot)
1383 #endif
1385 #ifndef pgprot_decrypted
1386 #define pgprot_decrypted(prot) (prot)
1387 #endif
1390 * A facility to provide batching of the reload of page tables and
1391 * other process state with the actual context switch code for
1392 * paravirtualized guests. By convention, only one of the batched
1393 * update (lazy) modes (CPU, MMU) should be active at any given time,
1394 * entry should never be nested, and entry and exits should always be
1395 * paired. This is for sanity of maintaining and reasoning about the
1396 * kernel code. In this case, the exit (end of the context switch) is
1397 * in architecture-specific code, and so doesn't need a generic
1398 * definition.
1400 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1401 #define arch_start_context_switch(prev) do {} while (0)
1402 #endif
1404 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1405 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1406 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1408 return pmd;
1411 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1413 return 0;
1416 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1418 return pmd;
1420 #endif
1421 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1422 static inline int pte_soft_dirty(pte_t pte)
1424 return 0;
1427 static inline int pmd_soft_dirty(pmd_t pmd)
1429 return 0;
1432 static inline pte_t pte_mksoft_dirty(pte_t pte)
1434 return pte;
1437 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1439 return pmd;
1442 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1444 return pte;
1447 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1449 return pmd;
1452 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1454 return pte;
1457 static inline int pte_swp_soft_dirty(pte_t pte)
1459 return 0;
1462 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1464 return pte;
1467 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1469 return pmd;
1472 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1474 return 0;
1477 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1479 return pmd;
1481 #endif
1483 #ifndef __HAVE_PFNMAP_TRACKING
1485 * Interfaces that can be used by architecture code to keep track of
1486 * memory type of pfn mappings specified by the remap_pfn_range,
1487 * vmf_insert_pfn.
1491 * track_pfn_remap is called when a _new_ pfn mapping is being established
1492 * by remap_pfn_range() for physical range indicated by pfn and size.
1494 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1495 unsigned long pfn, unsigned long addr,
1496 unsigned long size)
1498 return 0;
1502 * track_pfn_insert is called when a _new_ single pfn is established
1503 * by vmf_insert_pfn().
1505 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1506 pfn_t pfn)
1511 * track_pfn_copy is called when vma that is covering the pfnmap gets
1512 * copied through copy_page_range().
1514 static inline int track_pfn_copy(struct vm_area_struct *vma)
1516 return 0;
1520 * untrack_pfn is called while unmapping a pfnmap for a region.
1521 * untrack can be called for a specific region indicated by pfn and size or
1522 * can be for the entire vma (in which case pfn, size are zero).
1524 static inline void untrack_pfn(struct vm_area_struct *vma,
1525 unsigned long pfn, unsigned long size,
1526 bool mm_wr_locked)
1531 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1532 * or fails to copy pgtable during duplicate vm area.
1534 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1537 #else
1538 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1539 unsigned long pfn, unsigned long addr,
1540 unsigned long size);
1541 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1542 pfn_t pfn);
1543 extern int track_pfn_copy(struct vm_area_struct *vma);
1544 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1545 unsigned long size, bool mm_wr_locked);
1546 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1547 #endif
1549 #ifdef CONFIG_MMU
1550 #ifdef __HAVE_COLOR_ZERO_PAGE
1551 static inline int is_zero_pfn(unsigned long pfn)
1553 extern unsigned long zero_pfn;
1554 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1555 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1558 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1560 #else
1561 static inline int is_zero_pfn(unsigned long pfn)
1563 extern unsigned long zero_pfn;
1564 return pfn == zero_pfn;
1567 static inline unsigned long my_zero_pfn(unsigned long addr)
1569 extern unsigned long zero_pfn;
1570 return zero_pfn;
1572 #endif
1573 #else
1574 static inline int is_zero_pfn(unsigned long pfn)
1576 return 0;
1579 static inline unsigned long my_zero_pfn(unsigned long addr)
1581 return 0;
1583 #endif /* CONFIG_MMU */
1585 #ifdef CONFIG_MMU
1587 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
1588 static inline int pmd_trans_huge(pmd_t pmd)
1590 return 0;
1592 #ifndef pmd_write
1593 static inline int pmd_write(pmd_t pmd)
1595 BUG();
1596 return 0;
1598 #endif /* pmd_write */
1599 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1601 #ifndef pud_write
1602 static inline int pud_write(pud_t pud)
1604 BUG();
1605 return 0;
1607 #endif /* pud_write */
1609 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1610 static inline int pmd_devmap(pmd_t pmd)
1612 return 0;
1614 static inline int pud_devmap(pud_t pud)
1616 return 0;
1618 static inline int pgd_devmap(pgd_t pgd)
1620 return 0;
1622 #endif
1624 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1625 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1626 static inline int pud_trans_huge(pud_t pud)
1628 return 0;
1630 #endif
1632 static inline int pud_trans_unstable(pud_t *pud)
1634 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1635 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1636 pud_t pudval = READ_ONCE(*pud);
1638 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1639 return 1;
1640 if (unlikely(pud_bad(pudval))) {
1641 pud_clear_bad(pud);
1642 return 1;
1644 #endif
1645 return 0;
1648 #ifndef CONFIG_NUMA_BALANCING
1650 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1651 * perfectly valid to indicate "no" in that case, which is why our default
1652 * implementation defaults to "always no".
1654 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1655 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1656 * accessible VMAs.
1658 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1659 * looking at the VMA accessibility is sufficient.
1661 static inline int pte_protnone(pte_t pte)
1663 return 0;
1666 static inline int pmd_protnone(pmd_t pmd)
1668 return 0;
1670 #endif /* CONFIG_NUMA_BALANCING */
1672 #endif /* CONFIG_MMU */
1674 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1676 #ifndef __PAGETABLE_P4D_FOLDED
1677 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1678 void p4d_clear_huge(p4d_t *p4d);
1679 #else
1680 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1682 return 0;
1684 static inline void p4d_clear_huge(p4d_t *p4d) { }
1685 #endif /* !__PAGETABLE_P4D_FOLDED */
1687 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1688 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1689 int pud_clear_huge(pud_t *pud);
1690 int pmd_clear_huge(pmd_t *pmd);
1691 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1692 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1693 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1694 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1695 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1697 return 0;
1699 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1701 return 0;
1703 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1705 return 0;
1707 static inline void p4d_clear_huge(p4d_t *p4d) { }
1708 static inline int pud_clear_huge(pud_t *pud)
1710 return 0;
1712 static inline int pmd_clear_huge(pmd_t *pmd)
1714 return 0;
1716 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1718 return 0;
1720 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1722 return 0;
1724 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1726 return 0;
1728 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1730 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1733 * ARCHes with special requirements for evicting THP backing TLB entries can
1734 * implement this. Otherwise also, it can help optimize normal TLB flush in
1735 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1736 * entire TLB if flush span is greater than a threshold, which will
1737 * likely be true for a single huge page. Thus a single THP flush will
1738 * invalidate the entire TLB which is not desirable.
1739 * e.g. see arch/arc: flush_pmd_tlb_range
1741 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1742 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1743 #else
1744 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1745 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1746 #endif
1747 #endif
1749 struct file;
1750 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1751 unsigned long size, pgprot_t *vma_prot);
1753 #ifndef CONFIG_X86_ESPFIX64
1754 static inline void init_espfix_bsp(void) { }
1755 #endif
1757 extern void __init pgtable_cache_init(void);
1759 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1760 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1762 return true;
1765 static inline bool arch_has_pfn_modify_check(void)
1767 return false;
1769 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1772 * Architecture PAGE_KERNEL_* fallbacks
1774 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1775 * because they really don't support them, or the port needs to be updated to
1776 * reflect the required functionality. Below are a set of relatively safe
1777 * fallbacks, as best effort, which we can count on in lieu of the architectures
1778 * not defining them on their own yet.
1781 #ifndef PAGE_KERNEL_RO
1782 # define PAGE_KERNEL_RO PAGE_KERNEL
1783 #endif
1785 #ifndef PAGE_KERNEL_EXEC
1786 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1787 #endif
1790 * Page Table Modification bits for pgtbl_mod_mask.
1792 * These are used by the p?d_alloc_track*() set of functions an in the generic
1793 * vmalloc/ioremap code to track at which page-table levels entries have been
1794 * modified. Based on that the code can better decide when vmalloc and ioremap
1795 * mapping changes need to be synchronized to other page-tables in the system.
1797 #define __PGTBL_PGD_MODIFIED 0
1798 #define __PGTBL_P4D_MODIFIED 1
1799 #define __PGTBL_PUD_MODIFIED 2
1800 #define __PGTBL_PMD_MODIFIED 3
1801 #define __PGTBL_PTE_MODIFIED 4
1803 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1804 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1805 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1806 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1807 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1809 /* Page-Table Modification Mask */
1810 typedef unsigned int pgtbl_mod_mask;
1812 #endif /* !__ASSEMBLY__ */
1814 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1815 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1817 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1818 * with physical address space extension, but falls back to
1819 * BITS_PER_LONG otherwise.
1821 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1822 #else
1823 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1824 #endif
1825 #endif
1827 #ifndef has_transparent_hugepage
1828 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1829 #endif
1831 #ifndef has_transparent_pud_hugepage
1832 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1833 #endif
1835 * On some architectures it depends on the mm if the p4d/pud or pmd
1836 * layer of the page table hierarchy is folded or not.
1838 #ifndef mm_p4d_folded
1839 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1840 #endif
1842 #ifndef mm_pud_folded
1843 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1844 #endif
1846 #ifndef mm_pmd_folded
1847 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1848 #endif
1850 #ifndef p4d_offset_lockless
1851 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1852 #endif
1853 #ifndef pud_offset_lockless
1854 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1855 #endif
1856 #ifndef pmd_offset_lockless
1857 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1858 #endif
1861 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1862 * mapping. It should work globally across all archs, without any
1863 * dependency on CONFIG_* options. For architectures that do not support
1864 * huge mappings on specific levels, below fallbacks will be used.
1866 * A leaf pgtable entry should always imply the following:
1868 * - It is a "present" entry. IOW, before using this API, please check it
1869 * with pXd_present() first. NOTE: it may not always mean the "present
1870 * bit" is set. For example, PROT_NONE entries are always "present".
1872 * - It should _never_ be a swap entry of any type. Above "present" check
1873 * should have guarded this, but let's be crystal clear on this.
1875 * - It should contain a huge PFN, which points to a huge page larger than
1876 * PAGE_SIZE of the platform. The PFN format isn't important here.
1878 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1879 * pXd_devmap(), or hugetlb mappings).
1881 #ifndef pgd_leaf
1882 #define pgd_leaf(x) false
1883 #endif
1884 #ifndef p4d_leaf
1885 #define p4d_leaf(x) false
1886 #endif
1887 #ifndef pud_leaf
1888 #define pud_leaf(x) false
1889 #endif
1890 #ifndef pmd_leaf
1891 #define pmd_leaf(x) false
1892 #endif
1894 #ifndef pgd_leaf_size
1895 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1896 #endif
1897 #ifndef p4d_leaf_size
1898 #define p4d_leaf_size(x) P4D_SIZE
1899 #endif
1900 #ifndef pud_leaf_size
1901 #define pud_leaf_size(x) PUD_SIZE
1902 #endif
1903 #ifndef pmd_leaf_size
1904 #define pmd_leaf_size(x) PMD_SIZE
1905 #endif
1906 #ifndef __pte_leaf_size
1907 #ifndef pte_leaf_size
1908 #define pte_leaf_size(x) PAGE_SIZE
1909 #endif
1910 #define __pte_leaf_size(x,y) pte_leaf_size(y)
1911 #endif
1914 * We always define pmd_pfn for all archs as it's used in lots of generic
1915 * code. Now it happens too for pud_pfn (and can happen for larger
1916 * mappings too in the future; we're not there yet). Instead of defining
1917 * it for all archs (like pmd_pfn), provide a fallback.
1919 * Note that returning 0 here means any arch that didn't define this can
1920 * get severely wrong when it hits a real pud leaf. It's arch's
1921 * responsibility to properly define it when a huge pud is possible.
1923 #ifndef pud_pfn
1924 #define pud_pfn(x) 0
1925 #endif
1928 * Some architectures have MMUs that are configurable or selectable at boot
1929 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1930 * helps to have a static maximum value.
1933 #ifndef MAX_PTRS_PER_PTE
1934 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1935 #endif
1937 #ifndef MAX_PTRS_PER_PMD
1938 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1939 #endif
1941 #ifndef MAX_PTRS_PER_PUD
1942 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1943 #endif
1945 #ifndef MAX_PTRS_PER_P4D
1946 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1947 #endif
1949 #ifndef pte_pgprot
1950 #define pte_pgprot(x) ((pgprot_t) {0})
1951 #endif
1953 #ifndef pmd_pgprot
1954 #define pmd_pgprot(x) ((pgprot_t) {0})
1955 #endif
1957 #ifndef pud_pgprot
1958 #define pud_pgprot(x) ((pgprot_t) {0})
1959 #endif
1961 /* description of effects of mapping type and prot in current implementation.
1962 * this is due to the limited x86 page protection hardware. The expected
1963 * behavior is in parens:
1965 * map_type prot
1966 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1967 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1968 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1969 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1971 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1972 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1973 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1975 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1976 * MAP_PRIVATE (with Enhanced PAN supported):
1977 * r: (no) no
1978 * w: (no) no
1979 * x: (yes) yes
1981 #define DECLARE_VM_GET_PAGE_PROT \
1982 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1984 return protection_map[vm_flags & \
1985 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1987 EXPORT_SYMBOL(vm_get_page_prot);
1989 #endif /* _LINUX_PGTABLE_H */