1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Universal power supply monitor class
5 * Copyright © 2007 Anton Vorontsov <cbou@mail.ru>
6 * Copyright © 2004 Szabolcs Gyurko
7 * Copyright © 2003 Ian Molton <spyro@f2s.com>
9 * Modified: 2004, Oct Szabolcs Gyurko
12 #ifndef __LINUX_POWER_SUPPLY_H__
13 #define __LINUX_POWER_SUPPLY_H__
15 #include <linux/device.h>
16 #include <linux/workqueue.h>
17 #include <linux/leds.h>
18 #include <linux/rwsem.h>
19 #include <linux/list.h>
20 #include <linux/spinlock.h>
21 #include <linux/notifier.h>
24 * All voltages, currents, charges, energies, time and temperatures in uV,
25 * µA, µAh, µWh, seconds and tenths of degree Celsius unless otherwise
26 * stated. It's driver's job to convert its raw values to units in which
27 * this class operates.
31 * For systems where the charger determines the maximum battery capacity
32 * the min and max fields should be used to present these values to user
33 * space. Unused/unknown fields will not appear in sysfs.
37 POWER_SUPPLY_STATUS_UNKNOWN
= 0,
38 POWER_SUPPLY_STATUS_CHARGING
,
39 POWER_SUPPLY_STATUS_DISCHARGING
,
40 POWER_SUPPLY_STATUS_NOT_CHARGING
,
41 POWER_SUPPLY_STATUS_FULL
,
44 /* What algorithm is the charger using? */
45 enum power_supply_charge_type
{
46 POWER_SUPPLY_CHARGE_TYPE_UNKNOWN
= 0,
47 POWER_SUPPLY_CHARGE_TYPE_NONE
,
48 POWER_SUPPLY_CHARGE_TYPE_TRICKLE
, /* slow speed */
49 POWER_SUPPLY_CHARGE_TYPE_FAST
, /* fast speed */
50 POWER_SUPPLY_CHARGE_TYPE_STANDARD
, /* normal speed */
51 POWER_SUPPLY_CHARGE_TYPE_ADAPTIVE
, /* dynamically adjusted speed */
52 POWER_SUPPLY_CHARGE_TYPE_CUSTOM
, /* use CHARGE_CONTROL_* props */
53 POWER_SUPPLY_CHARGE_TYPE_LONGLIFE
, /* slow speed, longer life */
54 POWER_SUPPLY_CHARGE_TYPE_BYPASS
, /* bypassing the charger */
58 POWER_SUPPLY_HEALTH_UNKNOWN
= 0,
59 POWER_SUPPLY_HEALTH_GOOD
,
60 POWER_SUPPLY_HEALTH_OVERHEAT
,
61 POWER_SUPPLY_HEALTH_DEAD
,
62 POWER_SUPPLY_HEALTH_OVERVOLTAGE
,
63 POWER_SUPPLY_HEALTH_UNDERVOLTAGE
,
64 POWER_SUPPLY_HEALTH_UNSPEC_FAILURE
,
65 POWER_SUPPLY_HEALTH_COLD
,
66 POWER_SUPPLY_HEALTH_WATCHDOG_TIMER_EXPIRE
,
67 POWER_SUPPLY_HEALTH_SAFETY_TIMER_EXPIRE
,
68 POWER_SUPPLY_HEALTH_OVERCURRENT
,
69 POWER_SUPPLY_HEALTH_CALIBRATION_REQUIRED
,
70 POWER_SUPPLY_HEALTH_WARM
,
71 POWER_SUPPLY_HEALTH_COOL
,
72 POWER_SUPPLY_HEALTH_HOT
,
73 POWER_SUPPLY_HEALTH_NO_BATTERY
,
77 POWER_SUPPLY_TECHNOLOGY_UNKNOWN
= 0,
78 POWER_SUPPLY_TECHNOLOGY_NiMH
,
79 POWER_SUPPLY_TECHNOLOGY_LION
,
80 POWER_SUPPLY_TECHNOLOGY_LIPO
,
81 POWER_SUPPLY_TECHNOLOGY_LiFe
,
82 POWER_SUPPLY_TECHNOLOGY_NiCd
,
83 POWER_SUPPLY_TECHNOLOGY_LiMn
,
87 POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN
= 0,
88 POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL
,
89 POWER_SUPPLY_CAPACITY_LEVEL_LOW
,
90 POWER_SUPPLY_CAPACITY_LEVEL_NORMAL
,
91 POWER_SUPPLY_CAPACITY_LEVEL_HIGH
,
92 POWER_SUPPLY_CAPACITY_LEVEL_FULL
,
96 POWER_SUPPLY_SCOPE_UNKNOWN
= 0,
97 POWER_SUPPLY_SCOPE_SYSTEM
,
98 POWER_SUPPLY_SCOPE_DEVICE
,
101 enum power_supply_property
{
102 /* Properties of type `int' */
103 POWER_SUPPLY_PROP_STATUS
= 0,
104 POWER_SUPPLY_PROP_CHARGE_TYPE
,
105 POWER_SUPPLY_PROP_CHARGE_TYPES
,
106 POWER_SUPPLY_PROP_HEALTH
,
107 POWER_SUPPLY_PROP_PRESENT
,
108 POWER_SUPPLY_PROP_ONLINE
,
109 POWER_SUPPLY_PROP_AUTHENTIC
,
110 POWER_SUPPLY_PROP_TECHNOLOGY
,
111 POWER_SUPPLY_PROP_CYCLE_COUNT
,
112 POWER_SUPPLY_PROP_VOLTAGE_MAX
,
113 POWER_SUPPLY_PROP_VOLTAGE_MIN
,
114 POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN
,
115 POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN
,
116 POWER_SUPPLY_PROP_VOLTAGE_NOW
,
117 POWER_SUPPLY_PROP_VOLTAGE_AVG
,
118 POWER_SUPPLY_PROP_VOLTAGE_OCV
,
119 POWER_SUPPLY_PROP_VOLTAGE_BOOT
,
120 POWER_SUPPLY_PROP_CURRENT_MAX
,
121 POWER_SUPPLY_PROP_CURRENT_NOW
,
122 POWER_SUPPLY_PROP_CURRENT_AVG
,
123 POWER_SUPPLY_PROP_CURRENT_BOOT
,
124 POWER_SUPPLY_PROP_POWER_NOW
,
125 POWER_SUPPLY_PROP_POWER_AVG
,
126 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
,
127 POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN
,
128 POWER_SUPPLY_PROP_CHARGE_FULL
,
129 POWER_SUPPLY_PROP_CHARGE_EMPTY
,
130 POWER_SUPPLY_PROP_CHARGE_NOW
,
131 POWER_SUPPLY_PROP_CHARGE_AVG
,
132 POWER_SUPPLY_PROP_CHARGE_COUNTER
,
133 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT
,
134 POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX
,
135 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE
,
136 POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX
,
137 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT
,
138 POWER_SUPPLY_PROP_CHARGE_CONTROL_LIMIT_MAX
,
139 POWER_SUPPLY_PROP_CHARGE_CONTROL_START_THRESHOLD
, /* in percents! */
140 POWER_SUPPLY_PROP_CHARGE_CONTROL_END_THRESHOLD
, /* in percents! */
141 POWER_SUPPLY_PROP_CHARGE_BEHAVIOUR
,
142 POWER_SUPPLY_PROP_INPUT_CURRENT_LIMIT
,
143 POWER_SUPPLY_PROP_INPUT_VOLTAGE_LIMIT
,
144 POWER_SUPPLY_PROP_INPUT_POWER_LIMIT
,
145 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
,
146 POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN
,
147 POWER_SUPPLY_PROP_ENERGY_FULL
,
148 POWER_SUPPLY_PROP_ENERGY_EMPTY
,
149 POWER_SUPPLY_PROP_ENERGY_NOW
,
150 POWER_SUPPLY_PROP_ENERGY_AVG
,
151 POWER_SUPPLY_PROP_CAPACITY
, /* in percents! */
152 POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN
, /* in percents! */
153 POWER_SUPPLY_PROP_CAPACITY_ALERT_MAX
, /* in percents! */
154 POWER_SUPPLY_PROP_CAPACITY_ERROR_MARGIN
, /* in percents! */
155 POWER_SUPPLY_PROP_CAPACITY_LEVEL
,
156 POWER_SUPPLY_PROP_TEMP
,
157 POWER_SUPPLY_PROP_TEMP_MAX
,
158 POWER_SUPPLY_PROP_TEMP_MIN
,
159 POWER_SUPPLY_PROP_TEMP_ALERT_MIN
,
160 POWER_SUPPLY_PROP_TEMP_ALERT_MAX
,
161 POWER_SUPPLY_PROP_TEMP_AMBIENT
,
162 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MIN
,
163 POWER_SUPPLY_PROP_TEMP_AMBIENT_ALERT_MAX
,
164 POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW
,
165 POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG
,
166 POWER_SUPPLY_PROP_TIME_TO_FULL_NOW
,
167 POWER_SUPPLY_PROP_TIME_TO_FULL_AVG
,
168 POWER_SUPPLY_PROP_TYPE
, /* use power_supply.type instead */
169 POWER_SUPPLY_PROP_USB_TYPE
,
170 POWER_SUPPLY_PROP_SCOPE
,
171 POWER_SUPPLY_PROP_PRECHARGE_CURRENT
,
172 POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT
,
173 POWER_SUPPLY_PROP_CALIBRATE
,
174 POWER_SUPPLY_PROP_MANUFACTURE_YEAR
,
175 POWER_SUPPLY_PROP_MANUFACTURE_MONTH
,
176 POWER_SUPPLY_PROP_MANUFACTURE_DAY
,
177 /* Properties of type `const char *' */
178 POWER_SUPPLY_PROP_MODEL_NAME
,
179 POWER_SUPPLY_PROP_MANUFACTURER
,
180 POWER_SUPPLY_PROP_SERIAL_NUMBER
,
183 enum power_supply_type
{
184 POWER_SUPPLY_TYPE_UNKNOWN
= 0,
185 POWER_SUPPLY_TYPE_BATTERY
,
186 POWER_SUPPLY_TYPE_UPS
,
187 POWER_SUPPLY_TYPE_MAINS
,
188 POWER_SUPPLY_TYPE_USB
, /* Standard Downstream Port */
189 POWER_SUPPLY_TYPE_USB_DCP
, /* Dedicated Charging Port */
190 POWER_SUPPLY_TYPE_USB_CDP
, /* Charging Downstream Port */
191 POWER_SUPPLY_TYPE_USB_ACA
, /* Accessory Charger Adapters */
192 POWER_SUPPLY_TYPE_USB_TYPE_C
, /* Type C Port */
193 POWER_SUPPLY_TYPE_USB_PD
, /* Power Delivery Port */
194 POWER_SUPPLY_TYPE_USB_PD_DRP
, /* PD Dual Role Port */
195 POWER_SUPPLY_TYPE_APPLE_BRICK_ID
, /* Apple Charging Method */
196 POWER_SUPPLY_TYPE_WIRELESS
, /* Wireless */
199 enum power_supply_usb_type
{
200 POWER_SUPPLY_USB_TYPE_UNKNOWN
= 0,
201 POWER_SUPPLY_USB_TYPE_SDP
, /* Standard Downstream Port */
202 POWER_SUPPLY_USB_TYPE_DCP
, /* Dedicated Charging Port */
203 POWER_SUPPLY_USB_TYPE_CDP
, /* Charging Downstream Port */
204 POWER_SUPPLY_USB_TYPE_ACA
, /* Accessory Charger Adapters */
205 POWER_SUPPLY_USB_TYPE_C
, /* Type C Port */
206 POWER_SUPPLY_USB_TYPE_PD
, /* Power Delivery Port */
207 POWER_SUPPLY_USB_TYPE_PD_DRP
, /* PD Dual Role Port */
208 POWER_SUPPLY_USB_TYPE_PD_PPS
, /* PD Programmable Power Supply */
209 POWER_SUPPLY_USB_TYPE_APPLE_BRICK_ID
, /* Apple Charging Method */
212 enum power_supply_charge_behaviour
{
213 POWER_SUPPLY_CHARGE_BEHAVIOUR_AUTO
= 0,
214 POWER_SUPPLY_CHARGE_BEHAVIOUR_INHIBIT_CHARGE
,
215 POWER_SUPPLY_CHARGE_BEHAVIOUR_FORCE_DISCHARGE
,
218 enum power_supply_notifier_events
{
219 PSY_EVENT_PROP_CHANGED
,
222 union power_supply_propval
{
230 /* Run-time specific power supply configuration */
231 struct power_supply_config
{
232 struct device_node
*of_node
;
233 struct fwnode_handle
*fwnode
;
235 /* Driver private data */
238 /* Device specific sysfs attributes */
239 const struct attribute_group
**attr_grp
;
242 size_t num_supplicants
;
244 bool no_wakeup_source
;
247 /* Description of power supply */
248 struct power_supply_desc
{
250 enum power_supply_type type
;
251 u8 charge_behaviours
;
254 const enum power_supply_property
*properties
;
255 size_t num_properties
;
258 * Functions for drivers implementing power supply class.
259 * These shouldn't be called directly by other drivers for accessing
260 * this power supply. Instead use power_supply_*() functions (for
261 * example power_supply_get_property()).
263 int (*get_property
)(struct power_supply
*psy
,
264 enum power_supply_property psp
,
265 union power_supply_propval
*val
);
266 int (*set_property
)(struct power_supply
*psy
,
267 enum power_supply_property psp
,
268 const union power_supply_propval
*val
);
270 * property_is_writeable() will be called during registration
271 * of power supply. If this happens during device probe then it must
272 * not access internal data of device (because probe did not end).
274 int (*property_is_writeable
)(struct power_supply
*psy
,
275 enum power_supply_property psp
);
276 void (*external_power_changed
)(struct power_supply
*psy
);
277 void (*set_charged
)(struct power_supply
*psy
);
280 * Set if thermal zone should not be created for this power supply.
281 * For example for virtual supplies forwarding calls to actual
282 * sensors or other supplies.
285 /* For APM emulation, think legacy userspace. */
289 struct power_supply_ext
{
290 const char *const name
;
291 u8 charge_behaviours
;
292 const enum power_supply_property
*properties
;
293 size_t num_properties
;
295 int (*get_property
)(struct power_supply
*psy
,
296 const struct power_supply_ext
*ext
,
298 enum power_supply_property psp
,
299 union power_supply_propval
*val
);
300 int (*set_property
)(struct power_supply
*psy
,
301 const struct power_supply_ext
*ext
,
303 enum power_supply_property psp
,
304 const union power_supply_propval
*val
);
305 int (*property_is_writeable
)(struct power_supply
*psy
,
306 const struct power_supply_ext
*ext
,
308 enum power_supply_property psp
);
311 struct power_supply
{
312 const struct power_supply_desc
*desc
;
315 size_t num_supplicants
;
317 char **supplied_from
;
319 struct device_node
*of_node
;
321 /* Driver private data */
326 struct work_struct changed_work
;
327 struct delayed_work deferred_register_work
;
328 spinlock_t changed_lock
;
334 struct power_supply_battery_info
*battery_info
;
335 struct rw_semaphore extensions_sem
; /* protects "extensions" */
336 struct list_head extensions
;
337 #ifdef CONFIG_THERMAL
338 struct thermal_zone_device
*tzd
;
339 struct thermal_cooling_device
*tcd
;
342 #ifdef CONFIG_LEDS_TRIGGERS
343 struct led_trigger
*trig
;
344 struct led_trigger
*charging_trig
;
345 struct led_trigger
*full_trig
;
346 struct led_trigger
*charging_blink_full_solid_trig
;
347 struct led_trigger
*charging_orange_full_green_trig
;
351 #define dev_to_psy(__dev) container_of_const(__dev, struct power_supply, dev)
354 * This is recommended structure to specify static power supply parameters.
355 * Generic one, parametrizable for different power supplies. Power supply
356 * class itself does not use it, but that's what implementing most platform
357 * drivers, should try reuse for consistency.
360 struct power_supply_info
{
363 int voltage_max_design
;
364 int voltage_min_design
;
365 int charge_full_design
;
366 int charge_empty_design
;
367 int energy_full_design
;
368 int energy_empty_design
;
372 struct power_supply_battery_ocv_table
{
373 int ocv
; /* microVolts */
374 int capacity
; /* percent */
377 struct power_supply_resistance_temp_table
{
378 int temp
; /* celsius */
379 int resistance
; /* internal resistance percent */
382 struct power_supply_vbat_ri_table
{
383 int vbat_uv
; /* Battery voltage in microvolt */
384 int ri_uohm
; /* Internal resistance in microohm */
388 * struct power_supply_maintenance_charge_table - setting for maintenace charging
389 * @charge_current_max_ua: maintenance charging current that is used to keep
390 * the charge of the battery full as current is consumed after full charging.
391 * The corresponding charge_voltage_max_uv is used as a safeguard: when we
392 * reach this voltage the maintenance charging current is turned off. It is
393 * turned back on if we fall below this voltage.
394 * @charge_voltage_max_uv: maintenance charging voltage that is usually a bit
395 * lower than the constant_charge_voltage_max_uv. We can apply this settings
396 * charge_current_max_ua until we get back up to this voltage.
397 * @safety_timer_minutes: maintenance charging safety timer, with an expiry
398 * time in minutes. We will only use maintenance charging in this setting
399 * for a certain amount of time, then we will first move to the next
400 * maintenance charge current and voltage pair in respective array and wait
401 * for the next safety timer timeout, or, if we reached the last maintencance
402 * charging setting, disable charging until we reach
403 * charge_restart_voltage_uv and restart ordinary CC/CV charging from there.
404 * These timers should be chosen to align with the typical discharge curve
407 * Ordinary CC/CV charging will stop charging when the charge current goes
408 * below charge_term_current_ua, and then restart it (if the device is still
409 * plugged into the charger) at charge_restart_voltage_uv. This happens in most
410 * consumer products because the power usage while connected to a charger is
411 * not zero, and devices are not manufactured to draw power directly from the
412 * charger: instead they will at all times dissipate the battery a little, like
413 * the power used in standby mode. This will over time give a charge graph
417 * ^ ... ... ... ... ... ... ...
418 * | . . . . . . . . . . . . .
419 * | .. . .. . .. . .. . .. . .. . ..
420 * |. .. .. .. .. .. ..
421 * +-------------------------------------------------------------------> t
423 * Practically this means that the Li-ions are wandering back and forth in the
424 * battery and this causes degeneration of the battery anode and cathode.
425 * To prolong the life of the battery, maintenance charging is applied after
426 * reaching charge_term_current_ua to hold up the charge in the battery while
427 * consuming power, thus lowering the wear on the battery:
430 * ^ .......................................
431 * | . ......................
434 * +-------------------------------------------------------------------> t
436 * Maintenance charging uses the voltages from this table: a table of settings
437 * is traversed using a slightly lower current and voltage than what is used for
438 * CC/CV charging. The maintenance charging will for safety reasons not go on
439 * indefinately: we lower the current and voltage with successive maintenance
440 * settings, then disable charging completely after we reach the last one,
441 * and after that we do not restart charging until we reach
442 * charge_restart_voltage_uv (see struct power_supply_battery_info) and restart
443 * ordinary CC/CV charging from there.
445 * As an example, a Samsung EB425161LA Lithium-Ion battery is CC/CV charged
446 * at 900mA to 4340mV, then maintenance charged at 600mA and 4150mV for up to
447 * 60 hours, then maintenance charged at 600mA and 4100mV for up to 200 hours.
448 * After this the charge cycle is restarted waiting for
449 * charge_restart_voltage_uv.
451 * For most mobile electronics this type of maintenance charging is enough for
452 * the user to disconnect the device and make use of it before both maintenance
453 * charging cycles are complete, if the current and voltage has been chosen
454 * appropriately. These need to be determined from battery discharge curves
455 * and expected standby current.
457 * If the voltage anyway drops to charge_restart_voltage_uv during maintenance
458 * charging, ordinary CC/CV charging is restarted. This can happen if the
459 * device is e.g. actively used during charging, so more current is drawn than
460 * the expected stand-by current. Also overvoltage protection will be applied
463 struct power_supply_maintenance_charge_table
{
464 int charge_current_max_ua
;
465 int charge_voltage_max_uv
;
466 int charge_safety_timer_minutes
;
469 #define POWER_SUPPLY_OCV_TEMP_MAX 20
472 * struct power_supply_battery_info - information about batteries
473 * @technology: from the POWER_SUPPLY_TECHNOLOGY_* enum
474 * @energy_full_design_uwh: energy content when fully charged in microwatt
476 * @charge_full_design_uah: charge content when fully charged in microampere
478 * @voltage_min_design_uv: minimum voltage across the poles when the battery
479 * is at minimum voltage level in microvolts. If the voltage drops below this
480 * level the battery will need precharging when using CC/CV charging.
481 * @voltage_max_design_uv: voltage across the poles when the battery is fully
482 * charged in microvolts. This is the "nominal voltage" i.e. the voltage
483 * printed on the label of the battery.
484 * @tricklecharge_current_ua: the tricklecharge current used when trickle
485 * charging the battery in microamperes. This is the charging phase when the
486 * battery is completely empty and we need to carefully trickle in some
487 * charge until we reach the precharging voltage.
488 * @precharge_current_ua: current to use in the precharge phase in microamperes,
489 * the precharge rate is limited by limiting the current to this value.
490 * @precharge_voltage_max_uv: the maximum voltage allowed when precharging in
491 * microvolts. When we pass this voltage we will nominally switch over to the
492 * CC (constant current) charging phase defined by constant_charge_current_ua
493 * and constant_charge_voltage_max_uv.
494 * @charge_term_current_ua: when the current in the CV (constant voltage)
495 * charging phase drops below this value in microamperes the charging will
496 * terminate completely and not restart until the voltage over the battery
497 * poles reach charge_restart_voltage_uv unless we use maintenance charging.
498 * @charge_restart_voltage_uv: when the battery has been fully charged by
499 * CC/CV charging and charging has been disabled, and the voltage subsequently
500 * drops below this value in microvolts, the charging will be restarted
501 * (typically using CV charging).
502 * @overvoltage_limit_uv: If the voltage exceeds the nominal voltage
503 * voltage_max_design_uv and we reach this voltage level, all charging must
504 * stop and emergency procedures take place, such as shutting down the system
506 * @constant_charge_current_max_ua: current in microamperes to use in the CC
507 * (constant current) charging phase. The charging rate is limited
508 * by this current. This is the main charging phase and as the current is
509 * constant into the battery the voltage slowly ascends to
510 * constant_charge_voltage_max_uv.
511 * @constant_charge_voltage_max_uv: voltage in microvolts signifying the end of
512 * the CC (constant current) charging phase and the beginning of the CV
513 * (constant voltage) charging phase.
514 * @maintenance_charge: an array of maintenance charging settings to be used
515 * after the main CC/CV charging phase is complete.
516 * @maintenance_charge_size: the number of maintenance charging settings in
517 * maintenance_charge.
518 * @alert_low_temp_charge_current_ua: The charging current to use if the battery
519 * enters low alert temperature, i.e. if the internal temperature is between
520 * temp_alert_min and temp_min. No matter the charging phase, this
521 * and alert_high_temp_charge_voltage_uv will be applied.
522 * @alert_low_temp_charge_voltage_uv: Same as alert_low_temp_charge_current_ua,
523 * but for the charging voltage.
524 * @alert_high_temp_charge_current_ua: The charging current to use if the
525 * battery enters high alert temperature, i.e. if the internal temperature is
526 * between temp_alert_max and temp_max. No matter the charging phase, this
527 * and alert_high_temp_charge_voltage_uv will be applied, usually lowering
528 * the charging current as an evasive manouver.
529 * @alert_high_temp_charge_voltage_uv: Same as
530 * alert_high_temp_charge_current_ua, but for the charging voltage.
531 * @factory_internal_resistance_uohm: the internal resistance of the battery
532 * at fabrication time, expressed in microohms. This resistance will vary
533 * depending on the lifetime and charge of the battery, so this is just a
534 * nominal ballpark figure. This internal resistance is given for the state
535 * when the battery is discharging.
536 * @factory_internal_resistance_charging_uohm: the internal resistance of the
537 * battery at fabrication time while charging, expressed in microohms.
538 * The charging process will affect the internal resistance of the battery
539 * so this value provides a better resistance under these circumstances.
540 * This resistance will vary depending on the lifetime and charge of the
541 * battery, so this is just a nominal ballpark figure.
542 * @ocv_temp: array indicating the open circuit voltage (OCV) capacity
543 * temperature indices. This is an array of temperatures in degrees Celsius
544 * indicating which capacity table to use for a certain temperature, since
545 * the capacity for reasons of chemistry will be different at different
546 * temperatures. Determining capacity is a multivariate problem and the
547 * temperature is the first variable we determine.
548 * @temp_ambient_alert_min: the battery will go outside of operating conditions
549 * when the ambient temperature goes below this temperature in degrees
551 * @temp_ambient_alert_max: the battery will go outside of operating conditions
552 * when the ambient temperature goes above this temperature in degrees
554 * @temp_alert_min: the battery should issue an alert if the internal
555 * temperature goes below this temperature in degrees Celsius.
556 * @temp_alert_max: the battery should issue an alert if the internal
557 * temperature goes above this temperature in degrees Celsius.
558 * @temp_min: the battery will go outside of operating conditions when
559 * the internal temperature goes below this temperature in degrees Celsius.
560 * Normally this means the system should shut down.
561 * @temp_max: the battery will go outside of operating conditions when
562 * the internal temperature goes above this temperature in degrees Celsius.
563 * Normally this means the system should shut down.
564 * @ocv_table: for each entry in ocv_temp there is a corresponding entry in
565 * ocv_table and a size for each entry in ocv_table_size. These arrays
566 * determine the capacity in percent in relation to the voltage in microvolts
567 * at the indexed temperature.
568 * @ocv_table_size: for each entry in ocv_temp this array is giving the size of
569 * each entry in the array of capacity arrays in ocv_table.
570 * @resist_table: this is a table that correlates a battery temperature to the
571 * expected internal resistance at this temperature. The resistance is given
572 * as a percentage of factory_internal_resistance_uohm. Knowing the
573 * resistance of the battery is usually necessary for calculating the open
574 * circuit voltage (OCV) that is then used with the ocv_table to calculate
575 * the capacity of the battery. The resist_table must be ordered descending
576 * by temperature: highest temperature with lowest resistance first, lowest
577 * temperature with highest resistance last.
578 * @resist_table_size: the number of items in the resist_table.
579 * @vbat2ri_discharging: this is a table that correlates Battery voltage (VBAT)
580 * to internal resistance (Ri). The resistance is given in microohm for the
581 * corresponding voltage in microvolts. The internal resistance is used to
582 * determine the open circuit voltage so that we can determine the capacity
583 * of the battery. These voltages to resistance tables apply when the battery
584 * is discharging. The table must be ordered descending by voltage: highest
586 * @vbat2ri_discharging_size: the number of items in the vbat2ri_discharging
588 * @vbat2ri_charging: same function as vbat2ri_discharging but for the state
589 * when the battery is charging. Being under charge changes the battery's
590 * internal resistance characteristics so a separate table is needed.*
591 * The table must be ordered descending by voltage: highest voltage first.
592 * @vbat2ri_charging_size: the number of items in the vbat2ri_charging
594 * @bti_resistance_ohm: The Battery Type Indicator (BIT) nominal resistance
595 * in ohms for this battery, if an identification resistor is mounted
596 * between a third battery terminal and ground. This scheme is used by a lot
597 * of mobile device batteries.
598 * @bti_resistance_tolerance: The tolerance in percent of the BTI resistance,
599 * for example 10 for +/- 10%, if the bti_resistance is set to 7000 and the
600 * tolerance is 10% we will detect a proper battery if the BTI resistance
601 * is between 6300 and 7700 Ohm.
603 * This is the recommended struct to manage static battery parameters,
604 * populated by power_supply_get_battery_info(). Most platform drivers should
605 * use these for consistency.
607 * Its field names must correspond to elements in enum power_supply_property.
608 * The default field value is -EINVAL or NULL for pointers.
612 * The charging parameters here assume a CC/CV charging scheme. This method
613 * is most common with Lithium Ion batteries (other methods are possible) and
617 * | --- overvoltage_limit_uv
619 * | ...................................................
620 * | .. constant_charge_voltage_max_uv
627 * | .. precharge_voltage_max_uv
629 * |. (trickle charging)
630 * +------------------------------------------------------------------> time
632 * ^ Current into the battery
634 * | ............. constant_charge_current_max_ua
642 * | ... precharge_current_ua ....... charge_term_current_ua
645 * |.... tricklecharge_current_ua .
647 * +-----------------------------------------------------------------> time
649 * These diagrams are synchronized on time and the voltage and current
652 * With CC/CV charging commence over time like this for an empty battery:
654 * 1. When the battery is completely empty it may need to be charged with
655 * an especially small current so that electrons just "trickle in",
656 * this is the tricklecharge_current_ua.
658 * 2. Next a small initial pre-charge current (precharge_current_ua)
659 * is applied if the voltage is below precharge_voltage_max_uv until we
660 * reach precharge_voltage_max_uv. CAUTION: in some texts this is referred
661 * to as "trickle charging" but the use in the Linux kernel is different
664 * 3. Then the main charging current is applied, which is called the constant
665 * current (CC) phase. A current regulator is set up to allow
666 * constant_charge_current_max_ua of current to flow into the battery.
667 * The chemical reaction in the battery will make the voltage go up as
668 * charge goes into the battery. This current is applied until we reach
669 * the constant_charge_voltage_max_uv voltage.
671 * 4. At this voltage we switch over to the constant voltage (CV) phase. This
672 * means we allow current to go into the battery, but we keep the voltage
673 * fixed. This current will continue to charge the battery while keeping
674 * the voltage the same. A chemical reaction in the battery goes on
675 * storing energy without affecting the voltage. Over time the current
676 * will slowly drop and when we reach charge_term_current_ua we will
677 * end the constant voltage phase.
679 * After this the battery is fully charged, and if we do not support maintenance
680 * charging, the charging will not restart until power dissipation makes the
681 * voltage fall so that we reach charge_restart_voltage_uv and at this point
682 * we restart charging at the appropriate phase, usually this will be inside
685 * If we support maintenance charging the voltage is however kept high after
686 * the CV phase with a very low current. This is meant to let the same charge
687 * go in for usage while the charger is still connected, mainly for
688 * dissipation for the power consuming entity while connected to the
691 * All charging MUST terminate if the overvoltage_limit_uv is ever reached.
692 * Overcharging Lithium Ion cells can be DANGEROUS and lead to fire or
695 * DETERMINING BATTERY CAPACITY:
697 * Several members of the struct deal with trying to determine the remaining
698 * capacity in the battery, usually as a percentage of charge. In practice
699 * many chargers uses a so-called fuel gauge or coloumb counter that measure
700 * how much charge goes into the battery and how much goes out (+/- leak
701 * consumption). This does not help if we do not know how much capacity the
702 * battery has to begin with, such as when it is first used or was taken out
703 * and charged in a separate charger. Therefore many capacity algorithms use
704 * the open circuit voltage with a look-up table to determine the rough
705 * capacity of the battery. The open circuit voltage can be conceptualized
706 * with an ideal voltage source (V) in series with an internal resistance (Ri)
709 * +-------> IBAT >----------------+
719 * GND +-------------------------------+
721 * If we disconnect the load (here simplified as a fixed resistance Rload)
722 * and measure VBAT with a infinite impedance voltage meter we will get
723 * VBAT = OCV and this assumption is sometimes made even under load, assuming
724 * Rload is insignificant. However this will be of dubious quality because the
725 * load is rarely that small and Ri is strongly nonlinear depending on
726 * temperature and how much capacity is left in the battery due to the
727 * chemistry involved.
729 * In many practical applications we cannot just disconnect the battery from
730 * the load, so instead we often try to measure the instantaneous IBAT (the
731 * current out from the battery), estimate the Ri and thus calculate the
732 * voltage drop over Ri and compensate like this:
734 * OCV = VBAT - (IBAT * Ri)
736 * The tables vbat2ri_discharging and vbat2ri_charging are used to determine
737 * (by interpolation) the Ri from the VBAT under load. These curves are highly
738 * nonlinear and may need many datapoints but can be found in datasheets for
739 * some batteries. This gives the compensated open circuit voltage (OCV) for
740 * the battery even under load. Using this method will also compensate for
741 * temperature changes in the environment: this will also make the internal
742 * resistance change, and it will affect the VBAT under load, so correlating
743 * VBAT to Ri takes both remaining capacity and temperature into consideration.
745 * Alternatively a manufacturer can specify how the capacity of the battery
746 * is dependent on the battery temperature which is the main factor affecting
747 * Ri. As we know all checmical reactions are faster when it is warm and slower
748 * when it is cold. You can put in 1500mAh and only get 800mAh out before the
749 * voltage drops too low for example. This effect is also highly nonlinear and
750 * the purpose of the table resist_table: this will take a temperature and
751 * tell us how big percentage of Ri the specified temperature correlates to.
752 * Usually we have 100% of the factory_internal_resistance_uohm at 25 degrees
755 * The power supply class itself doesn't use this struct as of now.
758 struct power_supply_battery_info
{
759 unsigned int technology
;
760 int energy_full_design_uwh
;
761 int charge_full_design_uah
;
762 int voltage_min_design_uv
;
763 int voltage_max_design_uv
;
764 int tricklecharge_current_ua
;
765 int precharge_current_ua
;
766 int precharge_voltage_max_uv
;
767 int charge_term_current_ua
;
768 int charge_restart_voltage_uv
;
769 int overvoltage_limit_uv
;
770 int constant_charge_current_max_ua
;
771 int constant_charge_voltage_max_uv
;
772 const struct power_supply_maintenance_charge_table
*maintenance_charge
;
773 int maintenance_charge_size
;
774 int alert_low_temp_charge_current_ua
;
775 int alert_low_temp_charge_voltage_uv
;
776 int alert_high_temp_charge_current_ua
;
777 int alert_high_temp_charge_voltage_uv
;
778 int factory_internal_resistance_uohm
;
779 int factory_internal_resistance_charging_uohm
;
780 int ocv_temp
[POWER_SUPPLY_OCV_TEMP_MAX
];
781 int temp_ambient_alert_min
;
782 int temp_ambient_alert_max
;
787 const struct power_supply_battery_ocv_table
*ocv_table
[POWER_SUPPLY_OCV_TEMP_MAX
];
788 int ocv_table_size
[POWER_SUPPLY_OCV_TEMP_MAX
];
789 const struct power_supply_resistance_temp_table
*resist_table
;
790 int resist_table_size
;
791 const struct power_supply_vbat_ri_table
*vbat2ri_discharging
;
792 int vbat2ri_discharging_size
;
793 const struct power_supply_vbat_ri_table
*vbat2ri_charging
;
794 int vbat2ri_charging_size
;
795 int bti_resistance_ohm
;
796 int bti_resistance_tolerance
;
799 extern int power_supply_reg_notifier(struct notifier_block
*nb
);
800 extern void power_supply_unreg_notifier(struct notifier_block
*nb
);
801 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
802 extern struct power_supply
*power_supply_get_by_name(const char *name
);
803 extern void power_supply_put(struct power_supply
*psy
);
805 static inline void power_supply_put(struct power_supply
*psy
) {}
806 static inline struct power_supply
*power_supply_get_by_name(const char *name
)
810 extern struct power_supply
*power_supply_get_by_phandle(struct device_node
*np
,
811 const char *property
);
812 extern struct power_supply
*devm_power_supply_get_by_phandle(
813 struct device
*dev
, const char *property
);
814 #else /* !CONFIG_OF */
815 static inline struct power_supply
*
816 power_supply_get_by_phandle(struct device_node
*np
, const char *property
)
818 static inline struct power_supply
*
819 devm_power_supply_get_by_phandle(struct device
*dev
, const char *property
)
821 #endif /* CONFIG_OF */
823 extern const enum power_supply_property power_supply_battery_info_properties
[];
824 extern const size_t power_supply_battery_info_properties_size
;
825 extern int power_supply_get_battery_info(struct power_supply
*psy
,
826 struct power_supply_battery_info
**info_out
);
827 extern void power_supply_put_battery_info(struct power_supply
*psy
,
828 struct power_supply_battery_info
*info
);
829 extern bool power_supply_battery_info_has_prop(struct power_supply_battery_info
*info
,
830 enum power_supply_property psp
);
831 extern int power_supply_battery_info_get_prop(struct power_supply_battery_info
*info
,
832 enum power_supply_property psp
,
833 union power_supply_propval
*val
);
834 extern int power_supply_ocv2cap_simple(const struct power_supply_battery_ocv_table
*table
,
835 int table_len
, int ocv
);
836 extern const struct power_supply_battery_ocv_table
*
837 power_supply_find_ocv2cap_table(struct power_supply_battery_info
*info
,
838 int temp
, int *table_len
);
839 extern int power_supply_batinfo_ocv2cap(struct power_supply_battery_info
*info
,
842 power_supply_temp2resist_simple(const struct power_supply_resistance_temp_table
*table
,
843 int table_len
, int temp
);
844 extern int power_supply_vbat2ri(struct power_supply_battery_info
*info
,
845 int vbat_uv
, bool charging
);
846 extern const struct power_supply_maintenance_charge_table
*
847 power_supply_get_maintenance_charging_setting(struct power_supply_battery_info
*info
, int index
);
848 extern bool power_supply_battery_bti_in_range(struct power_supply_battery_info
*info
,
850 extern void power_supply_changed(struct power_supply
*psy
);
851 extern int power_supply_am_i_supplied(struct power_supply
*psy
);
852 int power_supply_get_property_from_supplier(struct power_supply
*psy
,
853 enum power_supply_property psp
,
854 union power_supply_propval
*val
);
855 extern int power_supply_set_battery_charged(struct power_supply
*psy
);
858 power_supply_supports_maintenance_charging(struct power_supply_battery_info
*info
)
860 const struct power_supply_maintenance_charge_table
*mt
;
862 mt
= power_supply_get_maintenance_charging_setting(info
, 0);
868 power_supply_supports_vbat2ri(struct power_supply_battery_info
*info
)
870 return ((info
->vbat2ri_discharging
!= NULL
) &&
871 info
->vbat2ri_discharging_size
> 0);
875 power_supply_supports_temp2ri(struct power_supply_battery_info
*info
)
877 return ((info
->resist_table
!= NULL
) &&
878 info
->resist_table_size
> 0);
881 #ifdef CONFIG_POWER_SUPPLY
882 extern int power_supply_is_system_supplied(void);
884 static inline int power_supply_is_system_supplied(void) { return -ENOSYS
; }
887 extern int power_supply_get_property(struct power_supply
*psy
,
888 enum power_supply_property psp
,
889 union power_supply_propval
*val
);
890 #if IS_ENABLED(CONFIG_POWER_SUPPLY)
891 extern int power_supply_set_property(struct power_supply
*psy
,
892 enum power_supply_property psp
,
893 const union power_supply_propval
*val
);
895 static inline int power_supply_set_property(struct power_supply
*psy
,
896 enum power_supply_property psp
,
897 const union power_supply_propval
*val
)
900 extern void power_supply_external_power_changed(struct power_supply
*psy
);
902 extern struct power_supply
*__must_check
903 power_supply_register(struct device
*parent
,
904 const struct power_supply_desc
*desc
,
905 const struct power_supply_config
*cfg
);
906 extern struct power_supply
*__must_check
907 devm_power_supply_register(struct device
*parent
,
908 const struct power_supply_desc
*desc
,
909 const struct power_supply_config
*cfg
);
910 extern void power_supply_unregister(struct power_supply
*psy
);
911 extern int power_supply_powers(struct power_supply
*psy
, struct device
*dev
);
913 extern int __must_check
914 power_supply_register_extension(struct power_supply
*psy
,
915 const struct power_supply_ext
*ext
,
918 extern void power_supply_unregister_extension(struct power_supply
*psy
,
919 const struct power_supply_ext
*ext
);
921 #define to_power_supply(device) container_of(device, struct power_supply, dev)
923 extern void *power_supply_get_drvdata(struct power_supply
*psy
);
924 extern int power_supply_for_each_psy(void *data
, int (*fn
)(struct power_supply
*psy
, void *data
));
926 static inline bool power_supply_is_amp_property(enum power_supply_property psp
)
929 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
:
930 case POWER_SUPPLY_PROP_CHARGE_EMPTY_DESIGN
:
931 case POWER_SUPPLY_PROP_CHARGE_FULL
:
932 case POWER_SUPPLY_PROP_CHARGE_EMPTY
:
933 case POWER_SUPPLY_PROP_CHARGE_NOW
:
934 case POWER_SUPPLY_PROP_CHARGE_AVG
:
935 case POWER_SUPPLY_PROP_CHARGE_COUNTER
:
936 case POWER_SUPPLY_PROP_PRECHARGE_CURRENT
:
937 case POWER_SUPPLY_PROP_CHARGE_TERM_CURRENT
:
938 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT
:
939 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_CURRENT_MAX
:
940 case POWER_SUPPLY_PROP_CURRENT_MAX
:
941 case POWER_SUPPLY_PROP_CURRENT_NOW
:
942 case POWER_SUPPLY_PROP_CURRENT_AVG
:
943 case POWER_SUPPLY_PROP_CURRENT_BOOT
:
952 static inline bool power_supply_is_watt_property(enum power_supply_property psp
)
955 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
:
956 case POWER_SUPPLY_PROP_ENERGY_EMPTY_DESIGN
:
957 case POWER_SUPPLY_PROP_ENERGY_FULL
:
958 case POWER_SUPPLY_PROP_ENERGY_EMPTY
:
959 case POWER_SUPPLY_PROP_ENERGY_NOW
:
960 case POWER_SUPPLY_PROP_ENERGY_AVG
:
961 case POWER_SUPPLY_PROP_VOLTAGE_MAX
:
962 case POWER_SUPPLY_PROP_VOLTAGE_MIN
:
963 case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN
:
964 case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN
:
965 case POWER_SUPPLY_PROP_VOLTAGE_NOW
:
966 case POWER_SUPPLY_PROP_VOLTAGE_AVG
:
967 case POWER_SUPPLY_PROP_VOLTAGE_OCV
:
968 case POWER_SUPPLY_PROP_VOLTAGE_BOOT
:
969 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE
:
970 case POWER_SUPPLY_PROP_CONSTANT_CHARGE_VOLTAGE_MAX
:
971 case POWER_SUPPLY_PROP_POWER_NOW
:
981 ssize_t
power_supply_charge_behaviour_show(struct device
*dev
,
982 unsigned int available_behaviours
,
983 enum power_supply_charge_behaviour behaviour
,
986 int power_supply_charge_behaviour_parse(unsigned int available_behaviours
, const char *buf
);
987 ssize_t
power_supply_charge_types_show(struct device
*dev
,
988 unsigned int available_types
,
989 enum power_supply_charge_type current_type
,
991 int power_supply_charge_types_parse(unsigned int available_types
, const char *buf
);
994 ssize_t
power_supply_charge_behaviour_show(struct device
*dev
,
995 unsigned int available_behaviours
,
996 enum power_supply_charge_behaviour behaviour
,
1002 static inline int power_supply_charge_behaviour_parse(unsigned int available_behaviours
,
1009 ssize_t
power_supply_charge_types_show(struct device
*dev
,
1010 unsigned int available_types
,
1011 enum power_supply_charge_type current_type
,
1017 static inline int power_supply_charge_types_parse(unsigned int available_types
, const char *buf
)
1023 #endif /* __LINUX_POWER_SUPPLY_H__ */