1 // SPDX-License-Identifier: GPL-2.0
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
30 * Also see the examples in the liburing library:
32 * git://git.kernel.dk/liburing
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
51 #include <linux/sched/signal.h>
53 #include <linux/file.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
78 #include <uapi/linux/io_uring.h>
97 #include "uring_cmd.h"
104 #include "alloc_cache.h"
107 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
108 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
111 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
114 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
117 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | REQ_F_LINK | REQ_F_HARDLINK |\
118 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
120 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
122 #define IO_COMPL_BATCH 32
123 #define IO_REQ_ALLOC_BATCH 8
124 #define IO_LOCAL_TW_DEFAULT_MAX 20
126 struct io_defer_entry
{
127 struct list_head list
;
128 struct io_kiocb
*req
;
132 /* requests with any of those set should undergo io_disarm_next() */
133 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
134 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
137 * No waiters. It's larger than any valid value of the tw counter
138 * so that tests against ->cq_wait_nr would fail and skip wake_up().
140 #define IO_CQ_WAKE_INIT (-1U)
141 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
142 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
144 static bool io_uring_try_cancel_requests(struct io_ring_ctx
*ctx
,
145 struct io_uring_task
*tctx
,
147 bool is_sqpoll_thread
);
149 static void io_queue_sqe(struct io_kiocb
*req
);
151 static __read_mostly
DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray
);
153 struct kmem_cache
*req_cachep
;
154 static struct workqueue_struct
*iou_wq __ro_after_init
;
156 static int __read_mostly sysctl_io_uring_disabled
;
157 static int __read_mostly sysctl_io_uring_group
= -1;
160 static const struct ctl_table kernel_io_uring_disabled_table
[] = {
162 .procname
= "io_uring_disabled",
163 .data
= &sysctl_io_uring_disabled
,
164 .maxlen
= sizeof(sysctl_io_uring_disabled
),
166 .proc_handler
= proc_dointvec_minmax
,
167 .extra1
= SYSCTL_ZERO
,
168 .extra2
= SYSCTL_TWO
,
171 .procname
= "io_uring_group",
172 .data
= &sysctl_io_uring_group
,
173 .maxlen
= sizeof(gid_t
),
175 .proc_handler
= proc_dointvec
,
180 static inline unsigned int __io_cqring_events(struct io_ring_ctx
*ctx
)
182 return ctx
->cached_cq_tail
- READ_ONCE(ctx
->rings
->cq
.head
);
185 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx
*ctx
)
187 return READ_ONCE(ctx
->rings
->cq
.tail
) - READ_ONCE(ctx
->rings
->cq
.head
);
190 static bool io_match_linked(struct io_kiocb
*head
)
192 struct io_kiocb
*req
;
194 io_for_each_link(req
, head
) {
195 if (req
->flags
& REQ_F_INFLIGHT
)
202 * As io_match_task() but protected against racing with linked timeouts.
203 * User must not hold timeout_lock.
205 bool io_match_task_safe(struct io_kiocb
*head
, struct io_uring_task
*tctx
,
210 if (tctx
&& head
->tctx
!= tctx
)
215 if (head
->flags
& REQ_F_LINK_TIMEOUT
) {
216 struct io_ring_ctx
*ctx
= head
->ctx
;
218 /* protect against races with linked timeouts */
219 raw_spin_lock_irq(&ctx
->timeout_lock
);
220 matched
= io_match_linked(head
);
221 raw_spin_unlock_irq(&ctx
->timeout_lock
);
223 matched
= io_match_linked(head
);
228 static inline void req_fail_link_node(struct io_kiocb
*req
, int res
)
231 io_req_set_res(req
, res
, 0);
234 static inline void io_req_add_to_cache(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
)
236 wq_stack_add_head(&req
->comp_list
, &ctx
->submit_state
.free_list
);
239 static __cold
void io_ring_ctx_ref_free(struct percpu_ref
*ref
)
241 struct io_ring_ctx
*ctx
= container_of(ref
, struct io_ring_ctx
, refs
);
243 complete(&ctx
->ref_comp
);
246 static __cold
void io_fallback_req_func(struct work_struct
*work
)
248 struct io_ring_ctx
*ctx
= container_of(work
, struct io_ring_ctx
,
250 struct llist_node
*node
= llist_del_all(&ctx
->fallback_llist
);
251 struct io_kiocb
*req
, *tmp
;
252 struct io_tw_state ts
= {};
254 percpu_ref_get(&ctx
->refs
);
255 mutex_lock(&ctx
->uring_lock
);
256 llist_for_each_entry_safe(req
, tmp
, node
, io_task_work
.node
)
257 req
->io_task_work
.func(req
, &ts
);
258 io_submit_flush_completions(ctx
);
259 mutex_unlock(&ctx
->uring_lock
);
260 percpu_ref_put(&ctx
->refs
);
263 static int io_alloc_hash_table(struct io_hash_table
*table
, unsigned bits
)
265 unsigned int hash_buckets
;
269 hash_buckets
= 1U << bits
;
270 table
->hbs
= kvmalloc_array(hash_buckets
, sizeof(table
->hbs
[0]),
279 table
->hash_bits
= bits
;
280 for (i
= 0; i
< hash_buckets
; i
++)
281 INIT_HLIST_HEAD(&table
->hbs
[i
].list
);
285 static __cold
struct io_ring_ctx
*io_ring_ctx_alloc(struct io_uring_params
*p
)
287 struct io_ring_ctx
*ctx
;
291 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
295 xa_init(&ctx
->io_bl_xa
);
298 * Use 5 bits less than the max cq entries, that should give us around
299 * 32 entries per hash list if totally full and uniformly spread, but
300 * don't keep too many buckets to not overconsume memory.
302 hash_bits
= ilog2(p
->cq_entries
) - 5;
303 hash_bits
= clamp(hash_bits
, 1, 8);
304 if (io_alloc_hash_table(&ctx
->cancel_table
, hash_bits
))
306 if (percpu_ref_init(&ctx
->refs
, io_ring_ctx_ref_free
,
310 ctx
->flags
= p
->flags
;
311 ctx
->hybrid_poll_time
= LLONG_MAX
;
312 atomic_set(&ctx
->cq_wait_nr
, IO_CQ_WAKE_INIT
);
313 init_waitqueue_head(&ctx
->sqo_sq_wait
);
314 INIT_LIST_HEAD(&ctx
->sqd_list
);
315 INIT_LIST_HEAD(&ctx
->cq_overflow_list
);
316 INIT_LIST_HEAD(&ctx
->io_buffers_cache
);
317 ret
= io_alloc_cache_init(&ctx
->apoll_cache
, IO_POLL_ALLOC_CACHE_MAX
,
318 sizeof(struct async_poll
), 0);
319 ret
|= io_alloc_cache_init(&ctx
->netmsg_cache
, IO_ALLOC_CACHE_MAX
,
320 sizeof(struct io_async_msghdr
),
321 offsetof(struct io_async_msghdr
, clear
));
322 ret
|= io_alloc_cache_init(&ctx
->rw_cache
, IO_ALLOC_CACHE_MAX
,
323 sizeof(struct io_async_rw
),
324 offsetof(struct io_async_rw
, clear
));
325 ret
|= io_alloc_cache_init(&ctx
->uring_cache
, IO_ALLOC_CACHE_MAX
,
326 sizeof(struct io_uring_cmd_data
), 0);
327 spin_lock_init(&ctx
->msg_lock
);
328 ret
|= io_alloc_cache_init(&ctx
->msg_cache
, IO_ALLOC_CACHE_MAX
,
329 sizeof(struct io_kiocb
), 0);
330 ret
|= io_futex_cache_init(ctx
);
333 init_completion(&ctx
->ref_comp
);
334 xa_init_flags(&ctx
->personalities
, XA_FLAGS_ALLOC1
);
335 mutex_init(&ctx
->uring_lock
);
336 init_waitqueue_head(&ctx
->cq_wait
);
337 init_waitqueue_head(&ctx
->poll_wq
);
338 spin_lock_init(&ctx
->completion_lock
);
339 raw_spin_lock_init(&ctx
->timeout_lock
);
340 INIT_WQ_LIST(&ctx
->iopoll_list
);
341 INIT_LIST_HEAD(&ctx
->io_buffers_comp
);
342 INIT_LIST_HEAD(&ctx
->defer_list
);
343 INIT_LIST_HEAD(&ctx
->timeout_list
);
344 INIT_LIST_HEAD(&ctx
->ltimeout_list
);
345 init_llist_head(&ctx
->work_llist
);
346 INIT_LIST_HEAD(&ctx
->tctx_list
);
347 ctx
->submit_state
.free_list
.next
= NULL
;
348 INIT_HLIST_HEAD(&ctx
->waitid_list
);
350 INIT_HLIST_HEAD(&ctx
->futex_list
);
352 INIT_DELAYED_WORK(&ctx
->fallback_work
, io_fallback_req_func
);
353 INIT_WQ_LIST(&ctx
->submit_state
.compl_reqs
);
354 INIT_HLIST_HEAD(&ctx
->cancelable_uring_cmd
);
356 mutex_init(&ctx
->mmap_lock
);
361 percpu_ref_exit(&ctx
->refs
);
363 io_alloc_cache_free(&ctx
->apoll_cache
, kfree
);
364 io_alloc_cache_free(&ctx
->netmsg_cache
, io_netmsg_cache_free
);
365 io_alloc_cache_free(&ctx
->rw_cache
, io_rw_cache_free
);
366 io_alloc_cache_free(&ctx
->uring_cache
, kfree
);
367 io_alloc_cache_free(&ctx
->msg_cache
, kfree
);
368 io_futex_cache_free(ctx
);
369 kvfree(ctx
->cancel_table
.hbs
);
370 xa_destroy(&ctx
->io_bl_xa
);
375 static void io_account_cq_overflow(struct io_ring_ctx
*ctx
)
377 struct io_rings
*r
= ctx
->rings
;
379 WRITE_ONCE(r
->cq_overflow
, READ_ONCE(r
->cq_overflow
) + 1);
383 static bool req_need_defer(struct io_kiocb
*req
, u32 seq
)
385 if (unlikely(req
->flags
& REQ_F_IO_DRAIN
)) {
386 struct io_ring_ctx
*ctx
= req
->ctx
;
388 return seq
+ READ_ONCE(ctx
->cq_extra
) != ctx
->cached_cq_tail
;
394 static void io_clean_op(struct io_kiocb
*req
)
396 if (req
->flags
& REQ_F_BUFFER_SELECTED
) {
397 spin_lock(&req
->ctx
->completion_lock
);
399 spin_unlock(&req
->ctx
->completion_lock
);
402 if (req
->flags
& REQ_F_NEED_CLEANUP
) {
403 const struct io_cold_def
*def
= &io_cold_defs
[req
->opcode
];
408 if ((req
->flags
& REQ_F_POLLED
) && req
->apoll
) {
409 kfree(req
->apoll
->double_poll
);
413 if (req
->flags
& REQ_F_INFLIGHT
)
414 atomic_dec(&req
->tctx
->inflight_tracked
);
415 if (req
->flags
& REQ_F_CREDS
)
416 put_cred(req
->creds
);
417 if (req
->flags
& REQ_F_ASYNC_DATA
) {
418 kfree(req
->async_data
);
419 req
->async_data
= NULL
;
421 req
->flags
&= ~IO_REQ_CLEAN_FLAGS
;
424 static inline void io_req_track_inflight(struct io_kiocb
*req
)
426 if (!(req
->flags
& REQ_F_INFLIGHT
)) {
427 req
->flags
|= REQ_F_INFLIGHT
;
428 atomic_inc(&req
->tctx
->inflight_tracked
);
432 static struct io_kiocb
*__io_prep_linked_timeout(struct io_kiocb
*req
)
434 if (WARN_ON_ONCE(!req
->link
))
437 req
->flags
&= ~REQ_F_ARM_LTIMEOUT
;
438 req
->flags
|= REQ_F_LINK_TIMEOUT
;
440 /* linked timeouts should have two refs once prep'ed */
441 io_req_set_refcount(req
);
442 __io_req_set_refcount(req
->link
, 2);
446 static inline struct io_kiocb
*io_prep_linked_timeout(struct io_kiocb
*req
)
448 if (likely(!(req
->flags
& REQ_F_ARM_LTIMEOUT
)))
450 return __io_prep_linked_timeout(req
);
453 static noinline
void __io_arm_ltimeout(struct io_kiocb
*req
)
455 io_queue_linked_timeout(__io_prep_linked_timeout(req
));
458 static inline void io_arm_ltimeout(struct io_kiocb
*req
)
460 if (unlikely(req
->flags
& REQ_F_ARM_LTIMEOUT
))
461 __io_arm_ltimeout(req
);
464 static void io_prep_async_work(struct io_kiocb
*req
)
466 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
467 struct io_ring_ctx
*ctx
= req
->ctx
;
469 if (!(req
->flags
& REQ_F_CREDS
)) {
470 req
->flags
|= REQ_F_CREDS
;
471 req
->creds
= get_current_cred();
474 req
->work
.list
.next
= NULL
;
475 atomic_set(&req
->work
.flags
, 0);
476 if (req
->flags
& REQ_F_FORCE_ASYNC
)
477 atomic_or(IO_WQ_WORK_CONCURRENT
, &req
->work
.flags
);
479 if (req
->file
&& !(req
->flags
& REQ_F_FIXED_FILE
))
480 req
->flags
|= io_file_get_flags(req
->file
);
482 if (req
->file
&& (req
->flags
& REQ_F_ISREG
)) {
483 bool should_hash
= def
->hash_reg_file
;
485 /* don't serialize this request if the fs doesn't need it */
486 if (should_hash
&& (req
->file
->f_flags
& O_DIRECT
) &&
487 (req
->file
->f_op
->fop_flags
& FOP_DIO_PARALLEL_WRITE
))
489 if (should_hash
|| (ctx
->flags
& IORING_SETUP_IOPOLL
))
490 io_wq_hash_work(&req
->work
, file_inode(req
->file
));
491 } else if (!req
->file
|| !S_ISBLK(file_inode(req
->file
)->i_mode
)) {
492 if (def
->unbound_nonreg_file
)
493 atomic_or(IO_WQ_WORK_UNBOUND
, &req
->work
.flags
);
497 static void io_prep_async_link(struct io_kiocb
*req
)
499 struct io_kiocb
*cur
;
501 if (req
->flags
& REQ_F_LINK_TIMEOUT
) {
502 struct io_ring_ctx
*ctx
= req
->ctx
;
504 raw_spin_lock_irq(&ctx
->timeout_lock
);
505 io_for_each_link(cur
, req
)
506 io_prep_async_work(cur
);
507 raw_spin_unlock_irq(&ctx
->timeout_lock
);
509 io_for_each_link(cur
, req
)
510 io_prep_async_work(cur
);
514 static void io_queue_iowq(struct io_kiocb
*req
)
516 struct io_kiocb
*link
= io_prep_linked_timeout(req
);
517 struct io_uring_task
*tctx
= req
->tctx
;
521 if ((current
->flags
& PF_KTHREAD
) || !tctx
->io_wq
) {
522 io_req_task_queue_fail(req
, -ECANCELED
);
526 /* init ->work of the whole link before punting */
527 io_prep_async_link(req
);
530 * Not expected to happen, but if we do have a bug where this _can_
531 * happen, catch it here and ensure the request is marked as
532 * canceled. That will make io-wq go through the usual work cancel
533 * procedure rather than attempt to run this request (or create a new
536 if (WARN_ON_ONCE(!same_thread_group(tctx
->task
, current
)))
537 atomic_or(IO_WQ_WORK_CANCEL
, &req
->work
.flags
);
539 trace_io_uring_queue_async_work(req
, io_wq_is_hashed(&req
->work
));
540 io_wq_enqueue(tctx
->io_wq
, &req
->work
);
542 io_queue_linked_timeout(link
);
545 static void io_req_queue_iowq_tw(struct io_kiocb
*req
, struct io_tw_state
*ts
)
550 void io_req_queue_iowq(struct io_kiocb
*req
)
552 req
->io_task_work
.func
= io_req_queue_iowq_tw
;
553 io_req_task_work_add(req
);
556 static __cold noinline
void io_queue_deferred(struct io_ring_ctx
*ctx
)
558 spin_lock(&ctx
->completion_lock
);
559 while (!list_empty(&ctx
->defer_list
)) {
560 struct io_defer_entry
*de
= list_first_entry(&ctx
->defer_list
,
561 struct io_defer_entry
, list
);
563 if (req_need_defer(de
->req
, de
->seq
))
565 list_del_init(&de
->list
);
566 io_req_task_queue(de
->req
);
569 spin_unlock(&ctx
->completion_lock
);
572 void __io_commit_cqring_flush(struct io_ring_ctx
*ctx
)
574 if (ctx
->poll_activated
)
575 io_poll_wq_wake(ctx
);
576 if (ctx
->off_timeout_used
)
577 io_flush_timeouts(ctx
);
578 if (ctx
->drain_active
)
579 io_queue_deferred(ctx
);
581 io_eventfd_flush_signal(ctx
);
584 static inline void __io_cq_lock(struct io_ring_ctx
*ctx
)
586 if (!ctx
->lockless_cq
)
587 spin_lock(&ctx
->completion_lock
);
590 static inline void io_cq_lock(struct io_ring_ctx
*ctx
)
591 __acquires(ctx
->completion_lock
)
593 spin_lock(&ctx
->completion_lock
);
596 static inline void __io_cq_unlock_post(struct io_ring_ctx
*ctx
)
598 io_commit_cqring(ctx
);
599 if (!ctx
->task_complete
) {
600 if (!ctx
->lockless_cq
)
601 spin_unlock(&ctx
->completion_lock
);
602 /* IOPOLL rings only need to wake up if it's also SQPOLL */
603 if (!ctx
->syscall_iopoll
)
606 io_commit_cqring_flush(ctx
);
609 static void io_cq_unlock_post(struct io_ring_ctx
*ctx
)
610 __releases(ctx
->completion_lock
)
612 io_commit_cqring(ctx
);
613 spin_unlock(&ctx
->completion_lock
);
615 io_commit_cqring_flush(ctx
);
618 static void __io_cqring_overflow_flush(struct io_ring_ctx
*ctx
, bool dying
)
620 size_t cqe_size
= sizeof(struct io_uring_cqe
);
622 lockdep_assert_held(&ctx
->uring_lock
);
624 /* don't abort if we're dying, entries must get freed */
625 if (!dying
&& __io_cqring_events(ctx
) == ctx
->cq_entries
)
628 if (ctx
->flags
& IORING_SETUP_CQE32
)
632 while (!list_empty(&ctx
->cq_overflow_list
)) {
633 struct io_uring_cqe
*cqe
;
634 struct io_overflow_cqe
*ocqe
;
636 ocqe
= list_first_entry(&ctx
->cq_overflow_list
,
637 struct io_overflow_cqe
, list
);
640 if (!io_get_cqe_overflow(ctx
, &cqe
, true))
642 memcpy(cqe
, &ocqe
->cqe
, cqe_size
);
644 list_del(&ocqe
->list
);
648 * For silly syzbot cases that deliberately overflow by huge
649 * amounts, check if we need to resched and drop and
650 * reacquire the locks if so. Nothing real would ever hit this.
651 * Ideally we'd have a non-posting unlock for this, but hard
652 * to care for a non-real case.
654 if (need_resched()) {
655 io_cq_unlock_post(ctx
);
656 mutex_unlock(&ctx
->uring_lock
);
658 mutex_lock(&ctx
->uring_lock
);
663 if (list_empty(&ctx
->cq_overflow_list
)) {
664 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
);
665 atomic_andnot(IORING_SQ_CQ_OVERFLOW
, &ctx
->rings
->sq_flags
);
667 io_cq_unlock_post(ctx
);
670 static void io_cqring_overflow_kill(struct io_ring_ctx
*ctx
)
673 __io_cqring_overflow_flush(ctx
, true);
676 static void io_cqring_do_overflow_flush(struct io_ring_ctx
*ctx
)
678 mutex_lock(&ctx
->uring_lock
);
679 __io_cqring_overflow_flush(ctx
, false);
680 mutex_unlock(&ctx
->uring_lock
);
683 /* must to be called somewhat shortly after putting a request */
684 static inline void io_put_task(struct io_kiocb
*req
)
686 struct io_uring_task
*tctx
= req
->tctx
;
688 if (likely(tctx
->task
== current
)) {
691 percpu_counter_sub(&tctx
->inflight
, 1);
692 if (unlikely(atomic_read(&tctx
->in_cancel
)))
693 wake_up(&tctx
->wait
);
694 put_task_struct(tctx
->task
);
698 void io_task_refs_refill(struct io_uring_task
*tctx
)
700 unsigned int refill
= -tctx
->cached_refs
+ IO_TCTX_REFS_CACHE_NR
;
702 percpu_counter_add(&tctx
->inflight
, refill
);
703 refcount_add(refill
, ¤t
->usage
);
704 tctx
->cached_refs
+= refill
;
707 static __cold
void io_uring_drop_tctx_refs(struct task_struct
*task
)
709 struct io_uring_task
*tctx
= task
->io_uring
;
710 unsigned int refs
= tctx
->cached_refs
;
713 tctx
->cached_refs
= 0;
714 percpu_counter_sub(&tctx
->inflight
, refs
);
715 put_task_struct_many(task
, refs
);
719 static bool io_cqring_event_overflow(struct io_ring_ctx
*ctx
, u64 user_data
,
720 s32 res
, u32 cflags
, u64 extra1
, u64 extra2
)
722 struct io_overflow_cqe
*ocqe
;
723 size_t ocq_size
= sizeof(struct io_overflow_cqe
);
724 bool is_cqe32
= (ctx
->flags
& IORING_SETUP_CQE32
);
726 lockdep_assert_held(&ctx
->completion_lock
);
729 ocq_size
+= sizeof(struct io_uring_cqe
);
731 ocqe
= kmalloc(ocq_size
, GFP_ATOMIC
| __GFP_ACCOUNT
);
732 trace_io_uring_cqe_overflow(ctx
, user_data
, res
, cflags
, ocqe
);
735 * If we're in ring overflow flush mode, or in task cancel mode,
736 * or cannot allocate an overflow entry, then we need to drop it
739 io_account_cq_overflow(ctx
);
740 set_bit(IO_CHECK_CQ_DROPPED_BIT
, &ctx
->check_cq
);
743 if (list_empty(&ctx
->cq_overflow_list
)) {
744 set_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
);
745 atomic_or(IORING_SQ_CQ_OVERFLOW
, &ctx
->rings
->sq_flags
);
748 ocqe
->cqe
.user_data
= user_data
;
750 ocqe
->cqe
.flags
= cflags
;
752 ocqe
->cqe
.big_cqe
[0] = extra1
;
753 ocqe
->cqe
.big_cqe
[1] = extra2
;
755 list_add_tail(&ocqe
->list
, &ctx
->cq_overflow_list
);
759 static void io_req_cqe_overflow(struct io_kiocb
*req
)
761 io_cqring_event_overflow(req
->ctx
, req
->cqe
.user_data
,
762 req
->cqe
.res
, req
->cqe
.flags
,
763 req
->big_cqe
.extra1
, req
->big_cqe
.extra2
);
764 memset(&req
->big_cqe
, 0, sizeof(req
->big_cqe
));
768 * writes to the cq entry need to come after reading head; the
769 * control dependency is enough as we're using WRITE_ONCE to
772 bool io_cqe_cache_refill(struct io_ring_ctx
*ctx
, bool overflow
)
774 struct io_rings
*rings
= ctx
->rings
;
775 unsigned int off
= ctx
->cached_cq_tail
& (ctx
->cq_entries
- 1);
776 unsigned int free
, queued
, len
;
779 * Posting into the CQ when there are pending overflowed CQEs may break
780 * ordering guarantees, which will affect links, F_MORE users and more.
781 * Force overflow the completion.
783 if (!overflow
&& (ctx
->check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
)))
786 /* userspace may cheat modifying the tail, be safe and do min */
787 queued
= min(__io_cqring_events(ctx
), ctx
->cq_entries
);
788 free
= ctx
->cq_entries
- queued
;
789 /* we need a contiguous range, limit based on the current array offset */
790 len
= min(free
, ctx
->cq_entries
- off
);
794 if (ctx
->flags
& IORING_SETUP_CQE32
) {
799 ctx
->cqe_cached
= &rings
->cqes
[off
];
800 ctx
->cqe_sentinel
= ctx
->cqe_cached
+ len
;
804 static bool io_fill_cqe_aux(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
,
807 struct io_uring_cqe
*cqe
;
812 * If we can't get a cq entry, userspace overflowed the
813 * submission (by quite a lot). Increment the overflow count in
816 if (likely(io_get_cqe(ctx
, &cqe
))) {
817 WRITE_ONCE(cqe
->user_data
, user_data
);
818 WRITE_ONCE(cqe
->res
, res
);
819 WRITE_ONCE(cqe
->flags
, cflags
);
821 if (ctx
->flags
& IORING_SETUP_CQE32
) {
822 WRITE_ONCE(cqe
->big_cqe
[0], 0);
823 WRITE_ONCE(cqe
->big_cqe
[1], 0);
826 trace_io_uring_complete(ctx
, NULL
, cqe
);
832 static bool __io_post_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
,
837 filled
= io_fill_cqe_aux(ctx
, user_data
, res
, cflags
);
839 filled
= io_cqring_event_overflow(ctx
, user_data
, res
, cflags
, 0, 0);
844 bool io_post_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
, u32 cflags
)
849 filled
= __io_post_aux_cqe(ctx
, user_data
, res
, cflags
);
850 io_cq_unlock_post(ctx
);
855 * Must be called from inline task_work so we now a flush will happen later,
856 * and obviously with ctx->uring_lock held (tw always has that).
858 void io_add_aux_cqe(struct io_ring_ctx
*ctx
, u64 user_data
, s32 res
, u32 cflags
)
860 if (!io_fill_cqe_aux(ctx
, user_data
, res
, cflags
)) {
861 spin_lock(&ctx
->completion_lock
);
862 io_cqring_event_overflow(ctx
, user_data
, res
, cflags
, 0, 0);
863 spin_unlock(&ctx
->completion_lock
);
865 ctx
->submit_state
.cq_flush
= true;
869 * A helper for multishot requests posting additional CQEs.
870 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
872 bool io_req_post_cqe(struct io_kiocb
*req
, s32 res
, u32 cflags
)
874 struct io_ring_ctx
*ctx
= req
->ctx
;
877 lockdep_assert(!io_wq_current_is_worker());
878 lockdep_assert_held(&ctx
->uring_lock
);
881 posted
= io_fill_cqe_aux(ctx
, req
->cqe
.user_data
, res
, cflags
);
882 ctx
->submit_state
.cq_flush
= true;
883 __io_cq_unlock_post(ctx
);
887 static void io_req_complete_post(struct io_kiocb
*req
, unsigned issue_flags
)
889 struct io_ring_ctx
*ctx
= req
->ctx
;
892 * All execution paths but io-wq use the deferred completions by
893 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
895 if (WARN_ON_ONCE(!(issue_flags
& IO_URING_F_IOWQ
)))
899 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
900 * the submitter task context, IOPOLL protects with uring_lock.
902 if (ctx
->task_complete
|| (ctx
->flags
& IORING_SETUP_IOPOLL
)) {
903 req
->io_task_work
.func
= io_req_task_complete
;
904 io_req_task_work_add(req
);
909 if (!(req
->flags
& REQ_F_CQE_SKIP
)) {
910 if (!io_fill_cqe_req(ctx
, req
))
911 io_req_cqe_overflow(req
);
913 io_cq_unlock_post(ctx
);
916 * We don't free the request here because we know it's called from
917 * io-wq only, which holds a reference, so it cannot be the last put.
922 void io_req_defer_failed(struct io_kiocb
*req
, s32 res
)
923 __must_hold(&ctx
->uring_lock
)
925 const struct io_cold_def
*def
= &io_cold_defs
[req
->opcode
];
927 lockdep_assert_held(&req
->ctx
->uring_lock
);
930 io_req_set_res(req
, res
, io_put_kbuf(req
, res
, IO_URING_F_UNLOCKED
));
933 io_req_complete_defer(req
);
937 * Don't initialise the fields below on every allocation, but do that in
938 * advance and keep them valid across allocations.
940 static void io_preinit_req(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
)
943 req
->buf_node
= NULL
;
944 req
->file_node
= NULL
;
946 req
->async_data
= NULL
;
947 /* not necessary, but safer to zero */
948 memset(&req
->cqe
, 0, sizeof(req
->cqe
));
949 memset(&req
->big_cqe
, 0, sizeof(req
->big_cqe
));
953 * A request might get retired back into the request caches even before opcode
954 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
955 * Because of that, io_alloc_req() should be called only under ->uring_lock
956 * and with extra caution to not get a request that is still worked on.
958 __cold
bool __io_alloc_req_refill(struct io_ring_ctx
*ctx
)
959 __must_hold(&ctx
->uring_lock
)
961 gfp_t gfp
= GFP_KERNEL
| __GFP_NOWARN
;
962 void *reqs
[IO_REQ_ALLOC_BATCH
];
965 ret
= kmem_cache_alloc_bulk(req_cachep
, gfp
, ARRAY_SIZE(reqs
), reqs
);
968 * Bulk alloc is all-or-nothing. If we fail to get a batch,
969 * retry single alloc to be on the safe side.
971 if (unlikely(ret
<= 0)) {
972 reqs
[0] = kmem_cache_alloc(req_cachep
, gfp
);
978 percpu_ref_get_many(&ctx
->refs
, ret
);
980 struct io_kiocb
*req
= reqs
[ret
];
982 io_preinit_req(req
, ctx
);
983 io_req_add_to_cache(req
, ctx
);
988 __cold
void io_free_req(struct io_kiocb
*req
)
990 /* refs were already put, restore them for io_req_task_complete() */
991 req
->flags
&= ~REQ_F_REFCOUNT
;
992 /* we only want to free it, don't post CQEs */
993 req
->flags
|= REQ_F_CQE_SKIP
;
994 req
->io_task_work
.func
= io_req_task_complete
;
995 io_req_task_work_add(req
);
998 static void __io_req_find_next_prep(struct io_kiocb
*req
)
1000 struct io_ring_ctx
*ctx
= req
->ctx
;
1002 spin_lock(&ctx
->completion_lock
);
1003 io_disarm_next(req
);
1004 spin_unlock(&ctx
->completion_lock
);
1007 static inline struct io_kiocb
*io_req_find_next(struct io_kiocb
*req
)
1009 struct io_kiocb
*nxt
;
1012 * If LINK is set, we have dependent requests in this chain. If we
1013 * didn't fail this request, queue the first one up, moving any other
1014 * dependencies to the next request. In case of failure, fail the rest
1017 if (unlikely(req
->flags
& IO_DISARM_MASK
))
1018 __io_req_find_next_prep(req
);
1024 static void ctx_flush_and_put(struct io_ring_ctx
*ctx
, struct io_tw_state
*ts
)
1028 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1029 atomic_andnot(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1031 io_submit_flush_completions(ctx
);
1032 mutex_unlock(&ctx
->uring_lock
);
1033 percpu_ref_put(&ctx
->refs
);
1037 * Run queued task_work, returning the number of entries processed in *count.
1038 * If more entries than max_entries are available, stop processing once this
1039 * is reached and return the rest of the list.
1041 struct llist_node
*io_handle_tw_list(struct llist_node
*node
,
1042 unsigned int *count
,
1043 unsigned int max_entries
)
1045 struct io_ring_ctx
*ctx
= NULL
;
1046 struct io_tw_state ts
= { };
1049 struct llist_node
*next
= node
->next
;
1050 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1053 if (req
->ctx
!= ctx
) {
1054 ctx_flush_and_put(ctx
, &ts
);
1056 mutex_lock(&ctx
->uring_lock
);
1057 percpu_ref_get(&ctx
->refs
);
1059 INDIRECT_CALL_2(req
->io_task_work
.func
,
1060 io_poll_task_func
, io_req_rw_complete
,
1064 if (unlikely(need_resched())) {
1065 ctx_flush_and_put(ctx
, &ts
);
1069 } while (node
&& *count
< max_entries
);
1071 ctx_flush_and_put(ctx
, &ts
);
1075 static __cold
void __io_fallback_tw(struct llist_node
*node
, bool sync
)
1077 struct io_ring_ctx
*last_ctx
= NULL
;
1078 struct io_kiocb
*req
;
1081 req
= container_of(node
, struct io_kiocb
, io_task_work
.node
);
1083 if (sync
&& last_ctx
!= req
->ctx
) {
1085 flush_delayed_work(&last_ctx
->fallback_work
);
1086 percpu_ref_put(&last_ctx
->refs
);
1088 last_ctx
= req
->ctx
;
1089 percpu_ref_get(&last_ctx
->refs
);
1091 if (llist_add(&req
->io_task_work
.node
,
1092 &req
->ctx
->fallback_llist
))
1093 schedule_delayed_work(&req
->ctx
->fallback_work
, 1);
1097 flush_delayed_work(&last_ctx
->fallback_work
);
1098 percpu_ref_put(&last_ctx
->refs
);
1102 static void io_fallback_tw(struct io_uring_task
*tctx
, bool sync
)
1104 struct llist_node
*node
= llist_del_all(&tctx
->task_list
);
1106 __io_fallback_tw(node
, sync
);
1109 struct llist_node
*tctx_task_work_run(struct io_uring_task
*tctx
,
1110 unsigned int max_entries
,
1111 unsigned int *count
)
1113 struct llist_node
*node
;
1115 if (unlikely(current
->flags
& PF_EXITING
)) {
1116 io_fallback_tw(tctx
, true);
1120 node
= llist_del_all(&tctx
->task_list
);
1122 node
= llist_reverse_order(node
);
1123 node
= io_handle_tw_list(node
, count
, max_entries
);
1126 /* relaxed read is enough as only the task itself sets ->in_cancel */
1127 if (unlikely(atomic_read(&tctx
->in_cancel
)))
1128 io_uring_drop_tctx_refs(current
);
1130 trace_io_uring_task_work_run(tctx
, *count
);
1134 void tctx_task_work(struct callback_head
*cb
)
1136 struct io_uring_task
*tctx
;
1137 struct llist_node
*ret
;
1138 unsigned int count
= 0;
1140 tctx
= container_of(cb
, struct io_uring_task
, task_work
);
1141 ret
= tctx_task_work_run(tctx
, UINT_MAX
, &count
);
1146 static inline void io_req_local_work_add(struct io_kiocb
*req
,
1147 struct io_ring_ctx
*ctx
,
1150 unsigned nr_wait
, nr_tw
, nr_tw_prev
;
1151 struct llist_node
*head
;
1153 /* See comment above IO_CQ_WAKE_INIT */
1154 BUILD_BUG_ON(IO_CQ_WAKE_FORCE
<= IORING_MAX_CQ_ENTRIES
);
1157 * We don't know how many reuqests is there in the link and whether
1158 * they can even be queued lazily, fall back to non-lazy.
1160 if (req
->flags
& (REQ_F_LINK
| REQ_F_HARDLINK
))
1161 flags
&= ~IOU_F_TWQ_LAZY_WAKE
;
1165 head
= READ_ONCE(ctx
->work_llist
.first
);
1169 struct io_kiocb
*first_req
= container_of(head
,
1173 * Might be executed at any moment, rely on
1174 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1176 nr_tw_prev
= READ_ONCE(first_req
->nr_tw
);
1180 * Theoretically, it can overflow, but that's fine as one of
1181 * previous adds should've tried to wake the task.
1183 nr_tw
= nr_tw_prev
+ 1;
1184 if (!(flags
& IOU_F_TWQ_LAZY_WAKE
))
1185 nr_tw
= IO_CQ_WAKE_FORCE
;
1188 req
->io_task_work
.node
.next
= head
;
1189 } while (!try_cmpxchg(&ctx
->work_llist
.first
, &head
,
1190 &req
->io_task_work
.node
));
1193 * cmpxchg implies a full barrier, which pairs with the barrier
1194 * in set_current_state() on the io_cqring_wait() side. It's used
1195 * to ensure that either we see updated ->cq_wait_nr, or waiters
1196 * going to sleep will observe the work added to the list, which
1197 * is similar to the wait/wawke task state sync.
1201 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1202 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1204 io_eventfd_signal(ctx
);
1207 nr_wait
= atomic_read(&ctx
->cq_wait_nr
);
1208 /* not enough or no one is waiting */
1209 if (nr_tw
< nr_wait
)
1211 /* the previous add has already woken it up */
1212 if (nr_tw_prev
>= nr_wait
)
1214 wake_up_state(ctx
->submitter_task
, TASK_INTERRUPTIBLE
);
1217 static void io_req_normal_work_add(struct io_kiocb
*req
)
1219 struct io_uring_task
*tctx
= req
->tctx
;
1220 struct io_ring_ctx
*ctx
= req
->ctx
;
1222 /* task_work already pending, we're done */
1223 if (!llist_add(&req
->io_task_work
.node
, &tctx
->task_list
))
1226 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1227 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1229 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1230 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
1231 __set_notify_signal(tctx
->task
);
1235 if (likely(!task_work_add(tctx
->task
, &tctx
->task_work
, ctx
->notify_method
)))
1238 io_fallback_tw(tctx
, false);
1241 void __io_req_task_work_add(struct io_kiocb
*req
, unsigned flags
)
1243 if (req
->ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
1244 io_req_local_work_add(req
, req
->ctx
, flags
);
1246 io_req_normal_work_add(req
);
1249 void io_req_task_work_add_remote(struct io_kiocb
*req
, struct io_ring_ctx
*ctx
,
1252 if (WARN_ON_ONCE(!(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)))
1254 io_req_local_work_add(req
, ctx
, flags
);
1257 static void __cold
io_move_task_work_from_local(struct io_ring_ctx
*ctx
)
1259 struct llist_node
*node
= llist_del_all(&ctx
->work_llist
);
1261 __io_fallback_tw(node
, false);
1262 node
= llist_del_all(&ctx
->retry_llist
);
1263 __io_fallback_tw(node
, false);
1266 static bool io_run_local_work_continue(struct io_ring_ctx
*ctx
, int events
,
1269 if (!io_local_work_pending(ctx
))
1271 if (events
< min_events
)
1273 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1274 atomic_or(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1278 static int __io_run_local_work_loop(struct llist_node
**node
,
1279 struct io_tw_state
*ts
,
1285 struct llist_node
*next
= (*node
)->next
;
1286 struct io_kiocb
*req
= container_of(*node
, struct io_kiocb
,
1288 INDIRECT_CALL_2(req
->io_task_work
.func
,
1289 io_poll_task_func
, io_req_rw_complete
,
1292 if (++ret
>= events
)
1299 static int __io_run_local_work(struct io_ring_ctx
*ctx
, struct io_tw_state
*ts
,
1300 int min_events
, int max_events
)
1302 struct llist_node
*node
;
1303 unsigned int loops
= 0;
1306 if (WARN_ON_ONCE(ctx
->submitter_task
!= current
))
1308 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
)
1309 atomic_andnot(IORING_SQ_TASKRUN
, &ctx
->rings
->sq_flags
);
1312 ret
= __io_run_local_work_loop(&ctx
->retry_llist
.first
, ts
, max_events
);
1313 if (ctx
->retry_llist
.first
)
1317 * llists are in reverse order, flip it back the right way before
1318 * running the pending items.
1320 node
= llist_reverse_order(llist_del_all(&ctx
->work_llist
));
1321 ret
+= __io_run_local_work_loop(&node
, ts
, max_events
- ret
);
1322 ctx
->retry_llist
.first
= node
;
1325 if (io_run_local_work_continue(ctx
, ret
, min_events
))
1328 io_submit_flush_completions(ctx
);
1329 if (io_run_local_work_continue(ctx
, ret
, min_events
))
1332 trace_io_uring_local_work_run(ctx
, ret
, loops
);
1336 static inline int io_run_local_work_locked(struct io_ring_ctx
*ctx
,
1339 struct io_tw_state ts
= {};
1341 if (!io_local_work_pending(ctx
))
1343 return __io_run_local_work(ctx
, &ts
, min_events
,
1344 max(IO_LOCAL_TW_DEFAULT_MAX
, min_events
));
1347 static int io_run_local_work(struct io_ring_ctx
*ctx
, int min_events
,
1350 struct io_tw_state ts
= {};
1353 mutex_lock(&ctx
->uring_lock
);
1354 ret
= __io_run_local_work(ctx
, &ts
, min_events
, max_events
);
1355 mutex_unlock(&ctx
->uring_lock
);
1359 static void io_req_task_cancel(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1361 io_tw_lock(req
->ctx
, ts
);
1362 io_req_defer_failed(req
, req
->cqe
.res
);
1365 void io_req_task_submit(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1367 io_tw_lock(req
->ctx
, ts
);
1368 if (unlikely(io_should_terminate_tw()))
1369 io_req_defer_failed(req
, -EFAULT
);
1370 else if (req
->flags
& REQ_F_FORCE_ASYNC
)
1376 void io_req_task_queue_fail(struct io_kiocb
*req
, int ret
)
1378 io_req_set_res(req
, ret
, 0);
1379 req
->io_task_work
.func
= io_req_task_cancel
;
1380 io_req_task_work_add(req
);
1383 void io_req_task_queue(struct io_kiocb
*req
)
1385 req
->io_task_work
.func
= io_req_task_submit
;
1386 io_req_task_work_add(req
);
1389 void io_queue_next(struct io_kiocb
*req
)
1391 struct io_kiocb
*nxt
= io_req_find_next(req
);
1394 io_req_task_queue(nxt
);
1397 static void io_free_batch_list(struct io_ring_ctx
*ctx
,
1398 struct io_wq_work_node
*node
)
1399 __must_hold(&ctx
->uring_lock
)
1402 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1405 if (unlikely(req
->flags
& IO_REQ_CLEAN_SLOW_FLAGS
)) {
1406 if (req
->flags
& REQ_F_REISSUE
) {
1407 node
= req
->comp_list
.next
;
1408 req
->flags
&= ~REQ_F_REISSUE
;
1412 if (req
->flags
& REQ_F_REFCOUNT
) {
1413 node
= req
->comp_list
.next
;
1414 if (!req_ref_put_and_test(req
))
1417 if ((req
->flags
& REQ_F_POLLED
) && req
->apoll
) {
1418 struct async_poll
*apoll
= req
->apoll
;
1420 if (apoll
->double_poll
)
1421 kfree(apoll
->double_poll
);
1422 if (!io_alloc_cache_put(&ctx
->apoll_cache
, apoll
))
1424 req
->flags
&= ~REQ_F_POLLED
;
1426 if (req
->flags
& IO_REQ_LINK_FLAGS
)
1428 if (unlikely(req
->flags
& IO_REQ_CLEAN_FLAGS
))
1432 io_req_put_rsrc_nodes(req
);
1435 node
= req
->comp_list
.next
;
1436 io_req_add_to_cache(req
, ctx
);
1440 void __io_submit_flush_completions(struct io_ring_ctx
*ctx
)
1441 __must_hold(&ctx
->uring_lock
)
1443 struct io_submit_state
*state
= &ctx
->submit_state
;
1444 struct io_wq_work_node
*node
;
1447 __wq_list_for_each(node
, &state
->compl_reqs
) {
1448 struct io_kiocb
*req
= container_of(node
, struct io_kiocb
,
1452 * Requests marked with REQUEUE should not post a CQE, they
1453 * will go through the io-wq retry machinery and post one
1456 if (!(req
->flags
& (REQ_F_CQE_SKIP
| REQ_F_REISSUE
)) &&
1457 unlikely(!io_fill_cqe_req(ctx
, req
))) {
1458 if (ctx
->lockless_cq
) {
1459 spin_lock(&ctx
->completion_lock
);
1460 io_req_cqe_overflow(req
);
1461 spin_unlock(&ctx
->completion_lock
);
1463 io_req_cqe_overflow(req
);
1467 __io_cq_unlock_post(ctx
);
1469 if (!wq_list_empty(&state
->compl_reqs
)) {
1470 io_free_batch_list(ctx
, state
->compl_reqs
.first
);
1471 INIT_WQ_LIST(&state
->compl_reqs
);
1473 ctx
->submit_state
.cq_flush
= false;
1476 static unsigned io_cqring_events(struct io_ring_ctx
*ctx
)
1478 /* See comment at the top of this file */
1480 return __io_cqring_events(ctx
);
1484 * We can't just wait for polled events to come to us, we have to actively
1485 * find and complete them.
1487 static __cold
void io_iopoll_try_reap_events(struct io_ring_ctx
*ctx
)
1489 if (!(ctx
->flags
& IORING_SETUP_IOPOLL
))
1492 mutex_lock(&ctx
->uring_lock
);
1493 while (!wq_list_empty(&ctx
->iopoll_list
)) {
1494 /* let it sleep and repeat later if can't complete a request */
1495 if (io_do_iopoll(ctx
, true) == 0)
1498 * Ensure we allow local-to-the-cpu processing to take place,
1499 * in this case we need to ensure that we reap all events.
1500 * Also let task_work, etc. to progress by releasing the mutex
1502 if (need_resched()) {
1503 mutex_unlock(&ctx
->uring_lock
);
1505 mutex_lock(&ctx
->uring_lock
);
1508 mutex_unlock(&ctx
->uring_lock
);
1511 static int io_iopoll_check(struct io_ring_ctx
*ctx
, long min
)
1513 unsigned int nr_events
= 0;
1514 unsigned long check_cq
;
1516 lockdep_assert_held(&ctx
->uring_lock
);
1518 if (!io_allowed_run_tw(ctx
))
1521 check_cq
= READ_ONCE(ctx
->check_cq
);
1522 if (unlikely(check_cq
)) {
1523 if (check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
))
1524 __io_cqring_overflow_flush(ctx
, false);
1526 * Similarly do not spin if we have not informed the user of any
1529 if (check_cq
& BIT(IO_CHECK_CQ_DROPPED_BIT
))
1533 * Don't enter poll loop if we already have events pending.
1534 * If we do, we can potentially be spinning for commands that
1535 * already triggered a CQE (eg in error).
1537 if (io_cqring_events(ctx
))
1544 * If a submit got punted to a workqueue, we can have the
1545 * application entering polling for a command before it gets
1546 * issued. That app will hold the uring_lock for the duration
1547 * of the poll right here, so we need to take a breather every
1548 * now and then to ensure that the issue has a chance to add
1549 * the poll to the issued list. Otherwise we can spin here
1550 * forever, while the workqueue is stuck trying to acquire the
1553 if (wq_list_empty(&ctx
->iopoll_list
) ||
1554 io_task_work_pending(ctx
)) {
1555 u32 tail
= ctx
->cached_cq_tail
;
1557 (void) io_run_local_work_locked(ctx
, min
);
1559 if (task_work_pending(current
) ||
1560 wq_list_empty(&ctx
->iopoll_list
)) {
1561 mutex_unlock(&ctx
->uring_lock
);
1563 mutex_lock(&ctx
->uring_lock
);
1565 /* some requests don't go through iopoll_list */
1566 if (tail
!= ctx
->cached_cq_tail
||
1567 wq_list_empty(&ctx
->iopoll_list
))
1570 ret
= io_do_iopoll(ctx
, !min
);
1571 if (unlikely(ret
< 0))
1574 if (task_sigpending(current
))
1580 } while (nr_events
< min
);
1585 void io_req_task_complete(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1587 io_req_complete_defer(req
);
1591 * After the iocb has been issued, it's safe to be found on the poll list.
1592 * Adding the kiocb to the list AFTER submission ensures that we don't
1593 * find it from a io_do_iopoll() thread before the issuer is done
1594 * accessing the kiocb cookie.
1596 static void io_iopoll_req_issued(struct io_kiocb
*req
, unsigned int issue_flags
)
1598 struct io_ring_ctx
*ctx
= req
->ctx
;
1599 const bool needs_lock
= issue_flags
& IO_URING_F_UNLOCKED
;
1601 /* workqueue context doesn't hold uring_lock, grab it now */
1602 if (unlikely(needs_lock
))
1603 mutex_lock(&ctx
->uring_lock
);
1606 * Track whether we have multiple files in our lists. This will impact
1607 * how we do polling eventually, not spinning if we're on potentially
1608 * different devices.
1610 if (wq_list_empty(&ctx
->iopoll_list
)) {
1611 ctx
->poll_multi_queue
= false;
1612 } else if (!ctx
->poll_multi_queue
) {
1613 struct io_kiocb
*list_req
;
1615 list_req
= container_of(ctx
->iopoll_list
.first
, struct io_kiocb
,
1617 if (list_req
->file
!= req
->file
)
1618 ctx
->poll_multi_queue
= true;
1622 * For fast devices, IO may have already completed. If it has, add
1623 * it to the front so we find it first.
1625 if (READ_ONCE(req
->iopoll_completed
))
1626 wq_list_add_head(&req
->comp_list
, &ctx
->iopoll_list
);
1628 wq_list_add_tail(&req
->comp_list
, &ctx
->iopoll_list
);
1630 if (unlikely(needs_lock
)) {
1632 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1633 * in sq thread task context or in io worker task context. If
1634 * current task context is sq thread, we don't need to check
1635 * whether should wake up sq thread.
1637 if ((ctx
->flags
& IORING_SETUP_SQPOLL
) &&
1638 wq_has_sleeper(&ctx
->sq_data
->wait
))
1639 wake_up(&ctx
->sq_data
->wait
);
1641 mutex_unlock(&ctx
->uring_lock
);
1645 io_req_flags_t
io_file_get_flags(struct file
*file
)
1647 io_req_flags_t res
= 0;
1649 if (S_ISREG(file_inode(file
)->i_mode
))
1651 if ((file
->f_flags
& O_NONBLOCK
) || (file
->f_mode
& FMODE_NOWAIT
))
1652 res
|= REQ_F_SUPPORT_NOWAIT
;
1656 static u32
io_get_sequence(struct io_kiocb
*req
)
1658 u32 seq
= req
->ctx
->cached_sq_head
;
1659 struct io_kiocb
*cur
;
1661 /* need original cached_sq_head, but it was increased for each req */
1662 io_for_each_link(cur
, req
)
1667 static __cold
void io_drain_req(struct io_kiocb
*req
)
1668 __must_hold(&ctx
->uring_lock
)
1670 struct io_ring_ctx
*ctx
= req
->ctx
;
1671 struct io_defer_entry
*de
;
1673 u32 seq
= io_get_sequence(req
);
1675 /* Still need defer if there is pending req in defer list. */
1676 spin_lock(&ctx
->completion_lock
);
1677 if (!req_need_defer(req
, seq
) && list_empty_careful(&ctx
->defer_list
)) {
1678 spin_unlock(&ctx
->completion_lock
);
1680 ctx
->drain_active
= false;
1681 io_req_task_queue(req
);
1684 spin_unlock(&ctx
->completion_lock
);
1686 io_prep_async_link(req
);
1687 de
= kmalloc(sizeof(*de
), GFP_KERNEL
);
1690 io_req_defer_failed(req
, ret
);
1694 spin_lock(&ctx
->completion_lock
);
1695 if (!req_need_defer(req
, seq
) && list_empty(&ctx
->defer_list
)) {
1696 spin_unlock(&ctx
->completion_lock
);
1701 trace_io_uring_defer(req
);
1704 list_add_tail(&de
->list
, &ctx
->defer_list
);
1705 spin_unlock(&ctx
->completion_lock
);
1708 static bool io_assign_file(struct io_kiocb
*req
, const struct io_issue_def
*def
,
1709 unsigned int issue_flags
)
1711 if (req
->file
|| !def
->needs_file
)
1714 if (req
->flags
& REQ_F_FIXED_FILE
)
1715 req
->file
= io_file_get_fixed(req
, req
->cqe
.fd
, issue_flags
);
1717 req
->file
= io_file_get_normal(req
, req
->cqe
.fd
);
1722 static int io_issue_sqe(struct io_kiocb
*req
, unsigned int issue_flags
)
1724 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
1725 const struct cred
*creds
= NULL
;
1728 if (unlikely(!io_assign_file(req
, def
, issue_flags
)))
1731 if (unlikely((req
->flags
& REQ_F_CREDS
) && req
->creds
!= current_cred()))
1732 creds
= override_creds(req
->creds
);
1734 if (!def
->audit_skip
)
1735 audit_uring_entry(req
->opcode
);
1737 ret
= def
->issue(req
, issue_flags
);
1739 if (!def
->audit_skip
)
1740 audit_uring_exit(!ret
, ret
);
1743 revert_creds(creds
);
1745 if (ret
== IOU_OK
) {
1746 if (issue_flags
& IO_URING_F_COMPLETE_DEFER
)
1747 io_req_complete_defer(req
);
1749 io_req_complete_post(req
, issue_flags
);
1754 if (ret
== IOU_ISSUE_SKIP_COMPLETE
) {
1756 io_arm_ltimeout(req
);
1758 /* If the op doesn't have a file, we're not polling for it */
1759 if ((req
->ctx
->flags
& IORING_SETUP_IOPOLL
) && def
->iopoll_queue
)
1760 io_iopoll_req_issued(req
, issue_flags
);
1765 int io_poll_issue(struct io_kiocb
*req
, struct io_tw_state
*ts
)
1767 io_tw_lock(req
->ctx
, ts
);
1768 return io_issue_sqe(req
, IO_URING_F_NONBLOCK
|IO_URING_F_MULTISHOT
|
1769 IO_URING_F_COMPLETE_DEFER
);
1772 struct io_wq_work
*io_wq_free_work(struct io_wq_work
*work
)
1774 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1775 struct io_kiocb
*nxt
= NULL
;
1777 if (req_ref_put_and_test(req
)) {
1778 if (req
->flags
& IO_REQ_LINK_FLAGS
)
1779 nxt
= io_req_find_next(req
);
1782 return nxt
? &nxt
->work
: NULL
;
1785 void io_wq_submit_work(struct io_wq_work
*work
)
1787 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
1788 const struct io_issue_def
*def
= &io_issue_defs
[req
->opcode
];
1789 unsigned int issue_flags
= IO_URING_F_UNLOCKED
| IO_URING_F_IOWQ
;
1790 bool needs_poll
= false;
1791 int ret
= 0, err
= -ECANCELED
;
1793 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1794 if (!(req
->flags
& REQ_F_REFCOUNT
))
1795 __io_req_set_refcount(req
, 2);
1799 io_arm_ltimeout(req
);
1801 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1802 if (atomic_read(&work
->flags
) & IO_WQ_WORK_CANCEL
) {
1804 io_req_task_queue_fail(req
, err
);
1807 if (!io_assign_file(req
, def
, issue_flags
)) {
1809 atomic_or(IO_WQ_WORK_CANCEL
, &work
->flags
);
1814 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1815 * submitter task context. Final request completions are handed to the
1816 * right context, however this is not the case of auxiliary CQEs,
1817 * which is the main mean of operation for multishot requests.
1818 * Don't allow any multishot execution from io-wq. It's more restrictive
1819 * than necessary and also cleaner.
1821 if (req
->flags
& REQ_F_APOLL_MULTISHOT
) {
1823 if (!io_file_can_poll(req
))
1825 if (req
->file
->f_flags
& O_NONBLOCK
||
1826 req
->file
->f_mode
& FMODE_NOWAIT
) {
1828 if (io_arm_poll_handler(req
, issue_flags
) != IO_APOLL_OK
)
1832 req
->flags
&= ~REQ_F_APOLL_MULTISHOT
;
1836 if (req
->flags
& REQ_F_FORCE_ASYNC
) {
1837 bool opcode_poll
= def
->pollin
|| def
->pollout
;
1839 if (opcode_poll
&& io_file_can_poll(req
)) {
1841 issue_flags
|= IO_URING_F_NONBLOCK
;
1846 ret
= io_issue_sqe(req
, issue_flags
);
1851 * If REQ_F_NOWAIT is set, then don't wait or retry with
1852 * poll. -EAGAIN is final for that case.
1854 if (req
->flags
& REQ_F_NOWAIT
)
1858 * We can get EAGAIN for iopolled IO even though we're
1859 * forcing a sync submission from here, since we can't
1860 * wait for request slots on the block side.
1863 if (!(req
->ctx
->flags
& IORING_SETUP_IOPOLL
))
1865 if (io_wq_worker_stopped())
1871 if (io_arm_poll_handler(req
, issue_flags
) == IO_APOLL_OK
)
1873 /* aborted or ready, in either case retry blocking */
1875 issue_flags
&= ~IO_URING_F_NONBLOCK
;
1878 /* avoid locking problems by failing it from a clean context */
1880 io_req_task_queue_fail(req
, ret
);
1883 inline struct file
*io_file_get_fixed(struct io_kiocb
*req
, int fd
,
1884 unsigned int issue_flags
)
1886 struct io_ring_ctx
*ctx
= req
->ctx
;
1887 struct io_rsrc_node
*node
;
1888 struct file
*file
= NULL
;
1890 io_ring_submit_lock(ctx
, issue_flags
);
1891 node
= io_rsrc_node_lookup(&ctx
->file_table
.data
, fd
);
1893 io_req_assign_rsrc_node(&req
->file_node
, node
);
1894 req
->flags
|= io_slot_flags(node
);
1895 file
= io_slot_file(node
);
1897 io_ring_submit_unlock(ctx
, issue_flags
);
1901 struct file
*io_file_get_normal(struct io_kiocb
*req
, int fd
)
1903 struct file
*file
= fget(fd
);
1905 trace_io_uring_file_get(req
, fd
);
1907 /* we don't allow fixed io_uring files */
1908 if (file
&& io_is_uring_fops(file
))
1909 io_req_track_inflight(req
);
1913 static void io_queue_async(struct io_kiocb
*req
, int ret
)
1914 __must_hold(&req
->ctx
->uring_lock
)
1916 struct io_kiocb
*linked_timeout
;
1918 if (ret
!= -EAGAIN
|| (req
->flags
& REQ_F_NOWAIT
)) {
1919 io_req_defer_failed(req
, ret
);
1923 linked_timeout
= io_prep_linked_timeout(req
);
1925 switch (io_arm_poll_handler(req
, 0)) {
1926 case IO_APOLL_READY
:
1927 io_kbuf_recycle(req
, 0);
1928 io_req_task_queue(req
);
1930 case IO_APOLL_ABORTED
:
1931 io_kbuf_recycle(req
, 0);
1939 io_queue_linked_timeout(linked_timeout
);
1942 static inline void io_queue_sqe(struct io_kiocb
*req
)
1943 __must_hold(&req
->ctx
->uring_lock
)
1947 ret
= io_issue_sqe(req
, IO_URING_F_NONBLOCK
|IO_URING_F_COMPLETE_DEFER
);
1950 * We async punt it if the file wasn't marked NOWAIT, or if the file
1951 * doesn't support non-blocking read/write attempts
1954 io_queue_async(req
, ret
);
1957 static void io_queue_sqe_fallback(struct io_kiocb
*req
)
1958 __must_hold(&req
->ctx
->uring_lock
)
1960 if (unlikely(req
->flags
& REQ_F_FAIL
)) {
1962 * We don't submit, fail them all, for that replace hardlinks
1963 * with normal links. Extra REQ_F_LINK is tolerated.
1965 req
->flags
&= ~REQ_F_HARDLINK
;
1966 req
->flags
|= REQ_F_LINK
;
1967 io_req_defer_failed(req
, req
->cqe
.res
);
1969 if (unlikely(req
->ctx
->drain_active
))
1977 * Check SQE restrictions (opcode and flags).
1979 * Returns 'true' if SQE is allowed, 'false' otherwise.
1981 static inline bool io_check_restriction(struct io_ring_ctx
*ctx
,
1982 struct io_kiocb
*req
,
1983 unsigned int sqe_flags
)
1985 if (!test_bit(req
->opcode
, ctx
->restrictions
.sqe_op
))
1988 if ((sqe_flags
& ctx
->restrictions
.sqe_flags_required
) !=
1989 ctx
->restrictions
.sqe_flags_required
)
1992 if (sqe_flags
& ~(ctx
->restrictions
.sqe_flags_allowed
|
1993 ctx
->restrictions
.sqe_flags_required
))
1999 static void io_init_req_drain(struct io_kiocb
*req
)
2001 struct io_ring_ctx
*ctx
= req
->ctx
;
2002 struct io_kiocb
*head
= ctx
->submit_state
.link
.head
;
2004 ctx
->drain_active
= true;
2007 * If we need to drain a request in the middle of a link, drain
2008 * the head request and the next request/link after the current
2009 * link. Considering sequential execution of links,
2010 * REQ_F_IO_DRAIN will be maintained for every request of our
2013 head
->flags
|= REQ_F_IO_DRAIN
| REQ_F_FORCE_ASYNC
;
2014 ctx
->drain_next
= true;
2018 static __cold
int io_init_fail_req(struct io_kiocb
*req
, int err
)
2020 /* ensure per-opcode data is cleared if we fail before prep */
2021 memset(&req
->cmd
.data
, 0, sizeof(req
->cmd
.data
));
2025 static int io_init_req(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
2026 const struct io_uring_sqe
*sqe
)
2027 __must_hold(&ctx
->uring_lock
)
2029 const struct io_issue_def
*def
;
2030 unsigned int sqe_flags
;
2034 /* req is partially pre-initialised, see io_preinit_req() */
2035 req
->opcode
= opcode
= READ_ONCE(sqe
->opcode
);
2036 /* same numerical values with corresponding REQ_F_*, safe to copy */
2037 sqe_flags
= READ_ONCE(sqe
->flags
);
2038 req
->flags
= (__force io_req_flags_t
) sqe_flags
;
2039 req
->cqe
.user_data
= READ_ONCE(sqe
->user_data
);
2041 req
->tctx
= current
->io_uring
;
2042 req
->cancel_seq_set
= false;
2044 if (unlikely(opcode
>= IORING_OP_LAST
)) {
2046 return io_init_fail_req(req
, -EINVAL
);
2048 def
= &io_issue_defs
[opcode
];
2049 if (unlikely(sqe_flags
& ~SQE_COMMON_FLAGS
)) {
2050 /* enforce forwards compatibility on users */
2051 if (sqe_flags
& ~SQE_VALID_FLAGS
)
2052 return io_init_fail_req(req
, -EINVAL
);
2053 if (sqe_flags
& IOSQE_BUFFER_SELECT
) {
2054 if (!def
->buffer_select
)
2055 return io_init_fail_req(req
, -EOPNOTSUPP
);
2056 req
->buf_index
= READ_ONCE(sqe
->buf_group
);
2058 if (sqe_flags
& IOSQE_CQE_SKIP_SUCCESS
)
2059 ctx
->drain_disabled
= true;
2060 if (sqe_flags
& IOSQE_IO_DRAIN
) {
2061 if (ctx
->drain_disabled
)
2062 return io_init_fail_req(req
, -EOPNOTSUPP
);
2063 io_init_req_drain(req
);
2066 if (unlikely(ctx
->restricted
|| ctx
->drain_active
|| ctx
->drain_next
)) {
2067 if (ctx
->restricted
&& !io_check_restriction(ctx
, req
, sqe_flags
))
2068 return io_init_fail_req(req
, -EACCES
);
2069 /* knock it to the slow queue path, will be drained there */
2070 if (ctx
->drain_active
)
2071 req
->flags
|= REQ_F_FORCE_ASYNC
;
2072 /* if there is no link, we're at "next" request and need to drain */
2073 if (unlikely(ctx
->drain_next
) && !ctx
->submit_state
.link
.head
) {
2074 ctx
->drain_next
= false;
2075 ctx
->drain_active
= true;
2076 req
->flags
|= REQ_F_IO_DRAIN
| REQ_F_FORCE_ASYNC
;
2080 if (!def
->ioprio
&& sqe
->ioprio
)
2081 return io_init_fail_req(req
, -EINVAL
);
2082 if (!def
->iopoll
&& (ctx
->flags
& IORING_SETUP_IOPOLL
))
2083 return io_init_fail_req(req
, -EINVAL
);
2085 if (def
->needs_file
) {
2086 struct io_submit_state
*state
= &ctx
->submit_state
;
2088 req
->cqe
.fd
= READ_ONCE(sqe
->fd
);
2091 * Plug now if we have more than 2 IO left after this, and the
2092 * target is potentially a read/write to block based storage.
2094 if (state
->need_plug
&& def
->plug
) {
2095 state
->plug_started
= true;
2096 state
->need_plug
= false;
2097 blk_start_plug_nr_ios(&state
->plug
, state
->submit_nr
);
2101 personality
= READ_ONCE(sqe
->personality
);
2105 req
->creds
= xa_load(&ctx
->personalities
, personality
);
2107 return io_init_fail_req(req
, -EINVAL
);
2108 get_cred(req
->creds
);
2109 ret
= security_uring_override_creds(req
->creds
);
2111 put_cred(req
->creds
);
2112 return io_init_fail_req(req
, ret
);
2114 req
->flags
|= REQ_F_CREDS
;
2117 return def
->prep(req
, sqe
);
2120 static __cold
int io_submit_fail_init(const struct io_uring_sqe
*sqe
,
2121 struct io_kiocb
*req
, int ret
)
2123 struct io_ring_ctx
*ctx
= req
->ctx
;
2124 struct io_submit_link
*link
= &ctx
->submit_state
.link
;
2125 struct io_kiocb
*head
= link
->head
;
2127 trace_io_uring_req_failed(sqe
, req
, ret
);
2130 * Avoid breaking links in the middle as it renders links with SQPOLL
2131 * unusable. Instead of failing eagerly, continue assembling the link if
2132 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2133 * should find the flag and handle the rest.
2135 req_fail_link_node(req
, ret
);
2136 if (head
&& !(head
->flags
& REQ_F_FAIL
))
2137 req_fail_link_node(head
, -ECANCELED
);
2139 if (!(req
->flags
& IO_REQ_LINK_FLAGS
)) {
2141 link
->last
->link
= req
;
2145 io_queue_sqe_fallback(req
);
2150 link
->last
->link
= req
;
2157 static inline int io_submit_sqe(struct io_ring_ctx
*ctx
, struct io_kiocb
*req
,
2158 const struct io_uring_sqe
*sqe
)
2159 __must_hold(&ctx
->uring_lock
)
2161 struct io_submit_link
*link
= &ctx
->submit_state
.link
;
2164 ret
= io_init_req(ctx
, req
, sqe
);
2166 return io_submit_fail_init(sqe
, req
, ret
);
2168 trace_io_uring_submit_req(req
);
2171 * If we already have a head request, queue this one for async
2172 * submittal once the head completes. If we don't have a head but
2173 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2174 * submitted sync once the chain is complete. If none of those
2175 * conditions are true (normal request), then just queue it.
2177 if (unlikely(link
->head
)) {
2178 trace_io_uring_link(req
, link
->last
);
2179 link
->last
->link
= req
;
2182 if (req
->flags
& IO_REQ_LINK_FLAGS
)
2184 /* last request of the link, flush it */
2187 if (req
->flags
& (REQ_F_FORCE_ASYNC
| REQ_F_FAIL
))
2190 } else if (unlikely(req
->flags
& (IO_REQ_LINK_FLAGS
|
2191 REQ_F_FORCE_ASYNC
| REQ_F_FAIL
))) {
2192 if (req
->flags
& IO_REQ_LINK_FLAGS
) {
2197 io_queue_sqe_fallback(req
);
2207 * Batched submission is done, ensure local IO is flushed out.
2209 static void io_submit_state_end(struct io_ring_ctx
*ctx
)
2211 struct io_submit_state
*state
= &ctx
->submit_state
;
2213 if (unlikely(state
->link
.head
))
2214 io_queue_sqe_fallback(state
->link
.head
);
2215 /* flush only after queuing links as they can generate completions */
2216 io_submit_flush_completions(ctx
);
2217 if (state
->plug_started
)
2218 blk_finish_plug(&state
->plug
);
2222 * Start submission side cache.
2224 static void io_submit_state_start(struct io_submit_state
*state
,
2225 unsigned int max_ios
)
2227 state
->plug_started
= false;
2228 state
->need_plug
= max_ios
> 2;
2229 state
->submit_nr
= max_ios
;
2230 /* set only head, no need to init link_last in advance */
2231 state
->link
.head
= NULL
;
2234 static void io_commit_sqring(struct io_ring_ctx
*ctx
)
2236 struct io_rings
*rings
= ctx
->rings
;
2239 * Ensure any loads from the SQEs are done at this point,
2240 * since once we write the new head, the application could
2241 * write new data to them.
2243 smp_store_release(&rings
->sq
.head
, ctx
->cached_sq_head
);
2247 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2248 * that is mapped by userspace. This means that care needs to be taken to
2249 * ensure that reads are stable, as we cannot rely on userspace always
2250 * being a good citizen. If members of the sqe are validated and then later
2251 * used, it's important that those reads are done through READ_ONCE() to
2252 * prevent a re-load down the line.
2254 static bool io_get_sqe(struct io_ring_ctx
*ctx
, const struct io_uring_sqe
**sqe
)
2256 unsigned mask
= ctx
->sq_entries
- 1;
2257 unsigned head
= ctx
->cached_sq_head
++ & mask
;
2259 if (static_branch_unlikely(&io_key_has_sqarray
) &&
2260 (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))) {
2261 head
= READ_ONCE(ctx
->sq_array
[head
]);
2262 if (unlikely(head
>= ctx
->sq_entries
)) {
2263 /* drop invalid entries */
2264 spin_lock(&ctx
->completion_lock
);
2266 spin_unlock(&ctx
->completion_lock
);
2267 WRITE_ONCE(ctx
->rings
->sq_dropped
,
2268 READ_ONCE(ctx
->rings
->sq_dropped
) + 1);
2271 head
= array_index_nospec(head
, ctx
->sq_entries
);
2275 * The cached sq head (or cq tail) serves two purposes:
2277 * 1) allows us to batch the cost of updating the user visible
2279 * 2) allows the kernel side to track the head on its own, even
2280 * though the application is the one updating it.
2283 /* double index for 128-byte SQEs, twice as long */
2284 if (ctx
->flags
& IORING_SETUP_SQE128
)
2286 *sqe
= &ctx
->sq_sqes
[head
];
2290 int io_submit_sqes(struct io_ring_ctx
*ctx
, unsigned int nr
)
2291 __must_hold(&ctx
->uring_lock
)
2293 unsigned int entries
= io_sqring_entries(ctx
);
2297 if (unlikely(!entries
))
2299 /* make sure SQ entry isn't read before tail */
2300 ret
= left
= min(nr
, entries
);
2301 io_get_task_refs(left
);
2302 io_submit_state_start(&ctx
->submit_state
, left
);
2305 const struct io_uring_sqe
*sqe
;
2306 struct io_kiocb
*req
;
2308 if (unlikely(!io_alloc_req(ctx
, &req
)))
2310 if (unlikely(!io_get_sqe(ctx
, &sqe
))) {
2311 io_req_add_to_cache(req
, ctx
);
2316 * Continue submitting even for sqe failure if the
2317 * ring was setup with IORING_SETUP_SUBMIT_ALL
2319 if (unlikely(io_submit_sqe(ctx
, req
, sqe
)) &&
2320 !(ctx
->flags
& IORING_SETUP_SUBMIT_ALL
)) {
2326 if (unlikely(left
)) {
2328 /* try again if it submitted nothing and can't allocate a req */
2329 if (!ret
&& io_req_cache_empty(ctx
))
2331 current
->io_uring
->cached_refs
+= left
;
2334 io_submit_state_end(ctx
);
2335 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2336 io_commit_sqring(ctx
);
2340 static int io_wake_function(struct wait_queue_entry
*curr
, unsigned int mode
,
2341 int wake_flags
, void *key
)
2343 struct io_wait_queue
*iowq
= container_of(curr
, struct io_wait_queue
, wq
);
2346 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2347 * the task, and the next invocation will do it.
2349 if (io_should_wake(iowq
) || io_has_work(iowq
->ctx
))
2350 return autoremove_wake_function(curr
, mode
, wake_flags
, key
);
2354 int io_run_task_work_sig(struct io_ring_ctx
*ctx
)
2356 if (io_local_work_pending(ctx
)) {
2357 __set_current_state(TASK_RUNNING
);
2358 if (io_run_local_work(ctx
, INT_MAX
, IO_LOCAL_TW_DEFAULT_MAX
) > 0)
2361 if (io_run_task_work() > 0)
2363 if (task_sigpending(current
))
2368 static bool current_pending_io(void)
2370 struct io_uring_task
*tctx
= current
->io_uring
;
2374 return percpu_counter_read_positive(&tctx
->inflight
);
2377 static enum hrtimer_restart
io_cqring_timer_wakeup(struct hrtimer
*timer
)
2379 struct io_wait_queue
*iowq
= container_of(timer
, struct io_wait_queue
, t
);
2381 WRITE_ONCE(iowq
->hit_timeout
, 1);
2382 iowq
->min_timeout
= 0;
2383 wake_up_process(iowq
->wq
.private);
2384 return HRTIMER_NORESTART
;
2388 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2389 * wake up. If not, and we have a normal timeout, switch to that and keep
2392 static enum hrtimer_restart
io_cqring_min_timer_wakeup(struct hrtimer
*timer
)
2394 struct io_wait_queue
*iowq
= container_of(timer
, struct io_wait_queue
, t
);
2395 struct io_ring_ctx
*ctx
= iowq
->ctx
;
2397 /* no general timeout, or shorter (or equal), we are done */
2398 if (iowq
->timeout
== KTIME_MAX
||
2399 ktime_compare(iowq
->min_timeout
, iowq
->timeout
) >= 0)
2401 /* work we may need to run, wake function will see if we need to wake */
2402 if (io_has_work(ctx
))
2404 /* got events since we started waiting, min timeout is done */
2405 if (iowq
->cq_min_tail
!= READ_ONCE(ctx
->rings
->cq
.tail
))
2407 /* if we have any events and min timeout expired, we're done */
2408 if (io_cqring_events(ctx
))
2412 * If using deferred task_work running and application is waiting on
2413 * more than one request, ensure we reset it now where we are switching
2414 * to normal sleeps. Any request completion post min_wait should wake
2415 * the task and return.
2417 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
2418 atomic_set(&ctx
->cq_wait_nr
, 1);
2420 if (!llist_empty(&ctx
->work_llist
))
2424 iowq
->t
.function
= io_cqring_timer_wakeup
;
2425 hrtimer_set_expires(timer
, iowq
->timeout
);
2426 return HRTIMER_RESTART
;
2428 return io_cqring_timer_wakeup(timer
);
2431 static int io_cqring_schedule_timeout(struct io_wait_queue
*iowq
,
2432 clockid_t clock_id
, ktime_t start_time
)
2436 if (iowq
->min_timeout
) {
2437 timeout
= ktime_add_ns(iowq
->min_timeout
, start_time
);
2438 hrtimer_setup_on_stack(&iowq
->t
, io_cqring_min_timer_wakeup
, clock_id
,
2441 timeout
= iowq
->timeout
;
2442 hrtimer_setup_on_stack(&iowq
->t
, io_cqring_timer_wakeup
, clock_id
,
2446 hrtimer_set_expires_range_ns(&iowq
->t
, timeout
, 0);
2447 hrtimer_start_expires(&iowq
->t
, HRTIMER_MODE_ABS
);
2449 if (!READ_ONCE(iowq
->hit_timeout
))
2452 hrtimer_cancel(&iowq
->t
);
2453 destroy_hrtimer_on_stack(&iowq
->t
);
2454 __set_current_state(TASK_RUNNING
);
2456 return READ_ONCE(iowq
->hit_timeout
) ? -ETIME
: 0;
2459 static int __io_cqring_wait_schedule(struct io_ring_ctx
*ctx
,
2460 struct io_wait_queue
*iowq
,
2466 * Mark us as being in io_wait if we have pending requests, so cpufreq
2467 * can take into account that the task is waiting for IO - turns out
2468 * to be important for low QD IO.
2470 if (current_pending_io())
2471 current
->in_iowait
= 1;
2472 if (iowq
->timeout
!= KTIME_MAX
|| iowq
->min_timeout
)
2473 ret
= io_cqring_schedule_timeout(iowq
, ctx
->clockid
, start_time
);
2476 current
->in_iowait
= 0;
2480 /* If this returns > 0, the caller should retry */
2481 static inline int io_cqring_wait_schedule(struct io_ring_ctx
*ctx
,
2482 struct io_wait_queue
*iowq
,
2485 if (unlikely(READ_ONCE(ctx
->check_cq
)))
2487 if (unlikely(io_local_work_pending(ctx
)))
2489 if (unlikely(task_work_pending(current
)))
2491 if (unlikely(task_sigpending(current
)))
2493 if (unlikely(io_should_wake(iowq
)))
2496 return __io_cqring_wait_schedule(ctx
, iowq
, start_time
);
2501 struct timespec64 ts
;
2502 const sigset_t __user
*sig
;
2508 * Wait until events become available, if we don't already have some. The
2509 * application must reap them itself, as they reside on the shared cq ring.
2511 static int io_cqring_wait(struct io_ring_ctx
*ctx
, int min_events
, u32 flags
,
2512 struct ext_arg
*ext_arg
)
2514 struct io_wait_queue iowq
;
2515 struct io_rings
*rings
= ctx
->rings
;
2519 if (!io_allowed_run_tw(ctx
))
2521 if (io_local_work_pending(ctx
))
2522 io_run_local_work(ctx
, min_events
,
2523 max(IO_LOCAL_TW_DEFAULT_MAX
, min_events
));
2526 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
)))
2527 io_cqring_do_overflow_flush(ctx
);
2528 if (__io_cqring_events_user(ctx
) >= min_events
)
2531 init_waitqueue_func_entry(&iowq
.wq
, io_wake_function
);
2532 iowq
.wq
.private = current
;
2533 INIT_LIST_HEAD(&iowq
.wq
.entry
);
2535 iowq
.cq_tail
= READ_ONCE(ctx
->rings
->cq
.head
) + min_events
;
2536 iowq
.cq_min_tail
= READ_ONCE(ctx
->rings
->cq
.tail
);
2537 iowq
.nr_timeouts
= atomic_read(&ctx
->cq_timeouts
);
2538 iowq
.hit_timeout
= 0;
2539 iowq
.min_timeout
= ext_arg
->min_time
;
2540 iowq
.timeout
= KTIME_MAX
;
2541 start_time
= io_get_time(ctx
);
2543 if (ext_arg
->ts_set
) {
2544 iowq
.timeout
= timespec64_to_ktime(ext_arg
->ts
);
2545 if (!(flags
& IORING_ENTER_ABS_TIMER
))
2546 iowq
.timeout
= ktime_add(iowq
.timeout
, start_time
);
2550 #ifdef CONFIG_COMPAT
2551 if (in_compat_syscall())
2552 ret
= set_compat_user_sigmask((const compat_sigset_t __user
*)ext_arg
->sig
,
2556 ret
= set_user_sigmask(ext_arg
->sig
, ext_arg
->argsz
);
2562 io_napi_busy_loop(ctx
, &iowq
);
2564 trace_io_uring_cqring_wait(ctx
, min_events
);
2566 unsigned long check_cq
;
2569 /* if min timeout has been hit, don't reset wait count */
2570 if (!iowq
.hit_timeout
)
2571 nr_wait
= (int) iowq
.cq_tail
-
2572 READ_ONCE(ctx
->rings
->cq
.tail
);
2576 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
2577 atomic_set(&ctx
->cq_wait_nr
, nr_wait
);
2578 set_current_state(TASK_INTERRUPTIBLE
);
2580 prepare_to_wait_exclusive(&ctx
->cq_wait
, &iowq
.wq
,
2581 TASK_INTERRUPTIBLE
);
2584 ret
= io_cqring_wait_schedule(ctx
, &iowq
, start_time
);
2585 __set_current_state(TASK_RUNNING
);
2586 atomic_set(&ctx
->cq_wait_nr
, IO_CQ_WAKE_INIT
);
2589 * Run task_work after scheduling and before io_should_wake().
2590 * If we got woken because of task_work being processed, run it
2591 * now rather than let the caller do another wait loop.
2593 if (io_local_work_pending(ctx
))
2594 io_run_local_work(ctx
, nr_wait
, nr_wait
);
2598 * Non-local task_work will be run on exit to userspace, but
2599 * if we're using DEFER_TASKRUN, then we could have waited
2600 * with a timeout for a number of requests. If the timeout
2601 * hits, we could have some requests ready to process. Ensure
2602 * this break is _after_ we have run task_work, to avoid
2603 * deferring running potentially pending requests until the
2604 * next time we wait for events.
2609 check_cq
= READ_ONCE(ctx
->check_cq
);
2610 if (unlikely(check_cq
)) {
2611 /* let the caller flush overflows, retry */
2612 if (check_cq
& BIT(IO_CHECK_CQ_OVERFLOW_BIT
))
2613 io_cqring_do_overflow_flush(ctx
);
2614 if (check_cq
& BIT(IO_CHECK_CQ_DROPPED_BIT
)) {
2620 if (io_should_wake(&iowq
)) {
2627 if (!(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
))
2628 finish_wait(&ctx
->cq_wait
, &iowq
.wq
);
2629 restore_saved_sigmask_unless(ret
== -EINTR
);
2631 return READ_ONCE(rings
->cq
.head
) == READ_ONCE(rings
->cq
.tail
) ? ret
: 0;
2634 static void io_rings_free(struct io_ring_ctx
*ctx
)
2636 io_free_region(ctx
, &ctx
->sq_region
);
2637 io_free_region(ctx
, &ctx
->ring_region
);
2639 ctx
->sq_sqes
= NULL
;
2642 unsigned long rings_size(unsigned int flags
, unsigned int sq_entries
,
2643 unsigned int cq_entries
, size_t *sq_offset
)
2645 struct io_rings
*rings
;
2646 size_t off
, sq_array_size
;
2648 off
= struct_size(rings
, cqes
, cq_entries
);
2649 if (off
== SIZE_MAX
)
2651 if (flags
& IORING_SETUP_CQE32
) {
2652 if (check_shl_overflow(off
, 1, &off
))
2657 off
= ALIGN(off
, SMP_CACHE_BYTES
);
2662 if (flags
& IORING_SETUP_NO_SQARRAY
) {
2663 *sq_offset
= SIZE_MAX
;
2669 sq_array_size
= array_size(sizeof(u32
), sq_entries
);
2670 if (sq_array_size
== SIZE_MAX
)
2673 if (check_add_overflow(off
, sq_array_size
, &off
))
2679 static void io_req_caches_free(struct io_ring_ctx
*ctx
)
2681 struct io_kiocb
*req
;
2684 mutex_lock(&ctx
->uring_lock
);
2686 while (!io_req_cache_empty(ctx
)) {
2687 req
= io_extract_req(ctx
);
2688 kmem_cache_free(req_cachep
, req
);
2692 percpu_ref_put_many(&ctx
->refs
, nr
);
2693 mutex_unlock(&ctx
->uring_lock
);
2696 static __cold
void io_ring_ctx_free(struct io_ring_ctx
*ctx
)
2698 io_sq_thread_finish(ctx
);
2700 mutex_lock(&ctx
->uring_lock
);
2701 io_sqe_buffers_unregister(ctx
);
2702 io_sqe_files_unregister(ctx
);
2703 io_cqring_overflow_kill(ctx
);
2704 io_eventfd_unregister(ctx
);
2705 io_alloc_cache_free(&ctx
->apoll_cache
, kfree
);
2706 io_alloc_cache_free(&ctx
->netmsg_cache
, io_netmsg_cache_free
);
2707 io_alloc_cache_free(&ctx
->rw_cache
, io_rw_cache_free
);
2708 io_alloc_cache_free(&ctx
->uring_cache
, kfree
);
2709 io_alloc_cache_free(&ctx
->msg_cache
, kfree
);
2710 io_futex_cache_free(ctx
);
2711 io_destroy_buffers(ctx
);
2712 io_free_region(ctx
, &ctx
->param_region
);
2713 mutex_unlock(&ctx
->uring_lock
);
2715 put_cred(ctx
->sq_creds
);
2716 if (ctx
->submitter_task
)
2717 put_task_struct(ctx
->submitter_task
);
2719 WARN_ON_ONCE(!list_empty(&ctx
->ltimeout_list
));
2721 if (ctx
->mm_account
) {
2722 mmdrop(ctx
->mm_account
);
2723 ctx
->mm_account
= NULL
;
2727 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
2728 static_branch_dec(&io_key_has_sqarray
);
2730 percpu_ref_exit(&ctx
->refs
);
2731 free_uid(ctx
->user
);
2732 io_req_caches_free(ctx
);
2734 io_wq_put_hash(ctx
->hash_map
);
2736 kvfree(ctx
->cancel_table
.hbs
);
2737 xa_destroy(&ctx
->io_bl_xa
);
2741 static __cold
void io_activate_pollwq_cb(struct callback_head
*cb
)
2743 struct io_ring_ctx
*ctx
= container_of(cb
, struct io_ring_ctx
,
2746 mutex_lock(&ctx
->uring_lock
);
2747 ctx
->poll_activated
= true;
2748 mutex_unlock(&ctx
->uring_lock
);
2751 * Wake ups for some events between start of polling and activation
2752 * might've been lost due to loose synchronisation.
2754 wake_up_all(&ctx
->poll_wq
);
2755 percpu_ref_put(&ctx
->refs
);
2758 __cold
void io_activate_pollwq(struct io_ring_ctx
*ctx
)
2760 spin_lock(&ctx
->completion_lock
);
2761 /* already activated or in progress */
2762 if (ctx
->poll_activated
|| ctx
->poll_wq_task_work
.func
)
2764 if (WARN_ON_ONCE(!ctx
->task_complete
))
2766 if (!ctx
->submitter_task
)
2769 * with ->submitter_task only the submitter task completes requests, we
2770 * only need to sync with it, which is done by injecting a tw
2772 init_task_work(&ctx
->poll_wq_task_work
, io_activate_pollwq_cb
);
2773 percpu_ref_get(&ctx
->refs
);
2774 if (task_work_add(ctx
->submitter_task
, &ctx
->poll_wq_task_work
, TWA_SIGNAL
))
2775 percpu_ref_put(&ctx
->refs
);
2777 spin_unlock(&ctx
->completion_lock
);
2780 static __poll_t
io_uring_poll(struct file
*file
, poll_table
*wait
)
2782 struct io_ring_ctx
*ctx
= file
->private_data
;
2785 if (unlikely(!ctx
->poll_activated
))
2786 io_activate_pollwq(ctx
);
2788 * provides mb() which pairs with barrier from wq_has_sleeper
2789 * call in io_commit_cqring
2791 poll_wait(file
, &ctx
->poll_wq
, wait
);
2793 if (!io_sqring_full(ctx
))
2794 mask
|= EPOLLOUT
| EPOLLWRNORM
;
2797 * Don't flush cqring overflow list here, just do a simple check.
2798 * Otherwise there could possible be ABBA deadlock:
2801 * lock(&ctx->uring_lock);
2803 * lock(&ctx->uring_lock);
2806 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2807 * pushes them to do the flush.
2810 if (__io_cqring_events_user(ctx
) || io_has_work(ctx
))
2811 mask
|= EPOLLIN
| EPOLLRDNORM
;
2816 struct io_tctx_exit
{
2817 struct callback_head task_work
;
2818 struct completion completion
;
2819 struct io_ring_ctx
*ctx
;
2822 static __cold
void io_tctx_exit_cb(struct callback_head
*cb
)
2824 struct io_uring_task
*tctx
= current
->io_uring
;
2825 struct io_tctx_exit
*work
;
2827 work
= container_of(cb
, struct io_tctx_exit
, task_work
);
2829 * When @in_cancel, we're in cancellation and it's racy to remove the
2830 * node. It'll be removed by the end of cancellation, just ignore it.
2831 * tctx can be NULL if the queueing of this task_work raced with
2832 * work cancelation off the exec path.
2834 if (tctx
&& !atomic_read(&tctx
->in_cancel
))
2835 io_uring_del_tctx_node((unsigned long)work
->ctx
);
2836 complete(&work
->completion
);
2839 static __cold
bool io_cancel_ctx_cb(struct io_wq_work
*work
, void *data
)
2841 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
2843 return req
->ctx
== data
;
2846 static __cold
void io_ring_exit_work(struct work_struct
*work
)
2848 struct io_ring_ctx
*ctx
= container_of(work
, struct io_ring_ctx
, exit_work
);
2849 unsigned long timeout
= jiffies
+ HZ
* 60 * 5;
2850 unsigned long interval
= HZ
/ 20;
2851 struct io_tctx_exit exit
;
2852 struct io_tctx_node
*node
;
2856 * If we're doing polled IO and end up having requests being
2857 * submitted async (out-of-line), then completions can come in while
2858 * we're waiting for refs to drop. We need to reap these manually,
2859 * as nobody else will be looking for them.
2862 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT
, &ctx
->check_cq
)) {
2863 mutex_lock(&ctx
->uring_lock
);
2864 io_cqring_overflow_kill(ctx
);
2865 mutex_unlock(&ctx
->uring_lock
);
2868 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
2869 io_move_task_work_from_local(ctx
);
2871 /* The SQPOLL thread never reaches this path */
2872 while (io_uring_try_cancel_requests(ctx
, NULL
, true, false))
2876 struct io_sq_data
*sqd
= ctx
->sq_data
;
2877 struct task_struct
*tsk
;
2879 io_sq_thread_park(sqd
);
2881 if (tsk
&& tsk
->io_uring
&& tsk
->io_uring
->io_wq
)
2882 io_wq_cancel_cb(tsk
->io_uring
->io_wq
,
2883 io_cancel_ctx_cb
, ctx
, true);
2884 io_sq_thread_unpark(sqd
);
2887 io_req_caches_free(ctx
);
2889 if (WARN_ON_ONCE(time_after(jiffies
, timeout
))) {
2890 /* there is little hope left, don't run it too often */
2894 * This is really an uninterruptible wait, as it has to be
2895 * complete. But it's also run from a kworker, which doesn't
2896 * take signals, so it's fine to make it interruptible. This
2897 * avoids scenarios where we knowingly can wait much longer
2898 * on completions, for example if someone does a SIGSTOP on
2899 * a task that needs to finish task_work to make this loop
2900 * complete. That's a synthetic situation that should not
2901 * cause a stuck task backtrace, and hence a potential panic
2902 * on stuck tasks if that is enabled.
2904 } while (!wait_for_completion_interruptible_timeout(&ctx
->ref_comp
, interval
));
2906 init_completion(&exit
.completion
);
2907 init_task_work(&exit
.task_work
, io_tctx_exit_cb
);
2910 mutex_lock(&ctx
->uring_lock
);
2911 while (!list_empty(&ctx
->tctx_list
)) {
2912 WARN_ON_ONCE(time_after(jiffies
, timeout
));
2914 node
= list_first_entry(&ctx
->tctx_list
, struct io_tctx_node
,
2916 /* don't spin on a single task if cancellation failed */
2917 list_rotate_left(&ctx
->tctx_list
);
2918 ret
= task_work_add(node
->task
, &exit
.task_work
, TWA_SIGNAL
);
2919 if (WARN_ON_ONCE(ret
))
2922 mutex_unlock(&ctx
->uring_lock
);
2924 * See comment above for
2925 * wait_for_completion_interruptible_timeout() on why this
2926 * wait is marked as interruptible.
2928 wait_for_completion_interruptible(&exit
.completion
);
2929 mutex_lock(&ctx
->uring_lock
);
2931 mutex_unlock(&ctx
->uring_lock
);
2932 spin_lock(&ctx
->completion_lock
);
2933 spin_unlock(&ctx
->completion_lock
);
2935 /* pairs with RCU read section in io_req_local_work_add() */
2936 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
2939 io_ring_ctx_free(ctx
);
2942 static __cold
void io_ring_ctx_wait_and_kill(struct io_ring_ctx
*ctx
)
2944 unsigned long index
;
2945 struct creds
*creds
;
2947 mutex_lock(&ctx
->uring_lock
);
2948 percpu_ref_kill(&ctx
->refs
);
2949 xa_for_each(&ctx
->personalities
, index
, creds
)
2950 io_unregister_personality(ctx
, index
);
2951 mutex_unlock(&ctx
->uring_lock
);
2953 flush_delayed_work(&ctx
->fallback_work
);
2955 INIT_WORK(&ctx
->exit_work
, io_ring_exit_work
);
2957 * Use system_unbound_wq to avoid spawning tons of event kworkers
2958 * if we're exiting a ton of rings at the same time. It just adds
2959 * noise and overhead, there's no discernable change in runtime
2960 * over using system_wq.
2962 queue_work(iou_wq
, &ctx
->exit_work
);
2965 static int io_uring_release(struct inode
*inode
, struct file
*file
)
2967 struct io_ring_ctx
*ctx
= file
->private_data
;
2969 file
->private_data
= NULL
;
2970 io_ring_ctx_wait_and_kill(ctx
);
2974 struct io_task_cancel
{
2975 struct io_uring_task
*tctx
;
2979 static bool io_cancel_task_cb(struct io_wq_work
*work
, void *data
)
2981 struct io_kiocb
*req
= container_of(work
, struct io_kiocb
, work
);
2982 struct io_task_cancel
*cancel
= data
;
2984 return io_match_task_safe(req
, cancel
->tctx
, cancel
->all
);
2987 static __cold
bool io_cancel_defer_files(struct io_ring_ctx
*ctx
,
2988 struct io_uring_task
*tctx
,
2991 struct io_defer_entry
*de
;
2994 spin_lock(&ctx
->completion_lock
);
2995 list_for_each_entry_reverse(de
, &ctx
->defer_list
, list
) {
2996 if (io_match_task_safe(de
->req
, tctx
, cancel_all
)) {
2997 list_cut_position(&list
, &ctx
->defer_list
, &de
->list
);
3001 spin_unlock(&ctx
->completion_lock
);
3002 if (list_empty(&list
))
3005 while (!list_empty(&list
)) {
3006 de
= list_first_entry(&list
, struct io_defer_entry
, list
);
3007 list_del_init(&de
->list
);
3008 io_req_task_queue_fail(de
->req
, -ECANCELED
);
3014 static __cold
bool io_uring_try_cancel_iowq(struct io_ring_ctx
*ctx
)
3016 struct io_tctx_node
*node
;
3017 enum io_wq_cancel cret
;
3020 mutex_lock(&ctx
->uring_lock
);
3021 list_for_each_entry(node
, &ctx
->tctx_list
, ctx_node
) {
3022 struct io_uring_task
*tctx
= node
->task
->io_uring
;
3025 * io_wq will stay alive while we hold uring_lock, because it's
3026 * killed after ctx nodes, which requires to take the lock.
3028 if (!tctx
|| !tctx
->io_wq
)
3030 cret
= io_wq_cancel_cb(tctx
->io_wq
, io_cancel_ctx_cb
, ctx
, true);
3031 ret
|= (cret
!= IO_WQ_CANCEL_NOTFOUND
);
3033 mutex_unlock(&ctx
->uring_lock
);
3038 static __cold
bool io_uring_try_cancel_requests(struct io_ring_ctx
*ctx
,
3039 struct io_uring_task
*tctx
,
3041 bool is_sqpoll_thread
)
3043 struct io_task_cancel cancel
= { .tctx
= tctx
, .all
= cancel_all
, };
3044 enum io_wq_cancel cret
;
3047 /* set it so io_req_local_work_add() would wake us up */
3048 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) {
3049 atomic_set(&ctx
->cq_wait_nr
, 1);
3053 /* failed during ring init, it couldn't have issued any requests */
3058 ret
|= io_uring_try_cancel_iowq(ctx
);
3059 } else if (tctx
->io_wq
) {
3061 * Cancels requests of all rings, not only @ctx, but
3062 * it's fine as the task is in exit/exec.
3064 cret
= io_wq_cancel_cb(tctx
->io_wq
, io_cancel_task_cb
,
3066 ret
|= (cret
!= IO_WQ_CANCEL_NOTFOUND
);
3069 /* SQPOLL thread does its own polling */
3070 if ((!(ctx
->flags
& IORING_SETUP_SQPOLL
) && cancel_all
) ||
3072 while (!wq_list_empty(&ctx
->iopoll_list
)) {
3073 io_iopoll_try_reap_events(ctx
);
3079 if ((ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) &&
3080 io_allowed_defer_tw_run(ctx
))
3081 ret
|= io_run_local_work(ctx
, INT_MAX
, INT_MAX
) > 0;
3082 ret
|= io_cancel_defer_files(ctx
, tctx
, cancel_all
);
3083 mutex_lock(&ctx
->uring_lock
);
3084 ret
|= io_poll_remove_all(ctx
, tctx
, cancel_all
);
3085 ret
|= io_waitid_remove_all(ctx
, tctx
, cancel_all
);
3086 ret
|= io_futex_remove_all(ctx
, tctx
, cancel_all
);
3087 ret
|= io_uring_try_cancel_uring_cmd(ctx
, tctx
, cancel_all
);
3088 mutex_unlock(&ctx
->uring_lock
);
3089 ret
|= io_kill_timeouts(ctx
, tctx
, cancel_all
);
3091 ret
|= io_run_task_work() > 0;
3093 ret
|= flush_delayed_work(&ctx
->fallback_work
);
3097 static s64
tctx_inflight(struct io_uring_task
*tctx
, bool tracked
)
3100 return atomic_read(&tctx
->inflight_tracked
);
3101 return percpu_counter_sum(&tctx
->inflight
);
3105 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3106 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3108 __cold
void io_uring_cancel_generic(bool cancel_all
, struct io_sq_data
*sqd
)
3110 struct io_uring_task
*tctx
= current
->io_uring
;
3111 struct io_ring_ctx
*ctx
;
3112 struct io_tctx_node
*node
;
3113 unsigned long index
;
3117 WARN_ON_ONCE(sqd
&& sqd
->thread
!= current
);
3119 if (!current
->io_uring
)
3122 io_wq_exit_start(tctx
->io_wq
);
3124 atomic_inc(&tctx
->in_cancel
);
3128 io_uring_drop_tctx_refs(current
);
3129 if (!tctx_inflight(tctx
, !cancel_all
))
3132 /* read completions before cancelations */
3133 inflight
= tctx_inflight(tctx
, false);
3138 xa_for_each(&tctx
->xa
, index
, node
) {
3139 /* sqpoll task will cancel all its requests */
3140 if (node
->ctx
->sq_data
)
3142 loop
|= io_uring_try_cancel_requests(node
->ctx
,
3148 list_for_each_entry(ctx
, &sqd
->ctx_list
, sqd_list
)
3149 loop
|= io_uring_try_cancel_requests(ctx
,
3160 prepare_to_wait(&tctx
->wait
, &wait
, TASK_INTERRUPTIBLE
);
3162 io_uring_drop_tctx_refs(current
);
3163 xa_for_each(&tctx
->xa
, index
, node
) {
3164 if (io_local_work_pending(node
->ctx
)) {
3165 WARN_ON_ONCE(node
->ctx
->submitter_task
&&
3166 node
->ctx
->submitter_task
!= current
);
3171 * If we've seen completions, retry without waiting. This
3172 * avoids a race where a completion comes in before we did
3173 * prepare_to_wait().
3175 if (inflight
== tctx_inflight(tctx
, !cancel_all
))
3178 finish_wait(&tctx
->wait
, &wait
);
3181 io_uring_clean_tctx(tctx
);
3184 * We shouldn't run task_works after cancel, so just leave
3185 * ->in_cancel set for normal exit.
3187 atomic_dec(&tctx
->in_cancel
);
3188 /* for exec all current's requests should be gone, kill tctx */
3189 __io_uring_free(current
);
3193 void __io_uring_cancel(bool cancel_all
)
3195 io_uring_unreg_ringfd();
3196 io_uring_cancel_generic(cancel_all
, NULL
);
3199 static struct io_uring_reg_wait
*io_get_ext_arg_reg(struct io_ring_ctx
*ctx
,
3200 const struct io_uring_getevents_arg __user
*uarg
)
3202 unsigned long size
= sizeof(struct io_uring_reg_wait
);
3203 unsigned long offset
= (uintptr_t)uarg
;
3206 if (unlikely(offset
% sizeof(long)))
3207 return ERR_PTR(-EFAULT
);
3209 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3210 if (unlikely(check_add_overflow(offset
, size
, &end
) ||
3211 end
> ctx
->cq_wait_size
))
3212 return ERR_PTR(-EFAULT
);
3214 offset
= array_index_nospec(offset
, ctx
->cq_wait_size
- size
);
3215 return ctx
->cq_wait_arg
+ offset
;
3218 static int io_validate_ext_arg(struct io_ring_ctx
*ctx
, unsigned flags
,
3219 const void __user
*argp
, size_t argsz
)
3221 struct io_uring_getevents_arg arg
;
3223 if (!(flags
& IORING_ENTER_EXT_ARG
))
3225 if (flags
& IORING_ENTER_EXT_ARG_REG
)
3227 if (argsz
!= sizeof(arg
))
3229 if (copy_from_user(&arg
, argp
, sizeof(arg
)))
3234 static int io_get_ext_arg(struct io_ring_ctx
*ctx
, unsigned flags
,
3235 const void __user
*argp
, struct ext_arg
*ext_arg
)
3237 const struct io_uring_getevents_arg __user
*uarg
= argp
;
3238 struct io_uring_getevents_arg arg
;
3241 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3242 * is just a pointer to the sigset_t.
3244 if (!(flags
& IORING_ENTER_EXT_ARG
)) {
3245 ext_arg
->sig
= (const sigset_t __user
*) argp
;
3249 if (flags
& IORING_ENTER_EXT_ARG_REG
) {
3250 struct io_uring_reg_wait
*w
;
3252 if (ext_arg
->argsz
!= sizeof(struct io_uring_reg_wait
))
3254 w
= io_get_ext_arg_reg(ctx
, argp
);
3258 if (w
->flags
& ~IORING_REG_WAIT_TS
)
3260 ext_arg
->min_time
= READ_ONCE(w
->min_wait_usec
) * NSEC_PER_USEC
;
3261 ext_arg
->sig
= u64_to_user_ptr(READ_ONCE(w
->sigmask
));
3262 ext_arg
->argsz
= READ_ONCE(w
->sigmask_sz
);
3263 if (w
->flags
& IORING_REG_WAIT_TS
) {
3264 ext_arg
->ts
.tv_sec
= READ_ONCE(w
->ts
.tv_sec
);
3265 ext_arg
->ts
.tv_nsec
= READ_ONCE(w
->ts
.tv_nsec
);
3266 ext_arg
->ts_set
= true;
3272 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3273 * timespec and sigset_t pointers if good.
3275 if (ext_arg
->argsz
!= sizeof(arg
))
3278 if (!user_access_begin(uarg
, sizeof(*uarg
)))
3280 unsafe_get_user(arg
.sigmask
, &uarg
->sigmask
, uaccess_end
);
3281 unsafe_get_user(arg
.sigmask_sz
, &uarg
->sigmask_sz
, uaccess_end
);
3282 unsafe_get_user(arg
.min_wait_usec
, &uarg
->min_wait_usec
, uaccess_end
);
3283 unsafe_get_user(arg
.ts
, &uarg
->ts
, uaccess_end
);
3286 if (copy_from_user(&arg
, uarg
, sizeof(arg
)))
3289 ext_arg
->min_time
= arg
.min_wait_usec
* NSEC_PER_USEC
;
3290 ext_arg
->sig
= u64_to_user_ptr(arg
.sigmask
);
3291 ext_arg
->argsz
= arg
.sigmask_sz
;
3293 if (get_timespec64(&ext_arg
->ts
, u64_to_user_ptr(arg
.ts
)))
3295 ext_arg
->ts_set
= true;
3305 SYSCALL_DEFINE6(io_uring_enter
, unsigned int, fd
, u32
, to_submit
,
3306 u32
, min_complete
, u32
, flags
, const void __user
*, argp
,
3309 struct io_ring_ctx
*ctx
;
3313 if (unlikely(flags
& ~(IORING_ENTER_GETEVENTS
| IORING_ENTER_SQ_WAKEUP
|
3314 IORING_ENTER_SQ_WAIT
| IORING_ENTER_EXT_ARG
|
3315 IORING_ENTER_REGISTERED_RING
|
3316 IORING_ENTER_ABS_TIMER
|
3317 IORING_ENTER_EXT_ARG_REG
)))
3321 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3322 * need only dereference our task private array to find it.
3324 if (flags
& IORING_ENTER_REGISTERED_RING
) {
3325 struct io_uring_task
*tctx
= current
->io_uring
;
3327 if (unlikely(!tctx
|| fd
>= IO_RINGFD_REG_MAX
))
3329 fd
= array_index_nospec(fd
, IO_RINGFD_REG_MAX
);
3330 file
= tctx
->registered_rings
[fd
];
3331 if (unlikely(!file
))
3335 if (unlikely(!file
))
3338 if (unlikely(!io_is_uring_fops(file
)))
3342 ctx
= file
->private_data
;
3344 if (unlikely(ctx
->flags
& IORING_SETUP_R_DISABLED
))
3348 * For SQ polling, the thread will do all submissions and completions.
3349 * Just return the requested submit count, and wake the thread if
3353 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
3354 if (unlikely(ctx
->sq_data
->thread
== NULL
)) {
3358 if (flags
& IORING_ENTER_SQ_WAKEUP
)
3359 wake_up(&ctx
->sq_data
->wait
);
3360 if (flags
& IORING_ENTER_SQ_WAIT
)
3361 io_sqpoll_wait_sq(ctx
);
3364 } else if (to_submit
) {
3365 ret
= io_uring_add_tctx_node(ctx
);
3369 mutex_lock(&ctx
->uring_lock
);
3370 ret
= io_submit_sqes(ctx
, to_submit
);
3371 if (ret
!= to_submit
) {
3372 mutex_unlock(&ctx
->uring_lock
);
3375 if (flags
& IORING_ENTER_GETEVENTS
) {
3376 if (ctx
->syscall_iopoll
)
3379 * Ignore errors, we'll soon call io_cqring_wait() and
3380 * it should handle ownership problems if any.
3382 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
)
3383 (void)io_run_local_work_locked(ctx
, min_complete
);
3385 mutex_unlock(&ctx
->uring_lock
);
3388 if (flags
& IORING_ENTER_GETEVENTS
) {
3391 if (ctx
->syscall_iopoll
) {
3393 * We disallow the app entering submit/complete with
3394 * polling, but we still need to lock the ring to
3395 * prevent racing with polled issue that got punted to
3398 mutex_lock(&ctx
->uring_lock
);
3400 ret2
= io_validate_ext_arg(ctx
, flags
, argp
, argsz
);
3401 if (likely(!ret2
)) {
3402 min_complete
= min(min_complete
,
3404 ret2
= io_iopoll_check(ctx
, min_complete
);
3406 mutex_unlock(&ctx
->uring_lock
);
3408 struct ext_arg ext_arg
= { .argsz
= argsz
};
3410 ret2
= io_get_ext_arg(ctx
, flags
, argp
, &ext_arg
);
3411 if (likely(!ret2
)) {
3412 min_complete
= min(min_complete
,
3414 ret2
= io_cqring_wait(ctx
, min_complete
, flags
,
3423 * EBADR indicates that one or more CQE were dropped.
3424 * Once the user has been informed we can clear the bit
3425 * as they are obviously ok with those drops.
3427 if (unlikely(ret2
== -EBADR
))
3428 clear_bit(IO_CHECK_CQ_DROPPED_BIT
,
3433 if (!(flags
& IORING_ENTER_REGISTERED_RING
))
3438 static const struct file_operations io_uring_fops
= {
3439 .release
= io_uring_release
,
3440 .mmap
= io_uring_mmap
,
3441 .get_unmapped_area
= io_uring_get_unmapped_area
,
3443 .mmap_capabilities
= io_uring_nommu_mmap_capabilities
,
3445 .poll
= io_uring_poll
,
3446 #ifdef CONFIG_PROC_FS
3447 .show_fdinfo
= io_uring_show_fdinfo
,
3451 bool io_is_uring_fops(struct file
*file
)
3453 return file
->f_op
== &io_uring_fops
;
3456 static __cold
int io_allocate_scq_urings(struct io_ring_ctx
*ctx
,
3457 struct io_uring_params
*p
)
3459 struct io_uring_region_desc rd
;
3460 struct io_rings
*rings
;
3461 size_t size
, sq_array_offset
;
3464 /* make sure these are sane, as we already accounted them */
3465 ctx
->sq_entries
= p
->sq_entries
;
3466 ctx
->cq_entries
= p
->cq_entries
;
3468 size
= rings_size(ctx
->flags
, p
->sq_entries
, p
->cq_entries
,
3470 if (size
== SIZE_MAX
)
3473 memset(&rd
, 0, sizeof(rd
));
3474 rd
.size
= PAGE_ALIGN(size
);
3475 if (ctx
->flags
& IORING_SETUP_NO_MMAP
) {
3476 rd
.user_addr
= p
->cq_off
.user_addr
;
3477 rd
.flags
|= IORING_MEM_REGION_TYPE_USER
;
3479 ret
= io_create_region(ctx
, &ctx
->ring_region
, &rd
, IORING_OFF_CQ_RING
);
3482 ctx
->rings
= rings
= io_region_get_ptr(&ctx
->ring_region
);
3484 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
3485 ctx
->sq_array
= (u32
*)((char *)rings
+ sq_array_offset
);
3486 rings
->sq_ring_mask
= p
->sq_entries
- 1;
3487 rings
->cq_ring_mask
= p
->cq_entries
- 1;
3488 rings
->sq_ring_entries
= p
->sq_entries
;
3489 rings
->cq_ring_entries
= p
->cq_entries
;
3491 if (p
->flags
& IORING_SETUP_SQE128
)
3492 size
= array_size(2 * sizeof(struct io_uring_sqe
), p
->sq_entries
);
3494 size
= array_size(sizeof(struct io_uring_sqe
), p
->sq_entries
);
3495 if (size
== SIZE_MAX
) {
3500 memset(&rd
, 0, sizeof(rd
));
3501 rd
.size
= PAGE_ALIGN(size
);
3502 if (ctx
->flags
& IORING_SETUP_NO_MMAP
) {
3503 rd
.user_addr
= p
->sq_off
.user_addr
;
3504 rd
.flags
|= IORING_MEM_REGION_TYPE_USER
;
3506 ret
= io_create_region(ctx
, &ctx
->sq_region
, &rd
, IORING_OFF_SQES
);
3511 ctx
->sq_sqes
= io_region_get_ptr(&ctx
->sq_region
);
3515 static int io_uring_install_fd(struct file
*file
)
3519 fd
= get_unused_fd_flags(O_RDWR
| O_CLOEXEC
);
3522 fd_install(fd
, file
);
3527 * Allocate an anonymous fd, this is what constitutes the application
3528 * visible backing of an io_uring instance. The application mmaps this
3529 * fd to gain access to the SQ/CQ ring details.
3531 static struct file
*io_uring_get_file(struct io_ring_ctx
*ctx
)
3533 /* Create a new inode so that the LSM can block the creation. */
3534 return anon_inode_create_getfile("[io_uring]", &io_uring_fops
, ctx
,
3535 O_RDWR
| O_CLOEXEC
, NULL
);
3538 int io_uring_fill_params(unsigned entries
, struct io_uring_params
*p
)
3542 if (entries
> IORING_MAX_ENTRIES
) {
3543 if (!(p
->flags
& IORING_SETUP_CLAMP
))
3545 entries
= IORING_MAX_ENTRIES
;
3548 if ((p
->flags
& IORING_SETUP_REGISTERED_FD_ONLY
)
3549 && !(p
->flags
& IORING_SETUP_NO_MMAP
))
3553 * Use twice as many entries for the CQ ring. It's possible for the
3554 * application to drive a higher depth than the size of the SQ ring,
3555 * since the sqes are only used at submission time. This allows for
3556 * some flexibility in overcommitting a bit. If the application has
3557 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3558 * of CQ ring entries manually.
3560 p
->sq_entries
= roundup_pow_of_two(entries
);
3561 if (p
->flags
& IORING_SETUP_CQSIZE
) {
3563 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3564 * to a power-of-two, if it isn't already. We do NOT impose
3565 * any cq vs sq ring sizing.
3569 if (p
->cq_entries
> IORING_MAX_CQ_ENTRIES
) {
3570 if (!(p
->flags
& IORING_SETUP_CLAMP
))
3572 p
->cq_entries
= IORING_MAX_CQ_ENTRIES
;
3574 p
->cq_entries
= roundup_pow_of_two(p
->cq_entries
);
3575 if (p
->cq_entries
< p
->sq_entries
)
3578 p
->cq_entries
= 2 * p
->sq_entries
;
3581 p
->sq_off
.head
= offsetof(struct io_rings
, sq
.head
);
3582 p
->sq_off
.tail
= offsetof(struct io_rings
, sq
.tail
);
3583 p
->sq_off
.ring_mask
= offsetof(struct io_rings
, sq_ring_mask
);
3584 p
->sq_off
.ring_entries
= offsetof(struct io_rings
, sq_ring_entries
);
3585 p
->sq_off
.flags
= offsetof(struct io_rings
, sq_flags
);
3586 p
->sq_off
.dropped
= offsetof(struct io_rings
, sq_dropped
);
3587 p
->sq_off
.resv1
= 0;
3588 if (!(p
->flags
& IORING_SETUP_NO_MMAP
))
3589 p
->sq_off
.user_addr
= 0;
3591 p
->cq_off
.head
= offsetof(struct io_rings
, cq
.head
);
3592 p
->cq_off
.tail
= offsetof(struct io_rings
, cq
.tail
);
3593 p
->cq_off
.ring_mask
= offsetof(struct io_rings
, cq_ring_mask
);
3594 p
->cq_off
.ring_entries
= offsetof(struct io_rings
, cq_ring_entries
);
3595 p
->cq_off
.overflow
= offsetof(struct io_rings
, cq_overflow
);
3596 p
->cq_off
.cqes
= offsetof(struct io_rings
, cqes
);
3597 p
->cq_off
.flags
= offsetof(struct io_rings
, cq_flags
);
3598 p
->cq_off
.resv1
= 0;
3599 if (!(p
->flags
& IORING_SETUP_NO_MMAP
))
3600 p
->cq_off
.user_addr
= 0;
3605 static __cold
int io_uring_create(unsigned entries
, struct io_uring_params
*p
,
3606 struct io_uring_params __user
*params
)
3608 struct io_ring_ctx
*ctx
;
3609 struct io_uring_task
*tctx
;
3613 ret
= io_uring_fill_params(entries
, p
);
3617 ctx
= io_ring_ctx_alloc(p
);
3621 ctx
->clockid
= CLOCK_MONOTONIC
;
3622 ctx
->clock_offset
= 0;
3624 if (!(ctx
->flags
& IORING_SETUP_NO_SQARRAY
))
3625 static_branch_inc(&io_key_has_sqarray
);
3627 if ((ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
) &&
3628 !(ctx
->flags
& IORING_SETUP_IOPOLL
) &&
3629 !(ctx
->flags
& IORING_SETUP_SQPOLL
))
3630 ctx
->task_complete
= true;
3632 if (ctx
->task_complete
|| (ctx
->flags
& IORING_SETUP_IOPOLL
))
3633 ctx
->lockless_cq
= true;
3636 * lazy poll_wq activation relies on ->task_complete for synchronisation
3637 * purposes, see io_activate_pollwq()
3639 if (!ctx
->task_complete
)
3640 ctx
->poll_activated
= true;
3643 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3644 * space applications don't need to do io completion events
3645 * polling again, they can rely on io_sq_thread to do polling
3646 * work, which can reduce cpu usage and uring_lock contention.
3648 if (ctx
->flags
& IORING_SETUP_IOPOLL
&&
3649 !(ctx
->flags
& IORING_SETUP_SQPOLL
))
3650 ctx
->syscall_iopoll
= 1;
3652 ctx
->compat
= in_compat_syscall();
3653 if (!ns_capable_noaudit(&init_user_ns
, CAP_IPC_LOCK
))
3654 ctx
->user
= get_uid(current_user());
3657 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3658 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3661 if (ctx
->flags
& IORING_SETUP_SQPOLL
) {
3662 /* IPI related flags don't make sense with SQPOLL */
3663 if (ctx
->flags
& (IORING_SETUP_COOP_TASKRUN
|
3664 IORING_SETUP_TASKRUN_FLAG
|
3665 IORING_SETUP_DEFER_TASKRUN
))
3667 ctx
->notify_method
= TWA_SIGNAL_NO_IPI
;
3668 } else if (ctx
->flags
& IORING_SETUP_COOP_TASKRUN
) {
3669 ctx
->notify_method
= TWA_SIGNAL_NO_IPI
;
3671 if (ctx
->flags
& IORING_SETUP_TASKRUN_FLAG
&&
3672 !(ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
))
3674 ctx
->notify_method
= TWA_SIGNAL
;
3677 /* HYBRID_IOPOLL only valid with IOPOLL */
3678 if ((ctx
->flags
& (IORING_SETUP_IOPOLL
|IORING_SETUP_HYBRID_IOPOLL
)) ==
3679 IORING_SETUP_HYBRID_IOPOLL
)
3683 * For DEFER_TASKRUN we require the completion task to be the same as the
3684 * submission task. This implies that there is only one submitter, so enforce
3687 if (ctx
->flags
& IORING_SETUP_DEFER_TASKRUN
&&
3688 !(ctx
->flags
& IORING_SETUP_SINGLE_ISSUER
)) {
3693 * This is just grabbed for accounting purposes. When a process exits,
3694 * the mm is exited and dropped before the files, hence we need to hang
3695 * on to this mm purely for the purposes of being able to unaccount
3696 * memory (locked/pinned vm). It's not used for anything else.
3698 mmgrab(current
->mm
);
3699 ctx
->mm_account
= current
->mm
;
3701 ret
= io_allocate_scq_urings(ctx
, p
);
3705 if (!(p
->flags
& IORING_SETUP_NO_SQARRAY
))
3706 p
->sq_off
.array
= (char *)ctx
->sq_array
- (char *)ctx
->rings
;
3708 ret
= io_sq_offload_create(ctx
, p
);
3712 p
->features
= IORING_FEAT_SINGLE_MMAP
| IORING_FEAT_NODROP
|
3713 IORING_FEAT_SUBMIT_STABLE
| IORING_FEAT_RW_CUR_POS
|
3714 IORING_FEAT_CUR_PERSONALITY
| IORING_FEAT_FAST_POLL
|
3715 IORING_FEAT_POLL_32BITS
| IORING_FEAT_SQPOLL_NONFIXED
|
3716 IORING_FEAT_EXT_ARG
| IORING_FEAT_NATIVE_WORKERS
|
3717 IORING_FEAT_RSRC_TAGS
| IORING_FEAT_CQE_SKIP
|
3718 IORING_FEAT_LINKED_FILE
| IORING_FEAT_REG_REG_RING
|
3719 IORING_FEAT_RECVSEND_BUNDLE
| IORING_FEAT_MIN_TIMEOUT
|
3720 IORING_FEAT_RW_ATTR
;
3722 if (copy_to_user(params
, p
, sizeof(*p
))) {
3727 if (ctx
->flags
& IORING_SETUP_SINGLE_ISSUER
3728 && !(ctx
->flags
& IORING_SETUP_R_DISABLED
))
3729 WRITE_ONCE(ctx
->submitter_task
, get_task_struct(current
));
3731 file
= io_uring_get_file(ctx
);
3733 ret
= PTR_ERR(file
);
3737 ret
= __io_uring_add_tctx_node(ctx
);
3740 tctx
= current
->io_uring
;
3743 * Install ring fd as the very last thing, so we don't risk someone
3744 * having closed it before we finish setup
3746 if (p
->flags
& IORING_SETUP_REGISTERED_FD_ONLY
)
3747 ret
= io_ring_add_registered_file(tctx
, file
, 0, IO_RINGFD_REG_MAX
);
3749 ret
= io_uring_install_fd(file
);
3753 trace_io_uring_create(ret
, ctx
, p
->sq_entries
, p
->cq_entries
, p
->flags
);
3756 io_ring_ctx_wait_and_kill(ctx
);
3764 * Sets up an aio uring context, and returns the fd. Applications asks for a
3765 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3766 * params structure passed in.
3768 static long io_uring_setup(u32 entries
, struct io_uring_params __user
*params
)
3770 struct io_uring_params p
;
3773 if (copy_from_user(&p
, params
, sizeof(p
)))
3775 for (i
= 0; i
< ARRAY_SIZE(p
.resv
); i
++) {
3780 if (p
.flags
& ~(IORING_SETUP_IOPOLL
| IORING_SETUP_SQPOLL
|
3781 IORING_SETUP_SQ_AFF
| IORING_SETUP_CQSIZE
|
3782 IORING_SETUP_CLAMP
| IORING_SETUP_ATTACH_WQ
|
3783 IORING_SETUP_R_DISABLED
| IORING_SETUP_SUBMIT_ALL
|
3784 IORING_SETUP_COOP_TASKRUN
| IORING_SETUP_TASKRUN_FLAG
|
3785 IORING_SETUP_SQE128
| IORING_SETUP_CQE32
|
3786 IORING_SETUP_SINGLE_ISSUER
| IORING_SETUP_DEFER_TASKRUN
|
3787 IORING_SETUP_NO_MMAP
| IORING_SETUP_REGISTERED_FD_ONLY
|
3788 IORING_SETUP_NO_SQARRAY
| IORING_SETUP_HYBRID_IOPOLL
))
3791 return io_uring_create(entries
, &p
, params
);
3794 static inline bool io_uring_allowed(void)
3796 int disabled
= READ_ONCE(sysctl_io_uring_disabled
);
3797 kgid_t io_uring_group
;
3802 if (disabled
== 0 || capable(CAP_SYS_ADMIN
))
3805 io_uring_group
= make_kgid(&init_user_ns
, sysctl_io_uring_group
);
3806 if (!gid_valid(io_uring_group
))
3809 return in_group_p(io_uring_group
);
3812 SYSCALL_DEFINE2(io_uring_setup
, u32
, entries
,
3813 struct io_uring_params __user
*, params
)
3815 if (!io_uring_allowed())
3818 return io_uring_setup(entries
, params
);
3821 static int __init
io_uring_init(void)
3823 struct kmem_cache_args kmem_args
= {
3824 .useroffset
= offsetof(struct io_kiocb
, cmd
.data
),
3825 .usersize
= sizeof_field(struct io_kiocb
, cmd
.data
),
3826 .freeptr_offset
= offsetof(struct io_kiocb
, work
),
3827 .use_freeptr_offset
= true,
3830 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3831 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3832 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3835 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3836 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3837 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3838 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3839 BUILD_BUG_ON(sizeof(struct io_uring_sqe
) != 64);
3840 BUILD_BUG_SQE_ELEM(0, __u8
, opcode
);
3841 BUILD_BUG_SQE_ELEM(1, __u8
, flags
);
3842 BUILD_BUG_SQE_ELEM(2, __u16
, ioprio
);
3843 BUILD_BUG_SQE_ELEM(4, __s32
, fd
);
3844 BUILD_BUG_SQE_ELEM(8, __u64
, off
);
3845 BUILD_BUG_SQE_ELEM(8, __u64
, addr2
);
3846 BUILD_BUG_SQE_ELEM(8, __u32
, cmd_op
);
3847 BUILD_BUG_SQE_ELEM(12, __u32
, __pad1
);
3848 BUILD_BUG_SQE_ELEM(16, __u64
, addr
);
3849 BUILD_BUG_SQE_ELEM(16, __u64
, splice_off_in
);
3850 BUILD_BUG_SQE_ELEM(24, __u32
, len
);
3851 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t
, rw_flags
);
3852 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags
);
3853 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32
, rw_flags
);
3854 BUILD_BUG_SQE_ELEM(28, __u32
, fsync_flags
);
3855 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16
, poll_events
);
3856 BUILD_BUG_SQE_ELEM(28, __u32
, poll32_events
);
3857 BUILD_BUG_SQE_ELEM(28, __u32
, sync_range_flags
);
3858 BUILD_BUG_SQE_ELEM(28, __u32
, msg_flags
);
3859 BUILD_BUG_SQE_ELEM(28, __u32
, timeout_flags
);
3860 BUILD_BUG_SQE_ELEM(28, __u32
, accept_flags
);
3861 BUILD_BUG_SQE_ELEM(28, __u32
, cancel_flags
);
3862 BUILD_BUG_SQE_ELEM(28, __u32
, open_flags
);
3863 BUILD_BUG_SQE_ELEM(28, __u32
, statx_flags
);
3864 BUILD_BUG_SQE_ELEM(28, __u32
, fadvise_advice
);
3865 BUILD_BUG_SQE_ELEM(28, __u32
, splice_flags
);
3866 BUILD_BUG_SQE_ELEM(28, __u32
, rename_flags
);
3867 BUILD_BUG_SQE_ELEM(28, __u32
, unlink_flags
);
3868 BUILD_BUG_SQE_ELEM(28, __u32
, hardlink_flags
);
3869 BUILD_BUG_SQE_ELEM(28, __u32
, xattr_flags
);
3870 BUILD_BUG_SQE_ELEM(28, __u32
, msg_ring_flags
);
3871 BUILD_BUG_SQE_ELEM(32, __u64
, user_data
);
3872 BUILD_BUG_SQE_ELEM(40, __u16
, buf_index
);
3873 BUILD_BUG_SQE_ELEM(40, __u16
, buf_group
);
3874 BUILD_BUG_SQE_ELEM(42, __u16
, personality
);
3875 BUILD_BUG_SQE_ELEM(44, __s32
, splice_fd_in
);
3876 BUILD_BUG_SQE_ELEM(44, __u32
, file_index
);
3877 BUILD_BUG_SQE_ELEM(44, __u16
, addr_len
);
3878 BUILD_BUG_SQE_ELEM(46, __u16
, __pad3
[0]);
3879 BUILD_BUG_SQE_ELEM(48, __u64
, addr3
);
3880 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd
);
3881 BUILD_BUG_SQE_ELEM(48, __u64
, attr_ptr
);
3882 BUILD_BUG_SQE_ELEM(56, __u64
, attr_type_mask
);
3883 BUILD_BUG_SQE_ELEM(56, __u64
, __pad2
);
3885 BUILD_BUG_ON(sizeof(struct io_uring_files_update
) !=
3886 sizeof(struct io_uring_rsrc_update
));
3887 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update
) >
3888 sizeof(struct io_uring_rsrc_update2
));
3890 /* ->buf_index is u16 */
3891 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring
, bufs
) != 0);
3892 BUILD_BUG_ON(offsetof(struct io_uring_buf
, resv
) !=
3893 offsetof(struct io_uring_buf_ring
, tail
));
3895 /* should fit into one byte */
3896 BUILD_BUG_ON(SQE_VALID_FLAGS
>= (1 << 8));
3897 BUILD_BUG_ON(SQE_COMMON_FLAGS
>= (1 << 8));
3898 BUILD_BUG_ON((SQE_VALID_FLAGS
| SQE_COMMON_FLAGS
) != SQE_VALID_FLAGS
);
3900 BUILD_BUG_ON(__REQ_F_LAST_BIT
> 8 * sizeof_field(struct io_kiocb
, flags
));
3902 BUILD_BUG_ON(sizeof(atomic_t
) != sizeof(u32
));
3904 /* top 8bits are for internal use */
3905 BUILD_BUG_ON((IORING_URING_CMD_MASK
& 0xff000000) != 0);
3907 io_uring_optable_init();
3910 * Allow user copy in the per-command field, which starts after the
3911 * file in io_kiocb and until the opcode field. The openat2 handling
3912 * requires copying in user memory into the io_kiocb object in that
3913 * range, and HARDENED_USERCOPY will complain if we haven't
3914 * correctly annotated this range.
3916 req_cachep
= kmem_cache_create("io_kiocb", sizeof(struct io_kiocb
), &kmem_args
,
3917 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
|
3918 SLAB_TYPESAFE_BY_RCU
);
3919 io_buf_cachep
= KMEM_CACHE(io_buffer
,
3920 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
| SLAB_ACCOUNT
);
3922 iou_wq
= alloc_workqueue("iou_exit", WQ_UNBOUND
, 64);
3924 #ifdef CONFIG_SYSCTL
3925 register_sysctl_init("kernel", kernel_io_uring_disabled_table
);
3930 __initcall(io_uring_init
);