Merge tag 'hwmon-for-v6.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / mm / memcontrol-v1.c
bloba071fa43d4798a25df7b2bcb76611304ee73d0a4
1 // SPDX-License-Identifier: GPL-2.0-or-later
3 #include <linux/memcontrol.h>
4 #include <linux/swap.h>
5 #include <linux/mm_inline.h>
6 #include <linux/pagewalk.h>
7 #include <linux/backing-dev.h>
8 #include <linux/swap_cgroup.h>
9 #include <linux/eventfd.h>
10 #include <linux/poll.h>
11 #include <linux/sort.h>
12 #include <linux/file.h>
13 #include <linux/seq_buf.h>
15 #include "internal.h"
16 #include "swap.h"
17 #include "memcontrol-v1.h"
20 * Cgroups above their limits are maintained in a RB-Tree, independent of
21 * their hierarchy representation
24 struct mem_cgroup_tree_per_node {
25 struct rb_root rb_root;
26 struct rb_node *rb_rightmost;
27 spinlock_t lock;
30 struct mem_cgroup_tree {
31 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
34 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
37 * Maximum loops in mem_cgroup_soft_reclaim(), used for soft
38 * limit reclaim to prevent infinite loops, if they ever occur.
40 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
41 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
43 /* for OOM */
44 struct mem_cgroup_eventfd_list {
45 struct list_head list;
46 struct eventfd_ctx *eventfd;
50 * cgroup_event represents events which userspace want to receive.
52 struct mem_cgroup_event {
54 * memcg which the event belongs to.
56 struct mem_cgroup *memcg;
58 * eventfd to signal userspace about the event.
60 struct eventfd_ctx *eventfd;
62 * Each of these stored in a list by the cgroup.
64 struct list_head list;
66 * register_event() callback will be used to add new userspace
67 * waiter for changes related to this event. Use eventfd_signal()
68 * on eventfd to send notification to userspace.
70 int (*register_event)(struct mem_cgroup *memcg,
71 struct eventfd_ctx *eventfd, const char *args);
73 * unregister_event() callback will be called when userspace closes
74 * the eventfd or on cgroup removing. This callback must be set,
75 * if you want provide notification functionality.
77 void (*unregister_event)(struct mem_cgroup *memcg,
78 struct eventfd_ctx *eventfd);
80 * All fields below needed to unregister event when
81 * userspace closes eventfd.
83 poll_table pt;
84 wait_queue_head_t *wqh;
85 wait_queue_entry_t wait;
86 struct work_struct remove;
89 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
90 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
91 #define MEMFILE_ATTR(val) ((val) & 0xffff)
93 enum {
94 RES_USAGE,
95 RES_LIMIT,
96 RES_MAX_USAGE,
97 RES_FAILCNT,
98 RES_SOFT_LIMIT,
101 #ifdef CONFIG_LOCKDEP
102 static struct lockdep_map memcg_oom_lock_dep_map = {
103 .name = "memcg_oom_lock",
105 #endif
107 DEFINE_SPINLOCK(memcg_oom_lock);
109 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
110 struct mem_cgroup_tree_per_node *mctz,
111 unsigned long new_usage_in_excess)
113 struct rb_node **p = &mctz->rb_root.rb_node;
114 struct rb_node *parent = NULL;
115 struct mem_cgroup_per_node *mz_node;
116 bool rightmost = true;
118 if (mz->on_tree)
119 return;
121 mz->usage_in_excess = new_usage_in_excess;
122 if (!mz->usage_in_excess)
123 return;
124 while (*p) {
125 parent = *p;
126 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
127 tree_node);
128 if (mz->usage_in_excess < mz_node->usage_in_excess) {
129 p = &(*p)->rb_left;
130 rightmost = false;
131 } else {
132 p = &(*p)->rb_right;
136 if (rightmost)
137 mctz->rb_rightmost = &mz->tree_node;
139 rb_link_node(&mz->tree_node, parent, p);
140 rb_insert_color(&mz->tree_node, &mctz->rb_root);
141 mz->on_tree = true;
144 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
145 struct mem_cgroup_tree_per_node *mctz)
147 if (!mz->on_tree)
148 return;
150 if (&mz->tree_node == mctz->rb_rightmost)
151 mctz->rb_rightmost = rb_prev(&mz->tree_node);
153 rb_erase(&mz->tree_node, &mctz->rb_root);
154 mz->on_tree = false;
157 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
158 struct mem_cgroup_tree_per_node *mctz)
160 unsigned long flags;
162 spin_lock_irqsave(&mctz->lock, flags);
163 __mem_cgroup_remove_exceeded(mz, mctz);
164 spin_unlock_irqrestore(&mctz->lock, flags);
167 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
169 unsigned long nr_pages = page_counter_read(&memcg->memory);
170 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
171 unsigned long excess = 0;
173 if (nr_pages > soft_limit)
174 excess = nr_pages - soft_limit;
176 return excess;
179 static void memcg1_update_tree(struct mem_cgroup *memcg, int nid)
181 unsigned long excess;
182 struct mem_cgroup_per_node *mz;
183 struct mem_cgroup_tree_per_node *mctz;
185 if (lru_gen_enabled()) {
186 if (soft_limit_excess(memcg))
187 lru_gen_soft_reclaim(memcg, nid);
188 return;
191 mctz = soft_limit_tree.rb_tree_per_node[nid];
192 if (!mctz)
193 return;
195 * Necessary to update all ancestors when hierarchy is used.
196 * because their event counter is not touched.
198 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
199 mz = memcg->nodeinfo[nid];
200 excess = soft_limit_excess(memcg);
202 * We have to update the tree if mz is on RB-tree or
203 * mem is over its softlimit.
205 if (excess || mz->on_tree) {
206 unsigned long flags;
208 spin_lock_irqsave(&mctz->lock, flags);
209 /* if on-tree, remove it */
210 if (mz->on_tree)
211 __mem_cgroup_remove_exceeded(mz, mctz);
213 * Insert again. mz->usage_in_excess will be updated.
214 * If excess is 0, no tree ops.
216 __mem_cgroup_insert_exceeded(mz, mctz, excess);
217 spin_unlock_irqrestore(&mctz->lock, flags);
222 void memcg1_remove_from_trees(struct mem_cgroup *memcg)
224 struct mem_cgroup_tree_per_node *mctz;
225 struct mem_cgroup_per_node *mz;
226 int nid;
228 for_each_node(nid) {
229 mz = memcg->nodeinfo[nid];
230 mctz = soft_limit_tree.rb_tree_per_node[nid];
231 if (mctz)
232 mem_cgroup_remove_exceeded(mz, mctz);
236 static struct mem_cgroup_per_node *
237 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
239 struct mem_cgroup_per_node *mz;
241 retry:
242 mz = NULL;
243 if (!mctz->rb_rightmost)
244 goto done; /* Nothing to reclaim from */
246 mz = rb_entry(mctz->rb_rightmost,
247 struct mem_cgroup_per_node, tree_node);
249 * Remove the node now but someone else can add it back,
250 * we will to add it back at the end of reclaim to its correct
251 * position in the tree.
253 __mem_cgroup_remove_exceeded(mz, mctz);
254 if (!soft_limit_excess(mz->memcg) ||
255 !css_tryget(&mz->memcg->css))
256 goto retry;
257 done:
258 return mz;
261 static struct mem_cgroup_per_node *
262 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
264 struct mem_cgroup_per_node *mz;
266 spin_lock_irq(&mctz->lock);
267 mz = __mem_cgroup_largest_soft_limit_node(mctz);
268 spin_unlock_irq(&mctz->lock);
269 return mz;
272 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
273 pg_data_t *pgdat,
274 gfp_t gfp_mask,
275 unsigned long *total_scanned)
277 struct mem_cgroup *victim = NULL;
278 int total = 0;
279 int loop = 0;
280 unsigned long excess;
281 unsigned long nr_scanned;
282 struct mem_cgroup_reclaim_cookie reclaim = {
283 .pgdat = pgdat,
286 excess = soft_limit_excess(root_memcg);
288 while (1) {
289 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
290 if (!victim) {
291 loop++;
292 if (loop >= 2) {
294 * If we have not been able to reclaim
295 * anything, it might because there are
296 * no reclaimable pages under this hierarchy
298 if (!total)
299 break;
301 * We want to do more targeted reclaim.
302 * excess >> 2 is not to excessive so as to
303 * reclaim too much, nor too less that we keep
304 * coming back to reclaim from this cgroup
306 if (total >= (excess >> 2) ||
307 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
308 break;
310 continue;
312 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
313 pgdat, &nr_scanned);
314 *total_scanned += nr_scanned;
315 if (!soft_limit_excess(root_memcg))
316 break;
318 mem_cgroup_iter_break(root_memcg, victim);
319 return total;
322 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
323 gfp_t gfp_mask,
324 unsigned long *total_scanned)
326 unsigned long nr_reclaimed = 0;
327 struct mem_cgroup_per_node *mz, *next_mz = NULL;
328 unsigned long reclaimed;
329 int loop = 0;
330 struct mem_cgroup_tree_per_node *mctz;
331 unsigned long excess;
333 if (lru_gen_enabled())
334 return 0;
336 if (order > 0)
337 return 0;
339 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
342 * Do not even bother to check the largest node if the root
343 * is empty. Do it lockless to prevent lock bouncing. Races
344 * are acceptable as soft limit is best effort anyway.
346 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
347 return 0;
350 * This loop can run a while, specially if mem_cgroup's continuously
351 * keep exceeding their soft limit and putting the system under
352 * pressure
354 do {
355 if (next_mz)
356 mz = next_mz;
357 else
358 mz = mem_cgroup_largest_soft_limit_node(mctz);
359 if (!mz)
360 break;
362 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
363 gfp_mask, total_scanned);
364 nr_reclaimed += reclaimed;
365 spin_lock_irq(&mctz->lock);
368 * If we failed to reclaim anything from this memory cgroup
369 * it is time to move on to the next cgroup
371 next_mz = NULL;
372 if (!reclaimed)
373 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
375 excess = soft_limit_excess(mz->memcg);
377 * One school of thought says that we should not add
378 * back the node to the tree if reclaim returns 0.
379 * But our reclaim could return 0, simply because due
380 * to priority we are exposing a smaller subset of
381 * memory to reclaim from. Consider this as a longer
382 * term TODO.
384 /* If excess == 0, no tree ops */
385 __mem_cgroup_insert_exceeded(mz, mctz, excess);
386 spin_unlock_irq(&mctz->lock);
387 css_put(&mz->memcg->css);
388 loop++;
390 * Could not reclaim anything and there are no more
391 * mem cgroups to try or we seem to be looping without
392 * reclaiming anything.
394 if (!nr_reclaimed &&
395 (next_mz == NULL ||
396 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
397 break;
398 } while (!nr_reclaimed);
399 if (next_mz)
400 css_put(&next_mz->memcg->css);
401 return nr_reclaimed;
404 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
405 struct cftype *cft)
407 return 0;
410 #ifdef CONFIG_MMU
411 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
412 struct cftype *cft, u64 val)
414 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
415 "Please report your usecase to linux-mm@kvack.org if you "
416 "depend on this functionality.\n");
418 if (val != 0)
419 return -EINVAL;
420 return 0;
422 #else
423 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
424 struct cftype *cft, u64 val)
426 return -ENOSYS;
428 #endif
430 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
432 struct mem_cgroup_threshold_ary *t;
433 unsigned long usage;
434 int i;
436 rcu_read_lock();
437 if (!swap)
438 t = rcu_dereference(memcg->thresholds.primary);
439 else
440 t = rcu_dereference(memcg->memsw_thresholds.primary);
442 if (!t)
443 goto unlock;
445 usage = mem_cgroup_usage(memcg, swap);
448 * current_threshold points to threshold just below or equal to usage.
449 * If it's not true, a threshold was crossed after last
450 * call of __mem_cgroup_threshold().
452 i = t->current_threshold;
455 * Iterate backward over array of thresholds starting from
456 * current_threshold and check if a threshold is crossed.
457 * If none of thresholds below usage is crossed, we read
458 * only one element of the array here.
460 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
461 eventfd_signal(t->entries[i].eventfd);
463 /* i = current_threshold + 1 */
464 i++;
467 * Iterate forward over array of thresholds starting from
468 * current_threshold+1 and check if a threshold is crossed.
469 * If none of thresholds above usage is crossed, we read
470 * only one element of the array here.
472 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
473 eventfd_signal(t->entries[i].eventfd);
475 /* Update current_threshold */
476 t->current_threshold = i - 1;
477 unlock:
478 rcu_read_unlock();
481 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
483 while (memcg) {
484 __mem_cgroup_threshold(memcg, false);
485 if (do_memsw_account())
486 __mem_cgroup_threshold(memcg, true);
488 memcg = parent_mem_cgroup(memcg);
492 /* Cgroup1: threshold notifications & softlimit tree updates */
493 struct memcg1_events_percpu {
494 unsigned long nr_page_events;
495 unsigned long targets[MEM_CGROUP_NTARGETS];
498 static void memcg1_charge_statistics(struct mem_cgroup *memcg, int nr_pages)
500 /* pagein of a big page is an event. So, ignore page size */
501 if (nr_pages > 0)
502 __count_memcg_events(memcg, PGPGIN, 1);
503 else {
504 __count_memcg_events(memcg, PGPGOUT, 1);
505 nr_pages = -nr_pages; /* for event */
508 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_pages);
511 #define THRESHOLDS_EVENTS_TARGET 128
512 #define SOFTLIMIT_EVENTS_TARGET 1024
514 static bool memcg1_event_ratelimit(struct mem_cgroup *memcg,
515 enum mem_cgroup_events_target target)
517 unsigned long val, next;
519 val = __this_cpu_read(memcg->events_percpu->nr_page_events);
520 next = __this_cpu_read(memcg->events_percpu->targets[target]);
521 /* from time_after() in jiffies.h */
522 if ((long)(next - val) < 0) {
523 switch (target) {
524 case MEM_CGROUP_TARGET_THRESH:
525 next = val + THRESHOLDS_EVENTS_TARGET;
526 break;
527 case MEM_CGROUP_TARGET_SOFTLIMIT:
528 next = val + SOFTLIMIT_EVENTS_TARGET;
529 break;
530 default:
531 break;
533 __this_cpu_write(memcg->events_percpu->targets[target], next);
534 return true;
536 return false;
540 * Check events in order.
543 static void memcg1_check_events(struct mem_cgroup *memcg, int nid)
545 if (IS_ENABLED(CONFIG_PREEMPT_RT))
546 return;
548 /* threshold event is triggered in finer grain than soft limit */
549 if (unlikely(memcg1_event_ratelimit(memcg,
550 MEM_CGROUP_TARGET_THRESH))) {
551 bool do_softlimit;
553 do_softlimit = memcg1_event_ratelimit(memcg,
554 MEM_CGROUP_TARGET_SOFTLIMIT);
555 mem_cgroup_threshold(memcg);
556 if (unlikely(do_softlimit))
557 memcg1_update_tree(memcg, nid);
561 void memcg1_commit_charge(struct folio *folio, struct mem_cgroup *memcg)
563 unsigned long flags;
565 local_irq_save(flags);
566 memcg1_charge_statistics(memcg, folio_nr_pages(folio));
567 memcg1_check_events(memcg, folio_nid(folio));
568 local_irq_restore(flags);
571 void memcg1_swapout(struct folio *folio, struct mem_cgroup *memcg)
574 * Interrupts should be disabled here because the caller holds the
575 * i_pages lock which is taken with interrupts-off. It is
576 * important here to have the interrupts disabled because it is the
577 * only synchronisation we have for updating the per-CPU variables.
579 preempt_disable_nested();
580 VM_WARN_ON_IRQS_ENABLED();
581 memcg1_charge_statistics(memcg, -folio_nr_pages(folio));
582 preempt_enable_nested();
583 memcg1_check_events(memcg, folio_nid(folio));
586 void memcg1_uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
587 unsigned long nr_memory, int nid)
589 unsigned long flags;
591 local_irq_save(flags);
592 __count_memcg_events(memcg, PGPGOUT, pgpgout);
593 __this_cpu_add(memcg->events_percpu->nr_page_events, nr_memory);
594 memcg1_check_events(memcg, nid);
595 local_irq_restore(flags);
598 static int compare_thresholds(const void *a, const void *b)
600 const struct mem_cgroup_threshold *_a = a;
601 const struct mem_cgroup_threshold *_b = b;
603 if (_a->threshold > _b->threshold)
604 return 1;
606 if (_a->threshold < _b->threshold)
607 return -1;
609 return 0;
612 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
614 struct mem_cgroup_eventfd_list *ev;
616 spin_lock(&memcg_oom_lock);
618 list_for_each_entry(ev, &memcg->oom_notify, list)
619 eventfd_signal(ev->eventfd);
621 spin_unlock(&memcg_oom_lock);
622 return 0;
625 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
627 struct mem_cgroup *iter;
629 for_each_mem_cgroup_tree(iter, memcg)
630 mem_cgroup_oom_notify_cb(iter);
633 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
634 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
636 struct mem_cgroup_thresholds *thresholds;
637 struct mem_cgroup_threshold_ary *new;
638 unsigned long threshold;
639 unsigned long usage;
640 int i, size, ret;
642 ret = page_counter_memparse(args, "-1", &threshold);
643 if (ret)
644 return ret;
646 mutex_lock(&memcg->thresholds_lock);
648 if (type == _MEM) {
649 thresholds = &memcg->thresholds;
650 usage = mem_cgroup_usage(memcg, false);
651 } else if (type == _MEMSWAP) {
652 thresholds = &memcg->memsw_thresholds;
653 usage = mem_cgroup_usage(memcg, true);
654 } else
655 BUG();
657 /* Check if a threshold crossed before adding a new one */
658 if (thresholds->primary)
659 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
661 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
663 /* Allocate memory for new array of thresholds */
664 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
665 if (!new) {
666 ret = -ENOMEM;
667 goto unlock;
669 new->size = size;
671 /* Copy thresholds (if any) to new array */
672 if (thresholds->primary)
673 memcpy(new->entries, thresholds->primary->entries,
674 flex_array_size(new, entries, size - 1));
676 /* Add new threshold */
677 new->entries[size - 1].eventfd = eventfd;
678 new->entries[size - 1].threshold = threshold;
680 /* Sort thresholds. Registering of new threshold isn't time-critical */
681 sort(new->entries, size, sizeof(*new->entries),
682 compare_thresholds, NULL);
684 /* Find current threshold */
685 new->current_threshold = -1;
686 for (i = 0; i < size; i++) {
687 if (new->entries[i].threshold <= usage) {
689 * new->current_threshold will not be used until
690 * rcu_assign_pointer(), so it's safe to increment
691 * it here.
693 ++new->current_threshold;
694 } else
695 break;
698 /* Free old spare buffer and save old primary buffer as spare */
699 kfree(thresholds->spare);
700 thresholds->spare = thresholds->primary;
702 rcu_assign_pointer(thresholds->primary, new);
704 /* To be sure that nobody uses thresholds */
705 synchronize_rcu();
707 unlock:
708 mutex_unlock(&memcg->thresholds_lock);
710 return ret;
713 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
714 struct eventfd_ctx *eventfd, const char *args)
716 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
719 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
720 struct eventfd_ctx *eventfd, const char *args)
722 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
725 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
726 struct eventfd_ctx *eventfd, enum res_type type)
728 struct mem_cgroup_thresholds *thresholds;
729 struct mem_cgroup_threshold_ary *new;
730 unsigned long usage;
731 int i, j, size, entries;
733 mutex_lock(&memcg->thresholds_lock);
735 if (type == _MEM) {
736 thresholds = &memcg->thresholds;
737 usage = mem_cgroup_usage(memcg, false);
738 } else if (type == _MEMSWAP) {
739 thresholds = &memcg->memsw_thresholds;
740 usage = mem_cgroup_usage(memcg, true);
741 } else
742 BUG();
744 if (!thresholds->primary)
745 goto unlock;
747 /* Check if a threshold crossed before removing */
748 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
750 /* Calculate new number of threshold */
751 size = entries = 0;
752 for (i = 0; i < thresholds->primary->size; i++) {
753 if (thresholds->primary->entries[i].eventfd != eventfd)
754 size++;
755 else
756 entries++;
759 new = thresholds->spare;
761 /* If no items related to eventfd have been cleared, nothing to do */
762 if (!entries)
763 goto unlock;
765 /* Set thresholds array to NULL if we don't have thresholds */
766 if (!size) {
767 kfree(new);
768 new = NULL;
769 goto swap_buffers;
772 new->size = size;
774 /* Copy thresholds and find current threshold */
775 new->current_threshold = -1;
776 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
777 if (thresholds->primary->entries[i].eventfd == eventfd)
778 continue;
780 new->entries[j] = thresholds->primary->entries[i];
781 if (new->entries[j].threshold <= usage) {
783 * new->current_threshold will not be used
784 * until rcu_assign_pointer(), so it's safe to increment
785 * it here.
787 ++new->current_threshold;
789 j++;
792 swap_buffers:
793 /* Swap primary and spare array */
794 thresholds->spare = thresholds->primary;
796 rcu_assign_pointer(thresholds->primary, new);
798 /* To be sure that nobody uses thresholds */
799 synchronize_rcu();
801 /* If all events are unregistered, free the spare array */
802 if (!new) {
803 kfree(thresholds->spare);
804 thresholds->spare = NULL;
806 unlock:
807 mutex_unlock(&memcg->thresholds_lock);
810 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
811 struct eventfd_ctx *eventfd)
813 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
816 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
817 struct eventfd_ctx *eventfd)
819 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
822 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
823 struct eventfd_ctx *eventfd, const char *args)
825 struct mem_cgroup_eventfd_list *event;
827 event = kmalloc(sizeof(*event), GFP_KERNEL);
828 if (!event)
829 return -ENOMEM;
831 spin_lock(&memcg_oom_lock);
833 event->eventfd = eventfd;
834 list_add(&event->list, &memcg->oom_notify);
836 /* already in OOM ? */
837 if (memcg->under_oom)
838 eventfd_signal(eventfd);
839 spin_unlock(&memcg_oom_lock);
841 return 0;
844 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
845 struct eventfd_ctx *eventfd)
847 struct mem_cgroup_eventfd_list *ev, *tmp;
849 spin_lock(&memcg_oom_lock);
851 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
852 if (ev->eventfd == eventfd) {
853 list_del(&ev->list);
854 kfree(ev);
858 spin_unlock(&memcg_oom_lock);
862 * DO NOT USE IN NEW FILES.
864 * "cgroup.event_control" implementation.
866 * This is way over-engineered. It tries to support fully configurable
867 * events for each user. Such level of flexibility is completely
868 * unnecessary especially in the light of the planned unified hierarchy.
870 * Please deprecate this and replace with something simpler if at all
871 * possible.
875 * Unregister event and free resources.
877 * Gets called from workqueue.
879 static void memcg_event_remove(struct work_struct *work)
881 struct mem_cgroup_event *event =
882 container_of(work, struct mem_cgroup_event, remove);
883 struct mem_cgroup *memcg = event->memcg;
885 remove_wait_queue(event->wqh, &event->wait);
887 event->unregister_event(memcg, event->eventfd);
889 /* Notify userspace the event is going away. */
890 eventfd_signal(event->eventfd);
892 eventfd_ctx_put(event->eventfd);
893 kfree(event);
894 css_put(&memcg->css);
898 * Gets called on EPOLLHUP on eventfd when user closes it.
900 * Called with wqh->lock held and interrupts disabled.
902 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
903 int sync, void *key)
905 struct mem_cgroup_event *event =
906 container_of(wait, struct mem_cgroup_event, wait);
907 struct mem_cgroup *memcg = event->memcg;
908 __poll_t flags = key_to_poll(key);
910 if (flags & EPOLLHUP) {
912 * If the event has been detached at cgroup removal, we
913 * can simply return knowing the other side will cleanup
914 * for us.
916 * We can't race against event freeing since the other
917 * side will require wqh->lock via remove_wait_queue(),
918 * which we hold.
920 spin_lock(&memcg->event_list_lock);
921 if (!list_empty(&event->list)) {
922 list_del_init(&event->list);
924 * We are in atomic context, but cgroup_event_remove()
925 * may sleep, so we have to call it in workqueue.
927 schedule_work(&event->remove);
929 spin_unlock(&memcg->event_list_lock);
932 return 0;
935 static void memcg_event_ptable_queue_proc(struct file *file,
936 wait_queue_head_t *wqh, poll_table *pt)
938 struct mem_cgroup_event *event =
939 container_of(pt, struct mem_cgroup_event, pt);
941 event->wqh = wqh;
942 add_wait_queue(wqh, &event->wait);
946 * DO NOT USE IN NEW FILES.
948 * Parse input and register new cgroup event handler.
950 * Input must be in format '<event_fd> <control_fd> <args>'.
951 * Interpretation of args is defined by control file implementation.
953 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
954 char *buf, size_t nbytes, loff_t off)
956 struct cgroup_subsys_state *css = of_css(of);
957 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
958 struct mem_cgroup_event *event;
959 struct cgroup_subsys_state *cfile_css;
960 unsigned int efd, cfd;
961 struct dentry *cdentry;
962 const char *name;
963 char *endp;
964 int ret;
966 if (IS_ENABLED(CONFIG_PREEMPT_RT))
967 return -EOPNOTSUPP;
969 buf = strstrip(buf);
971 efd = simple_strtoul(buf, &endp, 10);
972 if (*endp != ' ')
973 return -EINVAL;
974 buf = endp + 1;
976 cfd = simple_strtoul(buf, &endp, 10);
977 if (*endp == '\0')
978 buf = endp;
979 else if (*endp == ' ')
980 buf = endp + 1;
981 else
982 return -EINVAL;
984 CLASS(fd, efile)(efd);
985 if (fd_empty(efile))
986 return -EBADF;
988 CLASS(fd, cfile)(cfd);
990 event = kzalloc(sizeof(*event), GFP_KERNEL);
991 if (!event)
992 return -ENOMEM;
994 event->memcg = memcg;
995 INIT_LIST_HEAD(&event->list);
996 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
997 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
998 INIT_WORK(&event->remove, memcg_event_remove);
1000 event->eventfd = eventfd_ctx_fileget(fd_file(efile));
1001 if (IS_ERR(event->eventfd)) {
1002 ret = PTR_ERR(event->eventfd);
1003 goto out_kfree;
1006 if (fd_empty(cfile)) {
1007 ret = -EBADF;
1008 goto out_put_eventfd;
1011 /* the process need read permission on control file */
1012 /* AV: shouldn't we check that it's been opened for read instead? */
1013 ret = file_permission(fd_file(cfile), MAY_READ);
1014 if (ret < 0)
1015 goto out_put_eventfd;
1018 * The control file must be a regular cgroup1 file. As a regular cgroup
1019 * file can't be renamed, it's safe to access its name afterwards.
1021 cdentry = fd_file(cfile)->f_path.dentry;
1022 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
1023 ret = -EINVAL;
1024 goto out_put_eventfd;
1028 * Determine the event callbacks and set them in @event. This used
1029 * to be done via struct cftype but cgroup core no longer knows
1030 * about these events. The following is crude but the whole thing
1031 * is for compatibility anyway.
1033 * DO NOT ADD NEW FILES.
1035 name = cdentry->d_name.name;
1037 if (!strcmp(name, "memory.usage_in_bytes")) {
1038 event->register_event = mem_cgroup_usage_register_event;
1039 event->unregister_event = mem_cgroup_usage_unregister_event;
1040 } else if (!strcmp(name, "memory.oom_control")) {
1041 pr_warn_once("oom_control is deprecated and will be removed. "
1042 "Please report your usecase to linux-mm-@kvack.org"
1043 " if you depend on this functionality. \n");
1044 event->register_event = mem_cgroup_oom_register_event;
1045 event->unregister_event = mem_cgroup_oom_unregister_event;
1046 } else if (!strcmp(name, "memory.pressure_level")) {
1047 pr_warn_once("pressure_level is deprecated and will be removed. "
1048 "Please report your usecase to linux-mm-@kvack.org "
1049 "if you depend on this functionality. \n");
1050 event->register_event = vmpressure_register_event;
1051 event->unregister_event = vmpressure_unregister_event;
1052 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
1053 event->register_event = memsw_cgroup_usage_register_event;
1054 event->unregister_event = memsw_cgroup_usage_unregister_event;
1055 } else {
1056 ret = -EINVAL;
1057 goto out_put_eventfd;
1061 * Verify @cfile should belong to @css. Also, remaining events are
1062 * automatically removed on cgroup destruction but the removal is
1063 * asynchronous, so take an extra ref on @css.
1065 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
1066 &memory_cgrp_subsys);
1067 ret = -EINVAL;
1068 if (IS_ERR(cfile_css))
1069 goto out_put_eventfd;
1070 if (cfile_css != css)
1071 goto out_put_css;
1073 ret = event->register_event(memcg, event->eventfd, buf);
1074 if (ret)
1075 goto out_put_css;
1077 vfs_poll(fd_file(efile), &event->pt);
1079 spin_lock_irq(&memcg->event_list_lock);
1080 list_add(&event->list, &memcg->event_list);
1081 spin_unlock_irq(&memcg->event_list_lock);
1082 return nbytes;
1084 out_put_css:
1085 css_put(cfile_css);
1086 out_put_eventfd:
1087 eventfd_ctx_put(event->eventfd);
1088 out_kfree:
1089 kfree(event);
1090 return ret;
1093 void memcg1_memcg_init(struct mem_cgroup *memcg)
1095 INIT_LIST_HEAD(&memcg->oom_notify);
1096 mutex_init(&memcg->thresholds_lock);
1097 INIT_LIST_HEAD(&memcg->event_list);
1098 spin_lock_init(&memcg->event_list_lock);
1101 void memcg1_css_offline(struct mem_cgroup *memcg)
1103 struct mem_cgroup_event *event, *tmp;
1106 * Unregister events and notify userspace.
1107 * Notify userspace about cgroup removing only after rmdir of cgroup
1108 * directory to avoid race between userspace and kernelspace.
1110 spin_lock_irq(&memcg->event_list_lock);
1111 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
1112 list_del_init(&event->list);
1113 schedule_work(&event->remove);
1115 spin_unlock_irq(&memcg->event_list_lock);
1119 * Check OOM-Killer is already running under our hierarchy.
1120 * If someone is running, return false.
1122 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1124 struct mem_cgroup *iter, *failed = NULL;
1126 spin_lock(&memcg_oom_lock);
1128 for_each_mem_cgroup_tree(iter, memcg) {
1129 if (iter->oom_lock) {
1131 * this subtree of our hierarchy is already locked
1132 * so we cannot give a lock.
1134 failed = iter;
1135 mem_cgroup_iter_break(memcg, iter);
1136 break;
1137 } else
1138 iter->oom_lock = true;
1141 if (failed) {
1143 * OK, we failed to lock the whole subtree so we have
1144 * to clean up what we set up to the failing subtree
1146 for_each_mem_cgroup_tree(iter, memcg) {
1147 if (iter == failed) {
1148 mem_cgroup_iter_break(memcg, iter);
1149 break;
1151 iter->oom_lock = false;
1153 } else
1154 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1156 spin_unlock(&memcg_oom_lock);
1158 return !failed;
1161 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1163 struct mem_cgroup *iter;
1165 spin_lock(&memcg_oom_lock);
1166 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1167 for_each_mem_cgroup_tree(iter, memcg)
1168 iter->oom_lock = false;
1169 spin_unlock(&memcg_oom_lock);
1172 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1174 struct mem_cgroup *iter;
1176 spin_lock(&memcg_oom_lock);
1177 for_each_mem_cgroup_tree(iter, memcg)
1178 iter->under_oom++;
1179 spin_unlock(&memcg_oom_lock);
1182 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1184 struct mem_cgroup *iter;
1187 * Be careful about under_oom underflows because a child memcg
1188 * could have been added after mem_cgroup_mark_under_oom.
1190 spin_lock(&memcg_oom_lock);
1191 for_each_mem_cgroup_tree(iter, memcg)
1192 if (iter->under_oom > 0)
1193 iter->under_oom--;
1194 spin_unlock(&memcg_oom_lock);
1197 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1199 struct oom_wait_info {
1200 struct mem_cgroup *memcg;
1201 wait_queue_entry_t wait;
1204 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1205 unsigned mode, int sync, void *arg)
1207 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1208 struct mem_cgroup *oom_wait_memcg;
1209 struct oom_wait_info *oom_wait_info;
1211 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1212 oom_wait_memcg = oom_wait_info->memcg;
1214 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1215 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1216 return 0;
1217 return autoremove_wake_function(wait, mode, sync, arg);
1220 void memcg1_oom_recover(struct mem_cgroup *memcg)
1223 * For the following lockless ->under_oom test, the only required
1224 * guarantee is that it must see the state asserted by an OOM when
1225 * this function is called as a result of userland actions
1226 * triggered by the notification of the OOM. This is trivially
1227 * achieved by invoking mem_cgroup_mark_under_oom() before
1228 * triggering notification.
1230 if (memcg && memcg->under_oom)
1231 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1235 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1236 * @handle: actually kill/wait or just clean up the OOM state
1238 * This has to be called at the end of a page fault if the memcg OOM
1239 * handler was enabled.
1241 * Memcg supports userspace OOM handling where failed allocations must
1242 * sleep on a waitqueue until the userspace task resolves the
1243 * situation. Sleeping directly in the charge context with all kinds
1244 * of locks held is not a good idea, instead we remember an OOM state
1245 * in the task and mem_cgroup_oom_synchronize() has to be called at
1246 * the end of the page fault to complete the OOM handling.
1248 * Returns %true if an ongoing memcg OOM situation was detected and
1249 * completed, %false otherwise.
1251 bool mem_cgroup_oom_synchronize(bool handle)
1253 struct mem_cgroup *memcg = current->memcg_in_oom;
1254 struct oom_wait_info owait;
1255 bool locked;
1257 /* OOM is global, do not handle */
1258 if (!memcg)
1259 return false;
1261 if (!handle)
1262 goto cleanup;
1264 owait.memcg = memcg;
1265 owait.wait.flags = 0;
1266 owait.wait.func = memcg_oom_wake_function;
1267 owait.wait.private = current;
1268 INIT_LIST_HEAD(&owait.wait.entry);
1270 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1271 mem_cgroup_mark_under_oom(memcg);
1273 locked = mem_cgroup_oom_trylock(memcg);
1275 if (locked)
1276 mem_cgroup_oom_notify(memcg);
1278 schedule();
1279 mem_cgroup_unmark_under_oom(memcg);
1280 finish_wait(&memcg_oom_waitq, &owait.wait);
1282 if (locked)
1283 mem_cgroup_oom_unlock(memcg);
1284 cleanup:
1285 current->memcg_in_oom = NULL;
1286 css_put(&memcg->css);
1287 return true;
1291 bool memcg1_oom_prepare(struct mem_cgroup *memcg, bool *locked)
1294 * We are in the middle of the charge context here, so we
1295 * don't want to block when potentially sitting on a callstack
1296 * that holds all kinds of filesystem and mm locks.
1298 * cgroup1 allows disabling the OOM killer and waiting for outside
1299 * handling until the charge can succeed; remember the context and put
1300 * the task to sleep at the end of the page fault when all locks are
1301 * released.
1303 * On the other hand, in-kernel OOM killer allows for an async victim
1304 * memory reclaim (oom_reaper) and that means that we are not solely
1305 * relying on the oom victim to make a forward progress and we can
1306 * invoke the oom killer here.
1308 * Please note that mem_cgroup_out_of_memory might fail to find a
1309 * victim and then we have to bail out from the charge path.
1311 if (READ_ONCE(memcg->oom_kill_disable)) {
1312 if (current->in_user_fault) {
1313 css_get(&memcg->css);
1314 current->memcg_in_oom = memcg;
1316 return false;
1319 mem_cgroup_mark_under_oom(memcg);
1321 *locked = mem_cgroup_oom_trylock(memcg);
1323 if (*locked)
1324 mem_cgroup_oom_notify(memcg);
1326 mem_cgroup_unmark_under_oom(memcg);
1328 return true;
1331 void memcg1_oom_finish(struct mem_cgroup *memcg, bool locked)
1333 if (locked)
1334 mem_cgroup_oom_unlock(memcg);
1337 static DEFINE_MUTEX(memcg_max_mutex);
1339 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
1340 unsigned long max, bool memsw)
1342 bool enlarge = false;
1343 bool drained = false;
1344 int ret;
1345 bool limits_invariant;
1346 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
1348 do {
1349 if (signal_pending(current)) {
1350 ret = -EINTR;
1351 break;
1354 mutex_lock(&memcg_max_mutex);
1356 * Make sure that the new limit (memsw or memory limit) doesn't
1357 * break our basic invariant rule memory.max <= memsw.max.
1359 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
1360 max <= memcg->memsw.max;
1361 if (!limits_invariant) {
1362 mutex_unlock(&memcg_max_mutex);
1363 ret = -EINVAL;
1364 break;
1366 if (max > counter->max)
1367 enlarge = true;
1368 ret = page_counter_set_max(counter, max);
1369 mutex_unlock(&memcg_max_mutex);
1371 if (!ret)
1372 break;
1374 if (!drained) {
1375 drain_all_stock(memcg);
1376 drained = true;
1377 continue;
1380 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1381 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP, NULL)) {
1382 ret = -EBUSY;
1383 break;
1385 } while (true);
1387 if (!ret && enlarge)
1388 memcg1_oom_recover(memcg);
1390 return ret;
1394 * Reclaims as many pages from the given memcg as possible.
1396 * Caller is responsible for holding css reference for memcg.
1398 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
1400 int nr_retries = MAX_RECLAIM_RETRIES;
1402 /* we call try-to-free pages for make this cgroup empty */
1403 lru_add_drain_all();
1405 drain_all_stock(memcg);
1407 /* try to free all pages in this cgroup */
1408 while (nr_retries && page_counter_read(&memcg->memory)) {
1409 if (signal_pending(current))
1410 return -EINTR;
1412 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
1413 MEMCG_RECLAIM_MAY_SWAP, NULL))
1414 nr_retries--;
1417 return 0;
1420 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
1421 char *buf, size_t nbytes,
1422 loff_t off)
1424 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1426 if (mem_cgroup_is_root(memcg))
1427 return -EINVAL;
1428 return mem_cgroup_force_empty(memcg) ?: nbytes;
1431 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
1432 struct cftype *cft)
1434 return 1;
1437 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
1438 struct cftype *cft, u64 val)
1440 if (val == 1)
1441 return 0;
1443 pr_warn_once("Non-hierarchical mode is deprecated. "
1444 "Please report your usecase to linux-mm@kvack.org if you "
1445 "depend on this functionality.\n");
1447 return -EINVAL;
1450 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
1451 struct cftype *cft)
1453 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1454 struct page_counter *counter;
1456 switch (MEMFILE_TYPE(cft->private)) {
1457 case _MEM:
1458 counter = &memcg->memory;
1459 break;
1460 case _MEMSWAP:
1461 counter = &memcg->memsw;
1462 break;
1463 case _KMEM:
1464 counter = &memcg->kmem;
1465 break;
1466 case _TCP:
1467 counter = &memcg->tcpmem;
1468 break;
1469 default:
1470 BUG();
1473 switch (MEMFILE_ATTR(cft->private)) {
1474 case RES_USAGE:
1475 if (counter == &memcg->memory)
1476 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
1477 if (counter == &memcg->memsw)
1478 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
1479 return (u64)page_counter_read(counter) * PAGE_SIZE;
1480 case RES_LIMIT:
1481 return (u64)counter->max * PAGE_SIZE;
1482 case RES_MAX_USAGE:
1483 return (u64)counter->watermark * PAGE_SIZE;
1484 case RES_FAILCNT:
1485 return counter->failcnt;
1486 case RES_SOFT_LIMIT:
1487 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
1488 default:
1489 BUG();
1494 * This function doesn't do anything useful. Its only job is to provide a read
1495 * handler for a file so that cgroup_file_mode() will add read permissions.
1497 static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
1498 __always_unused void *v)
1500 return -EINVAL;
1503 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
1505 int ret;
1507 mutex_lock(&memcg_max_mutex);
1509 ret = page_counter_set_max(&memcg->tcpmem, max);
1510 if (ret)
1511 goto out;
1513 if (!memcg->tcpmem_active) {
1515 * The active flag needs to be written after the static_key
1516 * update. This is what guarantees that the socket activation
1517 * function is the last one to run. See mem_cgroup_sk_alloc()
1518 * for details, and note that we don't mark any socket as
1519 * belonging to this memcg until that flag is up.
1521 * We need to do this, because static_keys will span multiple
1522 * sites, but we can't control their order. If we mark a socket
1523 * as accounted, but the accounting functions are not patched in
1524 * yet, we'll lose accounting.
1526 * We never race with the readers in mem_cgroup_sk_alloc(),
1527 * because when this value change, the code to process it is not
1528 * patched in yet.
1530 static_branch_inc(&memcg_sockets_enabled_key);
1531 memcg->tcpmem_active = true;
1533 out:
1534 mutex_unlock(&memcg_max_mutex);
1535 return ret;
1539 * The user of this function is...
1540 * RES_LIMIT.
1542 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
1543 char *buf, size_t nbytes, loff_t off)
1545 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1546 unsigned long nr_pages;
1547 int ret;
1549 buf = strstrip(buf);
1550 ret = page_counter_memparse(buf, "-1", &nr_pages);
1551 if (ret)
1552 return ret;
1554 switch (MEMFILE_ATTR(of_cft(of)->private)) {
1555 case RES_LIMIT:
1556 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
1557 ret = -EINVAL;
1558 break;
1560 switch (MEMFILE_TYPE(of_cft(of)->private)) {
1561 case _MEM:
1562 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
1563 break;
1564 case _MEMSWAP:
1565 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
1566 break;
1567 case _KMEM:
1568 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
1569 "Writing any value to this file has no effect. "
1570 "Please report your usecase to linux-mm@kvack.org if you "
1571 "depend on this functionality.\n");
1572 ret = 0;
1573 break;
1574 case _TCP:
1575 pr_warn_once("kmem.tcp.limit_in_bytes is deprecated and will be removed. "
1576 "Please report your usecase to linux-mm@kvack.org if you "
1577 "depend on this functionality.\n");
1578 ret = memcg_update_tcp_max(memcg, nr_pages);
1579 break;
1581 break;
1582 case RES_SOFT_LIMIT:
1583 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1584 ret = -EOPNOTSUPP;
1585 } else {
1586 pr_warn_once("soft_limit_in_bytes is deprecated and will be removed. "
1587 "Please report your usecase to linux-mm@kvack.org if you "
1588 "depend on this functionality.\n");
1589 WRITE_ONCE(memcg->soft_limit, nr_pages);
1590 ret = 0;
1592 break;
1594 return ret ?: nbytes;
1597 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
1598 size_t nbytes, loff_t off)
1600 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
1601 struct page_counter *counter;
1603 switch (MEMFILE_TYPE(of_cft(of)->private)) {
1604 case _MEM:
1605 counter = &memcg->memory;
1606 break;
1607 case _MEMSWAP:
1608 counter = &memcg->memsw;
1609 break;
1610 case _KMEM:
1611 counter = &memcg->kmem;
1612 break;
1613 case _TCP:
1614 counter = &memcg->tcpmem;
1615 break;
1616 default:
1617 BUG();
1620 switch (MEMFILE_ATTR(of_cft(of)->private)) {
1621 case RES_MAX_USAGE:
1622 page_counter_reset_watermark(counter);
1623 break;
1624 case RES_FAILCNT:
1625 counter->failcnt = 0;
1626 break;
1627 default:
1628 BUG();
1631 return nbytes;
1634 #ifdef CONFIG_NUMA
1636 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
1637 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
1638 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
1640 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
1641 int nid, unsigned int lru_mask, bool tree)
1643 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
1644 unsigned long nr = 0;
1645 enum lru_list lru;
1647 VM_BUG_ON((unsigned)nid >= nr_node_ids);
1649 for_each_lru(lru) {
1650 if (!(BIT(lru) & lru_mask))
1651 continue;
1652 if (tree)
1653 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
1654 else
1655 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
1657 return nr;
1660 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
1661 unsigned int lru_mask,
1662 bool tree)
1664 unsigned long nr = 0;
1665 enum lru_list lru;
1667 for_each_lru(lru) {
1668 if (!(BIT(lru) & lru_mask))
1669 continue;
1670 if (tree)
1671 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
1672 else
1673 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
1675 return nr;
1678 static int memcg_numa_stat_show(struct seq_file *m, void *v)
1680 struct numa_stat {
1681 const char *name;
1682 unsigned int lru_mask;
1685 static const struct numa_stat stats[] = {
1686 { "total", LRU_ALL },
1687 { "file", LRU_ALL_FILE },
1688 { "anon", LRU_ALL_ANON },
1689 { "unevictable", BIT(LRU_UNEVICTABLE) },
1691 const struct numa_stat *stat;
1692 int nid;
1693 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
1695 mem_cgroup_flush_stats(memcg);
1697 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
1698 seq_printf(m, "%s=%lu", stat->name,
1699 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1700 false));
1701 for_each_node_state(nid, N_MEMORY)
1702 seq_printf(m, " N%d=%lu", nid,
1703 mem_cgroup_node_nr_lru_pages(memcg, nid,
1704 stat->lru_mask, false));
1705 seq_putc(m, '\n');
1708 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
1710 seq_printf(m, "hierarchical_%s=%lu", stat->name,
1711 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
1712 true));
1713 for_each_node_state(nid, N_MEMORY)
1714 seq_printf(m, " N%d=%lu", nid,
1715 mem_cgroup_node_nr_lru_pages(memcg, nid,
1716 stat->lru_mask, true));
1717 seq_putc(m, '\n');
1720 return 0;
1722 #endif /* CONFIG_NUMA */
1724 static const unsigned int memcg1_stats[] = {
1725 NR_FILE_PAGES,
1726 NR_ANON_MAPPED,
1727 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1728 NR_ANON_THPS,
1729 #endif
1730 NR_SHMEM,
1731 NR_FILE_MAPPED,
1732 NR_FILE_DIRTY,
1733 NR_WRITEBACK,
1734 WORKINGSET_REFAULT_ANON,
1735 WORKINGSET_REFAULT_FILE,
1736 #ifdef CONFIG_SWAP
1737 MEMCG_SWAP,
1738 NR_SWAPCACHE,
1739 #endif
1742 static const char *const memcg1_stat_names[] = {
1743 "cache",
1744 "rss",
1745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1746 "rss_huge",
1747 #endif
1748 "shmem",
1749 "mapped_file",
1750 "dirty",
1751 "writeback",
1752 "workingset_refault_anon",
1753 "workingset_refault_file",
1754 #ifdef CONFIG_SWAP
1755 "swap",
1756 "swapcached",
1757 #endif
1760 /* Universal VM events cgroup1 shows, original sort order */
1761 static const unsigned int memcg1_events[] = {
1762 PGPGIN,
1763 PGPGOUT,
1764 PGFAULT,
1765 PGMAJFAULT,
1768 void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1770 unsigned long memory, memsw;
1771 struct mem_cgroup *mi;
1772 unsigned int i;
1774 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
1776 mem_cgroup_flush_stats(memcg);
1778 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1779 unsigned long nr;
1781 nr = memcg_page_state_local_output(memcg, memcg1_stats[i]);
1782 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i], nr);
1785 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1786 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
1787 memcg_events_local(memcg, memcg1_events[i]));
1789 for (i = 0; i < NR_LRU_LISTS; i++)
1790 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
1791 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
1792 PAGE_SIZE);
1794 /* Hierarchical information */
1795 memory = memsw = PAGE_COUNTER_MAX;
1796 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
1797 memory = min(memory, READ_ONCE(mi->memory.max));
1798 memsw = min(memsw, READ_ONCE(mi->memsw.max));
1800 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
1801 (u64)memory * PAGE_SIZE);
1802 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
1803 (u64)memsw * PAGE_SIZE);
1805 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1806 unsigned long nr;
1808 nr = memcg_page_state_output(memcg, memcg1_stats[i]);
1809 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
1810 (u64)nr);
1813 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
1814 seq_buf_printf(s, "total_%s %llu\n",
1815 vm_event_name(memcg1_events[i]),
1816 (u64)memcg_events(memcg, memcg1_events[i]));
1818 for (i = 0; i < NR_LRU_LISTS; i++)
1819 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
1820 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1821 PAGE_SIZE);
1823 #ifdef CONFIG_DEBUG_VM
1825 pg_data_t *pgdat;
1826 struct mem_cgroup_per_node *mz;
1827 unsigned long anon_cost = 0;
1828 unsigned long file_cost = 0;
1830 for_each_online_pgdat(pgdat) {
1831 mz = memcg->nodeinfo[pgdat->node_id];
1833 anon_cost += mz->lruvec.anon_cost;
1834 file_cost += mz->lruvec.file_cost;
1836 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
1837 seq_buf_printf(s, "file_cost %lu\n", file_cost);
1839 #endif
1842 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
1843 struct cftype *cft)
1845 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1847 return mem_cgroup_swappiness(memcg);
1850 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
1851 struct cftype *cft, u64 val)
1853 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1855 if (val > MAX_SWAPPINESS)
1856 return -EINVAL;
1858 if (!mem_cgroup_is_root(memcg))
1859 WRITE_ONCE(memcg->swappiness, val);
1860 else
1861 WRITE_ONCE(vm_swappiness, val);
1863 return 0;
1866 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
1868 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
1870 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
1871 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
1872 seq_printf(sf, "oom_kill %lu\n",
1873 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
1874 return 0;
1877 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
1878 struct cftype *cft, u64 val)
1880 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1882 pr_warn_once("oom_control is deprecated and will be removed. "
1883 "Please report your usecase to linux-mm-@kvack.org if you "
1884 "depend on this functionality. \n");
1886 /* cannot set to root cgroup and only 0 and 1 are allowed */
1887 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
1888 return -EINVAL;
1890 WRITE_ONCE(memcg->oom_kill_disable, val);
1891 if (!val)
1892 memcg1_oom_recover(memcg);
1894 return 0;
1897 #ifdef CONFIG_SLUB_DEBUG
1898 static int mem_cgroup_slab_show(struct seq_file *m, void *p)
1901 * Deprecated.
1902 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
1904 return 0;
1906 #endif
1908 struct cftype mem_cgroup_legacy_files[] = {
1910 .name = "usage_in_bytes",
1911 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
1912 .read_u64 = mem_cgroup_read_u64,
1915 .name = "max_usage_in_bytes",
1916 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
1917 .write = mem_cgroup_reset,
1918 .read_u64 = mem_cgroup_read_u64,
1921 .name = "limit_in_bytes",
1922 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
1923 .write = mem_cgroup_write,
1924 .read_u64 = mem_cgroup_read_u64,
1927 .name = "soft_limit_in_bytes",
1928 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
1929 .write = mem_cgroup_write,
1930 .read_u64 = mem_cgroup_read_u64,
1933 .name = "failcnt",
1934 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
1935 .write = mem_cgroup_reset,
1936 .read_u64 = mem_cgroup_read_u64,
1939 .name = "stat",
1940 .seq_show = memory_stat_show,
1943 .name = "force_empty",
1944 .write = mem_cgroup_force_empty_write,
1947 .name = "use_hierarchy",
1948 .write_u64 = mem_cgroup_hierarchy_write,
1949 .read_u64 = mem_cgroup_hierarchy_read,
1952 .name = "cgroup.event_control", /* XXX: for compat */
1953 .write = memcg_write_event_control,
1954 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
1957 .name = "swappiness",
1958 .read_u64 = mem_cgroup_swappiness_read,
1959 .write_u64 = mem_cgroup_swappiness_write,
1962 .name = "move_charge_at_immigrate",
1963 .read_u64 = mem_cgroup_move_charge_read,
1964 .write_u64 = mem_cgroup_move_charge_write,
1967 .name = "oom_control",
1968 .seq_show = mem_cgroup_oom_control_read,
1969 .write_u64 = mem_cgroup_oom_control_write,
1972 .name = "pressure_level",
1973 .seq_show = mem_cgroup_dummy_seq_show,
1975 #ifdef CONFIG_NUMA
1977 .name = "numa_stat",
1978 .seq_show = memcg_numa_stat_show,
1980 #endif
1982 .name = "kmem.limit_in_bytes",
1983 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
1984 .write = mem_cgroup_write,
1985 .read_u64 = mem_cgroup_read_u64,
1988 .name = "kmem.usage_in_bytes",
1989 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
1990 .read_u64 = mem_cgroup_read_u64,
1993 .name = "kmem.failcnt",
1994 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
1995 .write = mem_cgroup_reset,
1996 .read_u64 = mem_cgroup_read_u64,
1999 .name = "kmem.max_usage_in_bytes",
2000 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
2001 .write = mem_cgroup_reset,
2002 .read_u64 = mem_cgroup_read_u64,
2004 #ifdef CONFIG_SLUB_DEBUG
2006 .name = "kmem.slabinfo",
2007 .seq_show = mem_cgroup_slab_show,
2009 #endif
2011 .name = "kmem.tcp.limit_in_bytes",
2012 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
2013 .write = mem_cgroup_write,
2014 .read_u64 = mem_cgroup_read_u64,
2017 .name = "kmem.tcp.usage_in_bytes",
2018 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
2019 .read_u64 = mem_cgroup_read_u64,
2022 .name = "kmem.tcp.failcnt",
2023 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
2024 .write = mem_cgroup_reset,
2025 .read_u64 = mem_cgroup_read_u64,
2028 .name = "kmem.tcp.max_usage_in_bytes",
2029 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
2030 .write = mem_cgroup_reset,
2031 .read_u64 = mem_cgroup_read_u64,
2033 { }, /* terminate */
2036 struct cftype memsw_files[] = {
2038 .name = "memsw.usage_in_bytes",
2039 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2040 .read_u64 = mem_cgroup_read_u64,
2043 .name = "memsw.max_usage_in_bytes",
2044 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2045 .write = mem_cgroup_reset,
2046 .read_u64 = mem_cgroup_read_u64,
2049 .name = "memsw.limit_in_bytes",
2050 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2051 .write = mem_cgroup_write,
2052 .read_u64 = mem_cgroup_read_u64,
2055 .name = "memsw.failcnt",
2056 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2057 .write = mem_cgroup_reset,
2058 .read_u64 = mem_cgroup_read_u64,
2060 { }, /* terminate */
2063 void memcg1_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2065 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2066 if (nr_pages > 0)
2067 page_counter_charge(&memcg->kmem, nr_pages);
2068 else
2069 page_counter_uncharge(&memcg->kmem, -nr_pages);
2073 bool memcg1_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
2074 gfp_t gfp_mask)
2076 struct page_counter *fail;
2078 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
2079 memcg->tcpmem_pressure = 0;
2080 return true;
2082 memcg->tcpmem_pressure = 1;
2083 if (gfp_mask & __GFP_NOFAIL) {
2084 page_counter_charge(&memcg->tcpmem, nr_pages);
2085 return true;
2087 return false;
2090 bool memcg1_alloc_events(struct mem_cgroup *memcg)
2092 memcg->events_percpu = alloc_percpu_gfp(struct memcg1_events_percpu,
2093 GFP_KERNEL_ACCOUNT);
2094 return !!memcg->events_percpu;
2097 void memcg1_free_events(struct mem_cgroup *memcg)
2099 if (memcg->events_percpu)
2100 free_percpu(memcg->events_percpu);
2103 static int __init memcg1_init(void)
2105 int node;
2107 for_each_node(node) {
2108 struct mem_cgroup_tree_per_node *rtpn;
2110 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
2112 rtpn->rb_root = RB_ROOT;
2113 rtpn->rb_rightmost = NULL;
2114 spin_lock_init(&rtpn->lock);
2115 soft_limit_tree.rb_tree_per_node[node] = rtpn;
2118 return 0;
2120 subsys_initcall(memcg1_init);