Merge tag 'hwmon-for-v6.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / mm / memory_hotplug.c
blobc43b4e7fb2984f08a637539c5eec2da470a903ca
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
5 * Copyright (C)
6 */
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memremap.h>
22 #include <linux/memory_hotplug.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34 #include <linux/memblock.h>
35 #include <linux/compaction.h>
36 #include <linux/rmap.h>
37 #include <linux/module.h>
39 #include <asm/tlbflush.h>
41 #include "internal.h"
42 #include "shuffle.h"
44 enum {
45 MEMMAP_ON_MEMORY_DISABLE = 0,
46 MEMMAP_ON_MEMORY_ENABLE,
47 MEMMAP_ON_MEMORY_FORCE,
50 static int memmap_mode __read_mostly = MEMMAP_ON_MEMORY_DISABLE;
52 static inline unsigned long memory_block_memmap_size(void)
54 return PHYS_PFN(memory_block_size_bytes()) * sizeof(struct page);
57 static inline unsigned long memory_block_memmap_on_memory_pages(void)
59 unsigned long nr_pages = PFN_UP(memory_block_memmap_size());
62 * In "forced" memmap_on_memory mode, we add extra pages to align the
63 * vmemmap size to cover full pageblocks. That way, we can add memory
64 * even if the vmemmap size is not properly aligned, however, we might waste
65 * memory.
67 if (memmap_mode == MEMMAP_ON_MEMORY_FORCE)
68 return pageblock_align(nr_pages);
69 return nr_pages;
72 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
74 * memory_hotplug.memmap_on_memory parameter
76 static int set_memmap_mode(const char *val, const struct kernel_param *kp)
78 int ret, mode;
79 bool enabled;
81 if (sysfs_streq(val, "force") || sysfs_streq(val, "FORCE")) {
82 mode = MEMMAP_ON_MEMORY_FORCE;
83 } else {
84 ret = kstrtobool(val, &enabled);
85 if (ret < 0)
86 return ret;
87 if (enabled)
88 mode = MEMMAP_ON_MEMORY_ENABLE;
89 else
90 mode = MEMMAP_ON_MEMORY_DISABLE;
92 *((int *)kp->arg) = mode;
93 if (mode == MEMMAP_ON_MEMORY_FORCE) {
94 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
96 pr_info_once("Memory hotplug will waste %ld pages in each memory block\n",
97 memmap_pages - PFN_UP(memory_block_memmap_size()));
99 return 0;
102 static int get_memmap_mode(char *buffer, const struct kernel_param *kp)
104 int mode = *((int *)kp->arg);
106 if (mode == MEMMAP_ON_MEMORY_FORCE)
107 return sprintf(buffer, "force\n");
108 return sprintf(buffer, "%c\n", mode ? 'Y' : 'N');
111 static const struct kernel_param_ops memmap_mode_ops = {
112 .set = set_memmap_mode,
113 .get = get_memmap_mode,
115 module_param_cb(memmap_on_memory, &memmap_mode_ops, &memmap_mode, 0444);
116 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug\n"
117 "With value \"force\" it could result in memory wastage due "
118 "to memmap size limitations (Y/N/force)");
120 static inline bool mhp_memmap_on_memory(void)
122 return memmap_mode != MEMMAP_ON_MEMORY_DISABLE;
124 #else
125 static inline bool mhp_memmap_on_memory(void)
127 return false;
129 #endif
131 enum {
132 ONLINE_POLICY_CONTIG_ZONES = 0,
133 ONLINE_POLICY_AUTO_MOVABLE,
136 static const char * const online_policy_to_str[] = {
137 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
138 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
141 static int set_online_policy(const char *val, const struct kernel_param *kp)
143 int ret = sysfs_match_string(online_policy_to_str, val);
145 if (ret < 0)
146 return ret;
147 *((int *)kp->arg) = ret;
148 return 0;
151 static int get_online_policy(char *buffer, const struct kernel_param *kp)
153 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
157 * memory_hotplug.online_policy: configure online behavior when onlining without
158 * specifying a zone (MMOP_ONLINE)
160 * "contig-zones": keep zone contiguous
161 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
162 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
164 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
165 static const struct kernel_param_ops online_policy_ops = {
166 .set = set_online_policy,
167 .get = get_online_policy,
169 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
170 MODULE_PARM_DESC(online_policy,
171 "Set the online policy (\"contig-zones\", \"auto-movable\") "
172 "Default: \"contig-zones\"");
175 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
177 * The ratio represent an upper limit and the kernel might decide to not
178 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
179 * doesn't allow for more MOVABLE memory.
181 static unsigned int auto_movable_ratio __read_mostly = 301;
182 module_param(auto_movable_ratio, uint, 0644);
183 MODULE_PARM_DESC(auto_movable_ratio,
184 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
185 "in percent for \"auto-movable\" online policy. Default: 301");
188 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
190 #ifdef CONFIG_NUMA
191 static bool auto_movable_numa_aware __read_mostly = true;
192 module_param(auto_movable_numa_aware, bool, 0644);
193 MODULE_PARM_DESC(auto_movable_numa_aware,
194 "Consider numa node stats in addition to global stats in "
195 "\"auto-movable\" online policy. Default: true");
196 #endif /* CONFIG_NUMA */
199 * online_page_callback contains pointer to current page onlining function.
200 * Initially it is generic_online_page(). If it is required it could be
201 * changed by calling set_online_page_callback() for callback registration
202 * and restore_online_page_callback() for generic callback restore.
205 static online_page_callback_t online_page_callback = generic_online_page;
206 static DEFINE_MUTEX(online_page_callback_lock);
208 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
210 void get_online_mems(void)
212 percpu_down_read(&mem_hotplug_lock);
215 void put_online_mems(void)
217 percpu_up_read(&mem_hotplug_lock);
220 bool movable_node_enabled = false;
222 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
223 int mhp_default_online_type = MMOP_OFFLINE;
224 #else
225 int mhp_default_online_type = MMOP_ONLINE;
226 #endif
228 static int __init setup_memhp_default_state(char *str)
230 const int online_type = mhp_online_type_from_str(str);
232 if (online_type >= 0)
233 mhp_default_online_type = online_type;
235 return 1;
237 __setup("memhp_default_state=", setup_memhp_default_state);
239 void mem_hotplug_begin(void)
241 cpus_read_lock();
242 percpu_down_write(&mem_hotplug_lock);
245 void mem_hotplug_done(void)
247 percpu_up_write(&mem_hotplug_lock);
248 cpus_read_unlock();
251 u64 max_mem_size = U64_MAX;
253 /* add this memory to iomem resource */
254 static struct resource *register_memory_resource(u64 start, u64 size,
255 const char *resource_name)
257 struct resource *res;
258 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
260 if (strcmp(resource_name, "System RAM"))
261 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
263 if (!mhp_range_allowed(start, size, true))
264 return ERR_PTR(-E2BIG);
267 * Make sure value parsed from 'mem=' only restricts memory adding
268 * while booting, so that memory hotplug won't be impacted. Please
269 * refer to document of 'mem=' in kernel-parameters.txt for more
270 * details.
272 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
273 return ERR_PTR(-E2BIG);
276 * Request ownership of the new memory range. This might be
277 * a child of an existing resource that was present but
278 * not marked as busy.
280 res = __request_region(&iomem_resource, start, size,
281 resource_name, flags);
283 if (!res) {
284 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
285 start, start + size);
286 return ERR_PTR(-EEXIST);
288 return res;
291 static void release_memory_resource(struct resource *res)
293 if (!res)
294 return;
295 release_resource(res);
296 kfree(res);
299 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages)
302 * Disallow all operations smaller than a sub-section and only
303 * allow operations smaller than a section for
304 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
305 * enforces a larger memory_block_size_bytes() granularity for
306 * memory that will be marked online, so this check should only
307 * fire for direct arch_{add,remove}_memory() users outside of
308 * add_memory_resource().
310 unsigned long min_align;
312 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
313 min_align = PAGES_PER_SUBSECTION;
314 else
315 min_align = PAGES_PER_SECTION;
316 if (!IS_ALIGNED(pfn | nr_pages, min_align))
317 return -EINVAL;
318 return 0;
322 * Return page for the valid pfn only if the page is online. All pfn
323 * walkers which rely on the fully initialized page->flags and others
324 * should use this rather than pfn_valid && pfn_to_page
326 struct page *pfn_to_online_page(unsigned long pfn)
328 unsigned long nr = pfn_to_section_nr(pfn);
329 struct dev_pagemap *pgmap;
330 struct mem_section *ms;
332 if (nr >= NR_MEM_SECTIONS)
333 return NULL;
335 ms = __nr_to_section(nr);
336 if (!online_section(ms))
337 return NULL;
340 * Save some code text when online_section() +
341 * pfn_section_valid() are sufficient.
343 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
344 return NULL;
346 if (!pfn_section_valid(ms, pfn))
347 return NULL;
349 if (!online_device_section(ms))
350 return pfn_to_page(pfn);
353 * Slowpath: when ZONE_DEVICE collides with
354 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
355 * the section may be 'offline' but 'valid'. Only
356 * get_dev_pagemap() can determine sub-section online status.
358 pgmap = get_dev_pagemap(pfn, NULL);
359 put_dev_pagemap(pgmap);
361 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
362 if (pgmap)
363 return NULL;
365 return pfn_to_page(pfn);
367 EXPORT_SYMBOL_GPL(pfn_to_online_page);
369 int __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
370 struct mhp_params *params)
372 const unsigned long end_pfn = pfn + nr_pages;
373 unsigned long cur_nr_pages;
374 int err;
375 struct vmem_altmap *altmap = params->altmap;
377 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
378 return -EINVAL;
380 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
382 if (altmap) {
384 * Validate altmap is within bounds of the total request
386 if (altmap->base_pfn != pfn
387 || vmem_altmap_offset(altmap) > nr_pages) {
388 pr_warn_once("memory add fail, invalid altmap\n");
389 return -EINVAL;
391 altmap->alloc = 0;
394 if (check_pfn_span(pfn, nr_pages)) {
395 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
396 return -EINVAL;
399 for (; pfn < end_pfn; pfn += cur_nr_pages) {
400 /* Select all remaining pages up to the next section boundary */
401 cur_nr_pages = min(end_pfn - pfn,
402 SECTION_ALIGN_UP(pfn + 1) - pfn);
403 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
404 params->pgmap);
405 if (err)
406 break;
407 cond_resched();
409 vmemmap_populate_print_last();
410 return err;
413 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
414 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
415 unsigned long start_pfn,
416 unsigned long end_pfn)
418 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
419 if (unlikely(!pfn_to_online_page(start_pfn)))
420 continue;
422 if (unlikely(pfn_to_nid(start_pfn) != nid))
423 continue;
425 if (zone != page_zone(pfn_to_page(start_pfn)))
426 continue;
428 return start_pfn;
431 return 0;
434 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
435 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
436 unsigned long start_pfn,
437 unsigned long end_pfn)
439 unsigned long pfn;
441 /* pfn is the end pfn of a memory section. */
442 pfn = end_pfn - 1;
443 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
444 if (unlikely(!pfn_to_online_page(pfn)))
445 continue;
447 if (unlikely(pfn_to_nid(pfn) != nid))
448 continue;
450 if (zone != page_zone(pfn_to_page(pfn)))
451 continue;
453 return pfn;
456 return 0;
459 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
460 unsigned long end_pfn)
462 unsigned long pfn;
463 int nid = zone_to_nid(zone);
465 if (zone->zone_start_pfn == start_pfn) {
467 * If the section is smallest section in the zone, it need
468 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
469 * In this case, we find second smallest valid mem_section
470 * for shrinking zone.
472 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
473 zone_end_pfn(zone));
474 if (pfn) {
475 zone->spanned_pages = zone_end_pfn(zone) - pfn;
476 zone->zone_start_pfn = pfn;
477 } else {
478 zone->zone_start_pfn = 0;
479 zone->spanned_pages = 0;
481 } else if (zone_end_pfn(zone) == end_pfn) {
483 * If the section is biggest section in the zone, it need
484 * shrink zone->spanned_pages.
485 * In this case, we find second biggest valid mem_section for
486 * shrinking zone.
488 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
489 start_pfn);
490 if (pfn)
491 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
492 else {
493 zone->zone_start_pfn = 0;
494 zone->spanned_pages = 0;
499 static void update_pgdat_span(struct pglist_data *pgdat)
501 unsigned long node_start_pfn = 0, node_end_pfn = 0;
502 struct zone *zone;
504 for (zone = pgdat->node_zones;
505 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
506 unsigned long end_pfn = zone_end_pfn(zone);
508 /* No need to lock the zones, they can't change. */
509 if (!zone->spanned_pages)
510 continue;
511 if (!node_end_pfn) {
512 node_start_pfn = zone->zone_start_pfn;
513 node_end_pfn = end_pfn;
514 continue;
517 if (end_pfn > node_end_pfn)
518 node_end_pfn = end_pfn;
519 if (zone->zone_start_pfn < node_start_pfn)
520 node_start_pfn = zone->zone_start_pfn;
523 pgdat->node_start_pfn = node_start_pfn;
524 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
527 void remove_pfn_range_from_zone(struct zone *zone,
528 unsigned long start_pfn,
529 unsigned long nr_pages)
531 const unsigned long end_pfn = start_pfn + nr_pages;
532 struct pglist_data *pgdat = zone->zone_pgdat;
533 unsigned long pfn, cur_nr_pages;
535 /* Poison struct pages because they are now uninitialized again. */
536 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
537 cond_resched();
539 /* Select all remaining pages up to the next section boundary */
540 cur_nr_pages =
541 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
542 page_init_poison(pfn_to_page(pfn),
543 sizeof(struct page) * cur_nr_pages);
547 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
548 * we will not try to shrink the zones - which is okay as
549 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
551 if (zone_is_zone_device(zone))
552 return;
554 clear_zone_contiguous(zone);
556 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
557 update_pgdat_span(pgdat);
559 set_zone_contiguous(zone);
563 * __remove_pages() - remove sections of pages
564 * @pfn: starting pageframe (must be aligned to start of a section)
565 * @nr_pages: number of pages to remove (must be multiple of section size)
566 * @altmap: alternative device page map or %NULL if default memmap is used
568 * Generic helper function to remove section mappings and sysfs entries
569 * for the section of the memory we are removing. Caller needs to make
570 * sure that pages are marked reserved and zones are adjust properly by
571 * calling offline_pages().
573 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
574 struct vmem_altmap *altmap)
576 const unsigned long end_pfn = pfn + nr_pages;
577 unsigned long cur_nr_pages;
579 if (check_pfn_span(pfn, nr_pages)) {
580 WARN(1, "Misaligned %s start: %#lx end: %#lx\n", __func__, pfn, pfn + nr_pages - 1);
581 return;
584 for (; pfn < end_pfn; pfn += cur_nr_pages) {
585 cond_resched();
586 /* Select all remaining pages up to the next section boundary */
587 cur_nr_pages = min(end_pfn - pfn,
588 SECTION_ALIGN_UP(pfn + 1) - pfn);
589 sparse_remove_section(pfn, cur_nr_pages, altmap);
593 int set_online_page_callback(online_page_callback_t callback)
595 int rc = -EINVAL;
597 get_online_mems();
598 mutex_lock(&online_page_callback_lock);
600 if (online_page_callback == generic_online_page) {
601 online_page_callback = callback;
602 rc = 0;
605 mutex_unlock(&online_page_callback_lock);
606 put_online_mems();
608 return rc;
610 EXPORT_SYMBOL_GPL(set_online_page_callback);
612 int restore_online_page_callback(online_page_callback_t callback)
614 int rc = -EINVAL;
616 get_online_mems();
617 mutex_lock(&online_page_callback_lock);
619 if (online_page_callback == callback) {
620 online_page_callback = generic_online_page;
621 rc = 0;
624 mutex_unlock(&online_page_callback_lock);
625 put_online_mems();
627 return rc;
629 EXPORT_SYMBOL_GPL(restore_online_page_callback);
631 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
632 void generic_online_page(struct page *page, unsigned int order)
634 __free_pages_core(page, order, MEMINIT_HOTPLUG);
636 EXPORT_SYMBOL_GPL(generic_online_page);
638 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
640 const unsigned long end_pfn = start_pfn + nr_pages;
641 unsigned long pfn;
644 * Online the pages in MAX_PAGE_ORDER aligned chunks. The callback might
645 * decide to not expose all pages to the buddy (e.g., expose them
646 * later). We account all pages as being online and belonging to this
647 * zone ("present").
648 * When using memmap_on_memory, the range might not be aligned to
649 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
650 * this and the first chunk to online will be pageblock_nr_pages.
652 for (pfn = start_pfn; pfn < end_pfn;) {
653 int order;
656 * Free to online pages in the largest chunks alignment allows.
658 * __ffs() behaviour is undefined for 0. start == 0 is
659 * MAX_PAGE_ORDER-aligned, Set order to MAX_PAGE_ORDER for
660 * the case.
662 if (pfn)
663 order = min_t(int, MAX_PAGE_ORDER, __ffs(pfn));
664 else
665 order = MAX_PAGE_ORDER;
667 (*online_page_callback)(pfn_to_page(pfn), order);
668 pfn += (1UL << order);
671 /* mark all involved sections as online */
672 online_mem_sections(start_pfn, end_pfn);
675 /* check which state of node_states will be changed when online memory */
676 static void node_states_check_changes_online(unsigned long nr_pages,
677 struct zone *zone, struct memory_notify *arg)
679 int nid = zone_to_nid(zone);
681 arg->status_change_nid = NUMA_NO_NODE;
682 arg->status_change_nid_normal = NUMA_NO_NODE;
684 if (!node_state(nid, N_MEMORY))
685 arg->status_change_nid = nid;
686 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
687 arg->status_change_nid_normal = nid;
690 static void node_states_set_node(int node, struct memory_notify *arg)
692 if (arg->status_change_nid_normal >= 0)
693 node_set_state(node, N_NORMAL_MEMORY);
695 if (arg->status_change_nid >= 0)
696 node_set_state(node, N_MEMORY);
699 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
700 unsigned long nr_pages)
702 unsigned long old_end_pfn = zone_end_pfn(zone);
704 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
705 zone->zone_start_pfn = start_pfn;
707 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
710 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
711 unsigned long nr_pages)
713 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
715 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
716 pgdat->node_start_pfn = start_pfn;
718 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
722 #ifdef CONFIG_ZONE_DEVICE
723 static void section_taint_zone_device(unsigned long pfn)
725 struct mem_section *ms = __pfn_to_section(pfn);
727 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
729 #else
730 static inline void section_taint_zone_device(unsigned long pfn)
733 #endif
736 * Associate the pfn range with the given zone, initializing the memmaps
737 * and resizing the pgdat/zone data to span the added pages. After this
738 * call, all affected pages are PageOffline().
740 * All aligned pageblocks are initialized to the specified migratetype
741 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
742 * zone stats (e.g., nr_isolate_pageblock) are touched.
744 void move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
745 unsigned long nr_pages,
746 struct vmem_altmap *altmap, int migratetype)
748 struct pglist_data *pgdat = zone->zone_pgdat;
749 int nid = pgdat->node_id;
751 clear_zone_contiguous(zone);
753 if (zone_is_empty(zone))
754 init_currently_empty_zone(zone, start_pfn, nr_pages);
755 resize_zone_range(zone, start_pfn, nr_pages);
756 resize_pgdat_range(pgdat, start_pfn, nr_pages);
759 * Subsection population requires care in pfn_to_online_page().
760 * Set the taint to enable the slow path detection of
761 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
762 * section.
764 if (zone_is_zone_device(zone)) {
765 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
766 section_taint_zone_device(start_pfn);
767 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
768 section_taint_zone_device(start_pfn + nr_pages);
772 * TODO now we have a visible range of pages which are not associated
773 * with their zone properly. Not nice but set_pfnblock_flags_mask
774 * expects the zone spans the pfn range. All the pages in the range
775 * are reserved so nobody should be touching them so we should be safe
777 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
778 MEMINIT_HOTPLUG, altmap, migratetype);
780 set_zone_contiguous(zone);
783 struct auto_movable_stats {
784 unsigned long kernel_early_pages;
785 unsigned long movable_pages;
788 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
789 struct zone *zone)
791 if (zone_idx(zone) == ZONE_MOVABLE) {
792 stats->movable_pages += zone->present_pages;
793 } else {
794 stats->kernel_early_pages += zone->present_early_pages;
795 #ifdef CONFIG_CMA
797 * CMA pages (never on hotplugged memory) behave like
798 * ZONE_MOVABLE.
800 stats->movable_pages += zone->cma_pages;
801 stats->kernel_early_pages -= zone->cma_pages;
802 #endif /* CONFIG_CMA */
805 struct auto_movable_group_stats {
806 unsigned long movable_pages;
807 unsigned long req_kernel_early_pages;
810 static int auto_movable_stats_account_group(struct memory_group *group,
811 void *arg)
813 const int ratio = READ_ONCE(auto_movable_ratio);
814 struct auto_movable_group_stats *stats = arg;
815 long pages;
818 * We don't support modifying the config while the auto-movable online
819 * policy is already enabled. Just avoid the division by zero below.
821 if (!ratio)
822 return 0;
825 * Calculate how many early kernel pages this group requires to
826 * satisfy the configured zone ratio.
828 pages = group->present_movable_pages * 100 / ratio;
829 pages -= group->present_kernel_pages;
831 if (pages > 0)
832 stats->req_kernel_early_pages += pages;
833 stats->movable_pages += group->present_movable_pages;
834 return 0;
837 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
838 unsigned long nr_pages)
840 unsigned long kernel_early_pages, movable_pages;
841 struct auto_movable_group_stats group_stats = {};
842 struct auto_movable_stats stats = {};
843 struct zone *zone;
844 int i;
846 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
847 if (nid == NUMA_NO_NODE) {
848 /* TODO: cache values */
849 for_each_populated_zone(zone)
850 auto_movable_stats_account_zone(&stats, zone);
851 } else {
852 for (i = 0; i < MAX_NR_ZONES; i++) {
853 pg_data_t *pgdat = NODE_DATA(nid);
855 zone = pgdat->node_zones + i;
856 if (populated_zone(zone))
857 auto_movable_stats_account_zone(&stats, zone);
861 kernel_early_pages = stats.kernel_early_pages;
862 movable_pages = stats.movable_pages;
865 * Kernel memory inside dynamic memory group allows for more MOVABLE
866 * memory within the same group. Remove the effect of all but the
867 * current group from the stats.
869 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
870 group, &group_stats);
871 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
872 return false;
873 kernel_early_pages -= group_stats.req_kernel_early_pages;
874 movable_pages -= group_stats.movable_pages;
876 if (group && group->is_dynamic)
877 kernel_early_pages += group->present_kernel_pages;
880 * Test if we could online the given number of pages to ZONE_MOVABLE
881 * and still stay in the configured ratio.
883 movable_pages += nr_pages;
884 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
888 * Returns a default kernel memory zone for the given pfn range.
889 * If no kernel zone covers this pfn range it will automatically go
890 * to the ZONE_NORMAL.
892 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
893 unsigned long nr_pages)
895 struct pglist_data *pgdat = NODE_DATA(nid);
896 int zid;
898 for (zid = 0; zid < ZONE_NORMAL; zid++) {
899 struct zone *zone = &pgdat->node_zones[zid];
901 if (zone_intersects(zone, start_pfn, nr_pages))
902 return zone;
905 return &pgdat->node_zones[ZONE_NORMAL];
909 * Determine to which zone to online memory dynamically based on user
910 * configuration and system stats. We care about the following ratio:
912 * MOVABLE : KERNEL
914 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
915 * one of the kernel zones. CMA pages inside one of the kernel zones really
916 * behaves like ZONE_MOVABLE, so we treat them accordingly.
918 * We don't allow for hotplugged memory in a KERNEL zone to increase the
919 * amount of MOVABLE memory we can have, so we end up with:
921 * MOVABLE : KERNEL_EARLY
923 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
924 * boot. We base our calculation on KERNEL_EARLY internally, because:
926 * a) Hotplugged memory in one of the kernel zones can sometimes still get
927 * hotunplugged, especially when hot(un)plugging individual memory blocks.
928 * There is no coordination across memory devices, therefore "automatic"
929 * hotunplugging, as implemented in hypervisors, could result in zone
930 * imbalances.
931 * b) Early/boot memory in one of the kernel zones can usually not get
932 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
933 * with unmovable allocations). While there are corner cases where it might
934 * still work, it is barely relevant in practice.
936 * Exceptions are dynamic memory groups, which allow for more MOVABLE
937 * memory within the same memory group -- because in that case, there is
938 * coordination within the single memory device managed by a single driver.
940 * We rely on "present pages" instead of "managed pages", as the latter is
941 * highly unreliable and dynamic in virtualized environments, and does not
942 * consider boot time allocations. For example, memory ballooning adjusts the
943 * managed pages when inflating/deflating the balloon, and balloon compaction
944 * can even migrate inflated pages between zones.
946 * Using "present pages" is better but some things to keep in mind are:
948 * a) Some memblock allocations, such as for the crashkernel area, are
949 * effectively unused by the kernel, yet they account to "present pages".
950 * Fortunately, these allocations are comparatively small in relevant setups
951 * (e.g., fraction of system memory).
952 * b) Some hotplugged memory blocks in virtualized environments, esecially
953 * hotplugged by virtio-mem, look like they are completely present, however,
954 * only parts of the memory block are actually currently usable.
955 * "present pages" is an upper limit that can get reached at runtime. As
956 * we base our calculations on KERNEL_EARLY, this is not an issue.
958 static struct zone *auto_movable_zone_for_pfn(int nid,
959 struct memory_group *group,
960 unsigned long pfn,
961 unsigned long nr_pages)
963 unsigned long online_pages = 0, max_pages, end_pfn;
964 struct page *page;
966 if (!auto_movable_ratio)
967 goto kernel_zone;
969 if (group && !group->is_dynamic) {
970 max_pages = group->s.max_pages;
971 online_pages = group->present_movable_pages;
973 /* If anything is !MOVABLE online the rest !MOVABLE. */
974 if (group->present_kernel_pages)
975 goto kernel_zone;
976 } else if (!group || group->d.unit_pages == nr_pages) {
977 max_pages = nr_pages;
978 } else {
979 max_pages = group->d.unit_pages;
981 * Take a look at all online sections in the current unit.
982 * We can safely assume that all pages within a section belong
983 * to the same zone, because dynamic memory groups only deal
984 * with hotplugged memory.
986 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
987 end_pfn = pfn + group->d.unit_pages;
988 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
989 page = pfn_to_online_page(pfn);
990 if (!page)
991 continue;
992 /* If anything is !MOVABLE online the rest !MOVABLE. */
993 if (!is_zone_movable_page(page))
994 goto kernel_zone;
995 online_pages += PAGES_PER_SECTION;
1000 * Online MOVABLE if we could *currently* online all remaining parts
1001 * MOVABLE. We expect to (add+) online them immediately next, so if
1002 * nobody interferes, all will be MOVABLE if possible.
1004 nr_pages = max_pages - online_pages;
1005 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
1006 goto kernel_zone;
1008 #ifdef CONFIG_NUMA
1009 if (auto_movable_numa_aware &&
1010 !auto_movable_can_online_movable(nid, group, nr_pages))
1011 goto kernel_zone;
1012 #endif /* CONFIG_NUMA */
1014 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1015 kernel_zone:
1016 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
1019 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
1020 unsigned long nr_pages)
1022 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
1023 nr_pages);
1024 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1025 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
1026 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
1029 * We inherit the existing zone in a simple case where zones do not
1030 * overlap in the given range
1032 if (in_kernel ^ in_movable)
1033 return (in_kernel) ? kernel_zone : movable_zone;
1036 * If the range doesn't belong to any zone or two zones overlap in the
1037 * given range then we use movable zone only if movable_node is
1038 * enabled because we always online to a kernel zone by default.
1040 return movable_node_enabled ? movable_zone : kernel_zone;
1043 struct zone *zone_for_pfn_range(int online_type, int nid,
1044 struct memory_group *group, unsigned long start_pfn,
1045 unsigned long nr_pages)
1047 if (online_type == MMOP_ONLINE_KERNEL)
1048 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
1050 if (online_type == MMOP_ONLINE_MOVABLE)
1051 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
1053 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1054 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1056 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1060 * This function should only be called by memory_block_{online,offline},
1061 * and {online,offline}_pages.
1063 void adjust_present_page_count(struct page *page, struct memory_group *group,
1064 long nr_pages)
1066 struct zone *zone = page_zone(page);
1067 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1070 * We only support onlining/offlining/adding/removing of complete
1071 * memory blocks; therefore, either all is either early or hotplugged.
1073 if (early_section(__pfn_to_section(page_to_pfn(page))))
1074 zone->present_early_pages += nr_pages;
1075 zone->present_pages += nr_pages;
1076 zone->zone_pgdat->node_present_pages += nr_pages;
1078 if (group && movable)
1079 group->present_movable_pages += nr_pages;
1080 else if (group && !movable)
1081 group->present_kernel_pages += nr_pages;
1084 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1085 struct zone *zone, bool mhp_off_inaccessible)
1087 unsigned long end_pfn = pfn + nr_pages;
1088 int ret, i;
1090 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1091 if (ret)
1092 return ret;
1095 * Memory block is accessible at this stage and hence poison the struct
1096 * pages now. If the memory block is accessible during memory hotplug
1097 * addition phase, then page poisining is already performed in
1098 * sparse_add_section().
1100 if (mhp_off_inaccessible)
1101 page_init_poison(pfn_to_page(pfn), sizeof(struct page) * nr_pages);
1103 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1105 for (i = 0; i < nr_pages; i++) {
1106 struct page *page = pfn_to_page(pfn + i);
1108 __ClearPageOffline(page);
1109 SetPageVmemmapSelfHosted(page);
1113 * It might be that the vmemmap_pages fully span sections. If that is
1114 * the case, mark those sections online here as otherwise they will be
1115 * left offline.
1117 if (nr_pages >= PAGES_PER_SECTION)
1118 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1120 return ret;
1123 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1125 unsigned long end_pfn = pfn + nr_pages;
1128 * It might be that the vmemmap_pages fully span sections. If that is
1129 * the case, mark those sections offline here as otherwise they will be
1130 * left online.
1132 if (nr_pages >= PAGES_PER_SECTION)
1133 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1136 * The pages associated with this vmemmap have been offlined, so
1137 * we can reset its state here.
1139 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1140 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1144 * Must be called with mem_hotplug_lock in write mode.
1146 int online_pages(unsigned long pfn, unsigned long nr_pages,
1147 struct zone *zone, struct memory_group *group)
1149 unsigned long flags;
1150 int need_zonelists_rebuild = 0;
1151 const int nid = zone_to_nid(zone);
1152 int ret;
1153 struct memory_notify arg;
1156 * {on,off}lining is constrained to full memory sections (or more
1157 * precisely to memory blocks from the user space POV).
1158 * memmap_on_memory is an exception because it reserves initial part
1159 * of the physical memory space for vmemmaps. That space is pageblock
1160 * aligned.
1162 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(pfn) ||
1163 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1164 return -EINVAL;
1167 /* associate pfn range with the zone */
1168 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1170 arg.start_pfn = pfn;
1171 arg.nr_pages = nr_pages;
1172 node_states_check_changes_online(nr_pages, zone, &arg);
1174 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1175 ret = notifier_to_errno(ret);
1176 if (ret)
1177 goto failed_addition;
1180 * Fixup the number of isolated pageblocks before marking the sections
1181 * onlining, such that undo_isolate_page_range() works correctly.
1183 spin_lock_irqsave(&zone->lock, flags);
1184 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1185 spin_unlock_irqrestore(&zone->lock, flags);
1188 * If this zone is not populated, then it is not in zonelist.
1189 * This means the page allocator ignores this zone.
1190 * So, zonelist must be updated after online.
1192 if (!populated_zone(zone)) {
1193 need_zonelists_rebuild = 1;
1194 setup_zone_pageset(zone);
1197 online_pages_range(pfn, nr_pages);
1198 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1200 node_states_set_node(nid, &arg);
1201 if (need_zonelists_rebuild)
1202 build_all_zonelists(NULL);
1204 /* Basic onlining is complete, allow allocation of onlined pages. */
1205 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1208 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1209 * the tail of the freelist when undoing isolation). Shuffle the whole
1210 * zone to make sure the just onlined pages are properly distributed
1211 * across the whole freelist - to create an initial shuffle.
1213 shuffle_zone(zone);
1215 /* reinitialise watermarks and update pcp limits */
1216 init_per_zone_wmark_min();
1218 kswapd_run(nid);
1219 kcompactd_run(nid);
1221 writeback_set_ratelimit();
1223 memory_notify(MEM_ONLINE, &arg);
1224 return 0;
1226 failed_addition:
1227 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1228 (unsigned long long) pfn << PAGE_SHIFT,
1229 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1230 memory_notify(MEM_CANCEL_ONLINE, &arg);
1231 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1232 return ret;
1235 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1236 static pg_data_t *hotadd_init_pgdat(int nid)
1238 struct pglist_data *pgdat;
1241 * NODE_DATA is preallocated (free_area_init) but its internal
1242 * state is not allocated completely. Add missing pieces.
1243 * Completely offline nodes stay around and they just need
1244 * reintialization.
1246 pgdat = NODE_DATA(nid);
1248 /* init node's zones as empty zones, we don't have any present pages.*/
1249 free_area_init_core_hotplug(pgdat);
1252 * The node we allocated has no zone fallback lists. For avoiding
1253 * to access not-initialized zonelist, build here.
1255 build_all_zonelists(pgdat);
1257 return pgdat;
1261 * __try_online_node - online a node if offlined
1262 * @nid: the node ID
1263 * @set_node_online: Whether we want to online the node
1264 * called by cpu_up() to online a node without onlined memory.
1266 * Returns:
1267 * 1 -> a new node has been allocated
1268 * 0 -> the node is already online
1269 * -ENOMEM -> the node could not be allocated
1271 static int __try_online_node(int nid, bool set_node_online)
1273 pg_data_t *pgdat;
1274 int ret = 1;
1276 if (node_online(nid))
1277 return 0;
1279 pgdat = hotadd_init_pgdat(nid);
1280 if (!pgdat) {
1281 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1282 ret = -ENOMEM;
1283 goto out;
1286 if (set_node_online) {
1287 node_set_online(nid);
1288 ret = register_one_node(nid);
1289 BUG_ON(ret);
1291 out:
1292 return ret;
1296 * Users of this function always want to online/register the node
1298 int try_online_node(int nid)
1300 int ret;
1302 mem_hotplug_begin();
1303 ret = __try_online_node(nid, true);
1304 mem_hotplug_done();
1305 return ret;
1308 static int check_hotplug_memory_range(u64 start, u64 size)
1310 /* memory range must be block size aligned */
1311 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1312 !IS_ALIGNED(size, memory_block_size_bytes())) {
1313 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1314 memory_block_size_bytes(), start, size);
1315 return -EINVAL;
1318 return 0;
1321 static int online_memory_block(struct memory_block *mem, void *arg)
1323 mem->online_type = mhp_default_online_type;
1324 return device_online(&mem->dev);
1327 #ifndef arch_supports_memmap_on_memory
1328 static inline bool arch_supports_memmap_on_memory(unsigned long vmemmap_size)
1331 * As default, we want the vmemmap to span a complete PMD such that we
1332 * can map the vmemmap using a single PMD if supported by the
1333 * architecture.
1335 return IS_ALIGNED(vmemmap_size, PMD_SIZE);
1337 #endif
1339 bool mhp_supports_memmap_on_memory(void)
1341 unsigned long vmemmap_size = memory_block_memmap_size();
1342 unsigned long memmap_pages = memory_block_memmap_on_memory_pages();
1345 * Besides having arch support and the feature enabled at runtime, we
1346 * need a few more assumptions to hold true:
1348 * a) The vmemmap pages span complete PMDs: We don't want vmemmap code
1349 * to populate memory from the altmap for unrelated parts (i.e.,
1350 * other memory blocks)
1352 * b) The vmemmap pages (and thereby the pages that will be exposed to
1353 * the buddy) have to cover full pageblocks: memory onlining/offlining
1354 * code requires applicable ranges to be page-aligned, for example, to
1355 * set the migratetypes properly.
1357 * TODO: Although we have a check here to make sure that vmemmap pages
1358 * fully populate a PMD, it is not the right place to check for
1359 * this. A much better solution involves improving vmemmap code
1360 * to fallback to base pages when trying to populate vmemmap using
1361 * altmap as an alternative source of memory, and we do not exactly
1362 * populate a single PMD.
1364 if (!mhp_memmap_on_memory())
1365 return false;
1368 * Make sure the vmemmap allocation is fully contained
1369 * so that we always allocate vmemmap memory from altmap area.
1371 if (!IS_ALIGNED(vmemmap_size, PAGE_SIZE))
1372 return false;
1375 * start pfn should be pageblock_nr_pages aligned for correctly
1376 * setting migrate types
1378 if (!pageblock_aligned(memmap_pages))
1379 return false;
1381 if (memmap_pages == PHYS_PFN(memory_block_size_bytes()))
1382 /* No effective hotplugged memory doesn't make sense. */
1383 return false;
1385 return arch_supports_memmap_on_memory(vmemmap_size);
1387 EXPORT_SYMBOL_GPL(mhp_supports_memmap_on_memory);
1389 static void remove_memory_blocks_and_altmaps(u64 start, u64 size)
1391 unsigned long memblock_size = memory_block_size_bytes();
1392 u64 cur_start;
1395 * For memmap_on_memory, the altmaps were added on a per-memblock
1396 * basis; we have to process each individual memory block.
1398 for (cur_start = start; cur_start < start + size;
1399 cur_start += memblock_size) {
1400 struct vmem_altmap *altmap = NULL;
1401 struct memory_block *mem;
1403 mem = find_memory_block(pfn_to_section_nr(PFN_DOWN(cur_start)));
1404 if (WARN_ON_ONCE(!mem))
1405 continue;
1407 altmap = mem->altmap;
1408 mem->altmap = NULL;
1410 remove_memory_block_devices(cur_start, memblock_size);
1412 arch_remove_memory(cur_start, memblock_size, altmap);
1414 /* Verify that all vmemmap pages have actually been freed. */
1415 WARN(altmap->alloc, "Altmap not fully unmapped");
1416 kfree(altmap);
1420 static int create_altmaps_and_memory_blocks(int nid, struct memory_group *group,
1421 u64 start, u64 size, mhp_t mhp_flags)
1423 unsigned long memblock_size = memory_block_size_bytes();
1424 u64 cur_start;
1425 int ret;
1427 for (cur_start = start; cur_start < start + size;
1428 cur_start += memblock_size) {
1429 struct mhp_params params = { .pgprot =
1430 pgprot_mhp(PAGE_KERNEL) };
1431 struct vmem_altmap mhp_altmap = {
1432 .base_pfn = PHYS_PFN(cur_start),
1433 .end_pfn = PHYS_PFN(cur_start + memblock_size - 1),
1436 mhp_altmap.free = memory_block_memmap_on_memory_pages();
1437 if (mhp_flags & MHP_OFFLINE_INACCESSIBLE)
1438 mhp_altmap.inaccessible = true;
1439 params.altmap = kmemdup(&mhp_altmap, sizeof(struct vmem_altmap),
1440 GFP_KERNEL);
1441 if (!params.altmap) {
1442 ret = -ENOMEM;
1443 goto out;
1446 /* call arch's memory hotadd */
1447 ret = arch_add_memory(nid, cur_start, memblock_size, &params);
1448 if (ret < 0) {
1449 kfree(params.altmap);
1450 goto out;
1453 /* create memory block devices after memory was added */
1454 ret = create_memory_block_devices(cur_start, memblock_size,
1455 params.altmap, group);
1456 if (ret) {
1457 arch_remove_memory(cur_start, memblock_size, NULL);
1458 kfree(params.altmap);
1459 goto out;
1463 return 0;
1464 out:
1465 if (ret && cur_start != start)
1466 remove_memory_blocks_and_altmaps(start, cur_start - start);
1467 return ret;
1471 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1472 * and online/offline operations (triggered e.g. by sysfs).
1474 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1476 int add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1478 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1479 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1480 struct memory_group *group = NULL;
1481 u64 start, size;
1482 bool new_node = false;
1483 int ret;
1485 start = res->start;
1486 size = resource_size(res);
1488 ret = check_hotplug_memory_range(start, size);
1489 if (ret)
1490 return ret;
1492 if (mhp_flags & MHP_NID_IS_MGID) {
1493 group = memory_group_find_by_id(nid);
1494 if (!group)
1495 return -EINVAL;
1496 nid = group->nid;
1499 if (!node_possible(nid)) {
1500 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1501 return -EINVAL;
1504 mem_hotplug_begin();
1506 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1507 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1508 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1509 ret = memblock_add_node(start, size, nid, memblock_flags);
1510 if (ret)
1511 goto error_mem_hotplug_end;
1514 ret = __try_online_node(nid, false);
1515 if (ret < 0)
1516 goto error;
1517 new_node = ret;
1520 * Self hosted memmap array
1522 if ((mhp_flags & MHP_MEMMAP_ON_MEMORY) &&
1523 mhp_supports_memmap_on_memory()) {
1524 ret = create_altmaps_and_memory_blocks(nid, group, start, size, mhp_flags);
1525 if (ret)
1526 goto error;
1527 } else {
1528 ret = arch_add_memory(nid, start, size, &params);
1529 if (ret < 0)
1530 goto error;
1532 /* create memory block devices after memory was added */
1533 ret = create_memory_block_devices(start, size, NULL, group);
1534 if (ret) {
1535 arch_remove_memory(start, size, params.altmap);
1536 goto error;
1540 if (new_node) {
1541 /* If sysfs file of new node can't be created, cpu on the node
1542 * can't be hot-added. There is no rollback way now.
1543 * So, check by BUG_ON() to catch it reluctantly..
1544 * We online node here. We can't roll back from here.
1546 node_set_online(nid);
1547 ret = __register_one_node(nid);
1548 BUG_ON(ret);
1551 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1552 PFN_UP(start + size - 1),
1553 MEMINIT_HOTPLUG);
1555 /* create new memmap entry */
1556 if (!strcmp(res->name, "System RAM"))
1557 firmware_map_add_hotplug(start, start + size, "System RAM");
1559 /* device_online() will take the lock when calling online_pages() */
1560 mem_hotplug_done();
1563 * In case we're allowed to merge the resource, flag it and trigger
1564 * merging now that adding succeeded.
1566 if (mhp_flags & MHP_MERGE_RESOURCE)
1567 merge_system_ram_resource(res);
1569 /* online pages if requested */
1570 if (mhp_default_online_type != MMOP_OFFLINE)
1571 walk_memory_blocks(start, size, NULL, online_memory_block);
1573 return ret;
1574 error:
1575 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1576 memblock_remove(start, size);
1577 error_mem_hotplug_end:
1578 mem_hotplug_done();
1579 return ret;
1582 /* requires device_hotplug_lock, see add_memory_resource() */
1583 int __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1585 struct resource *res;
1586 int ret;
1588 res = register_memory_resource(start, size, "System RAM");
1589 if (IS_ERR(res))
1590 return PTR_ERR(res);
1592 ret = add_memory_resource(nid, res, mhp_flags);
1593 if (ret < 0)
1594 release_memory_resource(res);
1595 return ret;
1598 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1600 int rc;
1602 lock_device_hotplug();
1603 rc = __add_memory(nid, start, size, mhp_flags);
1604 unlock_device_hotplug();
1606 return rc;
1608 EXPORT_SYMBOL_GPL(add_memory);
1611 * Add special, driver-managed memory to the system as system RAM. Such
1612 * memory is not exposed via the raw firmware-provided memmap as system
1613 * RAM, instead, it is detected and added by a driver - during cold boot,
1614 * after a reboot, and after kexec.
1616 * Reasons why this memory should not be used for the initial memmap of a
1617 * kexec kernel or for placing kexec images:
1618 * - The booting kernel is in charge of determining how this memory will be
1619 * used (e.g., use persistent memory as system RAM)
1620 * - Coordination with a hypervisor is required before this memory
1621 * can be used (e.g., inaccessible parts).
1623 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1624 * memory map") are created. Also, the created memory resource is flagged
1625 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1626 * this memory as well (esp., not place kexec images onto it).
1628 * The resource_name (visible via /proc/iomem) has to have the format
1629 * "System RAM ($DRIVER)".
1631 int add_memory_driver_managed(int nid, u64 start, u64 size,
1632 const char *resource_name, mhp_t mhp_flags)
1634 struct resource *res;
1635 int rc;
1637 if (!resource_name ||
1638 strstr(resource_name, "System RAM (") != resource_name ||
1639 resource_name[strlen(resource_name) - 1] != ')')
1640 return -EINVAL;
1642 lock_device_hotplug();
1644 res = register_memory_resource(start, size, resource_name);
1645 if (IS_ERR(res)) {
1646 rc = PTR_ERR(res);
1647 goto out_unlock;
1650 rc = add_memory_resource(nid, res, mhp_flags);
1651 if (rc < 0)
1652 release_memory_resource(res);
1654 out_unlock:
1655 unlock_device_hotplug();
1656 return rc;
1658 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1661 * Platforms should define arch_get_mappable_range() that provides
1662 * maximum possible addressable physical memory range for which the
1663 * linear mapping could be created. The platform returned address
1664 * range must adhere to these following semantics.
1666 * - range.start <= range.end
1667 * - Range includes both end points [range.start..range.end]
1669 * There is also a fallback definition provided here, allowing the
1670 * entire possible physical address range in case any platform does
1671 * not define arch_get_mappable_range().
1673 struct range __weak arch_get_mappable_range(void)
1675 struct range mhp_range = {
1676 .start = 0UL,
1677 .end = -1ULL,
1679 return mhp_range;
1682 struct range mhp_get_pluggable_range(bool need_mapping)
1684 const u64 max_phys = DIRECT_MAP_PHYSMEM_END;
1685 struct range mhp_range;
1687 if (need_mapping) {
1688 mhp_range = arch_get_mappable_range();
1689 if (mhp_range.start > max_phys) {
1690 mhp_range.start = 0;
1691 mhp_range.end = 0;
1693 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1694 } else {
1695 mhp_range.start = 0;
1696 mhp_range.end = max_phys;
1698 return mhp_range;
1700 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1702 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1704 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1705 u64 end = start + size;
1707 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1708 return true;
1710 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1711 start, end, mhp_range.start, mhp_range.end);
1712 return false;
1715 #ifdef CONFIG_MEMORY_HOTREMOVE
1717 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1718 * non-lru movable pages and hugepages). Will skip over most unmovable
1719 * pages (esp., pages that can be skipped when offlining), but bail out on
1720 * definitely unmovable pages.
1722 * Returns:
1723 * 0 in case a movable page is found and movable_pfn was updated.
1724 * -ENOENT in case no movable page was found.
1725 * -EBUSY in case a definitely unmovable page was found.
1727 static int scan_movable_pages(unsigned long start, unsigned long end,
1728 unsigned long *movable_pfn)
1730 unsigned long pfn;
1732 for (pfn = start; pfn < end; pfn++) {
1733 struct page *page;
1734 struct folio *folio;
1736 if (!pfn_valid(pfn))
1737 continue;
1738 page = pfn_to_page(pfn);
1739 if (PageLRU(page))
1740 goto found;
1741 if (__PageMovable(page))
1742 goto found;
1745 * PageOffline() pages that are not marked __PageMovable() and
1746 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1747 * definitely unmovable. If their reference count would be 0,
1748 * they could at least be skipped when offlining memory.
1750 if (PageOffline(page) && page_count(page))
1751 return -EBUSY;
1753 if (!PageHuge(page))
1754 continue;
1755 folio = page_folio(page);
1757 * This test is racy as we hold no reference or lock. The
1758 * hugetlb page could have been free'ed and head is no longer
1759 * a hugetlb page before the following check. In such unlikely
1760 * cases false positives and negatives are possible. Calling
1761 * code must deal with these scenarios.
1763 if (folio_test_hugetlb_migratable(folio))
1764 goto found;
1765 pfn |= folio_nr_pages(folio) - 1;
1767 return -ENOENT;
1768 found:
1769 *movable_pfn = pfn;
1770 return 0;
1773 static void do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1775 struct folio *folio;
1776 unsigned long pfn;
1777 LIST_HEAD(source);
1778 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1779 DEFAULT_RATELIMIT_BURST);
1781 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1782 struct page *page;
1784 if (!pfn_valid(pfn))
1785 continue;
1786 page = pfn_to_page(pfn);
1787 folio = page_folio(page);
1790 * No reference or lock is held on the folio, so it might
1791 * be modified concurrently (e.g. split). As such,
1792 * folio_nr_pages() may read garbage. This is fine as the outer
1793 * loop will revisit the split folio later.
1795 if (folio_test_large(folio))
1796 pfn = folio_pfn(folio) + folio_nr_pages(folio) - 1;
1799 * HWPoison pages have elevated reference counts so the migration would
1800 * fail on them. It also doesn't make any sense to migrate them in the
1801 * first place. Still try to unmap such a page in case it is still mapped
1802 * (keep the unmap as the catch all safety net).
1804 if (folio_test_hwpoison(folio) ||
1805 (folio_test_large(folio) && folio_test_has_hwpoisoned(folio))) {
1806 if (WARN_ON(folio_test_lru(folio)))
1807 folio_isolate_lru(folio);
1808 if (folio_mapped(folio))
1809 unmap_poisoned_folio(folio, TTU_IGNORE_MLOCK);
1810 continue;
1813 if (!folio_try_get(folio))
1814 continue;
1816 if (unlikely(page_folio(page) != folio))
1817 goto put_folio;
1819 if (!isolate_folio_to_list(folio, &source)) {
1820 if (__ratelimit(&migrate_rs)) {
1821 pr_warn("failed to isolate pfn %lx\n",
1822 page_to_pfn(page));
1823 dump_page(page, "isolation failed");
1826 put_folio:
1827 folio_put(folio);
1829 if (!list_empty(&source)) {
1830 nodemask_t nmask = node_states[N_MEMORY];
1831 struct migration_target_control mtc = {
1832 .nmask = &nmask,
1833 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1834 .reason = MR_MEMORY_HOTPLUG,
1836 int ret;
1839 * We have checked that migration range is on a single zone so
1840 * we can use the nid of the first page to all the others.
1842 mtc.nid = folio_nid(list_first_entry(&source, struct folio, lru));
1845 * try to allocate from a different node but reuse this node
1846 * if there are no other online nodes to be used (e.g. we are
1847 * offlining a part of the only existing node)
1849 node_clear(mtc.nid, nmask);
1850 if (nodes_empty(nmask))
1851 node_set(mtc.nid, nmask);
1852 ret = migrate_pages(&source, alloc_migration_target, NULL,
1853 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1854 if (ret) {
1855 list_for_each_entry(folio, &source, lru) {
1856 if (__ratelimit(&migrate_rs)) {
1857 pr_warn("migrating pfn %lx failed ret:%d\n",
1858 folio_pfn(folio), ret);
1859 dump_page(&folio->page,
1860 "migration failure");
1863 putback_movable_pages(&source);
1868 static int __init cmdline_parse_movable_node(char *p)
1870 movable_node_enabled = true;
1871 return 0;
1873 early_param("movable_node", cmdline_parse_movable_node);
1875 /* check which state of node_states will be changed when offline memory */
1876 static void node_states_check_changes_offline(unsigned long nr_pages,
1877 struct zone *zone, struct memory_notify *arg)
1879 struct pglist_data *pgdat = zone->zone_pgdat;
1880 unsigned long present_pages = 0;
1881 enum zone_type zt;
1883 arg->status_change_nid = NUMA_NO_NODE;
1884 arg->status_change_nid_normal = NUMA_NO_NODE;
1887 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1888 * If the memory to be offline is within the range
1889 * [0..ZONE_NORMAL], and it is the last present memory there,
1890 * the zones in that range will become empty after the offlining,
1891 * thus we can determine that we need to clear the node from
1892 * node_states[N_NORMAL_MEMORY].
1894 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1895 present_pages += pgdat->node_zones[zt].present_pages;
1896 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1897 arg->status_change_nid_normal = zone_to_nid(zone);
1900 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1901 * does not apply as we don't support 32bit.
1902 * Here we count the possible pages from ZONE_MOVABLE.
1903 * If after having accounted all the pages, we see that the nr_pages
1904 * to be offlined is over or equal to the accounted pages,
1905 * we know that the node will become empty, and so, we can clear
1906 * it for N_MEMORY as well.
1908 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1910 if (nr_pages >= present_pages)
1911 arg->status_change_nid = zone_to_nid(zone);
1914 static void node_states_clear_node(int node, struct memory_notify *arg)
1916 if (arg->status_change_nid_normal >= 0)
1917 node_clear_state(node, N_NORMAL_MEMORY);
1919 if (arg->status_change_nid >= 0)
1920 node_clear_state(node, N_MEMORY);
1923 static int count_system_ram_pages_cb(unsigned long start_pfn,
1924 unsigned long nr_pages, void *data)
1926 unsigned long *nr_system_ram_pages = data;
1928 *nr_system_ram_pages += nr_pages;
1929 return 0;
1933 * Must be called with mem_hotplug_lock in write mode.
1935 int offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1936 struct zone *zone, struct memory_group *group)
1938 const unsigned long end_pfn = start_pfn + nr_pages;
1939 unsigned long pfn, managed_pages, system_ram_pages = 0;
1940 const int node = zone_to_nid(zone);
1941 unsigned long flags;
1942 struct memory_notify arg;
1943 char *reason;
1944 int ret;
1947 * {on,off}lining is constrained to full memory sections (or more
1948 * precisely to memory blocks from the user space POV).
1949 * memmap_on_memory is an exception because it reserves initial part
1950 * of the physical memory space for vmemmaps. That space is pageblock
1951 * aligned.
1953 if (WARN_ON_ONCE(!nr_pages || !pageblock_aligned(start_pfn) ||
1954 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1955 return -EINVAL;
1958 * Don't allow to offline memory blocks that contain holes.
1959 * Consequently, memory blocks with holes can never get onlined
1960 * via the hotplug path - online_pages() - as hotplugged memory has
1961 * no holes. This way, we don't have to worry about memory holes,
1962 * don't need pfn_valid() checks, and can avoid using
1963 * walk_system_ram_range() later.
1965 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1966 count_system_ram_pages_cb);
1967 if (system_ram_pages != nr_pages) {
1968 ret = -EINVAL;
1969 reason = "memory holes";
1970 goto failed_removal;
1974 * We only support offlining of memory blocks managed by a single zone,
1975 * checked by calling code. This is just a sanity check that we might
1976 * want to remove in the future.
1978 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1979 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1980 ret = -EINVAL;
1981 reason = "multizone range";
1982 goto failed_removal;
1986 * Disable pcplists so that page isolation cannot race with freeing
1987 * in a way that pages from isolated pageblock are left on pcplists.
1989 zone_pcp_disable(zone);
1990 lru_cache_disable();
1992 /* set above range as isolated */
1993 ret = start_isolate_page_range(start_pfn, end_pfn,
1994 MIGRATE_MOVABLE,
1995 MEMORY_OFFLINE | REPORT_FAILURE,
1996 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1997 if (ret) {
1998 reason = "failure to isolate range";
1999 goto failed_removal_pcplists_disabled;
2002 arg.start_pfn = start_pfn;
2003 arg.nr_pages = nr_pages;
2004 node_states_check_changes_offline(nr_pages, zone, &arg);
2006 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
2007 ret = notifier_to_errno(ret);
2008 if (ret) {
2009 reason = "notifier failure";
2010 goto failed_removal_isolated;
2013 do {
2014 pfn = start_pfn;
2015 do {
2017 * Historically we always checked for any signal and
2018 * can't limit it to fatal signals without eventually
2019 * breaking user space.
2021 if (signal_pending(current)) {
2022 ret = -EINTR;
2023 reason = "signal backoff";
2024 goto failed_removal_isolated;
2027 cond_resched();
2029 ret = scan_movable_pages(pfn, end_pfn, &pfn);
2030 if (!ret) {
2032 * TODO: fatal migration failures should bail
2033 * out
2035 do_migrate_range(pfn, end_pfn);
2037 } while (!ret);
2039 if (ret != -ENOENT) {
2040 reason = "unmovable page";
2041 goto failed_removal_isolated;
2045 * Dissolve free hugetlb folios in the memory block before doing
2046 * offlining actually in order to make hugetlbfs's object
2047 * counting consistent.
2049 ret = dissolve_free_hugetlb_folios(start_pfn, end_pfn);
2050 if (ret) {
2051 reason = "failure to dissolve huge pages";
2052 goto failed_removal_isolated;
2055 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
2057 } while (ret);
2059 /* Mark all sections offline and remove free pages from the buddy. */
2060 managed_pages = __offline_isolated_pages(start_pfn, end_pfn);
2061 pr_debug("Offlined Pages %ld\n", nr_pages);
2064 * The memory sections are marked offline, and the pageblock flags
2065 * effectively stale; nobody should be touching them. Fixup the number
2066 * of isolated pageblocks, memory onlining will properly revert this.
2068 spin_lock_irqsave(&zone->lock, flags);
2069 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
2070 spin_unlock_irqrestore(&zone->lock, flags);
2072 lru_cache_enable();
2073 zone_pcp_enable(zone);
2075 /* removal success */
2076 adjust_managed_page_count(pfn_to_page(start_pfn), -managed_pages);
2077 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
2079 /* reinitialise watermarks and update pcp limits */
2080 init_per_zone_wmark_min();
2083 * Make sure to mark the node as memory-less before rebuilding the zone
2084 * list. Otherwise this node would still appear in the fallback lists.
2086 node_states_clear_node(node, &arg);
2087 if (!populated_zone(zone)) {
2088 zone_pcp_reset(zone);
2089 build_all_zonelists(NULL);
2092 if (arg.status_change_nid >= 0) {
2093 kcompactd_stop(node);
2094 kswapd_stop(node);
2097 writeback_set_ratelimit();
2099 memory_notify(MEM_OFFLINE, &arg);
2100 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
2101 return 0;
2103 failed_removal_isolated:
2104 /* pushback to free area */
2105 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
2106 memory_notify(MEM_CANCEL_OFFLINE, &arg);
2107 failed_removal_pcplists_disabled:
2108 lru_cache_enable();
2109 zone_pcp_enable(zone);
2110 failed_removal:
2111 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
2112 (unsigned long long) start_pfn << PAGE_SHIFT,
2113 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
2114 reason);
2115 return ret;
2118 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
2120 int *nid = arg;
2122 *nid = mem->nid;
2123 if (unlikely(mem->state != MEM_OFFLINE)) {
2124 phys_addr_t beginpa, endpa;
2126 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
2127 endpa = beginpa + memory_block_size_bytes() - 1;
2128 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
2129 &beginpa, &endpa);
2131 return -EBUSY;
2133 return 0;
2136 static int count_memory_range_altmaps_cb(struct memory_block *mem, void *arg)
2138 u64 *num_altmaps = (u64 *)arg;
2140 if (mem->altmap)
2141 *num_altmaps += 1;
2143 return 0;
2146 static int check_cpu_on_node(int nid)
2148 int cpu;
2150 for_each_present_cpu(cpu) {
2151 if (cpu_to_node(cpu) == nid)
2153 * the cpu on this node isn't removed, and we can't
2154 * offline this node.
2156 return -EBUSY;
2159 return 0;
2162 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2164 int nid = *(int *)arg;
2167 * If a memory block belongs to multiple nodes, the stored nid is not
2168 * reliable. However, such blocks are always online (e.g., cannot get
2169 * offlined) and, therefore, are still spanned by the node.
2171 return mem->nid == nid ? -EEXIST : 0;
2175 * try_offline_node
2176 * @nid: the node ID
2178 * Offline a node if all memory sections and cpus of the node are removed.
2180 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2181 * and online/offline operations before this call.
2183 void try_offline_node(int nid)
2185 int rc;
2188 * If the node still spans pages (especially ZONE_DEVICE), don't
2189 * offline it. A node spans memory after move_pfn_range_to_zone(),
2190 * e.g., after the memory block was onlined.
2192 if (node_spanned_pages(nid))
2193 return;
2196 * Especially offline memory blocks might not be spanned by the
2197 * node. They will get spanned by the node once they get onlined.
2198 * However, they link to the node in sysfs and can get onlined later.
2200 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2201 if (rc)
2202 return;
2204 if (check_cpu_on_node(nid))
2205 return;
2208 * all memory/cpu of this node are removed, we can offline this
2209 * node now.
2211 node_set_offline(nid);
2212 unregister_one_node(nid);
2214 EXPORT_SYMBOL(try_offline_node);
2216 static int memory_blocks_have_altmaps(u64 start, u64 size)
2218 u64 num_memblocks = size / memory_block_size_bytes();
2219 u64 num_altmaps = 0;
2221 if (!mhp_memmap_on_memory())
2222 return 0;
2224 walk_memory_blocks(start, size, &num_altmaps,
2225 count_memory_range_altmaps_cb);
2227 if (num_altmaps == 0)
2228 return 0;
2230 if (WARN_ON_ONCE(num_memblocks != num_altmaps))
2231 return -EINVAL;
2233 return 1;
2236 static int try_remove_memory(u64 start, u64 size)
2238 int rc, nid = NUMA_NO_NODE;
2240 BUG_ON(check_hotplug_memory_range(start, size));
2243 * All memory blocks must be offlined before removing memory. Check
2244 * whether all memory blocks in question are offline and return error
2245 * if this is not the case.
2247 * While at it, determine the nid. Note that if we'd have mixed nodes,
2248 * we'd only try to offline the last determined one -- which is good
2249 * enough for the cases we care about.
2251 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2252 if (rc)
2253 return rc;
2255 /* remove memmap entry */
2256 firmware_map_remove(start, start + size, "System RAM");
2258 mem_hotplug_begin();
2260 rc = memory_blocks_have_altmaps(start, size);
2261 if (rc < 0) {
2262 mem_hotplug_done();
2263 return rc;
2264 } else if (!rc) {
2266 * Memory block device removal under the device_hotplug_lock is
2267 * a barrier against racing online attempts.
2268 * No altmaps present, do the removal directly
2270 remove_memory_block_devices(start, size);
2271 arch_remove_memory(start, size, NULL);
2272 } else {
2273 /* all memblocks in the range have altmaps */
2274 remove_memory_blocks_and_altmaps(start, size);
2277 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
2278 memblock_remove(start, size);
2280 release_mem_region_adjustable(start, size);
2282 if (nid != NUMA_NO_NODE)
2283 try_offline_node(nid);
2285 mem_hotplug_done();
2286 return 0;
2290 * __remove_memory - Remove memory if every memory block is offline
2291 * @start: physical address of the region to remove
2292 * @size: size of the region to remove
2294 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2295 * and online/offline operations before this call, as required by
2296 * try_offline_node().
2298 void __remove_memory(u64 start, u64 size)
2302 * trigger BUG() if some memory is not offlined prior to calling this
2303 * function
2305 if (try_remove_memory(start, size))
2306 BUG();
2310 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2311 * some memory is not offline
2313 int remove_memory(u64 start, u64 size)
2315 int rc;
2317 lock_device_hotplug();
2318 rc = try_remove_memory(start, size);
2319 unlock_device_hotplug();
2321 return rc;
2323 EXPORT_SYMBOL_GPL(remove_memory);
2325 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2327 uint8_t online_type = MMOP_ONLINE_KERNEL;
2328 uint8_t **online_types = arg;
2329 struct page *page;
2330 int rc;
2333 * Sense the online_type via the zone of the memory block. Offlining
2334 * with multiple zones within one memory block will be rejected
2335 * by offlining code ... so we don't care about that.
2337 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2338 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2339 online_type = MMOP_ONLINE_MOVABLE;
2341 rc = device_offline(&mem->dev);
2343 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2344 * so try_reonline_memory_block() can do the right thing.
2346 if (!rc)
2347 **online_types = online_type;
2349 (*online_types)++;
2350 /* Ignore if already offline. */
2351 return rc < 0 ? rc : 0;
2354 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2356 uint8_t **online_types = arg;
2357 int rc;
2359 if (**online_types != MMOP_OFFLINE) {
2360 mem->online_type = **online_types;
2361 rc = device_online(&mem->dev);
2362 if (rc < 0)
2363 pr_warn("%s: Failed to re-online memory: %d",
2364 __func__, rc);
2367 /* Continue processing all remaining memory blocks. */
2368 (*online_types)++;
2369 return 0;
2373 * Try to offline and remove memory. Might take a long time to finish in case
2374 * memory is still in use. Primarily useful for memory devices that logically
2375 * unplugged all memory (so it's no longer in use) and want to offline + remove
2376 * that memory.
2378 int offline_and_remove_memory(u64 start, u64 size)
2380 const unsigned long mb_count = size / memory_block_size_bytes();
2381 uint8_t *online_types, *tmp;
2382 int rc;
2384 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2385 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2386 return -EINVAL;
2389 * We'll remember the old online type of each memory block, so we can
2390 * try to revert whatever we did when offlining one memory block fails
2391 * after offlining some others succeeded.
2393 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2394 GFP_KERNEL);
2395 if (!online_types)
2396 return -ENOMEM;
2398 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2399 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2400 * try_reonline_memory_block().
2402 memset(online_types, MMOP_OFFLINE, mb_count);
2404 lock_device_hotplug();
2406 tmp = online_types;
2407 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2410 * In case we succeeded to offline all memory, remove it.
2411 * This cannot fail as it cannot get onlined in the meantime.
2413 if (!rc) {
2414 rc = try_remove_memory(start, size);
2415 if (rc)
2416 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2420 * Rollback what we did. While memory onlining might theoretically fail
2421 * (nacked by a notifier), it barely ever happens.
2423 if (rc) {
2424 tmp = online_types;
2425 walk_memory_blocks(start, size, &tmp,
2426 try_reonline_memory_block);
2428 unlock_device_hotplug();
2430 kfree(online_types);
2431 return rc;
2433 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2434 #endif /* CONFIG_MEMORY_HOTREMOVE */