1 // SPDX-License-Identifier: GPL-2.0
5 * (C) Copyright 1996 Linus Torvalds
7 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
8 * (C) Copyright 2002 Red Hat Inc, All Rights Reserved
12 #include <linux/mm_inline.h>
13 #include <linux/hugetlb.h>
14 #include <linux/shm.h>
15 #include <linux/ksm.h>
16 #include <linux/mman.h>
17 #include <linux/swap.h>
18 #include <linux/capability.h>
20 #include <linux/swapops.h>
21 #include <linux/highmem.h>
22 #include <linux/security.h>
23 #include <linux/syscalls.h>
24 #include <linux/mmu_notifier.h>
25 #include <linux/uaccess.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
29 #include <asm/cacheflush.h>
31 #include <asm/pgalloc.h>
35 static pud_t
*get_old_pud(struct mm_struct
*mm
, unsigned long addr
)
41 pgd
= pgd_offset(mm
, addr
);
42 if (pgd_none_or_clear_bad(pgd
))
45 p4d
= p4d_offset(pgd
, addr
);
46 if (p4d_none_or_clear_bad(p4d
))
49 pud
= pud_offset(p4d
, addr
);
50 if (pud_none_or_clear_bad(pud
))
56 static pmd_t
*get_old_pmd(struct mm_struct
*mm
, unsigned long addr
)
61 pud
= get_old_pud(mm
, addr
);
65 pmd
= pmd_offset(pud
, addr
);
72 static pud_t
*alloc_new_pud(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
78 pgd
= pgd_offset(mm
, addr
);
79 p4d
= p4d_alloc(mm
, pgd
, addr
);
83 return pud_alloc(mm
, p4d
, addr
);
86 static pmd_t
*alloc_new_pmd(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
92 pud
= alloc_new_pud(mm
, vma
, addr
);
96 pmd
= pmd_alloc(mm
, pud
, addr
);
100 VM_BUG_ON(pmd_trans_huge(*pmd
));
105 static void take_rmap_locks(struct vm_area_struct
*vma
)
108 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
110 anon_vma_lock_write(vma
->anon_vma
);
113 static void drop_rmap_locks(struct vm_area_struct
*vma
)
116 anon_vma_unlock_write(vma
->anon_vma
);
118 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
121 static pte_t
move_soft_dirty_pte(pte_t pte
)
124 * Set soft dirty bit so we can notice
125 * in userspace the ptes were moved.
127 #ifdef CONFIG_MEM_SOFT_DIRTY
128 if (pte_present(pte
))
129 pte
= pte_mksoft_dirty(pte
);
130 else if (is_swap_pte(pte
))
131 pte
= pte_swp_mksoft_dirty(pte
);
136 static int move_ptes(struct vm_area_struct
*vma
, pmd_t
*old_pmd
,
137 unsigned long old_addr
, unsigned long old_end
,
138 struct vm_area_struct
*new_vma
, pmd_t
*new_pmd
,
139 unsigned long new_addr
, bool need_rmap_locks
)
141 struct mm_struct
*mm
= vma
->vm_mm
;
142 pte_t
*old_pte
, *new_pte
, pte
;
144 spinlock_t
*old_ptl
, *new_ptl
;
145 bool force_flush
= false;
146 unsigned long len
= old_end
- old_addr
;
150 * When need_rmap_locks is true, we take the i_mmap_rwsem and anon_vma
151 * locks to ensure that rmap will always observe either the old or the
152 * new ptes. This is the easiest way to avoid races with
153 * truncate_pagecache(), page migration, etc...
155 * When need_rmap_locks is false, we use other ways to avoid
158 * - During exec() shift_arg_pages(), we use a specially tagged vma
159 * which rmap call sites look for using vma_is_temporary_stack().
161 * - During mremap(), new_vma is often known to be placed after vma
162 * in rmap traversal order. This ensures rmap will always observe
163 * either the old pte, or the new pte, or both (the page table locks
164 * serialize access to individual ptes, but only rmap traversal
165 * order guarantees that we won't miss both the old and new ptes).
168 take_rmap_locks(vma
);
171 * We don't have to worry about the ordering of src and dst
172 * pte locks because exclusive mmap_lock prevents deadlock.
174 old_pte
= pte_offset_map_lock(mm
, old_pmd
, old_addr
, &old_ptl
);
180 * Now new_pte is none, so hpage_collapse_scan_file() path can not find
181 * this by traversing file->f_mapping, so there is no concurrency with
182 * retract_page_tables(). In addition, we already hold the exclusive
183 * mmap_lock, so this new_pte page is stable, so there is no need to get
184 * pmdval and do pmd_same() check.
186 new_pte
= pte_offset_map_rw_nolock(mm
, new_pmd
, new_addr
, &dummy_pmdval
,
189 pte_unmap_unlock(old_pte
, old_ptl
);
193 if (new_ptl
!= old_ptl
)
194 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
195 flush_tlb_batched_pending(vma
->vm_mm
);
196 arch_enter_lazy_mmu_mode();
198 for (; old_addr
< old_end
; old_pte
++, old_addr
+= PAGE_SIZE
,
199 new_pte
++, new_addr
+= PAGE_SIZE
) {
200 if (pte_none(ptep_get(old_pte
)))
203 pte
= ptep_get_and_clear(mm
, old_addr
, old_pte
);
205 * If we are remapping a valid PTE, make sure
206 * to flush TLB before we drop the PTL for the
209 * NOTE! Both old and new PTL matter: the old one
210 * for racing with folio_mkclean(), the new one to
211 * make sure the physical page stays valid until
212 * the TLB entry for the old mapping has been
215 if (pte_present(pte
))
217 pte
= move_pte(pte
, old_addr
, new_addr
);
218 pte
= move_soft_dirty_pte(pte
);
219 set_pte_at(mm
, new_addr
, new_pte
, pte
);
222 arch_leave_lazy_mmu_mode();
224 flush_tlb_range(vma
, old_end
- len
, old_end
);
225 if (new_ptl
!= old_ptl
)
226 spin_unlock(new_ptl
);
227 pte_unmap(new_pte
- 1);
228 pte_unmap_unlock(old_pte
- 1, old_ptl
);
231 drop_rmap_locks(vma
);
235 #ifndef arch_supports_page_table_move
236 #define arch_supports_page_table_move arch_supports_page_table_move
237 static inline bool arch_supports_page_table_move(void)
239 return IS_ENABLED(CONFIG_HAVE_MOVE_PMD
) ||
240 IS_ENABLED(CONFIG_HAVE_MOVE_PUD
);
244 #ifdef CONFIG_HAVE_MOVE_PMD
245 static bool move_normal_pmd(struct vm_area_struct
*vma
, unsigned long old_addr
,
246 unsigned long new_addr
, pmd_t
*old_pmd
, pmd_t
*new_pmd
)
248 spinlock_t
*old_ptl
, *new_ptl
;
249 struct mm_struct
*mm
= vma
->vm_mm
;
253 if (!arch_supports_page_table_move())
256 * The destination pmd shouldn't be established, free_pgtables()
257 * should have released it.
259 * However, there's a case during execve() where we use mremap
260 * to move the initial stack, and in that case the target area
261 * may overlap the source area (always moving down).
263 * If everything is PMD-aligned, that works fine, as moving
264 * each pmd down will clear the source pmd. But if we first
265 * have a few 4kB-only pages that get moved down, and then
266 * hit the "now the rest is PMD-aligned, let's do everything
267 * one pmd at a time", we will still have the old (now empty
268 * of any 4kB pages, but still there) PMD in the page table
271 * Warn on it once - because we really should try to figure
272 * out how to do this better - but then say "I won't move
275 * One alternative might be to just unmap the target pmd at
276 * this point, and verify that it really is empty. We'll see.
278 if (WARN_ON_ONCE(!pmd_none(*new_pmd
)))
282 * We don't have to worry about the ordering of src and dst
283 * ptlocks because exclusive mmap_lock prevents deadlock.
285 old_ptl
= pmd_lock(vma
->vm_mm
, old_pmd
);
286 new_ptl
= pmd_lockptr(mm
, new_pmd
);
287 if (new_ptl
!= old_ptl
)
288 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
292 /* Racing with collapse? */
293 if (unlikely(!pmd_present(pmd
) || pmd_leaf(pmd
)))
299 VM_BUG_ON(!pmd_none(*new_pmd
));
301 pmd_populate(mm
, new_pmd
, pmd_pgtable(pmd
));
302 flush_tlb_range(vma
, old_addr
, old_addr
+ PMD_SIZE
);
304 if (new_ptl
!= old_ptl
)
305 spin_unlock(new_ptl
);
306 spin_unlock(old_ptl
);
311 static inline bool move_normal_pmd(struct vm_area_struct
*vma
,
312 unsigned long old_addr
, unsigned long new_addr
, pmd_t
*old_pmd
,
319 #if CONFIG_PGTABLE_LEVELS > 2 && defined(CONFIG_HAVE_MOVE_PUD)
320 static bool move_normal_pud(struct vm_area_struct
*vma
, unsigned long old_addr
,
321 unsigned long new_addr
, pud_t
*old_pud
, pud_t
*new_pud
)
323 spinlock_t
*old_ptl
, *new_ptl
;
324 struct mm_struct
*mm
= vma
->vm_mm
;
327 if (!arch_supports_page_table_move())
330 * The destination pud shouldn't be established, free_pgtables()
331 * should have released it.
333 if (WARN_ON_ONCE(!pud_none(*new_pud
)))
337 * We don't have to worry about the ordering of src and dst
338 * ptlocks because exclusive mmap_lock prevents deadlock.
340 old_ptl
= pud_lock(vma
->vm_mm
, old_pud
);
341 new_ptl
= pud_lockptr(mm
, new_pud
);
342 if (new_ptl
!= old_ptl
)
343 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
349 VM_BUG_ON(!pud_none(*new_pud
));
351 pud_populate(mm
, new_pud
, pud_pgtable(pud
));
352 flush_tlb_range(vma
, old_addr
, old_addr
+ PUD_SIZE
);
353 if (new_ptl
!= old_ptl
)
354 spin_unlock(new_ptl
);
355 spin_unlock(old_ptl
);
360 static inline bool move_normal_pud(struct vm_area_struct
*vma
,
361 unsigned long old_addr
, unsigned long new_addr
, pud_t
*old_pud
,
368 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
369 static bool move_huge_pud(struct vm_area_struct
*vma
, unsigned long old_addr
,
370 unsigned long new_addr
, pud_t
*old_pud
, pud_t
*new_pud
)
372 spinlock_t
*old_ptl
, *new_ptl
;
373 struct mm_struct
*mm
= vma
->vm_mm
;
377 * The destination pud shouldn't be established, free_pgtables()
378 * should have released it.
380 if (WARN_ON_ONCE(!pud_none(*new_pud
)))
384 * We don't have to worry about the ordering of src and dst
385 * ptlocks because exclusive mmap_lock prevents deadlock.
387 old_ptl
= pud_lock(vma
->vm_mm
, old_pud
);
388 new_ptl
= pud_lockptr(mm
, new_pud
);
389 if (new_ptl
!= old_ptl
)
390 spin_lock_nested(new_ptl
, SINGLE_DEPTH_NESTING
);
396 VM_BUG_ON(!pud_none(*new_pud
));
398 /* Set the new pud */
399 /* mark soft_ditry when we add pud level soft dirty support */
400 set_pud_at(mm
, new_addr
, new_pud
, pud
);
401 flush_pud_tlb_range(vma
, old_addr
, old_addr
+ HPAGE_PUD_SIZE
);
402 if (new_ptl
!= old_ptl
)
403 spin_unlock(new_ptl
);
404 spin_unlock(old_ptl
);
409 static bool move_huge_pud(struct vm_area_struct
*vma
, unsigned long old_addr
,
410 unsigned long new_addr
, pud_t
*old_pud
, pud_t
*new_pud
)
426 * Returns an extent of the corresponding size for the pgt_entry specified if
427 * valid. Else returns a smaller extent bounded by the end of the source and
428 * destination pgt_entry.
430 static __always_inline
unsigned long get_extent(enum pgt_entry entry
,
431 unsigned long old_addr
, unsigned long old_end
,
432 unsigned long new_addr
)
434 unsigned long next
, extent
, mask
, size
;
452 next
= (old_addr
+ size
) & mask
;
453 /* even if next overflowed, extent below will be ok */
454 extent
= next
- old_addr
;
455 if (extent
> old_end
- old_addr
)
456 extent
= old_end
- old_addr
;
457 next
= (new_addr
+ size
) & mask
;
458 if (extent
> next
- new_addr
)
459 extent
= next
- new_addr
;
464 * Attempts to speedup the move by moving entry at the level corresponding to
465 * pgt_entry. Returns true if the move was successful, else false.
467 static bool move_pgt_entry(enum pgt_entry entry
, struct vm_area_struct
*vma
,
468 unsigned long old_addr
, unsigned long new_addr
,
469 void *old_entry
, void *new_entry
, bool need_rmap_locks
)
473 /* See comment in move_ptes() */
475 take_rmap_locks(vma
);
479 moved
= move_normal_pmd(vma
, old_addr
, new_addr
, old_entry
,
483 moved
= move_normal_pud(vma
, old_addr
, new_addr
, old_entry
,
487 moved
= IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) &&
488 move_huge_pmd(vma
, old_addr
, new_addr
, old_entry
,
492 moved
= IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) &&
493 move_huge_pud(vma
, old_addr
, new_addr
, old_entry
,
503 drop_rmap_locks(vma
);
509 * A helper to check if aligning down is OK. The aligned address should fall
510 * on *no mapping*. For the stack moving down, that's a special move within
511 * the VMA that is created to span the source and destination of the move,
512 * so we make an exception for it.
514 static bool can_align_down(struct vm_area_struct
*vma
, unsigned long addr_to_align
,
515 unsigned long mask
, bool for_stack
)
517 unsigned long addr_masked
= addr_to_align
& mask
;
520 * If @addr_to_align of either source or destination is not the beginning
521 * of the corresponding VMA, we can't align down or we will destroy part
522 * of the current mapping.
524 if (!for_stack
&& vma
->vm_start
!= addr_to_align
)
527 /* In the stack case we explicitly permit in-VMA alignment. */
528 if (for_stack
&& addr_masked
>= vma
->vm_start
)
532 * Make sure the realignment doesn't cause the address to fall on an
535 return find_vma_intersection(vma
->vm_mm
, addr_masked
, vma
->vm_start
) == NULL
;
538 /* Opportunistically realign to specified boundary for faster copy. */
539 static void try_realign_addr(unsigned long *old_addr
, struct vm_area_struct
*old_vma
,
540 unsigned long *new_addr
, struct vm_area_struct
*new_vma
,
541 unsigned long mask
, bool for_stack
)
543 /* Skip if the addresses are already aligned. */
544 if ((*old_addr
& ~mask
) == 0)
547 /* Only realign if the new and old addresses are mutually aligned. */
548 if ((*old_addr
& ~mask
) != (*new_addr
& ~mask
))
551 /* Ensure realignment doesn't cause overlap with existing mappings. */
552 if (!can_align_down(old_vma
, *old_addr
, mask
, for_stack
) ||
553 !can_align_down(new_vma
, *new_addr
, mask
, for_stack
))
556 *old_addr
= *old_addr
& mask
;
557 *new_addr
= *new_addr
& mask
;
560 unsigned long move_page_tables(struct vm_area_struct
*vma
,
561 unsigned long old_addr
, struct vm_area_struct
*new_vma
,
562 unsigned long new_addr
, unsigned long len
,
563 bool need_rmap_locks
, bool for_stack
)
565 unsigned long extent
, old_end
;
566 struct mmu_notifier_range range
;
567 pmd_t
*old_pmd
, *new_pmd
;
568 pud_t
*old_pud
, *new_pud
;
573 old_end
= old_addr
+ len
;
575 if (is_vm_hugetlb_page(vma
))
576 return move_hugetlb_page_tables(vma
, new_vma
, old_addr
,
580 * If possible, realign addresses to PMD boundary for faster copy.
581 * Only realign if the mremap copying hits a PMD boundary.
583 if (len
>= PMD_SIZE
- (old_addr
& ~PMD_MASK
))
584 try_realign_addr(&old_addr
, vma
, &new_addr
, new_vma
, PMD_MASK
,
587 flush_cache_range(vma
, old_addr
, old_end
);
588 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
->vm_mm
,
590 mmu_notifier_invalidate_range_start(&range
);
592 for (; old_addr
< old_end
; old_addr
+= extent
, new_addr
+= extent
) {
595 * If extent is PUD-sized try to speed up the move by moving at the
596 * PUD level if possible.
598 extent
= get_extent(NORMAL_PUD
, old_addr
, old_end
, new_addr
);
600 old_pud
= get_old_pud(vma
->vm_mm
, old_addr
);
603 new_pud
= alloc_new_pud(vma
->vm_mm
, vma
, new_addr
);
606 if (pud_trans_huge(*old_pud
) || pud_devmap(*old_pud
)) {
607 if (extent
== HPAGE_PUD_SIZE
) {
608 move_pgt_entry(HPAGE_PUD
, vma
, old_addr
, new_addr
,
609 old_pud
, new_pud
, need_rmap_locks
);
610 /* We ignore and continue on error? */
613 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PUD
) && extent
== PUD_SIZE
) {
615 if (move_pgt_entry(NORMAL_PUD
, vma
, old_addr
, new_addr
,
616 old_pud
, new_pud
, true))
620 extent
= get_extent(NORMAL_PMD
, old_addr
, old_end
, new_addr
);
621 old_pmd
= get_old_pmd(vma
->vm_mm
, old_addr
);
624 new_pmd
= alloc_new_pmd(vma
->vm_mm
, vma
, new_addr
);
628 if (is_swap_pmd(*old_pmd
) || pmd_trans_huge(*old_pmd
) ||
629 pmd_devmap(*old_pmd
)) {
630 if (extent
== HPAGE_PMD_SIZE
&&
631 move_pgt_entry(HPAGE_PMD
, vma
, old_addr
, new_addr
,
632 old_pmd
, new_pmd
, need_rmap_locks
))
634 split_huge_pmd(vma
, old_pmd
, old_addr
);
635 } else if (IS_ENABLED(CONFIG_HAVE_MOVE_PMD
) &&
636 extent
== PMD_SIZE
) {
638 * If the extent is PMD-sized, try to speed the move by
639 * moving at the PMD level if possible.
641 if (move_pgt_entry(NORMAL_PMD
, vma
, old_addr
, new_addr
,
642 old_pmd
, new_pmd
, true))
645 if (pmd_none(*old_pmd
))
647 if (pte_alloc(new_vma
->vm_mm
, new_pmd
))
649 if (move_ptes(vma
, old_pmd
, old_addr
, old_addr
+ extent
,
650 new_vma
, new_pmd
, new_addr
, need_rmap_locks
) < 0)
654 mmu_notifier_invalidate_range_end(&range
);
657 * Prevent negative return values when {old,new}_addr was realigned
658 * but we broke out of the above loop for the first PMD itself.
660 if (old_addr
< old_end
- len
)
663 return len
+ old_addr
- old_end
; /* how much done */
666 static unsigned long move_vma(struct vm_area_struct
*vma
,
667 unsigned long old_addr
, unsigned long old_len
,
668 unsigned long new_len
, unsigned long new_addr
,
669 bool *locked
, unsigned long flags
,
670 struct vm_userfaultfd_ctx
*uf
, struct list_head
*uf_unmap
)
672 long to_account
= new_len
- old_len
;
673 struct mm_struct
*mm
= vma
->vm_mm
;
674 struct vm_area_struct
*new_vma
;
675 unsigned long vm_flags
= vma
->vm_flags
;
676 unsigned long new_pgoff
;
677 unsigned long moved_len
;
678 unsigned long account_start
= 0;
679 unsigned long account_end
= 0;
680 unsigned long hiwater_vm
;
682 bool need_rmap_locks
;
683 struct vma_iterator vmi
;
686 * We'd prefer to avoid failure later on in do_munmap:
687 * which may split one vma into three before unmapping.
689 if (mm
->map_count
>= sysctl_max_map_count
- 3)
692 if (unlikely(flags
& MREMAP_DONTUNMAP
))
693 to_account
= new_len
;
695 if (vma
->vm_ops
&& vma
->vm_ops
->may_split
) {
696 if (vma
->vm_start
!= old_addr
)
697 err
= vma
->vm_ops
->may_split(vma
, old_addr
);
698 if (!err
&& vma
->vm_end
!= old_addr
+ old_len
)
699 err
= vma
->vm_ops
->may_split(vma
, old_addr
+ old_len
);
705 * Advise KSM to break any KSM pages in the area to be moved:
706 * it would be confusing if they were to turn up at the new
707 * location, where they happen to coincide with different KSM
708 * pages recently unmapped. But leave vma->vm_flags as it was,
709 * so KSM can come around to merge on vma and new_vma afterwards.
711 err
= ksm_madvise(vma
, old_addr
, old_addr
+ old_len
,
712 MADV_UNMERGEABLE
, &vm_flags
);
716 if (vm_flags
& VM_ACCOUNT
) {
717 if (security_vm_enough_memory_mm(mm
, to_account
>> PAGE_SHIFT
))
721 vma_start_write(vma
);
722 new_pgoff
= vma
->vm_pgoff
+ ((old_addr
- vma
->vm_start
) >> PAGE_SHIFT
);
723 new_vma
= copy_vma(&vma
, new_addr
, new_len
, new_pgoff
,
726 if (vm_flags
& VM_ACCOUNT
)
727 vm_unacct_memory(to_account
>> PAGE_SHIFT
);
731 moved_len
= move_page_tables(vma
, old_addr
, new_vma
, new_addr
, old_len
,
732 need_rmap_locks
, false);
733 if (moved_len
< old_len
) {
735 } else if (vma
->vm_ops
&& vma
->vm_ops
->mremap
) {
736 err
= vma
->vm_ops
->mremap(new_vma
);
741 * On error, move entries back from new area to old,
742 * which will succeed since page tables still there,
743 * and then proceed to unmap new area instead of old.
745 move_page_tables(new_vma
, new_addr
, vma
, old_addr
, moved_len
,
752 mremap_userfaultfd_prep(new_vma
, uf
);
755 if (is_vm_hugetlb_page(vma
)) {
756 clear_vma_resv_huge_pages(vma
);
759 /* Conceal VM_ACCOUNT so old reservation is not undone */
760 if (vm_flags
& VM_ACCOUNT
&& !(flags
& MREMAP_DONTUNMAP
)) {
761 vm_flags_clear(vma
, VM_ACCOUNT
);
762 if (vma
->vm_start
< old_addr
)
763 account_start
= vma
->vm_start
;
764 if (vma
->vm_end
> old_addr
+ old_len
)
765 account_end
= vma
->vm_end
;
769 * If we failed to move page tables we still do total_vm increment
770 * since do_munmap() will decrement it by old_len == new_len.
772 * Since total_vm is about to be raised artificially high for a
773 * moment, we need to restore high watermark afterwards: if stats
774 * are taken meanwhile, total_vm and hiwater_vm appear too high.
775 * If this were a serious issue, we'd add a flag to do_munmap().
777 hiwater_vm
= mm
->hiwater_vm
;
778 vm_stat_account(mm
, vma
->vm_flags
, new_len
>> PAGE_SHIFT
);
780 /* Tell pfnmap has moved from this vma */
781 if (unlikely(vma
->vm_flags
& VM_PFNMAP
))
782 untrack_pfn_clear(vma
);
784 if (unlikely(!err
&& (flags
& MREMAP_DONTUNMAP
))) {
785 /* We always clear VM_LOCKED[ONFAULT] on the old vma */
786 vm_flags_clear(vma
, VM_LOCKED_MASK
);
789 * anon_vma links of the old vma is no longer needed after its page
790 * table has been moved.
792 if (new_vma
!= vma
&& vma
->vm_start
== old_addr
&&
793 vma
->vm_end
== (old_addr
+ old_len
))
794 unlink_anon_vmas(vma
);
796 /* Because we won't unmap we don't need to touch locked_vm */
800 vma_iter_init(&vmi
, mm
, old_addr
);
801 if (do_vmi_munmap(&vmi
, mm
, old_addr
, old_len
, uf_unmap
, false) < 0) {
802 /* OOM: unable to split vma, just get accounts right */
803 if (vm_flags
& VM_ACCOUNT
&& !(flags
& MREMAP_DONTUNMAP
))
804 vm_acct_memory(old_len
>> PAGE_SHIFT
);
805 account_start
= account_end
= 0;
808 if (vm_flags
& VM_LOCKED
) {
809 mm
->locked_vm
+= new_len
>> PAGE_SHIFT
;
813 mm
->hiwater_vm
= hiwater_vm
;
815 /* Restore VM_ACCOUNT if one or two pieces of vma left */
817 vma
= vma_prev(&vmi
);
818 vm_flags_set(vma
, VM_ACCOUNT
);
822 vma
= vma_next(&vmi
);
823 vm_flags_set(vma
, VM_ACCOUNT
);
830 * resize_is_valid() - Ensure the vma can be resized to the new length at the give
833 * @vma: The vma to resize
834 * @addr: The old address
835 * @old_len: The current size
836 * @new_len: The desired size
837 * @flags: The vma flags
839 * Return 0 on success, error otherwise.
841 static int resize_is_valid(struct vm_area_struct
*vma
, unsigned long addr
,
842 unsigned long old_len
, unsigned long new_len
, unsigned long flags
)
844 struct mm_struct
*mm
= current
->mm
;
848 * !old_len is a special case where an attempt is made to 'duplicate'
849 * a mapping. This makes no sense for private mappings as it will
850 * instead create a fresh/new mapping unrelated to the original. This
851 * is contrary to the basic idea of mremap which creates new mappings
852 * based on the original. There are no known use cases for this
853 * behavior. As a result, fail such attempts.
855 if (!old_len
&& !(vma
->vm_flags
& (VM_SHARED
| VM_MAYSHARE
))) {
856 pr_warn_once("%s (%d): attempted to duplicate a private mapping with mremap. This is not supported.\n", current
->comm
, current
->pid
);
860 if ((flags
& MREMAP_DONTUNMAP
) &&
861 (vma
->vm_flags
& (VM_DONTEXPAND
| VM_PFNMAP
)))
864 /* We can't remap across vm area boundaries */
865 if (old_len
> vma
->vm_end
- addr
)
868 if (new_len
== old_len
)
871 /* Need to be careful about a growing mapping */
872 pgoff
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
873 pgoff
+= vma
->vm_pgoff
;
874 if (pgoff
+ (new_len
>> PAGE_SHIFT
) < pgoff
)
877 if (vma
->vm_flags
& (VM_DONTEXPAND
| VM_PFNMAP
))
880 if (!mlock_future_ok(mm
, vma
->vm_flags
, new_len
- old_len
))
883 if (!may_expand_vm(mm
, vma
->vm_flags
,
884 (new_len
- old_len
) >> PAGE_SHIFT
))
891 * mremap_to() - remap a vma to a new location
892 * @addr: The old address
893 * @old_len: The old size
894 * @new_addr: The target address
895 * @new_len: The new size
896 * @locked: If the returned vma is locked (VM_LOCKED)
897 * @flags: the mremap flags
898 * @uf: The mremap userfaultfd context
899 * @uf_unmap_early: The userfaultfd unmap early context
900 * @uf_unmap: The userfaultfd unmap context
902 * Returns: The new address of the vma or an error.
904 static unsigned long mremap_to(unsigned long addr
, unsigned long old_len
,
905 unsigned long new_addr
, unsigned long new_len
, bool *locked
,
906 unsigned long flags
, struct vm_userfaultfd_ctx
*uf
,
907 struct list_head
*uf_unmap_early
,
908 struct list_head
*uf_unmap
)
910 struct mm_struct
*mm
= current
->mm
;
911 struct vm_area_struct
*vma
;
913 unsigned long map_flags
= 0;
915 if (offset_in_page(new_addr
))
918 if (new_len
> TASK_SIZE
|| new_addr
> TASK_SIZE
- new_len
)
921 /* Ensure the old/new locations do not overlap */
922 if (addr
+ old_len
> new_addr
&& new_addr
+ new_len
> addr
)
926 * move_vma() need us to stay 4 maps below the threshold, otherwise
927 * it will bail out at the very beginning.
928 * That is a problem if we have already unmaped the regions here
929 * (new_addr, and old_addr), because userspace will not know the
930 * state of the vma's after it gets -ENOMEM.
931 * So, to avoid such scenario we can pre-compute if the whole
932 * operation has high chances to success map-wise.
933 * Worst-scenario case is when both vma's (new_addr and old_addr) get
934 * split in 3 before unmapping it.
935 * That means 2 more maps (1 for each) to the ones we already hold.
936 * Check whether current map count plus 2 still leads us to 4 maps below
937 * the threshold, otherwise return -ENOMEM here to be more safe.
939 if ((mm
->map_count
+ 2) >= sysctl_max_map_count
- 3)
942 if (flags
& MREMAP_FIXED
) {
945 * VMA is moved to dst address, and munmap dst first.
946 * do_munmap will check if dst is sealed.
948 ret
= do_munmap(mm
, new_addr
, new_len
, uf_unmap_early
);
953 if (old_len
> new_len
) {
954 ret
= do_munmap(mm
, addr
+new_len
, old_len
- new_len
, uf_unmap
);
960 vma
= vma_lookup(mm
, addr
);
964 ret
= resize_is_valid(vma
, addr
, old_len
, new_len
, flags
);
968 /* MREMAP_DONTUNMAP expands by old_len since old_len == new_len */
969 if (flags
& MREMAP_DONTUNMAP
&&
970 !may_expand_vm(mm
, vma
->vm_flags
, old_len
>> PAGE_SHIFT
)) {
974 if (flags
& MREMAP_FIXED
)
975 map_flags
|= MAP_FIXED
;
977 if (vma
->vm_flags
& VM_MAYSHARE
)
978 map_flags
|= MAP_SHARED
;
980 ret
= get_unmapped_area(vma
->vm_file
, new_addr
, new_len
, vma
->vm_pgoff
+
981 ((addr
- vma
->vm_start
) >> PAGE_SHIFT
),
983 if (IS_ERR_VALUE(ret
))
986 /* We got a new mapping */
987 if (!(flags
& MREMAP_FIXED
))
990 return move_vma(vma
, addr
, old_len
, new_len
, new_addr
, locked
, flags
,
994 static int vma_expandable(struct vm_area_struct
*vma
, unsigned long delta
)
996 unsigned long end
= vma
->vm_end
+ delta
;
998 if (end
< vma
->vm_end
) /* overflow */
1000 if (find_vma_intersection(vma
->vm_mm
, vma
->vm_end
, end
))
1002 if (get_unmapped_area(NULL
, vma
->vm_start
, end
- vma
->vm_start
,
1003 0, MAP_FIXED
) & ~PAGE_MASK
)
1009 * Expand (or shrink) an existing mapping, potentially moving it at the
1010 * same time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1012 * MREMAP_FIXED option added 5-Dec-1999 by Benjamin LaHaise
1013 * This option implies MREMAP_MAYMOVE.
1015 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1016 unsigned long, new_len
, unsigned long, flags
,
1017 unsigned long, new_addr
)
1019 struct mm_struct
*mm
= current
->mm
;
1020 struct vm_area_struct
*vma
;
1021 unsigned long ret
= -EINVAL
;
1022 bool locked
= false;
1023 struct vm_userfaultfd_ctx uf
= NULL_VM_UFFD_CTX
;
1024 LIST_HEAD(uf_unmap_early
);
1025 LIST_HEAD(uf_unmap
);
1028 * There is a deliberate asymmetry here: we strip the pointer tag
1029 * from the old address but leave the new address alone. This is
1030 * for consistency with mmap(), where we prevent the creation of
1031 * aliasing mappings in userspace by leaving the tag bits of the
1032 * mapping address intact. A non-zero tag will cause the subsequent
1033 * range checks to reject the address as invalid.
1035 * See Documentation/arch/arm64/tagged-address-abi.rst for more
1038 addr
= untagged_addr(addr
);
1040 if (flags
& ~(MREMAP_FIXED
| MREMAP_MAYMOVE
| MREMAP_DONTUNMAP
))
1043 if (flags
& MREMAP_FIXED
&& !(flags
& MREMAP_MAYMOVE
))
1047 * MREMAP_DONTUNMAP is always a move and it does not allow resizing
1050 if (flags
& MREMAP_DONTUNMAP
&&
1051 (!(flags
& MREMAP_MAYMOVE
) || old_len
!= new_len
))
1055 if (offset_in_page(addr
))
1058 old_len
= PAGE_ALIGN(old_len
);
1059 new_len
= PAGE_ALIGN(new_len
);
1062 * We allow a zero old-len as a special case
1063 * for DOS-emu "duplicate shm area" thing. But
1064 * a zero new-len is nonsensical.
1069 if (mmap_write_lock_killable(current
->mm
))
1071 vma
= vma_lookup(mm
, addr
);
1077 /* Don't allow remapping vmas when they have already been sealed */
1078 if (!can_modify_vma(vma
)) {
1083 if (is_vm_hugetlb_page(vma
)) {
1084 struct hstate
*h __maybe_unused
= hstate_vma(vma
);
1086 old_len
= ALIGN(old_len
, huge_page_size(h
));
1087 new_len
= ALIGN(new_len
, huge_page_size(h
));
1089 /* addrs must be huge page aligned */
1090 if (addr
& ~huge_page_mask(h
))
1092 if (new_addr
& ~huge_page_mask(h
))
1096 * Don't allow remap expansion, because the underlying hugetlb
1097 * reservation is not yet capable to handle split reservation.
1099 if (new_len
> old_len
)
1103 if (flags
& (MREMAP_FIXED
| MREMAP_DONTUNMAP
)) {
1104 ret
= mremap_to(addr
, old_len
, new_addr
, new_len
,
1105 &locked
, flags
, &uf
, &uf_unmap_early
,
1111 * Always allow a shrinking remap: that just unmaps
1112 * the unnecessary pages..
1113 * do_vmi_munmap does all the needed commit accounting, and
1114 * unlocks the mmap_lock if so directed.
1116 if (old_len
>= new_len
) {
1117 VMA_ITERATOR(vmi
, mm
, addr
+ new_len
);
1119 if (old_len
== new_len
) {
1124 ret
= do_vmi_munmap(&vmi
, mm
, addr
+ new_len
, old_len
- new_len
,
1134 * Ok, we need to grow..
1136 ret
= resize_is_valid(vma
, addr
, old_len
, new_len
, flags
);
1140 /* old_len exactly to the end of the area..
1142 if (old_len
== vma
->vm_end
- addr
) {
1143 unsigned long delta
= new_len
- old_len
;
1145 /* can we just expand the current mapping? */
1146 if (vma_expandable(vma
, delta
)) {
1147 long pages
= delta
>> PAGE_SHIFT
;
1148 VMA_ITERATOR(vmi
, mm
, vma
->vm_end
);
1151 if (vma
->vm_flags
& VM_ACCOUNT
) {
1152 if (security_vm_enough_memory_mm(mm
, pages
)) {
1160 * Function vma_merge_extend() is called on the
1161 * extension we are adding to the already existing vma,
1162 * vma_merge_extend() will merge this extension with the
1163 * already existing vma (expand operation itself) and
1164 * possibly also with the next vma if it becomes
1165 * adjacent to the expanded vma and otherwise
1168 vma
= vma_merge_extend(&vmi
, vma
, delta
);
1170 vm_unacct_memory(charged
);
1175 vm_stat_account(mm
, vma
->vm_flags
, pages
);
1176 if (vma
->vm_flags
& VM_LOCKED
) {
1177 mm
->locked_vm
+= pages
;
1187 * We weren't able to just expand or shrink the area,
1188 * we need to create a new one and move it..
1191 if (flags
& MREMAP_MAYMOVE
) {
1192 unsigned long map_flags
= 0;
1193 if (vma
->vm_flags
& VM_MAYSHARE
)
1194 map_flags
|= MAP_SHARED
;
1196 new_addr
= get_unmapped_area(vma
->vm_file
, 0, new_len
,
1198 ((addr
- vma
->vm_start
) >> PAGE_SHIFT
),
1200 if (IS_ERR_VALUE(new_addr
)) {
1205 ret
= move_vma(vma
, addr
, old_len
, new_len
, new_addr
,
1206 &locked
, flags
, &uf
, &uf_unmap
);
1209 if (offset_in_page(ret
))
1211 mmap_write_unlock(current
->mm
);
1212 if (locked
&& new_len
> old_len
)
1213 mm_populate(new_addr
+ old_len
, new_len
- old_len
);
1215 userfaultfd_unmap_complete(mm
, &uf_unmap_early
);
1216 mremap_userfaultfd_complete(&uf
, addr
, ret
, old_len
);
1217 userfaultfd_unmap_complete(mm
, &uf_unmap
);