1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
61 #include "page_reporting.h"
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t
;
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock
);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100 #define pcp_trylock_prepare(flags) do { } while (0)
101 #define pcp_trylock_finish(flag) do { } while (0)
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags) local_irq_save(flags)
106 #define pcp_trylock_finish(flags) local_irq_restore(flags)
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin() preempt_disable()
119 #define pcpu_task_unpin() preempt_enable()
121 #define pcpu_task_pin() migrate_disable()
122 #define pcpu_task_unpin() migrate_enable()
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
129 #define pcpu_spin_lock(type, member, ptr) \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
138 #define pcpu_spin_trylock(type, member, ptr) \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
150 #define pcpu_spin_unlock(member, ptr) \
152 spin_unlock(&ptr->member); \
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160 #define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163 #define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node
);
168 EXPORT_PER_CPU_SYMBOL(numa_node
);
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
180 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
184 static DEFINE_MUTEX(pcpu_drain_mutex
);
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy
;
188 EXPORT_SYMBOL(latent_entropy
);
192 * Array of node states.
194 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
195 [N_POSSIBLE
] = NODE_MASK_ALL
,
196 [N_ONLINE
] = { { [0] = 1UL } },
198 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
202 [N_MEMORY
] = { { [0] = 1UL } },
203 [N_CPU
] = { { [0] = 1UL } },
206 EXPORT_SYMBOL(node_states
);
208 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly
;
214 static void __free_pages_ok(struct page
*page
, unsigned int order
,
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
228 static int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
229 #ifdef CONFIG_ZONE_DMA
232 #ifdef CONFIG_ZONE_DMA32
236 #ifdef CONFIG_HIGHMEM
242 char * const zone_names
[MAX_NR_ZONES
] = {
243 #ifdef CONFIG_ZONE_DMA
246 #ifdef CONFIG_ZONE_DMA32
250 #ifdef CONFIG_HIGHMEM
254 #ifdef CONFIG_ZONE_DEVICE
259 const char * const migratetype_names
[MIGRATE_TYPES
] = {
267 #ifdef CONFIG_MEMORY_ISOLATION
272 int min_free_kbytes
= 1024;
273 int user_min_free_kbytes
= -1;
274 static int watermark_boost_factor __read_mostly
= 15000;
275 static int watermark_scale_factor
= 10;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 EXPORT_SYMBOL(movable_zone
);
282 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
283 unsigned int nr_online_nodes __read_mostly
= 1;
284 EXPORT_SYMBOL(nr_node_ids
);
285 EXPORT_SYMBOL(nr_online_nodes
);
288 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
);
289 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
);
290 static bool __free_unaccepted(struct page
*page
);
292 int page_group_by_mobility_disabled __read_mostly
;
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 * During boot we initialize deferred pages on-demand, as needed, but once
297 * page_alloc_init_late() has finished, the deferred pages are all initialized,
298 * and we can permanently disable that path.
300 DEFINE_STATIC_KEY_TRUE(deferred_pages
);
302 static inline bool deferred_pages_enabled(void)
304 return static_branch_unlikely(&deferred_pages
);
308 * deferred_grow_zone() is __init, but it is called from
309 * get_page_from_freelist() during early boot until deferred_pages permanently
310 * disables this call. This is why we have refdata wrapper to avoid warning,
311 * and to ensure that the function body gets unloaded.
314 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
316 return deferred_grow_zone(zone
, order
);
319 static inline bool deferred_pages_enabled(void)
324 static inline bool _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page
*page
,
334 #ifdef CONFIG_SPARSEMEM
335 return section_to_usemap(__pfn_to_section(pfn
));
337 return page_zone(page
)->pageblock_flags
;
338 #endif /* CONFIG_SPARSEMEM */
341 static inline int pfn_to_bitidx(const struct page
*page
, unsigned long pfn
)
343 #ifdef CONFIG_SPARSEMEM
344 pfn
&= (PAGES_PER_SECTION
-1);
346 pfn
= pfn
- pageblock_start_pfn(page_zone(page
)->zone_start_pfn
);
347 #endif /* CONFIG_SPARSEMEM */
348 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353 * @page: The page within the block of interest
354 * @pfn: The target page frame number
355 * @mask: mask of bits that the caller is interested in
357 * Return: pageblock_bits flags
359 unsigned long get_pfnblock_flags_mask(const struct page
*page
,
360 unsigned long pfn
, unsigned long mask
)
362 unsigned long *bitmap
;
363 unsigned long bitidx
, word_bitidx
;
366 bitmap
= get_pageblock_bitmap(page
, pfn
);
367 bitidx
= pfn_to_bitidx(page
, pfn
);
368 word_bitidx
= bitidx
/ BITS_PER_LONG
;
369 bitidx
&= (BITS_PER_LONG
-1);
371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 * a consistent read of the memory array, so that results, even though
373 * racy, are not corrupted.
375 word
= READ_ONCE(bitmap
[word_bitidx
]);
376 return (word
>> bitidx
) & mask
;
379 static __always_inline
int get_pfnblock_migratetype(const struct page
*page
,
382 return get_pfnblock_flags_mask(page
, pfn
, MIGRATETYPE_MASK
);
386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387 * @page: The page within the block of interest
388 * @flags: The flags to set
389 * @pfn: The target page frame number
390 * @mask: mask of bits that the caller is interested in
392 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
396 unsigned long *bitmap
;
397 unsigned long bitidx
, word_bitidx
;
400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
401 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
403 bitmap
= get_pageblock_bitmap(page
, pfn
);
404 bitidx
= pfn_to_bitidx(page
, pfn
);
405 word_bitidx
= bitidx
/ BITS_PER_LONG
;
406 bitidx
&= (BITS_PER_LONG
-1);
408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
413 word
= READ_ONCE(bitmap
[word_bitidx
]);
415 } while (!try_cmpxchg(&bitmap
[word_bitidx
], &word
, (word
& ~mask
) | flags
));
418 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
420 if (unlikely(page_group_by_mobility_disabled
&&
421 migratetype
< MIGRATE_PCPTYPES
))
422 migratetype
= MIGRATE_UNMOVABLE
;
424 set_pfnblock_flags_mask(page
, (unsigned long)migratetype
,
425 page_to_pfn(page
), MIGRATETYPE_MASK
);
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
433 unsigned long pfn
= page_to_pfn(page
);
434 unsigned long sp
, start_pfn
;
437 seq
= zone_span_seqbegin(zone
);
438 start_pfn
= zone
->zone_start_pfn
;
439 sp
= zone
->spanned_pages
;
440 ret
= !zone_spans_pfn(zone
, pfn
);
441 } while (zone_span_seqretry(zone
, seq
));
444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 pfn
, zone_to_nid(zone
), zone
->name
,
446 start_pfn
, start_pfn
+ sp
);
452 * Temporary debugging check for pages not lying within a given zone.
454 static bool __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
456 if (page_outside_zone_boundaries(zone
, page
))
458 if (zone
!= page_zone(page
))
464 static inline bool __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
470 static void bad_page(struct page
*page
, const char *reason
)
472 static unsigned long resume
;
473 static unsigned long nr_shown
;
474 static unsigned long nr_unshown
;
477 * Allow a burst of 60 reports, then keep quiet for that minute;
478 * or allow a steady drip of one report per second.
480 if (nr_shown
== 60) {
481 if (time_before(jiffies
, resume
)) {
487 "BUG: Bad page state: %lu messages suppressed\n",
494 resume
= jiffies
+ 60 * HZ
;
496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
497 current
->comm
, page_to_pfn(page
));
498 dump_page(page
, reason
);
503 /* Leave bad fields for debug, except PageBuddy could make trouble */
505 __ClearPageBuddy(page
);
506 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
509 static inline unsigned int order_to_pindex(int migratetype
, int order
)
511 bool __maybe_unused movable
;
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
515 VM_BUG_ON(order
!= HPAGE_PMD_ORDER
);
517 movable
= migratetype
== MIGRATE_MOVABLE
;
519 return NR_LOWORDER_PCP_LISTS
+ movable
;
522 VM_BUG_ON(order
> PAGE_ALLOC_COSTLY_ORDER
);
525 return (MIGRATE_PCPTYPES
* order
) + migratetype
;
528 static inline int pindex_to_order(unsigned int pindex
)
530 int order
= pindex
/ MIGRATE_PCPTYPES
;
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 if (pindex
>= NR_LOWORDER_PCP_LISTS
)
534 order
= HPAGE_PMD_ORDER
;
536 VM_BUG_ON(order
> PAGE_ALLOC_COSTLY_ORDER
);
542 static inline bool pcp_allowed_order(unsigned int order
)
544 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 if (order
== HPAGE_PMD_ORDER
)
554 * Higher-order pages are called "compound pages". They are structured thusly:
556 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
561 * The first tail page's ->compound_order holds the order of allocation.
562 * This usage means that zero-order pages may not be compound.
565 void prep_compound_page(struct page
*page
, unsigned int order
)
568 int nr_pages
= 1 << order
;
571 for (i
= 1; i
< nr_pages
; i
++)
572 prep_compound_tail(page
, i
);
574 prep_compound_head(page
, order
);
577 static inline void set_buddy_order(struct page
*page
, unsigned int order
)
579 set_page_private(page
, order
);
580 __SetPageBuddy(page
);
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control
*task_capc(struct zone
*zone
)
586 struct capture_control
*capc
= current
->capture_control
;
588 return unlikely(capc
) &&
589 !(current
->flags
& PF_KTHREAD
) &&
591 capc
->cc
->zone
== zone
? capc
: NULL
;
595 compaction_capture(struct capture_control
*capc
, struct page
*page
,
596 int order
, int migratetype
)
598 if (!capc
|| order
!= capc
->cc
->order
)
601 /* Do not accidentally pollute CMA or isolated regions*/
602 if (is_migrate_cma(migratetype
) ||
603 is_migrate_isolate(migratetype
))
607 * Do not let lower order allocations pollute a movable pageblock
608 * unless compaction is also requesting movable pages.
609 * This might let an unmovable request use a reclaimable pageblock
610 * and vice-versa but no more than normal fallback logic which can
611 * have trouble finding a high-order free page.
613 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
&&
614 capc
->cc
->migratetype
!= MIGRATE_MOVABLE
)
622 static inline struct capture_control
*task_capc(struct zone
*zone
)
628 compaction_capture(struct capture_control
*capc
, struct page
*page
,
629 int order
, int migratetype
)
633 #endif /* CONFIG_COMPACTION */
635 static inline void account_freepages(struct zone
*zone
, int nr_pages
,
638 lockdep_assert_held(&zone
->lock
);
640 if (is_migrate_isolate(migratetype
))
643 __mod_zone_page_state(zone
, NR_FREE_PAGES
, nr_pages
);
645 if (is_migrate_cma(migratetype
))
646 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, nr_pages
);
647 else if (is_migrate_highatomic(migratetype
))
648 WRITE_ONCE(zone
->nr_free_highatomic
,
649 zone
->nr_free_highatomic
+ nr_pages
);
652 /* Used for pages not on another list */
653 static inline void __add_to_free_list(struct page
*page
, struct zone
*zone
,
654 unsigned int order
, int migratetype
,
657 struct free_area
*area
= &zone
->free_area
[order
];
659 VM_WARN_ONCE(get_pageblock_migratetype(page
) != migratetype
,
660 "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 get_pageblock_migratetype(page
), migratetype
, 1 << order
);
664 list_add_tail(&page
->buddy_list
, &area
->free_list
[migratetype
]);
666 list_add(&page
->buddy_list
, &area
->free_list
[migratetype
]);
671 * Used for pages which are on another list. Move the pages to the tail
672 * of the list - so the moved pages won't immediately be considered for
673 * allocation again (e.g., optimization for memory onlining).
675 static inline void move_to_free_list(struct page
*page
, struct zone
*zone
,
676 unsigned int order
, int old_mt
, int new_mt
)
678 struct free_area
*area
= &zone
->free_area
[order
];
680 /* Free page moving can fail, so it happens before the type update */
681 VM_WARN_ONCE(get_pageblock_migratetype(page
) != old_mt
,
682 "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 get_pageblock_migratetype(page
), old_mt
, 1 << order
);
685 list_move_tail(&page
->buddy_list
, &area
->free_list
[new_mt
]);
687 account_freepages(zone
, -(1 << order
), old_mt
);
688 account_freepages(zone
, 1 << order
, new_mt
);
691 static inline void __del_page_from_free_list(struct page
*page
, struct zone
*zone
,
692 unsigned int order
, int migratetype
)
694 VM_WARN_ONCE(get_pageblock_migratetype(page
) != migratetype
,
695 "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 get_pageblock_migratetype(page
), migratetype
, 1 << order
);
698 /* clear reported state and update reported page count */
699 if (page_reported(page
))
700 __ClearPageReported(page
);
702 list_del(&page
->buddy_list
);
703 __ClearPageBuddy(page
);
704 set_page_private(page
, 0);
705 zone
->free_area
[order
].nr_free
--;
708 static inline void del_page_from_free_list(struct page
*page
, struct zone
*zone
,
709 unsigned int order
, int migratetype
)
711 __del_page_from_free_list(page
, zone
, order
, migratetype
);
712 account_freepages(zone
, -(1 << order
), migratetype
);
715 static inline struct page
*get_page_from_free_area(struct free_area
*area
,
718 return list_first_entry_or_null(&area
->free_list
[migratetype
],
719 struct page
, buddy_list
);
723 * If this is less than the 2nd largest possible page, check if the buddy
724 * of the next-higher order is free. If it is, it's possible
725 * that pages are being freed that will coalesce soon. In case,
726 * that is happening, add the free page to the tail of the list
727 * so it's less likely to be used soon and more likely to be merged
728 * as a 2-level higher order page
731 buddy_merge_likely(unsigned long pfn
, unsigned long buddy_pfn
,
732 struct page
*page
, unsigned int order
)
734 unsigned long higher_page_pfn
;
735 struct page
*higher_page
;
737 if (order
>= MAX_PAGE_ORDER
- 1)
740 higher_page_pfn
= buddy_pfn
& pfn
;
741 higher_page
= page
+ (higher_page_pfn
- pfn
);
743 return find_buddy_page_pfn(higher_page
, higher_page_pfn
, order
+ 1,
748 * Freeing function for a buddy system allocator.
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
771 static inline void __free_one_page(struct page
*page
,
773 struct zone
*zone
, unsigned int order
,
774 int migratetype
, fpi_t fpi_flags
)
776 struct capture_control
*capc
= task_capc(zone
);
777 unsigned long buddy_pfn
= 0;
778 unsigned long combined_pfn
;
782 VM_BUG_ON(!zone_is_initialized(zone
));
783 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
785 VM_BUG_ON(migratetype
== -1);
786 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
787 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
789 account_freepages(zone
, 1 << order
, migratetype
);
791 while (order
< MAX_PAGE_ORDER
) {
792 int buddy_mt
= migratetype
;
794 if (compaction_capture(capc
, page
, order
, migratetype
)) {
795 account_freepages(zone
, -(1 << order
), migratetype
);
799 buddy
= find_buddy_page_pfn(page
, pfn
, order
, &buddy_pfn
);
803 if (unlikely(order
>= pageblock_order
)) {
805 * We want to prevent merge between freepages on pageblock
806 * without fallbacks and normal pageblock. Without this,
807 * pageblock isolation could cause incorrect freepage or CMA
808 * accounting or HIGHATOMIC accounting.
810 buddy_mt
= get_pfnblock_migratetype(buddy
, buddy_pfn
);
812 if (migratetype
!= buddy_mt
&&
813 (!migratetype_is_mergeable(migratetype
) ||
814 !migratetype_is_mergeable(buddy_mt
)))
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
822 if (page_is_guard(buddy
))
823 clear_page_guard(zone
, buddy
, order
);
825 __del_page_from_free_list(buddy
, zone
, order
, buddy_mt
);
827 if (unlikely(buddy_mt
!= migratetype
)) {
829 * Match buddy type. This ensures that an
830 * expand() down the line puts the sub-blocks
831 * on the right freelists.
833 set_pageblock_migratetype(buddy
, migratetype
);
836 combined_pfn
= buddy_pfn
& pfn
;
837 page
= page
+ (combined_pfn
- pfn
);
843 set_buddy_order(page
, order
);
845 if (fpi_flags
& FPI_TO_TAIL
)
847 else if (is_shuffle_order(order
))
848 to_tail
= shuffle_pick_tail();
850 to_tail
= buddy_merge_likely(pfn
, buddy_pfn
, page
, order
);
852 __add_to_free_list(page
, zone
, order
, migratetype
, to_tail
);
854 /* Notify page reporting subsystem of freed page */
855 if (!(fpi_flags
& FPI_SKIP_REPORT_NOTIFY
))
856 page_reporting_notify_free(order
);
860 * A bad page could be due to a number of fields. Instead of multiple branches,
861 * try and check multiple fields with one check. The caller must do a detailed
862 * check if necessary.
864 static inline bool page_expected_state(struct page
*page
,
865 unsigned long check_flags
)
867 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
870 if (unlikely((unsigned long)page
->mapping
|
871 page_ref_count(page
) |
875 #ifdef CONFIG_PAGE_POOL
876 ((page
->pp_magic
& ~0x3UL
) == PP_SIGNATURE
) |
878 (page
->flags
& check_flags
)))
884 static const char *page_bad_reason(struct page
*page
, unsigned long flags
)
886 const char *bad_reason
= NULL
;
888 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
889 bad_reason
= "nonzero mapcount";
890 if (unlikely(page
->mapping
!= NULL
))
891 bad_reason
= "non-NULL mapping";
892 if (unlikely(page_ref_count(page
) != 0))
893 bad_reason
= "nonzero _refcount";
894 if (unlikely(page
->flags
& flags
)) {
895 if (flags
== PAGE_FLAGS_CHECK_AT_PREP
)
896 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
898 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
901 if (unlikely(page
->memcg_data
))
902 bad_reason
= "page still charged to cgroup";
904 #ifdef CONFIG_PAGE_POOL
905 if (unlikely((page
->pp_magic
& ~0x3UL
) == PP_SIGNATURE
))
906 bad_reason
= "page_pool leak";
911 static void free_page_is_bad_report(struct page
*page
)
914 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_FREE
));
917 static inline bool free_page_is_bad(struct page
*page
)
919 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
922 /* Something has gone sideways, find it */
923 free_page_is_bad_report(page
);
927 static inline bool is_check_pages_enabled(void)
929 return static_branch_unlikely(&check_pages_enabled
);
932 static int free_tail_page_prepare(struct page
*head_page
, struct page
*page
)
934 struct folio
*folio
= (struct folio
*)head_page
;
938 * We rely page->lru.next never has bit 0 set, unless the page
939 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
941 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
943 if (!is_check_pages_enabled()) {
947 switch (page
- head_page
) {
949 /* the first tail page: these may be in place of ->mapping */
950 if (unlikely(folio_entire_mapcount(folio
))) {
951 bad_page(page
, "nonzero entire_mapcount");
954 if (unlikely(folio_large_mapcount(folio
))) {
955 bad_page(page
, "nonzero large_mapcount");
958 if (unlikely(atomic_read(&folio
->_nr_pages_mapped
))) {
959 bad_page(page
, "nonzero nr_pages_mapped");
962 if (unlikely(atomic_read(&folio
->_pincount
))) {
963 bad_page(page
, "nonzero pincount");
968 /* the second tail page: deferred_list overlaps ->mapping */
969 if (unlikely(!list_empty(&folio
->_deferred_list
))) {
970 bad_page(page
, "on deferred list");
975 if (page
->mapping
!= TAIL_MAPPING
) {
976 bad_page(page
, "corrupted mapping in tail page");
981 if (unlikely(!PageTail(page
))) {
982 bad_page(page
, "PageTail not set");
985 if (unlikely(compound_head(page
) != head_page
)) {
986 bad_page(page
, "compound_head not consistent");
991 page
->mapping
= NULL
;
992 clear_compound_head(page
);
997 * Skip KASAN memory poisoning when either:
999 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1001 * using page tags instead (see below).
1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003 * that error detection is disabled for accesses via the page address.
1005 * Pages will have match-all tags in the following circumstances:
1007 * 1. Pages are being initialized for the first time, including during deferred
1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011 * 3. The allocation was excluded from being checked due to sampling,
1012 * see the call to kasan_unpoison_pages.
1014 * Poisoning pages during deferred memory init will greatly lengthen the
1015 * process and cause problem in large memory systems as the deferred pages
1016 * initialization is done with interrupt disabled.
1018 * Assuming that there will be no reference to those newly initialized
1019 * pages before they are ever allocated, this should have no effect on
1020 * KASAN memory tracking as the poison will be properly inserted at page
1021 * allocation time. The only corner case is when pages are allocated by
1022 * on-demand allocation and then freed again before the deferred pages
1023 * initialization is done, but this is not likely to happen.
1025 static inline bool should_skip_kasan_poison(struct page
*page
)
1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC
))
1028 return deferred_pages_enabled();
1030 return page_kasan_tag(page
) == KASAN_TAG_KERNEL
;
1033 static void kernel_init_pages(struct page
*page
, int numpages
)
1037 /* s390's use of memset() could override KASAN redzones. */
1038 kasan_disable_current();
1039 for (i
= 0; i
< numpages
; i
++)
1040 clear_highpage_kasan_tagged(page
+ i
);
1041 kasan_enable_current();
1044 __always_inline
bool free_pages_prepare(struct page
*page
,
1048 bool skip_kasan_poison
= should_skip_kasan_poison(page
);
1049 bool init
= want_init_on_free();
1050 bool compound
= PageCompound(page
);
1051 struct folio
*folio
= page_folio(page
);
1053 VM_BUG_ON_PAGE(PageTail(page
), page
);
1055 trace_mm_page_free(page
, order
);
1056 kmsan_free_page(page
, order
);
1058 if (memcg_kmem_online() && PageMemcgKmem(page
))
1059 __memcg_kmem_uncharge_page(page
, order
);
1062 * In rare cases, when truncation or holepunching raced with
1063 * munlock after VM_LOCKED was cleared, Mlocked may still be
1064 * found set here. This does not indicate a problem, unless
1065 * "unevictable_pgs_cleared" appears worryingly large.
1067 if (unlikely(folio_test_mlocked(folio
))) {
1068 long nr_pages
= folio_nr_pages(folio
);
1070 __folio_clear_mlocked(folio
);
1071 zone_stat_mod_folio(folio
, NR_MLOCK
, -nr_pages
);
1072 count_vm_events(UNEVICTABLE_PGCLEARED
, nr_pages
);
1075 if (unlikely(PageHWPoison(page
)) && !order
) {
1076 /* Do not let hwpoison pages hit pcplists/buddy */
1077 reset_page_owner(page
, order
);
1078 page_table_check_free(page
, order
);
1079 pgalloc_tag_sub(page
, 1 << order
);
1082 * The page is isolated and accounted for.
1083 * Mark the codetag as empty to avoid accounting error
1084 * when the page is freed by unpoison_memory().
1086 clear_page_tag_ref(page
);
1090 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1093 * Check tail pages before head page information is cleared to
1094 * avoid checking PageCompound for order-0 pages.
1096 if (unlikely(order
)) {
1100 page
[1].flags
&= ~PAGE_FLAGS_SECOND
;
1101 for (i
= 1; i
< (1 << order
); i
++) {
1103 bad
+= free_tail_page_prepare(page
, page
+ i
);
1104 if (is_check_pages_enabled()) {
1105 if (free_page_is_bad(page
+ i
)) {
1110 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1113 if (PageMappingFlags(page
)) {
1115 mod_mthp_stat(order
, MTHP_STAT_NR_ANON
, -1);
1116 page
->mapping
= NULL
;
1118 if (is_check_pages_enabled()) {
1119 if (free_page_is_bad(page
))
1125 page_cpupid_reset_last(page
);
1126 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1127 reset_page_owner(page
, order
);
1128 page_table_check_free(page
, order
);
1129 pgalloc_tag_sub(page
, 1 << order
);
1131 if (!PageHighMem(page
)) {
1132 debug_check_no_locks_freed(page_address(page
),
1133 PAGE_SIZE
<< order
);
1134 debug_check_no_obj_freed(page_address(page
),
1135 PAGE_SIZE
<< order
);
1138 kernel_poison_pages(page
, 1 << order
);
1141 * As memory initialization might be integrated into KASAN,
1142 * KASAN poisoning and memory initialization code must be
1143 * kept together to avoid discrepancies in behavior.
1145 * With hardware tag-based KASAN, memory tags must be set before the
1146 * page becomes unavailable via debug_pagealloc or arch_free_page.
1148 if (!skip_kasan_poison
) {
1149 kasan_poison_pages(page
, order
, init
);
1151 /* Memory is already initialized if KASAN did it internally. */
1152 if (kasan_has_integrated_init())
1156 kernel_init_pages(page
, 1 << order
);
1159 * arch_free_page() can make the page's contents inaccessible. s390
1160 * does this. So nothing which can access the page's contents should
1161 * happen after this.
1163 arch_free_page(page
, order
);
1165 debug_pagealloc_unmap_pages(page
, 1 << order
);
1171 * Frees a number of pages from the PCP lists
1172 * Assumes all pages on list are in same zone.
1173 * count is the number of pages to free.
1175 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1176 struct per_cpu_pages
*pcp
,
1179 unsigned long flags
;
1184 * Ensure proper count is passed which otherwise would stuck in the
1185 * below while (list_empty(list)) loop.
1187 count
= min(pcp
->count
, count
);
1189 /* Ensure requested pindex is drained first. */
1190 pindex
= pindex
- 1;
1192 spin_lock_irqsave(&zone
->lock
, flags
);
1195 struct list_head
*list
;
1198 /* Remove pages from lists in a round-robin fashion. */
1200 if (++pindex
> NR_PCP_LISTS
- 1)
1202 list
= &pcp
->lists
[pindex
];
1203 } while (list_empty(list
));
1205 order
= pindex_to_order(pindex
);
1206 nr_pages
= 1 << order
;
1211 page
= list_last_entry(list
, struct page
, pcp_list
);
1212 pfn
= page_to_pfn(page
);
1213 mt
= get_pfnblock_migratetype(page
, pfn
);
1215 /* must delete to avoid corrupting pcp list */
1216 list_del(&page
->pcp_list
);
1218 pcp
->count
-= nr_pages
;
1220 __free_one_page(page
, pfn
, zone
, order
, mt
, FPI_NONE
);
1221 trace_mm_page_pcpu_drain(page
, order
, mt
);
1222 } while (count
> 0 && !list_empty(list
));
1225 spin_unlock_irqrestore(&zone
->lock
, flags
);
1228 /* Split a multi-block free page into its individual pageblocks. */
1229 static void split_large_buddy(struct zone
*zone
, struct page
*page
,
1230 unsigned long pfn
, int order
, fpi_t fpi
)
1232 unsigned long end
= pfn
+ (1 << order
);
1234 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn
, 1 << order
));
1235 /* Caller removed page from freelist, buddy info cleared! */
1236 VM_WARN_ON_ONCE(PageBuddy(page
));
1238 if (order
> pageblock_order
)
1239 order
= pageblock_order
;
1242 int mt
= get_pfnblock_migratetype(page
, pfn
);
1244 __free_one_page(page
, pfn
, zone
, order
, mt
, fpi
);
1248 page
= pfn_to_page(pfn
);
1252 static void free_one_page(struct zone
*zone
, struct page
*page
,
1253 unsigned long pfn
, unsigned int order
,
1256 unsigned long flags
;
1258 spin_lock_irqsave(&zone
->lock
, flags
);
1259 split_large_buddy(zone
, page
, pfn
, order
, fpi_flags
);
1260 spin_unlock_irqrestore(&zone
->lock
, flags
);
1262 __count_vm_events(PGFREE
, 1 << order
);
1265 static void __free_pages_ok(struct page
*page
, unsigned int order
,
1268 unsigned long pfn
= page_to_pfn(page
);
1269 struct zone
*zone
= page_zone(page
);
1271 if (free_pages_prepare(page
, order
))
1272 free_one_page(zone
, page
, pfn
, order
, fpi_flags
);
1275 void __meminit
__free_pages_core(struct page
*page
, unsigned int order
,
1276 enum meminit_context context
)
1278 unsigned int nr_pages
= 1 << order
;
1279 struct page
*p
= page
;
1283 * When initializing the memmap, __init_single_page() sets the refcount
1284 * of all pages to 1 ("allocated"/"not free"). We have to set the
1285 * refcount of all involved pages to 0.
1287 * Note that hotplugged memory pages are initialized to PageOffline().
1288 * Pages freed from memblock might be marked as reserved.
1290 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG
) &&
1291 unlikely(context
== MEMINIT_HOTPLUG
)) {
1292 for (loop
= 0; loop
< nr_pages
; loop
++, p
++) {
1293 VM_WARN_ON_ONCE(PageReserved(p
));
1294 __ClearPageOffline(p
);
1295 set_page_count(p
, 0);
1299 * Freeing the page with debug_pagealloc enabled will try to
1300 * unmap it; some archs don't like double-unmappings, so
1303 debug_pagealloc_map_pages(page
, nr_pages
);
1304 adjust_managed_page_count(page
, nr_pages
);
1306 for (loop
= 0; loop
< nr_pages
; loop
++, p
++) {
1307 __ClearPageReserved(p
);
1308 set_page_count(p
, 0);
1311 /* memblock adjusts totalram_pages() manually. */
1312 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1315 if (page_contains_unaccepted(page
, order
)) {
1316 if (order
== MAX_PAGE_ORDER
&& __free_unaccepted(page
))
1319 accept_memory(page_to_phys(page
), PAGE_SIZE
<< order
);
1323 * Bypass PCP and place fresh pages right to the tail, primarily
1324 * relevant for memory onlining.
1326 __free_pages_ok(page
, order
, FPI_TO_TAIL
);
1330 * Check that the whole (or subset of) a pageblock given by the interval of
1331 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1332 * with the migration of free compaction scanner.
1334 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 * It's possible on some configurations to have a setup like node0 node1 node0
1337 * i.e. it's possible that all pages within a zones range of pages do not
1338 * belong to a single zone. We assume that a border between node0 and node1
1339 * can occur within a single pageblock, but not a node0 node1 node0
1340 * interleaving within a single pageblock. It is therefore sufficient to check
1341 * the first and last page of a pageblock and avoid checking each individual
1342 * page in a pageblock.
1344 * Note: the function may return non-NULL struct page even for a page block
1345 * which contains a memory hole (i.e. there is no physical memory for a subset
1346 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1347 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1348 * even though the start pfn is online and valid. This should be safe most of
1349 * the time because struct pages are still initialized via init_unavailable_range()
1350 * and pfn walkers shouldn't touch any physical memory range for which they do
1351 * not recognize any specific metadata in struct pages.
1353 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1354 unsigned long end_pfn
, struct zone
*zone
)
1356 struct page
*start_page
;
1357 struct page
*end_page
;
1359 /* end_pfn is one past the range we are checking */
1362 if (!pfn_valid(end_pfn
))
1365 start_page
= pfn_to_online_page(start_pfn
);
1369 if (page_zone(start_page
) != zone
)
1372 end_page
= pfn_to_page(end_pfn
);
1374 /* This gives a shorter code than deriving page_zone(end_page) */
1375 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1382 * The order of subdivision here is critical for the IO subsystem.
1383 * Please do not alter this order without good reasons and regression
1384 * testing. Specifically, as large blocks of memory are subdivided,
1385 * the order in which smaller blocks are delivered depends on the order
1386 * they're subdivided in this function. This is the primary factor
1387 * influencing the order in which pages are delivered to the IO
1388 * subsystem according to empirical testing, and this is also justified
1389 * by considering the behavior of a buddy system containing a single
1390 * large block of memory acted on by a series of small allocations.
1391 * This behavior is a critical factor in sglist merging's success.
1395 static inline unsigned int expand(struct zone
*zone
, struct page
*page
, int low
,
1396 int high
, int migratetype
)
1398 unsigned int size
= 1 << high
;
1399 unsigned int nr_added
= 0;
1401 while (high
> low
) {
1404 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1407 * Mark as guard pages (or page), that will allow to
1408 * merge back to allocator when buddy will be freed.
1409 * Corresponding page table entries will not be touched,
1410 * pages will stay not present in virtual address space
1412 if (set_page_guard(zone
, &page
[size
], high
))
1415 __add_to_free_list(&page
[size
], zone
, high
, migratetype
, false);
1416 set_buddy_order(&page
[size
], high
);
1423 static __always_inline
void page_del_and_expand(struct zone
*zone
,
1424 struct page
*page
, int low
,
1425 int high
, int migratetype
)
1427 int nr_pages
= 1 << high
;
1429 __del_page_from_free_list(page
, zone
, high
, migratetype
);
1430 nr_pages
-= expand(zone
, page
, low
, high
, migratetype
);
1431 account_freepages(zone
, -nr_pages
, migratetype
);
1434 static void check_new_page_bad(struct page
*page
)
1436 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1437 /* Don't complain about hwpoisoned pages */
1438 if (PageBuddy(page
))
1439 __ClearPageBuddy(page
);
1444 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_PREP
));
1448 * This page is about to be returned from the page allocator
1450 static bool check_new_page(struct page
*page
)
1452 if (likely(page_expected_state(page
,
1453 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1456 check_new_page_bad(page
);
1460 static inline bool check_new_pages(struct page
*page
, unsigned int order
)
1462 if (is_check_pages_enabled()) {
1463 for (int i
= 0; i
< (1 << order
); i
++) {
1464 struct page
*p
= page
+ i
;
1466 if (check_new_page(p
))
1474 static inline bool should_skip_kasan_unpoison(gfp_t flags
)
1476 /* Don't skip if a software KASAN mode is enabled. */
1477 if (IS_ENABLED(CONFIG_KASAN_GENERIC
) ||
1478 IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
1481 /* Skip, if hardware tag-based KASAN is not enabled. */
1482 if (!kasan_hw_tags_enabled())
1486 * With hardware tag-based KASAN enabled, skip if this has been
1487 * requested via __GFP_SKIP_KASAN.
1489 return flags
& __GFP_SKIP_KASAN
;
1492 static inline bool should_skip_init(gfp_t flags
)
1494 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1495 if (!kasan_hw_tags_enabled())
1498 /* For hardware tag-based KASAN, skip if requested. */
1499 return (flags
& __GFP_SKIP_ZERO
);
1502 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1505 bool init
= !want_init_on_free() && want_init_on_alloc(gfp_flags
) &&
1506 !should_skip_init(gfp_flags
);
1507 bool zero_tags
= init
&& (gfp_flags
& __GFP_ZEROTAGS
);
1510 set_page_private(page
, 0);
1511 set_page_refcounted(page
);
1513 arch_alloc_page(page
, order
);
1514 debug_pagealloc_map_pages(page
, 1 << order
);
1517 * Page unpoisoning must happen before memory initialization.
1518 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1519 * allocations and the page unpoisoning code will complain.
1521 kernel_unpoison_pages(page
, 1 << order
);
1524 * As memory initialization might be integrated into KASAN,
1525 * KASAN unpoisoning and memory initializion code must be
1526 * kept together to avoid discrepancies in behavior.
1530 * If memory tags should be zeroed
1531 * (which happens only when memory should be initialized as well).
1534 /* Initialize both memory and memory tags. */
1535 for (i
= 0; i
!= 1 << order
; ++i
)
1536 tag_clear_highpage(page
+ i
);
1538 /* Take note that memory was initialized by the loop above. */
1541 if (!should_skip_kasan_unpoison(gfp_flags
) &&
1542 kasan_unpoison_pages(page
, order
, init
)) {
1543 /* Take note that memory was initialized by KASAN. */
1544 if (kasan_has_integrated_init())
1548 * If memory tags have not been set by KASAN, reset the page
1549 * tags to ensure page_address() dereferencing does not fault.
1551 for (i
= 0; i
!= 1 << order
; ++i
)
1552 page_kasan_tag_reset(page
+ i
);
1554 /* If memory is still not initialized, initialize it now. */
1556 kernel_init_pages(page
, 1 << order
);
1558 set_page_owner(page
, order
, gfp_flags
);
1559 page_table_check_alloc(page
, order
);
1560 pgalloc_tag_add(page
, current
, 1 << order
);
1563 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1564 unsigned int alloc_flags
)
1566 post_alloc_hook(page
, order
, gfp_flags
);
1568 if (order
&& (gfp_flags
& __GFP_COMP
))
1569 prep_compound_page(page
, order
);
1572 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1573 * allocate the page. The expectation is that the caller is taking
1574 * steps that will free more memory. The caller should avoid the page
1575 * being used for !PFMEMALLOC purposes.
1577 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1578 set_page_pfmemalloc(page
);
1580 clear_page_pfmemalloc(page
);
1584 * Go through the free lists for the given migratetype and remove
1585 * the smallest available page from the freelists
1587 static __always_inline
1588 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1591 unsigned int current_order
;
1592 struct free_area
*area
;
1595 /* Find a page of the appropriate size in the preferred list */
1596 for (current_order
= order
; current_order
< NR_PAGE_ORDERS
; ++current_order
) {
1597 area
= &(zone
->free_area
[current_order
]);
1598 page
= get_page_from_free_area(area
, migratetype
);
1602 page_del_and_expand(zone
, page
, order
, current_order
,
1604 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
,
1605 pcp_allowed_order(order
) &&
1606 migratetype
< MIGRATE_PCPTYPES
);
1615 * This array describes the order lists are fallen back to when
1616 * the free lists for the desirable migrate type are depleted
1618 * The other migratetypes do not have fallbacks.
1620 static int fallbacks
[MIGRATE_PCPTYPES
][MIGRATE_PCPTYPES
- 1] = {
1621 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
},
1622 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
},
1623 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
},
1627 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1630 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1633 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1634 unsigned int order
) { return NULL
; }
1638 * Change the type of a block and move all its free pages to that
1641 static int __move_freepages_block(struct zone
*zone
, unsigned long start_pfn
,
1642 int old_mt
, int new_mt
)
1645 unsigned long pfn
, end_pfn
;
1647 int pages_moved
= 0;
1649 VM_WARN_ON(start_pfn
& (pageblock_nr_pages
- 1));
1650 end_pfn
= pageblock_end_pfn(start_pfn
);
1652 for (pfn
= start_pfn
; pfn
< end_pfn
;) {
1653 page
= pfn_to_page(pfn
);
1654 if (!PageBuddy(page
)) {
1659 /* Make sure we are not inadvertently changing nodes */
1660 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1661 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
1663 order
= buddy_order(page
);
1665 move_to_free_list(page
, zone
, order
, old_mt
, new_mt
);
1668 pages_moved
+= 1 << order
;
1671 set_pageblock_migratetype(pfn_to_page(start_pfn
), new_mt
);
1676 static bool prep_move_freepages_block(struct zone
*zone
, struct page
*page
,
1677 unsigned long *start_pfn
,
1678 int *num_free
, int *num_movable
)
1680 unsigned long pfn
, start
, end
;
1682 pfn
= page_to_pfn(page
);
1683 start
= pageblock_start_pfn(pfn
);
1684 end
= pageblock_end_pfn(pfn
);
1687 * The caller only has the lock for @zone, don't touch ranges
1688 * that straddle into other zones. While we could move part of
1689 * the range that's inside the zone, this call is usually
1690 * accompanied by other operations such as migratetype updates
1691 * which also should be locked.
1693 if (!zone_spans_pfn(zone
, start
))
1695 if (!zone_spans_pfn(zone
, end
- 1))
1703 for (pfn
= start
; pfn
< end
;) {
1704 page
= pfn_to_page(pfn
);
1705 if (PageBuddy(page
)) {
1706 int nr
= 1 << buddy_order(page
);
1713 * We assume that pages that could be isolated for
1714 * migration are movable. But we don't actually try
1715 * isolating, as that would be expensive.
1717 if (PageLRU(page
) || __PageMovable(page
))
1726 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
1727 int old_mt
, int new_mt
)
1729 unsigned long start_pfn
;
1731 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, NULL
, NULL
))
1734 return __move_freepages_block(zone
, start_pfn
, old_mt
, new_mt
);
1737 #ifdef CONFIG_MEMORY_ISOLATION
1738 /* Look for a buddy that straddles start_pfn */
1739 static unsigned long find_large_buddy(unsigned long start_pfn
)
1743 unsigned long pfn
= start_pfn
;
1745 while (!PageBuddy(page
= pfn_to_page(pfn
))) {
1747 if (++order
> MAX_PAGE_ORDER
)
1749 pfn
&= ~0UL << order
;
1753 * Found a preceding buddy, but does it straddle?
1755 if (pfn
+ (1 << buddy_order(page
)) > start_pfn
)
1763 * move_freepages_block_isolate - move free pages in block for page isolation
1765 * @page: the pageblock page
1766 * @migratetype: migratetype to set on the pageblock
1768 * This is similar to move_freepages_block(), but handles the special
1769 * case encountered in page isolation, where the block of interest
1770 * might be part of a larger buddy spanning multiple pageblocks.
1772 * Unlike the regular page allocator path, which moves pages while
1773 * stealing buddies off the freelist, page isolation is interested in
1774 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1776 * This function handles that. Straddling buddies are split into
1777 * individual pageblocks. Only the block of interest is moved.
1779 * Returns %true if pages could be moved, %false otherwise.
1781 bool move_freepages_block_isolate(struct zone
*zone
, struct page
*page
,
1784 unsigned long start_pfn
, pfn
;
1786 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, NULL
, NULL
))
1789 /* No splits needed if buddies can't span multiple blocks */
1790 if (pageblock_order
== MAX_PAGE_ORDER
)
1793 /* We're a tail block in a larger buddy */
1794 pfn
= find_large_buddy(start_pfn
);
1795 if (pfn
!= start_pfn
) {
1796 struct page
*buddy
= pfn_to_page(pfn
);
1797 int order
= buddy_order(buddy
);
1799 del_page_from_free_list(buddy
, zone
, order
,
1800 get_pfnblock_migratetype(buddy
, pfn
));
1801 set_pageblock_migratetype(page
, migratetype
);
1802 split_large_buddy(zone
, buddy
, pfn
, order
, FPI_NONE
);
1806 /* We're the starting block of a larger buddy */
1807 if (PageBuddy(page
) && buddy_order(page
) > pageblock_order
) {
1808 int order
= buddy_order(page
);
1810 del_page_from_free_list(page
, zone
, order
,
1811 get_pfnblock_migratetype(page
, pfn
));
1812 set_pageblock_migratetype(page
, migratetype
);
1813 split_large_buddy(zone
, page
, pfn
, order
, FPI_NONE
);
1817 __move_freepages_block(zone
, start_pfn
,
1818 get_pfnblock_migratetype(page
, start_pfn
),
1822 #endif /* CONFIG_MEMORY_ISOLATION */
1824 static void change_pageblock_range(struct page
*pageblock_page
,
1825 int start_order
, int migratetype
)
1827 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1829 while (nr_pageblocks
--) {
1830 set_pageblock_migratetype(pageblock_page
, migratetype
);
1831 pageblock_page
+= pageblock_nr_pages
;
1836 * When we are falling back to another migratetype during allocation, try to
1837 * steal extra free pages from the same pageblocks to satisfy further
1838 * allocations, instead of polluting multiple pageblocks.
1840 * If we are stealing a relatively large buddy page, it is likely there will
1841 * be more free pages in the pageblock, so try to steal them all. For
1842 * reclaimable and unmovable allocations, we steal regardless of page size,
1843 * as fragmentation caused by those allocations polluting movable pageblocks
1844 * is worse than movable allocations stealing from unmovable and reclaimable
1847 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1850 * Leaving this order check is intended, although there is
1851 * relaxed order check in next check. The reason is that
1852 * we can actually steal whole pageblock if this condition met,
1853 * but, below check doesn't guarantee it and that is just heuristic
1854 * so could be changed anytime.
1856 if (order
>= pageblock_order
)
1859 if (order
>= pageblock_order
/ 2 ||
1860 start_mt
== MIGRATE_RECLAIMABLE
||
1861 start_mt
== MIGRATE_UNMOVABLE
||
1862 page_group_by_mobility_disabled
)
1868 static inline bool boost_watermark(struct zone
*zone
)
1870 unsigned long max_boost
;
1872 if (!watermark_boost_factor
)
1875 * Don't bother in zones that are unlikely to produce results.
1876 * On small machines, including kdump capture kernels running
1877 * in a small area, boosting the watermark can cause an out of
1878 * memory situation immediately.
1880 if ((pageblock_nr_pages
* 4) > zone_managed_pages(zone
))
1883 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
1884 watermark_boost_factor
, 10000);
1887 * high watermark may be uninitialised if fragmentation occurs
1888 * very early in boot so do not boost. We do not fall
1889 * through and boost by pageblock_nr_pages as failing
1890 * allocations that early means that reclaim is not going
1891 * to help and it may even be impossible to reclaim the
1892 * boosted watermark resulting in a hang.
1897 max_boost
= max(pageblock_nr_pages
, max_boost
);
1899 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
1906 * This function implements actual steal behaviour. If order is large enough, we
1907 * can claim the whole pageblock for the requested migratetype. If not, we check
1908 * the pageblock for constituent pages; if at least half of the pages are free
1909 * or compatible, we can still claim the whole block, so pages freed in the
1910 * future will be put on the correct free list. Otherwise, we isolate exactly
1911 * the order we need from the fallback block and leave its migratetype alone.
1913 static struct page
*
1914 steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1915 int current_order
, int order
, int start_type
,
1916 unsigned int alloc_flags
, bool whole_block
)
1918 int free_pages
, movable_pages
, alike_pages
;
1919 unsigned long start_pfn
;
1922 block_type
= get_pageblock_migratetype(page
);
1925 * This can happen due to races and we want to prevent broken
1926 * highatomic accounting.
1928 if (is_migrate_highatomic(block_type
))
1931 /* Take ownership for orders >= pageblock_order */
1932 if (current_order
>= pageblock_order
) {
1933 unsigned int nr_added
;
1935 del_page_from_free_list(page
, zone
, current_order
, block_type
);
1936 change_pageblock_range(page
, current_order
, start_type
);
1937 nr_added
= expand(zone
, page
, order
, current_order
, start_type
);
1938 account_freepages(zone
, nr_added
, start_type
);
1943 * Boost watermarks to increase reclaim pressure to reduce the
1944 * likelihood of future fallbacks. Wake kswapd now as the node
1945 * may be balanced overall and kswapd will not wake naturally.
1947 if (boost_watermark(zone
) && (alloc_flags
& ALLOC_KSWAPD
))
1948 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
1950 /* We are not allowed to try stealing from the whole block */
1954 /* moving whole block can fail due to zone boundary conditions */
1955 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, &free_pages
,
1960 * Determine how many pages are compatible with our allocation.
1961 * For movable allocation, it's the number of movable pages which
1962 * we just obtained. For other types it's a bit more tricky.
1964 if (start_type
== MIGRATE_MOVABLE
) {
1965 alike_pages
= movable_pages
;
1968 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1969 * to MOVABLE pageblock, consider all non-movable pages as
1970 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1971 * vice versa, be conservative since we can't distinguish the
1972 * exact migratetype of non-movable pages.
1974 if (block_type
== MIGRATE_MOVABLE
)
1975 alike_pages
= pageblock_nr_pages
1976 - (free_pages
+ movable_pages
);
1981 * If a sufficient number of pages in the block are either free or of
1982 * compatible migratability as our allocation, claim the whole block.
1984 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
1985 page_group_by_mobility_disabled
) {
1986 __move_freepages_block(zone
, start_pfn
, block_type
, start_type
);
1987 return __rmqueue_smallest(zone
, order
, start_type
);
1991 page_del_and_expand(zone
, page
, order
, current_order
, block_type
);
1996 * Check whether there is a suitable fallback freepage with requested order.
1997 * If only_stealable is true, this function returns fallback_mt only if
1998 * we can steal other freepages all together. This would help to reduce
1999 * fragmentation due to mixed migratetype pages in one pageblock.
2001 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2002 int migratetype
, bool only_stealable
, bool *can_steal
)
2007 if (area
->nr_free
== 0)
2011 for (i
= 0; i
< MIGRATE_PCPTYPES
- 1 ; i
++) {
2012 fallback_mt
= fallbacks
[migratetype
][i
];
2013 if (free_area_empty(area
, fallback_mt
))
2016 if (can_steal_fallback(order
, migratetype
))
2019 if (!only_stealable
)
2030 * Reserve the pageblock(s) surrounding an allocation request for
2031 * exclusive use of high-order atomic allocations if there are no
2032 * empty page blocks that contain a page with a suitable order
2034 static void reserve_highatomic_pageblock(struct page
*page
, int order
,
2038 unsigned long max_managed
, flags
;
2041 * The number reserved as: minimum is 1 pageblock, maximum is
2042 * roughly 1% of a zone. But if 1% of a zone falls below a
2043 * pageblock size, then don't reserve any pageblocks.
2044 * Check is race-prone but harmless.
2046 if ((zone_managed_pages(zone
) / 100) < pageblock_nr_pages
)
2048 max_managed
= ALIGN((zone_managed_pages(zone
) / 100), pageblock_nr_pages
);
2049 if (zone
->nr_reserved_highatomic
>= max_managed
)
2052 spin_lock_irqsave(&zone
->lock
, flags
);
2054 /* Recheck the nr_reserved_highatomic limit under the lock */
2055 if (zone
->nr_reserved_highatomic
>= max_managed
)
2059 mt
= get_pageblock_migratetype(page
);
2060 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2061 if (!migratetype_is_mergeable(mt
))
2064 if (order
< pageblock_order
) {
2065 if (move_freepages_block(zone
, page
, mt
, MIGRATE_HIGHATOMIC
) == -1)
2067 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2069 change_pageblock_range(page
, order
, MIGRATE_HIGHATOMIC
);
2070 zone
->nr_reserved_highatomic
+= 1 << order
;
2074 spin_unlock_irqrestore(&zone
->lock
, flags
);
2078 * Used when an allocation is about to fail under memory pressure. This
2079 * potentially hurts the reliability of high-order allocations when under
2080 * intense memory pressure but failed atomic allocations should be easier
2081 * to recover from than an OOM.
2083 * If @force is true, try to unreserve pageblocks even though highatomic
2084 * pageblock is exhausted.
2086 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2089 struct zonelist
*zonelist
= ac
->zonelist
;
2090 unsigned long flags
;
2097 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->highest_zoneidx
,
2100 * Preserve at least one pageblock unless memory pressure
2103 if (!force
&& zone
->nr_reserved_highatomic
<=
2107 spin_lock_irqsave(&zone
->lock
, flags
);
2108 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
2109 struct free_area
*area
= &(zone
->free_area
[order
]);
2112 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2116 mt
= get_pageblock_migratetype(page
);
2118 * In page freeing path, migratetype change is racy so
2119 * we can counter several free pages in a pageblock
2120 * in this loop although we changed the pageblock type
2121 * from highatomic to ac->migratetype. So we should
2122 * adjust the count once.
2124 if (is_migrate_highatomic(mt
)) {
2127 * It should never happen but changes to
2128 * locking could inadvertently allow a per-cpu
2129 * drain to add pages to MIGRATE_HIGHATOMIC
2130 * while unreserving so be safe and watch for
2133 size
= max(pageblock_nr_pages
, 1UL << order
);
2134 size
= min(size
, zone
->nr_reserved_highatomic
);
2135 zone
->nr_reserved_highatomic
-= size
;
2139 * Convert to ac->migratetype and avoid the normal
2140 * pageblock stealing heuristics. Minimally, the caller
2141 * is doing the work and needs the pages. More
2142 * importantly, if the block was always converted to
2143 * MIGRATE_UNMOVABLE or another type then the number
2144 * of pageblocks that cannot be completely freed
2147 if (order
< pageblock_order
)
2148 ret
= move_freepages_block(zone
, page
, mt
,
2151 move_to_free_list(page
, zone
, order
, mt
,
2153 change_pageblock_range(page
, order
,
2158 * Reserving the block(s) already succeeded,
2159 * so this should not fail on zone boundaries.
2161 WARN_ON_ONCE(ret
== -1);
2163 spin_unlock_irqrestore(&zone
->lock
, flags
);
2167 spin_unlock_irqrestore(&zone
->lock
, flags
);
2174 * Try finding a free buddy page on the fallback list and put it on the free
2175 * list of requested migratetype, possibly along with other pages from the same
2176 * block, depending on fragmentation avoidance heuristics. Returns true if
2177 * fallback was found so that __rmqueue_smallest() can grab it.
2179 * The use of signed ints for order and current_order is a deliberate
2180 * deviation from the rest of this file, to make the for loop
2181 * condition simpler.
2183 static __always_inline
struct page
*
2184 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2185 unsigned int alloc_flags
)
2187 struct free_area
*area
;
2189 int min_order
= order
;
2195 * Do not steal pages from freelists belonging to other pageblocks
2196 * i.e. orders < pageblock_order. If there are no local zones free,
2197 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2199 if (order
< pageblock_order
&& alloc_flags
& ALLOC_NOFRAGMENT
)
2200 min_order
= pageblock_order
;
2203 * Find the largest available free page in the other list. This roughly
2204 * approximates finding the pageblock with the most free pages, which
2205 * would be too costly to do exactly.
2207 for (current_order
= MAX_PAGE_ORDER
; current_order
>= min_order
;
2209 area
= &(zone
->free_area
[current_order
]);
2210 fallback_mt
= find_suitable_fallback(area
, current_order
,
2211 start_migratetype
, false, &can_steal
);
2212 if (fallback_mt
== -1)
2216 * We cannot steal all free pages from the pageblock and the
2217 * requested migratetype is movable. In that case it's better to
2218 * steal and split the smallest available page instead of the
2219 * largest available page, because even if the next movable
2220 * allocation falls back into a different pageblock than this
2221 * one, it won't cause permanent fragmentation.
2223 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2224 && current_order
> order
)
2233 for (current_order
= order
; current_order
< NR_PAGE_ORDERS
; current_order
++) {
2234 area
= &(zone
->free_area
[current_order
]);
2235 fallback_mt
= find_suitable_fallback(area
, current_order
,
2236 start_migratetype
, false, &can_steal
);
2237 if (fallback_mt
!= -1)
2242 * This should not happen - we already found a suitable fallback
2243 * when looking for the largest page.
2245 VM_BUG_ON(current_order
> MAX_PAGE_ORDER
);
2248 page
= get_page_from_free_area(area
, fallback_mt
);
2250 /* take off list, maybe claim block, expand remainder */
2251 page
= steal_suitable_fallback(zone
, page
, current_order
, order
,
2252 start_migratetype
, alloc_flags
, can_steal
);
2254 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2255 start_migratetype
, fallback_mt
);
2261 * Do the hard work of removing an element from the buddy allocator.
2262 * Call me with the zone->lock already held.
2264 static __always_inline
struct page
*
2265 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2266 unsigned int alloc_flags
)
2270 if (IS_ENABLED(CONFIG_CMA
)) {
2272 * Balance movable allocations between regular and CMA areas by
2273 * allocating from CMA when over half of the zone's free memory
2274 * is in the CMA area.
2276 if (alloc_flags
& ALLOC_CMA
&&
2277 zone_page_state(zone
, NR_FREE_CMA_PAGES
) >
2278 zone_page_state(zone
, NR_FREE_PAGES
) / 2) {
2279 page
= __rmqueue_cma_fallback(zone
, order
);
2285 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2286 if (unlikely(!page
)) {
2287 if (alloc_flags
& ALLOC_CMA
)
2288 page
= __rmqueue_cma_fallback(zone
, order
);
2291 page
= __rmqueue_fallback(zone
, order
, migratetype
,
2298 * Obtain a specified number of elements from the buddy allocator, all under
2299 * a single hold of the lock, for efficiency. Add them to the supplied list.
2300 * Returns the number of new pages which were placed at *list.
2302 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2303 unsigned long count
, struct list_head
*list
,
2304 int migratetype
, unsigned int alloc_flags
)
2306 unsigned long flags
;
2309 spin_lock_irqsave(&zone
->lock
, flags
);
2310 for (i
= 0; i
< count
; ++i
) {
2311 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2313 if (unlikely(page
== NULL
))
2317 * Split buddy pages returned by expand() are received here in
2318 * physical page order. The page is added to the tail of
2319 * caller's list. From the callers perspective, the linked list
2320 * is ordered by page number under some conditions. This is
2321 * useful for IO devices that can forward direction from the
2322 * head, thus also in the physical page order. This is useful
2323 * for IO devices that can merge IO requests if the physical
2324 * pages are ordered properly.
2326 list_add_tail(&page
->pcp_list
, list
);
2328 spin_unlock_irqrestore(&zone
->lock
, flags
);
2334 * Called from the vmstat counter updater to decay the PCP high.
2335 * Return whether there are addition works to do.
2337 int decay_pcp_high(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2339 int high_min
, to_drain
, batch
;
2342 high_min
= READ_ONCE(pcp
->high_min
);
2343 batch
= READ_ONCE(pcp
->batch
);
2345 * Decrease pcp->high periodically to try to free possible
2346 * idle PCP pages. And, avoid to free too many pages to
2347 * control latency. This caps pcp->high decrement too.
2349 if (pcp
->high
> high_min
) {
2350 pcp
->high
= max3(pcp
->count
- (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
),
2351 pcp
->high
- (pcp
->high
>> 3), high_min
);
2352 if (pcp
->high
> high_min
)
2356 to_drain
= pcp
->count
- pcp
->high
;
2358 spin_lock(&pcp
->lock
);
2359 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2360 spin_unlock(&pcp
->lock
);
2369 * Called from the vmstat counter updater to drain pagesets of this
2370 * currently executing processor on remote nodes after they have
2373 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2375 int to_drain
, batch
;
2377 batch
= READ_ONCE(pcp
->batch
);
2378 to_drain
= min(pcp
->count
, batch
);
2380 spin_lock(&pcp
->lock
);
2381 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2382 spin_unlock(&pcp
->lock
);
2388 * Drain pcplists of the indicated processor and zone.
2390 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2392 struct per_cpu_pages
*pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
2396 spin_lock(&pcp
->lock
);
2399 int to_drain
= min(count
,
2400 pcp
->batch
<< CONFIG_PCP_BATCH_SCALE_MAX
);
2402 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2405 spin_unlock(&pcp
->lock
);
2410 * Drain pcplists of all zones on the indicated processor.
2412 static void drain_pages(unsigned int cpu
)
2416 for_each_populated_zone(zone
) {
2417 drain_pages_zone(cpu
, zone
);
2422 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2424 void drain_local_pages(struct zone
*zone
)
2426 int cpu
= smp_processor_id();
2429 drain_pages_zone(cpu
, zone
);
2435 * The implementation of drain_all_pages(), exposing an extra parameter to
2436 * drain on all cpus.
2438 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2439 * not empty. The check for non-emptiness can however race with a free to
2440 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2441 * that need the guarantee that every CPU has drained can disable the
2442 * optimizing racy check.
2444 static void __drain_all_pages(struct zone
*zone
, bool force_all_cpus
)
2449 * Allocate in the BSS so we won't require allocation in
2450 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2452 static cpumask_t cpus_with_pcps
;
2455 * Do not drain if one is already in progress unless it's specific to
2456 * a zone. Such callers are primarily CMA and memory hotplug and need
2457 * the drain to be complete when the call returns.
2459 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2462 mutex_lock(&pcpu_drain_mutex
);
2466 * We don't care about racing with CPU hotplug event
2467 * as offline notification will cause the notified
2468 * cpu to drain that CPU pcps and on_each_cpu_mask
2469 * disables preemption as part of its processing
2471 for_each_online_cpu(cpu
) {
2472 struct per_cpu_pages
*pcp
;
2474 bool has_pcps
= false;
2476 if (force_all_cpus
) {
2478 * The pcp.count check is racy, some callers need a
2479 * guarantee that no cpu is missed.
2483 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
2487 for_each_populated_zone(z
) {
2488 pcp
= per_cpu_ptr(z
->per_cpu_pageset
, cpu
);
2497 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2499 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2502 for_each_cpu(cpu
, &cpus_with_pcps
) {
2504 drain_pages_zone(cpu
, zone
);
2509 mutex_unlock(&pcpu_drain_mutex
);
2513 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2515 * When zone parameter is non-NULL, spill just the single zone's pages.
2517 void drain_all_pages(struct zone
*zone
)
2519 __drain_all_pages(zone
, false);
2522 static int nr_pcp_free(struct per_cpu_pages
*pcp
, int batch
, int high
, bool free_high
)
2524 int min_nr_free
, max_nr_free
;
2526 /* Free as much as possible if batch freeing high-order pages. */
2527 if (unlikely(free_high
))
2528 return min(pcp
->count
, batch
<< CONFIG_PCP_BATCH_SCALE_MAX
);
2530 /* Check for PCP disabled or boot pageset */
2531 if (unlikely(high
< batch
))
2534 /* Leave at least pcp->batch pages on the list */
2535 min_nr_free
= batch
;
2536 max_nr_free
= high
- batch
;
2539 * Increase the batch number to the number of the consecutive
2540 * freed pages to reduce zone lock contention.
2542 batch
= clamp_t(int, pcp
->free_count
, min_nr_free
, max_nr_free
);
2547 static int nr_pcp_high(struct per_cpu_pages
*pcp
, struct zone
*zone
,
2548 int batch
, bool free_high
)
2550 int high
, high_min
, high_max
;
2552 high_min
= READ_ONCE(pcp
->high_min
);
2553 high_max
= READ_ONCE(pcp
->high_max
);
2554 high
= pcp
->high
= clamp(pcp
->high
, high_min
, high_max
);
2556 if (unlikely(!high
))
2559 if (unlikely(free_high
)) {
2560 pcp
->high
= max(high
- (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
),
2566 * If reclaim is active, limit the number of pages that can be
2567 * stored on pcp lists
2569 if (test_bit(ZONE_RECLAIM_ACTIVE
, &zone
->flags
)) {
2570 int free_count
= max_t(int, pcp
->free_count
, batch
);
2572 pcp
->high
= max(high
- free_count
, high_min
);
2573 return min(batch
<< 2, pcp
->high
);
2576 if (high_min
== high_max
)
2579 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
)) {
2580 int free_count
= max_t(int, pcp
->free_count
, batch
);
2582 pcp
->high
= max(high
- free_count
, high_min
);
2583 high
= max(pcp
->count
, high_min
);
2584 } else if (pcp
->count
>= high
) {
2585 int need_high
= pcp
->free_count
+ batch
;
2587 /* pcp->high should be large enough to hold batch freed pages */
2588 if (pcp
->high
< need_high
)
2589 pcp
->high
= clamp(need_high
, high_min
, high_max
);
2595 static void free_unref_page_commit(struct zone
*zone
, struct per_cpu_pages
*pcp
,
2596 struct page
*page
, int migratetype
,
2601 bool free_high
= false;
2604 * On freeing, reduce the number of pages that are batch allocated.
2605 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2608 pcp
->alloc_factor
>>= 1;
2609 __count_vm_events(PGFREE
, 1 << order
);
2610 pindex
= order_to_pindex(migratetype
, order
);
2611 list_add(&page
->pcp_list
, &pcp
->lists
[pindex
]);
2612 pcp
->count
+= 1 << order
;
2614 batch
= READ_ONCE(pcp
->batch
);
2616 * As high-order pages other than THP's stored on PCP can contribute
2617 * to fragmentation, limit the number stored when PCP is heavily
2618 * freeing without allocation. The remainder after bulk freeing
2619 * stops will be drained from vmstat refresh context.
2621 if (order
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) {
2622 free_high
= (pcp
->free_count
>= batch
&&
2623 (pcp
->flags
& PCPF_PREV_FREE_HIGH_ORDER
) &&
2624 (!(pcp
->flags
& PCPF_FREE_HIGH_BATCH
) ||
2625 pcp
->count
>= READ_ONCE(batch
)));
2626 pcp
->flags
|= PCPF_PREV_FREE_HIGH_ORDER
;
2627 } else if (pcp
->flags
& PCPF_PREV_FREE_HIGH_ORDER
) {
2628 pcp
->flags
&= ~PCPF_PREV_FREE_HIGH_ORDER
;
2630 if (pcp
->free_count
< (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
))
2631 pcp
->free_count
+= (1 << order
);
2632 high
= nr_pcp_high(pcp
, zone
, batch
, free_high
);
2633 if (pcp
->count
>= high
) {
2634 free_pcppages_bulk(zone
, nr_pcp_free(pcp
, batch
, high
, free_high
),
2636 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
) &&
2637 zone_watermark_ok(zone
, 0, high_wmark_pages(zone
),
2639 clear_bit(ZONE_BELOW_HIGH
, &zone
->flags
);
2646 void free_unref_page(struct page
*page
, unsigned int order
)
2648 unsigned long __maybe_unused UP_flags
;
2649 struct per_cpu_pages
*pcp
;
2651 unsigned long pfn
= page_to_pfn(page
);
2654 if (!pcp_allowed_order(order
)) {
2655 __free_pages_ok(page
, order
, FPI_NONE
);
2659 if (!free_pages_prepare(page
, order
))
2663 * We only track unmovable, reclaimable and movable on pcp lists.
2664 * Place ISOLATE pages on the isolated list because they are being
2665 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2666 * get those areas back if necessary. Otherwise, we may have to free
2667 * excessively into the page allocator
2669 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2670 if (unlikely(migratetype
>= MIGRATE_PCPTYPES
)) {
2671 if (unlikely(is_migrate_isolate(migratetype
))) {
2672 free_one_page(page_zone(page
), page
, pfn
, order
, FPI_NONE
);
2675 migratetype
= MIGRATE_MOVABLE
;
2678 zone
= page_zone(page
);
2679 pcp_trylock_prepare(UP_flags
);
2680 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
2682 free_unref_page_commit(zone
, pcp
, page
, migratetype
, order
);
2683 pcp_spin_unlock(pcp
);
2685 free_one_page(zone
, page
, pfn
, order
, FPI_NONE
);
2687 pcp_trylock_finish(UP_flags
);
2691 * Free a batch of folios
2693 void free_unref_folios(struct folio_batch
*folios
)
2695 unsigned long __maybe_unused UP_flags
;
2696 struct per_cpu_pages
*pcp
= NULL
;
2697 struct zone
*locked_zone
= NULL
;
2700 /* Prepare folios for freeing */
2701 for (i
= 0, j
= 0; i
< folios
->nr
; i
++) {
2702 struct folio
*folio
= folios
->folios
[i
];
2703 unsigned long pfn
= folio_pfn(folio
);
2704 unsigned int order
= folio_order(folio
);
2706 if (!free_pages_prepare(&folio
->page
, order
))
2709 * Free orders not handled on the PCP directly to the
2712 if (!pcp_allowed_order(order
)) {
2713 free_one_page(folio_zone(folio
), &folio
->page
,
2714 pfn
, order
, FPI_NONE
);
2717 folio
->private = (void *)(unsigned long)order
;
2719 folios
->folios
[j
] = folio
;
2724 for (i
= 0; i
< folios
->nr
; i
++) {
2725 struct folio
*folio
= folios
->folios
[i
];
2726 struct zone
*zone
= folio_zone(folio
);
2727 unsigned long pfn
= folio_pfn(folio
);
2728 unsigned int order
= (unsigned long)folio
->private;
2731 folio
->private = NULL
;
2732 migratetype
= get_pfnblock_migratetype(&folio
->page
, pfn
);
2734 /* Different zone requires a different pcp lock */
2735 if (zone
!= locked_zone
||
2736 is_migrate_isolate(migratetype
)) {
2738 pcp_spin_unlock(pcp
);
2739 pcp_trylock_finish(UP_flags
);
2745 * Free isolated pages directly to the
2746 * allocator, see comment in free_unref_page.
2748 if (is_migrate_isolate(migratetype
)) {
2749 free_one_page(zone
, &folio
->page
, pfn
,
2755 * trylock is necessary as folios may be getting freed
2756 * from IRQ or SoftIRQ context after an IO completion.
2758 pcp_trylock_prepare(UP_flags
);
2759 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
2760 if (unlikely(!pcp
)) {
2761 pcp_trylock_finish(UP_flags
);
2762 free_one_page(zone
, &folio
->page
, pfn
,
2770 * Non-isolated types over MIGRATE_PCPTYPES get added
2771 * to the MIGRATE_MOVABLE pcp list.
2773 if (unlikely(migratetype
>= MIGRATE_PCPTYPES
))
2774 migratetype
= MIGRATE_MOVABLE
;
2776 trace_mm_page_free_batched(&folio
->page
);
2777 free_unref_page_commit(zone
, pcp
, &folio
->page
, migratetype
,
2782 pcp_spin_unlock(pcp
);
2783 pcp_trylock_finish(UP_flags
);
2785 folio_batch_reinit(folios
);
2789 * split_page takes a non-compound higher-order page, and splits it into
2790 * n (1<<order) sub-pages: page[0..n]
2791 * Each sub-page must be freed individually.
2793 * Note: this is probably too low level an operation for use in drivers.
2794 * Please consult with lkml before using this in your driver.
2796 void split_page(struct page
*page
, unsigned int order
)
2800 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2801 VM_BUG_ON_PAGE(!page_count(page
), page
);
2803 for (i
= 1; i
< (1 << order
); i
++)
2804 set_page_refcounted(page
+ i
);
2805 split_page_owner(page
, order
, 0);
2806 pgalloc_tag_split(page_folio(page
), order
, 0);
2807 split_page_memcg(page
, order
, 0);
2809 EXPORT_SYMBOL_GPL(split_page
);
2811 int __isolate_free_page(struct page
*page
, unsigned int order
)
2813 struct zone
*zone
= page_zone(page
);
2814 int mt
= get_pageblock_migratetype(page
);
2816 if (!is_migrate_isolate(mt
)) {
2817 unsigned long watermark
;
2819 * Obey watermarks as if the page was being allocated. We can
2820 * emulate a high-order watermark check with a raised order-0
2821 * watermark, because we already know our high-order page
2824 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
2825 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2829 del_page_from_free_list(page
, zone
, order
, mt
);
2832 * Set the pageblock if the isolated page is at least half of a
2835 if (order
>= pageblock_order
- 1) {
2836 struct page
*endpage
= page
+ (1 << order
) - 1;
2837 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2838 int mt
= get_pageblock_migratetype(page
);
2840 * Only change normal pageblocks (i.e., they can merge
2843 if (migratetype_is_mergeable(mt
))
2844 move_freepages_block(zone
, page
, mt
,
2849 return 1UL << order
;
2853 * __putback_isolated_page - Return a now-isolated page back where we got it
2854 * @page: Page that was isolated
2855 * @order: Order of the isolated page
2856 * @mt: The page's pageblock's migratetype
2858 * This function is meant to return a page pulled from the free lists via
2859 * __isolate_free_page back to the free lists they were pulled from.
2861 void __putback_isolated_page(struct page
*page
, unsigned int order
, int mt
)
2863 struct zone
*zone
= page_zone(page
);
2865 /* zone lock should be held when this function is called */
2866 lockdep_assert_held(&zone
->lock
);
2868 /* Return isolated page to tail of freelist. */
2869 __free_one_page(page
, page_to_pfn(page
), zone
, order
, mt
,
2870 FPI_SKIP_REPORT_NOTIFY
| FPI_TO_TAIL
);
2874 * Update NUMA hit/miss statistics
2876 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
,
2880 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2882 /* skip numa counters update if numa stats is disabled */
2883 if (!static_branch_likely(&vm_numa_stat_key
))
2886 if (zone_to_nid(z
) != numa_node_id())
2887 local_stat
= NUMA_OTHER
;
2889 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
2890 __count_numa_events(z
, NUMA_HIT
, nr_account
);
2892 __count_numa_events(z
, NUMA_MISS
, nr_account
);
2893 __count_numa_events(preferred_zone
, NUMA_FOREIGN
, nr_account
);
2895 __count_numa_events(z
, local_stat
, nr_account
);
2899 static __always_inline
2900 struct page
*rmqueue_buddy(struct zone
*preferred_zone
, struct zone
*zone
,
2901 unsigned int order
, unsigned int alloc_flags
,
2905 unsigned long flags
;
2909 spin_lock_irqsave(&zone
->lock
, flags
);
2910 if (alloc_flags
& ALLOC_HIGHATOMIC
)
2911 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2913 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
2916 * If the allocation fails, allow OOM handling and
2917 * order-0 (atomic) allocs access to HIGHATOMIC
2918 * reserves as failing now is worse than failing a
2919 * high-order atomic allocation in the future.
2921 if (!page
&& (alloc_flags
& (ALLOC_OOM
|ALLOC_NON_BLOCK
)))
2922 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2925 spin_unlock_irqrestore(&zone
->lock
, flags
);
2929 spin_unlock_irqrestore(&zone
->lock
, flags
);
2930 } while (check_new_pages(page
, order
));
2932 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2933 zone_statistics(preferred_zone
, zone
, 1);
2938 static int nr_pcp_alloc(struct per_cpu_pages
*pcp
, struct zone
*zone
, int order
)
2940 int high
, base_batch
, batch
, max_nr_alloc
;
2941 int high_max
, high_min
;
2943 base_batch
= READ_ONCE(pcp
->batch
);
2944 high_min
= READ_ONCE(pcp
->high_min
);
2945 high_max
= READ_ONCE(pcp
->high_max
);
2946 high
= pcp
->high
= clamp(pcp
->high
, high_min
, high_max
);
2948 /* Check for PCP disabled or boot pageset */
2949 if (unlikely(high
< base_batch
))
2955 batch
= (base_batch
<< pcp
->alloc_factor
);
2958 * If we had larger pcp->high, we could avoid to allocate from
2961 if (high_min
!= high_max
&& !test_bit(ZONE_BELOW_HIGH
, &zone
->flags
))
2962 high
= pcp
->high
= min(high
+ batch
, high_max
);
2965 max_nr_alloc
= max(high
- pcp
->count
- base_batch
, base_batch
);
2967 * Double the number of pages allocated each time there is
2968 * subsequent allocation of order-0 pages without any freeing.
2970 if (batch
<= max_nr_alloc
&&
2971 pcp
->alloc_factor
< CONFIG_PCP_BATCH_SCALE_MAX
)
2972 pcp
->alloc_factor
++;
2973 batch
= min(batch
, max_nr_alloc
);
2977 * Scale batch relative to order if batch implies free pages
2978 * can be stored on the PCP. Batch can be 1 for small zones or
2979 * for boot pagesets which should never store free pages as
2980 * the pages may belong to arbitrary zones.
2983 batch
= max(batch
>> order
, 2);
2988 /* Remove page from the per-cpu list, caller must protect the list */
2990 struct page
*__rmqueue_pcplist(struct zone
*zone
, unsigned int order
,
2992 unsigned int alloc_flags
,
2993 struct per_cpu_pages
*pcp
,
2994 struct list_head
*list
)
2999 if (list_empty(list
)) {
3000 int batch
= nr_pcp_alloc(pcp
, zone
, order
);
3003 alloced
= rmqueue_bulk(zone
, order
,
3005 migratetype
, alloc_flags
);
3007 pcp
->count
+= alloced
<< order
;
3008 if (unlikely(list_empty(list
)))
3012 page
= list_first_entry(list
, struct page
, pcp_list
);
3013 list_del(&page
->pcp_list
);
3014 pcp
->count
-= 1 << order
;
3015 } while (check_new_pages(page
, order
));
3020 /* Lock and remove page from the per-cpu list */
3021 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3022 struct zone
*zone
, unsigned int order
,
3023 int migratetype
, unsigned int alloc_flags
)
3025 struct per_cpu_pages
*pcp
;
3026 struct list_head
*list
;
3028 unsigned long __maybe_unused UP_flags
;
3030 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3031 pcp_trylock_prepare(UP_flags
);
3032 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
3034 pcp_trylock_finish(UP_flags
);
3039 * On allocation, reduce the number of pages that are batch freed.
3040 * See nr_pcp_free() where free_factor is increased for subsequent
3043 pcp
->free_count
>>= 1;
3044 list
= &pcp
->lists
[order_to_pindex(migratetype
, order
)];
3045 page
= __rmqueue_pcplist(zone
, order
, migratetype
, alloc_flags
, pcp
, list
);
3046 pcp_spin_unlock(pcp
);
3047 pcp_trylock_finish(UP_flags
);
3049 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3050 zone_statistics(preferred_zone
, zone
, 1);
3056 * Allocate a page from the given zone.
3057 * Use pcplists for THP or "cheap" high-order allocations.
3061 * Do not instrument rmqueue() with KMSAN. This function may call
3062 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3063 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3064 * may call rmqueue() again, which will result in a deadlock.
3066 __no_sanitize_memory
3068 struct page
*rmqueue(struct zone
*preferred_zone
,
3069 struct zone
*zone
, unsigned int order
,
3070 gfp_t gfp_flags
, unsigned int alloc_flags
,
3075 if (likely(pcp_allowed_order(order
))) {
3076 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
3077 migratetype
, alloc_flags
);
3082 page
= rmqueue_buddy(preferred_zone
, zone
, order
, alloc_flags
,
3086 /* Separate test+clear to avoid unnecessary atomics */
3087 if ((alloc_flags
& ALLOC_KSWAPD
) &&
3088 unlikely(test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
))) {
3089 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3090 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3093 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3097 static inline long __zone_watermark_unusable_free(struct zone
*z
,
3098 unsigned int order
, unsigned int alloc_flags
)
3100 long unusable_free
= (1 << order
) - 1;
3103 * If the caller does not have rights to reserves below the min
3104 * watermark then subtract the free pages reserved for highatomic.
3106 if (likely(!(alloc_flags
& ALLOC_RESERVES
)))
3107 unusable_free
+= READ_ONCE(z
->nr_free_highatomic
);
3110 /* If allocation can't use CMA areas don't use free CMA pages */
3111 if (!(alloc_flags
& ALLOC_CMA
))
3112 unusable_free
+= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3115 return unusable_free
;
3119 * Return true if free base pages are above 'mark'. For high-order checks it
3120 * will return true of the order-0 watermark is reached and there is at least
3121 * one free page of a suitable size. Checking now avoids taking the zone lock
3122 * to check in the allocation paths if no pages are free.
3124 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3125 int highest_zoneidx
, unsigned int alloc_flags
,
3131 /* free_pages may go negative - that's OK */
3132 free_pages
-= __zone_watermark_unusable_free(z
, order
, alloc_flags
);
3134 if (unlikely(alloc_flags
& ALLOC_RESERVES
)) {
3136 * __GFP_HIGH allows access to 50% of the min reserve as well
3139 if (alloc_flags
& ALLOC_MIN_RESERVE
) {
3143 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3144 * access more reserves than just __GFP_HIGH. Other
3145 * non-blocking allocations requests such as GFP_NOWAIT
3146 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3147 * access to the min reserve.
3149 if (alloc_flags
& ALLOC_NON_BLOCK
)
3154 * OOM victims can try even harder than the normal reserve
3155 * users on the grounds that it's definitely going to be in
3156 * the exit path shortly and free memory. Any allocation it
3157 * makes during the free path will be small and short-lived.
3159 if (alloc_flags
& ALLOC_OOM
)
3164 * Check watermarks for an order-0 allocation request. If these
3165 * are not met, then a high-order request also cannot go ahead
3166 * even if a suitable page happened to be free.
3168 if (free_pages
<= min
+ z
->lowmem_reserve
[highest_zoneidx
])
3171 /* If this is an order-0 request then the watermark is fine */
3175 /* For a high-order request, check at least one suitable page is free */
3176 for (o
= order
; o
< NR_PAGE_ORDERS
; o
++) {
3177 struct free_area
*area
= &z
->free_area
[o
];
3183 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3184 if (!free_area_empty(area
, mt
))
3189 if ((alloc_flags
& ALLOC_CMA
) &&
3190 !free_area_empty(area
, MIGRATE_CMA
)) {
3194 if ((alloc_flags
& (ALLOC_HIGHATOMIC
|ALLOC_OOM
)) &&
3195 !free_area_empty(area
, MIGRATE_HIGHATOMIC
)) {
3202 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3203 int highest_zoneidx
, unsigned int alloc_flags
)
3205 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3206 zone_page_state(z
, NR_FREE_PAGES
));
3209 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3210 unsigned long mark
, int highest_zoneidx
,
3211 unsigned int alloc_flags
, gfp_t gfp_mask
)
3215 free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3218 * Fast check for order-0 only. If this fails then the reserves
3219 * need to be calculated.
3225 usable_free
= free_pages
;
3226 reserved
= __zone_watermark_unusable_free(z
, 0, alloc_flags
);
3228 /* reserved may over estimate high-atomic reserves. */
3229 usable_free
-= min(usable_free
, reserved
);
3230 if (usable_free
> mark
+ z
->lowmem_reserve
[highest_zoneidx
])
3234 if (__zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3239 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3240 * when checking the min watermark. The min watermark is the
3241 * point where boosting is ignored so that kswapd is woken up
3242 * when below the low watermark.
3244 if (unlikely(!order
&& (alloc_flags
& ALLOC_MIN_RESERVE
) && z
->watermark_boost
3245 && ((alloc_flags
& ALLOC_WMARK_MASK
) == WMARK_MIN
))) {
3246 mark
= z
->_watermark
[WMARK_MIN
];
3247 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
,
3248 alloc_flags
, free_pages
);
3254 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3255 unsigned long mark
, int highest_zoneidx
)
3257 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3259 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3260 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3262 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, 0,
3267 int __read_mostly node_reclaim_distance
= RECLAIM_DISTANCE
;
3269 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3271 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3272 node_reclaim_distance
;
3274 #else /* CONFIG_NUMA */
3275 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3279 #endif /* CONFIG_NUMA */
3282 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3283 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3284 * premature use of a lower zone may cause lowmem pressure problems that
3285 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3286 * probably too small. It only makes sense to spread allocations to avoid
3287 * fragmentation between the Normal and DMA32 zones.
3289 static inline unsigned int
3290 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3292 unsigned int alloc_flags
;
3295 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3298 alloc_flags
= (__force
int) (gfp_mask
& __GFP_KSWAPD_RECLAIM
);
3300 #ifdef CONFIG_ZONE_DMA32
3304 if (zone_idx(zone
) != ZONE_NORMAL
)
3308 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3309 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3310 * on UMA that if Normal is populated then so is DMA32.
3312 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3313 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3316 alloc_flags
|= ALLOC_NOFRAGMENT
;
3317 #endif /* CONFIG_ZONE_DMA32 */
3321 /* Must be called after current_gfp_context() which can change gfp_mask */
3322 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask
,
3323 unsigned int alloc_flags
)
3326 if (gfp_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3327 alloc_flags
|= ALLOC_CMA
;
3333 * get_page_from_freelist goes through the zonelist trying to allocate
3336 static struct page
*
3337 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3338 const struct alloc_context
*ac
)
3342 struct pglist_data
*last_pgdat
= NULL
;
3343 bool last_pgdat_dirty_ok
= false;
3348 * Scan zonelist, looking for a zone with enough free.
3349 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3351 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3352 z
= ac
->preferred_zoneref
;
3353 for_next_zone_zonelist_nodemask(zone
, z
, ac
->highest_zoneidx
,
3358 if (cpusets_enabled() &&
3359 (alloc_flags
& ALLOC_CPUSET
) &&
3360 !__cpuset_zone_allowed(zone
, gfp_mask
))
3363 * When allocating a page cache page for writing, we
3364 * want to get it from a node that is within its dirty
3365 * limit, such that no single node holds more than its
3366 * proportional share of globally allowed dirty pages.
3367 * The dirty limits take into account the node's
3368 * lowmem reserves and high watermark so that kswapd
3369 * should be able to balance it without having to
3370 * write pages from its LRU list.
3372 * XXX: For now, allow allocations to potentially
3373 * exceed the per-node dirty limit in the slowpath
3374 * (spread_dirty_pages unset) before going into reclaim,
3375 * which is important when on a NUMA setup the allowed
3376 * nodes are together not big enough to reach the
3377 * global limit. The proper fix for these situations
3378 * will require awareness of nodes in the
3379 * dirty-throttling and the flusher threads.
3381 if (ac
->spread_dirty_pages
) {
3382 if (last_pgdat
!= zone
->zone_pgdat
) {
3383 last_pgdat
= zone
->zone_pgdat
;
3384 last_pgdat_dirty_ok
= node_dirty_ok(zone
->zone_pgdat
);
3387 if (!last_pgdat_dirty_ok
)
3391 if (no_fallback
&& nr_online_nodes
> 1 &&
3392 zone
!= zonelist_zone(ac
->preferred_zoneref
)) {
3396 * If moving to a remote node, retry but allow
3397 * fragmenting fallbacks. Locality is more important
3398 * than fragmentation avoidance.
3400 local_nid
= zonelist_node_idx(ac
->preferred_zoneref
);
3401 if (zone_to_nid(zone
) != local_nid
) {
3402 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3407 cond_accept_memory(zone
, order
);
3410 * Detect whether the number of free pages is below high
3411 * watermark. If so, we will decrease pcp->high and free
3412 * PCP pages in free path to reduce the possibility of
3413 * premature page reclaiming. Detection is done here to
3414 * avoid to do that in hotter free path.
3416 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
))
3417 goto check_alloc_wmark
;
3419 mark
= high_wmark_pages(zone
);
3420 if (zone_watermark_fast(zone
, order
, mark
,
3421 ac
->highest_zoneidx
, alloc_flags
,
3425 set_bit(ZONE_BELOW_HIGH
, &zone
->flags
);
3428 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3429 if (!zone_watermark_fast(zone
, order
, mark
,
3430 ac
->highest_zoneidx
, alloc_flags
,
3434 if (cond_accept_memory(zone
, order
))
3438 * Watermark failed for this zone, but see if we can
3439 * grow this zone if it contains deferred pages.
3441 if (deferred_pages_enabled()) {
3442 if (_deferred_grow_zone(zone
, order
))
3445 /* Checked here to keep the fast path fast */
3446 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3447 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3450 if (!node_reclaim_enabled() ||
3451 !zone_allows_reclaim(zonelist_zone(ac
->preferred_zoneref
), zone
))
3454 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3456 case NODE_RECLAIM_NOSCAN
:
3459 case NODE_RECLAIM_FULL
:
3460 /* scanned but unreclaimable */
3463 /* did we reclaim enough */
3464 if (zone_watermark_ok(zone
, order
, mark
,
3465 ac
->highest_zoneidx
, alloc_flags
))
3473 page
= rmqueue(zonelist_zone(ac
->preferred_zoneref
), zone
, order
,
3474 gfp_mask
, alloc_flags
, ac
->migratetype
);
3476 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3479 * If this is a high-order atomic allocation then check
3480 * if the pageblock should be reserved for the future
3482 if (unlikely(alloc_flags
& ALLOC_HIGHATOMIC
))
3483 reserve_highatomic_pageblock(page
, order
, zone
);
3487 if (cond_accept_memory(zone
, order
))
3490 /* Try again if zone has deferred pages */
3491 if (deferred_pages_enabled()) {
3492 if (_deferred_grow_zone(zone
, order
))
3499 * It's possible on a UMA machine to get through all zones that are
3500 * fragmented. If avoiding fragmentation, reset and try again.
3503 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3510 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3512 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3515 * This documents exceptions given to allocations in certain
3516 * contexts that are allowed to allocate outside current's set
3519 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3520 if (tsk_is_oom_victim(current
) ||
3521 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3522 filter
&= ~SHOW_MEM_FILTER_NODES
;
3523 if (!in_task() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3524 filter
&= ~SHOW_MEM_FILTER_NODES
;
3526 __show_mem(filter
, nodemask
, gfp_zone(gfp_mask
));
3529 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3531 struct va_format vaf
;
3533 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
3535 if ((gfp_mask
& __GFP_NOWARN
) ||
3536 !__ratelimit(&nopage_rs
) ||
3537 ((gfp_mask
& __GFP_DMA
) && !has_managed_dma()))
3540 va_start(args
, fmt
);
3543 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3544 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3545 nodemask_pr_args(nodemask
));
3548 cpuset_print_current_mems_allowed();
3551 warn_alloc_show_mem(gfp_mask
, nodemask
);
3554 static inline struct page
*
3555 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3556 unsigned int alloc_flags
,
3557 const struct alloc_context
*ac
)
3561 page
= get_page_from_freelist(gfp_mask
, order
,
3562 alloc_flags
|ALLOC_CPUSET
, ac
);
3564 * fallback to ignore cpuset restriction if our nodes
3568 page
= get_page_from_freelist(gfp_mask
, order
,
3574 static inline struct page
*
3575 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3576 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3578 struct oom_control oc
= {
3579 .zonelist
= ac
->zonelist
,
3580 .nodemask
= ac
->nodemask
,
3582 .gfp_mask
= gfp_mask
,
3587 *did_some_progress
= 0;
3590 * Acquire the oom lock. If that fails, somebody else is
3591 * making progress for us.
3593 if (!mutex_trylock(&oom_lock
)) {
3594 *did_some_progress
= 1;
3595 schedule_timeout_uninterruptible(1);
3600 * Go through the zonelist yet one more time, keep very high watermark
3601 * here, this is only to catch a parallel oom killing, we must fail if
3602 * we're still under heavy pressure. But make sure that this reclaim
3603 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3604 * allocation which will never fail due to oom_lock already held.
3606 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3607 ~__GFP_DIRECT_RECLAIM
, order
,
3608 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3612 /* Coredumps can quickly deplete all memory reserves */
3613 if (current
->flags
& PF_DUMPCORE
)
3615 /* The OOM killer will not help higher order allocs */
3616 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3619 * We have already exhausted all our reclaim opportunities without any
3620 * success so it is time to admit defeat. We will skip the OOM killer
3621 * because it is very likely that the caller has a more reasonable
3622 * fallback than shooting a random task.
3624 * The OOM killer may not free memory on a specific node.
3626 if (gfp_mask
& (__GFP_RETRY_MAYFAIL
| __GFP_THISNODE
))
3628 /* The OOM killer does not needlessly kill tasks for lowmem */
3629 if (ac
->highest_zoneidx
< ZONE_NORMAL
)
3631 if (pm_suspended_storage())
3634 * XXX: GFP_NOFS allocations should rather fail than rely on
3635 * other request to make a forward progress.
3636 * We are in an unfortunate situation where out_of_memory cannot
3637 * do much for this context but let's try it to at least get
3638 * access to memory reserved if the current task is killed (see
3639 * out_of_memory). Once filesystems are ready to handle allocation
3640 * failures more gracefully we should just bail out here.
3643 /* Exhausted what can be done so it's blame time */
3644 if (out_of_memory(&oc
) ||
3645 WARN_ON_ONCE_GFP(gfp_mask
& __GFP_NOFAIL
, gfp_mask
)) {
3646 *did_some_progress
= 1;
3649 * Help non-failing allocations by giving them access to memory
3652 if (gfp_mask
& __GFP_NOFAIL
)
3653 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3654 ALLOC_NO_WATERMARKS
, ac
);
3657 mutex_unlock(&oom_lock
);
3662 * Maximum number of compaction retries with a progress before OOM
3663 * killer is consider as the only way to move forward.
3665 #define MAX_COMPACT_RETRIES 16
3667 #ifdef CONFIG_COMPACTION
3668 /* Try memory compaction for high-order allocations before reclaim */
3669 static struct page
*
3670 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3671 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3672 enum compact_priority prio
, enum compact_result
*compact_result
)
3674 struct page
*page
= NULL
;
3675 unsigned long pflags
;
3676 unsigned int noreclaim_flag
;
3681 psi_memstall_enter(&pflags
);
3682 delayacct_compact_start();
3683 noreclaim_flag
= memalloc_noreclaim_save();
3685 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3688 memalloc_noreclaim_restore(noreclaim_flag
);
3689 psi_memstall_leave(&pflags
);
3690 delayacct_compact_end();
3692 if (*compact_result
== COMPACT_SKIPPED
)
3695 * At least in one zone compaction wasn't deferred or skipped, so let's
3696 * count a compaction stall
3698 count_vm_event(COMPACTSTALL
);
3700 /* Prep a captured page if available */
3702 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3704 /* Try get a page from the freelist if available */
3706 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3709 struct zone
*zone
= page_zone(page
);
3711 zone
->compact_blockskip_flush
= false;
3712 compaction_defer_reset(zone
, order
, true);
3713 count_vm_event(COMPACTSUCCESS
);
3718 * It's bad if compaction run occurs and fails. The most likely reason
3719 * is that pages exist, but not enough to satisfy watermarks.
3721 count_vm_event(COMPACTFAIL
);
3729 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3730 enum compact_result compact_result
,
3731 enum compact_priority
*compact_priority
,
3732 int *compaction_retries
)
3734 int max_retries
= MAX_COMPACT_RETRIES
;
3737 int retries
= *compaction_retries
;
3738 enum compact_priority priority
= *compact_priority
;
3743 if (fatal_signal_pending(current
))
3747 * Compaction was skipped due to a lack of free order-0
3748 * migration targets. Continue if reclaim can help.
3750 if (compact_result
== COMPACT_SKIPPED
) {
3751 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3756 * Compaction managed to coalesce some page blocks, but the
3757 * allocation failed presumably due to a race. Retry some.
3759 if (compact_result
== COMPACT_SUCCESS
) {
3761 * !costly requests are much more important than
3762 * __GFP_RETRY_MAYFAIL costly ones because they are de
3763 * facto nofail and invoke OOM killer to move on while
3764 * costly can fail and users are ready to cope with
3765 * that. 1/4 retries is rather arbitrary but we would
3766 * need much more detailed feedback from compaction to
3767 * make a better decision.
3769 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3772 if (++(*compaction_retries
) <= max_retries
) {
3779 * Compaction failed. Retry with increasing priority.
3781 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3782 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3784 if (*compact_priority
> min_priority
) {
3785 (*compact_priority
)--;
3786 *compaction_retries
= 0;
3790 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3794 static inline struct page
*
3795 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3796 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3797 enum compact_priority prio
, enum compact_result
*compact_result
)
3799 *compact_result
= COMPACT_SKIPPED
;
3804 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3805 enum compact_result compact_result
,
3806 enum compact_priority
*compact_priority
,
3807 int *compaction_retries
)
3812 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3816 * There are setups with compaction disabled which would prefer to loop
3817 * inside the allocator rather than hit the oom killer prematurely.
3818 * Let's give them a good hope and keep retrying while the order-0
3819 * watermarks are OK.
3821 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3822 ac
->highest_zoneidx
, ac
->nodemask
) {
3823 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3824 ac
->highest_zoneidx
, alloc_flags
))
3829 #endif /* CONFIG_COMPACTION */
3831 #ifdef CONFIG_LOCKDEP
3832 static struct lockdep_map __fs_reclaim_map
=
3833 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3835 static bool __need_reclaim(gfp_t gfp_mask
)
3837 /* no reclaim without waiting on it */
3838 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3841 /* this guy won't enter reclaim */
3842 if (current
->flags
& PF_MEMALLOC
)
3845 if (gfp_mask
& __GFP_NOLOCKDEP
)
3851 void __fs_reclaim_acquire(unsigned long ip
)
3853 lock_acquire_exclusive(&__fs_reclaim_map
, 0, 0, NULL
, ip
);
3856 void __fs_reclaim_release(unsigned long ip
)
3858 lock_release(&__fs_reclaim_map
, ip
);
3861 void fs_reclaim_acquire(gfp_t gfp_mask
)
3863 gfp_mask
= current_gfp_context(gfp_mask
);
3865 if (__need_reclaim(gfp_mask
)) {
3866 if (gfp_mask
& __GFP_FS
)
3867 __fs_reclaim_acquire(_RET_IP_
);
3869 #ifdef CONFIG_MMU_NOTIFIER
3870 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map
);
3871 lock_map_release(&__mmu_notifier_invalidate_range_start_map
);
3876 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3878 void fs_reclaim_release(gfp_t gfp_mask
)
3880 gfp_mask
= current_gfp_context(gfp_mask
);
3882 if (__need_reclaim(gfp_mask
)) {
3883 if (gfp_mask
& __GFP_FS
)
3884 __fs_reclaim_release(_RET_IP_
);
3887 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3891 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3892 * have been rebuilt so allocation retries. Reader side does not lock and
3893 * retries the allocation if zonelist changes. Writer side is protected by the
3894 * embedded spin_lock.
3896 static DEFINE_SEQLOCK(zonelist_update_seq
);
3898 static unsigned int zonelist_iter_begin(void)
3900 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
))
3901 return read_seqbegin(&zonelist_update_seq
);
3906 static unsigned int check_retry_zonelist(unsigned int seq
)
3908 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
))
3909 return read_seqretry(&zonelist_update_seq
, seq
);
3914 /* Perform direct synchronous page reclaim */
3915 static unsigned long
3916 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3917 const struct alloc_context
*ac
)
3919 unsigned int noreclaim_flag
;
3920 unsigned long progress
;
3924 /* We now go into synchronous reclaim */
3925 cpuset_memory_pressure_bump();
3926 fs_reclaim_acquire(gfp_mask
);
3927 noreclaim_flag
= memalloc_noreclaim_save();
3929 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3932 memalloc_noreclaim_restore(noreclaim_flag
);
3933 fs_reclaim_release(gfp_mask
);
3940 /* The really slow allocator path where we enter direct reclaim */
3941 static inline struct page
*
3942 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3943 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3944 unsigned long *did_some_progress
)
3946 struct page
*page
= NULL
;
3947 unsigned long pflags
;
3948 bool drained
= false;
3950 psi_memstall_enter(&pflags
);
3951 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3952 if (unlikely(!(*did_some_progress
)))
3956 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3959 * If an allocation failed after direct reclaim, it could be because
3960 * pages are pinned on the per-cpu lists or in high alloc reserves.
3961 * Shrink them and try again
3963 if (!page
&& !drained
) {
3964 unreserve_highatomic_pageblock(ac
, false);
3965 drain_all_pages(NULL
);
3970 psi_memstall_leave(&pflags
);
3975 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
3976 const struct alloc_context
*ac
)
3980 pg_data_t
*last_pgdat
= NULL
;
3981 enum zone_type highest_zoneidx
= ac
->highest_zoneidx
;
3983 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, highest_zoneidx
,
3985 if (!managed_zone(zone
))
3987 if (last_pgdat
!= zone
->zone_pgdat
) {
3988 wakeup_kswapd(zone
, gfp_mask
, order
, highest_zoneidx
);
3989 last_pgdat
= zone
->zone_pgdat
;
3994 static inline unsigned int
3995 gfp_to_alloc_flags(gfp_t gfp_mask
, unsigned int order
)
3997 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
4000 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4001 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4002 * to save two branches.
4004 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_MIN_RESERVE
);
4005 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM
!= (__force gfp_t
) ALLOC_KSWAPD
);
4008 * The caller may dip into page reserves a bit more if the caller
4009 * cannot run direct reclaim, or if the caller has realtime scheduling
4010 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4011 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4013 alloc_flags
|= (__force
int)
4014 (gfp_mask
& (__GFP_HIGH
| __GFP_KSWAPD_RECLAIM
));
4016 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
)) {
4018 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4019 * if it can't schedule.
4021 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
4022 alloc_flags
|= ALLOC_NON_BLOCK
;
4025 alloc_flags
|= ALLOC_HIGHATOMIC
;
4029 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4030 * GFP_ATOMIC) rather than fail, see the comment for
4031 * cpuset_node_allowed().
4033 if (alloc_flags
& ALLOC_MIN_RESERVE
)
4034 alloc_flags
&= ~ALLOC_CPUSET
;
4035 } else if (unlikely(rt_or_dl_task(current
)) && in_task())
4036 alloc_flags
|= ALLOC_MIN_RESERVE
;
4038 alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, alloc_flags
);
4043 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4045 if (!tsk_is_oom_victim(tsk
))
4049 * !MMU doesn't have oom reaper so give access to memory reserves
4050 * only to the thread with TIF_MEMDIE set
4052 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4059 * Distinguish requests which really need access to full memory
4060 * reserves from oom victims which can live with a portion of it
4062 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4064 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4066 if (gfp_mask
& __GFP_MEMALLOC
)
4067 return ALLOC_NO_WATERMARKS
;
4068 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4069 return ALLOC_NO_WATERMARKS
;
4070 if (!in_interrupt()) {
4071 if (current
->flags
& PF_MEMALLOC
)
4072 return ALLOC_NO_WATERMARKS
;
4073 else if (oom_reserves_allowed(current
))
4080 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4082 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4086 * Checks whether it makes sense to retry the reclaim to make a forward progress
4087 * for the given allocation request.
4089 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4090 * without success, or when we couldn't even meet the watermark if we
4091 * reclaimed all remaining pages on the LRU lists.
4093 * Returns true if a retry is viable or false to enter the oom path.
4096 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4097 struct alloc_context
*ac
, int alloc_flags
,
4098 bool did_some_progress
, int *no_progress_loops
)
4105 * Costly allocations might have made a progress but this doesn't mean
4106 * their order will become available due to high fragmentation so
4107 * always increment the no progress counter for them
4109 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4110 *no_progress_loops
= 0;
4112 (*no_progress_loops
)++;
4114 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
)
4119 * Keep reclaiming pages while there is a chance this will lead
4120 * somewhere. If none of the target zones can satisfy our allocation
4121 * request even if all reclaimable pages are considered then we are
4122 * screwed and have to go OOM.
4124 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4125 ac
->highest_zoneidx
, ac
->nodemask
) {
4126 unsigned long available
;
4127 unsigned long reclaimable
;
4128 unsigned long min_wmark
= min_wmark_pages(zone
);
4131 if (cpusets_enabled() &&
4132 (alloc_flags
& ALLOC_CPUSET
) &&
4133 !__cpuset_zone_allowed(zone
, gfp_mask
))
4136 available
= reclaimable
= zone_reclaimable_pages(zone
);
4137 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4140 * Would the allocation succeed if we reclaimed all
4141 * reclaimable pages?
4143 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4144 ac
->highest_zoneidx
, alloc_flags
, available
);
4145 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4146 available
, min_wmark
, *no_progress_loops
, wmark
);
4154 * Memory allocation/reclaim might be called from a WQ context and the
4155 * current implementation of the WQ concurrency control doesn't
4156 * recognize that a particular WQ is congested if the worker thread is
4157 * looping without ever sleeping. Therefore we have to do a short sleep
4158 * here rather than calling cond_resched().
4160 if (current
->flags
& PF_WQ_WORKER
)
4161 schedule_timeout_uninterruptible(1);
4165 /* Before OOM, exhaust highatomic_reserve */
4167 return unreserve_highatomic_pageblock(ac
, true);
4173 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4176 * It's possible that cpuset's mems_allowed and the nodemask from
4177 * mempolicy don't intersect. This should be normally dealt with by
4178 * policy_nodemask(), but it's possible to race with cpuset update in
4179 * such a way the check therein was true, and then it became false
4180 * before we got our cpuset_mems_cookie here.
4181 * This assumes that for all allocations, ac->nodemask can come only
4182 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4183 * when it does not intersect with the cpuset restrictions) or the
4184 * caller can deal with a violated nodemask.
4186 if (cpusets_enabled() && ac
->nodemask
&&
4187 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4188 ac
->nodemask
= NULL
;
4193 * When updating a task's mems_allowed or mempolicy nodemask, it is
4194 * possible to race with parallel threads in such a way that our
4195 * allocation can fail while the mask is being updated. If we are about
4196 * to fail, check if the cpuset changed during allocation and if so,
4199 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4205 static inline struct page
*
4206 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4207 struct alloc_context
*ac
)
4209 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4210 bool can_compact
= gfp_compaction_allowed(gfp_mask
);
4211 bool nofail
= gfp_mask
& __GFP_NOFAIL
;
4212 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4213 struct page
*page
= NULL
;
4214 unsigned int alloc_flags
;
4215 unsigned long did_some_progress
;
4216 enum compact_priority compact_priority
;
4217 enum compact_result compact_result
;
4218 int compaction_retries
;
4219 int no_progress_loops
;
4220 unsigned int cpuset_mems_cookie
;
4221 unsigned int zonelist_iter_cookie
;
4224 if (unlikely(nofail
)) {
4226 * We most definitely don't want callers attempting to
4227 * allocate greater than order-1 page units with __GFP_NOFAIL.
4229 WARN_ON_ONCE(order
> 1);
4231 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4232 * otherwise, we may result in lockup.
4234 WARN_ON_ONCE(!can_direct_reclaim
);
4236 * PF_MEMALLOC request from this context is rather bizarre
4237 * because we cannot reclaim anything and only can loop waiting
4238 * for somebody to do a work for us.
4240 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4244 compaction_retries
= 0;
4245 no_progress_loops
= 0;
4246 compact_priority
= DEF_COMPACT_PRIORITY
;
4247 cpuset_mems_cookie
= read_mems_allowed_begin();
4248 zonelist_iter_cookie
= zonelist_iter_begin();
4251 * The fast path uses conservative alloc_flags to succeed only until
4252 * kswapd needs to be woken up, and to avoid the cost of setting up
4253 * alloc_flags precisely. So we do that now.
4255 alloc_flags
= gfp_to_alloc_flags(gfp_mask
, order
);
4258 * We need to recalculate the starting point for the zonelist iterator
4259 * because we might have used different nodemask in the fast path, or
4260 * there was a cpuset modification and we are retrying - otherwise we
4261 * could end up iterating over non-eligible zones endlessly.
4263 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4264 ac
->highest_zoneidx
, ac
->nodemask
);
4265 if (!zonelist_zone(ac
->preferred_zoneref
))
4269 * Check for insane configurations where the cpuset doesn't contain
4270 * any suitable zone to satisfy the request - e.g. non-movable
4271 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4273 if (cpusets_insane_config() && (gfp_mask
& __GFP_HARDWALL
)) {
4274 struct zoneref
*z
= first_zones_zonelist(ac
->zonelist
,
4275 ac
->highest_zoneidx
,
4276 &cpuset_current_mems_allowed
);
4277 if (!zonelist_zone(z
))
4281 if (alloc_flags
& ALLOC_KSWAPD
)
4282 wake_all_kswapds(order
, gfp_mask
, ac
);
4285 * The adjusted alloc_flags might result in immediate success, so try
4288 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4293 * For costly allocations, try direct compaction first, as it's likely
4294 * that we have enough base pages and don't need to reclaim. For non-
4295 * movable high-order allocations, do that as well, as compaction will
4296 * try prevent permanent fragmentation by migrating from blocks of the
4298 * Don't try this for allocations that are allowed to ignore
4299 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4301 if (can_direct_reclaim
&& can_compact
&&
4303 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4304 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4305 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4307 INIT_COMPACT_PRIORITY
,
4313 * Checks for costly allocations with __GFP_NORETRY, which
4314 * includes some THP page fault allocations
4316 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4318 * If allocating entire pageblock(s) and compaction
4319 * failed because all zones are below low watermarks
4320 * or is prohibited because it recently failed at this
4321 * order, fail immediately unless the allocator has
4322 * requested compaction and reclaim retry.
4325 * - potentially very expensive because zones are far
4326 * below their low watermarks or this is part of very
4327 * bursty high order allocations,
4328 * - not guaranteed to help because isolate_freepages()
4329 * may not iterate over freed pages as part of its
4331 * - unlikely to make entire pageblocks free on its
4334 if (compact_result
== COMPACT_SKIPPED
||
4335 compact_result
== COMPACT_DEFERRED
)
4339 * Looks like reclaim/compaction is worth trying, but
4340 * sync compaction could be very expensive, so keep
4341 * using async compaction.
4343 compact_priority
= INIT_COMPACT_PRIORITY
;
4348 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4349 if (alloc_flags
& ALLOC_KSWAPD
)
4350 wake_all_kswapds(order
, gfp_mask
, ac
);
4352 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4354 alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, reserve_flags
) |
4355 (alloc_flags
& ALLOC_KSWAPD
);
4358 * Reset the nodemask and zonelist iterators if memory policies can be
4359 * ignored. These allocations are high priority and system rather than
4362 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4363 ac
->nodemask
= NULL
;
4364 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4365 ac
->highest_zoneidx
, ac
->nodemask
);
4368 /* Attempt with potentially adjusted zonelist and alloc_flags */
4369 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4373 /* Caller is not willing to reclaim, we can't balance anything */
4374 if (!can_direct_reclaim
)
4377 /* Avoid recursion of direct reclaim */
4378 if (current
->flags
& PF_MEMALLOC
)
4381 /* Try direct reclaim and then allocating */
4382 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4383 &did_some_progress
);
4387 /* Try direct compaction and then allocating */
4388 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4389 compact_priority
, &compact_result
);
4393 /* Do not loop if specifically requested */
4394 if (gfp_mask
& __GFP_NORETRY
)
4398 * Do not retry costly high order allocations unless they are
4399 * __GFP_RETRY_MAYFAIL and we can compact
4401 if (costly_order
&& (!can_compact
||
4402 !(gfp_mask
& __GFP_RETRY_MAYFAIL
)))
4405 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4406 did_some_progress
> 0, &no_progress_loops
))
4410 * It doesn't make any sense to retry for the compaction if the order-0
4411 * reclaim is not able to make any progress because the current
4412 * implementation of the compaction depends on the sufficient amount
4413 * of free memory (see __compaction_suitable)
4415 if (did_some_progress
> 0 && can_compact
&&
4416 should_compact_retry(ac
, order
, alloc_flags
,
4417 compact_result
, &compact_priority
,
4418 &compaction_retries
))
4423 * Deal with possible cpuset update races or zonelist updates to avoid
4424 * a unnecessary OOM kill.
4426 if (check_retry_cpuset(cpuset_mems_cookie
, ac
) ||
4427 check_retry_zonelist(zonelist_iter_cookie
))
4430 /* Reclaim has failed us, start killing things */
4431 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4435 /* Avoid allocations with no watermarks from looping endlessly */
4436 if (tsk_is_oom_victim(current
) &&
4437 (alloc_flags
& ALLOC_OOM
||
4438 (gfp_mask
& __GFP_NOMEMALLOC
)))
4441 /* Retry as long as the OOM killer is making progress */
4442 if (did_some_progress
) {
4443 no_progress_loops
= 0;
4449 * Deal with possible cpuset update races or zonelist updates to avoid
4450 * a unnecessary OOM kill.
4452 if (check_retry_cpuset(cpuset_mems_cookie
, ac
) ||
4453 check_retry_zonelist(zonelist_iter_cookie
))
4457 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4460 if (unlikely(nofail
)) {
4462 * Lacking direct_reclaim we can't do anything to reclaim memory,
4463 * we disregard these unreasonable nofail requests and still
4466 if (!can_direct_reclaim
)
4470 * Help non-failing allocations by giving some access to memory
4471 * reserves normally used for high priority non-blocking
4472 * allocations but do not use ALLOC_NO_WATERMARKS because this
4473 * could deplete whole memory reserves which would just make
4474 * the situation worse.
4476 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_MIN_RESERVE
, ac
);
4484 warn_alloc(gfp_mask
, ac
->nodemask
,
4485 "page allocation failure: order:%u", order
);
4490 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4491 int preferred_nid
, nodemask_t
*nodemask
,
4492 struct alloc_context
*ac
, gfp_t
*alloc_gfp
,
4493 unsigned int *alloc_flags
)
4495 ac
->highest_zoneidx
= gfp_zone(gfp_mask
);
4496 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4497 ac
->nodemask
= nodemask
;
4498 ac
->migratetype
= gfp_migratetype(gfp_mask
);
4500 if (cpusets_enabled()) {
4501 *alloc_gfp
|= __GFP_HARDWALL
;
4503 * When we are in the interrupt context, it is irrelevant
4504 * to the current task context. It means that any node ok.
4506 if (in_task() && !ac
->nodemask
)
4507 ac
->nodemask
= &cpuset_current_mems_allowed
;
4509 *alloc_flags
|= ALLOC_CPUSET
;
4512 might_alloc(gfp_mask
);
4514 if (should_fail_alloc_page(gfp_mask
, order
))
4517 *alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, *alloc_flags
);
4519 /* Dirty zone balancing only done in the fast path */
4520 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4523 * The preferred zone is used for statistics but crucially it is
4524 * also used as the starting point for the zonelist iterator. It
4525 * may get reset for allocations that ignore memory policies.
4527 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4528 ac
->highest_zoneidx
, ac
->nodemask
);
4534 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4535 * @gfp: GFP flags for the allocation
4536 * @preferred_nid: The preferred NUMA node ID to allocate from
4537 * @nodemask: Set of nodes to allocate from, may be NULL
4538 * @nr_pages: The number of pages desired on the list or array
4539 * @page_list: Optional list to store the allocated pages
4540 * @page_array: Optional array to store the pages
4542 * This is a batched version of the page allocator that attempts to
4543 * allocate nr_pages quickly. Pages are added to page_list if page_list
4544 * is not NULL, otherwise it is assumed that the page_array is valid.
4546 * For lists, nr_pages is the number of pages that should be allocated.
4548 * For arrays, only NULL elements are populated with pages and nr_pages
4549 * is the maximum number of pages that will be stored in the array.
4551 * Returns the number of pages on the list or array.
4553 unsigned long alloc_pages_bulk_noprof(gfp_t gfp
, int preferred_nid
,
4554 nodemask_t
*nodemask
, int nr_pages
,
4555 struct list_head
*page_list
,
4556 struct page
**page_array
)
4559 unsigned long __maybe_unused UP_flags
;
4562 struct per_cpu_pages
*pcp
;
4563 struct list_head
*pcp_list
;
4564 struct alloc_context ac
;
4566 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4567 int nr_populated
= 0, nr_account
= 0;
4570 * Skip populated array elements to determine if any pages need
4571 * to be allocated before disabling IRQs.
4573 while (page_array
&& nr_populated
< nr_pages
&& page_array
[nr_populated
])
4576 /* No pages requested? */
4577 if (unlikely(nr_pages
<= 0))
4580 /* Already populated array? */
4581 if (unlikely(page_array
&& nr_pages
- nr_populated
== 0))
4584 /* Bulk allocator does not support memcg accounting. */
4585 if (memcg_kmem_online() && (gfp
& __GFP_ACCOUNT
))
4588 /* Use the single page allocator for one page. */
4589 if (nr_pages
- nr_populated
== 1)
4592 #ifdef CONFIG_PAGE_OWNER
4594 * PAGE_OWNER may recurse into the allocator to allocate space to
4595 * save the stack with pagesets.lock held. Releasing/reacquiring
4596 * removes much of the performance benefit of bulk allocation so
4597 * force the caller to allocate one page at a time as it'll have
4598 * similar performance to added complexity to the bulk allocator.
4600 if (static_branch_unlikely(&page_owner_inited
))
4604 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4605 gfp
&= gfp_allowed_mask
;
4607 if (!prepare_alloc_pages(gfp
, 0, preferred_nid
, nodemask
, &ac
, &alloc_gfp
, &alloc_flags
))
4611 /* Find an allowed local zone that meets the low watermark. */
4612 z
= ac
.preferred_zoneref
;
4613 for_next_zone_zonelist_nodemask(zone
, z
, ac
.highest_zoneidx
, ac
.nodemask
) {
4616 if (cpusets_enabled() && (alloc_flags
& ALLOC_CPUSET
) &&
4617 !__cpuset_zone_allowed(zone
, gfp
)) {
4621 if (nr_online_nodes
> 1 && zone
!= zonelist_zone(ac
.preferred_zoneref
) &&
4622 zone_to_nid(zone
) != zonelist_node_idx(ac
.preferred_zoneref
)) {
4626 cond_accept_memory(zone
, 0);
4628 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
) + nr_pages
;
4629 if (zone_watermark_fast(zone
, 0, mark
,
4630 zonelist_zone_idx(ac
.preferred_zoneref
),
4631 alloc_flags
, gfp
)) {
4635 if (cond_accept_memory(zone
, 0))
4636 goto retry_this_zone
;
4638 /* Try again if zone has deferred pages */
4639 if (deferred_pages_enabled()) {
4640 if (_deferred_grow_zone(zone
, 0))
4641 goto retry_this_zone
;
4646 * If there are no allowed local zones that meets the watermarks then
4647 * try to allocate a single page and reclaim if necessary.
4649 if (unlikely(!zone
))
4652 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4653 pcp_trylock_prepare(UP_flags
);
4654 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
4658 /* Attempt the batch allocation */
4659 pcp_list
= &pcp
->lists
[order_to_pindex(ac
.migratetype
, 0)];
4660 while (nr_populated
< nr_pages
) {
4662 /* Skip existing pages */
4663 if (page_array
&& page_array
[nr_populated
]) {
4668 page
= __rmqueue_pcplist(zone
, 0, ac
.migratetype
, alloc_flags
,
4670 if (unlikely(!page
)) {
4671 /* Try and allocate at least one page */
4673 pcp_spin_unlock(pcp
);
4680 prep_new_page(page
, 0, gfp
, 0);
4682 list_add(&page
->lru
, page_list
);
4684 page_array
[nr_populated
] = page
;
4688 pcp_spin_unlock(pcp
);
4689 pcp_trylock_finish(UP_flags
);
4691 __count_zid_vm_events(PGALLOC
, zone_idx(zone
), nr_account
);
4692 zone_statistics(zonelist_zone(ac
.preferred_zoneref
), zone
, nr_account
);
4695 return nr_populated
;
4698 pcp_trylock_finish(UP_flags
);
4701 page
= __alloc_pages_noprof(gfp
, 0, preferred_nid
, nodemask
);
4704 list_add(&page
->lru
, page_list
);
4706 page_array
[nr_populated
] = page
;
4712 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof
);
4715 * This is the 'heart' of the zoned buddy allocator.
4717 struct page
*__alloc_pages_noprof(gfp_t gfp
, unsigned int order
,
4718 int preferred_nid
, nodemask_t
*nodemask
)
4721 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4722 gfp_t alloc_gfp
; /* The gfp_t that was actually used for allocation */
4723 struct alloc_context ac
= { };
4726 * There are several places where we assume that the order value is sane
4727 * so bail out early if the request is out of bound.
4729 if (WARN_ON_ONCE_GFP(order
> MAX_PAGE_ORDER
, gfp
))
4732 gfp
&= gfp_allowed_mask
;
4734 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4735 * resp. GFP_NOIO which has to be inherited for all allocation requests
4736 * from a particular context which has been marked by
4737 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4738 * movable zones are not used during allocation.
4740 gfp
= current_gfp_context(gfp
);
4742 if (!prepare_alloc_pages(gfp
, order
, preferred_nid
, nodemask
, &ac
,
4743 &alloc_gfp
, &alloc_flags
))
4747 * Forbid the first pass from falling back to types that fragment
4748 * memory until all local zones are considered.
4750 alloc_flags
|= alloc_flags_nofragment(zonelist_zone(ac
.preferred_zoneref
), gfp
);
4752 /* First allocation attempt */
4753 page
= get_page_from_freelist(alloc_gfp
, order
, alloc_flags
, &ac
);
4758 ac
.spread_dirty_pages
= false;
4761 * Restore the original nodemask if it was potentially replaced with
4762 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4764 ac
.nodemask
= nodemask
;
4766 page
= __alloc_pages_slowpath(alloc_gfp
, order
, &ac
);
4769 if (memcg_kmem_online() && (gfp
& __GFP_ACCOUNT
) && page
&&
4770 unlikely(__memcg_kmem_charge_page(page
, gfp
, order
) != 0)) {
4771 __free_pages(page
, order
);
4775 trace_mm_page_alloc(page
, order
, alloc_gfp
, ac
.migratetype
);
4776 kmsan_alloc_page(page
, order
, alloc_gfp
);
4780 EXPORT_SYMBOL(__alloc_pages_noprof
);
4782 struct folio
*__folio_alloc_noprof(gfp_t gfp
, unsigned int order
, int preferred_nid
,
4783 nodemask_t
*nodemask
)
4785 struct page
*page
= __alloc_pages_noprof(gfp
| __GFP_COMP
, order
,
4786 preferred_nid
, nodemask
);
4787 return page_rmappable_folio(page
);
4789 EXPORT_SYMBOL(__folio_alloc_noprof
);
4792 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4793 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4794 * you need to access high mem.
4796 unsigned long get_free_pages_noprof(gfp_t gfp_mask
, unsigned int order
)
4800 page
= alloc_pages_noprof(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4803 return (unsigned long) page_address(page
);
4805 EXPORT_SYMBOL(get_free_pages_noprof
);
4807 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask
)
4809 return get_free_pages_noprof(gfp_mask
| __GFP_ZERO
, 0);
4811 EXPORT_SYMBOL(get_zeroed_page_noprof
);
4814 * __free_pages - Free pages allocated with alloc_pages().
4815 * @page: The page pointer returned from alloc_pages().
4816 * @order: The order of the allocation.
4818 * This function can free multi-page allocations that are not compound
4819 * pages. It does not check that the @order passed in matches that of
4820 * the allocation, so it is easy to leak memory. Freeing more memory
4821 * than was allocated will probably emit a warning.
4823 * If the last reference to this page is speculative, it will be released
4824 * by put_page() which only frees the first page of a non-compound
4825 * allocation. To prevent the remaining pages from being leaked, we free
4826 * the subsequent pages here. If you want to use the page's reference
4827 * count to decide when to free the allocation, you should allocate a
4828 * compound page, and use put_page() instead of __free_pages().
4830 * Context: May be called in interrupt context or while holding a normal
4831 * spinlock, but not in NMI context or while holding a raw spinlock.
4833 void __free_pages(struct page
*page
, unsigned int order
)
4835 /* get PageHead before we drop reference */
4836 int head
= PageHead(page
);
4837 struct alloc_tag
*tag
= pgalloc_tag_get(page
);
4839 if (put_page_testzero(page
))
4840 free_unref_page(page
, order
);
4842 pgalloc_tag_sub_pages(tag
, (1 << order
) - 1);
4844 free_unref_page(page
+ (1 << order
), order
);
4847 EXPORT_SYMBOL(__free_pages
);
4849 void free_pages(unsigned long addr
, unsigned int order
)
4852 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4853 __free_pages(virt_to_page((void *)addr
), order
);
4857 EXPORT_SYMBOL(free_pages
);
4859 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4863 unsigned long nr
= DIV_ROUND_UP(size
, PAGE_SIZE
);
4864 struct page
*page
= virt_to_page((void *)addr
);
4865 struct page
*last
= page
+ nr
;
4867 split_page_owner(page
, order
, 0);
4868 pgalloc_tag_split(page_folio(page
), order
, 0);
4869 split_page_memcg(page
, order
, 0);
4870 while (page
< --last
)
4871 set_page_refcounted(last
);
4873 last
= page
+ (1UL << order
);
4874 for (page
+= nr
; page
< last
; page
++)
4875 __free_pages_ok(page
, 0, FPI_TO_TAIL
);
4877 return (void *)addr
;
4881 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4882 * @size: the number of bytes to allocate
4883 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4885 * This function is similar to alloc_pages(), except that it allocates the
4886 * minimum number of pages to satisfy the request. alloc_pages() can only
4887 * allocate memory in power-of-two pages.
4889 * This function is also limited by MAX_PAGE_ORDER.
4891 * Memory allocated by this function must be released by free_pages_exact().
4893 * Return: pointer to the allocated area or %NULL in case of error.
4895 void *alloc_pages_exact_noprof(size_t size
, gfp_t gfp_mask
)
4897 unsigned int order
= get_order(size
);
4900 if (WARN_ON_ONCE(gfp_mask
& (__GFP_COMP
| __GFP_HIGHMEM
)))
4901 gfp_mask
&= ~(__GFP_COMP
| __GFP_HIGHMEM
);
4903 addr
= get_free_pages_noprof(gfp_mask
, order
);
4904 return make_alloc_exact(addr
, order
, size
);
4906 EXPORT_SYMBOL(alloc_pages_exact_noprof
);
4909 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4911 * @nid: the preferred node ID where memory should be allocated
4912 * @size: the number of bytes to allocate
4913 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4915 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4918 * Return: pointer to the allocated area or %NULL in case of error.
4920 void * __meminit
alloc_pages_exact_nid_noprof(int nid
, size_t size
, gfp_t gfp_mask
)
4922 unsigned int order
= get_order(size
);
4925 if (WARN_ON_ONCE(gfp_mask
& (__GFP_COMP
| __GFP_HIGHMEM
)))
4926 gfp_mask
&= ~(__GFP_COMP
| __GFP_HIGHMEM
);
4928 p
= alloc_pages_node_noprof(nid
, gfp_mask
, order
);
4931 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4935 * free_pages_exact - release memory allocated via alloc_pages_exact()
4936 * @virt: the value returned by alloc_pages_exact.
4937 * @size: size of allocation, same value as passed to alloc_pages_exact().
4939 * Release the memory allocated by a previous call to alloc_pages_exact.
4941 void free_pages_exact(void *virt
, size_t size
)
4943 unsigned long addr
= (unsigned long)virt
;
4944 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4946 while (addr
< end
) {
4951 EXPORT_SYMBOL(free_pages_exact
);
4954 * nr_free_zone_pages - count number of pages beyond high watermark
4955 * @offset: The zone index of the highest zone
4957 * nr_free_zone_pages() counts the number of pages which are beyond the
4958 * high watermark within all zones at or below a given zone index. For each
4959 * zone, the number of pages is calculated as:
4961 * nr_free_zone_pages = managed_pages - high_pages
4963 * Return: number of pages beyond high watermark.
4965 static unsigned long nr_free_zone_pages(int offset
)
4970 /* Just pick one node, since fallback list is circular */
4971 unsigned long sum
= 0;
4973 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4975 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4976 unsigned long size
= zone_managed_pages(zone
);
4977 unsigned long high
= high_wmark_pages(zone
);
4986 * nr_free_buffer_pages - count number of pages beyond high watermark
4988 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4989 * watermark within ZONE_DMA and ZONE_NORMAL.
4991 * Return: number of pages beyond high watermark within ZONE_DMA and
4994 unsigned long nr_free_buffer_pages(void)
4996 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4998 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
5000 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5002 zoneref
->zone
= zone
;
5003 zoneref
->zone_idx
= zone_idx(zone
);
5007 * Builds allocation fallback zone lists.
5009 * Add all populated zones of a node to the zonelist.
5011 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5014 enum zone_type zone_type
= MAX_NR_ZONES
;
5019 zone
= pgdat
->node_zones
+ zone_type
;
5020 if (populated_zone(zone
)) {
5021 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5022 check_highest_zone(zone_type
);
5024 } while (zone_type
);
5031 static int __parse_numa_zonelist_order(char *s
)
5034 * We used to support different zonelists modes but they turned
5035 * out to be just not useful. Let's keep the warning in place
5036 * if somebody still use the cmd line parameter so that we do
5037 * not fail it silently
5039 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5040 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5046 static char numa_zonelist_order
[] = "Node";
5047 #define NUMA_ZONELIST_ORDER_LEN 16
5049 * sysctl handler for numa_zonelist_order
5051 static int numa_zonelist_order_handler(const struct ctl_table
*table
, int write
,
5052 void *buffer
, size_t *length
, loff_t
*ppos
)
5055 return __parse_numa_zonelist_order(buffer
);
5056 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5059 static int node_load
[MAX_NUMNODES
];
5062 * find_next_best_node - find the next node that should appear in a given node's fallback list
5063 * @node: node whose fallback list we're appending
5064 * @used_node_mask: nodemask_t of already used nodes
5066 * We use a number of factors to determine which is the next node that should
5067 * appear on a given node's fallback list. The node should not have appeared
5068 * already in @node's fallback list, and it should be the next closest node
5069 * according to the distance array (which contains arbitrary distance values
5070 * from each node to each node in the system), and should also prefer nodes
5071 * with no CPUs, since presumably they'll have very little allocation pressure
5072 * on them otherwise.
5074 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5076 int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5079 int min_val
= INT_MAX
;
5080 int best_node
= NUMA_NO_NODE
;
5083 * Use the local node if we haven't already, but for memoryless local
5084 * node, we should skip it and fall back to other nodes.
5086 if (!node_isset(node
, *used_node_mask
) && node_state(node
, N_MEMORY
)) {
5087 node_set(node
, *used_node_mask
);
5091 for_each_node_state(n
, N_MEMORY
) {
5093 /* Don't want a node to appear more than once */
5094 if (node_isset(n
, *used_node_mask
))
5097 /* Use the distance array to find the distance */
5098 val
= node_distance(node
, n
);
5100 /* Penalize nodes under us ("prefer the next node") */
5103 /* Give preference to headless and unused nodes */
5104 if (!cpumask_empty(cpumask_of_node(n
)))
5105 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5107 /* Slight preference for less loaded node */
5108 val
*= MAX_NUMNODES
;
5109 val
+= node_load
[n
];
5111 if (val
< min_val
) {
5118 node_set(best_node
, *used_node_mask
);
5125 * Build zonelists ordered by node and zones within node.
5126 * This results in maximum locality--normal zone overflows into local
5127 * DMA zone, if any--but risks exhausting DMA zone.
5129 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5132 struct zoneref
*zonerefs
;
5135 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5137 for (i
= 0; i
< nr_nodes
; i
++) {
5140 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5142 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5143 zonerefs
+= nr_zones
;
5145 zonerefs
->zone
= NULL
;
5146 zonerefs
->zone_idx
= 0;
5150 * Build __GFP_THISNODE zonelists
5152 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5154 struct zoneref
*zonerefs
;
5157 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5158 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5159 zonerefs
+= nr_zones
;
5160 zonerefs
->zone
= NULL
;
5161 zonerefs
->zone_idx
= 0;
5165 * Build zonelists ordered by zone and nodes within zones.
5166 * This results in conserving DMA zone[s] until all Normal memory is
5167 * exhausted, but results in overflowing to remote node while memory
5168 * may still exist in local DMA zone.
5171 static void build_zonelists(pg_data_t
*pgdat
)
5173 static int node_order
[MAX_NUMNODES
];
5174 int node
, nr_nodes
= 0;
5175 nodemask_t used_mask
= NODE_MASK_NONE
;
5176 int local_node
, prev_node
;
5178 /* NUMA-aware ordering of nodes */
5179 local_node
= pgdat
->node_id
;
5180 prev_node
= local_node
;
5182 memset(node_order
, 0, sizeof(node_order
));
5183 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5185 * We don't want to pressure a particular node.
5186 * So adding penalty to the first node in same
5187 * distance group to make it round-robin.
5189 if (node_distance(local_node
, node
) !=
5190 node_distance(local_node
, prev_node
))
5191 node_load
[node
] += 1;
5193 node_order
[nr_nodes
++] = node
;
5197 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5198 build_thisnode_zonelists(pgdat
);
5199 pr_info("Fallback order for Node %d: ", local_node
);
5200 for (node
= 0; node
< nr_nodes
; node
++)
5201 pr_cont("%d ", node_order
[node
]);
5205 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5207 * Return node id of node used for "local" allocations.
5208 * I.e., first node id of first zone in arg node's generic zonelist.
5209 * Used for initializing percpu 'numa_mem', which is used primarily
5210 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5212 int local_memory_node(int node
)
5216 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5217 gfp_zone(GFP_KERNEL
),
5219 return zonelist_node_idx(z
);
5223 static void setup_min_unmapped_ratio(void);
5224 static void setup_min_slab_ratio(void);
5225 #else /* CONFIG_NUMA */
5227 static void build_zonelists(pg_data_t
*pgdat
)
5229 struct zoneref
*zonerefs
;
5232 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5233 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5234 zonerefs
+= nr_zones
;
5236 zonerefs
->zone
= NULL
;
5237 zonerefs
->zone_idx
= 0;
5240 #endif /* CONFIG_NUMA */
5243 * Boot pageset table. One per cpu which is going to be used for all
5244 * zones and all nodes. The parameters will be set in such a way
5245 * that an item put on a list will immediately be handed over to
5246 * the buddy list. This is safe since pageset manipulation is done
5247 * with interrupts disabled.
5249 * The boot_pagesets must be kept even after bootup is complete for
5250 * unused processors and/or zones. They do play a role for bootstrapping
5251 * hotplugged processors.
5253 * zoneinfo_show() and maybe other functions do
5254 * not check if the processor is online before following the pageset pointer.
5255 * Other parts of the kernel may not check if the zone is available.
5257 static void per_cpu_pages_init(struct per_cpu_pages
*pcp
, struct per_cpu_zonestat
*pzstats
);
5258 /* These effectively disable the pcplists in the boot pageset completely */
5259 #define BOOT_PAGESET_HIGH 0
5260 #define BOOT_PAGESET_BATCH 1
5261 static DEFINE_PER_CPU(struct per_cpu_pages
, boot_pageset
);
5262 static DEFINE_PER_CPU(struct per_cpu_zonestat
, boot_zonestats
);
5264 static void __build_all_zonelists(void *data
)
5267 int __maybe_unused cpu
;
5268 pg_data_t
*self
= data
;
5269 unsigned long flags
;
5272 * The zonelist_update_seq must be acquired with irqsave because the
5273 * reader can be invoked from IRQ with GFP_ATOMIC.
5275 write_seqlock_irqsave(&zonelist_update_seq
, flags
);
5277 * Also disable synchronous printk() to prevent any printk() from
5278 * trying to hold port->lock, for
5279 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5280 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5282 printk_deferred_enter();
5285 memset(node_load
, 0, sizeof(node_load
));
5289 * This node is hotadded and no memory is yet present. So just
5290 * building zonelists is fine - no need to touch other nodes.
5292 if (self
&& !node_online(self
->node_id
)) {
5293 build_zonelists(self
);
5296 * All possible nodes have pgdat preallocated
5299 for_each_node(nid
) {
5300 pg_data_t
*pgdat
= NODE_DATA(nid
);
5302 build_zonelists(pgdat
);
5305 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5307 * We now know the "local memory node" for each node--
5308 * i.e., the node of the first zone in the generic zonelist.
5309 * Set up numa_mem percpu variable for on-line cpus. During
5310 * boot, only the boot cpu should be on-line; we'll init the
5311 * secondary cpus' numa_mem as they come on-line. During
5312 * node/memory hotplug, we'll fixup all on-line cpus.
5314 for_each_online_cpu(cpu
)
5315 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5319 printk_deferred_exit();
5320 write_sequnlock_irqrestore(&zonelist_update_seq
, flags
);
5323 static noinline
void __init
5324 build_all_zonelists_init(void)
5328 __build_all_zonelists(NULL
);
5331 * Initialize the boot_pagesets that are going to be used
5332 * for bootstrapping processors. The real pagesets for
5333 * each zone will be allocated later when the per cpu
5334 * allocator is available.
5336 * boot_pagesets are used also for bootstrapping offline
5337 * cpus if the system is already booted because the pagesets
5338 * are needed to initialize allocators on a specific cpu too.
5339 * F.e. the percpu allocator needs the page allocator which
5340 * needs the percpu allocator in order to allocate its pagesets
5341 * (a chicken-egg dilemma).
5343 for_each_possible_cpu(cpu
)
5344 per_cpu_pages_init(&per_cpu(boot_pageset
, cpu
), &per_cpu(boot_zonestats
, cpu
));
5346 mminit_verify_zonelist();
5347 cpuset_init_current_mems_allowed();
5351 * unless system_state == SYSTEM_BOOTING.
5353 * __ref due to call of __init annotated helper build_all_zonelists_init
5354 * [protected by SYSTEM_BOOTING].
5356 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5358 unsigned long vm_total_pages
;
5360 if (system_state
== SYSTEM_BOOTING
) {
5361 build_all_zonelists_init();
5363 __build_all_zonelists(pgdat
);
5364 /* cpuset refresh routine should be here */
5366 /* Get the number of free pages beyond high watermark in all zones. */
5367 vm_total_pages
= nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
5369 * Disable grouping by mobility if the number of pages in the
5370 * system is too low to allow the mechanism to work. It would be
5371 * more accurate, but expensive to check per-zone. This check is
5372 * made on memory-hotadd so a system can start with mobility
5373 * disabled and enable it later
5375 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5376 page_group_by_mobility_disabled
= 1;
5378 page_group_by_mobility_disabled
= 0;
5380 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5382 str_off_on(page_group_by_mobility_disabled
),
5385 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5389 static int zone_batchsize(struct zone
*zone
)
5395 * The number of pages to batch allocate is either ~0.1%
5396 * of the zone or 1MB, whichever is smaller. The batch
5397 * size is striking a balance between allocation latency
5398 * and zone lock contention.
5400 batch
= min(zone_managed_pages(zone
) >> 10, SZ_1M
/ PAGE_SIZE
);
5401 batch
/= 4; /* We effectively *= 4 below */
5406 * Clamp the batch to a 2^n - 1 value. Having a power
5407 * of 2 value was found to be more likely to have
5408 * suboptimal cache aliasing properties in some cases.
5410 * For example if 2 tasks are alternately allocating
5411 * batches of pages, one task can end up with a lot
5412 * of pages of one half of the possible page colors
5413 * and the other with pages of the other colors.
5415 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5420 /* The deferral and batching of frees should be suppressed under NOMMU
5423 * The problem is that NOMMU needs to be able to allocate large chunks
5424 * of contiguous memory as there's no hardware page translation to
5425 * assemble apparent contiguous memory from discontiguous pages.
5427 * Queueing large contiguous runs of pages for batching, however,
5428 * causes the pages to actually be freed in smaller chunks. As there
5429 * can be a significant delay between the individual batches being
5430 * recycled, this leads to the once large chunks of space being
5431 * fragmented and becoming unavailable for high-order allocations.
5437 static int percpu_pagelist_high_fraction
;
5438 static int zone_highsize(struct zone
*zone
, int batch
, int cpu_online
,
5444 unsigned long total_pages
;
5446 if (!high_fraction
) {
5448 * By default, the high value of the pcp is based on the zone
5449 * low watermark so that if they are full then background
5450 * reclaim will not be started prematurely.
5452 total_pages
= low_wmark_pages(zone
);
5455 * If percpu_pagelist_high_fraction is configured, the high
5456 * value is based on a fraction of the managed pages in the
5459 total_pages
= zone_managed_pages(zone
) / high_fraction
;
5463 * Split the high value across all online CPUs local to the zone. Note
5464 * that early in boot that CPUs may not be online yet and that during
5465 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5466 * onlined. For memory nodes that have no CPUs, split the high value
5467 * across all online CPUs to mitigate the risk that reclaim is triggered
5468 * prematurely due to pages stored on pcp lists.
5470 nr_split_cpus
= cpumask_weight(cpumask_of_node(zone_to_nid(zone
))) + cpu_online
;
5472 nr_split_cpus
= num_online_cpus();
5473 high
= total_pages
/ nr_split_cpus
;
5476 * Ensure high is at least batch*4. The multiple is based on the
5477 * historical relationship between high and batch.
5479 high
= max(high
, batch
<< 2);
5488 * pcp->high and pcp->batch values are related and generally batch is lower
5489 * than high. They are also related to pcp->count such that count is lower
5490 * than high, and as soon as it reaches high, the pcplist is flushed.
5492 * However, guaranteeing these relations at all times would require e.g. write
5493 * barriers here but also careful usage of read barriers at the read side, and
5494 * thus be prone to error and bad for performance. Thus the update only prevents
5495 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5496 * should ensure they can cope with those fields changing asynchronously, and
5497 * fully trust only the pcp->count field on the local CPU with interrupts
5500 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5501 * outside of boot time (or some other assurance that no concurrent updaters
5504 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high_min
,
5505 unsigned long high_max
, unsigned long batch
)
5507 WRITE_ONCE(pcp
->batch
, batch
);
5508 WRITE_ONCE(pcp
->high_min
, high_min
);
5509 WRITE_ONCE(pcp
->high_max
, high_max
);
5512 static void per_cpu_pages_init(struct per_cpu_pages
*pcp
, struct per_cpu_zonestat
*pzstats
)
5516 memset(pcp
, 0, sizeof(*pcp
));
5517 memset(pzstats
, 0, sizeof(*pzstats
));
5519 spin_lock_init(&pcp
->lock
);
5520 for (pindex
= 0; pindex
< NR_PCP_LISTS
; pindex
++)
5521 INIT_LIST_HEAD(&pcp
->lists
[pindex
]);
5524 * Set batch and high values safe for a boot pageset. A true percpu
5525 * pageset's initialization will update them subsequently. Here we don't
5526 * need to be as careful as pageset_update() as nobody can access the
5529 pcp
->high_min
= BOOT_PAGESET_HIGH
;
5530 pcp
->high_max
= BOOT_PAGESET_HIGH
;
5531 pcp
->batch
= BOOT_PAGESET_BATCH
;
5532 pcp
->free_count
= 0;
5535 static void __zone_set_pageset_high_and_batch(struct zone
*zone
, unsigned long high_min
,
5536 unsigned long high_max
, unsigned long batch
)
5538 struct per_cpu_pages
*pcp
;
5541 for_each_possible_cpu(cpu
) {
5542 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5543 pageset_update(pcp
, high_min
, high_max
, batch
);
5548 * Calculate and set new high and batch values for all per-cpu pagesets of a
5549 * zone based on the zone's size.
5551 static void zone_set_pageset_high_and_batch(struct zone
*zone
, int cpu_online
)
5553 int new_high_min
, new_high_max
, new_batch
;
5555 new_batch
= max(1, zone_batchsize(zone
));
5556 if (percpu_pagelist_high_fraction
) {
5557 new_high_min
= zone_highsize(zone
, new_batch
, cpu_online
,
5558 percpu_pagelist_high_fraction
);
5560 * PCP high is tuned manually, disable auto-tuning via
5561 * setting high_min and high_max to the manual value.
5563 new_high_max
= new_high_min
;
5565 new_high_min
= zone_highsize(zone
, new_batch
, cpu_online
, 0);
5566 new_high_max
= zone_highsize(zone
, new_batch
, cpu_online
,
5567 MIN_PERCPU_PAGELIST_HIGH_FRACTION
);
5570 if (zone
->pageset_high_min
== new_high_min
&&
5571 zone
->pageset_high_max
== new_high_max
&&
5572 zone
->pageset_batch
== new_batch
)
5575 zone
->pageset_high_min
= new_high_min
;
5576 zone
->pageset_high_max
= new_high_max
;
5577 zone
->pageset_batch
= new_batch
;
5579 __zone_set_pageset_high_and_batch(zone
, new_high_min
, new_high_max
,
5583 void __meminit
setup_zone_pageset(struct zone
*zone
)
5587 /* Size may be 0 on !SMP && !NUMA */
5588 if (sizeof(struct per_cpu_zonestat
) > 0)
5589 zone
->per_cpu_zonestats
= alloc_percpu(struct per_cpu_zonestat
);
5591 zone
->per_cpu_pageset
= alloc_percpu(struct per_cpu_pages
);
5592 for_each_possible_cpu(cpu
) {
5593 struct per_cpu_pages
*pcp
;
5594 struct per_cpu_zonestat
*pzstats
;
5596 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5597 pzstats
= per_cpu_ptr(zone
->per_cpu_zonestats
, cpu
);
5598 per_cpu_pages_init(pcp
, pzstats
);
5601 zone_set_pageset_high_and_batch(zone
, 0);
5605 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5606 * page high values need to be recalculated.
5608 static void zone_pcp_update(struct zone
*zone
, int cpu_online
)
5610 mutex_lock(&pcp_batch_high_lock
);
5611 zone_set_pageset_high_and_batch(zone
, cpu_online
);
5612 mutex_unlock(&pcp_batch_high_lock
);
5615 static void zone_pcp_update_cacheinfo(struct zone
*zone
, unsigned int cpu
)
5617 struct per_cpu_pages
*pcp
;
5618 struct cpu_cacheinfo
*cci
;
5620 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5621 cci
= get_cpu_cacheinfo(cpu
);
5623 * If data cache slice of CPU is large enough, "pcp->batch"
5624 * pages can be preserved in PCP before draining PCP for
5625 * consecutive high-order pages freeing without allocation.
5626 * This can reduce zone lock contention without hurting
5627 * cache-hot pages sharing.
5629 spin_lock(&pcp
->lock
);
5630 if ((cci
->per_cpu_data_slice_size
>> PAGE_SHIFT
) > 3 * pcp
->batch
)
5631 pcp
->flags
|= PCPF_FREE_HIGH_BATCH
;
5633 pcp
->flags
&= ~PCPF_FREE_HIGH_BATCH
;
5634 spin_unlock(&pcp
->lock
);
5637 void setup_pcp_cacheinfo(unsigned int cpu
)
5641 for_each_populated_zone(zone
)
5642 zone_pcp_update_cacheinfo(zone
, cpu
);
5646 * Allocate per cpu pagesets and initialize them.
5647 * Before this call only boot pagesets were available.
5649 void __init
setup_per_cpu_pageset(void)
5651 struct pglist_data
*pgdat
;
5653 int __maybe_unused cpu
;
5655 for_each_populated_zone(zone
)
5656 setup_zone_pageset(zone
);
5660 * Unpopulated zones continue using the boot pagesets.
5661 * The numa stats for these pagesets need to be reset.
5662 * Otherwise, they will end up skewing the stats of
5663 * the nodes these zones are associated with.
5665 for_each_possible_cpu(cpu
) {
5666 struct per_cpu_zonestat
*pzstats
= &per_cpu(boot_zonestats
, cpu
);
5667 memset(pzstats
->vm_numa_event
, 0,
5668 sizeof(pzstats
->vm_numa_event
));
5672 for_each_online_pgdat(pgdat
)
5673 pgdat
->per_cpu_nodestats
=
5674 alloc_percpu(struct per_cpu_nodestat
);
5677 __meminit
void zone_pcp_init(struct zone
*zone
)
5680 * per cpu subsystem is not up at this point. The following code
5681 * relies on the ability of the linker to provide the
5682 * offset of a (static) per cpu variable into the per cpu area.
5684 zone
->per_cpu_pageset
= &boot_pageset
;
5685 zone
->per_cpu_zonestats
= &boot_zonestats
;
5686 zone
->pageset_high_min
= BOOT_PAGESET_HIGH
;
5687 zone
->pageset_high_max
= BOOT_PAGESET_HIGH
;
5688 zone
->pageset_batch
= BOOT_PAGESET_BATCH
;
5690 if (populated_zone(zone
))
5691 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone
->name
,
5692 zone
->present_pages
, zone_batchsize(zone
));
5695 static void setup_per_zone_lowmem_reserve(void);
5697 void adjust_managed_page_count(struct page
*page
, long count
)
5699 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
5700 totalram_pages_add(count
);
5701 setup_per_zone_lowmem_reserve();
5703 EXPORT_SYMBOL(adjust_managed_page_count
);
5705 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
5708 unsigned long pages
= 0;
5710 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5711 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5712 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5713 struct page
*page
= virt_to_page(pos
);
5714 void *direct_map_addr
;
5717 * 'direct_map_addr' might be different from 'pos'
5718 * because some architectures' virt_to_page()
5719 * work with aliases. Getting the direct map
5720 * address ensures that we get a _writeable_
5721 * alias for the memset().
5723 direct_map_addr
= page_address(page
);
5725 * Perform a kasan-unchecked memset() since this memory
5726 * has not been initialized.
5728 direct_map_addr
= kasan_reset_tag(direct_map_addr
);
5729 if ((unsigned int)poison
<= 0xFF)
5730 memset(direct_map_addr
, poison
, PAGE_SIZE
);
5732 free_reserved_page(page
);
5736 pr_info("Freeing %s memory: %ldK\n", s
, K(pages
));
5741 void free_reserved_page(struct page
*page
)
5743 clear_page_tag_ref(page
);
5744 ClearPageReserved(page
);
5745 init_page_count(page
);
5747 adjust_managed_page_count(page
, 1);
5749 EXPORT_SYMBOL(free_reserved_page
);
5751 static int page_alloc_cpu_dead(unsigned int cpu
)
5755 lru_add_drain_cpu(cpu
);
5756 mlock_drain_remote(cpu
);
5760 * Spill the event counters of the dead processor
5761 * into the current processors event counters.
5762 * This artificially elevates the count of the current
5765 vm_events_fold_cpu(cpu
);
5768 * Zero the differential counters of the dead processor
5769 * so that the vm statistics are consistent.
5771 * This is only okay since the processor is dead and cannot
5772 * race with what we are doing.
5774 cpu_vm_stats_fold(cpu
);
5776 for_each_populated_zone(zone
)
5777 zone_pcp_update(zone
, 0);
5782 static int page_alloc_cpu_online(unsigned int cpu
)
5786 for_each_populated_zone(zone
)
5787 zone_pcp_update(zone
, 1);
5791 void __init
page_alloc_init_cpuhp(void)
5795 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC
,
5796 "mm/page_alloc:pcp",
5797 page_alloc_cpu_online
,
5798 page_alloc_cpu_dead
);
5803 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5804 * or min_free_kbytes changes.
5806 static void calculate_totalreserve_pages(void)
5808 struct pglist_data
*pgdat
;
5809 unsigned long reserve_pages
= 0;
5810 enum zone_type i
, j
;
5812 for_each_online_pgdat(pgdat
) {
5814 pgdat
->totalreserve_pages
= 0;
5816 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5817 struct zone
*zone
= pgdat
->node_zones
+ i
;
5819 unsigned long managed_pages
= zone_managed_pages(zone
);
5821 /* Find valid and maximum lowmem_reserve in the zone */
5822 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5823 if (zone
->lowmem_reserve
[j
] > max
)
5824 max
= zone
->lowmem_reserve
[j
];
5827 /* we treat the high watermark as reserved pages. */
5828 max
+= high_wmark_pages(zone
);
5830 if (max
> managed_pages
)
5831 max
= managed_pages
;
5833 pgdat
->totalreserve_pages
+= max
;
5835 reserve_pages
+= max
;
5838 totalreserve_pages
= reserve_pages
;
5842 * setup_per_zone_lowmem_reserve - called whenever
5843 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5844 * has a correct pages reserved value, so an adequate number of
5845 * pages are left in the zone after a successful __alloc_pages().
5847 static void setup_per_zone_lowmem_reserve(void)
5849 struct pglist_data
*pgdat
;
5850 enum zone_type i
, j
;
5852 for_each_online_pgdat(pgdat
) {
5853 for (i
= 0; i
< MAX_NR_ZONES
- 1; i
++) {
5854 struct zone
*zone
= &pgdat
->node_zones
[i
];
5855 int ratio
= sysctl_lowmem_reserve_ratio
[i
];
5856 bool clear
= !ratio
|| !zone_managed_pages(zone
);
5857 unsigned long managed_pages
= 0;
5859 for (j
= i
+ 1; j
< MAX_NR_ZONES
; j
++) {
5860 struct zone
*upper_zone
= &pgdat
->node_zones
[j
];
5861 bool empty
= !zone_managed_pages(upper_zone
);
5863 managed_pages
+= zone_managed_pages(upper_zone
);
5866 zone
->lowmem_reserve
[j
] = 0;
5868 zone
->lowmem_reserve
[j
] = managed_pages
/ ratio
;
5873 /* update totalreserve_pages */
5874 calculate_totalreserve_pages();
5877 static void __setup_per_zone_wmarks(void)
5879 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5880 unsigned long lowmem_pages
= 0;
5882 unsigned long flags
;
5884 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5885 for_each_zone(zone
) {
5886 if (!is_highmem(zone
) && zone_idx(zone
) != ZONE_MOVABLE
)
5887 lowmem_pages
+= zone_managed_pages(zone
);
5890 for_each_zone(zone
) {
5893 spin_lock_irqsave(&zone
->lock
, flags
);
5894 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
5895 tmp
= div64_ul(tmp
, lowmem_pages
);
5896 if (is_highmem(zone
) || zone_idx(zone
) == ZONE_MOVABLE
) {
5898 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5899 * need highmem and movable zones pages, so cap pages_min
5900 * to a small value here.
5902 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5903 * deltas control async page reclaim, and so should
5904 * not be capped for highmem and movable zones.
5906 unsigned long min_pages
;
5908 min_pages
= zone_managed_pages(zone
) / 1024;
5909 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5910 zone
->_watermark
[WMARK_MIN
] = min_pages
;
5913 * If it's a lowmem zone, reserve a number of pages
5914 * proportionate to the zone's size.
5916 zone
->_watermark
[WMARK_MIN
] = tmp
;
5920 * Set the kswapd watermarks distance according to the
5921 * scale factor in proportion to available memory, but
5922 * ensure a minimum size on small systems.
5924 tmp
= max_t(u64
, tmp
>> 2,
5925 mult_frac(zone_managed_pages(zone
),
5926 watermark_scale_factor
, 10000));
5928 zone
->watermark_boost
= 0;
5929 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
5930 zone
->_watermark
[WMARK_HIGH
] = low_wmark_pages(zone
) + tmp
;
5931 zone
->_watermark
[WMARK_PROMO
] = high_wmark_pages(zone
) + tmp
;
5933 spin_unlock_irqrestore(&zone
->lock
, flags
);
5936 /* update totalreserve_pages */
5937 calculate_totalreserve_pages();
5941 * setup_per_zone_wmarks - called when min_free_kbytes changes
5942 * or when memory is hot-{added|removed}
5944 * Ensures that the watermark[min,low,high] values for each zone are set
5945 * correctly with respect to min_free_kbytes.
5947 void setup_per_zone_wmarks(void)
5950 static DEFINE_SPINLOCK(lock
);
5953 __setup_per_zone_wmarks();
5957 * The watermark size have changed so update the pcpu batch
5958 * and high limits or the limits may be inappropriate.
5961 zone_pcp_update(zone
, 0);
5965 * Initialise min_free_kbytes.
5967 * For small machines we want it small (128k min). For large machines
5968 * we want it large (256MB max). But it is not linear, because network
5969 * bandwidth does not increase linearly with machine size. We use
5971 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5972 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5988 void calculate_min_free_kbytes(void)
5990 unsigned long lowmem_kbytes
;
5991 int new_min_free_kbytes
;
5993 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5994 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5996 if (new_min_free_kbytes
> user_min_free_kbytes
)
5997 min_free_kbytes
= clamp(new_min_free_kbytes
, 128, 262144);
5999 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6000 new_min_free_kbytes
, user_min_free_kbytes
);
6004 int __meminit
init_per_zone_wmark_min(void)
6006 calculate_min_free_kbytes();
6007 setup_per_zone_wmarks();
6008 refresh_zone_stat_thresholds();
6009 setup_per_zone_lowmem_reserve();
6012 setup_min_unmapped_ratio();
6013 setup_min_slab_ratio();
6016 khugepaged_min_free_kbytes_update();
6020 postcore_initcall(init_per_zone_wmark_min
)
6023 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6024 * that we can call two helper functions whenever min_free_kbytes
6027 static int min_free_kbytes_sysctl_handler(const struct ctl_table
*table
, int write
,
6028 void *buffer
, size_t *length
, loff_t
*ppos
)
6032 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6037 user_min_free_kbytes
= min_free_kbytes
;
6038 setup_per_zone_wmarks();
6043 static int watermark_scale_factor_sysctl_handler(const struct ctl_table
*table
, int write
,
6044 void *buffer
, size_t *length
, loff_t
*ppos
)
6048 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6053 setup_per_zone_wmarks();
6059 static void setup_min_unmapped_ratio(void)
6064 for_each_online_pgdat(pgdat
)
6065 pgdat
->min_unmapped_pages
= 0;
6068 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
6069 sysctl_min_unmapped_ratio
) / 100;
6073 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table
*table
, int write
,
6074 void *buffer
, size_t *length
, loff_t
*ppos
)
6078 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6082 setup_min_unmapped_ratio();
6087 static void setup_min_slab_ratio(void)
6092 for_each_online_pgdat(pgdat
)
6093 pgdat
->min_slab_pages
= 0;
6096 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
6097 sysctl_min_slab_ratio
) / 100;
6100 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table
*table
, int write
,
6101 void *buffer
, size_t *length
, loff_t
*ppos
)
6105 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6109 setup_min_slab_ratio();
6116 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6117 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6118 * whenever sysctl_lowmem_reserve_ratio changes.
6120 * The reserve ratio obviously has absolutely no relation with the
6121 * minimum watermarks. The lowmem reserve ratio can only make sense
6122 * if in function of the boot time zone sizes.
6124 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table
*table
,
6125 int write
, void *buffer
, size_t *length
, loff_t
*ppos
)
6129 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6131 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6132 if (sysctl_lowmem_reserve_ratio
[i
] < 1)
6133 sysctl_lowmem_reserve_ratio
[i
] = 0;
6136 setup_per_zone_lowmem_reserve();
6141 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6142 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6143 * pagelist can have before it gets flushed back to buddy allocator.
6145 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table
*table
,
6146 int write
, void *buffer
, size_t *length
, loff_t
*ppos
)
6149 int old_percpu_pagelist_high_fraction
;
6152 mutex_lock(&pcp_batch_high_lock
);
6153 old_percpu_pagelist_high_fraction
= percpu_pagelist_high_fraction
;
6155 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6156 if (!write
|| ret
< 0)
6159 /* Sanity checking to avoid pcp imbalance */
6160 if (percpu_pagelist_high_fraction
&&
6161 percpu_pagelist_high_fraction
< MIN_PERCPU_PAGELIST_HIGH_FRACTION
) {
6162 percpu_pagelist_high_fraction
= old_percpu_pagelist_high_fraction
;
6168 if (percpu_pagelist_high_fraction
== old_percpu_pagelist_high_fraction
)
6171 for_each_populated_zone(zone
)
6172 zone_set_pageset_high_and_batch(zone
, 0);
6174 mutex_unlock(&pcp_batch_high_lock
);
6178 static struct ctl_table page_alloc_sysctl_table
[] = {
6180 .procname
= "min_free_kbytes",
6181 .data
= &min_free_kbytes
,
6182 .maxlen
= sizeof(min_free_kbytes
),
6184 .proc_handler
= min_free_kbytes_sysctl_handler
,
6185 .extra1
= SYSCTL_ZERO
,
6188 .procname
= "watermark_boost_factor",
6189 .data
= &watermark_boost_factor
,
6190 .maxlen
= sizeof(watermark_boost_factor
),
6192 .proc_handler
= proc_dointvec_minmax
,
6193 .extra1
= SYSCTL_ZERO
,
6196 .procname
= "watermark_scale_factor",
6197 .data
= &watermark_scale_factor
,
6198 .maxlen
= sizeof(watermark_scale_factor
),
6200 .proc_handler
= watermark_scale_factor_sysctl_handler
,
6201 .extra1
= SYSCTL_ONE
,
6202 .extra2
= SYSCTL_THREE_THOUSAND
,
6205 .procname
= "percpu_pagelist_high_fraction",
6206 .data
= &percpu_pagelist_high_fraction
,
6207 .maxlen
= sizeof(percpu_pagelist_high_fraction
),
6209 .proc_handler
= percpu_pagelist_high_fraction_sysctl_handler
,
6210 .extra1
= SYSCTL_ZERO
,
6213 .procname
= "lowmem_reserve_ratio",
6214 .data
= &sysctl_lowmem_reserve_ratio
,
6215 .maxlen
= sizeof(sysctl_lowmem_reserve_ratio
),
6217 .proc_handler
= lowmem_reserve_ratio_sysctl_handler
,
6221 .procname
= "numa_zonelist_order",
6222 .data
= &numa_zonelist_order
,
6223 .maxlen
= NUMA_ZONELIST_ORDER_LEN
,
6225 .proc_handler
= numa_zonelist_order_handler
,
6228 .procname
= "min_unmapped_ratio",
6229 .data
= &sysctl_min_unmapped_ratio
,
6230 .maxlen
= sizeof(sysctl_min_unmapped_ratio
),
6232 .proc_handler
= sysctl_min_unmapped_ratio_sysctl_handler
,
6233 .extra1
= SYSCTL_ZERO
,
6234 .extra2
= SYSCTL_ONE_HUNDRED
,
6237 .procname
= "min_slab_ratio",
6238 .data
= &sysctl_min_slab_ratio
,
6239 .maxlen
= sizeof(sysctl_min_slab_ratio
),
6241 .proc_handler
= sysctl_min_slab_ratio_sysctl_handler
,
6242 .extra1
= SYSCTL_ZERO
,
6243 .extra2
= SYSCTL_ONE_HUNDRED
,
6248 void __init
page_alloc_sysctl_init(void)
6250 register_sysctl_init("vm", page_alloc_sysctl_table
);
6253 #ifdef CONFIG_CONTIG_ALLOC
6254 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6255 static void alloc_contig_dump_pages(struct list_head
*page_list
)
6257 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor
, "migrate failure");
6259 if (DYNAMIC_DEBUG_BRANCH(descriptor
)) {
6263 list_for_each_entry(page
, page_list
, lru
)
6264 dump_page(page
, "migration failure");
6269 * [start, end) must belong to a single zone.
6270 * @migratetype: using migratetype to filter the type of migration in
6271 * trace_mm_alloc_contig_migrate_range_info.
6273 int __alloc_contig_migrate_range(struct compact_control
*cc
,
6274 unsigned long start
, unsigned long end
,
6277 /* This function is based on compact_zone() from compaction.c. */
6278 unsigned int nr_reclaimed
;
6279 unsigned long pfn
= start
;
6280 unsigned int tries
= 0;
6282 struct migration_target_control mtc
= {
6283 .nid
= zone_to_nid(cc
->zone
),
6284 .gfp_mask
= GFP_USER
| __GFP_MOVABLE
| __GFP_RETRY_MAYFAIL
,
6285 .reason
= MR_CONTIG_RANGE
,
6288 unsigned long total_mapped
= 0;
6289 unsigned long total_migrated
= 0;
6290 unsigned long total_reclaimed
= 0;
6292 lru_cache_disable();
6294 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6295 if (fatal_signal_pending(current
)) {
6300 if (list_empty(&cc
->migratepages
)) {
6301 cc
->nr_migratepages
= 0;
6302 ret
= isolate_migratepages_range(cc
, pfn
, end
);
6303 if (ret
&& ret
!= -EAGAIN
)
6305 pfn
= cc
->migrate_pfn
;
6307 } else if (++tries
== 5) {
6312 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6314 cc
->nr_migratepages
-= nr_reclaimed
;
6316 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6317 total_reclaimed
+= nr_reclaimed
;
6318 list_for_each_entry(page
, &cc
->migratepages
, lru
) {
6319 struct folio
*folio
= page_folio(page
);
6321 total_mapped
+= folio_mapped(folio
) *
6322 folio_nr_pages(folio
);
6326 ret
= migrate_pages(&cc
->migratepages
, alloc_migration_target
,
6327 NULL
, (unsigned long)&mtc
, cc
->mode
, MR_CONTIG_RANGE
, NULL
);
6329 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret
)
6330 total_migrated
+= cc
->nr_migratepages
;
6333 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6334 * to retry again over this error, so do the same here.
6342 if (!(cc
->gfp_mask
& __GFP_NOWARN
) && ret
== -EBUSY
)
6343 alloc_contig_dump_pages(&cc
->migratepages
);
6344 putback_movable_pages(&cc
->migratepages
);
6347 trace_mm_alloc_contig_migrate_range_info(start
, end
, migratetype
,
6351 return (ret
< 0) ? ret
: 0;
6354 static void split_free_pages(struct list_head
*list
)
6358 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6359 struct page
*page
, *next
;
6360 int nr_pages
= 1 << order
;
6362 list_for_each_entry_safe(page
, next
, &list
[order
], lru
) {
6365 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
6369 split_page(page
, order
);
6371 /* Add all subpages to the order-0 head, in sequence. */
6372 list_del(&page
->lru
);
6373 for (i
= 0; i
< nr_pages
; i
++)
6374 list_add_tail(&page
[i
].lru
, &list
[0]);
6380 * alloc_contig_range() -- tries to allocate given range of pages
6381 * @start: start PFN to allocate
6382 * @end: one-past-the-last PFN to allocate
6383 * @migratetype: migratetype of the underlying pageblocks (either
6384 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6385 * in range must have the same migratetype and it must
6386 * be either of the two.
6387 * @gfp_mask: GFP mask to use during compaction
6389 * The PFN range does not have to be pageblock aligned. The PFN range must
6390 * belong to a single zone.
6392 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6393 * pageblocks in the range. Once isolated, the pageblocks should not
6394 * be modified by others.
6396 * Return: zero on success or negative error code. On success all
6397 * pages which PFN is in [start, end) are allocated for the caller and
6398 * need to be freed with free_contig_range().
6400 int alloc_contig_range_noprof(unsigned long start
, unsigned long end
,
6401 unsigned migratetype
, gfp_t gfp_mask
)
6403 unsigned long outer_start
, outer_end
;
6406 struct compact_control cc
= {
6407 .nr_migratepages
= 0,
6409 .zone
= page_zone(pfn_to_page(start
)),
6410 .mode
= MIGRATE_SYNC
,
6411 .ignore_skip_hint
= true,
6412 .no_set_skip_hint
= true,
6413 .gfp_mask
= current_gfp_context(gfp_mask
),
6414 .alloc_contig
= true,
6416 INIT_LIST_HEAD(&cc
.migratepages
);
6419 * What we do here is we mark all pageblocks in range as
6420 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6421 * have different sizes, and due to the way page allocator
6422 * work, start_isolate_page_range() has special handlings for this.
6424 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6425 * migrate the pages from an unaligned range (ie. pages that
6426 * we are interested in). This will put all the pages in
6427 * range back to page allocator as MIGRATE_ISOLATE.
6429 * When this is done, we take the pages in range from page
6430 * allocator removing them from the buddy system. This way
6431 * page allocator will never consider using them.
6433 * This lets us mark the pageblocks back as
6434 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6435 * aligned range but not in the unaligned, original range are
6436 * put back to page allocator so that buddy can use them.
6439 ret
= start_isolate_page_range(start
, end
, migratetype
, 0, gfp_mask
);
6443 drain_all_pages(cc
.zone
);
6446 * In case of -EBUSY, we'd like to know which page causes problem.
6447 * So, just fall through. test_pages_isolated() has a tracepoint
6448 * which will report the busy page.
6450 * It is possible that busy pages could become available before
6451 * the call to test_pages_isolated, and the range will actually be
6452 * allocated. So, if we fall through be sure to clear ret so that
6453 * -EBUSY is not accidentally used or returned to caller.
6455 ret
= __alloc_contig_migrate_range(&cc
, start
, end
, migratetype
);
6456 if (ret
&& ret
!= -EBUSY
)
6461 * Pages from [start, end) are within a pageblock_nr_pages
6462 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6463 * more, all pages in [start, end) are free in page allocator.
6464 * What we are going to do is to allocate all pages from
6465 * [start, end) (that is remove them from page allocator).
6467 * The only problem is that pages at the beginning and at the
6468 * end of interesting range may be not aligned with pages that
6469 * page allocator holds, ie. they can be part of higher order
6470 * pages. Because of this, we reserve the bigger range and
6471 * once this is done free the pages we are not interested in.
6473 * We don't have to hold zone->lock here because the pages are
6474 * isolated thus they won't get removed from buddy.
6476 outer_start
= find_large_buddy(start
);
6478 /* Make sure the range is really isolated. */
6479 if (test_pages_isolated(outer_start
, end
, 0)) {
6484 /* Grab isolated pages from freelists. */
6485 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6491 if (!(gfp_mask
& __GFP_COMP
)) {
6492 split_free_pages(cc
.freepages
);
6494 /* Free head and tail (if any) */
6495 if (start
!= outer_start
)
6496 free_contig_range(outer_start
, start
- outer_start
);
6497 if (end
!= outer_end
)
6498 free_contig_range(end
, outer_end
- end
);
6499 } else if (start
== outer_start
&& end
== outer_end
&& is_power_of_2(end
- start
)) {
6500 struct page
*head
= pfn_to_page(start
);
6501 int order
= ilog2(end
- start
);
6503 check_new_pages(head
, order
);
6504 prep_new_page(head
, order
, gfp_mask
, 0);
6507 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6508 start
, end
, outer_start
, outer_end
);
6511 undo_isolate_page_range(start
, end
, migratetype
);
6514 EXPORT_SYMBOL(alloc_contig_range_noprof
);
6516 static int __alloc_contig_pages(unsigned long start_pfn
,
6517 unsigned long nr_pages
, gfp_t gfp_mask
)
6519 unsigned long end_pfn
= start_pfn
+ nr_pages
;
6521 return alloc_contig_range_noprof(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
6525 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
6526 unsigned long nr_pages
)
6528 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
6531 for (i
= start_pfn
; i
< end_pfn
; i
++) {
6532 page
= pfn_to_online_page(i
);
6536 if (page_zone(page
) != z
)
6539 if (PageReserved(page
))
6548 static bool zone_spans_last_pfn(const struct zone
*zone
,
6549 unsigned long start_pfn
, unsigned long nr_pages
)
6551 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
6553 return zone_spans_pfn(zone
, last_pfn
);
6557 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6558 * @nr_pages: Number of contiguous pages to allocate
6559 * @gfp_mask: GFP mask to limit search and used during compaction
6561 * @nodemask: Mask for other possible nodes
6563 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6564 * on an applicable zonelist to find a contiguous pfn range which can then be
6565 * tried for allocation with alloc_contig_range(). This routine is intended
6566 * for allocation requests which can not be fulfilled with the buddy allocator.
6568 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6569 * power of two, then allocated range is also guaranteed to be aligned to same
6570 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6572 * Allocated pages can be freed with free_contig_range() or by manually calling
6573 * __free_page() on each allocated page.
6575 * Return: pointer to contiguous pages on success, or NULL if not successful.
6577 struct page
*alloc_contig_pages_noprof(unsigned long nr_pages
, gfp_t gfp_mask
,
6578 int nid
, nodemask_t
*nodemask
)
6580 unsigned long ret
, pfn
, flags
;
6581 struct zonelist
*zonelist
;
6585 zonelist
= node_zonelist(nid
, gfp_mask
);
6586 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
6587 gfp_zone(gfp_mask
), nodemask
) {
6588 spin_lock_irqsave(&zone
->lock
, flags
);
6590 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
6591 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
6592 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
6594 * We release the zone lock here because
6595 * alloc_contig_range() will also lock the zone
6596 * at some point. If there's an allocation
6597 * spinning on this lock, it may win the race
6598 * and cause alloc_contig_range() to fail...
6600 spin_unlock_irqrestore(&zone
->lock
, flags
);
6601 ret
= __alloc_contig_pages(pfn
, nr_pages
,
6604 return pfn_to_page(pfn
);
6605 spin_lock_irqsave(&zone
->lock
, flags
);
6609 spin_unlock_irqrestore(&zone
->lock
, flags
);
6613 #endif /* CONFIG_CONTIG_ALLOC */
6615 void free_contig_range(unsigned long pfn
, unsigned long nr_pages
)
6617 unsigned long count
= 0;
6618 struct folio
*folio
= pfn_folio(pfn
);
6620 if (folio_test_large(folio
)) {
6621 int expected
= folio_nr_pages(folio
);
6623 if (nr_pages
== expected
)
6626 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6627 pfn
, nr_pages
, expected
);
6631 for (; nr_pages
--; pfn
++) {
6632 struct page
*page
= pfn_to_page(pfn
);
6634 count
+= page_count(page
) != 1;
6637 WARN(count
!= 0, "%lu pages are still in use!\n", count
);
6639 EXPORT_SYMBOL(free_contig_range
);
6642 * Effectively disable pcplists for the zone by setting the high limit to 0
6643 * and draining all cpus. A concurrent page freeing on another CPU that's about
6644 * to put the page on pcplist will either finish before the drain and the page
6645 * will be drained, or observe the new high limit and skip the pcplist.
6647 * Must be paired with a call to zone_pcp_enable().
6649 void zone_pcp_disable(struct zone
*zone
)
6651 mutex_lock(&pcp_batch_high_lock
);
6652 __zone_set_pageset_high_and_batch(zone
, 0, 0, 1);
6653 __drain_all_pages(zone
, true);
6656 void zone_pcp_enable(struct zone
*zone
)
6658 __zone_set_pageset_high_and_batch(zone
, zone
->pageset_high_min
,
6659 zone
->pageset_high_max
, zone
->pageset_batch
);
6660 mutex_unlock(&pcp_batch_high_lock
);
6663 void zone_pcp_reset(struct zone
*zone
)
6666 struct per_cpu_zonestat
*pzstats
;
6668 if (zone
->per_cpu_pageset
!= &boot_pageset
) {
6669 for_each_online_cpu(cpu
) {
6670 pzstats
= per_cpu_ptr(zone
->per_cpu_zonestats
, cpu
);
6671 drain_zonestat(zone
, pzstats
);
6673 free_percpu(zone
->per_cpu_pageset
);
6674 zone
->per_cpu_pageset
= &boot_pageset
;
6675 if (zone
->per_cpu_zonestats
!= &boot_zonestats
) {
6676 free_percpu(zone
->per_cpu_zonestats
);
6677 zone
->per_cpu_zonestats
= &boot_zonestats
;
6682 #ifdef CONFIG_MEMORY_HOTREMOVE
6684 * All pages in the range must be in a single zone, must not contain holes,
6685 * must span full sections, and must be isolated before calling this function.
6687 * Returns the number of managed (non-PageOffline()) pages in the range: the
6688 * number of pages for which memory offlining code must adjust managed page
6689 * counters using adjust_managed_page_count().
6691 unsigned long __offline_isolated_pages(unsigned long start_pfn
,
6692 unsigned long end_pfn
)
6694 unsigned long already_offline
= 0, flags
;
6695 unsigned long pfn
= start_pfn
;
6700 offline_mem_sections(pfn
, end_pfn
);
6701 zone
= page_zone(pfn_to_page(pfn
));
6702 spin_lock_irqsave(&zone
->lock
, flags
);
6703 while (pfn
< end_pfn
) {
6704 page
= pfn_to_page(pfn
);
6706 * The HWPoisoned page may be not in buddy system, and
6707 * page_count() is not 0.
6709 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6714 * At this point all remaining PageOffline() pages have a
6715 * reference count of 0 and can simply be skipped.
6717 if (PageOffline(page
)) {
6718 BUG_ON(page_count(page
));
6719 BUG_ON(PageBuddy(page
));
6725 BUG_ON(page_count(page
));
6726 BUG_ON(!PageBuddy(page
));
6727 VM_WARN_ON(get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
);
6728 order
= buddy_order(page
);
6729 del_page_from_free_list(page
, zone
, order
, MIGRATE_ISOLATE
);
6730 pfn
+= (1 << order
);
6732 spin_unlock_irqrestore(&zone
->lock
, flags
);
6734 return end_pfn
- start_pfn
- already_offline
;
6739 * This function returns a stable result only if called under zone lock.
6741 bool is_free_buddy_page(const struct page
*page
)
6743 unsigned long pfn
= page_to_pfn(page
);
6746 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6747 const struct page
*head
= page
- (pfn
& ((1 << order
) - 1));
6749 if (PageBuddy(head
) &&
6750 buddy_order_unsafe(head
) >= order
)
6754 return order
<= MAX_PAGE_ORDER
;
6756 EXPORT_SYMBOL(is_free_buddy_page
);
6758 #ifdef CONFIG_MEMORY_FAILURE
6759 static inline void add_to_free_list(struct page
*page
, struct zone
*zone
,
6760 unsigned int order
, int migratetype
,
6763 __add_to_free_list(page
, zone
, order
, migratetype
, tail
);
6764 account_freepages(zone
, 1 << order
, migratetype
);
6768 * Break down a higher-order page in sub-pages, and keep our target out of
6771 static void break_down_buddy_pages(struct zone
*zone
, struct page
*page
,
6772 struct page
*target
, int low
, int high
,
6775 unsigned long size
= 1 << high
;
6776 struct page
*current_buddy
;
6778 while (high
> low
) {
6782 if (target
>= &page
[size
]) {
6783 current_buddy
= page
;
6786 current_buddy
= page
+ size
;
6789 if (set_page_guard(zone
, current_buddy
, high
))
6792 add_to_free_list(current_buddy
, zone
, high
, migratetype
, false);
6793 set_buddy_order(current_buddy
, high
);
6798 * Take a page that will be marked as poisoned off the buddy allocator.
6800 bool take_page_off_buddy(struct page
*page
)
6802 struct zone
*zone
= page_zone(page
);
6803 unsigned long pfn
= page_to_pfn(page
);
6804 unsigned long flags
;
6808 spin_lock_irqsave(&zone
->lock
, flags
);
6809 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6810 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6811 int page_order
= buddy_order(page_head
);
6813 if (PageBuddy(page_head
) && page_order
>= order
) {
6814 unsigned long pfn_head
= page_to_pfn(page_head
);
6815 int migratetype
= get_pfnblock_migratetype(page_head
,
6818 del_page_from_free_list(page_head
, zone
, page_order
,
6820 break_down_buddy_pages(zone
, page_head
, page
, 0,
6821 page_order
, migratetype
);
6822 SetPageHWPoisonTakenOff(page
);
6826 if (page_count(page_head
) > 0)
6829 spin_unlock_irqrestore(&zone
->lock
, flags
);
6834 * Cancel takeoff done by take_page_off_buddy().
6836 bool put_page_back_buddy(struct page
*page
)
6838 struct zone
*zone
= page_zone(page
);
6839 unsigned long flags
;
6842 spin_lock_irqsave(&zone
->lock
, flags
);
6843 if (put_page_testzero(page
)) {
6844 unsigned long pfn
= page_to_pfn(page
);
6845 int migratetype
= get_pfnblock_migratetype(page
, pfn
);
6847 ClearPageHWPoisonTakenOff(page
);
6848 __free_one_page(page
, pfn
, zone
, 0, migratetype
, FPI_NONE
);
6849 if (TestClearPageHWPoison(page
)) {
6853 spin_unlock_irqrestore(&zone
->lock
, flags
);
6859 #ifdef CONFIG_ZONE_DMA
6860 bool has_managed_dma(void)
6862 struct pglist_data
*pgdat
;
6864 for_each_online_pgdat(pgdat
) {
6865 struct zone
*zone
= &pgdat
->node_zones
[ZONE_DMA
];
6867 if (managed_zone(zone
))
6872 #endif /* CONFIG_ZONE_DMA */
6874 #ifdef CONFIG_UNACCEPTED_MEMORY
6876 /* Counts number of zones with unaccepted pages. */
6877 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages
);
6879 static bool lazy_accept
= true;
6881 static int __init
accept_memory_parse(char *p
)
6883 if (!strcmp(p
, "lazy")) {
6886 } else if (!strcmp(p
, "eager")) {
6887 lazy_accept
= false;
6893 early_param("accept_memory", accept_memory_parse
);
6895 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
)
6897 phys_addr_t start
= page_to_phys(page
);
6899 return range_contains_unaccepted_memory(start
, PAGE_SIZE
<< order
);
6902 static void __accept_page(struct zone
*zone
, unsigned long *flags
,
6907 list_del(&page
->lru
);
6908 last
= list_empty(&zone
->unaccepted_pages
);
6910 account_freepages(zone
, -MAX_ORDER_NR_PAGES
, MIGRATE_MOVABLE
);
6911 __mod_zone_page_state(zone
, NR_UNACCEPTED
, -MAX_ORDER_NR_PAGES
);
6912 __ClearPageUnaccepted(page
);
6913 spin_unlock_irqrestore(&zone
->lock
, *flags
);
6915 accept_memory(page_to_phys(page
), PAGE_SIZE
<< MAX_PAGE_ORDER
);
6917 __free_pages_ok(page
, MAX_PAGE_ORDER
, FPI_TO_TAIL
);
6920 static_branch_dec(&zones_with_unaccepted_pages
);
6923 void accept_page(struct page
*page
)
6925 struct zone
*zone
= page_zone(page
);
6926 unsigned long flags
;
6928 spin_lock_irqsave(&zone
->lock
, flags
);
6929 if (!PageUnaccepted(page
)) {
6930 spin_unlock_irqrestore(&zone
->lock
, flags
);
6934 /* Unlocks zone->lock */
6935 __accept_page(zone
, &flags
, page
);
6938 static bool try_to_accept_memory_one(struct zone
*zone
)
6940 unsigned long flags
;
6943 spin_lock_irqsave(&zone
->lock
, flags
);
6944 page
= list_first_entry_or_null(&zone
->unaccepted_pages
,
6947 spin_unlock_irqrestore(&zone
->lock
, flags
);
6951 /* Unlocks zone->lock */
6952 __accept_page(zone
, &flags
, page
);
6957 static inline bool has_unaccepted_memory(void)
6959 return static_branch_unlikely(&zones_with_unaccepted_pages
);
6962 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
)
6967 if (!has_unaccepted_memory())
6970 if (list_empty(&zone
->unaccepted_pages
))
6973 /* How much to accept to get to promo watermark? */
6974 to_accept
= promo_wmark_pages(zone
) -
6975 (zone_page_state(zone
, NR_FREE_PAGES
) -
6976 __zone_watermark_unusable_free(zone
, order
, 0) -
6977 zone_page_state(zone
, NR_UNACCEPTED
));
6979 while (to_accept
> 0) {
6980 if (!try_to_accept_memory_one(zone
))
6983 to_accept
-= MAX_ORDER_NR_PAGES
;
6989 static bool __free_unaccepted(struct page
*page
)
6991 struct zone
*zone
= page_zone(page
);
6992 unsigned long flags
;
6998 spin_lock_irqsave(&zone
->lock
, flags
);
6999 first
= list_empty(&zone
->unaccepted_pages
);
7000 list_add_tail(&page
->lru
, &zone
->unaccepted_pages
);
7001 account_freepages(zone
, MAX_ORDER_NR_PAGES
, MIGRATE_MOVABLE
);
7002 __mod_zone_page_state(zone
, NR_UNACCEPTED
, MAX_ORDER_NR_PAGES
);
7003 __SetPageUnaccepted(page
);
7004 spin_unlock_irqrestore(&zone
->lock
, flags
);
7007 static_branch_inc(&zones_with_unaccepted_pages
);
7014 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
)
7019 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
)
7024 static bool __free_unaccepted(struct page
*page
)
7030 #endif /* CONFIG_UNACCEPTED_MEMORY */