Merge tag 'rproc-v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[linux.git] / mm / slub.c
blobc2151c9fee228d121a9cbcc220c3ae054769dacf
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operations
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* mm_account_reclaimed_pages() */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/swab.h>
19 #include <linux/bitops.h>
20 #include <linux/slab.h>
21 #include "slab.h"
22 #include <linux/proc_fs.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/kmsan.h>
26 #include <linux/cpu.h>
27 #include <linux/cpuset.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ctype.h>
30 #include <linux/stackdepot.h>
31 #include <linux/debugobjects.h>
32 #include <linux/kallsyms.h>
33 #include <linux/kfence.h>
34 #include <linux/memory.h>
35 #include <linux/math64.h>
36 #include <linux/fault-inject.h>
37 #include <linux/kmemleak.h>
38 #include <linux/stacktrace.h>
39 #include <linux/prefetch.h>
40 #include <linux/memcontrol.h>
41 #include <linux/random.h>
42 #include <kunit/test.h>
43 #include <kunit/test-bug.h>
44 #include <linux/sort.h>
46 #include <linux/debugfs.h>
47 #include <trace/events/kmem.h>
49 #include "internal.h"
52 * Lock order:
53 * 1. slab_mutex (Global Mutex)
54 * 2. node->list_lock (Spinlock)
55 * 3. kmem_cache->cpu_slab->lock (Local lock)
56 * 4. slab_lock(slab) (Only on some arches)
57 * 5. object_map_lock (Only for debugging)
59 * slab_mutex
61 * The role of the slab_mutex is to protect the list of all the slabs
62 * and to synchronize major metadata changes to slab cache structures.
63 * Also synchronizes memory hotplug callbacks.
65 * slab_lock
67 * The slab_lock is a wrapper around the page lock, thus it is a bit
68 * spinlock.
70 * The slab_lock is only used on arches that do not have the ability
71 * to do a cmpxchg_double. It only protects:
73 * A. slab->freelist -> List of free objects in a slab
74 * B. slab->inuse -> Number of objects in use
75 * C. slab->objects -> Number of objects in slab
76 * D. slab->frozen -> frozen state
78 * Frozen slabs
80 * If a slab is frozen then it is exempt from list management. It is
81 * the cpu slab which is actively allocated from by the processor that
82 * froze it and it is not on any list. The processor that froze the
83 * slab is the one who can perform list operations on the slab. Other
84 * processors may put objects onto the freelist but the processor that
85 * froze the slab is the only one that can retrieve the objects from the
86 * slab's freelist.
88 * CPU partial slabs
90 * The partially empty slabs cached on the CPU partial list are used
91 * for performance reasons, which speeds up the allocation process.
92 * These slabs are not frozen, but are also exempt from list management,
93 * by clearing the PG_workingset flag when moving out of the node
94 * partial list. Please see __slab_free() for more details.
96 * To sum up, the current scheme is:
97 * - node partial slab: PG_Workingset && !frozen
98 * - cpu partial slab: !PG_Workingset && !frozen
99 * - cpu slab: !PG_Workingset && frozen
100 * - full slab: !PG_Workingset && !frozen
102 * list_lock
104 * The list_lock protects the partial and full list on each node and
105 * the partial slab counter. If taken then no new slabs may be added or
106 * removed from the lists nor make the number of partial slabs be modified.
107 * (Note that the total number of slabs is an atomic value that may be
108 * modified without taking the list lock).
110 * The list_lock is a centralized lock and thus we avoid taking it as
111 * much as possible. As long as SLUB does not have to handle partial
112 * slabs, operations can continue without any centralized lock. F.e.
113 * allocating a long series of objects that fill up slabs does not require
114 * the list lock.
116 * For debug caches, all allocations are forced to go through a list_lock
117 * protected region to serialize against concurrent validation.
119 * cpu_slab->lock local lock
121 * This locks protect slowpath manipulation of all kmem_cache_cpu fields
122 * except the stat counters. This is a percpu structure manipulated only by
123 * the local cpu, so the lock protects against being preempted or interrupted
124 * by an irq. Fast path operations rely on lockless operations instead.
126 * On PREEMPT_RT, the local lock neither disables interrupts nor preemption
127 * which means the lockless fastpath cannot be used as it might interfere with
128 * an in-progress slow path operations. In this case the local lock is always
129 * taken but it still utilizes the freelist for the common operations.
131 * lockless fastpaths
133 * The fast path allocation (slab_alloc_node()) and freeing (do_slab_free())
134 * are fully lockless when satisfied from the percpu slab (and when
135 * cmpxchg_double is possible to use, otherwise slab_lock is taken).
136 * They also don't disable preemption or migration or irqs. They rely on
137 * the transaction id (tid) field to detect being preempted or moved to
138 * another cpu.
140 * irq, preemption, migration considerations
142 * Interrupts are disabled as part of list_lock or local_lock operations, or
143 * around the slab_lock operation, in order to make the slab allocator safe
144 * to use in the context of an irq.
146 * In addition, preemption (or migration on PREEMPT_RT) is disabled in the
147 * allocation slowpath, bulk allocation, and put_cpu_partial(), so that the
148 * local cpu doesn't change in the process and e.g. the kmem_cache_cpu pointer
149 * doesn't have to be revalidated in each section protected by the local lock.
151 * SLUB assigns one slab for allocation to each processor.
152 * Allocations only occur from these slabs called cpu slabs.
154 * Slabs with free elements are kept on a partial list and during regular
155 * operations no list for full slabs is used. If an object in a full slab is
156 * freed then the slab will show up again on the partial lists.
157 * We track full slabs for debugging purposes though because otherwise we
158 * cannot scan all objects.
160 * Slabs are freed when they become empty. Teardown and setup is
161 * minimal so we rely on the page allocators per cpu caches for
162 * fast frees and allocs.
164 * slab->frozen The slab is frozen and exempt from list processing.
165 * This means that the slab is dedicated to a purpose
166 * such as satisfying allocations for a specific
167 * processor. Objects may be freed in the slab while
168 * it is frozen but slab_free will then skip the usual
169 * list operations. It is up to the processor holding
170 * the slab to integrate the slab into the slab lists
171 * when the slab is no longer needed.
173 * One use of this flag is to mark slabs that are
174 * used for allocations. Then such a slab becomes a cpu
175 * slab. The cpu slab may be equipped with an additional
176 * freelist that allows lockless access to
177 * free objects in addition to the regular freelist
178 * that requires the slab lock.
180 * SLAB_DEBUG_FLAGS Slab requires special handling due to debug
181 * options set. This moves slab handling out of
182 * the fast path and disables lockless freelists.
186 * We could simply use migrate_disable()/enable() but as long as it's a
187 * function call even on !PREEMPT_RT, use inline preempt_disable() there.
189 #ifndef CONFIG_PREEMPT_RT
190 #define slub_get_cpu_ptr(var) get_cpu_ptr(var)
191 #define slub_put_cpu_ptr(var) put_cpu_ptr(var)
192 #define USE_LOCKLESS_FAST_PATH() (true)
193 #else
194 #define slub_get_cpu_ptr(var) \
195 ({ \
196 migrate_disable(); \
197 this_cpu_ptr(var); \
199 #define slub_put_cpu_ptr(var) \
200 do { \
201 (void)(var); \
202 migrate_enable(); \
203 } while (0)
204 #define USE_LOCKLESS_FAST_PATH() (false)
205 #endif
207 #ifndef CONFIG_SLUB_TINY
208 #define __fastpath_inline __always_inline
209 #else
210 #define __fastpath_inline
211 #endif
213 #ifdef CONFIG_SLUB_DEBUG
214 #ifdef CONFIG_SLUB_DEBUG_ON
215 DEFINE_STATIC_KEY_TRUE(slub_debug_enabled);
216 #else
217 DEFINE_STATIC_KEY_FALSE(slub_debug_enabled);
218 #endif
219 #endif /* CONFIG_SLUB_DEBUG */
221 #ifdef CONFIG_NUMA
222 static DEFINE_STATIC_KEY_FALSE(strict_numa);
223 #endif
225 /* Structure holding parameters for get_partial() call chain */
226 struct partial_context {
227 gfp_t flags;
228 unsigned int orig_size;
229 void *object;
232 static inline bool kmem_cache_debug(struct kmem_cache *s)
234 return kmem_cache_debug_flags(s, SLAB_DEBUG_FLAGS);
237 void *fixup_red_left(struct kmem_cache *s, void *p)
239 if (kmem_cache_debug_flags(s, SLAB_RED_ZONE))
240 p += s->red_left_pad;
242 return p;
245 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
247 #ifdef CONFIG_SLUB_CPU_PARTIAL
248 return !kmem_cache_debug(s);
249 #else
250 return false;
251 #endif
255 * Issues still to be resolved:
257 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
259 * - Variable sizing of the per node arrays
262 /* Enable to log cmpxchg failures */
263 #undef SLUB_DEBUG_CMPXCHG
265 #ifndef CONFIG_SLUB_TINY
267 * Minimum number of partial slabs. These will be left on the partial
268 * lists even if they are empty. kmem_cache_shrink may reclaim them.
270 #define MIN_PARTIAL 5
273 * Maximum number of desirable partial slabs.
274 * The existence of more partial slabs makes kmem_cache_shrink
275 * sort the partial list by the number of objects in use.
277 #define MAX_PARTIAL 10
278 #else
279 #define MIN_PARTIAL 0
280 #define MAX_PARTIAL 0
281 #endif
283 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
284 SLAB_POISON | SLAB_STORE_USER)
287 * These debug flags cannot use CMPXCHG because there might be consistency
288 * issues when checking or reading debug information
290 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
291 SLAB_TRACE)
295 * Debugging flags that require metadata to be stored in the slab. These get
296 * disabled when slab_debug=O is used and a cache's min order increases with
297 * metadata.
299 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
301 #define OO_SHIFT 16
302 #define OO_MASK ((1 << OO_SHIFT) - 1)
303 #define MAX_OBJS_PER_PAGE 32767 /* since slab.objects is u15 */
305 /* Internal SLUB flags */
306 /* Poison object */
307 #define __OBJECT_POISON __SLAB_FLAG_BIT(_SLAB_OBJECT_POISON)
308 /* Use cmpxchg_double */
310 #ifdef system_has_freelist_aba
311 #define __CMPXCHG_DOUBLE __SLAB_FLAG_BIT(_SLAB_CMPXCHG_DOUBLE)
312 #else
313 #define __CMPXCHG_DOUBLE __SLAB_FLAG_UNUSED
314 #endif
317 * Tracking user of a slab.
319 #define TRACK_ADDRS_COUNT 16
320 struct track {
321 unsigned long addr; /* Called from address */
322 #ifdef CONFIG_STACKDEPOT
323 depot_stack_handle_t handle;
324 #endif
325 int cpu; /* Was running on cpu */
326 int pid; /* Pid context */
327 unsigned long when; /* When did the operation occur */
330 enum track_item { TRACK_ALLOC, TRACK_FREE };
332 #ifdef SLAB_SUPPORTS_SYSFS
333 static int sysfs_slab_add(struct kmem_cache *);
334 static int sysfs_slab_alias(struct kmem_cache *, const char *);
335 #else
336 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
337 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
338 { return 0; }
339 #endif
341 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_SLUB_DEBUG)
342 static void debugfs_slab_add(struct kmem_cache *);
343 #else
344 static inline void debugfs_slab_add(struct kmem_cache *s) { }
345 #endif
347 enum stat_item {
348 ALLOC_FASTPATH, /* Allocation from cpu slab */
349 ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
350 FREE_FASTPATH, /* Free to cpu slab */
351 FREE_SLOWPATH, /* Freeing not to cpu slab */
352 FREE_FROZEN, /* Freeing to frozen slab */
353 FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
354 FREE_REMOVE_PARTIAL, /* Freeing removes last object */
355 ALLOC_FROM_PARTIAL, /* Cpu slab acquired from node partial list */
356 ALLOC_SLAB, /* Cpu slab acquired from page allocator */
357 ALLOC_REFILL, /* Refill cpu slab from slab freelist */
358 ALLOC_NODE_MISMATCH, /* Switching cpu slab */
359 FREE_SLAB, /* Slab freed to the page allocator */
360 CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
361 DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
362 DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
363 DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
364 DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
365 DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
366 DEACTIVATE_BYPASS, /* Implicit deactivation */
367 ORDER_FALLBACK, /* Number of times fallback was necessary */
368 CMPXCHG_DOUBLE_CPU_FAIL,/* Failures of this_cpu_cmpxchg_double */
369 CMPXCHG_DOUBLE_FAIL, /* Failures of slab freelist update */
370 CPU_PARTIAL_ALLOC, /* Used cpu partial on alloc */
371 CPU_PARTIAL_FREE, /* Refill cpu partial on free */
372 CPU_PARTIAL_NODE, /* Refill cpu partial from node partial */
373 CPU_PARTIAL_DRAIN, /* Drain cpu partial to node partial */
374 NR_SLUB_STAT_ITEMS
377 #ifndef CONFIG_SLUB_TINY
379 * When changing the layout, make sure freelist and tid are still compatible
380 * with this_cpu_cmpxchg_double() alignment requirements.
382 struct kmem_cache_cpu {
383 union {
384 struct {
385 void **freelist; /* Pointer to next available object */
386 unsigned long tid; /* Globally unique transaction id */
388 freelist_aba_t freelist_tid;
390 struct slab *slab; /* The slab from which we are allocating */
391 #ifdef CONFIG_SLUB_CPU_PARTIAL
392 struct slab *partial; /* Partially allocated slabs */
393 #endif
394 local_lock_t lock; /* Protects the fields above */
395 #ifdef CONFIG_SLUB_STATS
396 unsigned int stat[NR_SLUB_STAT_ITEMS];
397 #endif
399 #endif /* CONFIG_SLUB_TINY */
401 static inline void stat(const struct kmem_cache *s, enum stat_item si)
403 #ifdef CONFIG_SLUB_STATS
405 * The rmw is racy on a preemptible kernel but this is acceptable, so
406 * avoid this_cpu_add()'s irq-disable overhead.
408 raw_cpu_inc(s->cpu_slab->stat[si]);
409 #endif
412 static inline
413 void stat_add(const struct kmem_cache *s, enum stat_item si, int v)
415 #ifdef CONFIG_SLUB_STATS
416 raw_cpu_add(s->cpu_slab->stat[si], v);
417 #endif
421 * The slab lists for all objects.
423 struct kmem_cache_node {
424 spinlock_t list_lock;
425 unsigned long nr_partial;
426 struct list_head partial;
427 #ifdef CONFIG_SLUB_DEBUG
428 atomic_long_t nr_slabs;
429 atomic_long_t total_objects;
430 struct list_head full;
431 #endif
434 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
436 return s->node[node];
440 * Iterator over all nodes. The body will be executed for each node that has
441 * a kmem_cache_node structure allocated (which is true for all online nodes)
443 #define for_each_kmem_cache_node(__s, __node, __n) \
444 for (__node = 0; __node < nr_node_ids; __node++) \
445 if ((__n = get_node(__s, __node)))
448 * Tracks for which NUMA nodes we have kmem_cache_nodes allocated.
449 * Corresponds to node_state[N_NORMAL_MEMORY], but can temporarily
450 * differ during memory hotplug/hotremove operations.
451 * Protected by slab_mutex.
453 static nodemask_t slab_nodes;
455 #ifndef CONFIG_SLUB_TINY
457 * Workqueue used for flush_cpu_slab().
459 static struct workqueue_struct *flushwq;
460 #endif
462 /********************************************************************
463 * Core slab cache functions
464 *******************************************************************/
467 * Returns freelist pointer (ptr). With hardening, this is obfuscated
468 * with an XOR of the address where the pointer is held and a per-cache
469 * random number.
471 static inline freeptr_t freelist_ptr_encode(const struct kmem_cache *s,
472 void *ptr, unsigned long ptr_addr)
474 unsigned long encoded;
476 #ifdef CONFIG_SLAB_FREELIST_HARDENED
477 encoded = (unsigned long)ptr ^ s->random ^ swab(ptr_addr);
478 #else
479 encoded = (unsigned long)ptr;
480 #endif
481 return (freeptr_t){.v = encoded};
484 static inline void *freelist_ptr_decode(const struct kmem_cache *s,
485 freeptr_t ptr, unsigned long ptr_addr)
487 void *decoded;
489 #ifdef CONFIG_SLAB_FREELIST_HARDENED
490 decoded = (void *)(ptr.v ^ s->random ^ swab(ptr_addr));
491 #else
492 decoded = (void *)ptr.v;
493 #endif
494 return decoded;
497 static inline void *get_freepointer(struct kmem_cache *s, void *object)
499 unsigned long ptr_addr;
500 freeptr_t p;
502 object = kasan_reset_tag(object);
503 ptr_addr = (unsigned long)object + s->offset;
504 p = *(freeptr_t *)(ptr_addr);
505 return freelist_ptr_decode(s, p, ptr_addr);
508 #ifndef CONFIG_SLUB_TINY
509 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
511 prefetchw(object + s->offset);
513 #endif
516 * When running under KMSAN, get_freepointer_safe() may return an uninitialized
517 * pointer value in the case the current thread loses the race for the next
518 * memory chunk in the freelist. In that case this_cpu_cmpxchg_double() in
519 * slab_alloc_node() will fail, so the uninitialized value won't be used, but
520 * KMSAN will still check all arguments of cmpxchg because of imperfect
521 * handling of inline assembly.
522 * To work around this problem, we apply __no_kmsan_checks to ensure that
523 * get_freepointer_safe() returns initialized memory.
525 __no_kmsan_checks
526 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
528 unsigned long freepointer_addr;
529 freeptr_t p;
531 if (!debug_pagealloc_enabled_static())
532 return get_freepointer(s, object);
534 object = kasan_reset_tag(object);
535 freepointer_addr = (unsigned long)object + s->offset;
536 copy_from_kernel_nofault(&p, (freeptr_t *)freepointer_addr, sizeof(p));
537 return freelist_ptr_decode(s, p, freepointer_addr);
540 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
542 unsigned long freeptr_addr = (unsigned long)object + s->offset;
544 #ifdef CONFIG_SLAB_FREELIST_HARDENED
545 BUG_ON(object == fp); /* naive detection of double free or corruption */
546 #endif
548 freeptr_addr = (unsigned long)kasan_reset_tag((void *)freeptr_addr);
549 *(freeptr_t *)freeptr_addr = freelist_ptr_encode(s, fp, freeptr_addr);
553 * See comment in calculate_sizes().
555 static inline bool freeptr_outside_object(struct kmem_cache *s)
557 return s->offset >= s->inuse;
561 * Return offset of the end of info block which is inuse + free pointer if
562 * not overlapping with object.
564 static inline unsigned int get_info_end(struct kmem_cache *s)
566 if (freeptr_outside_object(s))
567 return s->inuse + sizeof(void *);
568 else
569 return s->inuse;
572 /* Loop over all objects in a slab */
573 #define for_each_object(__p, __s, __addr, __objects) \
574 for (__p = fixup_red_left(__s, __addr); \
575 __p < (__addr) + (__objects) * (__s)->size; \
576 __p += (__s)->size)
578 static inline unsigned int order_objects(unsigned int order, unsigned int size)
580 return ((unsigned int)PAGE_SIZE << order) / size;
583 static inline struct kmem_cache_order_objects oo_make(unsigned int order,
584 unsigned int size)
586 struct kmem_cache_order_objects x = {
587 (order << OO_SHIFT) + order_objects(order, size)
590 return x;
593 static inline unsigned int oo_order(struct kmem_cache_order_objects x)
595 return x.x >> OO_SHIFT;
598 static inline unsigned int oo_objects(struct kmem_cache_order_objects x)
600 return x.x & OO_MASK;
603 #ifdef CONFIG_SLUB_CPU_PARTIAL
604 static void slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
606 unsigned int nr_slabs;
608 s->cpu_partial = nr_objects;
611 * We take the number of objects but actually limit the number of
612 * slabs on the per cpu partial list, in order to limit excessive
613 * growth of the list. For simplicity we assume that the slabs will
614 * be half-full.
616 nr_slabs = DIV_ROUND_UP(nr_objects * 2, oo_objects(s->oo));
617 s->cpu_partial_slabs = nr_slabs;
620 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
622 return s->cpu_partial_slabs;
624 #else
625 static inline void
626 slub_set_cpu_partial(struct kmem_cache *s, unsigned int nr_objects)
630 static inline unsigned int slub_get_cpu_partial(struct kmem_cache *s)
632 return 0;
634 #endif /* CONFIG_SLUB_CPU_PARTIAL */
637 * Per slab locking using the pagelock
639 static __always_inline void slab_lock(struct slab *slab)
641 bit_spin_lock(PG_locked, &slab->__page_flags);
644 static __always_inline void slab_unlock(struct slab *slab)
646 bit_spin_unlock(PG_locked, &slab->__page_flags);
649 static inline bool
650 __update_freelist_fast(struct slab *slab,
651 void *freelist_old, unsigned long counters_old,
652 void *freelist_new, unsigned long counters_new)
654 #ifdef system_has_freelist_aba
655 freelist_aba_t old = { .freelist = freelist_old, .counter = counters_old };
656 freelist_aba_t new = { .freelist = freelist_new, .counter = counters_new };
658 return try_cmpxchg_freelist(&slab->freelist_counter.full, &old.full, new.full);
659 #else
660 return false;
661 #endif
664 static inline bool
665 __update_freelist_slow(struct slab *slab,
666 void *freelist_old, unsigned long counters_old,
667 void *freelist_new, unsigned long counters_new)
669 bool ret = false;
671 slab_lock(slab);
672 if (slab->freelist == freelist_old &&
673 slab->counters == counters_old) {
674 slab->freelist = freelist_new;
675 slab->counters = counters_new;
676 ret = true;
678 slab_unlock(slab);
680 return ret;
684 * Interrupts must be disabled (for the fallback code to work right), typically
685 * by an _irqsave() lock variant. On PREEMPT_RT the preempt_disable(), which is
686 * part of bit_spin_lock(), is sufficient because the policy is not to allow any
687 * allocation/ free operation in hardirq context. Therefore nothing can
688 * interrupt the operation.
690 static inline bool __slab_update_freelist(struct kmem_cache *s, struct slab *slab,
691 void *freelist_old, unsigned long counters_old,
692 void *freelist_new, unsigned long counters_new,
693 const char *n)
695 bool ret;
697 if (USE_LOCKLESS_FAST_PATH())
698 lockdep_assert_irqs_disabled();
700 if (s->flags & __CMPXCHG_DOUBLE) {
701 ret = __update_freelist_fast(slab, freelist_old, counters_old,
702 freelist_new, counters_new);
703 } else {
704 ret = __update_freelist_slow(slab, freelist_old, counters_old,
705 freelist_new, counters_new);
707 if (likely(ret))
708 return true;
710 cpu_relax();
711 stat(s, CMPXCHG_DOUBLE_FAIL);
713 #ifdef SLUB_DEBUG_CMPXCHG
714 pr_info("%s %s: cmpxchg double redo ", n, s->name);
715 #endif
717 return false;
720 static inline bool slab_update_freelist(struct kmem_cache *s, struct slab *slab,
721 void *freelist_old, unsigned long counters_old,
722 void *freelist_new, unsigned long counters_new,
723 const char *n)
725 bool ret;
727 if (s->flags & __CMPXCHG_DOUBLE) {
728 ret = __update_freelist_fast(slab, freelist_old, counters_old,
729 freelist_new, counters_new);
730 } else {
731 unsigned long flags;
733 local_irq_save(flags);
734 ret = __update_freelist_slow(slab, freelist_old, counters_old,
735 freelist_new, counters_new);
736 local_irq_restore(flags);
738 if (likely(ret))
739 return true;
741 cpu_relax();
742 stat(s, CMPXCHG_DOUBLE_FAIL);
744 #ifdef SLUB_DEBUG_CMPXCHG
745 pr_info("%s %s: cmpxchg double redo ", n, s->name);
746 #endif
748 return false;
752 * kmalloc caches has fixed sizes (mostly power of 2), and kmalloc() API
753 * family will round up the real request size to these fixed ones, so
754 * there could be an extra area than what is requested. Save the original
755 * request size in the meta data area, for better debug and sanity check.
757 static inline void set_orig_size(struct kmem_cache *s,
758 void *object, unsigned int orig_size)
760 void *p = kasan_reset_tag(object);
762 if (!slub_debug_orig_size(s))
763 return;
765 p += get_info_end(s);
766 p += sizeof(struct track) * 2;
768 *(unsigned int *)p = orig_size;
771 static inline unsigned int get_orig_size(struct kmem_cache *s, void *object)
773 void *p = kasan_reset_tag(object);
775 if (is_kfence_address(object))
776 return kfence_ksize(object);
778 if (!slub_debug_orig_size(s))
779 return s->object_size;
781 p += get_info_end(s);
782 p += sizeof(struct track) * 2;
784 return *(unsigned int *)p;
787 #ifdef CONFIG_SLUB_DEBUG
788 static unsigned long object_map[BITS_TO_LONGS(MAX_OBJS_PER_PAGE)];
789 static DEFINE_SPINLOCK(object_map_lock);
791 static void __fill_map(unsigned long *obj_map, struct kmem_cache *s,
792 struct slab *slab)
794 void *addr = slab_address(slab);
795 void *p;
797 bitmap_zero(obj_map, slab->objects);
799 for (p = slab->freelist; p; p = get_freepointer(s, p))
800 set_bit(__obj_to_index(s, addr, p), obj_map);
803 #if IS_ENABLED(CONFIG_KUNIT)
804 static bool slab_add_kunit_errors(void)
806 struct kunit_resource *resource;
808 if (!kunit_get_current_test())
809 return false;
811 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
812 if (!resource)
813 return false;
815 (*(int *)resource->data)++;
816 kunit_put_resource(resource);
817 return true;
820 bool slab_in_kunit_test(void)
822 struct kunit_resource *resource;
824 if (!kunit_get_current_test())
825 return false;
827 resource = kunit_find_named_resource(current->kunit_test, "slab_errors");
828 if (!resource)
829 return false;
831 kunit_put_resource(resource);
832 return true;
834 #else
835 static inline bool slab_add_kunit_errors(void) { return false; }
836 #endif
838 static inline unsigned int size_from_object(struct kmem_cache *s)
840 if (s->flags & SLAB_RED_ZONE)
841 return s->size - s->red_left_pad;
843 return s->size;
846 static inline void *restore_red_left(struct kmem_cache *s, void *p)
848 if (s->flags & SLAB_RED_ZONE)
849 p -= s->red_left_pad;
851 return p;
855 * Debug settings:
857 #if defined(CONFIG_SLUB_DEBUG_ON)
858 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
859 #else
860 static slab_flags_t slub_debug;
861 #endif
863 static char *slub_debug_string;
864 static int disable_higher_order_debug;
867 * slub is about to manipulate internal object metadata. This memory lies
868 * outside the range of the allocated object, so accessing it would normally
869 * be reported by kasan as a bounds error. metadata_access_enable() is used
870 * to tell kasan that these accesses are OK.
872 static inline void metadata_access_enable(void)
874 kasan_disable_current();
875 kmsan_disable_current();
878 static inline void metadata_access_disable(void)
880 kmsan_enable_current();
881 kasan_enable_current();
885 * Object debugging
888 /* Verify that a pointer has an address that is valid within a slab page */
889 static inline int check_valid_pointer(struct kmem_cache *s,
890 struct slab *slab, void *object)
892 void *base;
894 if (!object)
895 return 1;
897 base = slab_address(slab);
898 object = kasan_reset_tag(object);
899 object = restore_red_left(s, object);
900 if (object < base || object >= base + slab->objects * s->size ||
901 (object - base) % s->size) {
902 return 0;
905 return 1;
908 static void print_section(char *level, char *text, u8 *addr,
909 unsigned int length)
911 metadata_access_enable();
912 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS,
913 16, 1, kasan_reset_tag((void *)addr), length, 1);
914 metadata_access_disable();
917 static struct track *get_track(struct kmem_cache *s, void *object,
918 enum track_item alloc)
920 struct track *p;
922 p = object + get_info_end(s);
924 return kasan_reset_tag(p + alloc);
927 #ifdef CONFIG_STACKDEPOT
928 static noinline depot_stack_handle_t set_track_prepare(void)
930 depot_stack_handle_t handle;
931 unsigned long entries[TRACK_ADDRS_COUNT];
932 unsigned int nr_entries;
934 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
935 handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
937 return handle;
939 #else
940 static inline depot_stack_handle_t set_track_prepare(void)
942 return 0;
944 #endif
946 static void set_track_update(struct kmem_cache *s, void *object,
947 enum track_item alloc, unsigned long addr,
948 depot_stack_handle_t handle)
950 struct track *p = get_track(s, object, alloc);
952 #ifdef CONFIG_STACKDEPOT
953 p->handle = handle;
954 #endif
955 p->addr = addr;
956 p->cpu = smp_processor_id();
957 p->pid = current->pid;
958 p->when = jiffies;
961 static __always_inline void set_track(struct kmem_cache *s, void *object,
962 enum track_item alloc, unsigned long addr)
964 depot_stack_handle_t handle = set_track_prepare();
966 set_track_update(s, object, alloc, addr, handle);
969 static void init_tracking(struct kmem_cache *s, void *object)
971 struct track *p;
973 if (!(s->flags & SLAB_STORE_USER))
974 return;
976 p = get_track(s, object, TRACK_ALLOC);
977 memset(p, 0, 2*sizeof(struct track));
980 static void print_track(const char *s, struct track *t, unsigned long pr_time)
982 depot_stack_handle_t handle __maybe_unused;
984 if (!t->addr)
985 return;
987 pr_err("%s in %pS age=%lu cpu=%u pid=%d\n",
988 s, (void *)t->addr, pr_time - t->when, t->cpu, t->pid);
989 #ifdef CONFIG_STACKDEPOT
990 handle = READ_ONCE(t->handle);
991 if (handle)
992 stack_depot_print(handle);
993 else
994 pr_err("object allocation/free stack trace missing\n");
995 #endif
998 void print_tracking(struct kmem_cache *s, void *object)
1000 unsigned long pr_time = jiffies;
1001 if (!(s->flags & SLAB_STORE_USER))
1002 return;
1004 print_track("Allocated", get_track(s, object, TRACK_ALLOC), pr_time);
1005 print_track("Freed", get_track(s, object, TRACK_FREE), pr_time);
1008 static void print_slab_info(const struct slab *slab)
1010 pr_err("Slab 0x%p objects=%u used=%u fp=0x%p flags=%pGp\n",
1011 slab, slab->objects, slab->inuse, slab->freelist,
1012 &slab->__page_flags);
1015 void skip_orig_size_check(struct kmem_cache *s, const void *object)
1017 set_orig_size(s, (void *)object, s->object_size);
1020 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
1022 struct va_format vaf;
1023 va_list args;
1025 va_start(args, fmt);
1026 vaf.fmt = fmt;
1027 vaf.va = &args;
1028 pr_err("=============================================================================\n");
1029 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
1030 pr_err("-----------------------------------------------------------------------------\n\n");
1031 va_end(args);
1034 __printf(2, 3)
1035 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
1037 struct va_format vaf;
1038 va_list args;
1040 if (slab_add_kunit_errors())
1041 return;
1043 va_start(args, fmt);
1044 vaf.fmt = fmt;
1045 vaf.va = &args;
1046 pr_err("FIX %s: %pV\n", s->name, &vaf);
1047 va_end(args);
1050 static void print_trailer(struct kmem_cache *s, struct slab *slab, u8 *p)
1052 unsigned int off; /* Offset of last byte */
1053 u8 *addr = slab_address(slab);
1055 print_tracking(s, p);
1057 print_slab_info(slab);
1059 pr_err("Object 0x%p @offset=%tu fp=0x%p\n\n",
1060 p, p - addr, get_freepointer(s, p));
1062 if (s->flags & SLAB_RED_ZONE)
1063 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
1064 s->red_left_pad);
1065 else if (p > addr + 16)
1066 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
1068 print_section(KERN_ERR, "Object ", p,
1069 min_t(unsigned int, s->object_size, PAGE_SIZE));
1070 if (s->flags & SLAB_RED_ZONE)
1071 print_section(KERN_ERR, "Redzone ", p + s->object_size,
1072 s->inuse - s->object_size);
1074 off = get_info_end(s);
1076 if (s->flags & SLAB_STORE_USER)
1077 off += 2 * sizeof(struct track);
1079 if (slub_debug_orig_size(s))
1080 off += sizeof(unsigned int);
1082 off += kasan_metadata_size(s, false);
1084 if (off != size_from_object(s))
1085 /* Beginning of the filler is the free pointer */
1086 print_section(KERN_ERR, "Padding ", p + off,
1087 size_from_object(s) - off);
1089 dump_stack();
1092 static void object_err(struct kmem_cache *s, struct slab *slab,
1093 u8 *object, char *reason)
1095 if (slab_add_kunit_errors())
1096 return;
1098 slab_bug(s, "%s", reason);
1099 print_trailer(s, slab, object);
1100 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1103 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1104 void **freelist, void *nextfree)
1106 if ((s->flags & SLAB_CONSISTENCY_CHECKS) &&
1107 !check_valid_pointer(s, slab, nextfree) && freelist) {
1108 object_err(s, slab, *freelist, "Freechain corrupt");
1109 *freelist = NULL;
1110 slab_fix(s, "Isolate corrupted freechain");
1111 return true;
1114 return false;
1117 static __printf(3, 4) void slab_err(struct kmem_cache *s, struct slab *slab,
1118 const char *fmt, ...)
1120 va_list args;
1121 char buf[100];
1123 if (slab_add_kunit_errors())
1124 return;
1126 va_start(args, fmt);
1127 vsnprintf(buf, sizeof(buf), fmt, args);
1128 va_end(args);
1129 slab_bug(s, "%s", buf);
1130 print_slab_info(slab);
1131 dump_stack();
1132 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1135 static void init_object(struct kmem_cache *s, void *object, u8 val)
1137 u8 *p = kasan_reset_tag(object);
1138 unsigned int poison_size = s->object_size;
1140 if (s->flags & SLAB_RED_ZONE) {
1142 * Here and below, avoid overwriting the KMSAN shadow. Keeping
1143 * the shadow makes it possible to distinguish uninit-value
1144 * from use-after-free.
1146 memset_no_sanitize_memory(p - s->red_left_pad, val,
1147 s->red_left_pad);
1149 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1151 * Redzone the extra allocated space by kmalloc than
1152 * requested, and the poison size will be limited to
1153 * the original request size accordingly.
1155 poison_size = get_orig_size(s, object);
1159 if (s->flags & __OBJECT_POISON) {
1160 memset_no_sanitize_memory(p, POISON_FREE, poison_size - 1);
1161 memset_no_sanitize_memory(p + poison_size - 1, POISON_END, 1);
1164 if (s->flags & SLAB_RED_ZONE)
1165 memset_no_sanitize_memory(p + poison_size, val,
1166 s->inuse - poison_size);
1169 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
1170 void *from, void *to)
1172 slab_fix(s, "Restoring %s 0x%p-0x%p=0x%x", message, from, to - 1, data);
1173 memset(from, data, to - from);
1176 #ifdef CONFIG_KMSAN
1177 #define pad_check_attributes noinline __no_kmsan_checks
1178 #else
1179 #define pad_check_attributes
1180 #endif
1182 static pad_check_attributes int
1183 check_bytes_and_report(struct kmem_cache *s, struct slab *slab,
1184 u8 *object, char *what,
1185 u8 *start, unsigned int value, unsigned int bytes)
1187 u8 *fault;
1188 u8 *end;
1189 u8 *addr = slab_address(slab);
1191 metadata_access_enable();
1192 fault = memchr_inv(kasan_reset_tag(start), value, bytes);
1193 metadata_access_disable();
1194 if (!fault)
1195 return 1;
1197 end = start + bytes;
1198 while (end > fault && end[-1] == value)
1199 end--;
1201 if (slab_add_kunit_errors())
1202 goto skip_bug_print;
1204 slab_bug(s, "%s overwritten", what);
1205 pr_err("0x%p-0x%p @offset=%tu. First byte 0x%x instead of 0x%x\n",
1206 fault, end - 1, fault - addr,
1207 fault[0], value);
1209 skip_bug_print:
1210 restore_bytes(s, what, value, fault, end);
1211 return 0;
1215 * Object layout:
1217 * object address
1218 * Bytes of the object to be managed.
1219 * If the freepointer may overlay the object then the free
1220 * pointer is at the middle of the object.
1222 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
1223 * 0xa5 (POISON_END)
1225 * object + s->object_size
1226 * Padding to reach word boundary. This is also used for Redzoning.
1227 * Padding is extended by another word if Redzoning is enabled and
1228 * object_size == inuse.
1230 * We fill with 0xbb (SLUB_RED_INACTIVE) for inactive objects and with
1231 * 0xcc (SLUB_RED_ACTIVE) for objects in use.
1233 * object + s->inuse
1234 * Meta data starts here.
1236 * A. Free pointer (if we cannot overwrite object on free)
1237 * B. Tracking data for SLAB_STORE_USER
1238 * C. Original request size for kmalloc object (SLAB_STORE_USER enabled)
1239 * D. Padding to reach required alignment boundary or at minimum
1240 * one word if debugging is on to be able to detect writes
1241 * before the word boundary.
1243 * Padding is done using 0x5a (POISON_INUSE)
1245 * object + s->size
1246 * Nothing is used beyond s->size.
1248 * If slabcaches are merged then the object_size and inuse boundaries are mostly
1249 * ignored. And therefore no slab options that rely on these boundaries
1250 * may be used with merged slabcaches.
1253 static int check_pad_bytes(struct kmem_cache *s, struct slab *slab, u8 *p)
1255 unsigned long off = get_info_end(s); /* The end of info */
1257 if (s->flags & SLAB_STORE_USER) {
1258 /* We also have user information there */
1259 off += 2 * sizeof(struct track);
1261 if (s->flags & SLAB_KMALLOC)
1262 off += sizeof(unsigned int);
1265 off += kasan_metadata_size(s, false);
1267 if (size_from_object(s) == off)
1268 return 1;
1270 return check_bytes_and_report(s, slab, p, "Object padding",
1271 p + off, POISON_INUSE, size_from_object(s) - off);
1274 /* Check the pad bytes at the end of a slab page */
1275 static pad_check_attributes void
1276 slab_pad_check(struct kmem_cache *s, struct slab *slab)
1278 u8 *start;
1279 u8 *fault;
1280 u8 *end;
1281 u8 *pad;
1282 int length;
1283 int remainder;
1285 if (!(s->flags & SLAB_POISON))
1286 return;
1288 start = slab_address(slab);
1289 length = slab_size(slab);
1290 end = start + length;
1291 remainder = length % s->size;
1292 if (!remainder)
1293 return;
1295 pad = end - remainder;
1296 metadata_access_enable();
1297 fault = memchr_inv(kasan_reset_tag(pad), POISON_INUSE, remainder);
1298 metadata_access_disable();
1299 if (!fault)
1300 return;
1301 while (end > fault && end[-1] == POISON_INUSE)
1302 end--;
1304 slab_err(s, slab, "Padding overwritten. 0x%p-0x%p @offset=%tu",
1305 fault, end - 1, fault - start);
1306 print_section(KERN_ERR, "Padding ", pad, remainder);
1308 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
1311 static int check_object(struct kmem_cache *s, struct slab *slab,
1312 void *object, u8 val)
1314 u8 *p = object;
1315 u8 *endobject = object + s->object_size;
1316 unsigned int orig_size, kasan_meta_size;
1317 int ret = 1;
1319 if (s->flags & SLAB_RED_ZONE) {
1320 if (!check_bytes_and_report(s, slab, object, "Left Redzone",
1321 object - s->red_left_pad, val, s->red_left_pad))
1322 ret = 0;
1324 if (!check_bytes_and_report(s, slab, object, "Right Redzone",
1325 endobject, val, s->inuse - s->object_size))
1326 ret = 0;
1328 if (slub_debug_orig_size(s) && val == SLUB_RED_ACTIVE) {
1329 orig_size = get_orig_size(s, object);
1331 if (s->object_size > orig_size &&
1332 !check_bytes_and_report(s, slab, object,
1333 "kmalloc Redzone", p + orig_size,
1334 val, s->object_size - orig_size)) {
1335 ret = 0;
1338 } else {
1339 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
1340 if (!check_bytes_and_report(s, slab, p, "Alignment padding",
1341 endobject, POISON_INUSE,
1342 s->inuse - s->object_size))
1343 ret = 0;
1347 if (s->flags & SLAB_POISON) {
1348 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON)) {
1350 * KASAN can save its free meta data inside of the
1351 * object at offset 0. Thus, skip checking the part of
1352 * the redzone that overlaps with the meta data.
1354 kasan_meta_size = kasan_metadata_size(s, true);
1355 if (kasan_meta_size < s->object_size - 1 &&
1356 !check_bytes_and_report(s, slab, p, "Poison",
1357 p + kasan_meta_size, POISON_FREE,
1358 s->object_size - kasan_meta_size - 1))
1359 ret = 0;
1360 if (kasan_meta_size < s->object_size &&
1361 !check_bytes_and_report(s, slab, p, "End Poison",
1362 p + s->object_size - 1, POISON_END, 1))
1363 ret = 0;
1366 * check_pad_bytes cleans up on its own.
1368 if (!check_pad_bytes(s, slab, p))
1369 ret = 0;
1373 * Cannot check freepointer while object is allocated if
1374 * object and freepointer overlap.
1376 if ((freeptr_outside_object(s) || val != SLUB_RED_ACTIVE) &&
1377 !check_valid_pointer(s, slab, get_freepointer(s, p))) {
1378 object_err(s, slab, p, "Freepointer corrupt");
1380 * No choice but to zap it and thus lose the remainder
1381 * of the free objects in this slab. May cause
1382 * another error because the object count is now wrong.
1384 set_freepointer(s, p, NULL);
1385 ret = 0;
1388 if (!ret && !slab_in_kunit_test()) {
1389 print_trailer(s, slab, object);
1390 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1393 return ret;
1396 static int check_slab(struct kmem_cache *s, struct slab *slab)
1398 int maxobj;
1400 if (!folio_test_slab(slab_folio(slab))) {
1401 slab_err(s, slab, "Not a valid slab page");
1402 return 0;
1405 maxobj = order_objects(slab_order(slab), s->size);
1406 if (slab->objects > maxobj) {
1407 slab_err(s, slab, "objects %u > max %u",
1408 slab->objects, maxobj);
1409 return 0;
1411 if (slab->inuse > slab->objects) {
1412 slab_err(s, slab, "inuse %u > max %u",
1413 slab->inuse, slab->objects);
1414 return 0;
1416 if (slab->frozen) {
1417 slab_err(s, slab, "Slab disabled since SLUB metadata consistency check failed");
1418 return 0;
1421 /* Slab_pad_check fixes things up after itself */
1422 slab_pad_check(s, slab);
1423 return 1;
1427 * Determine if a certain object in a slab is on the freelist. Must hold the
1428 * slab lock to guarantee that the chains are in a consistent state.
1430 static int on_freelist(struct kmem_cache *s, struct slab *slab, void *search)
1432 int nr = 0;
1433 void *fp;
1434 void *object = NULL;
1435 int max_objects;
1437 fp = slab->freelist;
1438 while (fp && nr <= slab->objects) {
1439 if (fp == search)
1440 return 1;
1441 if (!check_valid_pointer(s, slab, fp)) {
1442 if (object) {
1443 object_err(s, slab, object,
1444 "Freechain corrupt");
1445 set_freepointer(s, object, NULL);
1446 } else {
1447 slab_err(s, slab, "Freepointer corrupt");
1448 slab->freelist = NULL;
1449 slab->inuse = slab->objects;
1450 slab_fix(s, "Freelist cleared");
1451 return 0;
1453 break;
1455 object = fp;
1456 fp = get_freepointer(s, object);
1457 nr++;
1460 max_objects = order_objects(slab_order(slab), s->size);
1461 if (max_objects > MAX_OBJS_PER_PAGE)
1462 max_objects = MAX_OBJS_PER_PAGE;
1464 if (slab->objects != max_objects) {
1465 slab_err(s, slab, "Wrong number of objects. Found %d but should be %d",
1466 slab->objects, max_objects);
1467 slab->objects = max_objects;
1468 slab_fix(s, "Number of objects adjusted");
1470 if (slab->inuse != slab->objects - nr) {
1471 slab_err(s, slab, "Wrong object count. Counter is %d but counted were %d",
1472 slab->inuse, slab->objects - nr);
1473 slab->inuse = slab->objects - nr;
1474 slab_fix(s, "Object count adjusted");
1476 return search == NULL;
1479 static void trace(struct kmem_cache *s, struct slab *slab, void *object,
1480 int alloc)
1482 if (s->flags & SLAB_TRACE) {
1483 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1484 s->name,
1485 alloc ? "alloc" : "free",
1486 object, slab->inuse,
1487 slab->freelist);
1489 if (!alloc)
1490 print_section(KERN_INFO, "Object ", (void *)object,
1491 s->object_size);
1493 dump_stack();
1498 * Tracking of fully allocated slabs for debugging purposes.
1500 static void add_full(struct kmem_cache *s,
1501 struct kmem_cache_node *n, struct slab *slab)
1503 if (!(s->flags & SLAB_STORE_USER))
1504 return;
1506 lockdep_assert_held(&n->list_lock);
1507 list_add(&slab->slab_list, &n->full);
1510 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct slab *slab)
1512 if (!(s->flags & SLAB_STORE_USER))
1513 return;
1515 lockdep_assert_held(&n->list_lock);
1516 list_del(&slab->slab_list);
1519 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1521 return atomic_long_read(&n->nr_slabs);
1524 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1526 struct kmem_cache_node *n = get_node(s, node);
1528 atomic_long_inc(&n->nr_slabs);
1529 atomic_long_add(objects, &n->total_objects);
1531 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1533 struct kmem_cache_node *n = get_node(s, node);
1535 atomic_long_dec(&n->nr_slabs);
1536 atomic_long_sub(objects, &n->total_objects);
1539 /* Object debug checks for alloc/free paths */
1540 static void setup_object_debug(struct kmem_cache *s, void *object)
1542 if (!kmem_cache_debug_flags(s, SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))
1543 return;
1545 init_object(s, object, SLUB_RED_INACTIVE);
1546 init_tracking(s, object);
1549 static
1550 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr)
1552 if (!kmem_cache_debug_flags(s, SLAB_POISON))
1553 return;
1555 metadata_access_enable();
1556 memset(kasan_reset_tag(addr), POISON_INUSE, slab_size(slab));
1557 metadata_access_disable();
1560 static inline int alloc_consistency_checks(struct kmem_cache *s,
1561 struct slab *slab, void *object)
1563 if (!check_slab(s, slab))
1564 return 0;
1566 if (!check_valid_pointer(s, slab, object)) {
1567 object_err(s, slab, object, "Freelist Pointer check fails");
1568 return 0;
1571 if (!check_object(s, slab, object, SLUB_RED_INACTIVE))
1572 return 0;
1574 return 1;
1577 static noinline bool alloc_debug_processing(struct kmem_cache *s,
1578 struct slab *slab, void *object, int orig_size)
1580 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1581 if (!alloc_consistency_checks(s, slab, object))
1582 goto bad;
1585 /* Success. Perform special debug activities for allocs */
1586 trace(s, slab, object, 1);
1587 set_orig_size(s, object, orig_size);
1588 init_object(s, object, SLUB_RED_ACTIVE);
1589 return true;
1591 bad:
1592 if (folio_test_slab(slab_folio(slab))) {
1594 * If this is a slab page then lets do the best we can
1595 * to avoid issues in the future. Marking all objects
1596 * as used avoids touching the remaining objects.
1598 slab_fix(s, "Marking all objects used");
1599 slab->inuse = slab->objects;
1600 slab->freelist = NULL;
1601 slab->frozen = 1; /* mark consistency-failed slab as frozen */
1603 return false;
1606 static inline int free_consistency_checks(struct kmem_cache *s,
1607 struct slab *slab, void *object, unsigned long addr)
1609 if (!check_valid_pointer(s, slab, object)) {
1610 slab_err(s, slab, "Invalid object pointer 0x%p", object);
1611 return 0;
1614 if (on_freelist(s, slab, object)) {
1615 object_err(s, slab, object, "Object already free");
1616 return 0;
1619 if (!check_object(s, slab, object, SLUB_RED_ACTIVE))
1620 return 0;
1622 if (unlikely(s != slab->slab_cache)) {
1623 if (!folio_test_slab(slab_folio(slab))) {
1624 slab_err(s, slab, "Attempt to free object(0x%p) outside of slab",
1625 object);
1626 } else if (!slab->slab_cache) {
1627 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1628 object);
1629 dump_stack();
1630 } else
1631 object_err(s, slab, object,
1632 "page slab pointer corrupt.");
1633 return 0;
1635 return 1;
1639 * Parse a block of slab_debug options. Blocks are delimited by ';'
1641 * @str: start of block
1642 * @flags: returns parsed flags, or DEBUG_DEFAULT_FLAGS if none specified
1643 * @slabs: return start of list of slabs, or NULL when there's no list
1644 * @init: assume this is initial parsing and not per-kmem-create parsing
1646 * returns the start of next block if there's any, or NULL
1648 static char *
1649 parse_slub_debug_flags(char *str, slab_flags_t *flags, char **slabs, bool init)
1651 bool higher_order_disable = false;
1653 /* Skip any completely empty blocks */
1654 while (*str && *str == ';')
1655 str++;
1657 if (*str == ',') {
1659 * No options but restriction on slabs. This means full
1660 * debugging for slabs matching a pattern.
1662 *flags = DEBUG_DEFAULT_FLAGS;
1663 goto check_slabs;
1665 *flags = 0;
1667 /* Determine which debug features should be switched on */
1668 for (; *str && *str != ',' && *str != ';'; str++) {
1669 switch (tolower(*str)) {
1670 case '-':
1671 *flags = 0;
1672 break;
1673 case 'f':
1674 *flags |= SLAB_CONSISTENCY_CHECKS;
1675 break;
1676 case 'z':
1677 *flags |= SLAB_RED_ZONE;
1678 break;
1679 case 'p':
1680 *flags |= SLAB_POISON;
1681 break;
1682 case 'u':
1683 *flags |= SLAB_STORE_USER;
1684 break;
1685 case 't':
1686 *flags |= SLAB_TRACE;
1687 break;
1688 case 'a':
1689 *flags |= SLAB_FAILSLAB;
1690 break;
1691 case 'o':
1693 * Avoid enabling debugging on caches if its minimum
1694 * order would increase as a result.
1696 higher_order_disable = true;
1697 break;
1698 default:
1699 if (init)
1700 pr_err("slab_debug option '%c' unknown. skipped\n", *str);
1703 check_slabs:
1704 if (*str == ',')
1705 *slabs = ++str;
1706 else
1707 *slabs = NULL;
1709 /* Skip over the slab list */
1710 while (*str && *str != ';')
1711 str++;
1713 /* Skip any completely empty blocks */
1714 while (*str && *str == ';')
1715 str++;
1717 if (init && higher_order_disable)
1718 disable_higher_order_debug = 1;
1720 if (*str)
1721 return str;
1722 else
1723 return NULL;
1726 static int __init setup_slub_debug(char *str)
1728 slab_flags_t flags;
1729 slab_flags_t global_flags;
1730 char *saved_str;
1731 char *slab_list;
1732 bool global_slub_debug_changed = false;
1733 bool slab_list_specified = false;
1735 global_flags = DEBUG_DEFAULT_FLAGS;
1736 if (*str++ != '=' || !*str)
1738 * No options specified. Switch on full debugging.
1740 goto out;
1742 saved_str = str;
1743 while (str) {
1744 str = parse_slub_debug_flags(str, &flags, &slab_list, true);
1746 if (!slab_list) {
1747 global_flags = flags;
1748 global_slub_debug_changed = true;
1749 } else {
1750 slab_list_specified = true;
1751 if (flags & SLAB_STORE_USER)
1752 stack_depot_request_early_init();
1757 * For backwards compatibility, a single list of flags with list of
1758 * slabs means debugging is only changed for those slabs, so the global
1759 * slab_debug should be unchanged (0 or DEBUG_DEFAULT_FLAGS, depending
1760 * on CONFIG_SLUB_DEBUG_ON). We can extended that to multiple lists as
1761 * long as there is no option specifying flags without a slab list.
1763 if (slab_list_specified) {
1764 if (!global_slub_debug_changed)
1765 global_flags = slub_debug;
1766 slub_debug_string = saved_str;
1768 out:
1769 slub_debug = global_flags;
1770 if (slub_debug & SLAB_STORE_USER)
1771 stack_depot_request_early_init();
1772 if (slub_debug != 0 || slub_debug_string)
1773 static_branch_enable(&slub_debug_enabled);
1774 else
1775 static_branch_disable(&slub_debug_enabled);
1776 if ((static_branch_unlikely(&init_on_alloc) ||
1777 static_branch_unlikely(&init_on_free)) &&
1778 (slub_debug & SLAB_POISON))
1779 pr_info("mem auto-init: SLAB_POISON will take precedence over init_on_alloc/init_on_free\n");
1780 return 1;
1783 __setup("slab_debug", setup_slub_debug);
1784 __setup_param("slub_debug", slub_debug, setup_slub_debug, 0);
1787 * kmem_cache_flags - apply debugging options to the cache
1788 * @flags: flags to set
1789 * @name: name of the cache
1791 * Debug option(s) are applied to @flags. In addition to the debug
1792 * option(s), if a slab name (or multiple) is specified i.e.
1793 * slab_debug=<Debug-Options>,<slab name1>,<slab name2> ...
1794 * then only the select slabs will receive the debug option(s).
1796 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1798 char *iter;
1799 size_t len;
1800 char *next_block;
1801 slab_flags_t block_flags;
1802 slab_flags_t slub_debug_local = slub_debug;
1804 if (flags & SLAB_NO_USER_FLAGS)
1805 return flags;
1808 * If the slab cache is for debugging (e.g. kmemleak) then
1809 * don't store user (stack trace) information by default,
1810 * but let the user enable it via the command line below.
1812 if (flags & SLAB_NOLEAKTRACE)
1813 slub_debug_local &= ~SLAB_STORE_USER;
1815 len = strlen(name);
1816 next_block = slub_debug_string;
1817 /* Go through all blocks of debug options, see if any matches our slab's name */
1818 while (next_block) {
1819 next_block = parse_slub_debug_flags(next_block, &block_flags, &iter, false);
1820 if (!iter)
1821 continue;
1822 /* Found a block that has a slab list, search it */
1823 while (*iter) {
1824 char *end, *glob;
1825 size_t cmplen;
1827 end = strchrnul(iter, ',');
1828 if (next_block && next_block < end)
1829 end = next_block - 1;
1831 glob = strnchr(iter, end - iter, '*');
1832 if (glob)
1833 cmplen = glob - iter;
1834 else
1835 cmplen = max_t(size_t, len, (end - iter));
1837 if (!strncmp(name, iter, cmplen)) {
1838 flags |= block_flags;
1839 return flags;
1842 if (!*end || *end == ';')
1843 break;
1844 iter = end + 1;
1848 return flags | slub_debug_local;
1850 #else /* !CONFIG_SLUB_DEBUG */
1851 static inline void setup_object_debug(struct kmem_cache *s, void *object) {}
1852 static inline
1853 void setup_slab_debug(struct kmem_cache *s, struct slab *slab, void *addr) {}
1855 static inline bool alloc_debug_processing(struct kmem_cache *s,
1856 struct slab *slab, void *object, int orig_size) { return true; }
1858 static inline bool free_debug_processing(struct kmem_cache *s,
1859 struct slab *slab, void *head, void *tail, int *bulk_cnt,
1860 unsigned long addr, depot_stack_handle_t handle) { return true; }
1862 static inline void slab_pad_check(struct kmem_cache *s, struct slab *slab) {}
1863 static inline int check_object(struct kmem_cache *s, struct slab *slab,
1864 void *object, u8 val) { return 1; }
1865 static inline depot_stack_handle_t set_track_prepare(void) { return 0; }
1866 static inline void set_track(struct kmem_cache *s, void *object,
1867 enum track_item alloc, unsigned long addr) {}
1868 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1869 struct slab *slab) {}
1870 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1871 struct slab *slab) {}
1872 slab_flags_t kmem_cache_flags(slab_flags_t flags, const char *name)
1874 return flags;
1876 #define slub_debug 0
1878 #define disable_higher_order_debug 0
1880 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1881 { return 0; }
1882 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1883 int objects) {}
1884 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1885 int objects) {}
1886 #ifndef CONFIG_SLUB_TINY
1887 static bool freelist_corrupted(struct kmem_cache *s, struct slab *slab,
1888 void **freelist, void *nextfree)
1890 return false;
1892 #endif
1893 #endif /* CONFIG_SLUB_DEBUG */
1895 #ifdef CONFIG_SLAB_OBJ_EXT
1897 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
1899 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts)
1901 struct slabobj_ext *slab_exts;
1902 struct slab *obj_exts_slab;
1904 obj_exts_slab = virt_to_slab(obj_exts);
1905 slab_exts = slab_obj_exts(obj_exts_slab);
1906 if (slab_exts) {
1907 unsigned int offs = obj_to_index(obj_exts_slab->slab_cache,
1908 obj_exts_slab, obj_exts);
1909 /* codetag should be NULL */
1910 WARN_ON(slab_exts[offs].ref.ct);
1911 set_codetag_empty(&slab_exts[offs].ref);
1915 static inline void mark_failed_objexts_alloc(struct slab *slab)
1917 slab->obj_exts = OBJEXTS_ALLOC_FAIL;
1920 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1921 struct slabobj_ext *vec, unsigned int objects)
1924 * If vector previously failed to allocate then we have live
1925 * objects with no tag reference. Mark all references in this
1926 * vector as empty to avoid warnings later on.
1928 if (obj_exts & OBJEXTS_ALLOC_FAIL) {
1929 unsigned int i;
1931 for (i = 0; i < objects; i++)
1932 set_codetag_empty(&vec[i].ref);
1936 #else /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1938 static inline void mark_objexts_empty(struct slabobj_ext *obj_exts) {}
1939 static inline void mark_failed_objexts_alloc(struct slab *slab) {}
1940 static inline void handle_failed_objexts_alloc(unsigned long obj_exts,
1941 struct slabobj_ext *vec, unsigned int objects) {}
1943 #endif /* CONFIG_MEM_ALLOC_PROFILING_DEBUG */
1946 * The allocated objcg pointers array is not accounted directly.
1947 * Moreover, it should not come from DMA buffer and is not readily
1948 * reclaimable. So those GFP bits should be masked off.
1950 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | \
1951 __GFP_ACCOUNT | __GFP_NOFAIL)
1953 int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
1954 gfp_t gfp, bool new_slab)
1956 unsigned int objects = objs_per_slab(s, slab);
1957 unsigned long new_exts;
1958 unsigned long old_exts;
1959 struct slabobj_ext *vec;
1961 gfp &= ~OBJCGS_CLEAR_MASK;
1962 /* Prevent recursive extension vector allocation */
1963 gfp |= __GFP_NO_OBJ_EXT;
1964 vec = kcalloc_node(objects, sizeof(struct slabobj_ext), gfp,
1965 slab_nid(slab));
1966 if (!vec) {
1967 /* Mark vectors which failed to allocate */
1968 if (new_slab)
1969 mark_failed_objexts_alloc(slab);
1971 return -ENOMEM;
1974 new_exts = (unsigned long)vec;
1975 #ifdef CONFIG_MEMCG
1976 new_exts |= MEMCG_DATA_OBJEXTS;
1977 #endif
1978 old_exts = READ_ONCE(slab->obj_exts);
1979 handle_failed_objexts_alloc(old_exts, vec, objects);
1980 if (new_slab) {
1982 * If the slab is brand new and nobody can yet access its
1983 * obj_exts, no synchronization is required and obj_exts can
1984 * be simply assigned.
1986 slab->obj_exts = new_exts;
1987 } else if ((old_exts & ~OBJEXTS_FLAGS_MASK) ||
1988 cmpxchg(&slab->obj_exts, old_exts, new_exts) != old_exts) {
1990 * If the slab is already in use, somebody can allocate and
1991 * assign slabobj_exts in parallel. In this case the existing
1992 * objcg vector should be reused.
1994 mark_objexts_empty(vec);
1995 kfree(vec);
1996 return 0;
1999 kmemleak_not_leak(vec);
2000 return 0;
2003 static inline void free_slab_obj_exts(struct slab *slab)
2005 struct slabobj_ext *obj_exts;
2007 obj_exts = slab_obj_exts(slab);
2008 if (!obj_exts)
2009 return;
2012 * obj_exts was created with __GFP_NO_OBJ_EXT flag, therefore its
2013 * corresponding extension will be NULL. alloc_tag_sub() will throw a
2014 * warning if slab has extensions but the extension of an object is
2015 * NULL, therefore replace NULL with CODETAG_EMPTY to indicate that
2016 * the extension for obj_exts is expected to be NULL.
2018 mark_objexts_empty(obj_exts);
2019 kfree(obj_exts);
2020 slab->obj_exts = 0;
2023 static inline bool need_slab_obj_ext(void)
2025 if (mem_alloc_profiling_enabled())
2026 return true;
2029 * CONFIG_MEMCG creates vector of obj_cgroup objects conditionally
2030 * inside memcg_slab_post_alloc_hook. No other users for now.
2032 return false;
2035 #else /* CONFIG_SLAB_OBJ_EXT */
2037 static int alloc_slab_obj_exts(struct slab *slab, struct kmem_cache *s,
2038 gfp_t gfp, bool new_slab)
2040 return 0;
2043 static inline void free_slab_obj_exts(struct slab *slab)
2047 static inline bool need_slab_obj_ext(void)
2049 return false;
2052 #endif /* CONFIG_SLAB_OBJ_EXT */
2054 #ifdef CONFIG_MEM_ALLOC_PROFILING
2056 static inline struct slabobj_ext *
2057 prepare_slab_obj_exts_hook(struct kmem_cache *s, gfp_t flags, void *p)
2059 struct slab *slab;
2061 if (!p)
2062 return NULL;
2064 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2065 return NULL;
2067 if (flags & __GFP_NO_OBJ_EXT)
2068 return NULL;
2070 slab = virt_to_slab(p);
2071 if (!slab_obj_exts(slab) &&
2072 WARN(alloc_slab_obj_exts(slab, s, flags, false),
2073 "%s, %s: Failed to create slab extension vector!\n",
2074 __func__, s->name))
2075 return NULL;
2077 return slab_obj_exts(slab) + obj_to_index(s, slab, p);
2080 static inline void
2081 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2083 if (need_slab_obj_ext()) {
2084 struct slabobj_ext *obj_exts;
2086 obj_exts = prepare_slab_obj_exts_hook(s, flags, object);
2088 * Currently obj_exts is used only for allocation profiling.
2089 * If other users appear then mem_alloc_profiling_enabled()
2090 * check should be added before alloc_tag_add().
2092 if (likely(obj_exts))
2093 alloc_tag_add(&obj_exts->ref, current->alloc_tag, s->size);
2097 static inline void
2098 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2099 int objects)
2101 struct slabobj_ext *obj_exts;
2102 int i;
2104 if (!mem_alloc_profiling_enabled())
2105 return;
2107 /* slab->obj_exts might not be NULL if it was created for MEMCG accounting. */
2108 if (s->flags & (SLAB_NO_OBJ_EXT | SLAB_NOLEAKTRACE))
2109 return;
2111 obj_exts = slab_obj_exts(slab);
2112 if (!obj_exts)
2113 return;
2115 for (i = 0; i < objects; i++) {
2116 unsigned int off = obj_to_index(s, slab, p[i]);
2118 alloc_tag_sub(&obj_exts[off].ref, s->size);
2122 #else /* CONFIG_MEM_ALLOC_PROFILING */
2124 static inline void
2125 alloc_tagging_slab_alloc_hook(struct kmem_cache *s, void *object, gfp_t flags)
2129 static inline void
2130 alloc_tagging_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2131 int objects)
2135 #endif /* CONFIG_MEM_ALLOC_PROFILING */
2138 #ifdef CONFIG_MEMCG
2140 static void memcg_alloc_abort_single(struct kmem_cache *s, void *object);
2142 static __fastpath_inline
2143 bool memcg_slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
2144 gfp_t flags, size_t size, void **p)
2146 if (likely(!memcg_kmem_online()))
2147 return true;
2149 if (likely(!(flags & __GFP_ACCOUNT) && !(s->flags & SLAB_ACCOUNT)))
2150 return true;
2152 if (likely(__memcg_slab_post_alloc_hook(s, lru, flags, size, p)))
2153 return true;
2155 if (likely(size == 1)) {
2156 memcg_alloc_abort_single(s, *p);
2157 *p = NULL;
2158 } else {
2159 kmem_cache_free_bulk(s, size, p);
2162 return false;
2165 static __fastpath_inline
2166 void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab, void **p,
2167 int objects)
2169 struct slabobj_ext *obj_exts;
2171 if (!memcg_kmem_online())
2172 return;
2174 obj_exts = slab_obj_exts(slab);
2175 if (likely(!obj_exts))
2176 return;
2178 __memcg_slab_free_hook(s, slab, p, objects, obj_exts);
2181 static __fastpath_inline
2182 bool memcg_slab_post_charge(void *p, gfp_t flags)
2184 struct slabobj_ext *slab_exts;
2185 struct kmem_cache *s;
2186 struct folio *folio;
2187 struct slab *slab;
2188 unsigned long off;
2190 folio = virt_to_folio(p);
2191 if (!folio_test_slab(folio)) {
2192 int size;
2194 if (folio_memcg_kmem(folio))
2195 return true;
2197 if (__memcg_kmem_charge_page(folio_page(folio, 0), flags,
2198 folio_order(folio)))
2199 return false;
2202 * This folio has already been accounted in the global stats but
2203 * not in the memcg stats. So, subtract from the global and use
2204 * the interface which adds to both global and memcg stats.
2206 size = folio_size(folio);
2207 node_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, -size);
2208 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B, size);
2209 return true;
2212 slab = folio_slab(folio);
2213 s = slab->slab_cache;
2216 * Ignore KMALLOC_NORMAL cache to avoid possible circular dependency
2217 * of slab_obj_exts being allocated from the same slab and thus the slab
2218 * becoming effectively unfreeable.
2220 if (is_kmalloc_normal(s))
2221 return true;
2223 /* Ignore already charged objects. */
2224 slab_exts = slab_obj_exts(slab);
2225 if (slab_exts) {
2226 off = obj_to_index(s, slab, p);
2227 if (unlikely(slab_exts[off].objcg))
2228 return true;
2231 return __memcg_slab_post_alloc_hook(s, NULL, flags, 1, &p);
2234 #else /* CONFIG_MEMCG */
2235 static inline bool memcg_slab_post_alloc_hook(struct kmem_cache *s,
2236 struct list_lru *lru,
2237 gfp_t flags, size_t size,
2238 void **p)
2240 return true;
2243 static inline void memcg_slab_free_hook(struct kmem_cache *s, struct slab *slab,
2244 void **p, int objects)
2248 static inline bool memcg_slab_post_charge(void *p, gfp_t flags)
2250 return true;
2252 #endif /* CONFIG_MEMCG */
2254 #ifdef CONFIG_SLUB_RCU_DEBUG
2255 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head);
2257 struct rcu_delayed_free {
2258 struct rcu_head head;
2259 void *object;
2261 #endif
2264 * Hooks for other subsystems that check memory allocations. In a typical
2265 * production configuration these hooks all should produce no code at all.
2267 * Returns true if freeing of the object can proceed, false if its reuse
2268 * was delayed by CONFIG_SLUB_RCU_DEBUG or KASAN quarantine, or it was returned
2269 * to KFENCE.
2271 static __always_inline
2272 bool slab_free_hook(struct kmem_cache *s, void *x, bool init,
2273 bool after_rcu_delay)
2275 /* Are the object contents still accessible? */
2276 bool still_accessible = (s->flags & SLAB_TYPESAFE_BY_RCU) && !after_rcu_delay;
2278 kmemleak_free_recursive(x, s->flags);
2279 kmsan_slab_free(s, x);
2281 debug_check_no_locks_freed(x, s->object_size);
2283 if (!(s->flags & SLAB_DEBUG_OBJECTS))
2284 debug_check_no_obj_freed(x, s->object_size);
2286 /* Use KCSAN to help debug racy use-after-free. */
2287 if (!still_accessible)
2288 __kcsan_check_access(x, s->object_size,
2289 KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT);
2291 if (kfence_free(x))
2292 return false;
2295 * Give KASAN a chance to notice an invalid free operation before we
2296 * modify the object.
2298 if (kasan_slab_pre_free(s, x))
2299 return false;
2301 #ifdef CONFIG_SLUB_RCU_DEBUG
2302 if (still_accessible) {
2303 struct rcu_delayed_free *delayed_free;
2305 delayed_free = kmalloc(sizeof(*delayed_free), GFP_NOWAIT);
2306 if (delayed_free) {
2308 * Let KASAN track our call stack as a "related work
2309 * creation", just like if the object had been freed
2310 * normally via kfree_rcu().
2311 * We have to do this manually because the rcu_head is
2312 * not located inside the object.
2314 kasan_record_aux_stack_noalloc(x);
2316 delayed_free->object = x;
2317 call_rcu(&delayed_free->head, slab_free_after_rcu_debug);
2318 return false;
2321 #endif /* CONFIG_SLUB_RCU_DEBUG */
2324 * As memory initialization might be integrated into KASAN,
2325 * kasan_slab_free and initialization memset's must be
2326 * kept together to avoid discrepancies in behavior.
2328 * The initialization memset's clear the object and the metadata,
2329 * but don't touch the SLAB redzone.
2331 * The object's freepointer is also avoided if stored outside the
2332 * object.
2334 if (unlikely(init)) {
2335 int rsize;
2336 unsigned int inuse, orig_size;
2338 inuse = get_info_end(s);
2339 orig_size = get_orig_size(s, x);
2340 if (!kasan_has_integrated_init())
2341 memset(kasan_reset_tag(x), 0, orig_size);
2342 rsize = (s->flags & SLAB_RED_ZONE) ? s->red_left_pad : 0;
2343 memset((char *)kasan_reset_tag(x) + inuse, 0,
2344 s->size - inuse - rsize);
2346 * Restore orig_size, otherwize kmalloc redzone overwritten
2347 * would be reported
2349 set_orig_size(s, x, orig_size);
2352 /* KASAN might put x into memory quarantine, delaying its reuse. */
2353 return !kasan_slab_free(s, x, init, still_accessible);
2356 static __fastpath_inline
2357 bool slab_free_freelist_hook(struct kmem_cache *s, void **head, void **tail,
2358 int *cnt)
2361 void *object;
2362 void *next = *head;
2363 void *old_tail = *tail;
2364 bool init;
2366 if (is_kfence_address(next)) {
2367 slab_free_hook(s, next, false, false);
2368 return false;
2371 /* Head and tail of the reconstructed freelist */
2372 *head = NULL;
2373 *tail = NULL;
2375 init = slab_want_init_on_free(s);
2377 do {
2378 object = next;
2379 next = get_freepointer(s, object);
2381 /* If object's reuse doesn't have to be delayed */
2382 if (likely(slab_free_hook(s, object, init, false))) {
2383 /* Move object to the new freelist */
2384 set_freepointer(s, object, *head);
2385 *head = object;
2386 if (!*tail)
2387 *tail = object;
2388 } else {
2390 * Adjust the reconstructed freelist depth
2391 * accordingly if object's reuse is delayed.
2393 --(*cnt);
2395 } while (object != old_tail);
2397 return *head != NULL;
2400 static void *setup_object(struct kmem_cache *s, void *object)
2402 setup_object_debug(s, object);
2403 object = kasan_init_slab_obj(s, object);
2404 if (unlikely(s->ctor)) {
2405 kasan_unpoison_new_object(s, object);
2406 s->ctor(object);
2407 kasan_poison_new_object(s, object);
2409 return object;
2413 * Slab allocation and freeing
2415 static inline struct slab *alloc_slab_page(gfp_t flags, int node,
2416 struct kmem_cache_order_objects oo)
2418 struct folio *folio;
2419 struct slab *slab;
2420 unsigned int order = oo_order(oo);
2422 if (node == NUMA_NO_NODE)
2423 folio = (struct folio *)alloc_pages(flags, order);
2424 else
2425 folio = (struct folio *)__alloc_pages_node(node, flags, order);
2427 if (!folio)
2428 return NULL;
2430 slab = folio_slab(folio);
2431 __folio_set_slab(folio);
2432 /* Make the flag visible before any changes to folio->mapping */
2433 smp_wmb();
2434 if (folio_is_pfmemalloc(folio))
2435 slab_set_pfmemalloc(slab);
2437 return slab;
2440 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2441 /* Pre-initialize the random sequence cache */
2442 static int init_cache_random_seq(struct kmem_cache *s)
2444 unsigned int count = oo_objects(s->oo);
2445 int err;
2447 /* Bailout if already initialised */
2448 if (s->random_seq)
2449 return 0;
2451 err = cache_random_seq_create(s, count, GFP_KERNEL);
2452 if (err) {
2453 pr_err("SLUB: Unable to initialize free list for %s\n",
2454 s->name);
2455 return err;
2458 /* Transform to an offset on the set of pages */
2459 if (s->random_seq) {
2460 unsigned int i;
2462 for (i = 0; i < count; i++)
2463 s->random_seq[i] *= s->size;
2465 return 0;
2468 /* Initialize each random sequence freelist per cache */
2469 static void __init init_freelist_randomization(void)
2471 struct kmem_cache *s;
2473 mutex_lock(&slab_mutex);
2475 list_for_each_entry(s, &slab_caches, list)
2476 init_cache_random_seq(s);
2478 mutex_unlock(&slab_mutex);
2481 /* Get the next entry on the pre-computed freelist randomized */
2482 static void *next_freelist_entry(struct kmem_cache *s,
2483 unsigned long *pos, void *start,
2484 unsigned long page_limit,
2485 unsigned long freelist_count)
2487 unsigned int idx;
2490 * If the target page allocation failed, the number of objects on the
2491 * page might be smaller than the usual size defined by the cache.
2493 do {
2494 idx = s->random_seq[*pos];
2495 *pos += 1;
2496 if (*pos >= freelist_count)
2497 *pos = 0;
2498 } while (unlikely(idx >= page_limit));
2500 return (char *)start + idx;
2503 /* Shuffle the single linked freelist based on a random pre-computed sequence */
2504 static bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2506 void *start;
2507 void *cur;
2508 void *next;
2509 unsigned long idx, pos, page_limit, freelist_count;
2511 if (slab->objects < 2 || !s->random_seq)
2512 return false;
2514 freelist_count = oo_objects(s->oo);
2515 pos = get_random_u32_below(freelist_count);
2517 page_limit = slab->objects * s->size;
2518 start = fixup_red_left(s, slab_address(slab));
2520 /* First entry is used as the base of the freelist */
2521 cur = next_freelist_entry(s, &pos, start, page_limit, freelist_count);
2522 cur = setup_object(s, cur);
2523 slab->freelist = cur;
2525 for (idx = 1; idx < slab->objects; idx++) {
2526 next = next_freelist_entry(s, &pos, start, page_limit,
2527 freelist_count);
2528 next = setup_object(s, next);
2529 set_freepointer(s, cur, next);
2530 cur = next;
2532 set_freepointer(s, cur, NULL);
2534 return true;
2536 #else
2537 static inline int init_cache_random_seq(struct kmem_cache *s)
2539 return 0;
2541 static inline void init_freelist_randomization(void) { }
2542 static inline bool shuffle_freelist(struct kmem_cache *s, struct slab *slab)
2544 return false;
2546 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2548 static __always_inline void account_slab(struct slab *slab, int order,
2549 struct kmem_cache *s, gfp_t gfp)
2551 if (memcg_kmem_online() && (s->flags & SLAB_ACCOUNT))
2552 alloc_slab_obj_exts(slab, s, gfp, true);
2554 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2555 PAGE_SIZE << order);
2558 static __always_inline void unaccount_slab(struct slab *slab, int order,
2559 struct kmem_cache *s)
2561 if (memcg_kmem_online() || need_slab_obj_ext())
2562 free_slab_obj_exts(slab);
2564 mod_node_page_state(slab_pgdat(slab), cache_vmstat_idx(s),
2565 -(PAGE_SIZE << order));
2568 static struct slab *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
2570 struct slab *slab;
2571 struct kmem_cache_order_objects oo = s->oo;
2572 gfp_t alloc_gfp;
2573 void *start, *p, *next;
2574 int idx;
2575 bool shuffle;
2577 flags &= gfp_allowed_mask;
2579 flags |= s->allocflags;
2582 * Let the initial higher-order allocation fail under memory pressure
2583 * so we fall-back to the minimum order allocation.
2585 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
2586 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
2587 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~__GFP_RECLAIM;
2589 slab = alloc_slab_page(alloc_gfp, node, oo);
2590 if (unlikely(!slab)) {
2591 oo = s->min;
2592 alloc_gfp = flags;
2594 * Allocation may have failed due to fragmentation.
2595 * Try a lower order alloc if possible
2597 slab = alloc_slab_page(alloc_gfp, node, oo);
2598 if (unlikely(!slab))
2599 return NULL;
2600 stat(s, ORDER_FALLBACK);
2603 slab->objects = oo_objects(oo);
2604 slab->inuse = 0;
2605 slab->frozen = 0;
2607 account_slab(slab, oo_order(oo), s, flags);
2609 slab->slab_cache = s;
2611 kasan_poison_slab(slab);
2613 start = slab_address(slab);
2615 setup_slab_debug(s, slab, start);
2617 shuffle = shuffle_freelist(s, slab);
2619 if (!shuffle) {
2620 start = fixup_red_left(s, start);
2621 start = setup_object(s, start);
2622 slab->freelist = start;
2623 for (idx = 0, p = start; idx < slab->objects - 1; idx++) {
2624 next = p + s->size;
2625 next = setup_object(s, next);
2626 set_freepointer(s, p, next);
2627 p = next;
2629 set_freepointer(s, p, NULL);
2632 return slab;
2635 static struct slab *new_slab(struct kmem_cache *s, gfp_t flags, int node)
2637 if (unlikely(flags & GFP_SLAB_BUG_MASK))
2638 flags = kmalloc_fix_flags(flags);
2640 WARN_ON_ONCE(s->ctor && (flags & __GFP_ZERO));
2642 return allocate_slab(s,
2643 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
2646 static void __free_slab(struct kmem_cache *s, struct slab *slab)
2648 struct folio *folio = slab_folio(slab);
2649 int order = folio_order(folio);
2650 int pages = 1 << order;
2652 __slab_clear_pfmemalloc(slab);
2653 folio->mapping = NULL;
2654 /* Make the mapping reset visible before clearing the flag */
2655 smp_wmb();
2656 __folio_clear_slab(folio);
2657 mm_account_reclaimed_pages(pages);
2658 unaccount_slab(slab, order, s);
2659 __free_pages(&folio->page, order);
2662 static void rcu_free_slab(struct rcu_head *h)
2664 struct slab *slab = container_of(h, struct slab, rcu_head);
2666 __free_slab(slab->slab_cache, slab);
2669 static void free_slab(struct kmem_cache *s, struct slab *slab)
2671 if (kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS)) {
2672 void *p;
2674 slab_pad_check(s, slab);
2675 for_each_object(p, s, slab_address(slab), slab->objects)
2676 check_object(s, slab, p, SLUB_RED_INACTIVE);
2679 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU))
2680 call_rcu(&slab->rcu_head, rcu_free_slab);
2681 else
2682 __free_slab(s, slab);
2685 static void discard_slab(struct kmem_cache *s, struct slab *slab)
2687 dec_slabs_node(s, slab_nid(slab), slab->objects);
2688 free_slab(s, slab);
2692 * SLUB reuses PG_workingset bit to keep track of whether it's on
2693 * the per-node partial list.
2695 static inline bool slab_test_node_partial(const struct slab *slab)
2697 return folio_test_workingset(slab_folio(slab));
2700 static inline void slab_set_node_partial(struct slab *slab)
2702 set_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2705 static inline void slab_clear_node_partial(struct slab *slab)
2707 clear_bit(PG_workingset, folio_flags(slab_folio(slab), 0));
2711 * Management of partially allocated slabs.
2713 static inline void
2714 __add_partial(struct kmem_cache_node *n, struct slab *slab, int tail)
2716 n->nr_partial++;
2717 if (tail == DEACTIVATE_TO_TAIL)
2718 list_add_tail(&slab->slab_list, &n->partial);
2719 else
2720 list_add(&slab->slab_list, &n->partial);
2721 slab_set_node_partial(slab);
2724 static inline void add_partial(struct kmem_cache_node *n,
2725 struct slab *slab, int tail)
2727 lockdep_assert_held(&n->list_lock);
2728 __add_partial(n, slab, tail);
2731 static inline void remove_partial(struct kmem_cache_node *n,
2732 struct slab *slab)
2734 lockdep_assert_held(&n->list_lock);
2735 list_del(&slab->slab_list);
2736 slab_clear_node_partial(slab);
2737 n->nr_partial--;
2741 * Called only for kmem_cache_debug() caches instead of remove_partial(), with a
2742 * slab from the n->partial list. Remove only a single object from the slab, do
2743 * the alloc_debug_processing() checks and leave the slab on the list, or move
2744 * it to full list if it was the last free object.
2746 static void *alloc_single_from_partial(struct kmem_cache *s,
2747 struct kmem_cache_node *n, struct slab *slab, int orig_size)
2749 void *object;
2751 lockdep_assert_held(&n->list_lock);
2753 object = slab->freelist;
2754 slab->freelist = get_freepointer(s, object);
2755 slab->inuse++;
2757 if (!alloc_debug_processing(s, slab, object, orig_size)) {
2758 if (folio_test_slab(slab_folio(slab)))
2759 remove_partial(n, slab);
2760 return NULL;
2763 if (slab->inuse == slab->objects) {
2764 remove_partial(n, slab);
2765 add_full(s, n, slab);
2768 return object;
2772 * Called only for kmem_cache_debug() caches to allocate from a freshly
2773 * allocated slab. Allocate a single object instead of whole freelist
2774 * and put the slab to the partial (or full) list.
2776 static void *alloc_single_from_new_slab(struct kmem_cache *s,
2777 struct slab *slab, int orig_size)
2779 int nid = slab_nid(slab);
2780 struct kmem_cache_node *n = get_node(s, nid);
2781 unsigned long flags;
2782 void *object;
2785 object = slab->freelist;
2786 slab->freelist = get_freepointer(s, object);
2787 slab->inuse = 1;
2789 if (!alloc_debug_processing(s, slab, object, orig_size))
2791 * It's not really expected that this would fail on a
2792 * freshly allocated slab, but a concurrent memory
2793 * corruption in theory could cause that.
2795 return NULL;
2797 spin_lock_irqsave(&n->list_lock, flags);
2799 if (slab->inuse == slab->objects)
2800 add_full(s, n, slab);
2801 else
2802 add_partial(n, slab, DEACTIVATE_TO_HEAD);
2804 inc_slabs_node(s, nid, slab->objects);
2805 spin_unlock_irqrestore(&n->list_lock, flags);
2807 return object;
2810 #ifdef CONFIG_SLUB_CPU_PARTIAL
2811 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain);
2812 #else
2813 static inline void put_cpu_partial(struct kmem_cache *s, struct slab *slab,
2814 int drain) { }
2815 #endif
2816 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags);
2819 * Try to allocate a partial slab from a specific node.
2821 static struct slab *get_partial_node(struct kmem_cache *s,
2822 struct kmem_cache_node *n,
2823 struct partial_context *pc)
2825 struct slab *slab, *slab2, *partial = NULL;
2826 unsigned long flags;
2827 unsigned int partial_slabs = 0;
2830 * Racy check. If we mistakenly see no partial slabs then we
2831 * just allocate an empty slab. If we mistakenly try to get a
2832 * partial slab and there is none available then get_partial()
2833 * will return NULL.
2835 if (!n || !n->nr_partial)
2836 return NULL;
2838 spin_lock_irqsave(&n->list_lock, flags);
2839 list_for_each_entry_safe(slab, slab2, &n->partial, slab_list) {
2840 if (!pfmemalloc_match(slab, pc->flags))
2841 continue;
2843 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
2844 void *object = alloc_single_from_partial(s, n, slab,
2845 pc->orig_size);
2846 if (object) {
2847 partial = slab;
2848 pc->object = object;
2849 break;
2851 continue;
2854 remove_partial(n, slab);
2856 if (!partial) {
2857 partial = slab;
2858 stat(s, ALLOC_FROM_PARTIAL);
2860 if ((slub_get_cpu_partial(s) == 0)) {
2861 break;
2863 } else {
2864 put_cpu_partial(s, slab, 0);
2865 stat(s, CPU_PARTIAL_NODE);
2867 if (++partial_slabs > slub_get_cpu_partial(s) / 2) {
2868 break;
2872 spin_unlock_irqrestore(&n->list_lock, flags);
2873 return partial;
2877 * Get a slab from somewhere. Search in increasing NUMA distances.
2879 static struct slab *get_any_partial(struct kmem_cache *s,
2880 struct partial_context *pc)
2882 #ifdef CONFIG_NUMA
2883 struct zonelist *zonelist;
2884 struct zoneref *z;
2885 struct zone *zone;
2886 enum zone_type highest_zoneidx = gfp_zone(pc->flags);
2887 struct slab *slab;
2888 unsigned int cpuset_mems_cookie;
2891 * The defrag ratio allows a configuration of the tradeoffs between
2892 * inter node defragmentation and node local allocations. A lower
2893 * defrag_ratio increases the tendency to do local allocations
2894 * instead of attempting to obtain partial slabs from other nodes.
2896 * If the defrag_ratio is set to 0 then kmalloc() always
2897 * returns node local objects. If the ratio is higher then kmalloc()
2898 * may return off node objects because partial slabs are obtained
2899 * from other nodes and filled up.
2901 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
2902 * (which makes defrag_ratio = 1000) then every (well almost)
2903 * allocation will first attempt to defrag slab caches on other nodes.
2904 * This means scanning over all nodes to look for partial slabs which
2905 * may be expensive if we do it every time we are trying to find a slab
2906 * with available objects.
2908 if (!s->remote_node_defrag_ratio ||
2909 get_cycles() % 1024 > s->remote_node_defrag_ratio)
2910 return NULL;
2912 do {
2913 cpuset_mems_cookie = read_mems_allowed_begin();
2914 zonelist = node_zonelist(mempolicy_slab_node(), pc->flags);
2915 for_each_zone_zonelist(zone, z, zonelist, highest_zoneidx) {
2916 struct kmem_cache_node *n;
2918 n = get_node(s, zone_to_nid(zone));
2920 if (n && cpuset_zone_allowed(zone, pc->flags) &&
2921 n->nr_partial > s->min_partial) {
2922 slab = get_partial_node(s, n, pc);
2923 if (slab) {
2925 * Don't check read_mems_allowed_retry()
2926 * here - if mems_allowed was updated in
2927 * parallel, that was a harmless race
2928 * between allocation and the cpuset
2929 * update
2931 return slab;
2935 } while (read_mems_allowed_retry(cpuset_mems_cookie));
2936 #endif /* CONFIG_NUMA */
2937 return NULL;
2941 * Get a partial slab, lock it and return it.
2943 static struct slab *get_partial(struct kmem_cache *s, int node,
2944 struct partial_context *pc)
2946 struct slab *slab;
2947 int searchnode = node;
2949 if (node == NUMA_NO_NODE)
2950 searchnode = numa_mem_id();
2952 slab = get_partial_node(s, get_node(s, searchnode), pc);
2953 if (slab || (node != NUMA_NO_NODE && (pc->flags & __GFP_THISNODE)))
2954 return slab;
2956 return get_any_partial(s, pc);
2959 #ifndef CONFIG_SLUB_TINY
2961 #ifdef CONFIG_PREEMPTION
2963 * Calculate the next globally unique transaction for disambiguation
2964 * during cmpxchg. The transactions start with the cpu number and are then
2965 * incremented by CONFIG_NR_CPUS.
2967 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
2968 #else
2970 * No preemption supported therefore also no need to check for
2971 * different cpus.
2973 #define TID_STEP 1
2974 #endif /* CONFIG_PREEMPTION */
2976 static inline unsigned long next_tid(unsigned long tid)
2978 return tid + TID_STEP;
2981 #ifdef SLUB_DEBUG_CMPXCHG
2982 static inline unsigned int tid_to_cpu(unsigned long tid)
2984 return tid % TID_STEP;
2987 static inline unsigned long tid_to_event(unsigned long tid)
2989 return tid / TID_STEP;
2991 #endif
2993 static inline unsigned int init_tid(int cpu)
2995 return cpu;
2998 static inline void note_cmpxchg_failure(const char *n,
2999 const struct kmem_cache *s, unsigned long tid)
3001 #ifdef SLUB_DEBUG_CMPXCHG
3002 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
3004 pr_info("%s %s: cmpxchg redo ", n, s->name);
3006 #ifdef CONFIG_PREEMPTION
3007 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
3008 pr_warn("due to cpu change %d -> %d\n",
3009 tid_to_cpu(tid), tid_to_cpu(actual_tid));
3010 else
3011 #endif
3012 if (tid_to_event(tid) != tid_to_event(actual_tid))
3013 pr_warn("due to cpu running other code. Event %ld->%ld\n",
3014 tid_to_event(tid), tid_to_event(actual_tid));
3015 else
3016 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
3017 actual_tid, tid, next_tid(tid));
3018 #endif
3019 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
3022 static void init_kmem_cache_cpus(struct kmem_cache *s)
3024 int cpu;
3025 struct kmem_cache_cpu *c;
3027 for_each_possible_cpu(cpu) {
3028 c = per_cpu_ptr(s->cpu_slab, cpu);
3029 local_lock_init(&c->lock);
3030 c->tid = init_tid(cpu);
3035 * Finishes removing the cpu slab. Merges cpu's freelist with slab's freelist,
3036 * unfreezes the slabs and puts it on the proper list.
3037 * Assumes the slab has been already safely taken away from kmem_cache_cpu
3038 * by the caller.
3040 static void deactivate_slab(struct kmem_cache *s, struct slab *slab,
3041 void *freelist)
3043 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
3044 int free_delta = 0;
3045 void *nextfree, *freelist_iter, *freelist_tail;
3046 int tail = DEACTIVATE_TO_HEAD;
3047 unsigned long flags = 0;
3048 struct slab new;
3049 struct slab old;
3051 if (READ_ONCE(slab->freelist)) {
3052 stat(s, DEACTIVATE_REMOTE_FREES);
3053 tail = DEACTIVATE_TO_TAIL;
3057 * Stage one: Count the objects on cpu's freelist as free_delta and
3058 * remember the last object in freelist_tail for later splicing.
3060 freelist_tail = NULL;
3061 freelist_iter = freelist;
3062 while (freelist_iter) {
3063 nextfree = get_freepointer(s, freelist_iter);
3066 * If 'nextfree' is invalid, it is possible that the object at
3067 * 'freelist_iter' is already corrupted. So isolate all objects
3068 * starting at 'freelist_iter' by skipping them.
3070 if (freelist_corrupted(s, slab, &freelist_iter, nextfree))
3071 break;
3073 freelist_tail = freelist_iter;
3074 free_delta++;
3076 freelist_iter = nextfree;
3080 * Stage two: Unfreeze the slab while splicing the per-cpu
3081 * freelist to the head of slab's freelist.
3083 do {
3084 old.freelist = READ_ONCE(slab->freelist);
3085 old.counters = READ_ONCE(slab->counters);
3086 VM_BUG_ON(!old.frozen);
3088 /* Determine target state of the slab */
3089 new.counters = old.counters;
3090 new.frozen = 0;
3091 if (freelist_tail) {
3092 new.inuse -= free_delta;
3093 set_freepointer(s, freelist_tail, old.freelist);
3094 new.freelist = freelist;
3095 } else {
3096 new.freelist = old.freelist;
3098 } while (!slab_update_freelist(s, slab,
3099 old.freelist, old.counters,
3100 new.freelist, new.counters,
3101 "unfreezing slab"));
3104 * Stage three: Manipulate the slab list based on the updated state.
3106 if (!new.inuse && n->nr_partial >= s->min_partial) {
3107 stat(s, DEACTIVATE_EMPTY);
3108 discard_slab(s, slab);
3109 stat(s, FREE_SLAB);
3110 } else if (new.freelist) {
3111 spin_lock_irqsave(&n->list_lock, flags);
3112 add_partial(n, slab, tail);
3113 spin_unlock_irqrestore(&n->list_lock, flags);
3114 stat(s, tail);
3115 } else {
3116 stat(s, DEACTIVATE_FULL);
3120 #ifdef CONFIG_SLUB_CPU_PARTIAL
3121 static void __put_partials(struct kmem_cache *s, struct slab *partial_slab)
3123 struct kmem_cache_node *n = NULL, *n2 = NULL;
3124 struct slab *slab, *slab_to_discard = NULL;
3125 unsigned long flags = 0;
3127 while (partial_slab) {
3128 slab = partial_slab;
3129 partial_slab = slab->next;
3131 n2 = get_node(s, slab_nid(slab));
3132 if (n != n2) {
3133 if (n)
3134 spin_unlock_irqrestore(&n->list_lock, flags);
3136 n = n2;
3137 spin_lock_irqsave(&n->list_lock, flags);
3140 if (unlikely(!slab->inuse && n->nr_partial >= s->min_partial)) {
3141 slab->next = slab_to_discard;
3142 slab_to_discard = slab;
3143 } else {
3144 add_partial(n, slab, DEACTIVATE_TO_TAIL);
3145 stat(s, FREE_ADD_PARTIAL);
3149 if (n)
3150 spin_unlock_irqrestore(&n->list_lock, flags);
3152 while (slab_to_discard) {
3153 slab = slab_to_discard;
3154 slab_to_discard = slab_to_discard->next;
3156 stat(s, DEACTIVATE_EMPTY);
3157 discard_slab(s, slab);
3158 stat(s, FREE_SLAB);
3163 * Put all the cpu partial slabs to the node partial list.
3165 static void put_partials(struct kmem_cache *s)
3167 struct slab *partial_slab;
3168 unsigned long flags;
3170 local_lock_irqsave(&s->cpu_slab->lock, flags);
3171 partial_slab = this_cpu_read(s->cpu_slab->partial);
3172 this_cpu_write(s->cpu_slab->partial, NULL);
3173 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3175 if (partial_slab)
3176 __put_partials(s, partial_slab);
3179 static void put_partials_cpu(struct kmem_cache *s,
3180 struct kmem_cache_cpu *c)
3182 struct slab *partial_slab;
3184 partial_slab = slub_percpu_partial(c);
3185 c->partial = NULL;
3187 if (partial_slab)
3188 __put_partials(s, partial_slab);
3192 * Put a slab into a partial slab slot if available.
3194 * If we did not find a slot then simply move all the partials to the
3195 * per node partial list.
3197 static void put_cpu_partial(struct kmem_cache *s, struct slab *slab, int drain)
3199 struct slab *oldslab;
3200 struct slab *slab_to_put = NULL;
3201 unsigned long flags;
3202 int slabs = 0;
3204 local_lock_irqsave(&s->cpu_slab->lock, flags);
3206 oldslab = this_cpu_read(s->cpu_slab->partial);
3208 if (oldslab) {
3209 if (drain && oldslab->slabs >= s->cpu_partial_slabs) {
3211 * Partial array is full. Move the existing set to the
3212 * per node partial list. Postpone the actual unfreezing
3213 * outside of the critical section.
3215 slab_to_put = oldslab;
3216 oldslab = NULL;
3217 } else {
3218 slabs = oldslab->slabs;
3222 slabs++;
3224 slab->slabs = slabs;
3225 slab->next = oldslab;
3227 this_cpu_write(s->cpu_slab->partial, slab);
3229 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3231 if (slab_to_put) {
3232 __put_partials(s, slab_to_put);
3233 stat(s, CPU_PARTIAL_DRAIN);
3237 #else /* CONFIG_SLUB_CPU_PARTIAL */
3239 static inline void put_partials(struct kmem_cache *s) { }
3240 static inline void put_partials_cpu(struct kmem_cache *s,
3241 struct kmem_cache_cpu *c) { }
3243 #endif /* CONFIG_SLUB_CPU_PARTIAL */
3245 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
3247 unsigned long flags;
3248 struct slab *slab;
3249 void *freelist;
3251 local_lock_irqsave(&s->cpu_slab->lock, flags);
3253 slab = c->slab;
3254 freelist = c->freelist;
3256 c->slab = NULL;
3257 c->freelist = NULL;
3258 c->tid = next_tid(c->tid);
3260 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3262 if (slab) {
3263 deactivate_slab(s, slab, freelist);
3264 stat(s, CPUSLAB_FLUSH);
3268 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
3270 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3271 void *freelist = c->freelist;
3272 struct slab *slab = c->slab;
3274 c->slab = NULL;
3275 c->freelist = NULL;
3276 c->tid = next_tid(c->tid);
3278 if (slab) {
3279 deactivate_slab(s, slab, freelist);
3280 stat(s, CPUSLAB_FLUSH);
3283 put_partials_cpu(s, c);
3286 struct slub_flush_work {
3287 struct work_struct work;
3288 struct kmem_cache *s;
3289 bool skip;
3293 * Flush cpu slab.
3295 * Called from CPU work handler with migration disabled.
3297 static void flush_cpu_slab(struct work_struct *w)
3299 struct kmem_cache *s;
3300 struct kmem_cache_cpu *c;
3301 struct slub_flush_work *sfw;
3303 sfw = container_of(w, struct slub_flush_work, work);
3305 s = sfw->s;
3306 c = this_cpu_ptr(s->cpu_slab);
3308 if (c->slab)
3309 flush_slab(s, c);
3311 put_partials(s);
3314 static bool has_cpu_slab(int cpu, struct kmem_cache *s)
3316 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3318 return c->slab || slub_percpu_partial(c);
3321 static DEFINE_MUTEX(flush_lock);
3322 static DEFINE_PER_CPU(struct slub_flush_work, slub_flush);
3324 static void flush_all_cpus_locked(struct kmem_cache *s)
3326 struct slub_flush_work *sfw;
3327 unsigned int cpu;
3329 lockdep_assert_cpus_held();
3330 mutex_lock(&flush_lock);
3332 for_each_online_cpu(cpu) {
3333 sfw = &per_cpu(slub_flush, cpu);
3334 if (!has_cpu_slab(cpu, s)) {
3335 sfw->skip = true;
3336 continue;
3338 INIT_WORK(&sfw->work, flush_cpu_slab);
3339 sfw->skip = false;
3340 sfw->s = s;
3341 queue_work_on(cpu, flushwq, &sfw->work);
3344 for_each_online_cpu(cpu) {
3345 sfw = &per_cpu(slub_flush, cpu);
3346 if (sfw->skip)
3347 continue;
3348 flush_work(&sfw->work);
3351 mutex_unlock(&flush_lock);
3354 static void flush_all(struct kmem_cache *s)
3356 cpus_read_lock();
3357 flush_all_cpus_locked(s);
3358 cpus_read_unlock();
3362 * Use the cpu notifier to insure that the cpu slabs are flushed when
3363 * necessary.
3365 static int slub_cpu_dead(unsigned int cpu)
3367 struct kmem_cache *s;
3369 mutex_lock(&slab_mutex);
3370 list_for_each_entry(s, &slab_caches, list)
3371 __flush_cpu_slab(s, cpu);
3372 mutex_unlock(&slab_mutex);
3373 return 0;
3376 #else /* CONFIG_SLUB_TINY */
3377 static inline void flush_all_cpus_locked(struct kmem_cache *s) { }
3378 static inline void flush_all(struct kmem_cache *s) { }
3379 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) { }
3380 static inline int slub_cpu_dead(unsigned int cpu) { return 0; }
3381 #endif /* CONFIG_SLUB_TINY */
3384 * Check if the objects in a per cpu structure fit numa
3385 * locality expectations.
3387 static inline int node_match(struct slab *slab, int node)
3389 #ifdef CONFIG_NUMA
3390 if (node != NUMA_NO_NODE && slab_nid(slab) != node)
3391 return 0;
3392 #endif
3393 return 1;
3396 #ifdef CONFIG_SLUB_DEBUG
3397 static int count_free(struct slab *slab)
3399 return slab->objects - slab->inuse;
3402 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
3404 return atomic_long_read(&n->total_objects);
3407 /* Supports checking bulk free of a constructed freelist */
3408 static inline bool free_debug_processing(struct kmem_cache *s,
3409 struct slab *slab, void *head, void *tail, int *bulk_cnt,
3410 unsigned long addr, depot_stack_handle_t handle)
3412 bool checks_ok = false;
3413 void *object = head;
3414 int cnt = 0;
3416 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3417 if (!check_slab(s, slab))
3418 goto out;
3421 if (slab->inuse < *bulk_cnt) {
3422 slab_err(s, slab, "Slab has %d allocated objects but %d are to be freed\n",
3423 slab->inuse, *bulk_cnt);
3424 goto out;
3427 next_object:
3429 if (++cnt > *bulk_cnt)
3430 goto out_cnt;
3432 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
3433 if (!free_consistency_checks(s, slab, object, addr))
3434 goto out;
3437 if (s->flags & SLAB_STORE_USER)
3438 set_track_update(s, object, TRACK_FREE, addr, handle);
3439 trace(s, slab, object, 0);
3440 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
3441 init_object(s, object, SLUB_RED_INACTIVE);
3443 /* Reached end of constructed freelist yet? */
3444 if (object != tail) {
3445 object = get_freepointer(s, object);
3446 goto next_object;
3448 checks_ok = true;
3450 out_cnt:
3451 if (cnt != *bulk_cnt) {
3452 slab_err(s, slab, "Bulk free expected %d objects but found %d\n",
3453 *bulk_cnt, cnt);
3454 *bulk_cnt = cnt;
3457 out:
3459 if (!checks_ok)
3460 slab_fix(s, "Object at 0x%p not freed", object);
3462 return checks_ok;
3464 #endif /* CONFIG_SLUB_DEBUG */
3466 #if defined(CONFIG_SLUB_DEBUG) || defined(SLAB_SUPPORTS_SYSFS)
3467 static unsigned long count_partial(struct kmem_cache_node *n,
3468 int (*get_count)(struct slab *))
3470 unsigned long flags;
3471 unsigned long x = 0;
3472 struct slab *slab;
3474 spin_lock_irqsave(&n->list_lock, flags);
3475 list_for_each_entry(slab, &n->partial, slab_list)
3476 x += get_count(slab);
3477 spin_unlock_irqrestore(&n->list_lock, flags);
3478 return x;
3480 #endif /* CONFIG_SLUB_DEBUG || SLAB_SUPPORTS_SYSFS */
3482 #ifdef CONFIG_SLUB_DEBUG
3483 #define MAX_PARTIAL_TO_SCAN 10000
3485 static unsigned long count_partial_free_approx(struct kmem_cache_node *n)
3487 unsigned long flags;
3488 unsigned long x = 0;
3489 struct slab *slab;
3491 spin_lock_irqsave(&n->list_lock, flags);
3492 if (n->nr_partial <= MAX_PARTIAL_TO_SCAN) {
3493 list_for_each_entry(slab, &n->partial, slab_list)
3494 x += slab->objects - slab->inuse;
3495 } else {
3497 * For a long list, approximate the total count of objects in
3498 * it to meet the limit on the number of slabs to scan.
3499 * Scan from both the list's head and tail for better accuracy.
3501 unsigned long scanned = 0;
3503 list_for_each_entry(slab, &n->partial, slab_list) {
3504 x += slab->objects - slab->inuse;
3505 if (++scanned == MAX_PARTIAL_TO_SCAN / 2)
3506 break;
3508 list_for_each_entry_reverse(slab, &n->partial, slab_list) {
3509 x += slab->objects - slab->inuse;
3510 if (++scanned == MAX_PARTIAL_TO_SCAN)
3511 break;
3513 x = mult_frac(x, n->nr_partial, scanned);
3514 x = min(x, node_nr_objs(n));
3516 spin_unlock_irqrestore(&n->list_lock, flags);
3517 return x;
3520 static noinline void
3521 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
3523 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
3524 DEFAULT_RATELIMIT_BURST);
3525 int cpu = raw_smp_processor_id();
3526 int node;
3527 struct kmem_cache_node *n;
3529 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
3530 return;
3532 pr_warn("SLUB: Unable to allocate memory on CPU %u (of node %d) on node %d, gfp=%#x(%pGg)\n",
3533 cpu, cpu_to_node(cpu), nid, gfpflags, &gfpflags);
3534 pr_warn(" cache: %s, object size: %u, buffer size: %u, default order: %u, min order: %u\n",
3535 s->name, s->object_size, s->size, oo_order(s->oo),
3536 oo_order(s->min));
3538 if (oo_order(s->min) > get_order(s->object_size))
3539 pr_warn(" %s debugging increased min order, use slab_debug=O to disable.\n",
3540 s->name);
3542 for_each_kmem_cache_node(s, node, n) {
3543 unsigned long nr_slabs;
3544 unsigned long nr_objs;
3545 unsigned long nr_free;
3547 nr_free = count_partial_free_approx(n);
3548 nr_slabs = node_nr_slabs(n);
3549 nr_objs = node_nr_objs(n);
3551 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
3552 node, nr_slabs, nr_objs, nr_free);
3555 #else /* CONFIG_SLUB_DEBUG */
3556 static inline void
3557 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) { }
3558 #endif
3560 static inline bool pfmemalloc_match(struct slab *slab, gfp_t gfpflags)
3562 if (unlikely(slab_test_pfmemalloc(slab)))
3563 return gfp_pfmemalloc_allowed(gfpflags);
3565 return true;
3568 #ifndef CONFIG_SLUB_TINY
3569 static inline bool
3570 __update_cpu_freelist_fast(struct kmem_cache *s,
3571 void *freelist_old, void *freelist_new,
3572 unsigned long tid)
3574 freelist_aba_t old = { .freelist = freelist_old, .counter = tid };
3575 freelist_aba_t new = { .freelist = freelist_new, .counter = next_tid(tid) };
3577 return this_cpu_try_cmpxchg_freelist(s->cpu_slab->freelist_tid.full,
3578 &old.full, new.full);
3582 * Check the slab->freelist and either transfer the freelist to the
3583 * per cpu freelist or deactivate the slab.
3585 * The slab is still frozen if the return value is not NULL.
3587 * If this function returns NULL then the slab has been unfrozen.
3589 static inline void *get_freelist(struct kmem_cache *s, struct slab *slab)
3591 struct slab new;
3592 unsigned long counters;
3593 void *freelist;
3595 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3597 do {
3598 freelist = slab->freelist;
3599 counters = slab->counters;
3601 new.counters = counters;
3603 new.inuse = slab->objects;
3604 new.frozen = freelist != NULL;
3606 } while (!__slab_update_freelist(s, slab,
3607 freelist, counters,
3608 NULL, new.counters,
3609 "get_freelist"));
3611 return freelist;
3615 * Freeze the partial slab and return the pointer to the freelist.
3617 static inline void *freeze_slab(struct kmem_cache *s, struct slab *slab)
3619 struct slab new;
3620 unsigned long counters;
3621 void *freelist;
3623 do {
3624 freelist = slab->freelist;
3625 counters = slab->counters;
3627 new.counters = counters;
3628 VM_BUG_ON(new.frozen);
3630 new.inuse = slab->objects;
3631 new.frozen = 1;
3633 } while (!slab_update_freelist(s, slab,
3634 freelist, counters,
3635 NULL, new.counters,
3636 "freeze_slab"));
3638 return freelist;
3642 * Slow path. The lockless freelist is empty or we need to perform
3643 * debugging duties.
3645 * Processing is still very fast if new objects have been freed to the
3646 * regular freelist. In that case we simply take over the regular freelist
3647 * as the lockless freelist and zap the regular freelist.
3649 * If that is not working then we fall back to the partial lists. We take the
3650 * first element of the freelist as the object to allocate now and move the
3651 * rest of the freelist to the lockless freelist.
3653 * And if we were unable to get a new slab from the partial slab lists then
3654 * we need to allocate a new slab. This is the slowest path since it involves
3655 * a call to the page allocator and the setup of a new slab.
3657 * Version of __slab_alloc to use when we know that preemption is
3658 * already disabled (which is the case for bulk allocation).
3660 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3661 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3663 void *freelist;
3664 struct slab *slab;
3665 unsigned long flags;
3666 struct partial_context pc;
3667 bool try_thisnode = true;
3669 stat(s, ALLOC_SLOWPATH);
3671 reread_slab:
3673 slab = READ_ONCE(c->slab);
3674 if (!slab) {
3676 * if the node is not online or has no normal memory, just
3677 * ignore the node constraint
3679 if (unlikely(node != NUMA_NO_NODE &&
3680 !node_isset(node, slab_nodes)))
3681 node = NUMA_NO_NODE;
3682 goto new_slab;
3685 if (unlikely(!node_match(slab, node))) {
3687 * same as above but node_match() being false already
3688 * implies node != NUMA_NO_NODE
3690 if (!node_isset(node, slab_nodes)) {
3691 node = NUMA_NO_NODE;
3692 } else {
3693 stat(s, ALLOC_NODE_MISMATCH);
3694 goto deactivate_slab;
3699 * By rights, we should be searching for a slab page that was
3700 * PFMEMALLOC but right now, we are losing the pfmemalloc
3701 * information when the page leaves the per-cpu allocator
3703 if (unlikely(!pfmemalloc_match(slab, gfpflags)))
3704 goto deactivate_slab;
3706 /* must check again c->slab in case we got preempted and it changed */
3707 local_lock_irqsave(&s->cpu_slab->lock, flags);
3708 if (unlikely(slab != c->slab)) {
3709 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3710 goto reread_slab;
3712 freelist = c->freelist;
3713 if (freelist)
3714 goto load_freelist;
3716 freelist = get_freelist(s, slab);
3718 if (!freelist) {
3719 c->slab = NULL;
3720 c->tid = next_tid(c->tid);
3721 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3722 stat(s, DEACTIVATE_BYPASS);
3723 goto new_slab;
3726 stat(s, ALLOC_REFILL);
3728 load_freelist:
3730 lockdep_assert_held(this_cpu_ptr(&s->cpu_slab->lock));
3733 * freelist is pointing to the list of objects to be used.
3734 * slab is pointing to the slab from which the objects are obtained.
3735 * That slab must be frozen for per cpu allocations to work.
3737 VM_BUG_ON(!c->slab->frozen);
3738 c->freelist = get_freepointer(s, freelist);
3739 c->tid = next_tid(c->tid);
3740 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3741 return freelist;
3743 deactivate_slab:
3745 local_lock_irqsave(&s->cpu_slab->lock, flags);
3746 if (slab != c->slab) {
3747 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3748 goto reread_slab;
3750 freelist = c->freelist;
3751 c->slab = NULL;
3752 c->freelist = NULL;
3753 c->tid = next_tid(c->tid);
3754 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3755 deactivate_slab(s, slab, freelist);
3757 new_slab:
3759 #ifdef CONFIG_SLUB_CPU_PARTIAL
3760 while (slub_percpu_partial(c)) {
3761 local_lock_irqsave(&s->cpu_slab->lock, flags);
3762 if (unlikely(c->slab)) {
3763 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3764 goto reread_slab;
3766 if (unlikely(!slub_percpu_partial(c))) {
3767 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3768 /* we were preempted and partial list got empty */
3769 goto new_objects;
3772 slab = slub_percpu_partial(c);
3773 slub_set_percpu_partial(c, slab);
3775 if (likely(node_match(slab, node) &&
3776 pfmemalloc_match(slab, gfpflags))) {
3777 c->slab = slab;
3778 freelist = get_freelist(s, slab);
3779 VM_BUG_ON(!freelist);
3780 stat(s, CPU_PARTIAL_ALLOC);
3781 goto load_freelist;
3784 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3786 slab->next = NULL;
3787 __put_partials(s, slab);
3789 #endif
3791 new_objects:
3793 pc.flags = gfpflags;
3795 * When a preferred node is indicated but no __GFP_THISNODE
3797 * 1) try to get a partial slab from target node only by having
3798 * __GFP_THISNODE in pc.flags for get_partial()
3799 * 2) if 1) failed, try to allocate a new slab from target node with
3800 * GPF_NOWAIT | __GFP_THISNODE opportunistically
3801 * 3) if 2) failed, retry with original gfpflags which will allow
3802 * get_partial() try partial lists of other nodes before potentially
3803 * allocating new page from other nodes
3805 if (unlikely(node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3806 && try_thisnode))
3807 pc.flags = GFP_NOWAIT | __GFP_THISNODE;
3809 pc.orig_size = orig_size;
3810 slab = get_partial(s, node, &pc);
3811 if (slab) {
3812 if (kmem_cache_debug(s)) {
3813 freelist = pc.object;
3815 * For debug caches here we had to go through
3816 * alloc_single_from_partial() so just store the
3817 * tracking info and return the object.
3819 if (s->flags & SLAB_STORE_USER)
3820 set_track(s, freelist, TRACK_ALLOC, addr);
3822 return freelist;
3825 freelist = freeze_slab(s, slab);
3826 goto retry_load_slab;
3829 slub_put_cpu_ptr(s->cpu_slab);
3830 slab = new_slab(s, pc.flags, node);
3831 c = slub_get_cpu_ptr(s->cpu_slab);
3833 if (unlikely(!slab)) {
3834 if (node != NUMA_NO_NODE && !(gfpflags & __GFP_THISNODE)
3835 && try_thisnode) {
3836 try_thisnode = false;
3837 goto new_objects;
3839 slab_out_of_memory(s, gfpflags, node);
3840 return NULL;
3843 stat(s, ALLOC_SLAB);
3845 if (kmem_cache_debug(s)) {
3846 freelist = alloc_single_from_new_slab(s, slab, orig_size);
3848 if (unlikely(!freelist))
3849 goto new_objects;
3851 if (s->flags & SLAB_STORE_USER)
3852 set_track(s, freelist, TRACK_ALLOC, addr);
3854 return freelist;
3858 * No other reference to the slab yet so we can
3859 * muck around with it freely without cmpxchg
3861 freelist = slab->freelist;
3862 slab->freelist = NULL;
3863 slab->inuse = slab->objects;
3864 slab->frozen = 1;
3866 inc_slabs_node(s, slab_nid(slab), slab->objects);
3868 if (unlikely(!pfmemalloc_match(slab, gfpflags))) {
3870 * For !pfmemalloc_match() case we don't load freelist so that
3871 * we don't make further mismatched allocations easier.
3873 deactivate_slab(s, slab, get_freepointer(s, freelist));
3874 return freelist;
3877 retry_load_slab:
3879 local_lock_irqsave(&s->cpu_slab->lock, flags);
3880 if (unlikely(c->slab)) {
3881 void *flush_freelist = c->freelist;
3882 struct slab *flush_slab = c->slab;
3884 c->slab = NULL;
3885 c->freelist = NULL;
3886 c->tid = next_tid(c->tid);
3888 local_unlock_irqrestore(&s->cpu_slab->lock, flags);
3890 deactivate_slab(s, flush_slab, flush_freelist);
3892 stat(s, CPUSLAB_FLUSH);
3894 goto retry_load_slab;
3896 c->slab = slab;
3898 goto load_freelist;
3902 * A wrapper for ___slab_alloc() for contexts where preemption is not yet
3903 * disabled. Compensates for possible cpu changes by refetching the per cpu area
3904 * pointer.
3906 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
3907 unsigned long addr, struct kmem_cache_cpu *c, unsigned int orig_size)
3909 void *p;
3911 #ifdef CONFIG_PREEMPT_COUNT
3913 * We may have been preempted and rescheduled on a different
3914 * cpu before disabling preemption. Need to reload cpu area
3915 * pointer.
3917 c = slub_get_cpu_ptr(s->cpu_slab);
3918 #endif
3920 p = ___slab_alloc(s, gfpflags, node, addr, c, orig_size);
3921 #ifdef CONFIG_PREEMPT_COUNT
3922 slub_put_cpu_ptr(s->cpu_slab);
3923 #endif
3924 return p;
3927 static __always_inline void *__slab_alloc_node(struct kmem_cache *s,
3928 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
3930 struct kmem_cache_cpu *c;
3931 struct slab *slab;
3932 unsigned long tid;
3933 void *object;
3935 redo:
3937 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
3938 * enabled. We may switch back and forth between cpus while
3939 * reading from one cpu area. That does not matter as long
3940 * as we end up on the original cpu again when doing the cmpxchg.
3942 * We must guarantee that tid and kmem_cache_cpu are retrieved on the
3943 * same cpu. We read first the kmem_cache_cpu pointer and use it to read
3944 * the tid. If we are preempted and switched to another cpu between the
3945 * two reads, it's OK as the two are still associated with the same cpu
3946 * and cmpxchg later will validate the cpu.
3948 c = raw_cpu_ptr(s->cpu_slab);
3949 tid = READ_ONCE(c->tid);
3952 * Irqless object alloc/free algorithm used here depends on sequence
3953 * of fetching cpu_slab's data. tid should be fetched before anything
3954 * on c to guarantee that object and slab associated with previous tid
3955 * won't be used with current tid. If we fetch tid first, object and
3956 * slab could be one associated with next tid and our alloc/free
3957 * request will be failed. In this case, we will retry. So, no problem.
3959 barrier();
3962 * The transaction ids are globally unique per cpu and per operation on
3963 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
3964 * occurs on the right processor and that there was no operation on the
3965 * linked list in between.
3968 object = c->freelist;
3969 slab = c->slab;
3971 #ifdef CONFIG_NUMA
3972 if (static_branch_unlikely(&strict_numa) &&
3973 node == NUMA_NO_NODE) {
3975 struct mempolicy *mpol = current->mempolicy;
3977 if (mpol) {
3979 * Special BIND rule support. If existing slab
3980 * is in permitted set then do not redirect
3981 * to a particular node.
3982 * Otherwise we apply the memory policy to get
3983 * the node we need to allocate on.
3985 if (mpol->mode != MPOL_BIND || !slab ||
3986 !node_isset(slab_nid(slab), mpol->nodes))
3988 node = mempolicy_slab_node();
3991 #endif
3993 if (!USE_LOCKLESS_FAST_PATH() ||
3994 unlikely(!object || !slab || !node_match(slab, node))) {
3995 object = __slab_alloc(s, gfpflags, node, addr, c, orig_size);
3996 } else {
3997 void *next_object = get_freepointer_safe(s, object);
4000 * The cmpxchg will only match if there was no additional
4001 * operation and if we are on the right processor.
4003 * The cmpxchg does the following atomically (without lock
4004 * semantics!)
4005 * 1. Relocate first pointer to the current per cpu area.
4006 * 2. Verify that tid and freelist have not been changed
4007 * 3. If they were not changed replace tid and freelist
4009 * Since this is without lock semantics the protection is only
4010 * against code executing on this cpu *not* from access by
4011 * other cpus.
4013 if (unlikely(!__update_cpu_freelist_fast(s, object, next_object, tid))) {
4014 note_cmpxchg_failure("slab_alloc", s, tid);
4015 goto redo;
4017 prefetch_freepointer(s, next_object);
4018 stat(s, ALLOC_FASTPATH);
4021 return object;
4023 #else /* CONFIG_SLUB_TINY */
4024 static void *__slab_alloc_node(struct kmem_cache *s,
4025 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4027 struct partial_context pc;
4028 struct slab *slab;
4029 void *object;
4031 pc.flags = gfpflags;
4032 pc.orig_size = orig_size;
4033 slab = get_partial(s, node, &pc);
4035 if (slab)
4036 return pc.object;
4038 slab = new_slab(s, gfpflags, node);
4039 if (unlikely(!slab)) {
4040 slab_out_of_memory(s, gfpflags, node);
4041 return NULL;
4044 object = alloc_single_from_new_slab(s, slab, orig_size);
4046 return object;
4048 #endif /* CONFIG_SLUB_TINY */
4051 * If the object has been wiped upon free, make sure it's fully initialized by
4052 * zeroing out freelist pointer.
4054 * Note that we also wipe custom freelist pointers.
4056 static __always_inline void maybe_wipe_obj_freeptr(struct kmem_cache *s,
4057 void *obj)
4059 if (unlikely(slab_want_init_on_free(s)) && obj &&
4060 !freeptr_outside_object(s))
4061 memset((void *)((char *)kasan_reset_tag(obj) + s->offset),
4062 0, sizeof(void *));
4065 static __fastpath_inline
4066 struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
4068 flags &= gfp_allowed_mask;
4070 might_alloc(flags);
4072 if (unlikely(should_failslab(s, flags)))
4073 return NULL;
4075 return s;
4078 static __fastpath_inline
4079 bool slab_post_alloc_hook(struct kmem_cache *s, struct list_lru *lru,
4080 gfp_t flags, size_t size, void **p, bool init,
4081 unsigned int orig_size)
4083 unsigned int zero_size = s->object_size;
4084 bool kasan_init = init;
4085 size_t i;
4086 gfp_t init_flags = flags & gfp_allowed_mask;
4089 * For kmalloc object, the allocated memory size(object_size) is likely
4090 * larger than the requested size(orig_size). If redzone check is
4091 * enabled for the extra space, don't zero it, as it will be redzoned
4092 * soon. The redzone operation for this extra space could be seen as a
4093 * replacement of current poisoning under certain debug option, and
4094 * won't break other sanity checks.
4096 if (kmem_cache_debug_flags(s, SLAB_STORE_USER | SLAB_RED_ZONE) &&
4097 (s->flags & SLAB_KMALLOC))
4098 zero_size = orig_size;
4101 * When slab_debug is enabled, avoid memory initialization integrated
4102 * into KASAN and instead zero out the memory via the memset below with
4103 * the proper size. Otherwise, KASAN might overwrite SLUB redzones and
4104 * cause false-positive reports. This does not lead to a performance
4105 * penalty on production builds, as slab_debug is not intended to be
4106 * enabled there.
4108 if (__slub_debug_enabled())
4109 kasan_init = false;
4112 * As memory initialization might be integrated into KASAN,
4113 * kasan_slab_alloc and initialization memset must be
4114 * kept together to avoid discrepancies in behavior.
4116 * As p[i] might get tagged, memset and kmemleak hook come after KASAN.
4118 for (i = 0; i < size; i++) {
4119 p[i] = kasan_slab_alloc(s, p[i], init_flags, kasan_init);
4120 if (p[i] && init && (!kasan_init ||
4121 !kasan_has_integrated_init()))
4122 memset(p[i], 0, zero_size);
4123 kmemleak_alloc_recursive(p[i], s->object_size, 1,
4124 s->flags, init_flags);
4125 kmsan_slab_alloc(s, p[i], init_flags);
4126 alloc_tagging_slab_alloc_hook(s, p[i], flags);
4129 return memcg_slab_post_alloc_hook(s, lru, flags, size, p);
4133 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
4134 * have the fastpath folded into their functions. So no function call
4135 * overhead for requests that can be satisfied on the fastpath.
4137 * The fastpath works by first checking if the lockless freelist can be used.
4138 * If not then __slab_alloc is called for slow processing.
4140 * Otherwise we can simply pick the next object from the lockless free list.
4142 static __fastpath_inline void *slab_alloc_node(struct kmem_cache *s, struct list_lru *lru,
4143 gfp_t gfpflags, int node, unsigned long addr, size_t orig_size)
4145 void *object;
4146 bool init = false;
4148 s = slab_pre_alloc_hook(s, gfpflags);
4149 if (unlikely(!s))
4150 return NULL;
4152 object = kfence_alloc(s, orig_size, gfpflags);
4153 if (unlikely(object))
4154 goto out;
4156 object = __slab_alloc_node(s, gfpflags, node, addr, orig_size);
4158 maybe_wipe_obj_freeptr(s, object);
4159 init = slab_want_init_on_alloc(gfpflags, s);
4161 out:
4163 * When init equals 'true', like for kzalloc() family, only
4164 * @orig_size bytes might be zeroed instead of s->object_size
4165 * In case this fails due to memcg_slab_post_alloc_hook(),
4166 * object is set to NULL
4168 slab_post_alloc_hook(s, lru, gfpflags, 1, &object, init, orig_size);
4170 return object;
4173 void *kmem_cache_alloc_noprof(struct kmem_cache *s, gfp_t gfpflags)
4175 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE, _RET_IP_,
4176 s->object_size);
4178 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4180 return ret;
4182 EXPORT_SYMBOL(kmem_cache_alloc_noprof);
4184 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
4185 gfp_t gfpflags)
4187 void *ret = slab_alloc_node(s, lru, gfpflags, NUMA_NO_NODE, _RET_IP_,
4188 s->object_size);
4190 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, NUMA_NO_NODE);
4192 return ret;
4194 EXPORT_SYMBOL(kmem_cache_alloc_lru_noprof);
4196 bool kmem_cache_charge(void *objp, gfp_t gfpflags)
4198 if (!memcg_kmem_online())
4199 return true;
4201 return memcg_slab_post_charge(objp, gfpflags);
4203 EXPORT_SYMBOL(kmem_cache_charge);
4206 * kmem_cache_alloc_node - Allocate an object on the specified node
4207 * @s: The cache to allocate from.
4208 * @gfpflags: See kmalloc().
4209 * @node: node number of the target node.
4211 * Identical to kmem_cache_alloc but it will allocate memory on the given
4212 * node, which can improve the performance for cpu bound structures.
4214 * Fallback to other node is possible if __GFP_THISNODE is not set.
4216 * Return: pointer to the new object or %NULL in case of error
4218 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t gfpflags, int node)
4220 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, s->object_size);
4222 trace_kmem_cache_alloc(_RET_IP_, ret, s, gfpflags, node);
4224 return ret;
4226 EXPORT_SYMBOL(kmem_cache_alloc_node_noprof);
4229 * To avoid unnecessary overhead, we pass through large allocation requests
4230 * directly to the page allocator. We use __GFP_COMP, because we will need to
4231 * know the allocation order to free the pages properly in kfree.
4233 static void *___kmalloc_large_node(size_t size, gfp_t flags, int node)
4235 struct folio *folio;
4236 void *ptr = NULL;
4237 unsigned int order = get_order(size);
4239 if (unlikely(flags & GFP_SLAB_BUG_MASK))
4240 flags = kmalloc_fix_flags(flags);
4242 flags |= __GFP_COMP;
4243 folio = (struct folio *)alloc_pages_node_noprof(node, flags, order);
4244 if (folio) {
4245 ptr = folio_address(folio);
4246 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4247 PAGE_SIZE << order);
4250 ptr = kasan_kmalloc_large(ptr, size, flags);
4251 /* As ptr might get tagged, call kmemleak hook after KASAN. */
4252 kmemleak_alloc(ptr, size, 1, flags);
4253 kmsan_kmalloc_large(ptr, size, flags);
4255 return ptr;
4258 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
4260 void *ret = ___kmalloc_large_node(size, flags, NUMA_NO_NODE);
4262 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4263 flags, NUMA_NO_NODE);
4264 return ret;
4266 EXPORT_SYMBOL(__kmalloc_large_noprof);
4268 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
4270 void *ret = ___kmalloc_large_node(size, flags, node);
4272 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << get_order(size),
4273 flags, node);
4274 return ret;
4276 EXPORT_SYMBOL(__kmalloc_large_node_noprof);
4278 static __always_inline
4279 void *__do_kmalloc_node(size_t size, kmem_buckets *b, gfp_t flags, int node,
4280 unsigned long caller)
4282 struct kmem_cache *s;
4283 void *ret;
4285 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4286 ret = __kmalloc_large_node_noprof(size, flags, node);
4287 trace_kmalloc(caller, ret, size,
4288 PAGE_SIZE << get_order(size), flags, node);
4289 return ret;
4292 if (unlikely(!size))
4293 return ZERO_SIZE_PTR;
4295 s = kmalloc_slab(size, b, flags, caller);
4297 ret = slab_alloc_node(s, NULL, flags, node, caller, size);
4298 ret = kasan_kmalloc(s, ret, size, flags);
4299 trace_kmalloc(caller, ret, size, s->size, flags, node);
4300 return ret;
4302 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
4304 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, _RET_IP_);
4306 EXPORT_SYMBOL(__kmalloc_node_noprof);
4308 void *__kmalloc_noprof(size_t size, gfp_t flags)
4310 return __do_kmalloc_node(size, NULL, flags, NUMA_NO_NODE, _RET_IP_);
4312 EXPORT_SYMBOL(__kmalloc_noprof);
4314 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags,
4315 int node, unsigned long caller)
4317 return __do_kmalloc_node(size, PASS_BUCKET_PARAM(b), flags, node, caller);
4320 EXPORT_SYMBOL(__kmalloc_node_track_caller_noprof);
4322 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t gfpflags, size_t size)
4324 void *ret = slab_alloc_node(s, NULL, gfpflags, NUMA_NO_NODE,
4325 _RET_IP_, size);
4327 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, NUMA_NO_NODE);
4329 ret = kasan_kmalloc(s, ret, size, gfpflags);
4330 return ret;
4332 EXPORT_SYMBOL(__kmalloc_cache_noprof);
4334 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
4335 int node, size_t size)
4337 void *ret = slab_alloc_node(s, NULL, gfpflags, node, _RET_IP_, size);
4339 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags, node);
4341 ret = kasan_kmalloc(s, ret, size, gfpflags);
4342 return ret;
4344 EXPORT_SYMBOL(__kmalloc_cache_node_noprof);
4346 static noinline void free_to_partial_list(
4347 struct kmem_cache *s, struct slab *slab,
4348 void *head, void *tail, int bulk_cnt,
4349 unsigned long addr)
4351 struct kmem_cache_node *n = get_node(s, slab_nid(slab));
4352 struct slab *slab_free = NULL;
4353 int cnt = bulk_cnt;
4354 unsigned long flags;
4355 depot_stack_handle_t handle = 0;
4357 if (s->flags & SLAB_STORE_USER)
4358 handle = set_track_prepare();
4360 spin_lock_irqsave(&n->list_lock, flags);
4362 if (free_debug_processing(s, slab, head, tail, &cnt, addr, handle)) {
4363 void *prior = slab->freelist;
4365 /* Perform the actual freeing while we still hold the locks */
4366 slab->inuse -= cnt;
4367 set_freepointer(s, tail, prior);
4368 slab->freelist = head;
4371 * If the slab is empty, and node's partial list is full,
4372 * it should be discarded anyway no matter it's on full or
4373 * partial list.
4375 if (slab->inuse == 0 && n->nr_partial >= s->min_partial)
4376 slab_free = slab;
4378 if (!prior) {
4379 /* was on full list */
4380 remove_full(s, n, slab);
4381 if (!slab_free) {
4382 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4383 stat(s, FREE_ADD_PARTIAL);
4385 } else if (slab_free) {
4386 remove_partial(n, slab);
4387 stat(s, FREE_REMOVE_PARTIAL);
4391 if (slab_free) {
4393 * Update the counters while still holding n->list_lock to
4394 * prevent spurious validation warnings
4396 dec_slabs_node(s, slab_nid(slab_free), slab_free->objects);
4399 spin_unlock_irqrestore(&n->list_lock, flags);
4401 if (slab_free) {
4402 stat(s, FREE_SLAB);
4403 free_slab(s, slab_free);
4408 * Slow path handling. This may still be called frequently since objects
4409 * have a longer lifetime than the cpu slabs in most processing loads.
4411 * So we still attempt to reduce cache line usage. Just take the slab
4412 * lock and free the item. If there is no additional partial slab
4413 * handling required then we can return immediately.
4415 static void __slab_free(struct kmem_cache *s, struct slab *slab,
4416 void *head, void *tail, int cnt,
4417 unsigned long addr)
4420 void *prior;
4421 int was_frozen;
4422 struct slab new;
4423 unsigned long counters;
4424 struct kmem_cache_node *n = NULL;
4425 unsigned long flags;
4426 bool on_node_partial;
4428 stat(s, FREE_SLOWPATH);
4430 if (IS_ENABLED(CONFIG_SLUB_TINY) || kmem_cache_debug(s)) {
4431 free_to_partial_list(s, slab, head, tail, cnt, addr);
4432 return;
4435 do {
4436 if (unlikely(n)) {
4437 spin_unlock_irqrestore(&n->list_lock, flags);
4438 n = NULL;
4440 prior = slab->freelist;
4441 counters = slab->counters;
4442 set_freepointer(s, tail, prior);
4443 new.counters = counters;
4444 was_frozen = new.frozen;
4445 new.inuse -= cnt;
4446 if ((!new.inuse || !prior) && !was_frozen) {
4447 /* Needs to be taken off a list */
4448 if (!kmem_cache_has_cpu_partial(s) || prior) {
4450 n = get_node(s, slab_nid(slab));
4452 * Speculatively acquire the list_lock.
4453 * If the cmpxchg does not succeed then we may
4454 * drop the list_lock without any processing.
4456 * Otherwise the list_lock will synchronize with
4457 * other processors updating the list of slabs.
4459 spin_lock_irqsave(&n->list_lock, flags);
4461 on_node_partial = slab_test_node_partial(slab);
4465 } while (!slab_update_freelist(s, slab,
4466 prior, counters,
4467 head, new.counters,
4468 "__slab_free"));
4470 if (likely(!n)) {
4472 if (likely(was_frozen)) {
4474 * The list lock was not taken therefore no list
4475 * activity can be necessary.
4477 stat(s, FREE_FROZEN);
4478 } else if (kmem_cache_has_cpu_partial(s) && !prior) {
4480 * If we started with a full slab then put it onto the
4481 * per cpu partial list.
4483 put_cpu_partial(s, slab, 1);
4484 stat(s, CPU_PARTIAL_FREE);
4487 return;
4491 * This slab was partially empty but not on the per-node partial list,
4492 * in which case we shouldn't manipulate its list, just return.
4494 if (prior && !on_node_partial) {
4495 spin_unlock_irqrestore(&n->list_lock, flags);
4496 return;
4499 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
4500 goto slab_empty;
4503 * Objects left in the slab. If it was not on the partial list before
4504 * then add it.
4506 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
4507 add_partial(n, slab, DEACTIVATE_TO_TAIL);
4508 stat(s, FREE_ADD_PARTIAL);
4510 spin_unlock_irqrestore(&n->list_lock, flags);
4511 return;
4513 slab_empty:
4514 if (prior) {
4516 * Slab on the partial list.
4518 remove_partial(n, slab);
4519 stat(s, FREE_REMOVE_PARTIAL);
4522 spin_unlock_irqrestore(&n->list_lock, flags);
4523 stat(s, FREE_SLAB);
4524 discard_slab(s, slab);
4527 #ifndef CONFIG_SLUB_TINY
4529 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
4530 * can perform fastpath freeing without additional function calls.
4532 * The fastpath is only possible if we are freeing to the current cpu slab
4533 * of this processor. This typically the case if we have just allocated
4534 * the item before.
4536 * If fastpath is not possible then fall back to __slab_free where we deal
4537 * with all sorts of special processing.
4539 * Bulk free of a freelist with several objects (all pointing to the
4540 * same slab) possible by specifying head and tail ptr, plus objects
4541 * count (cnt). Bulk free indicated by tail pointer being set.
4543 static __always_inline void do_slab_free(struct kmem_cache *s,
4544 struct slab *slab, void *head, void *tail,
4545 int cnt, unsigned long addr)
4547 struct kmem_cache_cpu *c;
4548 unsigned long tid;
4549 void **freelist;
4551 redo:
4553 * Determine the currently cpus per cpu slab.
4554 * The cpu may change afterward. However that does not matter since
4555 * data is retrieved via this pointer. If we are on the same cpu
4556 * during the cmpxchg then the free will succeed.
4558 c = raw_cpu_ptr(s->cpu_slab);
4559 tid = READ_ONCE(c->tid);
4561 /* Same with comment on barrier() in __slab_alloc_node() */
4562 barrier();
4564 if (unlikely(slab != c->slab)) {
4565 __slab_free(s, slab, head, tail, cnt, addr);
4566 return;
4569 if (USE_LOCKLESS_FAST_PATH()) {
4570 freelist = READ_ONCE(c->freelist);
4572 set_freepointer(s, tail, freelist);
4574 if (unlikely(!__update_cpu_freelist_fast(s, freelist, head, tid))) {
4575 note_cmpxchg_failure("slab_free", s, tid);
4576 goto redo;
4578 } else {
4579 /* Update the free list under the local lock */
4580 local_lock(&s->cpu_slab->lock);
4581 c = this_cpu_ptr(s->cpu_slab);
4582 if (unlikely(slab != c->slab)) {
4583 local_unlock(&s->cpu_slab->lock);
4584 goto redo;
4586 tid = c->tid;
4587 freelist = c->freelist;
4589 set_freepointer(s, tail, freelist);
4590 c->freelist = head;
4591 c->tid = next_tid(tid);
4593 local_unlock(&s->cpu_slab->lock);
4595 stat_add(s, FREE_FASTPATH, cnt);
4597 #else /* CONFIG_SLUB_TINY */
4598 static void do_slab_free(struct kmem_cache *s,
4599 struct slab *slab, void *head, void *tail,
4600 int cnt, unsigned long addr)
4602 __slab_free(s, slab, head, tail, cnt, addr);
4604 #endif /* CONFIG_SLUB_TINY */
4606 static __fastpath_inline
4607 void slab_free(struct kmem_cache *s, struct slab *slab, void *object,
4608 unsigned long addr)
4610 memcg_slab_free_hook(s, slab, &object, 1);
4611 alloc_tagging_slab_free_hook(s, slab, &object, 1);
4613 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4614 do_slab_free(s, slab, object, object, 1, addr);
4617 #ifdef CONFIG_MEMCG
4618 /* Do not inline the rare memcg charging failed path into the allocation path */
4619 static noinline
4620 void memcg_alloc_abort_single(struct kmem_cache *s, void *object)
4622 if (likely(slab_free_hook(s, object, slab_want_init_on_free(s), false)))
4623 do_slab_free(s, virt_to_slab(object), object, object, 1, _RET_IP_);
4625 #endif
4627 static __fastpath_inline
4628 void slab_free_bulk(struct kmem_cache *s, struct slab *slab, void *head,
4629 void *tail, void **p, int cnt, unsigned long addr)
4631 memcg_slab_free_hook(s, slab, p, cnt);
4632 alloc_tagging_slab_free_hook(s, slab, p, cnt);
4634 * With KASAN enabled slab_free_freelist_hook modifies the freelist
4635 * to remove objects, whose reuse must be delayed.
4637 if (likely(slab_free_freelist_hook(s, &head, &tail, &cnt)))
4638 do_slab_free(s, slab, head, tail, cnt, addr);
4641 #ifdef CONFIG_SLUB_RCU_DEBUG
4642 static void slab_free_after_rcu_debug(struct rcu_head *rcu_head)
4644 struct rcu_delayed_free *delayed_free =
4645 container_of(rcu_head, struct rcu_delayed_free, head);
4646 void *object = delayed_free->object;
4647 struct slab *slab = virt_to_slab(object);
4648 struct kmem_cache *s;
4650 kfree(delayed_free);
4652 if (WARN_ON(is_kfence_address(object)))
4653 return;
4655 /* find the object and the cache again */
4656 if (WARN_ON(!slab))
4657 return;
4658 s = slab->slab_cache;
4659 if (WARN_ON(!(s->flags & SLAB_TYPESAFE_BY_RCU)))
4660 return;
4662 /* resume freeing */
4663 if (slab_free_hook(s, object, slab_want_init_on_free(s), true))
4664 do_slab_free(s, slab, object, object, 1, _THIS_IP_);
4666 #endif /* CONFIG_SLUB_RCU_DEBUG */
4668 #ifdef CONFIG_KASAN_GENERIC
4669 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
4671 do_slab_free(cache, virt_to_slab(x), x, x, 1, addr);
4673 #endif
4675 static inline struct kmem_cache *virt_to_cache(const void *obj)
4677 struct slab *slab;
4679 slab = virt_to_slab(obj);
4680 if (WARN_ONCE(!slab, "%s: Object is not a Slab page!\n", __func__))
4681 return NULL;
4682 return slab->slab_cache;
4685 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
4687 struct kmem_cache *cachep;
4689 if (!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
4690 !kmem_cache_debug_flags(s, SLAB_CONSISTENCY_CHECKS))
4691 return s;
4693 cachep = virt_to_cache(x);
4694 if (WARN(cachep && cachep != s,
4695 "%s: Wrong slab cache. %s but object is from %s\n",
4696 __func__, s->name, cachep->name))
4697 print_tracking(cachep, x);
4698 return cachep;
4702 * kmem_cache_free - Deallocate an object
4703 * @s: The cache the allocation was from.
4704 * @x: The previously allocated object.
4706 * Free an object which was previously allocated from this
4707 * cache.
4709 void kmem_cache_free(struct kmem_cache *s, void *x)
4711 s = cache_from_obj(s, x);
4712 if (!s)
4713 return;
4714 trace_kmem_cache_free(_RET_IP_, x, s);
4715 slab_free(s, virt_to_slab(x), x, _RET_IP_);
4717 EXPORT_SYMBOL(kmem_cache_free);
4719 static void free_large_kmalloc(struct folio *folio, void *object)
4721 unsigned int order = folio_order(folio);
4723 if (WARN_ON_ONCE(order == 0))
4724 pr_warn_once("object pointer: 0x%p\n", object);
4726 kmemleak_free(object);
4727 kasan_kfree_large(object);
4728 kmsan_kfree_large(object);
4730 lruvec_stat_mod_folio(folio, NR_SLAB_UNRECLAIMABLE_B,
4731 -(PAGE_SIZE << order));
4732 folio_put(folio);
4736 * kfree - free previously allocated memory
4737 * @object: pointer returned by kmalloc() or kmem_cache_alloc()
4739 * If @object is NULL, no operation is performed.
4741 void kfree(const void *object)
4743 struct folio *folio;
4744 struct slab *slab;
4745 struct kmem_cache *s;
4746 void *x = (void *)object;
4748 trace_kfree(_RET_IP_, object);
4750 if (unlikely(ZERO_OR_NULL_PTR(object)))
4751 return;
4753 folio = virt_to_folio(object);
4754 if (unlikely(!folio_test_slab(folio))) {
4755 free_large_kmalloc(folio, (void *)object);
4756 return;
4759 slab = folio_slab(folio);
4760 s = slab->slab_cache;
4761 slab_free(s, slab, x, _RET_IP_);
4763 EXPORT_SYMBOL(kfree);
4765 static __always_inline __realloc_size(2) void *
4766 __do_krealloc(const void *p, size_t new_size, gfp_t flags)
4768 void *ret;
4769 size_t ks = 0;
4770 int orig_size = 0;
4771 struct kmem_cache *s = NULL;
4773 if (unlikely(ZERO_OR_NULL_PTR(p)))
4774 goto alloc_new;
4776 /* Check for double-free. */
4777 if (!kasan_check_byte(p))
4778 return NULL;
4780 if (is_kfence_address(p)) {
4781 ks = orig_size = kfence_ksize(p);
4782 } else {
4783 struct folio *folio;
4785 folio = virt_to_folio(p);
4786 if (unlikely(!folio_test_slab(folio))) {
4787 /* Big kmalloc object */
4788 WARN_ON(folio_size(folio) <= KMALLOC_MAX_CACHE_SIZE);
4789 WARN_ON(p != folio_address(folio));
4790 ks = folio_size(folio);
4791 } else {
4792 s = folio_slab(folio)->slab_cache;
4793 orig_size = get_orig_size(s, (void *)p);
4794 ks = s->object_size;
4798 /* If the old object doesn't fit, allocate a bigger one */
4799 if (new_size > ks)
4800 goto alloc_new;
4802 /* Zero out spare memory. */
4803 if (want_init_on_alloc(flags)) {
4804 kasan_disable_current();
4805 if (orig_size && orig_size < new_size)
4806 memset(kasan_reset_tag(p) + orig_size, 0, new_size - orig_size);
4807 else
4808 memset(kasan_reset_tag(p) + new_size, 0, ks - new_size);
4809 kasan_enable_current();
4812 /* Setup kmalloc redzone when needed */
4813 if (s && slub_debug_orig_size(s)) {
4814 set_orig_size(s, (void *)p, new_size);
4815 if (s->flags & SLAB_RED_ZONE && new_size < ks)
4816 memset_no_sanitize_memory(kasan_reset_tag(p) + new_size,
4817 SLUB_RED_ACTIVE, ks - new_size);
4820 p = kasan_krealloc(p, new_size, flags);
4821 return (void *)p;
4823 alloc_new:
4824 ret = kmalloc_node_track_caller_noprof(new_size, flags, NUMA_NO_NODE, _RET_IP_);
4825 if (ret && p) {
4826 /* Disable KASAN checks as the object's redzone is accessed. */
4827 kasan_disable_current();
4828 memcpy(ret, kasan_reset_tag(p), orig_size ?: ks);
4829 kasan_enable_current();
4832 return ret;
4836 * krealloc - reallocate memory. The contents will remain unchanged.
4837 * @p: object to reallocate memory for.
4838 * @new_size: how many bytes of memory are required.
4839 * @flags: the type of memory to allocate.
4841 * If @p is %NULL, krealloc() behaves exactly like kmalloc(). If @new_size
4842 * is 0 and @p is not a %NULL pointer, the object pointed to is freed.
4844 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
4845 * initial memory allocation, every subsequent call to this API for the same
4846 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
4847 * __GFP_ZERO is not fully honored by this API.
4849 * When slub_debug_orig_size() is off, krealloc() only knows about the bucket
4850 * size of an allocation (but not the exact size it was allocated with) and
4851 * hence implements the following semantics for shrinking and growing buffers
4852 * with __GFP_ZERO.
4854 * new bucket
4855 * 0 size size
4856 * |--------|----------------|
4857 * | keep | zero |
4859 * Otherwise, the original allocation size 'orig_size' could be used to
4860 * precisely clear the requested size, and the new size will also be stored
4861 * as the new 'orig_size'.
4863 * In any case, the contents of the object pointed to are preserved up to the
4864 * lesser of the new and old sizes.
4866 * Return: pointer to the allocated memory or %NULL in case of error
4868 void *krealloc_noprof(const void *p, size_t new_size, gfp_t flags)
4870 void *ret;
4872 if (unlikely(!new_size)) {
4873 kfree(p);
4874 return ZERO_SIZE_PTR;
4877 ret = __do_krealloc(p, new_size, flags);
4878 if (ret && kasan_reset_tag(p) != kasan_reset_tag(ret))
4879 kfree(p);
4881 return ret;
4883 EXPORT_SYMBOL(krealloc_noprof);
4885 struct detached_freelist {
4886 struct slab *slab;
4887 void *tail;
4888 void *freelist;
4889 int cnt;
4890 struct kmem_cache *s;
4894 * This function progressively scans the array with free objects (with
4895 * a limited look ahead) and extract objects belonging to the same
4896 * slab. It builds a detached freelist directly within the given
4897 * slab/objects. This can happen without any need for
4898 * synchronization, because the objects are owned by running process.
4899 * The freelist is build up as a single linked list in the objects.
4900 * The idea is, that this detached freelist can then be bulk
4901 * transferred to the real freelist(s), but only requiring a single
4902 * synchronization primitive. Look ahead in the array is limited due
4903 * to performance reasons.
4905 static inline
4906 int build_detached_freelist(struct kmem_cache *s, size_t size,
4907 void **p, struct detached_freelist *df)
4909 int lookahead = 3;
4910 void *object;
4911 struct folio *folio;
4912 size_t same;
4914 object = p[--size];
4915 folio = virt_to_folio(object);
4916 if (!s) {
4917 /* Handle kalloc'ed objects */
4918 if (unlikely(!folio_test_slab(folio))) {
4919 free_large_kmalloc(folio, object);
4920 df->slab = NULL;
4921 return size;
4923 /* Derive kmem_cache from object */
4924 df->slab = folio_slab(folio);
4925 df->s = df->slab->slab_cache;
4926 } else {
4927 df->slab = folio_slab(folio);
4928 df->s = cache_from_obj(s, object); /* Support for memcg */
4931 /* Start new detached freelist */
4932 df->tail = object;
4933 df->freelist = object;
4934 df->cnt = 1;
4936 if (is_kfence_address(object))
4937 return size;
4939 set_freepointer(df->s, object, NULL);
4941 same = size;
4942 while (size) {
4943 object = p[--size];
4944 /* df->slab is always set at this point */
4945 if (df->slab == virt_to_slab(object)) {
4946 /* Opportunity build freelist */
4947 set_freepointer(df->s, object, df->freelist);
4948 df->freelist = object;
4949 df->cnt++;
4950 same--;
4951 if (size != same)
4952 swap(p[size], p[same]);
4953 continue;
4956 /* Limit look ahead search */
4957 if (!--lookahead)
4958 break;
4961 return same;
4965 * Internal bulk free of objects that were not initialised by the post alloc
4966 * hooks and thus should not be processed by the free hooks
4968 static void __kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4970 if (!size)
4971 return;
4973 do {
4974 struct detached_freelist df;
4976 size = build_detached_freelist(s, size, p, &df);
4977 if (!df.slab)
4978 continue;
4980 if (kfence_free(df.freelist))
4981 continue;
4983 do_slab_free(df.s, df.slab, df.freelist, df.tail, df.cnt,
4984 _RET_IP_);
4985 } while (likely(size));
4988 /* Note that interrupts must be enabled when calling this function. */
4989 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
4991 if (!size)
4992 return;
4994 do {
4995 struct detached_freelist df;
4997 size = build_detached_freelist(s, size, p, &df);
4998 if (!df.slab)
4999 continue;
5001 slab_free_bulk(df.s, df.slab, df.freelist, df.tail, &p[size],
5002 df.cnt, _RET_IP_);
5003 } while (likely(size));
5005 EXPORT_SYMBOL(kmem_cache_free_bulk);
5007 #ifndef CONFIG_SLUB_TINY
5008 static inline
5009 int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
5010 void **p)
5012 struct kmem_cache_cpu *c;
5013 unsigned long irqflags;
5014 int i;
5017 * Drain objects in the per cpu slab, while disabling local
5018 * IRQs, which protects against PREEMPT and interrupts
5019 * handlers invoking normal fastpath.
5021 c = slub_get_cpu_ptr(s->cpu_slab);
5022 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5024 for (i = 0; i < size; i++) {
5025 void *object = kfence_alloc(s, s->object_size, flags);
5027 if (unlikely(object)) {
5028 p[i] = object;
5029 continue;
5032 object = c->freelist;
5033 if (unlikely(!object)) {
5035 * We may have removed an object from c->freelist using
5036 * the fastpath in the previous iteration; in that case,
5037 * c->tid has not been bumped yet.
5038 * Since ___slab_alloc() may reenable interrupts while
5039 * allocating memory, we should bump c->tid now.
5041 c->tid = next_tid(c->tid);
5043 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5046 * Invoking slow path likely have side-effect
5047 * of re-populating per CPU c->freelist
5049 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
5050 _RET_IP_, c, s->object_size);
5051 if (unlikely(!p[i]))
5052 goto error;
5054 c = this_cpu_ptr(s->cpu_slab);
5055 maybe_wipe_obj_freeptr(s, p[i]);
5057 local_lock_irqsave(&s->cpu_slab->lock, irqflags);
5059 continue; /* goto for-loop */
5061 c->freelist = get_freepointer(s, object);
5062 p[i] = object;
5063 maybe_wipe_obj_freeptr(s, p[i]);
5064 stat(s, ALLOC_FASTPATH);
5066 c->tid = next_tid(c->tid);
5067 local_unlock_irqrestore(&s->cpu_slab->lock, irqflags);
5068 slub_put_cpu_ptr(s->cpu_slab);
5070 return i;
5072 error:
5073 slub_put_cpu_ptr(s->cpu_slab);
5074 __kmem_cache_free_bulk(s, i, p);
5075 return 0;
5078 #else /* CONFIG_SLUB_TINY */
5079 static int __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags,
5080 size_t size, void **p)
5082 int i;
5084 for (i = 0; i < size; i++) {
5085 void *object = kfence_alloc(s, s->object_size, flags);
5087 if (unlikely(object)) {
5088 p[i] = object;
5089 continue;
5092 p[i] = __slab_alloc_node(s, flags, NUMA_NO_NODE,
5093 _RET_IP_, s->object_size);
5094 if (unlikely(!p[i]))
5095 goto error;
5097 maybe_wipe_obj_freeptr(s, p[i]);
5100 return i;
5102 error:
5103 __kmem_cache_free_bulk(s, i, p);
5104 return 0;
5106 #endif /* CONFIG_SLUB_TINY */
5108 /* Note that interrupts must be enabled when calling this function. */
5109 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size,
5110 void **p)
5112 int i;
5114 if (!size)
5115 return 0;
5117 s = slab_pre_alloc_hook(s, flags);
5118 if (unlikely(!s))
5119 return 0;
5121 i = __kmem_cache_alloc_bulk(s, flags, size, p);
5122 if (unlikely(i == 0))
5123 return 0;
5126 * memcg and kmem_cache debug support and memory initialization.
5127 * Done outside of the IRQ disabled fastpath loop.
5129 if (unlikely(!slab_post_alloc_hook(s, NULL, flags, size, p,
5130 slab_want_init_on_alloc(flags, s), s->object_size))) {
5131 return 0;
5133 return i;
5135 EXPORT_SYMBOL(kmem_cache_alloc_bulk_noprof);
5139 * Object placement in a slab is made very easy because we always start at
5140 * offset 0. If we tune the size of the object to the alignment then we can
5141 * get the required alignment by putting one properly sized object after
5142 * another.
5144 * Notice that the allocation order determines the sizes of the per cpu
5145 * caches. Each processor has always one slab available for allocations.
5146 * Increasing the allocation order reduces the number of times that slabs
5147 * must be moved on and off the partial lists and is therefore a factor in
5148 * locking overhead.
5152 * Minimum / Maximum order of slab pages. This influences locking overhead
5153 * and slab fragmentation. A higher order reduces the number of partial slabs
5154 * and increases the number of allocations possible without having to
5155 * take the list_lock.
5157 static unsigned int slub_min_order;
5158 static unsigned int slub_max_order =
5159 IS_ENABLED(CONFIG_SLUB_TINY) ? 1 : PAGE_ALLOC_COSTLY_ORDER;
5160 static unsigned int slub_min_objects;
5163 * Calculate the order of allocation given an slab object size.
5165 * The order of allocation has significant impact on performance and other
5166 * system components. Generally order 0 allocations should be preferred since
5167 * order 0 does not cause fragmentation in the page allocator. Larger objects
5168 * be problematic to put into order 0 slabs because there may be too much
5169 * unused space left. We go to a higher order if more than 1/16th of the slab
5170 * would be wasted.
5172 * In order to reach satisfactory performance we must ensure that a minimum
5173 * number of objects is in one slab. Otherwise we may generate too much
5174 * activity on the partial lists which requires taking the list_lock. This is
5175 * less a concern for large slabs though which are rarely used.
5177 * slab_max_order specifies the order where we begin to stop considering the
5178 * number of objects in a slab as critical. If we reach slab_max_order then
5179 * we try to keep the page order as low as possible. So we accept more waste
5180 * of space in favor of a small page order.
5182 * Higher order allocations also allow the placement of more objects in a
5183 * slab and thereby reduce object handling overhead. If the user has
5184 * requested a higher minimum order then we start with that one instead of
5185 * the smallest order which will fit the object.
5187 static inline unsigned int calc_slab_order(unsigned int size,
5188 unsigned int min_order, unsigned int max_order,
5189 unsigned int fract_leftover)
5191 unsigned int order;
5193 for (order = min_order; order <= max_order; order++) {
5195 unsigned int slab_size = (unsigned int)PAGE_SIZE << order;
5196 unsigned int rem;
5198 rem = slab_size % size;
5200 if (rem <= slab_size / fract_leftover)
5201 break;
5204 return order;
5207 static inline int calculate_order(unsigned int size)
5209 unsigned int order;
5210 unsigned int min_objects;
5211 unsigned int max_objects;
5212 unsigned int min_order;
5214 min_objects = slub_min_objects;
5215 if (!min_objects) {
5217 * Some architectures will only update present cpus when
5218 * onlining them, so don't trust the number if it's just 1. But
5219 * we also don't want to use nr_cpu_ids always, as on some other
5220 * architectures, there can be many possible cpus, but never
5221 * onlined. Here we compromise between trying to avoid too high
5222 * order on systems that appear larger than they are, and too
5223 * low order on systems that appear smaller than they are.
5225 unsigned int nr_cpus = num_present_cpus();
5226 if (nr_cpus <= 1)
5227 nr_cpus = nr_cpu_ids;
5228 min_objects = 4 * (fls(nr_cpus) + 1);
5230 /* min_objects can't be 0 because get_order(0) is undefined */
5231 max_objects = max(order_objects(slub_max_order, size), 1U);
5232 min_objects = min(min_objects, max_objects);
5234 min_order = max_t(unsigned int, slub_min_order,
5235 get_order(min_objects * size));
5236 if (order_objects(min_order, size) > MAX_OBJS_PER_PAGE)
5237 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
5240 * Attempt to find best configuration for a slab. This works by first
5241 * attempting to generate a layout with the best possible configuration
5242 * and backing off gradually.
5244 * We start with accepting at most 1/16 waste and try to find the
5245 * smallest order from min_objects-derived/slab_min_order up to
5246 * slab_max_order that will satisfy the constraint. Note that increasing
5247 * the order can only result in same or less fractional waste, not more.
5249 * If that fails, we increase the acceptable fraction of waste and try
5250 * again. The last iteration with fraction of 1/2 would effectively
5251 * accept any waste and give us the order determined by min_objects, as
5252 * long as at least single object fits within slab_max_order.
5254 for (unsigned int fraction = 16; fraction > 1; fraction /= 2) {
5255 order = calc_slab_order(size, min_order, slub_max_order,
5256 fraction);
5257 if (order <= slub_max_order)
5258 return order;
5262 * Doh this slab cannot be placed using slab_max_order.
5264 order = get_order(size);
5265 if (order <= MAX_PAGE_ORDER)
5266 return order;
5267 return -ENOSYS;
5270 static void
5271 init_kmem_cache_node(struct kmem_cache_node *n)
5273 n->nr_partial = 0;
5274 spin_lock_init(&n->list_lock);
5275 INIT_LIST_HEAD(&n->partial);
5276 #ifdef CONFIG_SLUB_DEBUG
5277 atomic_long_set(&n->nr_slabs, 0);
5278 atomic_long_set(&n->total_objects, 0);
5279 INIT_LIST_HEAD(&n->full);
5280 #endif
5283 #ifndef CONFIG_SLUB_TINY
5284 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5286 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
5287 NR_KMALLOC_TYPES * KMALLOC_SHIFT_HIGH *
5288 sizeof(struct kmem_cache_cpu));
5291 * Must align to double word boundary for the double cmpxchg
5292 * instructions to work; see __pcpu_double_call_return_bool().
5294 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
5295 2 * sizeof(void *));
5297 if (!s->cpu_slab)
5298 return 0;
5300 init_kmem_cache_cpus(s);
5302 return 1;
5304 #else
5305 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
5307 return 1;
5309 #endif /* CONFIG_SLUB_TINY */
5311 static struct kmem_cache *kmem_cache_node;
5314 * No kmalloc_node yet so do it by hand. We know that this is the first
5315 * slab on the node for this slabcache. There are no concurrent accesses
5316 * possible.
5318 * Note that this function only works on the kmem_cache_node
5319 * when allocating for the kmem_cache_node. This is used for bootstrapping
5320 * memory on a fresh node that has no slab structures yet.
5322 static void early_kmem_cache_node_alloc(int node)
5324 struct slab *slab;
5325 struct kmem_cache_node *n;
5327 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
5329 slab = new_slab(kmem_cache_node, GFP_NOWAIT, node);
5331 BUG_ON(!slab);
5332 if (slab_nid(slab) != node) {
5333 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
5334 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
5337 n = slab->freelist;
5338 BUG_ON(!n);
5339 #ifdef CONFIG_SLUB_DEBUG
5340 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
5341 #endif
5342 n = kasan_slab_alloc(kmem_cache_node, n, GFP_KERNEL, false);
5343 slab->freelist = get_freepointer(kmem_cache_node, n);
5344 slab->inuse = 1;
5345 kmem_cache_node->node[node] = n;
5346 init_kmem_cache_node(n);
5347 inc_slabs_node(kmem_cache_node, node, slab->objects);
5350 * No locks need to be taken here as it has just been
5351 * initialized and there is no concurrent access.
5353 __add_partial(n, slab, DEACTIVATE_TO_HEAD);
5356 static void free_kmem_cache_nodes(struct kmem_cache *s)
5358 int node;
5359 struct kmem_cache_node *n;
5361 for_each_kmem_cache_node(s, node, n) {
5362 s->node[node] = NULL;
5363 kmem_cache_free(kmem_cache_node, n);
5367 void __kmem_cache_release(struct kmem_cache *s)
5369 cache_random_seq_destroy(s);
5370 #ifndef CONFIG_SLUB_TINY
5371 free_percpu(s->cpu_slab);
5372 #endif
5373 free_kmem_cache_nodes(s);
5376 static int init_kmem_cache_nodes(struct kmem_cache *s)
5378 int node;
5380 for_each_node_mask(node, slab_nodes) {
5381 struct kmem_cache_node *n;
5383 if (slab_state == DOWN) {
5384 early_kmem_cache_node_alloc(node);
5385 continue;
5387 n = kmem_cache_alloc_node(kmem_cache_node,
5388 GFP_KERNEL, node);
5390 if (!n) {
5391 free_kmem_cache_nodes(s);
5392 return 0;
5395 init_kmem_cache_node(n);
5396 s->node[node] = n;
5398 return 1;
5401 static void set_cpu_partial(struct kmem_cache *s)
5403 #ifdef CONFIG_SLUB_CPU_PARTIAL
5404 unsigned int nr_objects;
5407 * cpu_partial determined the maximum number of objects kept in the
5408 * per cpu partial lists of a processor.
5410 * Per cpu partial lists mainly contain slabs that just have one
5411 * object freed. If they are used for allocation then they can be
5412 * filled up again with minimal effort. The slab will never hit the
5413 * per node partial lists and therefore no locking will be required.
5415 * For backwards compatibility reasons, this is determined as number
5416 * of objects, even though we now limit maximum number of pages, see
5417 * slub_set_cpu_partial()
5419 if (!kmem_cache_has_cpu_partial(s))
5420 nr_objects = 0;
5421 else if (s->size >= PAGE_SIZE)
5422 nr_objects = 6;
5423 else if (s->size >= 1024)
5424 nr_objects = 24;
5425 else if (s->size >= 256)
5426 nr_objects = 52;
5427 else
5428 nr_objects = 120;
5430 slub_set_cpu_partial(s, nr_objects);
5431 #endif
5435 * calculate_sizes() determines the order and the distribution of data within
5436 * a slab object.
5438 static int calculate_sizes(struct kmem_cache_args *args, struct kmem_cache *s)
5440 slab_flags_t flags = s->flags;
5441 unsigned int size = s->object_size;
5442 unsigned int order;
5445 * Round up object size to the next word boundary. We can only
5446 * place the free pointer at word boundaries and this determines
5447 * the possible location of the free pointer.
5449 size = ALIGN(size, sizeof(void *));
5451 #ifdef CONFIG_SLUB_DEBUG
5453 * Determine if we can poison the object itself. If the user of
5454 * the slab may touch the object after free or before allocation
5455 * then we should never poison the object itself.
5457 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
5458 !s->ctor)
5459 s->flags |= __OBJECT_POISON;
5460 else
5461 s->flags &= ~__OBJECT_POISON;
5465 * If we are Redzoning then check if there is some space between the
5466 * end of the object and the free pointer. If not then add an
5467 * additional word to have some bytes to store Redzone information.
5469 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
5470 size += sizeof(void *);
5471 #endif
5474 * With that we have determined the number of bytes in actual use
5475 * by the object and redzoning.
5477 s->inuse = size;
5479 if (((flags & SLAB_TYPESAFE_BY_RCU) && !args->use_freeptr_offset) ||
5480 (flags & SLAB_POISON) || s->ctor ||
5481 ((flags & SLAB_RED_ZONE) &&
5482 (s->object_size < sizeof(void *) || slub_debug_orig_size(s)))) {
5484 * Relocate free pointer after the object if it is not
5485 * permitted to overwrite the first word of the object on
5486 * kmem_cache_free.
5488 * This is the case if we do RCU, have a constructor or
5489 * destructor, are poisoning the objects, or are
5490 * redzoning an object smaller than sizeof(void *) or are
5491 * redzoning an object with slub_debug_orig_size() enabled,
5492 * in which case the right redzone may be extended.
5494 * The assumption that s->offset >= s->inuse means free
5495 * pointer is outside of the object is used in the
5496 * freeptr_outside_object() function. If that is no
5497 * longer true, the function needs to be modified.
5499 s->offset = size;
5500 size += sizeof(void *);
5501 } else if ((flags & SLAB_TYPESAFE_BY_RCU) && args->use_freeptr_offset) {
5502 s->offset = args->freeptr_offset;
5503 } else {
5505 * Store freelist pointer near middle of object to keep
5506 * it away from the edges of the object to avoid small
5507 * sized over/underflows from neighboring allocations.
5509 s->offset = ALIGN_DOWN(s->object_size / 2, sizeof(void *));
5512 #ifdef CONFIG_SLUB_DEBUG
5513 if (flags & SLAB_STORE_USER) {
5515 * Need to store information about allocs and frees after
5516 * the object.
5518 size += 2 * sizeof(struct track);
5520 /* Save the original kmalloc request size */
5521 if (flags & SLAB_KMALLOC)
5522 size += sizeof(unsigned int);
5524 #endif
5526 kasan_cache_create(s, &size, &s->flags);
5527 #ifdef CONFIG_SLUB_DEBUG
5528 if (flags & SLAB_RED_ZONE) {
5530 * Add some empty padding so that we can catch
5531 * overwrites from earlier objects rather than let
5532 * tracking information or the free pointer be
5533 * corrupted if a user writes before the start
5534 * of the object.
5536 size += sizeof(void *);
5538 s->red_left_pad = sizeof(void *);
5539 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
5540 size += s->red_left_pad;
5542 #endif
5545 * SLUB stores one object immediately after another beginning from
5546 * offset 0. In order to align the objects we have to simply size
5547 * each object to conform to the alignment.
5549 size = ALIGN(size, s->align);
5550 s->size = size;
5551 s->reciprocal_size = reciprocal_value(size);
5552 order = calculate_order(size);
5554 if ((int)order < 0)
5555 return 0;
5557 s->allocflags = __GFP_COMP;
5559 if (s->flags & SLAB_CACHE_DMA)
5560 s->allocflags |= GFP_DMA;
5562 if (s->flags & SLAB_CACHE_DMA32)
5563 s->allocflags |= GFP_DMA32;
5565 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5566 s->allocflags |= __GFP_RECLAIMABLE;
5569 * Determine the number of objects per slab
5571 s->oo = oo_make(order, size);
5572 s->min = oo_make(get_order(size), size);
5574 return !!oo_objects(s->oo);
5577 static void list_slab_objects(struct kmem_cache *s, struct slab *slab,
5578 const char *text)
5580 #ifdef CONFIG_SLUB_DEBUG
5581 void *addr = slab_address(slab);
5582 void *p;
5584 slab_err(s, slab, text, s->name);
5586 spin_lock(&object_map_lock);
5587 __fill_map(object_map, s, slab);
5589 for_each_object(p, s, addr, slab->objects) {
5591 if (!test_bit(__obj_to_index(s, addr, p), object_map)) {
5592 if (slab_add_kunit_errors())
5593 continue;
5594 pr_err("Object 0x%p @offset=%tu\n", p, p - addr);
5595 print_tracking(s, p);
5598 spin_unlock(&object_map_lock);
5599 #endif
5603 * Attempt to free all partial slabs on a node.
5604 * This is called from __kmem_cache_shutdown(). We must take list_lock
5605 * because sysfs file might still access partial list after the shutdowning.
5607 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
5609 LIST_HEAD(discard);
5610 struct slab *slab, *h;
5612 BUG_ON(irqs_disabled());
5613 spin_lock_irq(&n->list_lock);
5614 list_for_each_entry_safe(slab, h, &n->partial, slab_list) {
5615 if (!slab->inuse) {
5616 remove_partial(n, slab);
5617 list_add(&slab->slab_list, &discard);
5618 } else {
5619 list_slab_objects(s, slab,
5620 "Objects remaining in %s on __kmem_cache_shutdown()");
5623 spin_unlock_irq(&n->list_lock);
5625 list_for_each_entry_safe(slab, h, &discard, slab_list)
5626 discard_slab(s, slab);
5629 bool __kmem_cache_empty(struct kmem_cache *s)
5631 int node;
5632 struct kmem_cache_node *n;
5634 for_each_kmem_cache_node(s, node, n)
5635 if (n->nr_partial || node_nr_slabs(n))
5636 return false;
5637 return true;
5641 * Release all resources used by a slab cache.
5643 int __kmem_cache_shutdown(struct kmem_cache *s)
5645 int node;
5646 struct kmem_cache_node *n;
5648 flush_all_cpus_locked(s);
5649 /* Attempt to free all objects */
5650 for_each_kmem_cache_node(s, node, n) {
5651 free_partial(s, n);
5652 if (n->nr_partial || node_nr_slabs(n))
5653 return 1;
5655 return 0;
5658 #ifdef CONFIG_PRINTK
5659 void __kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct slab *slab)
5661 void *base;
5662 int __maybe_unused i;
5663 unsigned int objnr;
5664 void *objp;
5665 void *objp0;
5666 struct kmem_cache *s = slab->slab_cache;
5667 struct track __maybe_unused *trackp;
5669 kpp->kp_ptr = object;
5670 kpp->kp_slab = slab;
5671 kpp->kp_slab_cache = s;
5672 base = slab_address(slab);
5673 objp0 = kasan_reset_tag(object);
5674 #ifdef CONFIG_SLUB_DEBUG
5675 objp = restore_red_left(s, objp0);
5676 #else
5677 objp = objp0;
5678 #endif
5679 objnr = obj_to_index(s, slab, objp);
5680 kpp->kp_data_offset = (unsigned long)((char *)objp0 - (char *)objp);
5681 objp = base + s->size * objnr;
5682 kpp->kp_objp = objp;
5683 if (WARN_ON_ONCE(objp < base || objp >= base + slab->objects * s->size
5684 || (objp - base) % s->size) ||
5685 !(s->flags & SLAB_STORE_USER))
5686 return;
5687 #ifdef CONFIG_SLUB_DEBUG
5688 objp = fixup_red_left(s, objp);
5689 trackp = get_track(s, objp, TRACK_ALLOC);
5690 kpp->kp_ret = (void *)trackp->addr;
5691 #ifdef CONFIG_STACKDEPOT
5693 depot_stack_handle_t handle;
5694 unsigned long *entries;
5695 unsigned int nr_entries;
5697 handle = READ_ONCE(trackp->handle);
5698 if (handle) {
5699 nr_entries = stack_depot_fetch(handle, &entries);
5700 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5701 kpp->kp_stack[i] = (void *)entries[i];
5704 trackp = get_track(s, objp, TRACK_FREE);
5705 handle = READ_ONCE(trackp->handle);
5706 if (handle) {
5707 nr_entries = stack_depot_fetch(handle, &entries);
5708 for (i = 0; i < KS_ADDRS_COUNT && i < nr_entries; i++)
5709 kpp->kp_free_stack[i] = (void *)entries[i];
5712 #endif
5713 #endif
5715 #endif
5717 /********************************************************************
5718 * Kmalloc subsystem
5719 *******************************************************************/
5721 static int __init setup_slub_min_order(char *str)
5723 get_option(&str, (int *)&slub_min_order);
5725 if (slub_min_order > slub_max_order)
5726 slub_max_order = slub_min_order;
5728 return 1;
5731 __setup("slab_min_order=", setup_slub_min_order);
5732 __setup_param("slub_min_order=", slub_min_order, setup_slub_min_order, 0);
5735 static int __init setup_slub_max_order(char *str)
5737 get_option(&str, (int *)&slub_max_order);
5738 slub_max_order = min_t(unsigned int, slub_max_order, MAX_PAGE_ORDER);
5740 if (slub_min_order > slub_max_order)
5741 slub_min_order = slub_max_order;
5743 return 1;
5746 __setup("slab_max_order=", setup_slub_max_order);
5747 __setup_param("slub_max_order=", slub_max_order, setup_slub_max_order, 0);
5749 static int __init setup_slub_min_objects(char *str)
5751 get_option(&str, (int *)&slub_min_objects);
5753 return 1;
5756 __setup("slab_min_objects=", setup_slub_min_objects);
5757 __setup_param("slub_min_objects=", slub_min_objects, setup_slub_min_objects, 0);
5759 #ifdef CONFIG_NUMA
5760 static int __init setup_slab_strict_numa(char *str)
5762 if (nr_node_ids > 1) {
5763 static_branch_enable(&strict_numa);
5764 pr_info("SLUB: Strict NUMA enabled.\n");
5765 } else {
5766 pr_warn("slab_strict_numa parameter set on non NUMA system.\n");
5769 return 1;
5772 __setup("slab_strict_numa", setup_slab_strict_numa);
5773 #endif
5776 #ifdef CONFIG_HARDENED_USERCOPY
5778 * Rejects incorrectly sized objects and objects that are to be copied
5779 * to/from userspace but do not fall entirely within the containing slab
5780 * cache's usercopy region.
5782 * Returns NULL if check passes, otherwise const char * to name of cache
5783 * to indicate an error.
5785 void __check_heap_object(const void *ptr, unsigned long n,
5786 const struct slab *slab, bool to_user)
5788 struct kmem_cache *s;
5789 unsigned int offset;
5790 bool is_kfence = is_kfence_address(ptr);
5792 ptr = kasan_reset_tag(ptr);
5794 /* Find object and usable object size. */
5795 s = slab->slab_cache;
5797 /* Reject impossible pointers. */
5798 if (ptr < slab_address(slab))
5799 usercopy_abort("SLUB object not in SLUB page?!", NULL,
5800 to_user, 0, n);
5802 /* Find offset within object. */
5803 if (is_kfence)
5804 offset = ptr - kfence_object_start(ptr);
5805 else
5806 offset = (ptr - slab_address(slab)) % s->size;
5808 /* Adjust for redzone and reject if within the redzone. */
5809 if (!is_kfence && kmem_cache_debug_flags(s, SLAB_RED_ZONE)) {
5810 if (offset < s->red_left_pad)
5811 usercopy_abort("SLUB object in left red zone",
5812 s->name, to_user, offset, n);
5813 offset -= s->red_left_pad;
5816 /* Allow address range falling entirely within usercopy region. */
5817 if (offset >= s->useroffset &&
5818 offset - s->useroffset <= s->usersize &&
5819 n <= s->useroffset - offset + s->usersize)
5820 return;
5822 usercopy_abort("SLUB object", s->name, to_user, offset, n);
5824 #endif /* CONFIG_HARDENED_USERCOPY */
5826 #define SHRINK_PROMOTE_MAX 32
5829 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
5830 * up most to the head of the partial lists. New allocations will then
5831 * fill those up and thus they can be removed from the partial lists.
5833 * The slabs with the least items are placed last. This results in them
5834 * being allocated from last increasing the chance that the last objects
5835 * are freed in them.
5837 static int __kmem_cache_do_shrink(struct kmem_cache *s)
5839 int node;
5840 int i;
5841 struct kmem_cache_node *n;
5842 struct slab *slab;
5843 struct slab *t;
5844 struct list_head discard;
5845 struct list_head promote[SHRINK_PROMOTE_MAX];
5846 unsigned long flags;
5847 int ret = 0;
5849 for_each_kmem_cache_node(s, node, n) {
5850 INIT_LIST_HEAD(&discard);
5851 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
5852 INIT_LIST_HEAD(promote + i);
5854 spin_lock_irqsave(&n->list_lock, flags);
5857 * Build lists of slabs to discard or promote.
5859 * Note that concurrent frees may occur while we hold the
5860 * list_lock. slab->inuse here is the upper limit.
5862 list_for_each_entry_safe(slab, t, &n->partial, slab_list) {
5863 int free = slab->objects - slab->inuse;
5865 /* Do not reread slab->inuse */
5866 barrier();
5868 /* We do not keep full slabs on the list */
5869 BUG_ON(free <= 0);
5871 if (free == slab->objects) {
5872 list_move(&slab->slab_list, &discard);
5873 slab_clear_node_partial(slab);
5874 n->nr_partial--;
5875 dec_slabs_node(s, node, slab->objects);
5876 } else if (free <= SHRINK_PROMOTE_MAX)
5877 list_move(&slab->slab_list, promote + free - 1);
5881 * Promote the slabs filled up most to the head of the
5882 * partial list.
5884 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
5885 list_splice(promote + i, &n->partial);
5887 spin_unlock_irqrestore(&n->list_lock, flags);
5889 /* Release empty slabs */
5890 list_for_each_entry_safe(slab, t, &discard, slab_list)
5891 free_slab(s, slab);
5893 if (node_nr_slabs(n))
5894 ret = 1;
5897 return ret;
5900 int __kmem_cache_shrink(struct kmem_cache *s)
5902 flush_all(s);
5903 return __kmem_cache_do_shrink(s);
5906 static int slab_mem_going_offline_callback(void *arg)
5908 struct kmem_cache *s;
5910 mutex_lock(&slab_mutex);
5911 list_for_each_entry(s, &slab_caches, list) {
5912 flush_all_cpus_locked(s);
5913 __kmem_cache_do_shrink(s);
5915 mutex_unlock(&slab_mutex);
5917 return 0;
5920 static void slab_mem_offline_callback(void *arg)
5922 struct memory_notify *marg = arg;
5923 int offline_node;
5925 offline_node = marg->status_change_nid_normal;
5928 * If the node still has available memory. we need kmem_cache_node
5929 * for it yet.
5931 if (offline_node < 0)
5932 return;
5934 mutex_lock(&slab_mutex);
5935 node_clear(offline_node, slab_nodes);
5937 * We no longer free kmem_cache_node structures here, as it would be
5938 * racy with all get_node() users, and infeasible to protect them with
5939 * slab_mutex.
5941 mutex_unlock(&slab_mutex);
5944 static int slab_mem_going_online_callback(void *arg)
5946 struct kmem_cache_node *n;
5947 struct kmem_cache *s;
5948 struct memory_notify *marg = arg;
5949 int nid = marg->status_change_nid_normal;
5950 int ret = 0;
5953 * If the node's memory is already available, then kmem_cache_node is
5954 * already created. Nothing to do.
5956 if (nid < 0)
5957 return 0;
5960 * We are bringing a node online. No memory is available yet. We must
5961 * allocate a kmem_cache_node structure in order to bring the node
5962 * online.
5964 mutex_lock(&slab_mutex);
5965 list_for_each_entry(s, &slab_caches, list) {
5967 * The structure may already exist if the node was previously
5968 * onlined and offlined.
5970 if (get_node(s, nid))
5971 continue;
5973 * XXX: kmem_cache_alloc_node will fallback to other nodes
5974 * since memory is not yet available from the node that
5975 * is brought up.
5977 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
5978 if (!n) {
5979 ret = -ENOMEM;
5980 goto out;
5982 init_kmem_cache_node(n);
5983 s->node[nid] = n;
5986 * Any cache created after this point will also have kmem_cache_node
5987 * initialized for the new node.
5989 node_set(nid, slab_nodes);
5990 out:
5991 mutex_unlock(&slab_mutex);
5992 return ret;
5995 static int slab_memory_callback(struct notifier_block *self,
5996 unsigned long action, void *arg)
5998 int ret = 0;
6000 switch (action) {
6001 case MEM_GOING_ONLINE:
6002 ret = slab_mem_going_online_callback(arg);
6003 break;
6004 case MEM_GOING_OFFLINE:
6005 ret = slab_mem_going_offline_callback(arg);
6006 break;
6007 case MEM_OFFLINE:
6008 case MEM_CANCEL_ONLINE:
6009 slab_mem_offline_callback(arg);
6010 break;
6011 case MEM_ONLINE:
6012 case MEM_CANCEL_OFFLINE:
6013 break;
6015 if (ret)
6016 ret = notifier_from_errno(ret);
6017 else
6018 ret = NOTIFY_OK;
6019 return ret;
6022 /********************************************************************
6023 * Basic setup of slabs
6024 *******************************************************************/
6027 * Used for early kmem_cache structures that were allocated using
6028 * the page allocator. Allocate them properly then fix up the pointers
6029 * that may be pointing to the wrong kmem_cache structure.
6032 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
6034 int node;
6035 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
6036 struct kmem_cache_node *n;
6038 memcpy(s, static_cache, kmem_cache->object_size);
6041 * This runs very early, and only the boot processor is supposed to be
6042 * up. Even if it weren't true, IRQs are not up so we couldn't fire
6043 * IPIs around.
6045 __flush_cpu_slab(s, smp_processor_id());
6046 for_each_kmem_cache_node(s, node, n) {
6047 struct slab *p;
6049 list_for_each_entry(p, &n->partial, slab_list)
6050 p->slab_cache = s;
6052 #ifdef CONFIG_SLUB_DEBUG
6053 list_for_each_entry(p, &n->full, slab_list)
6054 p->slab_cache = s;
6055 #endif
6057 list_add(&s->list, &slab_caches);
6058 return s;
6061 void __init kmem_cache_init(void)
6063 static __initdata struct kmem_cache boot_kmem_cache,
6064 boot_kmem_cache_node;
6065 int node;
6067 if (debug_guardpage_minorder())
6068 slub_max_order = 0;
6070 /* Print slub debugging pointers without hashing */
6071 if (__slub_debug_enabled())
6072 no_hash_pointers_enable(NULL);
6074 kmem_cache_node = &boot_kmem_cache_node;
6075 kmem_cache = &boot_kmem_cache;
6078 * Initialize the nodemask for which we will allocate per node
6079 * structures. Here we don't need taking slab_mutex yet.
6081 for_each_node_state(node, N_NORMAL_MEMORY)
6082 node_set(node, slab_nodes);
6084 create_boot_cache(kmem_cache_node, "kmem_cache_node",
6085 sizeof(struct kmem_cache_node),
6086 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6088 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
6090 /* Able to allocate the per node structures */
6091 slab_state = PARTIAL;
6093 create_boot_cache(kmem_cache, "kmem_cache",
6094 offsetof(struct kmem_cache, node) +
6095 nr_node_ids * sizeof(struct kmem_cache_node *),
6096 SLAB_HWCACHE_ALIGN | SLAB_NO_OBJ_EXT, 0, 0);
6098 kmem_cache = bootstrap(&boot_kmem_cache);
6099 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
6101 /* Now we can use the kmem_cache to allocate kmalloc slabs */
6102 setup_kmalloc_cache_index_table();
6103 create_kmalloc_caches();
6105 /* Setup random freelists for each cache */
6106 init_freelist_randomization();
6108 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
6109 slub_cpu_dead);
6111 pr_info("SLUB: HWalign=%d, Order=%u-%u, MinObjects=%u, CPUs=%u, Nodes=%u\n",
6112 cache_line_size(),
6113 slub_min_order, slub_max_order, slub_min_objects,
6114 nr_cpu_ids, nr_node_ids);
6117 void __init kmem_cache_init_late(void)
6119 #ifndef CONFIG_SLUB_TINY
6120 flushwq = alloc_workqueue("slub_flushwq", WQ_MEM_RECLAIM, 0);
6121 WARN_ON(!flushwq);
6122 #endif
6125 struct kmem_cache *
6126 __kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
6127 slab_flags_t flags, void (*ctor)(void *))
6129 struct kmem_cache *s;
6131 s = find_mergeable(size, align, flags, name, ctor);
6132 if (s) {
6133 if (sysfs_slab_alias(s, name))
6134 pr_err("SLUB: Unable to add cache alias %s to sysfs\n",
6135 name);
6137 s->refcount++;
6140 * Adjust the object sizes so that we clear
6141 * the complete object on kzalloc.
6143 s->object_size = max(s->object_size, size);
6144 s->inuse = max(s->inuse, ALIGN(size, sizeof(void *)));
6147 return s;
6150 int do_kmem_cache_create(struct kmem_cache *s, const char *name,
6151 unsigned int size, struct kmem_cache_args *args,
6152 slab_flags_t flags)
6154 int err = -EINVAL;
6156 s->name = name;
6157 s->size = s->object_size = size;
6159 s->flags = kmem_cache_flags(flags, s->name);
6160 #ifdef CONFIG_SLAB_FREELIST_HARDENED
6161 s->random = get_random_long();
6162 #endif
6163 s->align = args->align;
6164 s->ctor = args->ctor;
6165 #ifdef CONFIG_HARDENED_USERCOPY
6166 s->useroffset = args->useroffset;
6167 s->usersize = args->usersize;
6168 #endif
6170 if (!calculate_sizes(args, s))
6171 goto out;
6172 if (disable_higher_order_debug) {
6174 * Disable debugging flags that store metadata if the min slab
6175 * order increased.
6177 if (get_order(s->size) > get_order(s->object_size)) {
6178 s->flags &= ~DEBUG_METADATA_FLAGS;
6179 s->offset = 0;
6180 if (!calculate_sizes(args, s))
6181 goto out;
6185 #ifdef system_has_freelist_aba
6186 if (system_has_freelist_aba() && !(s->flags & SLAB_NO_CMPXCHG)) {
6187 /* Enable fast mode */
6188 s->flags |= __CMPXCHG_DOUBLE;
6190 #endif
6193 * The larger the object size is, the more slabs we want on the partial
6194 * list to avoid pounding the page allocator excessively.
6196 s->min_partial = min_t(unsigned long, MAX_PARTIAL, ilog2(s->size) / 2);
6197 s->min_partial = max_t(unsigned long, MIN_PARTIAL, s->min_partial);
6199 set_cpu_partial(s);
6201 #ifdef CONFIG_NUMA
6202 s->remote_node_defrag_ratio = 1000;
6203 #endif
6205 /* Initialize the pre-computed randomized freelist if slab is up */
6206 if (slab_state >= UP) {
6207 if (init_cache_random_seq(s))
6208 goto out;
6211 if (!init_kmem_cache_nodes(s))
6212 goto out;
6214 if (!alloc_kmem_cache_cpus(s))
6215 goto out;
6217 err = 0;
6219 /* Mutex is not taken during early boot */
6220 if (slab_state <= UP)
6221 goto out;
6224 * Failing to create sysfs files is not critical to SLUB functionality.
6225 * If it fails, proceed with cache creation without these files.
6227 if (sysfs_slab_add(s))
6228 pr_err("SLUB: Unable to add cache %s to sysfs\n", s->name);
6230 if (s->flags & SLAB_STORE_USER)
6231 debugfs_slab_add(s);
6233 out:
6234 if (err)
6235 __kmem_cache_release(s);
6236 return err;
6239 #ifdef SLAB_SUPPORTS_SYSFS
6240 static int count_inuse(struct slab *slab)
6242 return slab->inuse;
6245 static int count_total(struct slab *slab)
6247 return slab->objects;
6249 #endif
6251 #ifdef CONFIG_SLUB_DEBUG
6252 static void validate_slab(struct kmem_cache *s, struct slab *slab,
6253 unsigned long *obj_map)
6255 void *p;
6256 void *addr = slab_address(slab);
6258 if (!check_slab(s, slab) || !on_freelist(s, slab, NULL))
6259 return;
6261 /* Now we know that a valid freelist exists */
6262 __fill_map(obj_map, s, slab);
6263 for_each_object(p, s, addr, slab->objects) {
6264 u8 val = test_bit(__obj_to_index(s, addr, p), obj_map) ?
6265 SLUB_RED_INACTIVE : SLUB_RED_ACTIVE;
6267 if (!check_object(s, slab, p, val))
6268 break;
6272 static int validate_slab_node(struct kmem_cache *s,
6273 struct kmem_cache_node *n, unsigned long *obj_map)
6275 unsigned long count = 0;
6276 struct slab *slab;
6277 unsigned long flags;
6279 spin_lock_irqsave(&n->list_lock, flags);
6281 list_for_each_entry(slab, &n->partial, slab_list) {
6282 validate_slab(s, slab, obj_map);
6283 count++;
6285 if (count != n->nr_partial) {
6286 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
6287 s->name, count, n->nr_partial);
6288 slab_add_kunit_errors();
6291 if (!(s->flags & SLAB_STORE_USER))
6292 goto out;
6294 list_for_each_entry(slab, &n->full, slab_list) {
6295 validate_slab(s, slab, obj_map);
6296 count++;
6298 if (count != node_nr_slabs(n)) {
6299 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
6300 s->name, count, node_nr_slabs(n));
6301 slab_add_kunit_errors();
6304 out:
6305 spin_unlock_irqrestore(&n->list_lock, flags);
6306 return count;
6309 long validate_slab_cache(struct kmem_cache *s)
6311 int node;
6312 unsigned long count = 0;
6313 struct kmem_cache_node *n;
6314 unsigned long *obj_map;
6316 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
6317 if (!obj_map)
6318 return -ENOMEM;
6320 flush_all(s);
6321 for_each_kmem_cache_node(s, node, n)
6322 count += validate_slab_node(s, n, obj_map);
6324 bitmap_free(obj_map);
6326 return count;
6328 EXPORT_SYMBOL(validate_slab_cache);
6330 #ifdef CONFIG_DEBUG_FS
6332 * Generate lists of code addresses where slabcache objects are allocated
6333 * and freed.
6336 struct location {
6337 depot_stack_handle_t handle;
6338 unsigned long count;
6339 unsigned long addr;
6340 unsigned long waste;
6341 long long sum_time;
6342 long min_time;
6343 long max_time;
6344 long min_pid;
6345 long max_pid;
6346 DECLARE_BITMAP(cpus, NR_CPUS);
6347 nodemask_t nodes;
6350 struct loc_track {
6351 unsigned long max;
6352 unsigned long count;
6353 struct location *loc;
6354 loff_t idx;
6357 static struct dentry *slab_debugfs_root;
6359 static void free_loc_track(struct loc_track *t)
6361 if (t->max)
6362 free_pages((unsigned long)t->loc,
6363 get_order(sizeof(struct location) * t->max));
6366 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
6368 struct location *l;
6369 int order;
6371 order = get_order(sizeof(struct location) * max);
6373 l = (void *)__get_free_pages(flags, order);
6374 if (!l)
6375 return 0;
6377 if (t->count) {
6378 memcpy(l, t->loc, sizeof(struct location) * t->count);
6379 free_loc_track(t);
6381 t->max = max;
6382 t->loc = l;
6383 return 1;
6386 static int add_location(struct loc_track *t, struct kmem_cache *s,
6387 const struct track *track,
6388 unsigned int orig_size)
6390 long start, end, pos;
6391 struct location *l;
6392 unsigned long caddr, chandle, cwaste;
6393 unsigned long age = jiffies - track->when;
6394 depot_stack_handle_t handle = 0;
6395 unsigned int waste = s->object_size - orig_size;
6397 #ifdef CONFIG_STACKDEPOT
6398 handle = READ_ONCE(track->handle);
6399 #endif
6400 start = -1;
6401 end = t->count;
6403 for ( ; ; ) {
6404 pos = start + (end - start + 1) / 2;
6407 * There is nothing at "end". If we end up there
6408 * we need to add something to before end.
6410 if (pos == end)
6411 break;
6413 l = &t->loc[pos];
6414 caddr = l->addr;
6415 chandle = l->handle;
6416 cwaste = l->waste;
6417 if ((track->addr == caddr) && (handle == chandle) &&
6418 (waste == cwaste)) {
6420 l->count++;
6421 if (track->when) {
6422 l->sum_time += age;
6423 if (age < l->min_time)
6424 l->min_time = age;
6425 if (age > l->max_time)
6426 l->max_time = age;
6428 if (track->pid < l->min_pid)
6429 l->min_pid = track->pid;
6430 if (track->pid > l->max_pid)
6431 l->max_pid = track->pid;
6433 cpumask_set_cpu(track->cpu,
6434 to_cpumask(l->cpus));
6436 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6437 return 1;
6440 if (track->addr < caddr)
6441 end = pos;
6442 else if (track->addr == caddr && handle < chandle)
6443 end = pos;
6444 else if (track->addr == caddr && handle == chandle &&
6445 waste < cwaste)
6446 end = pos;
6447 else
6448 start = pos;
6452 * Not found. Insert new tracking element.
6454 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
6455 return 0;
6457 l = t->loc + pos;
6458 if (pos < t->count)
6459 memmove(l + 1, l,
6460 (t->count - pos) * sizeof(struct location));
6461 t->count++;
6462 l->count = 1;
6463 l->addr = track->addr;
6464 l->sum_time = age;
6465 l->min_time = age;
6466 l->max_time = age;
6467 l->min_pid = track->pid;
6468 l->max_pid = track->pid;
6469 l->handle = handle;
6470 l->waste = waste;
6471 cpumask_clear(to_cpumask(l->cpus));
6472 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
6473 nodes_clear(l->nodes);
6474 node_set(page_to_nid(virt_to_page(track)), l->nodes);
6475 return 1;
6478 static void process_slab(struct loc_track *t, struct kmem_cache *s,
6479 struct slab *slab, enum track_item alloc,
6480 unsigned long *obj_map)
6482 void *addr = slab_address(slab);
6483 bool is_alloc = (alloc == TRACK_ALLOC);
6484 void *p;
6486 __fill_map(obj_map, s, slab);
6488 for_each_object(p, s, addr, slab->objects)
6489 if (!test_bit(__obj_to_index(s, addr, p), obj_map))
6490 add_location(t, s, get_track(s, p, alloc),
6491 is_alloc ? get_orig_size(s, p) :
6492 s->object_size);
6494 #endif /* CONFIG_DEBUG_FS */
6495 #endif /* CONFIG_SLUB_DEBUG */
6497 #ifdef SLAB_SUPPORTS_SYSFS
6498 enum slab_stat_type {
6499 SL_ALL, /* All slabs */
6500 SL_PARTIAL, /* Only partially allocated slabs */
6501 SL_CPU, /* Only slabs used for cpu caches */
6502 SL_OBJECTS, /* Determine allocated objects not slabs */
6503 SL_TOTAL /* Determine object capacity not slabs */
6506 #define SO_ALL (1 << SL_ALL)
6507 #define SO_PARTIAL (1 << SL_PARTIAL)
6508 #define SO_CPU (1 << SL_CPU)
6509 #define SO_OBJECTS (1 << SL_OBJECTS)
6510 #define SO_TOTAL (1 << SL_TOTAL)
6512 static ssize_t show_slab_objects(struct kmem_cache *s,
6513 char *buf, unsigned long flags)
6515 unsigned long total = 0;
6516 int node;
6517 int x;
6518 unsigned long *nodes;
6519 int len = 0;
6521 nodes = kcalloc(nr_node_ids, sizeof(unsigned long), GFP_KERNEL);
6522 if (!nodes)
6523 return -ENOMEM;
6525 if (flags & SO_CPU) {
6526 int cpu;
6528 for_each_possible_cpu(cpu) {
6529 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
6530 cpu);
6531 int node;
6532 struct slab *slab;
6534 slab = READ_ONCE(c->slab);
6535 if (!slab)
6536 continue;
6538 node = slab_nid(slab);
6539 if (flags & SO_TOTAL)
6540 x = slab->objects;
6541 else if (flags & SO_OBJECTS)
6542 x = slab->inuse;
6543 else
6544 x = 1;
6546 total += x;
6547 nodes[node] += x;
6549 #ifdef CONFIG_SLUB_CPU_PARTIAL
6550 slab = slub_percpu_partial_read_once(c);
6551 if (slab) {
6552 node = slab_nid(slab);
6553 if (flags & SO_TOTAL)
6554 WARN_ON_ONCE(1);
6555 else if (flags & SO_OBJECTS)
6556 WARN_ON_ONCE(1);
6557 else
6558 x = data_race(slab->slabs);
6559 total += x;
6560 nodes[node] += x;
6562 #endif
6567 * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex"
6568 * already held which will conflict with an existing lock order:
6570 * mem_hotplug_lock->slab_mutex->kernfs_mutex
6572 * We don't really need mem_hotplug_lock (to hold off
6573 * slab_mem_going_offline_callback) here because slab's memory hot
6574 * unplug code doesn't destroy the kmem_cache->node[] data.
6577 #ifdef CONFIG_SLUB_DEBUG
6578 if (flags & SO_ALL) {
6579 struct kmem_cache_node *n;
6581 for_each_kmem_cache_node(s, node, n) {
6583 if (flags & SO_TOTAL)
6584 x = node_nr_objs(n);
6585 else if (flags & SO_OBJECTS)
6586 x = node_nr_objs(n) - count_partial(n, count_free);
6587 else
6588 x = node_nr_slabs(n);
6589 total += x;
6590 nodes[node] += x;
6593 } else
6594 #endif
6595 if (flags & SO_PARTIAL) {
6596 struct kmem_cache_node *n;
6598 for_each_kmem_cache_node(s, node, n) {
6599 if (flags & SO_TOTAL)
6600 x = count_partial(n, count_total);
6601 else if (flags & SO_OBJECTS)
6602 x = count_partial(n, count_inuse);
6603 else
6604 x = n->nr_partial;
6605 total += x;
6606 nodes[node] += x;
6610 len += sysfs_emit_at(buf, len, "%lu", total);
6611 #ifdef CONFIG_NUMA
6612 for (node = 0; node < nr_node_ids; node++) {
6613 if (nodes[node])
6614 len += sysfs_emit_at(buf, len, " N%d=%lu",
6615 node, nodes[node]);
6617 #endif
6618 len += sysfs_emit_at(buf, len, "\n");
6619 kfree(nodes);
6621 return len;
6624 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
6625 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
6627 struct slab_attribute {
6628 struct attribute attr;
6629 ssize_t (*show)(struct kmem_cache *s, char *buf);
6630 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
6633 #define SLAB_ATTR_RO(_name) \
6634 static struct slab_attribute _name##_attr = __ATTR_RO_MODE(_name, 0400)
6636 #define SLAB_ATTR(_name) \
6637 static struct slab_attribute _name##_attr = __ATTR_RW_MODE(_name, 0600)
6639 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
6641 return sysfs_emit(buf, "%u\n", s->size);
6643 SLAB_ATTR_RO(slab_size);
6645 static ssize_t align_show(struct kmem_cache *s, char *buf)
6647 return sysfs_emit(buf, "%u\n", s->align);
6649 SLAB_ATTR_RO(align);
6651 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
6653 return sysfs_emit(buf, "%u\n", s->object_size);
6655 SLAB_ATTR_RO(object_size);
6657 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
6659 return sysfs_emit(buf, "%u\n", oo_objects(s->oo));
6661 SLAB_ATTR_RO(objs_per_slab);
6663 static ssize_t order_show(struct kmem_cache *s, char *buf)
6665 return sysfs_emit(buf, "%u\n", oo_order(s->oo));
6667 SLAB_ATTR_RO(order);
6669 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
6671 return sysfs_emit(buf, "%lu\n", s->min_partial);
6674 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
6675 size_t length)
6677 unsigned long min;
6678 int err;
6680 err = kstrtoul(buf, 10, &min);
6681 if (err)
6682 return err;
6684 s->min_partial = min;
6685 return length;
6687 SLAB_ATTR(min_partial);
6689 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
6691 unsigned int nr_partial = 0;
6692 #ifdef CONFIG_SLUB_CPU_PARTIAL
6693 nr_partial = s->cpu_partial;
6694 #endif
6696 return sysfs_emit(buf, "%u\n", nr_partial);
6699 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
6700 size_t length)
6702 unsigned int objects;
6703 int err;
6705 err = kstrtouint(buf, 10, &objects);
6706 if (err)
6707 return err;
6708 if (objects && !kmem_cache_has_cpu_partial(s))
6709 return -EINVAL;
6711 slub_set_cpu_partial(s, objects);
6712 flush_all(s);
6713 return length;
6715 SLAB_ATTR(cpu_partial);
6717 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
6719 if (!s->ctor)
6720 return 0;
6721 return sysfs_emit(buf, "%pS\n", s->ctor);
6723 SLAB_ATTR_RO(ctor);
6725 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
6727 return sysfs_emit(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
6729 SLAB_ATTR_RO(aliases);
6731 static ssize_t partial_show(struct kmem_cache *s, char *buf)
6733 return show_slab_objects(s, buf, SO_PARTIAL);
6735 SLAB_ATTR_RO(partial);
6737 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
6739 return show_slab_objects(s, buf, SO_CPU);
6741 SLAB_ATTR_RO(cpu_slabs);
6743 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
6745 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
6747 SLAB_ATTR_RO(objects_partial);
6749 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
6751 int objects = 0;
6752 int slabs = 0;
6753 int cpu __maybe_unused;
6754 int len = 0;
6756 #ifdef CONFIG_SLUB_CPU_PARTIAL
6757 for_each_online_cpu(cpu) {
6758 struct slab *slab;
6760 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6762 if (slab)
6763 slabs += data_race(slab->slabs);
6765 #endif
6767 /* Approximate half-full slabs, see slub_set_cpu_partial() */
6768 objects = (slabs * oo_objects(s->oo)) / 2;
6769 len += sysfs_emit_at(buf, len, "%d(%d)", objects, slabs);
6771 #ifdef CONFIG_SLUB_CPU_PARTIAL
6772 for_each_online_cpu(cpu) {
6773 struct slab *slab;
6775 slab = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
6776 if (slab) {
6777 slabs = data_race(slab->slabs);
6778 objects = (slabs * oo_objects(s->oo)) / 2;
6779 len += sysfs_emit_at(buf, len, " C%d=%d(%d)",
6780 cpu, objects, slabs);
6783 #endif
6784 len += sysfs_emit_at(buf, len, "\n");
6786 return len;
6788 SLAB_ATTR_RO(slabs_cpu_partial);
6790 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
6792 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
6794 SLAB_ATTR_RO(reclaim_account);
6796 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
6798 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
6800 SLAB_ATTR_RO(hwcache_align);
6802 #ifdef CONFIG_ZONE_DMA
6803 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
6805 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
6807 SLAB_ATTR_RO(cache_dma);
6808 #endif
6810 #ifdef CONFIG_HARDENED_USERCOPY
6811 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
6813 return sysfs_emit(buf, "%u\n", s->usersize);
6815 SLAB_ATTR_RO(usersize);
6816 #endif
6818 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
6820 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
6822 SLAB_ATTR_RO(destroy_by_rcu);
6824 #ifdef CONFIG_SLUB_DEBUG
6825 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
6827 return show_slab_objects(s, buf, SO_ALL);
6829 SLAB_ATTR_RO(slabs);
6831 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
6833 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
6835 SLAB_ATTR_RO(total_objects);
6837 static ssize_t objects_show(struct kmem_cache *s, char *buf)
6839 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
6841 SLAB_ATTR_RO(objects);
6843 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
6845 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
6847 SLAB_ATTR_RO(sanity_checks);
6849 static ssize_t trace_show(struct kmem_cache *s, char *buf)
6851 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_TRACE));
6853 SLAB_ATTR_RO(trace);
6855 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
6857 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
6860 SLAB_ATTR_RO(red_zone);
6862 static ssize_t poison_show(struct kmem_cache *s, char *buf)
6864 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_POISON));
6867 SLAB_ATTR_RO(poison);
6869 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
6871 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
6874 SLAB_ATTR_RO(store_user);
6876 static ssize_t validate_show(struct kmem_cache *s, char *buf)
6878 return 0;
6881 static ssize_t validate_store(struct kmem_cache *s,
6882 const char *buf, size_t length)
6884 int ret = -EINVAL;
6886 if (buf[0] == '1' && kmem_cache_debug(s)) {
6887 ret = validate_slab_cache(s);
6888 if (ret >= 0)
6889 ret = length;
6891 return ret;
6893 SLAB_ATTR(validate);
6895 #endif /* CONFIG_SLUB_DEBUG */
6897 #ifdef CONFIG_FAILSLAB
6898 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
6900 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
6903 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
6904 size_t length)
6906 if (s->refcount > 1)
6907 return -EINVAL;
6909 if (buf[0] == '1')
6910 WRITE_ONCE(s->flags, s->flags | SLAB_FAILSLAB);
6911 else
6912 WRITE_ONCE(s->flags, s->flags & ~SLAB_FAILSLAB);
6914 return length;
6916 SLAB_ATTR(failslab);
6917 #endif
6919 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
6921 return 0;
6924 static ssize_t shrink_store(struct kmem_cache *s,
6925 const char *buf, size_t length)
6927 if (buf[0] == '1')
6928 kmem_cache_shrink(s);
6929 else
6930 return -EINVAL;
6931 return length;
6933 SLAB_ATTR(shrink);
6935 #ifdef CONFIG_NUMA
6936 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
6938 return sysfs_emit(buf, "%u\n", s->remote_node_defrag_ratio / 10);
6941 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
6942 const char *buf, size_t length)
6944 unsigned int ratio;
6945 int err;
6947 err = kstrtouint(buf, 10, &ratio);
6948 if (err)
6949 return err;
6950 if (ratio > 100)
6951 return -ERANGE;
6953 s->remote_node_defrag_ratio = ratio * 10;
6955 return length;
6957 SLAB_ATTR(remote_node_defrag_ratio);
6958 #endif
6960 #ifdef CONFIG_SLUB_STATS
6961 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
6963 unsigned long sum = 0;
6964 int cpu;
6965 int len = 0;
6966 int *data = kmalloc_array(nr_cpu_ids, sizeof(int), GFP_KERNEL);
6968 if (!data)
6969 return -ENOMEM;
6971 for_each_online_cpu(cpu) {
6972 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
6974 data[cpu] = x;
6975 sum += x;
6978 len += sysfs_emit_at(buf, len, "%lu", sum);
6980 #ifdef CONFIG_SMP
6981 for_each_online_cpu(cpu) {
6982 if (data[cpu])
6983 len += sysfs_emit_at(buf, len, " C%d=%u",
6984 cpu, data[cpu]);
6986 #endif
6987 kfree(data);
6988 len += sysfs_emit_at(buf, len, "\n");
6990 return len;
6993 static void clear_stat(struct kmem_cache *s, enum stat_item si)
6995 int cpu;
6997 for_each_online_cpu(cpu)
6998 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
7001 #define STAT_ATTR(si, text) \
7002 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
7004 return show_stat(s, buf, si); \
7006 static ssize_t text##_store(struct kmem_cache *s, \
7007 const char *buf, size_t length) \
7009 if (buf[0] != '0') \
7010 return -EINVAL; \
7011 clear_stat(s, si); \
7012 return length; \
7014 SLAB_ATTR(text); \
7016 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
7017 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
7018 STAT_ATTR(FREE_FASTPATH, free_fastpath);
7019 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
7020 STAT_ATTR(FREE_FROZEN, free_frozen);
7021 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
7022 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
7023 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
7024 STAT_ATTR(ALLOC_SLAB, alloc_slab);
7025 STAT_ATTR(ALLOC_REFILL, alloc_refill);
7026 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
7027 STAT_ATTR(FREE_SLAB, free_slab);
7028 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
7029 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
7030 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
7031 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
7032 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
7033 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
7034 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
7035 STAT_ATTR(ORDER_FALLBACK, order_fallback);
7036 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
7037 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
7038 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
7039 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
7040 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
7041 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
7042 #endif /* CONFIG_SLUB_STATS */
7044 #ifdef CONFIG_KFENCE
7045 static ssize_t skip_kfence_show(struct kmem_cache *s, char *buf)
7047 return sysfs_emit(buf, "%d\n", !!(s->flags & SLAB_SKIP_KFENCE));
7050 static ssize_t skip_kfence_store(struct kmem_cache *s,
7051 const char *buf, size_t length)
7053 int ret = length;
7055 if (buf[0] == '0')
7056 s->flags &= ~SLAB_SKIP_KFENCE;
7057 else if (buf[0] == '1')
7058 s->flags |= SLAB_SKIP_KFENCE;
7059 else
7060 ret = -EINVAL;
7062 return ret;
7064 SLAB_ATTR(skip_kfence);
7065 #endif
7067 static struct attribute *slab_attrs[] = {
7068 &slab_size_attr.attr,
7069 &object_size_attr.attr,
7070 &objs_per_slab_attr.attr,
7071 &order_attr.attr,
7072 &min_partial_attr.attr,
7073 &cpu_partial_attr.attr,
7074 &objects_partial_attr.attr,
7075 &partial_attr.attr,
7076 &cpu_slabs_attr.attr,
7077 &ctor_attr.attr,
7078 &aliases_attr.attr,
7079 &align_attr.attr,
7080 &hwcache_align_attr.attr,
7081 &reclaim_account_attr.attr,
7082 &destroy_by_rcu_attr.attr,
7083 &shrink_attr.attr,
7084 &slabs_cpu_partial_attr.attr,
7085 #ifdef CONFIG_SLUB_DEBUG
7086 &total_objects_attr.attr,
7087 &objects_attr.attr,
7088 &slabs_attr.attr,
7089 &sanity_checks_attr.attr,
7090 &trace_attr.attr,
7091 &red_zone_attr.attr,
7092 &poison_attr.attr,
7093 &store_user_attr.attr,
7094 &validate_attr.attr,
7095 #endif
7096 #ifdef CONFIG_ZONE_DMA
7097 &cache_dma_attr.attr,
7098 #endif
7099 #ifdef CONFIG_NUMA
7100 &remote_node_defrag_ratio_attr.attr,
7101 #endif
7102 #ifdef CONFIG_SLUB_STATS
7103 &alloc_fastpath_attr.attr,
7104 &alloc_slowpath_attr.attr,
7105 &free_fastpath_attr.attr,
7106 &free_slowpath_attr.attr,
7107 &free_frozen_attr.attr,
7108 &free_add_partial_attr.attr,
7109 &free_remove_partial_attr.attr,
7110 &alloc_from_partial_attr.attr,
7111 &alloc_slab_attr.attr,
7112 &alloc_refill_attr.attr,
7113 &alloc_node_mismatch_attr.attr,
7114 &free_slab_attr.attr,
7115 &cpuslab_flush_attr.attr,
7116 &deactivate_full_attr.attr,
7117 &deactivate_empty_attr.attr,
7118 &deactivate_to_head_attr.attr,
7119 &deactivate_to_tail_attr.attr,
7120 &deactivate_remote_frees_attr.attr,
7121 &deactivate_bypass_attr.attr,
7122 &order_fallback_attr.attr,
7123 &cmpxchg_double_fail_attr.attr,
7124 &cmpxchg_double_cpu_fail_attr.attr,
7125 &cpu_partial_alloc_attr.attr,
7126 &cpu_partial_free_attr.attr,
7127 &cpu_partial_node_attr.attr,
7128 &cpu_partial_drain_attr.attr,
7129 #endif
7130 #ifdef CONFIG_FAILSLAB
7131 &failslab_attr.attr,
7132 #endif
7133 #ifdef CONFIG_HARDENED_USERCOPY
7134 &usersize_attr.attr,
7135 #endif
7136 #ifdef CONFIG_KFENCE
7137 &skip_kfence_attr.attr,
7138 #endif
7140 NULL
7143 static const struct attribute_group slab_attr_group = {
7144 .attrs = slab_attrs,
7147 static ssize_t slab_attr_show(struct kobject *kobj,
7148 struct attribute *attr,
7149 char *buf)
7151 struct slab_attribute *attribute;
7152 struct kmem_cache *s;
7154 attribute = to_slab_attr(attr);
7155 s = to_slab(kobj);
7157 if (!attribute->show)
7158 return -EIO;
7160 return attribute->show(s, buf);
7163 static ssize_t slab_attr_store(struct kobject *kobj,
7164 struct attribute *attr,
7165 const char *buf, size_t len)
7167 struct slab_attribute *attribute;
7168 struct kmem_cache *s;
7170 attribute = to_slab_attr(attr);
7171 s = to_slab(kobj);
7173 if (!attribute->store)
7174 return -EIO;
7176 return attribute->store(s, buf, len);
7179 static void kmem_cache_release(struct kobject *k)
7181 slab_kmem_cache_release(to_slab(k));
7184 static const struct sysfs_ops slab_sysfs_ops = {
7185 .show = slab_attr_show,
7186 .store = slab_attr_store,
7189 static const struct kobj_type slab_ktype = {
7190 .sysfs_ops = &slab_sysfs_ops,
7191 .release = kmem_cache_release,
7194 static struct kset *slab_kset;
7196 static inline struct kset *cache_kset(struct kmem_cache *s)
7198 return slab_kset;
7201 #define ID_STR_LENGTH 32
7203 /* Create a unique string id for a slab cache:
7205 * Format :[flags-]size
7207 static char *create_unique_id(struct kmem_cache *s)
7209 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
7210 char *p = name;
7212 if (!name)
7213 return ERR_PTR(-ENOMEM);
7215 *p++ = ':';
7217 * First flags affecting slabcache operations. We will only
7218 * get here for aliasable slabs so we do not need to support
7219 * too many flags. The flags here must cover all flags that
7220 * are matched during merging to guarantee that the id is
7221 * unique.
7223 if (s->flags & SLAB_CACHE_DMA)
7224 *p++ = 'd';
7225 if (s->flags & SLAB_CACHE_DMA32)
7226 *p++ = 'D';
7227 if (s->flags & SLAB_RECLAIM_ACCOUNT)
7228 *p++ = 'a';
7229 if (s->flags & SLAB_CONSISTENCY_CHECKS)
7230 *p++ = 'F';
7231 if (s->flags & SLAB_ACCOUNT)
7232 *p++ = 'A';
7233 if (p != name + 1)
7234 *p++ = '-';
7235 p += snprintf(p, ID_STR_LENGTH - (p - name), "%07u", s->size);
7237 if (WARN_ON(p > name + ID_STR_LENGTH - 1)) {
7238 kfree(name);
7239 return ERR_PTR(-EINVAL);
7241 kmsan_unpoison_memory(name, p - name);
7242 return name;
7245 static int sysfs_slab_add(struct kmem_cache *s)
7247 int err;
7248 const char *name;
7249 struct kset *kset = cache_kset(s);
7250 int unmergeable = slab_unmergeable(s);
7252 if (!unmergeable && disable_higher_order_debug &&
7253 (slub_debug & DEBUG_METADATA_FLAGS))
7254 unmergeable = 1;
7256 if (unmergeable) {
7258 * Slabcache can never be merged so we can use the name proper.
7259 * This is typically the case for debug situations. In that
7260 * case we can catch duplicate names easily.
7262 sysfs_remove_link(&slab_kset->kobj, s->name);
7263 name = s->name;
7264 } else {
7266 * Create a unique name for the slab as a target
7267 * for the symlinks.
7269 name = create_unique_id(s);
7270 if (IS_ERR(name))
7271 return PTR_ERR(name);
7274 s->kobj.kset = kset;
7275 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
7276 if (err)
7277 goto out;
7279 err = sysfs_create_group(&s->kobj, &slab_attr_group);
7280 if (err)
7281 goto out_del_kobj;
7283 if (!unmergeable) {
7284 /* Setup first alias */
7285 sysfs_slab_alias(s, s->name);
7287 out:
7288 if (!unmergeable)
7289 kfree(name);
7290 return err;
7291 out_del_kobj:
7292 kobject_del(&s->kobj);
7293 goto out;
7296 void sysfs_slab_unlink(struct kmem_cache *s)
7298 if (s->kobj.state_in_sysfs)
7299 kobject_del(&s->kobj);
7302 void sysfs_slab_release(struct kmem_cache *s)
7304 kobject_put(&s->kobj);
7308 * Need to buffer aliases during bootup until sysfs becomes
7309 * available lest we lose that information.
7311 struct saved_alias {
7312 struct kmem_cache *s;
7313 const char *name;
7314 struct saved_alias *next;
7317 static struct saved_alias *alias_list;
7319 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
7321 struct saved_alias *al;
7323 if (slab_state == FULL) {
7325 * If we have a leftover link then remove it.
7327 sysfs_remove_link(&slab_kset->kobj, name);
7329 * The original cache may have failed to generate sysfs file.
7330 * In that case, sysfs_create_link() returns -ENOENT and
7331 * symbolic link creation is skipped.
7333 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
7336 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
7337 if (!al)
7338 return -ENOMEM;
7340 al->s = s;
7341 al->name = name;
7342 al->next = alias_list;
7343 alias_list = al;
7344 kmsan_unpoison_memory(al, sizeof(*al));
7345 return 0;
7348 static int __init slab_sysfs_init(void)
7350 struct kmem_cache *s;
7351 int err;
7353 mutex_lock(&slab_mutex);
7355 slab_kset = kset_create_and_add("slab", NULL, kernel_kobj);
7356 if (!slab_kset) {
7357 mutex_unlock(&slab_mutex);
7358 pr_err("Cannot register slab subsystem.\n");
7359 return -ENOMEM;
7362 slab_state = FULL;
7364 list_for_each_entry(s, &slab_caches, list) {
7365 err = sysfs_slab_add(s);
7366 if (err)
7367 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
7368 s->name);
7371 while (alias_list) {
7372 struct saved_alias *al = alias_list;
7374 alias_list = alias_list->next;
7375 err = sysfs_slab_alias(al->s, al->name);
7376 if (err)
7377 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
7378 al->name);
7379 kfree(al);
7382 mutex_unlock(&slab_mutex);
7383 return 0;
7385 late_initcall(slab_sysfs_init);
7386 #endif /* SLAB_SUPPORTS_SYSFS */
7388 #if defined(CONFIG_SLUB_DEBUG) && defined(CONFIG_DEBUG_FS)
7389 static int slab_debugfs_show(struct seq_file *seq, void *v)
7391 struct loc_track *t = seq->private;
7392 struct location *l;
7393 unsigned long idx;
7395 idx = (unsigned long) t->idx;
7396 if (idx < t->count) {
7397 l = &t->loc[idx];
7399 seq_printf(seq, "%7ld ", l->count);
7401 if (l->addr)
7402 seq_printf(seq, "%pS", (void *)l->addr);
7403 else
7404 seq_puts(seq, "<not-available>");
7406 if (l->waste)
7407 seq_printf(seq, " waste=%lu/%lu",
7408 l->count * l->waste, l->waste);
7410 if (l->sum_time != l->min_time) {
7411 seq_printf(seq, " age=%ld/%llu/%ld",
7412 l->min_time, div_u64(l->sum_time, l->count),
7413 l->max_time);
7414 } else
7415 seq_printf(seq, " age=%ld", l->min_time);
7417 if (l->min_pid != l->max_pid)
7418 seq_printf(seq, " pid=%ld-%ld", l->min_pid, l->max_pid);
7419 else
7420 seq_printf(seq, " pid=%ld",
7421 l->min_pid);
7423 if (num_online_cpus() > 1 && !cpumask_empty(to_cpumask(l->cpus)))
7424 seq_printf(seq, " cpus=%*pbl",
7425 cpumask_pr_args(to_cpumask(l->cpus)));
7427 if (nr_online_nodes > 1 && !nodes_empty(l->nodes))
7428 seq_printf(seq, " nodes=%*pbl",
7429 nodemask_pr_args(&l->nodes));
7431 #ifdef CONFIG_STACKDEPOT
7433 depot_stack_handle_t handle;
7434 unsigned long *entries;
7435 unsigned int nr_entries, j;
7437 handle = READ_ONCE(l->handle);
7438 if (handle) {
7439 nr_entries = stack_depot_fetch(handle, &entries);
7440 seq_puts(seq, "\n");
7441 for (j = 0; j < nr_entries; j++)
7442 seq_printf(seq, " %pS\n", (void *)entries[j]);
7445 #endif
7446 seq_puts(seq, "\n");
7449 if (!idx && !t->count)
7450 seq_puts(seq, "No data\n");
7452 return 0;
7455 static void slab_debugfs_stop(struct seq_file *seq, void *v)
7459 static void *slab_debugfs_next(struct seq_file *seq, void *v, loff_t *ppos)
7461 struct loc_track *t = seq->private;
7463 t->idx = ++(*ppos);
7464 if (*ppos <= t->count)
7465 return ppos;
7467 return NULL;
7470 static int cmp_loc_by_count(const void *a, const void *b, const void *data)
7472 struct location *loc1 = (struct location *)a;
7473 struct location *loc2 = (struct location *)b;
7475 if (loc1->count > loc2->count)
7476 return -1;
7477 else
7478 return 1;
7481 static void *slab_debugfs_start(struct seq_file *seq, loff_t *ppos)
7483 struct loc_track *t = seq->private;
7485 t->idx = *ppos;
7486 return ppos;
7489 static const struct seq_operations slab_debugfs_sops = {
7490 .start = slab_debugfs_start,
7491 .next = slab_debugfs_next,
7492 .stop = slab_debugfs_stop,
7493 .show = slab_debugfs_show,
7496 static int slab_debug_trace_open(struct inode *inode, struct file *filep)
7499 struct kmem_cache_node *n;
7500 enum track_item alloc;
7501 int node;
7502 struct loc_track *t = __seq_open_private(filep, &slab_debugfs_sops,
7503 sizeof(struct loc_track));
7504 struct kmem_cache *s = file_inode(filep)->i_private;
7505 unsigned long *obj_map;
7507 if (!t)
7508 return -ENOMEM;
7510 obj_map = bitmap_alloc(oo_objects(s->oo), GFP_KERNEL);
7511 if (!obj_map) {
7512 seq_release_private(inode, filep);
7513 return -ENOMEM;
7516 if (strcmp(filep->f_path.dentry->d_name.name, "alloc_traces") == 0)
7517 alloc = TRACK_ALLOC;
7518 else
7519 alloc = TRACK_FREE;
7521 if (!alloc_loc_track(t, PAGE_SIZE / sizeof(struct location), GFP_KERNEL)) {
7522 bitmap_free(obj_map);
7523 seq_release_private(inode, filep);
7524 return -ENOMEM;
7527 for_each_kmem_cache_node(s, node, n) {
7528 unsigned long flags;
7529 struct slab *slab;
7531 if (!node_nr_slabs(n))
7532 continue;
7534 spin_lock_irqsave(&n->list_lock, flags);
7535 list_for_each_entry(slab, &n->partial, slab_list)
7536 process_slab(t, s, slab, alloc, obj_map);
7537 list_for_each_entry(slab, &n->full, slab_list)
7538 process_slab(t, s, slab, alloc, obj_map);
7539 spin_unlock_irqrestore(&n->list_lock, flags);
7542 /* Sort locations by count */
7543 sort_r(t->loc, t->count, sizeof(struct location),
7544 cmp_loc_by_count, NULL, NULL);
7546 bitmap_free(obj_map);
7547 return 0;
7550 static int slab_debug_trace_release(struct inode *inode, struct file *file)
7552 struct seq_file *seq = file->private_data;
7553 struct loc_track *t = seq->private;
7555 free_loc_track(t);
7556 return seq_release_private(inode, file);
7559 static const struct file_operations slab_debugfs_fops = {
7560 .open = slab_debug_trace_open,
7561 .read = seq_read,
7562 .llseek = seq_lseek,
7563 .release = slab_debug_trace_release,
7566 static void debugfs_slab_add(struct kmem_cache *s)
7568 struct dentry *slab_cache_dir;
7570 if (unlikely(!slab_debugfs_root))
7571 return;
7573 slab_cache_dir = debugfs_create_dir(s->name, slab_debugfs_root);
7575 debugfs_create_file("alloc_traces", 0400,
7576 slab_cache_dir, s, &slab_debugfs_fops);
7578 debugfs_create_file("free_traces", 0400,
7579 slab_cache_dir, s, &slab_debugfs_fops);
7582 void debugfs_slab_release(struct kmem_cache *s)
7584 debugfs_lookup_and_remove(s->name, slab_debugfs_root);
7587 static int __init slab_debugfs_init(void)
7589 struct kmem_cache *s;
7591 slab_debugfs_root = debugfs_create_dir("slab", NULL);
7593 list_for_each_entry(s, &slab_caches, list)
7594 if (s->flags & SLAB_STORE_USER)
7595 debugfs_slab_add(s);
7597 return 0;
7600 __initcall(slab_debugfs_init);
7601 #endif
7603 * The /proc/slabinfo ABI
7605 #ifdef CONFIG_SLUB_DEBUG
7606 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
7608 unsigned long nr_slabs = 0;
7609 unsigned long nr_objs = 0;
7610 unsigned long nr_free = 0;
7611 int node;
7612 struct kmem_cache_node *n;
7614 for_each_kmem_cache_node(s, node, n) {
7615 nr_slabs += node_nr_slabs(n);
7616 nr_objs += node_nr_objs(n);
7617 nr_free += count_partial_free_approx(n);
7620 sinfo->active_objs = nr_objs - nr_free;
7621 sinfo->num_objs = nr_objs;
7622 sinfo->active_slabs = nr_slabs;
7623 sinfo->num_slabs = nr_slabs;
7624 sinfo->objects_per_slab = oo_objects(s->oo);
7625 sinfo->cache_order = oo_order(s->oo);
7627 #endif /* CONFIG_SLUB_DEBUG */