1 // SPDX-License-Identifier: GPL-2.0
3 * Manage cache of swap slots to be used for and returned from
6 * Copyright(c) 2016 Intel Corporation.
8 * Author: Tim Chen <tim.c.chen@linux.intel.com>
10 * We allocate the swap slots from the global pool and put
11 * it into local per cpu caches. This has the advantage
12 * of no needing to acquire the swap_info lock every time
15 * There is also opportunity to simply return the slot
16 * to local caches without needing to acquire swap_info
17 * lock. We do not reuse the returned slots directly but
18 * move them back to the global pool in a batch. This
19 * allows the slots to coalesce and reduce fragmentation.
21 * The swap entry allocated is marked with SWAP_HAS_CACHE
22 * flag in map_count that prevents it from being allocated
23 * again from the global pool.
25 * The swap slots cache is protected by a mutex instead of
26 * a spin lock as when we search for slots with scan_swap_map,
27 * we can possibly sleep.
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/slab.h>
34 #include <linux/vmalloc.h>
35 #include <linux/mutex.h>
38 static DEFINE_PER_CPU(struct swap_slots_cache
, swp_slots
);
39 static bool swap_slot_cache_active
;
40 bool swap_slot_cache_enabled
;
41 static bool swap_slot_cache_initialized
;
42 static DEFINE_MUTEX(swap_slots_cache_mutex
);
43 /* Serialize swap slots cache enable/disable operations */
44 static DEFINE_MUTEX(swap_slots_cache_enable_mutex
);
46 static void __drain_swap_slots_cache(unsigned int type
);
48 #define use_swap_slot_cache (swap_slot_cache_active && swap_slot_cache_enabled)
49 #define SLOTS_CACHE 0x1
50 #define SLOTS_CACHE_RET 0x2
52 static void deactivate_swap_slots_cache(void)
54 mutex_lock(&swap_slots_cache_mutex
);
55 swap_slot_cache_active
= false;
56 __drain_swap_slots_cache(SLOTS_CACHE
|SLOTS_CACHE_RET
);
57 mutex_unlock(&swap_slots_cache_mutex
);
60 static void reactivate_swap_slots_cache(void)
62 mutex_lock(&swap_slots_cache_mutex
);
63 swap_slot_cache_active
= true;
64 mutex_unlock(&swap_slots_cache_mutex
);
67 /* Must not be called with cpu hot plug lock */
68 void disable_swap_slots_cache_lock(void)
70 mutex_lock(&swap_slots_cache_enable_mutex
);
71 swap_slot_cache_enabled
= false;
72 if (swap_slot_cache_initialized
) {
73 /* serialize with cpu hotplug operations */
75 __drain_swap_slots_cache(SLOTS_CACHE
|SLOTS_CACHE_RET
);
80 static void __reenable_swap_slots_cache(void)
82 swap_slot_cache_enabled
= has_usable_swap();
85 void reenable_swap_slots_cache_unlock(void)
87 __reenable_swap_slots_cache();
88 mutex_unlock(&swap_slots_cache_enable_mutex
);
91 static bool check_cache_active(void)
95 if (!swap_slot_cache_enabled
)
98 pages
= get_nr_swap_pages();
99 if (!swap_slot_cache_active
) {
100 if (pages
> num_online_cpus() *
101 THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE
)
102 reactivate_swap_slots_cache();
106 /* if global pool of slot caches too low, deactivate cache */
107 if (pages
< num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE
)
108 deactivate_swap_slots_cache();
110 return swap_slot_cache_active
;
113 static int alloc_swap_slot_cache(unsigned int cpu
)
115 struct swap_slots_cache
*cache
;
116 swp_entry_t
*slots
, *slots_ret
;
119 * Do allocation outside swap_slots_cache_mutex
120 * as kvzalloc could trigger reclaim and folio_alloc_swap,
121 * which can lock swap_slots_cache_mutex.
123 slots
= kvcalloc(SWAP_SLOTS_CACHE_SIZE
, sizeof(swp_entry_t
),
128 slots_ret
= kvcalloc(SWAP_SLOTS_CACHE_SIZE
, sizeof(swp_entry_t
),
135 mutex_lock(&swap_slots_cache_mutex
);
136 cache
= &per_cpu(swp_slots
, cpu
);
137 if (cache
->slots
|| cache
->slots_ret
) {
138 /* cache already allocated */
139 mutex_unlock(&swap_slots_cache_mutex
);
147 if (!cache
->lock_initialized
) {
148 mutex_init(&cache
->alloc_lock
);
149 spin_lock_init(&cache
->free_lock
);
150 cache
->lock_initialized
= true;
156 * We initialized alloc_lock and free_lock earlier. We use
157 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
158 * the corresponding lock and use the cache. Memory barrier below
159 * ensures the assumption.
162 cache
->slots
= slots
;
163 cache
->slots_ret
= slots_ret
;
164 mutex_unlock(&swap_slots_cache_mutex
);
168 static void drain_slots_cache_cpu(unsigned int cpu
, unsigned int type
,
171 struct swap_slots_cache
*cache
;
172 swp_entry_t
*slots
= NULL
;
174 cache
= &per_cpu(swp_slots
, cpu
);
175 if ((type
& SLOTS_CACHE
) && cache
->slots
) {
176 mutex_lock(&cache
->alloc_lock
);
177 swapcache_free_entries(cache
->slots
+ cache
->cur
, cache
->nr
);
180 if (free_slots
&& cache
->slots
) {
181 kvfree(cache
->slots
);
184 mutex_unlock(&cache
->alloc_lock
);
186 if ((type
& SLOTS_CACHE_RET
) && cache
->slots_ret
) {
187 spin_lock_irq(&cache
->free_lock
);
188 swapcache_free_entries(cache
->slots_ret
, cache
->n_ret
);
190 if (free_slots
&& cache
->slots_ret
) {
191 slots
= cache
->slots_ret
;
192 cache
->slots_ret
= NULL
;
194 spin_unlock_irq(&cache
->free_lock
);
199 static void __drain_swap_slots_cache(unsigned int type
)
204 * This function is called during
205 * 1) swapoff, when we have to make sure no
206 * left over slots are in cache when we remove
208 * 2) disabling of swap slot cache, when we run low
209 * on swap slots when allocating memory and need
210 * to return swap slots to global pool.
212 * We cannot acquire cpu hot plug lock here as
213 * this function can be invoked in the cpu
215 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
216 * -> memory allocation -> direct reclaim -> folio_alloc_swap
217 * -> drain_swap_slots_cache
219 * Hence the loop over current online cpu below could miss cpu that
220 * is being brought online but not yet marked as online.
221 * That is okay as we do not schedule and run anything on a
222 * cpu before it has been marked online. Hence, we will not
223 * fill any swap slots in slots cache of such cpu.
224 * There are no slots on such cpu that need to be drained.
226 for_each_online_cpu(cpu
)
227 drain_slots_cache_cpu(cpu
, type
, false);
230 static int free_slot_cache(unsigned int cpu
)
232 mutex_lock(&swap_slots_cache_mutex
);
233 drain_slots_cache_cpu(cpu
, SLOTS_CACHE
| SLOTS_CACHE_RET
, true);
234 mutex_unlock(&swap_slots_cache_mutex
);
238 void enable_swap_slots_cache(void)
240 mutex_lock(&swap_slots_cache_enable_mutex
);
241 if (!swap_slot_cache_initialized
) {
244 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "swap_slots_cache",
245 alloc_swap_slot_cache
, free_slot_cache
);
246 if (WARN_ONCE(ret
< 0, "Cache allocation failed (%s), operating "
247 "without swap slots cache.\n", __func__
))
250 swap_slot_cache_initialized
= true;
253 __reenable_swap_slots_cache();
255 mutex_unlock(&swap_slots_cache_enable_mutex
);
258 /* called with swap slot cache's alloc lock held */
259 static int refill_swap_slots_cache(struct swap_slots_cache
*cache
)
261 if (!use_swap_slot_cache
)
265 if (swap_slot_cache_active
)
266 cache
->nr
= get_swap_pages(SWAP_SLOTS_CACHE_SIZE
,
272 void free_swap_slot(swp_entry_t entry
)
274 struct swap_slots_cache
*cache
;
276 /* Large folio swap slot is not covered. */
277 zswap_invalidate(entry
);
279 cache
= raw_cpu_ptr(&swp_slots
);
280 if (likely(use_swap_slot_cache
&& cache
->slots_ret
)) {
281 spin_lock_irq(&cache
->free_lock
);
282 /* Swap slots cache may be deactivated before acquiring lock */
283 if (!use_swap_slot_cache
|| !cache
->slots_ret
) {
284 spin_unlock_irq(&cache
->free_lock
);
287 if (cache
->n_ret
>= SWAP_SLOTS_CACHE_SIZE
) {
289 * Return slots to global pool.
290 * The current swap_map value is SWAP_HAS_CACHE.
291 * Set it to 0 to indicate it is available for
292 * allocation in global pool
294 swapcache_free_entries(cache
->slots_ret
, cache
->n_ret
);
297 cache
->slots_ret
[cache
->n_ret
++] = entry
;
298 spin_unlock_irq(&cache
->free_lock
);
301 swapcache_free_entries(&entry
, 1);
305 swp_entry_t
folio_alloc_swap(struct folio
*folio
)
308 struct swap_slots_cache
*cache
;
312 if (folio_test_large(folio
)) {
313 if (IS_ENABLED(CONFIG_THP_SWAP
))
314 get_swap_pages(1, &entry
, folio_order(folio
));
319 * Preemption is allowed here, because we may sleep
320 * in refill_swap_slots_cache(). But it is safe, because
321 * accesses to the per-CPU data structure are protected by the
322 * mutex cache->alloc_lock.
324 * The alloc path here does not touch cache->slots_ret
325 * so cache->free_lock is not taken.
327 cache
= raw_cpu_ptr(&swp_slots
);
329 if (likely(check_cache_active() && cache
->slots
)) {
330 mutex_lock(&cache
->alloc_lock
);
334 entry
= cache
->slots
[cache
->cur
];
335 cache
->slots
[cache
->cur
++].val
= 0;
337 } else if (refill_swap_slots_cache(cache
)) {
341 mutex_unlock(&cache
->alloc_lock
);
346 get_swap_pages(1, &entry
, 0);
348 if (mem_cgroup_try_charge_swap(folio
, entry
)) {
349 put_swap_folio(folio
, entry
);