Merge tag 'hwmon-for-v6.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / mm / vmscan.c
blob9a859b7d18d79aadb573c2104474aea555828166
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/mm.h>
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
68 #include "internal.h"
69 #include "swap.h"
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
74 struct scan_control {
75 /* How many pages shrink_list() should reclaim */
76 unsigned long nr_to_reclaim;
79 * Nodemask of nodes allowed by the caller. If NULL, all nodes
80 * are scanned.
82 nodemask_t *nodemask;
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
88 struct mem_cgroup *target_mem_cgroup;
91 * Scan pressure balancing between anon and file LRUs
93 unsigned long anon_cost;
94 unsigned long file_cost;
96 #ifdef CONFIG_MEMCG
97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 int *proactive_swappiness;
99 #endif
101 /* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 unsigned int may_deactivate:2;
105 unsigned int force_deactivate:1;
106 unsigned int skipped_deactivate:1;
108 /* Writepage batching in laptop mode; RECLAIM_WRITE */
109 unsigned int may_writepage:1;
111 /* Can mapped folios be reclaimed? */
112 unsigned int may_unmap:1;
114 /* Can folios be swapped as part of reclaim? */
115 unsigned int may_swap:1;
117 /* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 unsigned int no_cache_trim_mode:1;
120 /* Has cache_trim_mode failed at least once? */
121 unsigned int cache_trim_mode_failed:1;
123 /* Proactive reclaim invoked by userspace through memory.reclaim */
124 unsigned int proactive:1;
127 * Cgroup memory below memory.low is protected as long as we
128 * don't threaten to OOM. If any cgroup is reclaimed at
129 * reduced force or passed over entirely due to its memory.low
130 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 * result, then go back for one more cycle that reclaims the protected
132 * memory (memcg_low_reclaim) to avert OOM.
134 unsigned int memcg_low_reclaim:1;
135 unsigned int memcg_low_skipped:1;
137 /* Shared cgroup tree walk failed, rescan the whole tree */
138 unsigned int memcg_full_walk:1;
140 unsigned int hibernation_mode:1;
142 /* One of the zones is ready for compaction */
143 unsigned int compaction_ready:1;
145 /* There is easily reclaimable cold cache in the current node */
146 unsigned int cache_trim_mode:1;
148 /* The file folios on the current node are dangerously low */
149 unsigned int file_is_tiny:1;
151 /* Always discard instead of demoting to lower tier memory */
152 unsigned int no_demotion:1;
154 /* Allocation order */
155 s8 order;
157 /* Scan (total_size >> priority) pages at once */
158 s8 priority;
160 /* The highest zone to isolate folios for reclaim from */
161 s8 reclaim_idx;
163 /* This context's GFP mask */
164 gfp_t gfp_mask;
166 /* Incremented by the number of inactive pages that were scanned */
167 unsigned long nr_scanned;
169 /* Number of pages freed so far during a call to shrink_zones() */
170 unsigned long nr_reclaimed;
172 struct {
173 unsigned int dirty;
174 unsigned int unqueued_dirty;
175 unsigned int congested;
176 unsigned int writeback;
177 unsigned int immediate;
178 unsigned int file_taken;
179 unsigned int taken;
180 } nr;
182 /* for recording the reclaimed slab by now */
183 struct reclaim_state reclaim_state;
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
188 do { \
189 if ((_folio)->lru.prev != _base) { \
190 struct folio *prev; \
192 prev = lru_to_folio(&(_folio->lru)); \
193 prefetchw(&prev->_field); \
195 } while (0)
196 #else
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
198 #endif
201 * From 0 .. MAX_SWAPPINESS. Higher means more swappy.
203 int vm_swappiness = 60;
205 #ifdef CONFIG_MEMCG
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
208 static bool cgroup_reclaim(struct scan_control *sc)
210 return sc->target_mem_cgroup;
214 * Returns true for reclaim on the root cgroup. This is true for direct
215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
217 static bool root_reclaim(struct scan_control *sc)
219 return !sc->target_mem_cgroup || mem_cgroup_is_root(sc->target_mem_cgroup);
223 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224 * @sc: scan_control in question
226 * The normal page dirty throttling mechanism in balance_dirty_pages() is
227 * completely broken with the legacy memcg and direct stalling in
228 * shrink_folio_list() is used for throttling instead, which lacks all the
229 * niceties such as fairness, adaptive pausing, bandwidth proportional
230 * allocation and configurability.
232 * This function tests whether the vmscan currently in progress can assume
233 * that the normal dirty throttling mechanism is operational.
235 static bool writeback_throttling_sane(struct scan_control *sc)
237 if (!cgroup_reclaim(sc))
238 return true;
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
241 return true;
242 #endif
243 return false;
246 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
248 if (sc->proactive && sc->proactive_swappiness)
249 return *sc->proactive_swappiness;
250 return mem_cgroup_swappiness(memcg);
252 #else
253 static bool cgroup_reclaim(struct scan_control *sc)
255 return false;
258 static bool root_reclaim(struct scan_control *sc)
260 return true;
263 static bool writeback_throttling_sane(struct scan_control *sc)
265 return true;
268 static int sc_swappiness(struct scan_control *sc, struct mem_cgroup *memcg)
270 return READ_ONCE(vm_swappiness);
272 #endif
274 static void set_task_reclaim_state(struct task_struct *task,
275 struct reclaim_state *rs)
277 /* Check for an overwrite */
278 WARN_ON_ONCE(rs && task->reclaim_state);
280 /* Check for the nulling of an already-nulled member */
281 WARN_ON_ONCE(!rs && !task->reclaim_state);
283 task->reclaim_state = rs;
287 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
288 * scan_control->nr_reclaimed.
290 static void flush_reclaim_state(struct scan_control *sc)
293 * Currently, reclaim_state->reclaimed includes three types of pages
294 * freed outside of vmscan:
295 * (1) Slab pages.
296 * (2) Clean file pages from pruned inodes (on highmem systems).
297 * (3) XFS freed buffer pages.
299 * For all of these cases, we cannot universally link the pages to a
300 * single memcg. For example, a memcg-aware shrinker can free one object
301 * charged to the target memcg, causing an entire page to be freed.
302 * If we count the entire page as reclaimed from the memcg, we end up
303 * overestimating the reclaimed amount (potentially under-reclaiming).
305 * Only count such pages for global reclaim to prevent under-reclaiming
306 * from the target memcg; preventing unnecessary retries during memcg
307 * charging and false positives from proactive reclaim.
309 * For uncommon cases where the freed pages were actually mostly
310 * charged to the target memcg, we end up underestimating the reclaimed
311 * amount. This should be fine. The freed pages will be uncharged
312 * anyway, even if they are not counted here properly, and we will be
313 * able to make forward progress in charging (which is usually in a
314 * retry loop).
316 * We can go one step further, and report the uncharged objcg pages in
317 * memcg reclaim, to make reporting more accurate and reduce
318 * underestimation, but it's probably not worth the complexity for now.
320 if (current->reclaim_state && root_reclaim(sc)) {
321 sc->nr_reclaimed += current->reclaim_state->reclaimed;
322 current->reclaim_state->reclaimed = 0;
326 static bool can_demote(int nid, struct scan_control *sc)
328 if (!numa_demotion_enabled)
329 return false;
330 if (sc && sc->no_demotion)
331 return false;
332 if (next_demotion_node(nid) == NUMA_NO_NODE)
333 return false;
335 return true;
338 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
339 int nid,
340 struct scan_control *sc)
342 if (memcg == NULL) {
344 * For non-memcg reclaim, is there
345 * space in any swap device?
347 if (get_nr_swap_pages() > 0)
348 return true;
349 } else {
350 /* Is the memcg below its swap limit? */
351 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
352 return true;
356 * The page can not be swapped.
358 * Can it be reclaimed from this node via demotion?
360 return can_demote(nid, sc);
364 * This misses isolated folios which are not accounted for to save counters.
365 * As the data only determines if reclaim or compaction continues, it is
366 * not expected that isolated folios will be a dominating factor.
368 unsigned long zone_reclaimable_pages(struct zone *zone)
370 unsigned long nr;
372 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
373 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
374 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
375 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
376 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
378 * If there are no reclaimable file-backed or anonymous pages,
379 * ensure zones with sufficient free pages are not skipped.
380 * This prevents zones like DMA32 from being ignored in reclaim
381 * scenarios where they can still help alleviate memory pressure.
383 if (nr == 0)
384 nr = zone_page_state_snapshot(zone, NR_FREE_PAGES);
385 return nr;
389 * lruvec_lru_size - Returns the number of pages on the given LRU list.
390 * @lruvec: lru vector
391 * @lru: lru to use
392 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
394 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
395 int zone_idx)
397 unsigned long size = 0;
398 int zid;
400 for (zid = 0; zid <= zone_idx; zid++) {
401 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
403 if (!managed_zone(zone))
404 continue;
406 if (!mem_cgroup_disabled())
407 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
408 else
409 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
411 return size;
414 static unsigned long drop_slab_node(int nid)
416 unsigned long freed = 0;
417 struct mem_cgroup *memcg = NULL;
419 memcg = mem_cgroup_iter(NULL, NULL, NULL);
420 do {
421 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
422 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
424 return freed;
427 void drop_slab(void)
429 int nid;
430 int shift = 0;
431 unsigned long freed;
433 do {
434 freed = 0;
435 for_each_online_node(nid) {
436 if (fatal_signal_pending(current))
437 return;
439 freed += drop_slab_node(nid);
441 } while ((freed >> shift++) > 1);
444 static int reclaimer_offset(void)
446 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
447 PGDEMOTE_DIRECT - PGDEMOTE_KSWAPD);
448 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
449 PGDEMOTE_KHUGEPAGED - PGDEMOTE_KSWAPD);
450 BUILD_BUG_ON(PGSTEAL_DIRECT - PGSTEAL_KSWAPD !=
451 PGSCAN_DIRECT - PGSCAN_KSWAPD);
452 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD !=
453 PGSCAN_KHUGEPAGED - PGSCAN_KSWAPD);
455 if (current_is_kswapd())
456 return 0;
457 if (current_is_khugepaged())
458 return PGSTEAL_KHUGEPAGED - PGSTEAL_KSWAPD;
459 return PGSTEAL_DIRECT - PGSTEAL_KSWAPD;
462 static inline int is_page_cache_freeable(struct folio *folio)
465 * A freeable page cache folio is referenced only by the caller
466 * that isolated the folio, the page cache and optional filesystem
467 * private data at folio->private.
469 return folio_ref_count(folio) - folio_test_private(folio) ==
470 1 + folio_nr_pages(folio);
474 * We detected a synchronous write error writing a folio out. Probably
475 * -ENOSPC. We need to propagate that into the address_space for a subsequent
476 * fsync(), msync() or close().
478 * The tricky part is that after writepage we cannot touch the mapping: nothing
479 * prevents it from being freed up. But we have a ref on the folio and once
480 * that folio is locked, the mapping is pinned.
482 * We're allowed to run sleeping folio_lock() here because we know the caller has
483 * __GFP_FS.
485 static void handle_write_error(struct address_space *mapping,
486 struct folio *folio, int error)
488 folio_lock(folio);
489 if (folio_mapping(folio) == mapping)
490 mapping_set_error(mapping, error);
491 folio_unlock(folio);
494 static bool skip_throttle_noprogress(pg_data_t *pgdat)
496 int reclaimable = 0, write_pending = 0;
497 int i;
500 * If kswapd is disabled, reschedule if necessary but do not
501 * throttle as the system is likely near OOM.
503 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
504 return true;
507 * If there are a lot of dirty/writeback folios then do not
508 * throttle as throttling will occur when the folios cycle
509 * towards the end of the LRU if still under writeback.
511 for (i = 0; i < MAX_NR_ZONES; i++) {
512 struct zone *zone = pgdat->node_zones + i;
514 if (!managed_zone(zone))
515 continue;
517 reclaimable += zone_reclaimable_pages(zone);
518 write_pending += zone_page_state_snapshot(zone,
519 NR_ZONE_WRITE_PENDING);
521 if (2 * write_pending <= reclaimable)
522 return true;
524 return false;
527 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
529 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
530 long timeout, ret;
531 DEFINE_WAIT(wait);
534 * Do not throttle user workers, kthreads other than kswapd or
535 * workqueues. They may be required for reclaim to make
536 * forward progress (e.g. journalling workqueues or kthreads).
538 if (!current_is_kswapd() &&
539 current->flags & (PF_USER_WORKER|PF_KTHREAD)) {
540 cond_resched();
541 return;
545 * These figures are pulled out of thin air.
546 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
547 * parallel reclaimers which is a short-lived event so the timeout is
548 * short. Failing to make progress or waiting on writeback are
549 * potentially long-lived events so use a longer timeout. This is shaky
550 * logic as a failure to make progress could be due to anything from
551 * writeback to a slow device to excessive referenced folios at the tail
552 * of the inactive LRU.
554 switch(reason) {
555 case VMSCAN_THROTTLE_WRITEBACK:
556 timeout = HZ/10;
558 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
559 WRITE_ONCE(pgdat->nr_reclaim_start,
560 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
563 break;
564 case VMSCAN_THROTTLE_CONGESTED:
565 fallthrough;
566 case VMSCAN_THROTTLE_NOPROGRESS:
567 if (skip_throttle_noprogress(pgdat)) {
568 cond_resched();
569 return;
572 timeout = 1;
574 break;
575 case VMSCAN_THROTTLE_ISOLATED:
576 timeout = HZ/50;
577 break;
578 default:
579 WARN_ON_ONCE(1);
580 timeout = HZ;
581 break;
584 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
585 ret = schedule_timeout(timeout);
586 finish_wait(wqh, &wait);
588 if (reason == VMSCAN_THROTTLE_WRITEBACK)
589 atomic_dec(&pgdat->nr_writeback_throttled);
591 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
592 jiffies_to_usecs(timeout - ret),
593 reason);
597 * Account for folios written if tasks are throttled waiting on dirty
598 * folios to clean. If enough folios have been cleaned since throttling
599 * started then wakeup the throttled tasks.
601 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
602 int nr_throttled)
604 unsigned long nr_written;
606 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
609 * This is an inaccurate read as the per-cpu deltas may not
610 * be synchronised. However, given that the system is
611 * writeback throttled, it is not worth taking the penalty
612 * of getting an accurate count. At worst, the throttle
613 * timeout guarantees forward progress.
615 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
616 READ_ONCE(pgdat->nr_reclaim_start);
618 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
619 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
622 /* possible outcome of pageout() */
623 typedef enum {
624 /* failed to write folio out, folio is locked */
625 PAGE_KEEP,
626 /* move folio to the active list, folio is locked */
627 PAGE_ACTIVATE,
628 /* folio has been sent to the disk successfully, folio is unlocked */
629 PAGE_SUCCESS,
630 /* folio is clean and locked */
631 PAGE_CLEAN,
632 } pageout_t;
635 * pageout is called by shrink_folio_list() for each dirty folio.
636 * Calls ->writepage().
638 static pageout_t pageout(struct folio *folio, struct address_space *mapping,
639 struct swap_iocb **plug, struct list_head *folio_list)
642 * If the folio is dirty, only perform writeback if that write
643 * will be non-blocking. To prevent this allocation from being
644 * stalled by pagecache activity. But note that there may be
645 * stalls if we need to run get_block(). We could test
646 * PagePrivate for that.
648 * If this process is currently in __generic_file_write_iter() against
649 * this folio's queue, we can perform writeback even if that
650 * will block.
652 * If the folio is swapcache, write it back even if that would
653 * block, for some throttling. This happens by accident, because
654 * swap_backing_dev_info is bust: it doesn't reflect the
655 * congestion state of the swapdevs. Easy to fix, if needed.
657 if (!is_page_cache_freeable(folio))
658 return PAGE_KEEP;
659 if (!mapping) {
661 * Some data journaling orphaned folios can have
662 * folio->mapping == NULL while being dirty with clean buffers.
664 if (folio_test_private(folio)) {
665 if (try_to_free_buffers(folio)) {
666 folio_clear_dirty(folio);
667 pr_info("%s: orphaned folio\n", __func__);
668 return PAGE_CLEAN;
671 return PAGE_KEEP;
673 if (mapping->a_ops->writepage == NULL)
674 return PAGE_ACTIVATE;
676 if (folio_clear_dirty_for_io(folio)) {
677 int res;
678 struct writeback_control wbc = {
679 .sync_mode = WB_SYNC_NONE,
680 .nr_to_write = SWAP_CLUSTER_MAX,
681 .range_start = 0,
682 .range_end = LLONG_MAX,
683 .for_reclaim = 1,
684 .swap_plug = plug,
688 * The large shmem folio can be split if CONFIG_THP_SWAP is
689 * not enabled or contiguous swap entries are failed to
690 * allocate.
692 if (shmem_mapping(mapping) && folio_test_large(folio))
693 wbc.list = folio_list;
695 folio_set_reclaim(folio);
696 res = mapping->a_ops->writepage(&folio->page, &wbc);
697 if (res < 0)
698 handle_write_error(mapping, folio, res);
699 if (res == AOP_WRITEPAGE_ACTIVATE) {
700 folio_clear_reclaim(folio);
701 return PAGE_ACTIVATE;
704 if (!folio_test_writeback(folio)) {
705 /* synchronous write or broken a_ops? */
706 folio_clear_reclaim(folio);
708 trace_mm_vmscan_write_folio(folio);
709 node_stat_add_folio(folio, NR_VMSCAN_WRITE);
710 return PAGE_SUCCESS;
713 return PAGE_CLEAN;
717 * Same as remove_mapping, but if the folio is removed from the mapping, it
718 * gets returned with a refcount of 0.
720 static int __remove_mapping(struct address_space *mapping, struct folio *folio,
721 bool reclaimed, struct mem_cgroup *target_memcg)
723 int refcount;
724 void *shadow = NULL;
726 BUG_ON(!folio_test_locked(folio));
727 BUG_ON(mapping != folio_mapping(folio));
729 if (!folio_test_swapcache(folio))
730 spin_lock(&mapping->host->i_lock);
731 xa_lock_irq(&mapping->i_pages);
733 * The non racy check for a busy folio.
735 * Must be careful with the order of the tests. When someone has
736 * a ref to the folio, it may be possible that they dirty it then
737 * drop the reference. So if the dirty flag is tested before the
738 * refcount here, then the following race may occur:
740 * get_user_pages(&page);
741 * [user mapping goes away]
742 * write_to(page);
743 * !folio_test_dirty(folio) [good]
744 * folio_set_dirty(folio);
745 * folio_put(folio);
746 * !refcount(folio) [good, discard it]
748 * [oops, our write_to data is lost]
750 * Reversing the order of the tests ensures such a situation cannot
751 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
752 * load is not satisfied before that of folio->_refcount.
754 * Note that if the dirty flag is always set via folio_mark_dirty,
755 * and thus under the i_pages lock, then this ordering is not required.
757 refcount = 1 + folio_nr_pages(folio);
758 if (!folio_ref_freeze(folio, refcount))
759 goto cannot_free;
760 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
761 if (unlikely(folio_test_dirty(folio))) {
762 folio_ref_unfreeze(folio, refcount);
763 goto cannot_free;
766 if (folio_test_swapcache(folio)) {
767 swp_entry_t swap = folio->swap;
769 if (reclaimed && !mapping_exiting(mapping))
770 shadow = workingset_eviction(folio, target_memcg);
771 __delete_from_swap_cache(folio, swap, shadow);
772 mem_cgroup_swapout(folio, swap);
773 xa_unlock_irq(&mapping->i_pages);
774 put_swap_folio(folio, swap);
775 } else {
776 void (*free_folio)(struct folio *);
778 free_folio = mapping->a_ops->free_folio;
780 * Remember a shadow entry for reclaimed file cache in
781 * order to detect refaults, thus thrashing, later on.
783 * But don't store shadows in an address space that is
784 * already exiting. This is not just an optimization,
785 * inode reclaim needs to empty out the radix tree or
786 * the nodes are lost. Don't plant shadows behind its
787 * back.
789 * We also don't store shadows for DAX mappings because the
790 * only page cache folios found in these are zero pages
791 * covering holes, and because we don't want to mix DAX
792 * exceptional entries and shadow exceptional entries in the
793 * same address_space.
795 if (reclaimed && folio_is_file_lru(folio) &&
796 !mapping_exiting(mapping) && !dax_mapping(mapping))
797 shadow = workingset_eviction(folio, target_memcg);
798 __filemap_remove_folio(folio, shadow);
799 xa_unlock_irq(&mapping->i_pages);
800 if (mapping_shrinkable(mapping))
801 inode_add_lru(mapping->host);
802 spin_unlock(&mapping->host->i_lock);
804 if (free_folio)
805 free_folio(folio);
808 return 1;
810 cannot_free:
811 xa_unlock_irq(&mapping->i_pages);
812 if (!folio_test_swapcache(folio))
813 spin_unlock(&mapping->host->i_lock);
814 return 0;
818 * remove_mapping() - Attempt to remove a folio from its mapping.
819 * @mapping: The address space.
820 * @folio: The folio to remove.
822 * If the folio is dirty, under writeback or if someone else has a ref
823 * on it, removal will fail.
824 * Return: The number of pages removed from the mapping. 0 if the folio
825 * could not be removed.
826 * Context: The caller should have a single refcount on the folio and
827 * hold its lock.
829 long remove_mapping(struct address_space *mapping, struct folio *folio)
831 if (__remove_mapping(mapping, folio, false, NULL)) {
833 * Unfreezing the refcount with 1 effectively
834 * drops the pagecache ref for us without requiring another
835 * atomic operation.
837 folio_ref_unfreeze(folio, 1);
838 return folio_nr_pages(folio);
840 return 0;
844 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
845 * @folio: Folio to be returned to an LRU list.
847 * Add previously isolated @folio to appropriate LRU list.
848 * The folio may still be unevictable for other reasons.
850 * Context: lru_lock must not be held, interrupts must be enabled.
852 void folio_putback_lru(struct folio *folio)
854 folio_add_lru(folio);
855 folio_put(folio); /* drop ref from isolate */
858 enum folio_references {
859 FOLIOREF_RECLAIM,
860 FOLIOREF_RECLAIM_CLEAN,
861 FOLIOREF_KEEP,
862 FOLIOREF_ACTIVATE,
865 static enum folio_references folio_check_references(struct folio *folio,
866 struct scan_control *sc)
868 int referenced_ptes, referenced_folio;
869 unsigned long vm_flags;
871 referenced_ptes = folio_referenced(folio, 1, sc->target_mem_cgroup,
872 &vm_flags);
873 referenced_folio = folio_test_clear_referenced(folio);
876 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
877 * Let the folio, now marked Mlocked, be moved to the unevictable list.
879 if (vm_flags & VM_LOCKED)
880 return FOLIOREF_ACTIVATE;
883 * There are two cases to consider.
884 * 1) Rmap lock contention: rotate.
885 * 2) Skip the non-shared swapbacked folio mapped solely by
886 * the exiting or OOM-reaped process.
888 if (referenced_ptes == -1)
889 return FOLIOREF_KEEP;
891 if (referenced_ptes) {
893 * All mapped folios start out with page table
894 * references from the instantiating fault, so we need
895 * to look twice if a mapped file/anon folio is used more
896 * than once.
898 * Mark it and spare it for another trip around the
899 * inactive list. Another page table reference will
900 * lead to its activation.
902 * Note: the mark is set for activated folios as well
903 * so that recently deactivated but used folios are
904 * quickly recovered.
906 folio_set_referenced(folio);
908 if (referenced_folio || referenced_ptes > 1)
909 return FOLIOREF_ACTIVATE;
912 * Activate file-backed executable folios after first usage.
914 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio))
915 return FOLIOREF_ACTIVATE;
917 return FOLIOREF_KEEP;
920 /* Reclaim if clean, defer dirty folios to writeback */
921 if (referenced_folio && folio_is_file_lru(folio))
922 return FOLIOREF_RECLAIM_CLEAN;
924 return FOLIOREF_RECLAIM;
927 /* Check if a folio is dirty or under writeback */
928 static void folio_check_dirty_writeback(struct folio *folio,
929 bool *dirty, bool *writeback)
931 struct address_space *mapping;
934 * Anonymous folios are not handled by flushers and must be written
935 * from reclaim context. Do not stall reclaim based on them.
936 * MADV_FREE anonymous folios are put into inactive file list too.
937 * They could be mistakenly treated as file lru. So further anon
938 * test is needed.
940 if (!folio_is_file_lru(folio) ||
941 (folio_test_anon(folio) && !folio_test_swapbacked(folio))) {
942 *dirty = false;
943 *writeback = false;
944 return;
947 /* By default assume that the folio flags are accurate */
948 *dirty = folio_test_dirty(folio);
949 *writeback = folio_test_writeback(folio);
951 /* Verify dirty/writeback state if the filesystem supports it */
952 if (!folio_test_private(folio))
953 return;
955 mapping = folio_mapping(folio);
956 if (mapping && mapping->a_ops->is_dirty_writeback)
957 mapping->a_ops->is_dirty_writeback(folio, dirty, writeback);
960 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private)
962 struct folio *dst;
963 nodemask_t *allowed_mask;
964 struct migration_target_control *mtc;
966 mtc = (struct migration_target_control *)private;
968 allowed_mask = mtc->nmask;
970 * make sure we allocate from the target node first also trying to
971 * demote or reclaim pages from the target node via kswapd if we are
972 * low on free memory on target node. If we don't do this and if
973 * we have free memory on the slower(lower) memtier, we would start
974 * allocating pages from slower(lower) memory tiers without even forcing
975 * a demotion of cold pages from the target memtier. This can result
976 * in the kernel placing hot pages in slower(lower) memory tiers.
978 mtc->nmask = NULL;
979 mtc->gfp_mask |= __GFP_THISNODE;
980 dst = alloc_migration_target(src, (unsigned long)mtc);
981 if (dst)
982 return dst;
984 mtc->gfp_mask &= ~__GFP_THISNODE;
985 mtc->nmask = allowed_mask;
987 return alloc_migration_target(src, (unsigned long)mtc);
991 * Take folios on @demote_folios and attempt to demote them to another node.
992 * Folios which are not demoted are left on @demote_folios.
994 static unsigned int demote_folio_list(struct list_head *demote_folios,
995 struct pglist_data *pgdat)
997 int target_nid = next_demotion_node(pgdat->node_id);
998 unsigned int nr_succeeded;
999 nodemask_t allowed_mask;
1001 struct migration_target_control mtc = {
1003 * Allocate from 'node', or fail quickly and quietly.
1004 * When this happens, 'page' will likely just be discarded
1005 * instead of migrated.
1007 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) | __GFP_NOWARN |
1008 __GFP_NOMEMALLOC | GFP_NOWAIT,
1009 .nid = target_nid,
1010 .nmask = &allowed_mask,
1011 .reason = MR_DEMOTION,
1014 if (list_empty(demote_folios))
1015 return 0;
1017 if (target_nid == NUMA_NO_NODE)
1018 return 0;
1020 node_get_allowed_targets(pgdat, &allowed_mask);
1022 /* Demotion ignores all cpuset and mempolicy settings */
1023 migrate_pages(demote_folios, alloc_migrate_folio, NULL,
1024 (unsigned long)&mtc, MIGRATE_ASYNC, MR_DEMOTION,
1025 &nr_succeeded);
1027 return nr_succeeded;
1030 static bool may_enter_fs(struct folio *folio, gfp_t gfp_mask)
1032 if (gfp_mask & __GFP_FS)
1033 return true;
1034 if (!folio_test_swapcache(folio) || !(gfp_mask & __GFP_IO))
1035 return false;
1037 * We can "enter_fs" for swap-cache with only __GFP_IO
1038 * providing this isn't SWP_FS_OPS.
1039 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1040 * but that will never affect SWP_FS_OPS, so the data_race
1041 * is safe.
1043 return !data_race(folio_swap_flags(folio) & SWP_FS_OPS);
1047 * shrink_folio_list() returns the number of reclaimed pages
1049 static unsigned int shrink_folio_list(struct list_head *folio_list,
1050 struct pglist_data *pgdat, struct scan_control *sc,
1051 struct reclaim_stat *stat, bool ignore_references)
1053 struct folio_batch free_folios;
1054 LIST_HEAD(ret_folios);
1055 LIST_HEAD(demote_folios);
1056 unsigned int nr_reclaimed = 0;
1057 unsigned int pgactivate = 0;
1058 bool do_demote_pass;
1059 struct swap_iocb *plug = NULL;
1061 folio_batch_init(&free_folios);
1062 memset(stat, 0, sizeof(*stat));
1063 cond_resched();
1064 do_demote_pass = can_demote(pgdat->node_id, sc);
1066 retry:
1067 while (!list_empty(folio_list)) {
1068 struct address_space *mapping;
1069 struct folio *folio;
1070 enum folio_references references = FOLIOREF_RECLAIM;
1071 bool dirty, writeback;
1072 unsigned int nr_pages;
1074 cond_resched();
1076 folio = lru_to_folio(folio_list);
1077 list_del(&folio->lru);
1079 if (!folio_trylock(folio))
1080 goto keep;
1082 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1084 nr_pages = folio_nr_pages(folio);
1086 /* Account the number of base pages */
1087 sc->nr_scanned += nr_pages;
1089 if (unlikely(!folio_evictable(folio)))
1090 goto activate_locked;
1092 if (!sc->may_unmap && folio_mapped(folio))
1093 goto keep_locked;
1095 /* folio_update_gen() tried to promote this page? */
1096 if (lru_gen_enabled() && !ignore_references &&
1097 folio_mapped(folio) && folio_test_referenced(folio))
1098 goto keep_locked;
1101 * The number of dirty pages determines if a node is marked
1102 * reclaim_congested. kswapd will stall and start writing
1103 * folios if the tail of the LRU is all dirty unqueued folios.
1105 folio_check_dirty_writeback(folio, &dirty, &writeback);
1106 if (dirty || writeback)
1107 stat->nr_dirty += nr_pages;
1109 if (dirty && !writeback)
1110 stat->nr_unqueued_dirty += nr_pages;
1113 * Treat this folio as congested if folios are cycling
1114 * through the LRU so quickly that the folios marked
1115 * for immediate reclaim are making it to the end of
1116 * the LRU a second time.
1118 if (writeback && folio_test_reclaim(folio))
1119 stat->nr_congested += nr_pages;
1122 * If a folio at the tail of the LRU is under writeback, there
1123 * are three cases to consider.
1125 * 1) If reclaim is encountering an excessive number
1126 * of folios under writeback and this folio has both
1127 * the writeback and reclaim flags set, then it
1128 * indicates that folios are being queued for I/O but
1129 * are being recycled through the LRU before the I/O
1130 * can complete. Waiting on the folio itself risks an
1131 * indefinite stall if it is impossible to writeback
1132 * the folio due to I/O error or disconnected storage
1133 * so instead note that the LRU is being scanned too
1134 * quickly and the caller can stall after the folio
1135 * list has been processed.
1137 * 2) Global or new memcg reclaim encounters a folio that is
1138 * not marked for immediate reclaim, or the caller does not
1139 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1140 * not to fs). In this case mark the folio for immediate
1141 * reclaim and continue scanning.
1143 * Require may_enter_fs() because we would wait on fs, which
1144 * may not have submitted I/O yet. And the loop driver might
1145 * enter reclaim, and deadlock if it waits on a folio for
1146 * which it is needed to do the write (loop masks off
1147 * __GFP_IO|__GFP_FS for this reason); but more thought
1148 * would probably show more reasons.
1150 * 3) Legacy memcg encounters a folio that already has the
1151 * reclaim flag set. memcg does not have any dirty folio
1152 * throttling so we could easily OOM just because too many
1153 * folios are in writeback and there is nothing else to
1154 * reclaim. Wait for the writeback to complete.
1156 * In cases 1) and 2) we activate the folios to get them out of
1157 * the way while we continue scanning for clean folios on the
1158 * inactive list and refilling from the active list. The
1159 * observation here is that waiting for disk writes is more
1160 * expensive than potentially causing reloads down the line.
1161 * Since they're marked for immediate reclaim, they won't put
1162 * memory pressure on the cache working set any longer than it
1163 * takes to write them to disk.
1165 if (folio_test_writeback(folio)) {
1166 /* Case 1 above */
1167 if (current_is_kswapd() &&
1168 folio_test_reclaim(folio) &&
1169 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1170 stat->nr_immediate += nr_pages;
1171 goto activate_locked;
1173 /* Case 2 above */
1174 } else if (writeback_throttling_sane(sc) ||
1175 !folio_test_reclaim(folio) ||
1176 !may_enter_fs(folio, sc->gfp_mask)) {
1178 * This is slightly racy -
1179 * folio_end_writeback() might have
1180 * just cleared the reclaim flag, then
1181 * setting the reclaim flag here ends up
1182 * interpreted as the readahead flag - but
1183 * that does not matter enough to care.
1184 * What we do want is for this folio to
1185 * have the reclaim flag set next time
1186 * memcg reclaim reaches the tests above,
1187 * so it will then wait for writeback to
1188 * avoid OOM; and it's also appropriate
1189 * in global reclaim.
1191 folio_set_reclaim(folio);
1192 stat->nr_writeback += nr_pages;
1193 goto activate_locked;
1195 /* Case 3 above */
1196 } else {
1197 folio_unlock(folio);
1198 folio_wait_writeback(folio);
1199 /* then go back and try same folio again */
1200 list_add_tail(&folio->lru, folio_list);
1201 continue;
1205 if (!ignore_references)
1206 references = folio_check_references(folio, sc);
1208 switch (references) {
1209 case FOLIOREF_ACTIVATE:
1210 goto activate_locked;
1211 case FOLIOREF_KEEP:
1212 stat->nr_ref_keep += nr_pages;
1213 goto keep_locked;
1214 case FOLIOREF_RECLAIM:
1215 case FOLIOREF_RECLAIM_CLEAN:
1216 ; /* try to reclaim the folio below */
1220 * Before reclaiming the folio, try to relocate
1221 * its contents to another node.
1223 if (do_demote_pass &&
1224 (thp_migration_supported() || !folio_test_large(folio))) {
1225 list_add(&folio->lru, &demote_folios);
1226 folio_unlock(folio);
1227 continue;
1231 * Anonymous process memory has backing store?
1232 * Try to allocate it some swap space here.
1233 * Lazyfree folio could be freed directly
1235 if (folio_test_anon(folio) && folio_test_swapbacked(folio)) {
1236 if (!folio_test_swapcache(folio)) {
1237 if (!(sc->gfp_mask & __GFP_IO))
1238 goto keep_locked;
1239 if (folio_maybe_dma_pinned(folio))
1240 goto keep_locked;
1241 if (folio_test_large(folio)) {
1242 /* cannot split folio, skip it */
1243 if (!can_split_folio(folio, 1, NULL))
1244 goto activate_locked;
1246 * Split partially mapped folios right away.
1247 * We can free the unmapped pages without IO.
1249 if (data_race(!list_empty(&folio->_deferred_list) &&
1250 folio_test_partially_mapped(folio)) &&
1251 split_folio_to_list(folio, folio_list))
1252 goto activate_locked;
1254 if (!add_to_swap(folio)) {
1255 int __maybe_unused order = folio_order(folio);
1257 if (!folio_test_large(folio))
1258 goto activate_locked_split;
1259 /* Fallback to swap normal pages */
1260 if (split_folio_to_list(folio, folio_list))
1261 goto activate_locked;
1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 if (nr_pages >= HPAGE_PMD_NR) {
1264 count_memcg_folio_events(folio,
1265 THP_SWPOUT_FALLBACK, 1);
1266 count_vm_event(THP_SWPOUT_FALLBACK);
1268 #endif
1269 count_mthp_stat(order, MTHP_STAT_SWPOUT_FALLBACK);
1270 if (!add_to_swap(folio))
1271 goto activate_locked_split;
1277 * If the folio was split above, the tail pages will make
1278 * their own pass through this function and be accounted
1279 * then.
1281 if ((nr_pages > 1) && !folio_test_large(folio)) {
1282 sc->nr_scanned -= (nr_pages - 1);
1283 nr_pages = 1;
1287 * The folio is mapped into the page tables of one or more
1288 * processes. Try to unmap it here.
1290 if (folio_mapped(folio)) {
1291 enum ttu_flags flags = TTU_BATCH_FLUSH;
1292 bool was_swapbacked = folio_test_swapbacked(folio);
1294 if (folio_test_pmd_mappable(folio))
1295 flags |= TTU_SPLIT_HUGE_PMD;
1297 * Without TTU_SYNC, try_to_unmap will only begin to
1298 * hold PTL from the first present PTE within a large
1299 * folio. Some initial PTEs might be skipped due to
1300 * races with parallel PTE writes in which PTEs can be
1301 * cleared temporarily before being written new present
1302 * values. This will lead to a large folio is still
1303 * mapped while some subpages have been partially
1304 * unmapped after try_to_unmap; TTU_SYNC helps
1305 * try_to_unmap acquire PTL from the first PTE,
1306 * eliminating the influence of temporary PTE values.
1308 if (folio_test_large(folio))
1309 flags |= TTU_SYNC;
1311 try_to_unmap(folio, flags);
1312 if (folio_mapped(folio)) {
1313 stat->nr_unmap_fail += nr_pages;
1314 if (!was_swapbacked &&
1315 folio_test_swapbacked(folio))
1316 stat->nr_lazyfree_fail += nr_pages;
1317 goto activate_locked;
1322 * Folio is unmapped now so it cannot be newly pinned anymore.
1323 * No point in trying to reclaim folio if it is pinned.
1324 * Furthermore we don't want to reclaim underlying fs metadata
1325 * if the folio is pinned and thus potentially modified by the
1326 * pinning process as that may upset the filesystem.
1328 if (folio_maybe_dma_pinned(folio))
1329 goto activate_locked;
1331 mapping = folio_mapping(folio);
1332 if (folio_test_dirty(folio)) {
1334 * Only kswapd can writeback filesystem folios
1335 * to avoid risk of stack overflow. But avoid
1336 * injecting inefficient single-folio I/O into
1337 * flusher writeback as much as possible: only
1338 * write folios when we've encountered many
1339 * dirty folios, and when we've already scanned
1340 * the rest of the LRU for clean folios and see
1341 * the same dirty folios again (with the reclaim
1342 * flag set).
1344 if (folio_is_file_lru(folio) &&
1345 (!current_is_kswapd() ||
1346 !folio_test_reclaim(folio) ||
1347 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1349 * Immediately reclaim when written back.
1350 * Similar in principle to folio_deactivate()
1351 * except we already have the folio isolated
1352 * and know it's dirty
1354 node_stat_mod_folio(folio, NR_VMSCAN_IMMEDIATE,
1355 nr_pages);
1356 folio_set_reclaim(folio);
1358 goto activate_locked;
1361 if (references == FOLIOREF_RECLAIM_CLEAN)
1362 goto keep_locked;
1363 if (!may_enter_fs(folio, sc->gfp_mask))
1364 goto keep_locked;
1365 if (!sc->may_writepage)
1366 goto keep_locked;
1369 * Folio is dirty. Flush the TLB if a writable entry
1370 * potentially exists to avoid CPU writes after I/O
1371 * starts and then write it out here.
1373 try_to_unmap_flush_dirty();
1374 switch (pageout(folio, mapping, &plug, folio_list)) {
1375 case PAGE_KEEP:
1376 goto keep_locked;
1377 case PAGE_ACTIVATE:
1379 * If shmem folio is split when writeback to swap,
1380 * the tail pages will make their own pass through
1381 * this function and be accounted then.
1383 if (nr_pages > 1 && !folio_test_large(folio)) {
1384 sc->nr_scanned -= (nr_pages - 1);
1385 nr_pages = 1;
1387 goto activate_locked;
1388 case PAGE_SUCCESS:
1389 if (nr_pages > 1 && !folio_test_large(folio)) {
1390 sc->nr_scanned -= (nr_pages - 1);
1391 nr_pages = 1;
1393 stat->nr_pageout += nr_pages;
1395 if (folio_test_writeback(folio))
1396 goto keep;
1397 if (folio_test_dirty(folio))
1398 goto keep;
1401 * A synchronous write - probably a ramdisk. Go
1402 * ahead and try to reclaim the folio.
1404 if (!folio_trylock(folio))
1405 goto keep;
1406 if (folio_test_dirty(folio) ||
1407 folio_test_writeback(folio))
1408 goto keep_locked;
1409 mapping = folio_mapping(folio);
1410 fallthrough;
1411 case PAGE_CLEAN:
1412 ; /* try to free the folio below */
1417 * If the folio has buffers, try to free the buffer
1418 * mappings associated with this folio. If we succeed
1419 * we try to free the folio as well.
1421 * We do this even if the folio is dirty.
1422 * filemap_release_folio() does not perform I/O, but it
1423 * is possible for a folio to have the dirty flag set,
1424 * but it is actually clean (all its buffers are clean).
1425 * This happens if the buffers were written out directly,
1426 * with submit_bh(). ext3 will do this, as well as
1427 * the blockdev mapping. filemap_release_folio() will
1428 * discover that cleanness and will drop the buffers
1429 * and mark the folio clean - it can be freed.
1431 * Rarely, folios can have buffers and no ->mapping.
1432 * These are the folios which were not successfully
1433 * invalidated in truncate_cleanup_folio(). We try to
1434 * drop those buffers here and if that worked, and the
1435 * folio is no longer mapped into process address space
1436 * (refcount == 1) it can be freed. Otherwise, leave
1437 * the folio on the LRU so it is swappable.
1439 if (folio_needs_release(folio)) {
1440 if (!filemap_release_folio(folio, sc->gfp_mask))
1441 goto activate_locked;
1442 if (!mapping && folio_ref_count(folio) == 1) {
1443 folio_unlock(folio);
1444 if (folio_put_testzero(folio))
1445 goto free_it;
1446 else {
1448 * rare race with speculative reference.
1449 * the speculative reference will free
1450 * this folio shortly, so we may
1451 * increment nr_reclaimed here (and
1452 * leave it off the LRU).
1454 nr_reclaimed += nr_pages;
1455 continue;
1460 if (folio_test_anon(folio) && !folio_test_swapbacked(folio)) {
1461 /* follow __remove_mapping for reference */
1462 if (!folio_ref_freeze(folio, 1))
1463 goto keep_locked;
1465 * The folio has only one reference left, which is
1466 * from the isolation. After the caller puts the
1467 * folio back on the lru and drops the reference, the
1468 * folio will be freed anyway. It doesn't matter
1469 * which lru it goes on. So we don't bother checking
1470 * the dirty flag here.
1472 count_vm_events(PGLAZYFREED, nr_pages);
1473 count_memcg_folio_events(folio, PGLAZYFREED, nr_pages);
1474 } else if (!mapping || !__remove_mapping(mapping, folio, true,
1475 sc->target_mem_cgroup))
1476 goto keep_locked;
1478 folio_unlock(folio);
1479 free_it:
1481 * Folio may get swapped out as a whole, need to account
1482 * all pages in it.
1484 nr_reclaimed += nr_pages;
1486 folio_unqueue_deferred_split(folio);
1487 if (folio_batch_add(&free_folios, folio) == 0) {
1488 mem_cgroup_uncharge_folios(&free_folios);
1489 try_to_unmap_flush();
1490 free_unref_folios(&free_folios);
1492 continue;
1494 activate_locked_split:
1496 * The tail pages that are failed to add into swap cache
1497 * reach here. Fixup nr_scanned and nr_pages.
1499 if (nr_pages > 1) {
1500 sc->nr_scanned -= (nr_pages - 1);
1501 nr_pages = 1;
1503 activate_locked:
1504 /* Not a candidate for swapping, so reclaim swap space. */
1505 if (folio_test_swapcache(folio) &&
1506 (mem_cgroup_swap_full(folio) || folio_test_mlocked(folio)))
1507 folio_free_swap(folio);
1508 VM_BUG_ON_FOLIO(folio_test_active(folio), folio);
1509 if (!folio_test_mlocked(folio)) {
1510 int type = folio_is_file_lru(folio);
1511 folio_set_active(folio);
1512 stat->nr_activate[type] += nr_pages;
1513 count_memcg_folio_events(folio, PGACTIVATE, nr_pages);
1515 keep_locked:
1516 folio_unlock(folio);
1517 keep:
1518 list_add(&folio->lru, &ret_folios);
1519 VM_BUG_ON_FOLIO(folio_test_lru(folio) ||
1520 folio_test_unevictable(folio), folio);
1522 /* 'folio_list' is always empty here */
1524 /* Migrate folios selected for demotion */
1525 stat->nr_demoted = demote_folio_list(&demote_folios, pgdat);
1526 nr_reclaimed += stat->nr_demoted;
1527 /* Folios that could not be demoted are still in @demote_folios */
1528 if (!list_empty(&demote_folios)) {
1529 /* Folios which weren't demoted go back on @folio_list */
1530 list_splice_init(&demote_folios, folio_list);
1533 * goto retry to reclaim the undemoted folios in folio_list if
1534 * desired.
1536 * Reclaiming directly from top tier nodes is not often desired
1537 * due to it breaking the LRU ordering: in general memory
1538 * should be reclaimed from lower tier nodes and demoted from
1539 * top tier nodes.
1541 * However, disabling reclaim from top tier nodes entirely
1542 * would cause ooms in edge scenarios where lower tier memory
1543 * is unreclaimable for whatever reason, eg memory being
1544 * mlocked or too hot to reclaim. We can disable reclaim
1545 * from top tier nodes in proactive reclaim though as that is
1546 * not real memory pressure.
1548 if (!sc->proactive) {
1549 do_demote_pass = false;
1550 goto retry;
1554 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1556 mem_cgroup_uncharge_folios(&free_folios);
1557 try_to_unmap_flush();
1558 free_unref_folios(&free_folios);
1560 list_splice(&ret_folios, folio_list);
1561 count_vm_events(PGACTIVATE, pgactivate);
1563 if (plug)
1564 swap_write_unplug(plug);
1565 return nr_reclaimed;
1568 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1569 struct list_head *folio_list)
1571 struct scan_control sc = {
1572 .gfp_mask = GFP_KERNEL,
1573 .may_unmap = 1,
1575 struct reclaim_stat stat;
1576 unsigned int nr_reclaimed;
1577 struct folio *folio, *next;
1578 LIST_HEAD(clean_folios);
1579 unsigned int noreclaim_flag;
1581 list_for_each_entry_safe(folio, next, folio_list, lru) {
1582 if (!folio_test_hugetlb(folio) && folio_is_file_lru(folio) &&
1583 !folio_test_dirty(folio) && !__folio_test_movable(folio) &&
1584 !folio_test_unevictable(folio)) {
1585 folio_clear_active(folio);
1586 list_move(&folio->lru, &clean_folios);
1591 * We should be safe here since we are only dealing with file pages and
1592 * we are not kswapd and therefore cannot write dirty file pages. But
1593 * call memalloc_noreclaim_save() anyway, just in case these conditions
1594 * change in the future.
1596 noreclaim_flag = memalloc_noreclaim_save();
1597 nr_reclaimed = shrink_folio_list(&clean_folios, zone->zone_pgdat, &sc,
1598 &stat, true);
1599 memalloc_noreclaim_restore(noreclaim_flag);
1601 list_splice(&clean_folios, folio_list);
1602 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1603 -(long)nr_reclaimed);
1605 * Since lazyfree pages are isolated from file LRU from the beginning,
1606 * they will rotate back to anonymous LRU in the end if it failed to
1607 * discard so isolated count will be mismatched.
1608 * Compensate the isolated count for both LRU lists.
1610 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1611 stat.nr_lazyfree_fail);
1612 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1613 -(long)stat.nr_lazyfree_fail);
1614 return nr_reclaimed;
1618 * Update LRU sizes after isolating pages. The LRU size updates must
1619 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1621 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1622 enum lru_list lru, unsigned long *nr_zone_taken)
1624 int zid;
1626 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1627 if (!nr_zone_taken[zid])
1628 continue;
1630 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1636 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1638 * lruvec->lru_lock is heavily contended. Some of the functions that
1639 * shrink the lists perform better by taking out a batch of pages
1640 * and working on them outside the LRU lock.
1642 * For pagecache intensive workloads, this function is the hottest
1643 * spot in the kernel (apart from copy_*_user functions).
1645 * Lru_lock must be held before calling this function.
1647 * @nr_to_scan: The number of eligible pages to look through on the list.
1648 * @lruvec: The LRU vector to pull pages from.
1649 * @dst: The temp list to put pages on to.
1650 * @nr_scanned: The number of pages that were scanned.
1651 * @sc: The scan_control struct for this reclaim session
1652 * @lru: LRU list id for isolating
1654 * returns how many pages were moved onto *@dst.
1656 static unsigned long isolate_lru_folios(unsigned long nr_to_scan,
1657 struct lruvec *lruvec, struct list_head *dst,
1658 unsigned long *nr_scanned, struct scan_control *sc,
1659 enum lru_list lru)
1661 struct list_head *src = &lruvec->lists[lru];
1662 unsigned long nr_taken = 0;
1663 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1664 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1665 unsigned long skipped = 0;
1666 unsigned long scan, total_scan, nr_pages;
1667 LIST_HEAD(folios_skipped);
1669 total_scan = 0;
1670 scan = 0;
1671 while (scan < nr_to_scan && !list_empty(src)) {
1672 struct list_head *move_to = src;
1673 struct folio *folio;
1675 folio = lru_to_folio(src);
1676 prefetchw_prev_lru_folio(folio, src, flags);
1678 nr_pages = folio_nr_pages(folio);
1679 total_scan += nr_pages;
1681 if (folio_zonenum(folio) > sc->reclaim_idx) {
1682 nr_skipped[folio_zonenum(folio)] += nr_pages;
1683 move_to = &folios_skipped;
1684 goto move;
1688 * Do not count skipped folios because that makes the function
1689 * return with no isolated folios if the LRU mostly contains
1690 * ineligible folios. This causes the VM to not reclaim any
1691 * folios, triggering a premature OOM.
1692 * Account all pages in a folio.
1694 scan += nr_pages;
1696 if (!folio_test_lru(folio))
1697 goto move;
1698 if (!sc->may_unmap && folio_mapped(folio))
1699 goto move;
1702 * Be careful not to clear the lru flag until after we're
1703 * sure the folio is not being freed elsewhere -- the
1704 * folio release code relies on it.
1706 if (unlikely(!folio_try_get(folio)))
1707 goto move;
1709 if (!folio_test_clear_lru(folio)) {
1710 /* Another thread is already isolating this folio */
1711 folio_put(folio);
1712 goto move;
1715 nr_taken += nr_pages;
1716 nr_zone_taken[folio_zonenum(folio)] += nr_pages;
1717 move_to = dst;
1718 move:
1719 list_move(&folio->lru, move_to);
1723 * Splice any skipped folios to the start of the LRU list. Note that
1724 * this disrupts the LRU order when reclaiming for lower zones but
1725 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1726 * scanning would soon rescan the same folios to skip and waste lots
1727 * of cpu cycles.
1729 if (!list_empty(&folios_skipped)) {
1730 int zid;
1732 list_splice(&folios_skipped, src);
1733 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1734 if (!nr_skipped[zid])
1735 continue;
1737 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1738 skipped += nr_skipped[zid];
1741 *nr_scanned = total_scan;
1742 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1743 total_scan, skipped, nr_taken, lru);
1744 update_lru_sizes(lruvec, lru, nr_zone_taken);
1745 return nr_taken;
1749 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1750 * @folio: Folio to isolate from its LRU list.
1752 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1753 * corresponding to whatever LRU list the folio was on.
1755 * The folio will have its LRU flag cleared. If it was found on the
1756 * active list, it will have the Active flag set. If it was found on the
1757 * unevictable list, it will have the Unevictable flag set. These flags
1758 * may need to be cleared by the caller before letting the page go.
1760 * Context:
1762 * (1) Must be called with an elevated refcount on the folio. This is a
1763 * fundamental difference from isolate_lru_folios() (which is called
1764 * without a stable reference).
1765 * (2) The lru_lock must not be held.
1766 * (3) Interrupts must be enabled.
1768 * Return: true if the folio was removed from an LRU list.
1769 * false if the folio was not on an LRU list.
1771 bool folio_isolate_lru(struct folio *folio)
1773 bool ret = false;
1775 VM_BUG_ON_FOLIO(!folio_ref_count(folio), folio);
1777 if (folio_test_clear_lru(folio)) {
1778 struct lruvec *lruvec;
1780 folio_get(folio);
1781 lruvec = folio_lruvec_lock_irq(folio);
1782 lruvec_del_folio(lruvec, folio);
1783 unlock_page_lruvec_irq(lruvec);
1784 ret = true;
1787 return ret;
1791 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1792 * then get rescheduled. When there are massive number of tasks doing page
1793 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1794 * the LRU list will go small and be scanned faster than necessary, leading to
1795 * unnecessary swapping, thrashing and OOM.
1797 static bool too_many_isolated(struct pglist_data *pgdat, int file,
1798 struct scan_control *sc)
1800 unsigned long inactive, isolated;
1801 bool too_many;
1803 if (current_is_kswapd())
1804 return false;
1806 if (!writeback_throttling_sane(sc))
1807 return false;
1809 if (file) {
1810 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1811 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1812 } else {
1813 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1814 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1818 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1819 * won't get blocked by normal direct-reclaimers, forming a circular
1820 * deadlock.
1822 if (gfp_has_io_fs(sc->gfp_mask))
1823 inactive >>= 3;
1825 too_many = isolated > inactive;
1827 /* Wake up tasks throttled due to too_many_isolated. */
1828 if (!too_many)
1829 wake_throttle_isolated(pgdat);
1831 return too_many;
1835 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1837 * Returns the number of pages moved to the given lruvec.
1839 static unsigned int move_folios_to_lru(struct lruvec *lruvec,
1840 struct list_head *list)
1842 int nr_pages, nr_moved = 0;
1843 struct folio_batch free_folios;
1845 folio_batch_init(&free_folios);
1846 while (!list_empty(list)) {
1847 struct folio *folio = lru_to_folio(list);
1849 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
1850 list_del(&folio->lru);
1851 if (unlikely(!folio_evictable(folio))) {
1852 spin_unlock_irq(&lruvec->lru_lock);
1853 folio_putback_lru(folio);
1854 spin_lock_irq(&lruvec->lru_lock);
1855 continue;
1859 * The folio_set_lru needs to be kept here for list integrity.
1860 * Otherwise:
1861 * #0 move_folios_to_lru #1 release_pages
1862 * if (!folio_put_testzero())
1863 * if (folio_put_testzero())
1864 * !lru //skip lru_lock
1865 * folio_set_lru()
1866 * list_add(&folio->lru,)
1867 * list_add(&folio->lru,)
1869 folio_set_lru(folio);
1871 if (unlikely(folio_put_testzero(folio))) {
1872 __folio_clear_lru_flags(folio);
1874 folio_unqueue_deferred_split(folio);
1875 if (folio_batch_add(&free_folios, folio) == 0) {
1876 spin_unlock_irq(&lruvec->lru_lock);
1877 mem_cgroup_uncharge_folios(&free_folios);
1878 free_unref_folios(&free_folios);
1879 spin_lock_irq(&lruvec->lru_lock);
1882 continue;
1886 * All pages were isolated from the same lruvec (and isolation
1887 * inhibits memcg migration).
1889 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio, lruvec), folio);
1890 lruvec_add_folio(lruvec, folio);
1891 nr_pages = folio_nr_pages(folio);
1892 nr_moved += nr_pages;
1893 if (folio_test_active(folio))
1894 workingset_age_nonresident(lruvec, nr_pages);
1897 if (free_folios.nr) {
1898 spin_unlock_irq(&lruvec->lru_lock);
1899 mem_cgroup_uncharge_folios(&free_folios);
1900 free_unref_folios(&free_folios);
1901 spin_lock_irq(&lruvec->lru_lock);
1904 return nr_moved;
1908 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1909 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1910 * we should not throttle. Otherwise it is safe to do so.
1912 static int current_may_throttle(void)
1914 return !(current->flags & PF_LOCAL_THROTTLE);
1918 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1919 * of reclaimed pages
1921 static unsigned long shrink_inactive_list(unsigned long nr_to_scan,
1922 struct lruvec *lruvec, struct scan_control *sc,
1923 enum lru_list lru)
1925 LIST_HEAD(folio_list);
1926 unsigned long nr_scanned;
1927 unsigned int nr_reclaimed = 0;
1928 unsigned long nr_taken;
1929 struct reclaim_stat stat;
1930 bool file = is_file_lru(lru);
1931 enum vm_event_item item;
1932 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1933 bool stalled = false;
1935 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1936 if (stalled)
1937 return 0;
1939 /* wait a bit for the reclaimer. */
1940 stalled = true;
1941 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
1943 /* We are about to die and free our memory. Return now. */
1944 if (fatal_signal_pending(current))
1945 return SWAP_CLUSTER_MAX;
1948 lru_add_drain();
1950 spin_lock_irq(&lruvec->lru_lock);
1952 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &folio_list,
1953 &nr_scanned, sc, lru);
1955 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1956 item = PGSCAN_KSWAPD + reclaimer_offset();
1957 if (!cgroup_reclaim(sc))
1958 __count_vm_events(item, nr_scanned);
1959 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
1960 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
1962 spin_unlock_irq(&lruvec->lru_lock);
1964 if (nr_taken == 0)
1965 return 0;
1967 nr_reclaimed = shrink_folio_list(&folio_list, pgdat, sc, &stat, false);
1969 spin_lock_irq(&lruvec->lru_lock);
1970 move_folios_to_lru(lruvec, &folio_list);
1972 __mod_lruvec_state(lruvec, PGDEMOTE_KSWAPD + reclaimer_offset(),
1973 stat.nr_demoted);
1974 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1975 item = PGSTEAL_KSWAPD + reclaimer_offset();
1976 if (!cgroup_reclaim(sc))
1977 __count_vm_events(item, nr_reclaimed);
1978 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
1979 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
1980 spin_unlock_irq(&lruvec->lru_lock);
1982 lru_note_cost(lruvec, file, stat.nr_pageout, nr_scanned - nr_reclaimed);
1985 * If dirty folios are scanned that are not queued for IO, it
1986 * implies that flushers are not doing their job. This can
1987 * happen when memory pressure pushes dirty folios to the end of
1988 * the LRU before the dirty limits are breached and the dirty
1989 * data has expired. It can also happen when the proportion of
1990 * dirty folios grows not through writes but through memory
1991 * pressure reclaiming all the clean cache. And in some cases,
1992 * the flushers simply cannot keep up with the allocation
1993 * rate. Nudge the flusher threads in case they are asleep.
1995 if (stat.nr_unqueued_dirty == nr_taken) {
1996 wakeup_flusher_threads(WB_REASON_VMSCAN);
1998 * For cgroupv1 dirty throttling is achieved by waking up
1999 * the kernel flusher here and later waiting on folios
2000 * which are in writeback to finish (see shrink_folio_list()).
2002 * Flusher may not be able to issue writeback quickly
2003 * enough for cgroupv1 writeback throttling to work
2004 * on a large system.
2006 if (!writeback_throttling_sane(sc))
2007 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
2010 sc->nr.dirty += stat.nr_dirty;
2011 sc->nr.congested += stat.nr_congested;
2012 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2013 sc->nr.writeback += stat.nr_writeback;
2014 sc->nr.immediate += stat.nr_immediate;
2015 sc->nr.taken += nr_taken;
2016 if (file)
2017 sc->nr.file_taken += nr_taken;
2019 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2020 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2021 return nr_reclaimed;
2025 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2027 * We move them the other way if the folio is referenced by one or more
2028 * processes.
2030 * If the folios are mostly unmapped, the processing is fast and it is
2031 * appropriate to hold lru_lock across the whole operation. But if
2032 * the folios are mapped, the processing is slow (folio_referenced()), so
2033 * we should drop lru_lock around each folio. It's impossible to balance
2034 * this, so instead we remove the folios from the LRU while processing them.
2035 * It is safe to rely on the active flag against the non-LRU folios in here
2036 * because nobody will play with that bit on a non-LRU folio.
2038 * The downside is that we have to touch folio->_refcount against each folio.
2039 * But we had to alter folio->flags anyway.
2041 static void shrink_active_list(unsigned long nr_to_scan,
2042 struct lruvec *lruvec,
2043 struct scan_control *sc,
2044 enum lru_list lru)
2046 unsigned long nr_taken;
2047 unsigned long nr_scanned;
2048 unsigned long vm_flags;
2049 LIST_HEAD(l_hold); /* The folios which were snipped off */
2050 LIST_HEAD(l_active);
2051 LIST_HEAD(l_inactive);
2052 unsigned nr_deactivate, nr_activate;
2053 unsigned nr_rotated = 0;
2054 bool file = is_file_lru(lru);
2055 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2057 lru_add_drain();
2059 spin_lock_irq(&lruvec->lru_lock);
2061 nr_taken = isolate_lru_folios(nr_to_scan, lruvec, &l_hold,
2062 &nr_scanned, sc, lru);
2064 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2066 if (!cgroup_reclaim(sc))
2067 __count_vm_events(PGREFILL, nr_scanned);
2068 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2070 spin_unlock_irq(&lruvec->lru_lock);
2072 while (!list_empty(&l_hold)) {
2073 struct folio *folio;
2075 cond_resched();
2076 folio = lru_to_folio(&l_hold);
2077 list_del(&folio->lru);
2079 if (unlikely(!folio_evictable(folio))) {
2080 folio_putback_lru(folio);
2081 continue;
2084 if (unlikely(buffer_heads_over_limit)) {
2085 if (folio_needs_release(folio) &&
2086 folio_trylock(folio)) {
2087 filemap_release_folio(folio, 0);
2088 folio_unlock(folio);
2092 /* Referenced or rmap lock contention: rotate */
2093 if (folio_referenced(folio, 0, sc->target_mem_cgroup,
2094 &vm_flags) != 0) {
2096 * Identify referenced, file-backed active folios and
2097 * give them one more trip around the active list. So
2098 * that executable code get better chances to stay in
2099 * memory under moderate memory pressure. Anon folios
2100 * are not likely to be evicted by use-once streaming
2101 * IO, plus JVM can create lots of anon VM_EXEC folios,
2102 * so we ignore them here.
2104 if ((vm_flags & VM_EXEC) && folio_is_file_lru(folio)) {
2105 nr_rotated += folio_nr_pages(folio);
2106 list_add(&folio->lru, &l_active);
2107 continue;
2111 folio_clear_active(folio); /* we are de-activating */
2112 folio_set_workingset(folio);
2113 list_add(&folio->lru, &l_inactive);
2117 * Move folios back to the lru list.
2119 spin_lock_irq(&lruvec->lru_lock);
2121 nr_activate = move_folios_to_lru(lruvec, &l_active);
2122 nr_deactivate = move_folios_to_lru(lruvec, &l_inactive);
2124 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2125 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2127 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2128 spin_unlock_irq(&lruvec->lru_lock);
2130 if (nr_rotated)
2131 lru_note_cost(lruvec, file, 0, nr_rotated);
2132 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2133 nr_deactivate, nr_rotated, sc->priority, file);
2136 static unsigned int reclaim_folio_list(struct list_head *folio_list,
2137 struct pglist_data *pgdat)
2139 struct reclaim_stat stat;
2140 unsigned int nr_reclaimed;
2141 struct folio *folio;
2142 struct scan_control sc = {
2143 .gfp_mask = GFP_KERNEL,
2144 .may_writepage = 1,
2145 .may_unmap = 1,
2146 .may_swap = 1,
2147 .no_demotion = 1,
2150 nr_reclaimed = shrink_folio_list(folio_list, pgdat, &sc, &stat, true);
2151 while (!list_empty(folio_list)) {
2152 folio = lru_to_folio(folio_list);
2153 list_del(&folio->lru);
2154 folio_putback_lru(folio);
2156 trace_mm_vmscan_reclaim_pages(pgdat->node_id, sc.nr_scanned, nr_reclaimed, &stat);
2158 return nr_reclaimed;
2161 unsigned long reclaim_pages(struct list_head *folio_list)
2163 int nid;
2164 unsigned int nr_reclaimed = 0;
2165 LIST_HEAD(node_folio_list);
2166 unsigned int noreclaim_flag;
2168 if (list_empty(folio_list))
2169 return nr_reclaimed;
2171 noreclaim_flag = memalloc_noreclaim_save();
2173 nid = folio_nid(lru_to_folio(folio_list));
2174 do {
2175 struct folio *folio = lru_to_folio(folio_list);
2177 if (nid == folio_nid(folio)) {
2178 folio_clear_active(folio);
2179 list_move(&folio->lru, &node_folio_list);
2180 continue;
2183 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2184 nid = folio_nid(lru_to_folio(folio_list));
2185 } while (!list_empty(folio_list));
2187 nr_reclaimed += reclaim_folio_list(&node_folio_list, NODE_DATA(nid));
2189 memalloc_noreclaim_restore(noreclaim_flag);
2191 return nr_reclaimed;
2194 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2195 struct lruvec *lruvec, struct scan_control *sc)
2197 if (is_active_lru(lru)) {
2198 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2199 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2200 else
2201 sc->skipped_deactivate = 1;
2202 return 0;
2205 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2209 * The inactive anon list should be small enough that the VM never has
2210 * to do too much work.
2212 * The inactive file list should be small enough to leave most memory
2213 * to the established workingset on the scan-resistant active list,
2214 * but large enough to avoid thrashing the aggregate readahead window.
2216 * Both inactive lists should also be large enough that each inactive
2217 * folio has a chance to be referenced again before it is reclaimed.
2219 * If that fails and refaulting is observed, the inactive list grows.
2221 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2222 * on this LRU, maintained by the pageout code. An inactive_ratio
2223 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2225 * total target max
2226 * memory ratio inactive
2227 * -------------------------------------
2228 * 10MB 1 5MB
2229 * 100MB 1 50MB
2230 * 1GB 3 250MB
2231 * 10GB 10 0.9GB
2232 * 100GB 31 3GB
2233 * 1TB 101 10GB
2234 * 10TB 320 32GB
2236 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2238 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2239 unsigned long inactive, active;
2240 unsigned long inactive_ratio;
2241 unsigned long gb;
2243 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2244 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2246 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2247 if (gb)
2248 inactive_ratio = int_sqrt(10 * gb);
2249 else
2250 inactive_ratio = 1;
2252 return inactive * inactive_ratio < active;
2255 enum scan_balance {
2256 SCAN_EQUAL,
2257 SCAN_FRACT,
2258 SCAN_ANON,
2259 SCAN_FILE,
2262 static void prepare_scan_control(pg_data_t *pgdat, struct scan_control *sc)
2264 unsigned long file;
2265 struct lruvec *target_lruvec;
2267 if (lru_gen_enabled())
2268 return;
2270 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
2273 * Flush the memory cgroup stats in rate-limited way as we don't need
2274 * most accurate stats here. We may switch to regular stats flushing
2275 * in the future once it is cheap enough.
2277 mem_cgroup_flush_stats_ratelimited(sc->target_mem_cgroup);
2280 * Determine the scan balance between anon and file LRUs.
2282 spin_lock_irq(&target_lruvec->lru_lock);
2283 sc->anon_cost = target_lruvec->anon_cost;
2284 sc->file_cost = target_lruvec->file_cost;
2285 spin_unlock_irq(&target_lruvec->lru_lock);
2288 * Target desirable inactive:active list ratios for the anon
2289 * and file LRU lists.
2291 if (!sc->force_deactivate) {
2292 unsigned long refaults;
2295 * When refaults are being observed, it means a new
2296 * workingset is being established. Deactivate to get
2297 * rid of any stale active pages quickly.
2299 refaults = lruvec_page_state(target_lruvec,
2300 WORKINGSET_ACTIVATE_ANON);
2301 if (refaults != target_lruvec->refaults[WORKINGSET_ANON] ||
2302 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
2303 sc->may_deactivate |= DEACTIVATE_ANON;
2304 else
2305 sc->may_deactivate &= ~DEACTIVATE_ANON;
2307 refaults = lruvec_page_state(target_lruvec,
2308 WORKINGSET_ACTIVATE_FILE);
2309 if (refaults != target_lruvec->refaults[WORKINGSET_FILE] ||
2310 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
2311 sc->may_deactivate |= DEACTIVATE_FILE;
2312 else
2313 sc->may_deactivate &= ~DEACTIVATE_FILE;
2314 } else
2315 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
2318 * If we have plenty of inactive file pages that aren't
2319 * thrashing, try to reclaim those first before touching
2320 * anonymous pages.
2322 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
2323 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE) &&
2324 !sc->no_cache_trim_mode)
2325 sc->cache_trim_mode = 1;
2326 else
2327 sc->cache_trim_mode = 0;
2330 * Prevent the reclaimer from falling into the cache trap: as
2331 * cache pages start out inactive, every cache fault will tip
2332 * the scan balance towards the file LRU. And as the file LRU
2333 * shrinks, so does the window for rotation from references.
2334 * This means we have a runaway feedback loop where a tiny
2335 * thrashing file LRU becomes infinitely more attractive than
2336 * anon pages. Try to detect this based on file LRU size.
2338 if (!cgroup_reclaim(sc)) {
2339 unsigned long total_high_wmark = 0;
2340 unsigned long free, anon;
2341 int z;
2343 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2344 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
2345 node_page_state(pgdat, NR_INACTIVE_FILE);
2347 for (z = 0; z < MAX_NR_ZONES; z++) {
2348 struct zone *zone = &pgdat->node_zones[z];
2350 if (!managed_zone(zone))
2351 continue;
2353 total_high_wmark += high_wmark_pages(zone);
2357 * Consider anon: if that's low too, this isn't a
2358 * runaway file reclaim problem, but rather just
2359 * extreme pressure. Reclaim as per usual then.
2361 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
2363 sc->file_is_tiny =
2364 file + free <= total_high_wmark &&
2365 !(sc->may_deactivate & DEACTIVATE_ANON) &&
2366 anon >> sc->priority;
2371 * Determine how aggressively the anon and file LRU lists should be
2372 * scanned.
2374 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2375 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2377 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2378 unsigned long *nr)
2380 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2381 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2382 unsigned long anon_cost, file_cost, total_cost;
2383 int swappiness = sc_swappiness(sc, memcg);
2384 u64 fraction[ANON_AND_FILE];
2385 u64 denominator = 0; /* gcc */
2386 enum scan_balance scan_balance;
2387 unsigned long ap, fp;
2388 enum lru_list lru;
2390 /* If we have no swap space, do not bother scanning anon folios. */
2391 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2392 scan_balance = SCAN_FILE;
2393 goto out;
2397 * Global reclaim will swap to prevent OOM even with no
2398 * swappiness, but memcg users want to use this knob to
2399 * disable swapping for individual groups completely when
2400 * using the memory controller's swap limit feature would be
2401 * too expensive.
2403 if (cgroup_reclaim(sc) && !swappiness) {
2404 scan_balance = SCAN_FILE;
2405 goto out;
2409 * Do not apply any pressure balancing cleverness when the
2410 * system is close to OOM, scan both anon and file equally
2411 * (unless the swappiness setting disagrees with swapping).
2413 if (!sc->priority && swappiness) {
2414 scan_balance = SCAN_EQUAL;
2415 goto out;
2419 * If the system is almost out of file pages, force-scan anon.
2421 if (sc->file_is_tiny) {
2422 scan_balance = SCAN_ANON;
2423 goto out;
2427 * If there is enough inactive page cache, we do not reclaim
2428 * anything from the anonymous working right now.
2430 if (sc->cache_trim_mode) {
2431 scan_balance = SCAN_FILE;
2432 goto out;
2435 scan_balance = SCAN_FRACT;
2437 * Calculate the pressure balance between anon and file pages.
2439 * The amount of pressure we put on each LRU is inversely
2440 * proportional to the cost of reclaiming each list, as
2441 * determined by the share of pages that are refaulting, times
2442 * the relative IO cost of bringing back a swapped out
2443 * anonymous page vs reloading a filesystem page (swappiness).
2445 * Although we limit that influence to ensure no list gets
2446 * left behind completely: at least a third of the pressure is
2447 * applied, before swappiness.
2449 * With swappiness at 100, anon and file have equal IO cost.
2451 total_cost = sc->anon_cost + sc->file_cost;
2452 anon_cost = total_cost + sc->anon_cost;
2453 file_cost = total_cost + sc->file_cost;
2454 total_cost = anon_cost + file_cost;
2456 ap = swappiness * (total_cost + 1);
2457 ap /= anon_cost + 1;
2459 fp = (MAX_SWAPPINESS - swappiness) * (total_cost + 1);
2460 fp /= file_cost + 1;
2462 fraction[0] = ap;
2463 fraction[1] = fp;
2464 denominator = ap + fp;
2465 out:
2466 for_each_evictable_lru(lru) {
2467 bool file = is_file_lru(lru);
2468 unsigned long lruvec_size;
2469 unsigned long low, min;
2470 unsigned long scan;
2472 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2473 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2474 &min, &low);
2476 if (min || low) {
2478 * Scale a cgroup's reclaim pressure by proportioning
2479 * its current usage to its memory.low or memory.min
2480 * setting.
2482 * This is important, as otherwise scanning aggression
2483 * becomes extremely binary -- from nothing as we
2484 * approach the memory protection threshold, to totally
2485 * nominal as we exceed it. This results in requiring
2486 * setting extremely liberal protection thresholds. It
2487 * also means we simply get no protection at all if we
2488 * set it too low, which is not ideal.
2490 * If there is any protection in place, we reduce scan
2491 * pressure by how much of the total memory used is
2492 * within protection thresholds.
2494 * There is one special case: in the first reclaim pass,
2495 * we skip over all groups that are within their low
2496 * protection. If that fails to reclaim enough pages to
2497 * satisfy the reclaim goal, we come back and override
2498 * the best-effort low protection. However, we still
2499 * ideally want to honor how well-behaved groups are in
2500 * that case instead of simply punishing them all
2501 * equally. As such, we reclaim them based on how much
2502 * memory they are using, reducing the scan pressure
2503 * again by how much of the total memory used is under
2504 * hard protection.
2506 unsigned long cgroup_size = mem_cgroup_size(memcg);
2507 unsigned long protection;
2509 /* memory.low scaling, make sure we retry before OOM */
2510 if (!sc->memcg_low_reclaim && low > min) {
2511 protection = low;
2512 sc->memcg_low_skipped = 1;
2513 } else {
2514 protection = min;
2517 /* Avoid TOCTOU with earlier protection check */
2518 cgroup_size = max(cgroup_size, protection);
2520 scan = lruvec_size - lruvec_size * protection /
2521 (cgroup_size + 1);
2524 * Minimally target SWAP_CLUSTER_MAX pages to keep
2525 * reclaim moving forwards, avoiding decrementing
2526 * sc->priority further than desirable.
2528 scan = max(scan, SWAP_CLUSTER_MAX);
2529 } else {
2530 scan = lruvec_size;
2533 scan >>= sc->priority;
2536 * If the cgroup's already been deleted, make sure to
2537 * scrape out the remaining cache.
2539 if (!scan && !mem_cgroup_online(memcg))
2540 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2542 switch (scan_balance) {
2543 case SCAN_EQUAL:
2544 /* Scan lists relative to size */
2545 break;
2546 case SCAN_FRACT:
2548 * Scan types proportional to swappiness and
2549 * their relative recent reclaim efficiency.
2550 * Make sure we don't miss the last page on
2551 * the offlined memory cgroups because of a
2552 * round-off error.
2554 scan = mem_cgroup_online(memcg) ?
2555 div64_u64(scan * fraction[file], denominator) :
2556 DIV64_U64_ROUND_UP(scan * fraction[file],
2557 denominator);
2558 break;
2559 case SCAN_FILE:
2560 case SCAN_ANON:
2561 /* Scan one type exclusively */
2562 if ((scan_balance == SCAN_FILE) != file)
2563 scan = 0;
2564 break;
2565 default:
2566 /* Look ma, no brain */
2567 BUG();
2570 nr[lru] = scan;
2575 * Anonymous LRU management is a waste if there is
2576 * ultimately no way to reclaim the memory.
2578 static bool can_age_anon_pages(struct pglist_data *pgdat,
2579 struct scan_control *sc)
2581 /* Aging the anon LRU is valuable if swap is present: */
2582 if (total_swap_pages > 0)
2583 return true;
2585 /* Also valuable if anon pages can be demoted: */
2586 return can_demote(pgdat->node_id, sc);
2589 #ifdef CONFIG_LRU_GEN
2591 #ifdef CONFIG_LRU_GEN_ENABLED
2592 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps, NR_LRU_GEN_CAPS);
2593 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2594 #else
2595 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps, NR_LRU_GEN_CAPS);
2596 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2597 #endif
2599 static bool should_walk_mmu(void)
2601 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK);
2604 static bool should_clear_pmd_young(void)
2606 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG);
2609 /******************************************************************************
2610 * shorthand helpers
2611 ******************************************************************************/
2613 #define DEFINE_MAX_SEQ(lruvec) \
2614 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2616 #define DEFINE_MIN_SEQ(lruvec) \
2617 unsigned long min_seq[ANON_AND_FILE] = { \
2618 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2619 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2622 #define for_each_gen_type_zone(gen, type, zone) \
2623 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2624 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2625 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2627 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2628 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2630 static struct lruvec *get_lruvec(struct mem_cgroup *memcg, int nid)
2632 struct pglist_data *pgdat = NODE_DATA(nid);
2634 #ifdef CONFIG_MEMCG
2635 if (memcg) {
2636 struct lruvec *lruvec = &memcg->nodeinfo[nid]->lruvec;
2638 /* see the comment in mem_cgroup_lruvec() */
2639 if (!lruvec->pgdat)
2640 lruvec->pgdat = pgdat;
2642 return lruvec;
2644 #endif
2645 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2647 return &pgdat->__lruvec;
2650 static int get_swappiness(struct lruvec *lruvec, struct scan_control *sc)
2652 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2653 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2655 if (!sc->may_swap)
2656 return 0;
2658 if (!can_demote(pgdat->node_id, sc) &&
2659 mem_cgroup_get_nr_swap_pages(memcg) < MIN_LRU_BATCH)
2660 return 0;
2662 return sc_swappiness(sc, memcg);
2665 static int get_nr_gens(struct lruvec *lruvec, int type)
2667 return lruvec->lrugen.max_seq - lruvec->lrugen.min_seq[type] + 1;
2670 static bool __maybe_unused seq_is_valid(struct lruvec *lruvec)
2672 /* see the comment on lru_gen_folio */
2673 return get_nr_gens(lruvec, LRU_GEN_FILE) >= MIN_NR_GENS &&
2674 get_nr_gens(lruvec, LRU_GEN_FILE) <= get_nr_gens(lruvec, LRU_GEN_ANON) &&
2675 get_nr_gens(lruvec, LRU_GEN_ANON) <= MAX_NR_GENS;
2678 /******************************************************************************
2679 * Bloom filters
2680 ******************************************************************************/
2683 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2684 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2685 * bits in a bitmap, k is the number of hash functions and n is the number of
2686 * inserted items.
2688 * Page table walkers use one of the two filters to reduce their search space.
2689 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2690 * aging uses the double-buffering technique to flip to the other filter each
2691 * time it produces a new generation. For non-leaf entries that have enough
2692 * leaf entries, the aging carries them over to the next generation in
2693 * walk_pmd_range(); the eviction also report them when walking the rmap
2694 * in lru_gen_look_around().
2696 * For future optimizations:
2697 * 1. It's not necessary to keep both filters all the time. The spare one can be
2698 * freed after the RCU grace period and reallocated if needed again.
2699 * 2. And when reallocating, it's worth scaling its size according to the number
2700 * of inserted entries in the other filter, to reduce the memory overhead on
2701 * small systems and false positives on large systems.
2702 * 3. Jenkins' hash function is an alternative to Knuth's.
2704 #define BLOOM_FILTER_SHIFT 15
2706 static inline int filter_gen_from_seq(unsigned long seq)
2708 return seq % NR_BLOOM_FILTERS;
2711 static void get_item_key(void *item, int *key)
2713 u32 hash = hash_ptr(item, BLOOM_FILTER_SHIFT * 2);
2715 BUILD_BUG_ON(BLOOM_FILTER_SHIFT * 2 > BITS_PER_TYPE(u32));
2717 key[0] = hash & (BIT(BLOOM_FILTER_SHIFT) - 1);
2718 key[1] = hash >> BLOOM_FILTER_SHIFT;
2721 static bool test_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2722 void *item)
2724 int key[2];
2725 unsigned long *filter;
2726 int gen = filter_gen_from_seq(seq);
2728 filter = READ_ONCE(mm_state->filters[gen]);
2729 if (!filter)
2730 return true;
2732 get_item_key(item, key);
2734 return test_bit(key[0], filter) && test_bit(key[1], filter);
2737 static void update_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq,
2738 void *item)
2740 int key[2];
2741 unsigned long *filter;
2742 int gen = filter_gen_from_seq(seq);
2744 filter = READ_ONCE(mm_state->filters[gen]);
2745 if (!filter)
2746 return;
2748 get_item_key(item, key);
2750 if (!test_bit(key[0], filter))
2751 set_bit(key[0], filter);
2752 if (!test_bit(key[1], filter))
2753 set_bit(key[1], filter);
2756 static void reset_bloom_filter(struct lru_gen_mm_state *mm_state, unsigned long seq)
2758 unsigned long *filter;
2759 int gen = filter_gen_from_seq(seq);
2761 filter = mm_state->filters[gen];
2762 if (filter) {
2763 bitmap_clear(filter, 0, BIT(BLOOM_FILTER_SHIFT));
2764 return;
2767 filter = bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT),
2768 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
2769 WRITE_ONCE(mm_state->filters[gen], filter);
2772 /******************************************************************************
2773 * mm_struct list
2774 ******************************************************************************/
2776 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2778 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2780 static struct lru_gen_mm_list mm_list = {
2781 .fifo = LIST_HEAD_INIT(mm_list.fifo),
2782 .lock = __SPIN_LOCK_UNLOCKED(mm_list.lock),
2785 #ifdef CONFIG_MEMCG
2786 if (memcg)
2787 return &memcg->mm_list;
2788 #endif
2789 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2791 return &mm_list;
2794 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2796 return &lruvec->mm_state;
2799 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2801 int key;
2802 struct mm_struct *mm;
2803 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
2804 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
2806 mm = list_entry(mm_state->head, struct mm_struct, lru_gen.list);
2807 key = pgdat->node_id % BITS_PER_TYPE(mm->lru_gen.bitmap);
2809 if (!walk->force_scan && !test_bit(key, &mm->lru_gen.bitmap))
2810 return NULL;
2812 clear_bit(key, &mm->lru_gen.bitmap);
2814 return mmget_not_zero(mm) ? mm : NULL;
2817 void lru_gen_add_mm(struct mm_struct *mm)
2819 int nid;
2820 struct mem_cgroup *memcg = get_mem_cgroup_from_mm(mm);
2821 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2823 VM_WARN_ON_ONCE(!list_empty(&mm->lru_gen.list));
2824 #ifdef CONFIG_MEMCG
2825 VM_WARN_ON_ONCE(mm->lru_gen.memcg);
2826 mm->lru_gen.memcg = memcg;
2827 #endif
2828 spin_lock(&mm_list->lock);
2830 for_each_node_state(nid, N_MEMORY) {
2831 struct lruvec *lruvec = get_lruvec(memcg, nid);
2832 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2834 /* the first addition since the last iteration */
2835 if (mm_state->tail == &mm_list->fifo)
2836 mm_state->tail = &mm->lru_gen.list;
2839 list_add_tail(&mm->lru_gen.list, &mm_list->fifo);
2841 spin_unlock(&mm_list->lock);
2844 void lru_gen_del_mm(struct mm_struct *mm)
2846 int nid;
2847 struct lru_gen_mm_list *mm_list;
2848 struct mem_cgroup *memcg = NULL;
2850 if (list_empty(&mm->lru_gen.list))
2851 return;
2853 #ifdef CONFIG_MEMCG
2854 memcg = mm->lru_gen.memcg;
2855 #endif
2856 mm_list = get_mm_list(memcg);
2858 spin_lock(&mm_list->lock);
2860 for_each_node(nid) {
2861 struct lruvec *lruvec = get_lruvec(memcg, nid);
2862 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2864 /* where the current iteration continues after */
2865 if (mm_state->head == &mm->lru_gen.list)
2866 mm_state->head = mm_state->head->prev;
2868 /* where the last iteration ended before */
2869 if (mm_state->tail == &mm->lru_gen.list)
2870 mm_state->tail = mm_state->tail->next;
2873 list_del_init(&mm->lru_gen.list);
2875 spin_unlock(&mm_list->lock);
2877 #ifdef CONFIG_MEMCG
2878 mem_cgroup_put(mm->lru_gen.memcg);
2879 mm->lru_gen.memcg = NULL;
2880 #endif
2883 #ifdef CONFIG_MEMCG
2884 void lru_gen_migrate_mm(struct mm_struct *mm)
2886 struct mem_cgroup *memcg;
2887 struct task_struct *task = rcu_dereference_protected(mm->owner, true);
2889 VM_WARN_ON_ONCE(task->mm != mm);
2890 lockdep_assert_held(&task->alloc_lock);
2892 /* for mm_update_next_owner() */
2893 if (mem_cgroup_disabled())
2894 return;
2896 /* migration can happen before addition */
2897 if (!mm->lru_gen.memcg)
2898 return;
2900 rcu_read_lock();
2901 memcg = mem_cgroup_from_task(task);
2902 rcu_read_unlock();
2903 if (memcg == mm->lru_gen.memcg)
2904 return;
2906 VM_WARN_ON_ONCE(list_empty(&mm->lru_gen.list));
2908 lru_gen_del_mm(mm);
2909 lru_gen_add_mm(mm);
2911 #endif
2913 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2915 static struct lru_gen_mm_list *get_mm_list(struct mem_cgroup *memcg)
2917 return NULL;
2920 static struct lru_gen_mm_state *get_mm_state(struct lruvec *lruvec)
2922 return NULL;
2925 static struct mm_struct *get_next_mm(struct lru_gen_mm_walk *walk)
2927 return NULL;
2930 #endif
2932 static void reset_mm_stats(struct lru_gen_mm_walk *walk, bool last)
2934 int i;
2935 int hist;
2936 struct lruvec *lruvec = walk->lruvec;
2937 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2939 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec))->lock);
2941 hist = lru_hist_from_seq(walk->seq);
2943 for (i = 0; i < NR_MM_STATS; i++) {
2944 WRITE_ONCE(mm_state->stats[hist][i],
2945 mm_state->stats[hist][i] + walk->mm_stats[i]);
2946 walk->mm_stats[i] = 0;
2949 if (NR_HIST_GENS > 1 && last) {
2950 hist = lru_hist_from_seq(walk->seq + 1);
2952 for (i = 0; i < NR_MM_STATS; i++)
2953 WRITE_ONCE(mm_state->stats[hist][i], 0);
2957 static bool iterate_mm_list(struct lru_gen_mm_walk *walk, struct mm_struct **iter)
2959 bool first = false;
2960 bool last = false;
2961 struct mm_struct *mm = NULL;
2962 struct lruvec *lruvec = walk->lruvec;
2963 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2964 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
2965 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
2968 * mm_state->seq is incremented after each iteration of mm_list. There
2969 * are three interesting cases for this page table walker:
2970 * 1. It tries to start a new iteration with a stale max_seq: there is
2971 * nothing left to do.
2972 * 2. It started the next iteration: it needs to reset the Bloom filter
2973 * so that a fresh set of PTE tables can be recorded.
2974 * 3. It ended the current iteration: it needs to reset the mm stats
2975 * counters and tell its caller to increment max_seq.
2977 spin_lock(&mm_list->lock);
2979 VM_WARN_ON_ONCE(mm_state->seq + 1 < walk->seq);
2981 if (walk->seq <= mm_state->seq)
2982 goto done;
2984 if (!mm_state->head)
2985 mm_state->head = &mm_list->fifo;
2987 if (mm_state->head == &mm_list->fifo)
2988 first = true;
2990 do {
2991 mm_state->head = mm_state->head->next;
2992 if (mm_state->head == &mm_list->fifo) {
2993 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
2994 last = true;
2995 break;
2998 /* force scan for those added after the last iteration */
2999 if (!mm_state->tail || mm_state->tail == mm_state->head) {
3000 mm_state->tail = mm_state->head->next;
3001 walk->force_scan = true;
3003 } while (!(mm = get_next_mm(walk)));
3004 done:
3005 if (*iter || last)
3006 reset_mm_stats(walk, last);
3008 spin_unlock(&mm_list->lock);
3010 if (mm && first)
3011 reset_bloom_filter(mm_state, walk->seq + 1);
3013 if (*iter)
3014 mmput_async(*iter);
3016 *iter = mm;
3018 return last;
3021 static bool iterate_mm_list_nowalk(struct lruvec *lruvec, unsigned long seq)
3023 bool success = false;
3024 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3025 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
3026 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3028 spin_lock(&mm_list->lock);
3030 VM_WARN_ON_ONCE(mm_state->seq + 1 < seq);
3032 if (seq > mm_state->seq) {
3033 mm_state->head = NULL;
3034 mm_state->tail = NULL;
3035 WRITE_ONCE(mm_state->seq, mm_state->seq + 1);
3036 success = true;
3039 spin_unlock(&mm_list->lock);
3041 return success;
3044 /******************************************************************************
3045 * PID controller
3046 ******************************************************************************/
3049 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3051 * The P term is refaulted/(evicted+protected) from a tier in the generation
3052 * currently being evicted; the I term is the exponential moving average of the
3053 * P term over the generations previously evicted, using the smoothing factor
3054 * 1/2; the D term isn't supported.
3056 * The setpoint (SP) is always the first tier of one type; the process variable
3057 * (PV) is either any tier of the other type or any other tier of the same
3058 * type.
3060 * The error is the difference between the SP and the PV; the correction is to
3061 * turn off protection when SP>PV or turn on protection when SP<PV.
3063 * For future optimizations:
3064 * 1. The D term may discount the other two terms over time so that long-lived
3065 * generations can resist stale information.
3067 struct ctrl_pos {
3068 unsigned long refaulted;
3069 unsigned long total;
3070 int gain;
3073 static void read_ctrl_pos(struct lruvec *lruvec, int type, int tier, int gain,
3074 struct ctrl_pos *pos)
3076 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3077 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
3079 pos->refaulted = lrugen->avg_refaulted[type][tier] +
3080 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3081 pos->total = lrugen->avg_total[type][tier] +
3082 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3083 if (tier)
3084 pos->total += lrugen->protected[hist][type][tier - 1];
3085 pos->gain = gain;
3088 static void reset_ctrl_pos(struct lruvec *lruvec, int type, bool carryover)
3090 int hist, tier;
3091 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3092 bool clear = carryover ? NR_HIST_GENS == 1 : NR_HIST_GENS > 1;
3093 unsigned long seq = carryover ? lrugen->min_seq[type] : lrugen->max_seq + 1;
3095 lockdep_assert_held(&lruvec->lru_lock);
3097 if (!carryover && !clear)
3098 return;
3100 hist = lru_hist_from_seq(seq);
3102 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
3103 if (carryover) {
3104 unsigned long sum;
3106 sum = lrugen->avg_refaulted[type][tier] +
3107 atomic_long_read(&lrugen->refaulted[hist][type][tier]);
3108 WRITE_ONCE(lrugen->avg_refaulted[type][tier], sum / 2);
3110 sum = lrugen->avg_total[type][tier] +
3111 atomic_long_read(&lrugen->evicted[hist][type][tier]);
3112 if (tier)
3113 sum += lrugen->protected[hist][type][tier - 1];
3114 WRITE_ONCE(lrugen->avg_total[type][tier], sum / 2);
3117 if (clear) {
3118 atomic_long_set(&lrugen->refaulted[hist][type][tier], 0);
3119 atomic_long_set(&lrugen->evicted[hist][type][tier], 0);
3120 if (tier)
3121 WRITE_ONCE(lrugen->protected[hist][type][tier - 1], 0);
3126 static bool positive_ctrl_err(struct ctrl_pos *sp, struct ctrl_pos *pv)
3129 * Return true if the PV has a limited number of refaults or a lower
3130 * refaulted/total than the SP.
3132 return pv->refaulted < MIN_LRU_BATCH ||
3133 pv->refaulted * (sp->total + MIN_LRU_BATCH) * sp->gain <=
3134 (sp->refaulted + 1) * pv->total * pv->gain;
3137 /******************************************************************************
3138 * the aging
3139 ******************************************************************************/
3141 /* promote pages accessed through page tables */
3142 static int folio_update_gen(struct folio *folio, int gen)
3144 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3146 VM_WARN_ON_ONCE(gen >= MAX_NR_GENS);
3148 do {
3149 /* lru_gen_del_folio() has isolated this page? */
3150 if (!(old_flags & LRU_GEN_MASK)) {
3151 /* for shrink_folio_list() */
3152 new_flags = old_flags | BIT(PG_referenced);
3153 continue;
3156 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3157 new_flags |= (gen + 1UL) << LRU_GEN_PGOFF;
3158 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3160 return ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3163 /* protect pages accessed multiple times through file descriptors */
3164 static int folio_inc_gen(struct lruvec *lruvec, struct folio *folio, bool reclaiming)
3166 int type = folio_is_file_lru(folio);
3167 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3168 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3169 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
3171 VM_WARN_ON_ONCE_FOLIO(!(old_flags & LRU_GEN_MASK), folio);
3173 do {
3174 new_gen = ((old_flags & LRU_GEN_MASK) >> LRU_GEN_PGOFF) - 1;
3175 /* folio_update_gen() has promoted this page? */
3176 if (new_gen >= 0 && new_gen != old_gen)
3177 return new_gen;
3179 new_gen = (old_gen + 1) % MAX_NR_GENS;
3181 new_flags = old_flags & ~(LRU_GEN_MASK | LRU_REFS_MASK | LRU_REFS_FLAGS);
3182 new_flags |= (new_gen + 1UL) << LRU_GEN_PGOFF;
3183 /* for folio_end_writeback() */
3184 if (reclaiming)
3185 new_flags |= BIT(PG_reclaim);
3186 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
3188 lru_gen_update_size(lruvec, folio, old_gen, new_gen);
3190 return new_gen;
3193 static void update_batch_size(struct lru_gen_mm_walk *walk, struct folio *folio,
3194 int old_gen, int new_gen)
3196 int type = folio_is_file_lru(folio);
3197 int zone = folio_zonenum(folio);
3198 int delta = folio_nr_pages(folio);
3200 VM_WARN_ON_ONCE(old_gen >= MAX_NR_GENS);
3201 VM_WARN_ON_ONCE(new_gen >= MAX_NR_GENS);
3203 walk->batched++;
3205 walk->nr_pages[old_gen][type][zone] -= delta;
3206 walk->nr_pages[new_gen][type][zone] += delta;
3209 static void reset_batch_size(struct lru_gen_mm_walk *walk)
3211 int gen, type, zone;
3212 struct lruvec *lruvec = walk->lruvec;
3213 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3215 walk->batched = 0;
3217 for_each_gen_type_zone(gen, type, zone) {
3218 enum lru_list lru = type * LRU_INACTIVE_FILE;
3219 int delta = walk->nr_pages[gen][type][zone];
3221 if (!delta)
3222 continue;
3224 walk->nr_pages[gen][type][zone] = 0;
3225 WRITE_ONCE(lrugen->nr_pages[gen][type][zone],
3226 lrugen->nr_pages[gen][type][zone] + delta);
3228 if (lru_gen_is_active(lruvec, gen))
3229 lru += LRU_ACTIVE;
3230 __update_lru_size(lruvec, lru, zone, delta);
3234 static int should_skip_vma(unsigned long start, unsigned long end, struct mm_walk *args)
3236 struct address_space *mapping;
3237 struct vm_area_struct *vma = args->vma;
3238 struct lru_gen_mm_walk *walk = args->private;
3240 if (!vma_is_accessible(vma))
3241 return true;
3243 if (is_vm_hugetlb_page(vma))
3244 return true;
3246 if (!vma_has_recency(vma))
3247 return true;
3249 if (vma->vm_flags & (VM_LOCKED | VM_SPECIAL))
3250 return true;
3252 if (vma == get_gate_vma(vma->vm_mm))
3253 return true;
3255 if (vma_is_anonymous(vma))
3256 return !walk->can_swap;
3258 if (WARN_ON_ONCE(!vma->vm_file || !vma->vm_file->f_mapping))
3259 return true;
3261 mapping = vma->vm_file->f_mapping;
3262 if (mapping_unevictable(mapping))
3263 return true;
3265 if (shmem_mapping(mapping))
3266 return !walk->can_swap;
3268 /* to exclude special mappings like dax, etc. */
3269 return !mapping->a_ops->read_folio;
3273 * Some userspace memory allocators map many single-page VMAs. Instead of
3274 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3275 * table to reduce zigzags and improve cache performance.
3277 static bool get_next_vma(unsigned long mask, unsigned long size, struct mm_walk *args,
3278 unsigned long *vm_start, unsigned long *vm_end)
3280 unsigned long start = round_up(*vm_end, size);
3281 unsigned long end = (start | ~mask) + 1;
3282 VMA_ITERATOR(vmi, args->mm, start);
3284 VM_WARN_ON_ONCE(mask & size);
3285 VM_WARN_ON_ONCE((start & mask) != (*vm_start & mask));
3287 for_each_vma(vmi, args->vma) {
3288 if (end && end <= args->vma->vm_start)
3289 return false;
3291 if (should_skip_vma(args->vma->vm_start, args->vma->vm_end, args))
3292 continue;
3294 *vm_start = max(start, args->vma->vm_start);
3295 *vm_end = min(end - 1, args->vma->vm_end - 1) + 1;
3297 return true;
3300 return false;
3303 static unsigned long get_pte_pfn(pte_t pte, struct vm_area_struct *vma, unsigned long addr,
3304 struct pglist_data *pgdat)
3306 unsigned long pfn = pte_pfn(pte);
3308 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3310 if (!pte_present(pte) || is_zero_pfn(pfn))
3311 return -1;
3313 if (WARN_ON_ONCE(pte_devmap(pte) || pte_special(pte)))
3314 return -1;
3316 if (!pte_young(pte) && !mm_has_notifiers(vma->vm_mm))
3317 return -1;
3319 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3320 return -1;
3322 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3323 return -1;
3325 return pfn;
3328 static unsigned long get_pmd_pfn(pmd_t pmd, struct vm_area_struct *vma, unsigned long addr,
3329 struct pglist_data *pgdat)
3331 unsigned long pfn = pmd_pfn(pmd);
3333 VM_WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end);
3335 if (!pmd_present(pmd) || is_huge_zero_pmd(pmd))
3336 return -1;
3338 if (WARN_ON_ONCE(pmd_devmap(pmd)))
3339 return -1;
3341 if (!pmd_young(pmd) && !mm_has_notifiers(vma->vm_mm))
3342 return -1;
3344 if (WARN_ON_ONCE(!pfn_valid(pfn)))
3345 return -1;
3347 if (pfn < pgdat->node_start_pfn || pfn >= pgdat_end_pfn(pgdat))
3348 return -1;
3350 return pfn;
3353 static struct folio *get_pfn_folio(unsigned long pfn, struct mem_cgroup *memcg,
3354 struct pglist_data *pgdat, bool can_swap)
3356 struct folio *folio;
3358 folio = pfn_folio(pfn);
3359 if (folio_nid(folio) != pgdat->node_id)
3360 return NULL;
3362 if (folio_memcg(folio) != memcg)
3363 return NULL;
3365 /* file VMAs can contain anon pages from COW */
3366 if (!folio_is_file_lru(folio) && !can_swap)
3367 return NULL;
3369 return folio;
3372 static bool suitable_to_scan(int total, int young)
3374 int n = clamp_t(int, cache_line_size() / sizeof(pte_t), 2, 8);
3376 /* suitable if the average number of young PTEs per cacheline is >=1 */
3377 return young * n >= total;
3380 static bool walk_pte_range(pmd_t *pmd, unsigned long start, unsigned long end,
3381 struct mm_walk *args)
3383 int i;
3384 pte_t *pte;
3385 spinlock_t *ptl;
3386 unsigned long addr;
3387 int total = 0;
3388 int young = 0;
3389 struct lru_gen_mm_walk *walk = args->private;
3390 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3391 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3392 DEFINE_MAX_SEQ(walk->lruvec);
3393 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3394 pmd_t pmdval;
3396 pte = pte_offset_map_rw_nolock(args->mm, pmd, start & PMD_MASK, &pmdval,
3397 &ptl);
3398 if (!pte)
3399 return false;
3400 if (!spin_trylock(ptl)) {
3401 pte_unmap(pte);
3402 return false;
3405 if (unlikely(!pmd_same(pmdval, pmdp_get_lockless(pmd)))) {
3406 pte_unmap_unlock(pte, ptl);
3407 return false;
3410 arch_enter_lazy_mmu_mode();
3411 restart:
3412 for (i = pte_index(start), addr = start; addr != end; i++, addr += PAGE_SIZE) {
3413 unsigned long pfn;
3414 struct folio *folio;
3415 pte_t ptent = ptep_get(pte + i);
3417 total++;
3418 walk->mm_stats[MM_LEAF_TOTAL]++;
3420 pfn = get_pte_pfn(ptent, args->vma, addr, pgdat);
3421 if (pfn == -1)
3422 continue;
3424 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3425 if (!folio)
3426 continue;
3428 if (!ptep_clear_young_notify(args->vma, addr, pte + i))
3429 continue;
3431 young++;
3432 walk->mm_stats[MM_LEAF_YOUNG]++;
3434 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
3435 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3436 !folio_test_swapcache(folio)))
3437 folio_mark_dirty(folio);
3439 old_gen = folio_update_gen(folio, new_gen);
3440 if (old_gen >= 0 && old_gen != new_gen)
3441 update_batch_size(walk, folio, old_gen, new_gen);
3444 if (i < PTRS_PER_PTE && get_next_vma(PMD_MASK, PAGE_SIZE, args, &start, &end))
3445 goto restart;
3447 arch_leave_lazy_mmu_mode();
3448 pte_unmap_unlock(pte, ptl);
3450 return suitable_to_scan(total, young);
3453 static void walk_pmd_range_locked(pud_t *pud, unsigned long addr, struct vm_area_struct *vma,
3454 struct mm_walk *args, unsigned long *bitmap, unsigned long *first)
3456 int i;
3457 pmd_t *pmd;
3458 spinlock_t *ptl;
3459 struct lru_gen_mm_walk *walk = args->private;
3460 struct mem_cgroup *memcg = lruvec_memcg(walk->lruvec);
3461 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3462 DEFINE_MAX_SEQ(walk->lruvec);
3463 int old_gen, new_gen = lru_gen_from_seq(max_seq);
3465 VM_WARN_ON_ONCE(pud_leaf(*pud));
3467 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3468 if (*first == -1) {
3469 *first = addr;
3470 bitmap_zero(bitmap, MIN_LRU_BATCH);
3471 return;
3474 i = addr == -1 ? 0 : pmd_index(addr) - pmd_index(*first);
3475 if (i && i <= MIN_LRU_BATCH) {
3476 __set_bit(i - 1, bitmap);
3477 return;
3480 pmd = pmd_offset(pud, *first);
3482 ptl = pmd_lockptr(args->mm, pmd);
3483 if (!spin_trylock(ptl))
3484 goto done;
3486 arch_enter_lazy_mmu_mode();
3488 do {
3489 unsigned long pfn;
3490 struct folio *folio;
3492 /* don't round down the first address */
3493 addr = i ? (*first & PMD_MASK) + i * PMD_SIZE : *first;
3495 if (!pmd_present(pmd[i]))
3496 goto next;
3498 if (!pmd_trans_huge(pmd[i])) {
3499 if (!walk->force_scan && should_clear_pmd_young() &&
3500 !mm_has_notifiers(args->mm))
3501 pmdp_test_and_clear_young(vma, addr, pmd + i);
3502 goto next;
3505 pfn = get_pmd_pfn(pmd[i], vma, addr, pgdat);
3506 if (pfn == -1)
3507 goto next;
3509 folio = get_pfn_folio(pfn, memcg, pgdat, walk->can_swap);
3510 if (!folio)
3511 goto next;
3513 if (!pmdp_clear_young_notify(vma, addr, pmd + i))
3514 goto next;
3516 walk->mm_stats[MM_LEAF_YOUNG]++;
3518 if (pmd_dirty(pmd[i]) && !folio_test_dirty(folio) &&
3519 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
3520 !folio_test_swapcache(folio)))
3521 folio_mark_dirty(folio);
3523 old_gen = folio_update_gen(folio, new_gen);
3524 if (old_gen >= 0 && old_gen != new_gen)
3525 update_batch_size(walk, folio, old_gen, new_gen);
3526 next:
3527 i = i > MIN_LRU_BATCH ? 0 : find_next_bit(bitmap, MIN_LRU_BATCH, i) + 1;
3528 } while (i <= MIN_LRU_BATCH);
3530 arch_leave_lazy_mmu_mode();
3531 spin_unlock(ptl);
3532 done:
3533 *first = -1;
3536 static void walk_pmd_range(pud_t *pud, unsigned long start, unsigned long end,
3537 struct mm_walk *args)
3539 int i;
3540 pmd_t *pmd;
3541 unsigned long next;
3542 unsigned long addr;
3543 struct vm_area_struct *vma;
3544 DECLARE_BITMAP(bitmap, MIN_LRU_BATCH);
3545 unsigned long first = -1;
3546 struct lru_gen_mm_walk *walk = args->private;
3547 struct lru_gen_mm_state *mm_state = get_mm_state(walk->lruvec);
3549 VM_WARN_ON_ONCE(pud_leaf(*pud));
3552 * Finish an entire PMD in two passes: the first only reaches to PTE
3553 * tables to avoid taking the PMD lock; the second, if necessary, takes
3554 * the PMD lock to clear the accessed bit in PMD entries.
3556 pmd = pmd_offset(pud, start & PUD_MASK);
3557 restart:
3558 /* walk_pte_range() may call get_next_vma() */
3559 vma = args->vma;
3560 for (i = pmd_index(start), addr = start; addr != end; i++, addr = next) {
3561 pmd_t val = pmdp_get_lockless(pmd + i);
3563 next = pmd_addr_end(addr, end);
3565 if (!pmd_present(val) || is_huge_zero_pmd(val)) {
3566 walk->mm_stats[MM_LEAF_TOTAL]++;
3567 continue;
3570 if (pmd_trans_huge(val)) {
3571 struct pglist_data *pgdat = lruvec_pgdat(walk->lruvec);
3572 unsigned long pfn = get_pmd_pfn(val, vma, addr, pgdat);
3574 walk->mm_stats[MM_LEAF_TOTAL]++;
3576 if (pfn != -1)
3577 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3578 continue;
3581 if (!walk->force_scan && should_clear_pmd_young() &&
3582 !mm_has_notifiers(args->mm)) {
3583 if (!pmd_young(val))
3584 continue;
3586 walk_pmd_range_locked(pud, addr, vma, args, bitmap, &first);
3589 if (!walk->force_scan && !test_bloom_filter(mm_state, walk->seq, pmd + i))
3590 continue;
3592 walk->mm_stats[MM_NONLEAF_FOUND]++;
3594 if (!walk_pte_range(&val, addr, next, args))
3595 continue;
3597 walk->mm_stats[MM_NONLEAF_ADDED]++;
3599 /* carry over to the next generation */
3600 update_bloom_filter(mm_state, walk->seq + 1, pmd + i);
3603 walk_pmd_range_locked(pud, -1, vma, args, bitmap, &first);
3605 if (i < PTRS_PER_PMD && get_next_vma(PUD_MASK, PMD_SIZE, args, &start, &end))
3606 goto restart;
3609 static int walk_pud_range(p4d_t *p4d, unsigned long start, unsigned long end,
3610 struct mm_walk *args)
3612 int i;
3613 pud_t *pud;
3614 unsigned long addr;
3615 unsigned long next;
3616 struct lru_gen_mm_walk *walk = args->private;
3618 VM_WARN_ON_ONCE(p4d_leaf(*p4d));
3620 pud = pud_offset(p4d, start & P4D_MASK);
3621 restart:
3622 for (i = pud_index(start), addr = start; addr != end; i++, addr = next) {
3623 pud_t val = READ_ONCE(pud[i]);
3625 next = pud_addr_end(addr, end);
3627 if (!pud_present(val) || WARN_ON_ONCE(pud_leaf(val)))
3628 continue;
3630 walk_pmd_range(&val, addr, next, args);
3632 if (need_resched() || walk->batched >= MAX_LRU_BATCH) {
3633 end = (addr | ~PUD_MASK) + 1;
3634 goto done;
3638 if (i < PTRS_PER_PUD && get_next_vma(P4D_MASK, PUD_SIZE, args, &start, &end))
3639 goto restart;
3641 end = round_up(end, P4D_SIZE);
3642 done:
3643 if (!end || !args->vma)
3644 return 1;
3646 walk->next_addr = max(end, args->vma->vm_start);
3648 return -EAGAIN;
3651 static void walk_mm(struct mm_struct *mm, struct lru_gen_mm_walk *walk)
3653 static const struct mm_walk_ops mm_walk_ops = {
3654 .test_walk = should_skip_vma,
3655 .p4d_entry = walk_pud_range,
3656 .walk_lock = PGWALK_RDLOCK,
3658 int err;
3659 struct lruvec *lruvec = walk->lruvec;
3661 walk->next_addr = FIRST_USER_ADDRESS;
3663 do {
3664 DEFINE_MAX_SEQ(lruvec);
3666 err = -EBUSY;
3668 /* another thread might have called inc_max_seq() */
3669 if (walk->seq != max_seq)
3670 break;
3672 /* the caller might be holding the lock for write */
3673 if (mmap_read_trylock(mm)) {
3674 err = walk_page_range(mm, walk->next_addr, ULONG_MAX, &mm_walk_ops, walk);
3676 mmap_read_unlock(mm);
3679 if (walk->batched) {
3680 spin_lock_irq(&lruvec->lru_lock);
3681 reset_batch_size(walk);
3682 spin_unlock_irq(&lruvec->lru_lock);
3685 cond_resched();
3686 } while (err == -EAGAIN);
3689 static struct lru_gen_mm_walk *set_mm_walk(struct pglist_data *pgdat, bool force_alloc)
3691 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3693 if (pgdat && current_is_kswapd()) {
3694 VM_WARN_ON_ONCE(walk);
3696 walk = &pgdat->mm_walk;
3697 } else if (!walk && force_alloc) {
3698 VM_WARN_ON_ONCE(current_is_kswapd());
3700 walk = kzalloc(sizeof(*walk), __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN);
3703 current->reclaim_state->mm_walk = walk;
3705 return walk;
3708 static void clear_mm_walk(void)
3710 struct lru_gen_mm_walk *walk = current->reclaim_state->mm_walk;
3712 VM_WARN_ON_ONCE(walk && memchr_inv(walk->nr_pages, 0, sizeof(walk->nr_pages)));
3713 VM_WARN_ON_ONCE(walk && memchr_inv(walk->mm_stats, 0, sizeof(walk->mm_stats)));
3715 current->reclaim_state->mm_walk = NULL;
3717 if (!current_is_kswapd())
3718 kfree(walk);
3721 static bool inc_min_seq(struct lruvec *lruvec, int type, bool can_swap)
3723 int zone;
3724 int remaining = MAX_LRU_BATCH;
3725 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3726 int new_gen, old_gen = lru_gen_from_seq(lrugen->min_seq[type]);
3728 if (type == LRU_GEN_ANON && !can_swap)
3729 goto done;
3731 /* prevent cold/hot inversion if force_scan is true */
3732 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3733 struct list_head *head = &lrugen->folios[old_gen][type][zone];
3735 while (!list_empty(head)) {
3736 struct folio *folio = lru_to_folio(head);
3738 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
3739 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
3740 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
3741 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
3743 new_gen = folio_inc_gen(lruvec, folio, false);
3744 list_move_tail(&folio->lru, &lrugen->folios[new_gen][type][zone]);
3746 if (!--remaining)
3747 return false;
3750 done:
3751 reset_ctrl_pos(lruvec, type, true);
3752 WRITE_ONCE(lrugen->min_seq[type], lrugen->min_seq[type] + 1);
3754 return true;
3757 static bool try_to_inc_min_seq(struct lruvec *lruvec, bool can_swap)
3759 int gen, type, zone;
3760 bool success = false;
3761 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3762 DEFINE_MIN_SEQ(lruvec);
3764 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3766 /* find the oldest populated generation */
3767 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3768 while (min_seq[type] + MIN_NR_GENS <= lrugen->max_seq) {
3769 gen = lru_gen_from_seq(min_seq[type]);
3771 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3772 if (!list_empty(&lrugen->folios[gen][type][zone]))
3773 goto next;
3776 min_seq[type]++;
3778 next:
3782 /* see the comment on lru_gen_folio */
3783 if (can_swap) {
3784 min_seq[LRU_GEN_ANON] = min(min_seq[LRU_GEN_ANON], min_seq[LRU_GEN_FILE]);
3785 min_seq[LRU_GEN_FILE] = max(min_seq[LRU_GEN_ANON], lrugen->min_seq[LRU_GEN_FILE]);
3788 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3789 if (min_seq[type] == lrugen->min_seq[type])
3790 continue;
3792 reset_ctrl_pos(lruvec, type, true);
3793 WRITE_ONCE(lrugen->min_seq[type], min_seq[type]);
3794 success = true;
3797 return success;
3800 static bool inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3801 bool can_swap, bool force_scan)
3803 bool success;
3804 int prev, next;
3805 int type, zone;
3806 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3807 restart:
3808 if (seq < READ_ONCE(lrugen->max_seq))
3809 return false;
3811 spin_lock_irq(&lruvec->lru_lock);
3813 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
3815 success = seq == lrugen->max_seq;
3816 if (!success)
3817 goto unlock;
3819 for (type = ANON_AND_FILE - 1; type >= 0; type--) {
3820 if (get_nr_gens(lruvec, type) != MAX_NR_GENS)
3821 continue;
3823 VM_WARN_ON_ONCE(!force_scan && (type == LRU_GEN_FILE || can_swap));
3825 if (inc_min_seq(lruvec, type, can_swap))
3826 continue;
3828 spin_unlock_irq(&lruvec->lru_lock);
3829 cond_resched();
3830 goto restart;
3834 * Update the active/inactive LRU sizes for compatibility. Both sides of
3835 * the current max_seq need to be covered, since max_seq+1 can overlap
3836 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3837 * overlap, cold/hot inversion happens.
3839 prev = lru_gen_from_seq(lrugen->max_seq - 1);
3840 next = lru_gen_from_seq(lrugen->max_seq + 1);
3842 for (type = 0; type < ANON_AND_FILE; type++) {
3843 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3844 enum lru_list lru = type * LRU_INACTIVE_FILE;
3845 long delta = lrugen->nr_pages[prev][type][zone] -
3846 lrugen->nr_pages[next][type][zone];
3848 if (!delta)
3849 continue;
3851 __update_lru_size(lruvec, lru, zone, delta);
3852 __update_lru_size(lruvec, lru + LRU_ACTIVE, zone, -delta);
3856 for (type = 0; type < ANON_AND_FILE; type++)
3857 reset_ctrl_pos(lruvec, type, false);
3859 WRITE_ONCE(lrugen->timestamps[next], jiffies);
3860 /* make sure preceding modifications appear */
3861 smp_store_release(&lrugen->max_seq, lrugen->max_seq + 1);
3862 unlock:
3863 spin_unlock_irq(&lruvec->lru_lock);
3865 return success;
3868 static bool try_to_inc_max_seq(struct lruvec *lruvec, unsigned long seq,
3869 bool can_swap, bool force_scan)
3871 bool success;
3872 struct lru_gen_mm_walk *walk;
3873 struct mm_struct *mm = NULL;
3874 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3875 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
3877 VM_WARN_ON_ONCE(seq > READ_ONCE(lrugen->max_seq));
3879 if (!mm_state)
3880 return inc_max_seq(lruvec, seq, can_swap, force_scan);
3882 /* see the comment in iterate_mm_list() */
3883 if (seq <= READ_ONCE(mm_state->seq))
3884 return false;
3887 * If the hardware doesn't automatically set the accessed bit, fallback
3888 * to lru_gen_look_around(), which only clears the accessed bit in a
3889 * handful of PTEs. Spreading the work out over a period of time usually
3890 * is less efficient, but it avoids bursty page faults.
3892 if (!should_walk_mmu()) {
3893 success = iterate_mm_list_nowalk(lruvec, seq);
3894 goto done;
3897 walk = set_mm_walk(NULL, true);
3898 if (!walk) {
3899 success = iterate_mm_list_nowalk(lruvec, seq);
3900 goto done;
3903 walk->lruvec = lruvec;
3904 walk->seq = seq;
3905 walk->can_swap = can_swap;
3906 walk->force_scan = force_scan;
3908 do {
3909 success = iterate_mm_list(walk, &mm);
3910 if (mm)
3911 walk_mm(mm, walk);
3912 } while (mm);
3913 done:
3914 if (success) {
3915 success = inc_max_seq(lruvec, seq, can_swap, force_scan);
3916 WARN_ON_ONCE(!success);
3919 return success;
3922 /******************************************************************************
3923 * working set protection
3924 ******************************************************************************/
3926 static void set_initial_priority(struct pglist_data *pgdat, struct scan_control *sc)
3928 int priority;
3929 unsigned long reclaimable;
3931 if (sc->priority != DEF_PRIORITY || sc->nr_to_reclaim < MIN_LRU_BATCH)
3932 return;
3934 * Determine the initial priority based on
3935 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3936 * where reclaimed_to_scanned_ratio = inactive / total.
3938 reclaimable = node_page_state(pgdat, NR_INACTIVE_FILE);
3939 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3940 reclaimable += node_page_state(pgdat, NR_INACTIVE_ANON);
3942 /* round down reclaimable and round up sc->nr_to_reclaim */
3943 priority = fls_long(reclaimable) - 1 - fls_long(sc->nr_to_reclaim - 1);
3946 * The estimation is based on LRU pages only, so cap it to prevent
3947 * overshoots of shrinker objects by large margins.
3949 sc->priority = clamp(priority, DEF_PRIORITY / 2, DEF_PRIORITY);
3952 static bool lruvec_is_sizable(struct lruvec *lruvec, struct scan_control *sc)
3954 int gen, type, zone;
3955 unsigned long total = 0;
3956 bool can_swap = get_swappiness(lruvec, sc);
3957 struct lru_gen_folio *lrugen = &lruvec->lrugen;
3958 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3959 DEFINE_MAX_SEQ(lruvec);
3960 DEFINE_MIN_SEQ(lruvec);
3962 for (type = !can_swap; type < ANON_AND_FILE; type++) {
3963 unsigned long seq;
3965 for (seq = min_seq[type]; seq <= max_seq; seq++) {
3966 gen = lru_gen_from_seq(seq);
3968 for (zone = 0; zone < MAX_NR_ZONES; zone++)
3969 total += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
3973 /* whether the size is big enough to be helpful */
3974 return mem_cgroup_online(memcg) ? (total >> sc->priority) : total;
3977 static bool lruvec_is_reclaimable(struct lruvec *lruvec, struct scan_control *sc,
3978 unsigned long min_ttl)
3980 int gen;
3981 unsigned long birth;
3982 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
3983 DEFINE_MIN_SEQ(lruvec);
3985 if (mem_cgroup_below_min(NULL, memcg))
3986 return false;
3988 if (!lruvec_is_sizable(lruvec, sc))
3989 return false;
3991 /* see the comment on lru_gen_folio */
3992 gen = lru_gen_from_seq(min_seq[LRU_GEN_FILE]);
3993 birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
3995 return time_is_before_jiffies(birth + min_ttl);
3998 /* to protect the working set of the last N jiffies */
3999 static unsigned long lru_gen_min_ttl __read_mostly;
4001 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
4003 struct mem_cgroup *memcg;
4004 unsigned long min_ttl = READ_ONCE(lru_gen_min_ttl);
4005 bool reclaimable = !min_ttl;
4007 VM_WARN_ON_ONCE(!current_is_kswapd());
4009 set_initial_priority(pgdat, sc);
4011 memcg = mem_cgroup_iter(NULL, NULL, NULL);
4012 do {
4013 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4015 mem_cgroup_calculate_protection(NULL, memcg);
4017 if (!reclaimable)
4018 reclaimable = lruvec_is_reclaimable(lruvec, sc, min_ttl);
4019 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
4022 * The main goal is to OOM kill if every generation from all memcgs is
4023 * younger than min_ttl. However, another possibility is all memcgs are
4024 * either too small or below min.
4026 if (!reclaimable && mutex_trylock(&oom_lock)) {
4027 struct oom_control oc = {
4028 .gfp_mask = sc->gfp_mask,
4031 out_of_memory(&oc);
4033 mutex_unlock(&oom_lock);
4037 /******************************************************************************
4038 * rmap/PT walk feedback
4039 ******************************************************************************/
4042 * This function exploits spatial locality when shrink_folio_list() walks the
4043 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4044 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4045 * the PTE table to the Bloom filter. This forms a feedback loop between the
4046 * eviction and the aging.
4048 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
4050 int i;
4051 unsigned long start;
4052 unsigned long end;
4053 struct lru_gen_mm_walk *walk;
4054 int young = 1;
4055 pte_t *pte = pvmw->pte;
4056 unsigned long addr = pvmw->address;
4057 struct vm_area_struct *vma = pvmw->vma;
4058 struct folio *folio = pfn_folio(pvmw->pfn);
4059 bool can_swap = !folio_is_file_lru(folio);
4060 struct mem_cgroup *memcg = folio_memcg(folio);
4061 struct pglist_data *pgdat = folio_pgdat(folio);
4062 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
4063 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
4064 DEFINE_MAX_SEQ(lruvec);
4065 int old_gen, new_gen = lru_gen_from_seq(max_seq);
4067 lockdep_assert_held(pvmw->ptl);
4068 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio), folio);
4070 if (!ptep_clear_young_notify(vma, addr, pte))
4071 return false;
4073 if (spin_is_contended(pvmw->ptl))
4074 return true;
4076 /* exclude special VMAs containing anon pages from COW */
4077 if (vma->vm_flags & VM_SPECIAL)
4078 return true;
4080 /* avoid taking the LRU lock under the PTL when possible */
4081 walk = current->reclaim_state ? current->reclaim_state->mm_walk : NULL;
4083 start = max(addr & PMD_MASK, vma->vm_start);
4084 end = min(addr | ~PMD_MASK, vma->vm_end - 1) + 1;
4086 if (end - start == PAGE_SIZE)
4087 return true;
4089 if (end - start > MIN_LRU_BATCH * PAGE_SIZE) {
4090 if (addr - start < MIN_LRU_BATCH * PAGE_SIZE / 2)
4091 end = start + MIN_LRU_BATCH * PAGE_SIZE;
4092 else if (end - addr < MIN_LRU_BATCH * PAGE_SIZE / 2)
4093 start = end - MIN_LRU_BATCH * PAGE_SIZE;
4094 else {
4095 start = addr - MIN_LRU_BATCH * PAGE_SIZE / 2;
4096 end = addr + MIN_LRU_BATCH * PAGE_SIZE / 2;
4100 arch_enter_lazy_mmu_mode();
4102 pte -= (addr - start) / PAGE_SIZE;
4104 for (i = 0, addr = start; addr != end; i++, addr += PAGE_SIZE) {
4105 unsigned long pfn;
4106 pte_t ptent = ptep_get(pte + i);
4108 pfn = get_pte_pfn(ptent, vma, addr, pgdat);
4109 if (pfn == -1)
4110 continue;
4112 folio = get_pfn_folio(pfn, memcg, pgdat, can_swap);
4113 if (!folio)
4114 continue;
4116 if (!ptep_clear_young_notify(vma, addr, pte + i))
4117 continue;
4119 young++;
4121 if (pte_dirty(ptent) && !folio_test_dirty(folio) &&
4122 !(folio_test_anon(folio) && folio_test_swapbacked(folio) &&
4123 !folio_test_swapcache(folio)))
4124 folio_mark_dirty(folio);
4126 if (walk) {
4127 old_gen = folio_update_gen(folio, new_gen);
4128 if (old_gen >= 0 && old_gen != new_gen)
4129 update_batch_size(walk, folio, old_gen, new_gen);
4131 continue;
4134 old_gen = folio_lru_gen(folio);
4135 if (old_gen < 0)
4136 folio_set_referenced(folio);
4137 else if (old_gen != new_gen) {
4138 folio_clear_lru_refs(folio);
4139 folio_activate(folio);
4143 arch_leave_lazy_mmu_mode();
4145 /* feedback from rmap walkers to page table walkers */
4146 if (mm_state && suitable_to_scan(i, young))
4147 update_bloom_filter(mm_state, max_seq, pvmw->pmd);
4149 return true;
4152 /******************************************************************************
4153 * memcg LRU
4154 ******************************************************************************/
4156 /* see the comment on MEMCG_NR_GENS */
4157 enum {
4158 MEMCG_LRU_NOP,
4159 MEMCG_LRU_HEAD,
4160 MEMCG_LRU_TAIL,
4161 MEMCG_LRU_OLD,
4162 MEMCG_LRU_YOUNG,
4165 static void lru_gen_rotate_memcg(struct lruvec *lruvec, int op)
4167 int seg;
4168 int old, new;
4169 unsigned long flags;
4170 int bin = get_random_u32_below(MEMCG_NR_BINS);
4171 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4173 spin_lock_irqsave(&pgdat->memcg_lru.lock, flags);
4175 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec->lrugen.list));
4177 seg = 0;
4178 new = old = lruvec->lrugen.gen;
4180 /* see the comment on MEMCG_NR_GENS */
4181 if (op == MEMCG_LRU_HEAD)
4182 seg = MEMCG_LRU_HEAD;
4183 else if (op == MEMCG_LRU_TAIL)
4184 seg = MEMCG_LRU_TAIL;
4185 else if (op == MEMCG_LRU_OLD)
4186 new = get_memcg_gen(pgdat->memcg_lru.seq);
4187 else if (op == MEMCG_LRU_YOUNG)
4188 new = get_memcg_gen(pgdat->memcg_lru.seq + 1);
4189 else
4190 VM_WARN_ON_ONCE(true);
4192 WRITE_ONCE(lruvec->lrugen.seg, seg);
4193 WRITE_ONCE(lruvec->lrugen.gen, new);
4195 hlist_nulls_del_rcu(&lruvec->lrugen.list);
4197 if (op == MEMCG_LRU_HEAD || op == MEMCG_LRU_OLD)
4198 hlist_nulls_add_head_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4199 else
4200 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[new][bin]);
4202 pgdat->memcg_lru.nr_memcgs[old]--;
4203 pgdat->memcg_lru.nr_memcgs[new]++;
4205 if (!pgdat->memcg_lru.nr_memcgs[old] && old == get_memcg_gen(pgdat->memcg_lru.seq))
4206 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4208 spin_unlock_irqrestore(&pgdat->memcg_lru.lock, flags);
4211 #ifdef CONFIG_MEMCG
4213 void lru_gen_online_memcg(struct mem_cgroup *memcg)
4215 int gen;
4216 int nid;
4217 int bin = get_random_u32_below(MEMCG_NR_BINS);
4219 for_each_node(nid) {
4220 struct pglist_data *pgdat = NODE_DATA(nid);
4221 struct lruvec *lruvec = get_lruvec(memcg, nid);
4223 spin_lock_irq(&pgdat->memcg_lru.lock);
4225 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec->lrugen.list));
4227 gen = get_memcg_gen(pgdat->memcg_lru.seq);
4229 lruvec->lrugen.gen = gen;
4231 hlist_nulls_add_tail_rcu(&lruvec->lrugen.list, &pgdat->memcg_lru.fifo[gen][bin]);
4232 pgdat->memcg_lru.nr_memcgs[gen]++;
4234 spin_unlock_irq(&pgdat->memcg_lru.lock);
4238 void lru_gen_offline_memcg(struct mem_cgroup *memcg)
4240 int nid;
4242 for_each_node(nid) {
4243 struct lruvec *lruvec = get_lruvec(memcg, nid);
4245 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_OLD);
4249 void lru_gen_release_memcg(struct mem_cgroup *memcg)
4251 int gen;
4252 int nid;
4254 for_each_node(nid) {
4255 struct pglist_data *pgdat = NODE_DATA(nid);
4256 struct lruvec *lruvec = get_lruvec(memcg, nid);
4258 spin_lock_irq(&pgdat->memcg_lru.lock);
4260 if (hlist_nulls_unhashed(&lruvec->lrugen.list))
4261 goto unlock;
4263 gen = lruvec->lrugen.gen;
4265 hlist_nulls_del_init_rcu(&lruvec->lrugen.list);
4266 pgdat->memcg_lru.nr_memcgs[gen]--;
4268 if (!pgdat->memcg_lru.nr_memcgs[gen] && gen == get_memcg_gen(pgdat->memcg_lru.seq))
4269 WRITE_ONCE(pgdat->memcg_lru.seq, pgdat->memcg_lru.seq + 1);
4270 unlock:
4271 spin_unlock_irq(&pgdat->memcg_lru.lock);
4275 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
4277 struct lruvec *lruvec = get_lruvec(memcg, nid);
4279 /* see the comment on MEMCG_NR_GENS */
4280 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_HEAD)
4281 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_HEAD);
4284 #endif /* CONFIG_MEMCG */
4286 /******************************************************************************
4287 * the eviction
4288 ******************************************************************************/
4290 static bool sort_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc,
4291 int tier_idx)
4293 bool success;
4294 bool dirty, writeback;
4295 int gen = folio_lru_gen(folio);
4296 int type = folio_is_file_lru(folio);
4297 int zone = folio_zonenum(folio);
4298 int delta = folio_nr_pages(folio);
4299 int refs = folio_lru_refs(folio);
4300 int tier = lru_tier_from_refs(refs);
4301 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4303 VM_WARN_ON_ONCE_FOLIO(gen >= MAX_NR_GENS, folio);
4305 /* unevictable */
4306 if (!folio_evictable(folio)) {
4307 success = lru_gen_del_folio(lruvec, folio, true);
4308 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4309 folio_set_unevictable(folio);
4310 lruvec_add_folio(lruvec, folio);
4311 __count_vm_events(UNEVICTABLE_PGCULLED, delta);
4312 return true;
4315 /* promoted */
4316 if (gen != lru_gen_from_seq(lrugen->min_seq[type])) {
4317 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4318 return true;
4321 /* protected */
4322 if (tier > tier_idx || refs == BIT(LRU_REFS_WIDTH)) {
4323 int hist = lru_hist_from_seq(lrugen->min_seq[type]);
4325 gen = folio_inc_gen(lruvec, folio, false);
4326 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4328 WRITE_ONCE(lrugen->protected[hist][type][tier - 1],
4329 lrugen->protected[hist][type][tier - 1] + delta);
4330 return true;
4333 /* ineligible */
4334 if (!folio_test_lru(folio) || zone > sc->reclaim_idx) {
4335 gen = folio_inc_gen(lruvec, folio, false);
4336 list_move_tail(&folio->lru, &lrugen->folios[gen][type][zone]);
4337 return true;
4340 dirty = folio_test_dirty(folio);
4341 writeback = folio_test_writeback(folio);
4342 if (type == LRU_GEN_FILE && dirty) {
4343 sc->nr.file_taken += delta;
4344 if (!writeback)
4345 sc->nr.unqueued_dirty += delta;
4348 /* waiting for writeback */
4349 if (folio_test_locked(folio) || writeback ||
4350 (type == LRU_GEN_FILE && dirty)) {
4351 gen = folio_inc_gen(lruvec, folio, true);
4352 list_move(&folio->lru, &lrugen->folios[gen][type][zone]);
4353 return true;
4356 return false;
4359 static bool isolate_folio(struct lruvec *lruvec, struct folio *folio, struct scan_control *sc)
4361 bool success;
4363 /* swap constrained */
4364 if (!(sc->gfp_mask & __GFP_IO) &&
4365 (folio_test_dirty(folio) ||
4366 (folio_test_anon(folio) && !folio_test_swapcache(folio))))
4367 return false;
4369 /* raced with release_pages() */
4370 if (!folio_try_get(folio))
4371 return false;
4373 /* raced with another isolation */
4374 if (!folio_test_clear_lru(folio)) {
4375 folio_put(folio);
4376 return false;
4379 /* see the comment on MAX_NR_TIERS */
4380 if (!folio_test_referenced(folio))
4381 folio_clear_lru_refs(folio);
4383 /* for shrink_folio_list() */
4384 folio_clear_reclaim(folio);
4385 folio_clear_referenced(folio);
4387 success = lru_gen_del_folio(lruvec, folio, true);
4388 VM_WARN_ON_ONCE_FOLIO(!success, folio);
4390 return true;
4393 static int scan_folios(struct lruvec *lruvec, struct scan_control *sc,
4394 int type, int tier, struct list_head *list)
4396 int i;
4397 int gen;
4398 enum vm_event_item item;
4399 int sorted = 0;
4400 int scanned = 0;
4401 int isolated = 0;
4402 int skipped = 0;
4403 int remaining = MAX_LRU_BATCH;
4404 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4405 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4407 VM_WARN_ON_ONCE(!list_empty(list));
4409 if (get_nr_gens(lruvec, type) == MIN_NR_GENS)
4410 return 0;
4412 gen = lru_gen_from_seq(lrugen->min_seq[type]);
4414 for (i = MAX_NR_ZONES; i > 0; i--) {
4415 LIST_HEAD(moved);
4416 int skipped_zone = 0;
4417 int zone = (sc->reclaim_idx + i) % MAX_NR_ZONES;
4418 struct list_head *head = &lrugen->folios[gen][type][zone];
4420 while (!list_empty(head)) {
4421 struct folio *folio = lru_to_folio(head);
4422 int delta = folio_nr_pages(folio);
4424 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
4425 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
4426 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
4427 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
4429 scanned += delta;
4431 if (sort_folio(lruvec, folio, sc, tier))
4432 sorted += delta;
4433 else if (isolate_folio(lruvec, folio, sc)) {
4434 list_add(&folio->lru, list);
4435 isolated += delta;
4436 } else {
4437 list_move(&folio->lru, &moved);
4438 skipped_zone += delta;
4441 if (!--remaining || max(isolated, skipped_zone) >= MIN_LRU_BATCH)
4442 break;
4445 if (skipped_zone) {
4446 list_splice(&moved, head);
4447 __count_zid_vm_events(PGSCAN_SKIP, zone, skipped_zone);
4448 skipped += skipped_zone;
4451 if (!remaining || isolated >= MIN_LRU_BATCH)
4452 break;
4455 item = PGSCAN_KSWAPD + reclaimer_offset();
4456 if (!cgroup_reclaim(sc)) {
4457 __count_vm_events(item, isolated);
4458 __count_vm_events(PGREFILL, sorted);
4460 __count_memcg_events(memcg, item, isolated);
4461 __count_memcg_events(memcg, PGREFILL, sorted);
4462 __count_vm_events(PGSCAN_ANON + type, isolated);
4463 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, MAX_LRU_BATCH,
4464 scanned, skipped, isolated,
4465 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4466 if (type == LRU_GEN_FILE)
4467 sc->nr.file_taken += isolated;
4469 * There might not be eligible folios due to reclaim_idx. Check the
4470 * remaining to prevent livelock if it's not making progress.
4472 return isolated || !remaining ? scanned : 0;
4475 static int get_tier_idx(struct lruvec *lruvec, int type)
4477 int tier;
4478 struct ctrl_pos sp, pv;
4481 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4482 * This value is chosen because any other tier would have at least twice
4483 * as many refaults as the first tier.
4485 read_ctrl_pos(lruvec, type, 0, 1, &sp);
4486 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4487 read_ctrl_pos(lruvec, type, tier, 2, &pv);
4488 if (!positive_ctrl_err(&sp, &pv))
4489 break;
4492 return tier - 1;
4495 static int get_type_to_scan(struct lruvec *lruvec, int swappiness, int *tier_idx)
4497 int type, tier;
4498 struct ctrl_pos sp, pv;
4499 int gain[ANON_AND_FILE] = { swappiness, MAX_SWAPPINESS - swappiness };
4502 * Compare the first tier of anon with that of file to determine which
4503 * type to scan. Also need to compare other tiers of the selected type
4504 * with the first tier of the other type to determine the last tier (of
4505 * the selected type) to evict.
4507 read_ctrl_pos(lruvec, LRU_GEN_ANON, 0, gain[LRU_GEN_ANON], &sp);
4508 read_ctrl_pos(lruvec, LRU_GEN_FILE, 0, gain[LRU_GEN_FILE], &pv);
4509 type = positive_ctrl_err(&sp, &pv);
4511 read_ctrl_pos(lruvec, !type, 0, gain[!type], &sp);
4512 for (tier = 1; tier < MAX_NR_TIERS; tier++) {
4513 read_ctrl_pos(lruvec, type, tier, gain[type], &pv);
4514 if (!positive_ctrl_err(&sp, &pv))
4515 break;
4518 *tier_idx = tier - 1;
4520 return type;
4523 static int isolate_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness,
4524 int *type_scanned, struct list_head *list)
4526 int i;
4527 int type;
4528 int scanned;
4529 int tier = -1;
4530 DEFINE_MIN_SEQ(lruvec);
4533 * Try to make the obvious choice first, and if anon and file are both
4534 * available from the same generation,
4535 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4536 * first.
4537 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4538 * exist than clean swapcache.
4540 if (!swappiness)
4541 type = LRU_GEN_FILE;
4542 else if (min_seq[LRU_GEN_ANON] < min_seq[LRU_GEN_FILE])
4543 type = LRU_GEN_ANON;
4544 else if (swappiness == 1)
4545 type = LRU_GEN_FILE;
4546 else if (swappiness == MAX_SWAPPINESS)
4547 type = LRU_GEN_ANON;
4548 else if (!(sc->gfp_mask & __GFP_IO))
4549 type = LRU_GEN_FILE;
4550 else
4551 type = get_type_to_scan(lruvec, swappiness, &tier);
4553 for (i = !swappiness; i < ANON_AND_FILE; i++) {
4554 if (tier < 0)
4555 tier = get_tier_idx(lruvec, type);
4557 scanned = scan_folios(lruvec, sc, type, tier, list);
4558 if (scanned)
4559 break;
4561 type = !type;
4562 tier = -1;
4565 *type_scanned = type;
4567 return scanned;
4570 static int evict_folios(struct lruvec *lruvec, struct scan_control *sc, int swappiness)
4572 int type;
4573 int scanned;
4574 int reclaimed;
4575 LIST_HEAD(list);
4576 LIST_HEAD(clean);
4577 struct folio *folio;
4578 struct folio *next;
4579 enum vm_event_item item;
4580 struct reclaim_stat stat;
4581 struct lru_gen_mm_walk *walk;
4582 bool skip_retry = false;
4583 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4584 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4586 spin_lock_irq(&lruvec->lru_lock);
4588 scanned = isolate_folios(lruvec, sc, swappiness, &type, &list);
4590 scanned += try_to_inc_min_seq(lruvec, swappiness);
4592 if (get_nr_gens(lruvec, !swappiness) == MIN_NR_GENS)
4593 scanned = 0;
4595 spin_unlock_irq(&lruvec->lru_lock);
4597 if (list_empty(&list))
4598 return scanned;
4599 retry:
4600 reclaimed = shrink_folio_list(&list, pgdat, sc, &stat, false);
4601 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
4602 sc->nr_reclaimed += reclaimed;
4603 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
4604 scanned, reclaimed, &stat, sc->priority,
4605 type ? LRU_INACTIVE_FILE : LRU_INACTIVE_ANON);
4607 list_for_each_entry_safe_reverse(folio, next, &list, lru) {
4608 if (!folio_evictable(folio)) {
4609 list_del(&folio->lru);
4610 folio_putback_lru(folio);
4611 continue;
4614 if (folio_test_reclaim(folio) &&
4615 (folio_test_dirty(folio) || folio_test_writeback(folio))) {
4616 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4617 if (folio_test_workingset(folio))
4618 folio_set_referenced(folio);
4619 continue;
4622 if (skip_retry || folio_test_active(folio) || folio_test_referenced(folio) ||
4623 folio_mapped(folio) || folio_test_locked(folio) ||
4624 folio_test_dirty(folio) || folio_test_writeback(folio)) {
4625 /* don't add rejected folios to the oldest generation */
4626 set_mask_bits(&folio->flags, LRU_REFS_MASK | LRU_REFS_FLAGS,
4627 BIT(PG_active));
4628 continue;
4631 /* retry folios that may have missed folio_rotate_reclaimable() */
4632 list_move(&folio->lru, &clean);
4635 spin_lock_irq(&lruvec->lru_lock);
4637 move_folios_to_lru(lruvec, &list);
4639 walk = current->reclaim_state->mm_walk;
4640 if (walk && walk->batched) {
4641 walk->lruvec = lruvec;
4642 reset_batch_size(walk);
4645 item = PGSTEAL_KSWAPD + reclaimer_offset();
4646 if (!cgroup_reclaim(sc))
4647 __count_vm_events(item, reclaimed);
4648 __count_memcg_events(memcg, item, reclaimed);
4649 __count_vm_events(PGSTEAL_ANON + type, reclaimed);
4651 spin_unlock_irq(&lruvec->lru_lock);
4653 list_splice_init(&clean, &list);
4655 if (!list_empty(&list)) {
4656 skip_retry = true;
4657 goto retry;
4660 return scanned;
4663 static bool should_run_aging(struct lruvec *lruvec, unsigned long max_seq,
4664 bool can_swap, unsigned long *nr_to_scan)
4666 int gen, type, zone;
4667 unsigned long old = 0;
4668 unsigned long young = 0;
4669 unsigned long total = 0;
4670 struct lru_gen_folio *lrugen = &lruvec->lrugen;
4671 DEFINE_MIN_SEQ(lruvec);
4673 /* whether this lruvec is completely out of cold folios */
4674 if (min_seq[!can_swap] + MIN_NR_GENS > max_seq) {
4675 *nr_to_scan = 0;
4676 return true;
4679 for (type = !can_swap; type < ANON_AND_FILE; type++) {
4680 unsigned long seq;
4682 for (seq = min_seq[type]; seq <= max_seq; seq++) {
4683 unsigned long size = 0;
4685 gen = lru_gen_from_seq(seq);
4687 for (zone = 0; zone < MAX_NR_ZONES; zone++)
4688 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
4690 total += size;
4691 if (seq == max_seq)
4692 young += size;
4693 else if (seq + MIN_NR_GENS == max_seq)
4694 old += size;
4698 *nr_to_scan = total;
4701 * The aging tries to be lazy to reduce the overhead, while the eviction
4702 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4703 * ideal number of generations is MIN_NR_GENS+1.
4705 if (min_seq[!can_swap] + MIN_NR_GENS < max_seq)
4706 return false;
4709 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4710 * of the total number of pages for each generation. A reasonable range
4711 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4712 * aging cares about the upper bound of hot pages, while the eviction
4713 * cares about the lower bound of cold pages.
4715 if (young * MIN_NR_GENS > total)
4716 return true;
4717 if (old * (MIN_NR_GENS + 2) < total)
4718 return true;
4720 return false;
4724 * For future optimizations:
4725 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4726 * reclaim.
4728 static long get_nr_to_scan(struct lruvec *lruvec, struct scan_control *sc, bool can_swap)
4730 bool success;
4731 unsigned long nr_to_scan;
4732 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4733 DEFINE_MAX_SEQ(lruvec);
4735 if (mem_cgroup_below_min(sc->target_mem_cgroup, memcg))
4736 return -1;
4738 success = should_run_aging(lruvec, max_seq, can_swap, &nr_to_scan);
4740 /* try to scrape all its memory if this memcg was deleted */
4741 if (nr_to_scan && !mem_cgroup_online(memcg))
4742 return nr_to_scan;
4744 /* try to get away with not aging at the default priority */
4745 if (!success || sc->priority == DEF_PRIORITY)
4746 return nr_to_scan >> sc->priority;
4748 /* stop scanning this lruvec as it's low on cold folios */
4749 return try_to_inc_max_seq(lruvec, max_seq, can_swap, false) ? -1 : 0;
4752 static bool should_abort_scan(struct lruvec *lruvec, struct scan_control *sc)
4754 int i;
4755 enum zone_watermarks mark;
4757 /* don't abort memcg reclaim to ensure fairness */
4758 if (!root_reclaim(sc))
4759 return false;
4761 if (sc->nr_reclaimed >= max(sc->nr_to_reclaim, compact_gap(sc->order)))
4762 return true;
4764 /* check the order to exclude compaction-induced reclaim */
4765 if (!current_is_kswapd() || sc->order)
4766 return false;
4768 mark = sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ?
4769 WMARK_PROMO : WMARK_HIGH;
4771 for (i = 0; i <= sc->reclaim_idx; i++) {
4772 struct zone *zone = lruvec_pgdat(lruvec)->node_zones + i;
4773 unsigned long size = wmark_pages(zone, mark) + MIN_LRU_BATCH;
4775 if (managed_zone(zone) && !zone_watermark_ok(zone, 0, size, sc->reclaim_idx, 0))
4776 return false;
4779 /* kswapd should abort if all eligible zones are safe */
4780 return true;
4783 static bool try_to_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4785 long nr_to_scan;
4786 unsigned long scanned = 0;
4787 int swappiness = get_swappiness(lruvec, sc);
4789 while (true) {
4790 int delta;
4792 nr_to_scan = get_nr_to_scan(lruvec, sc, swappiness);
4793 if (nr_to_scan <= 0)
4794 break;
4796 delta = evict_folios(lruvec, sc, swappiness);
4797 if (!delta)
4798 break;
4800 scanned += delta;
4801 if (scanned >= nr_to_scan)
4802 break;
4804 if (should_abort_scan(lruvec, sc))
4805 break;
4807 cond_resched();
4811 * If too many file cache in the coldest generation can't be evicted
4812 * due to being dirty, wake up the flusher.
4814 if (sc->nr.unqueued_dirty && sc->nr.unqueued_dirty == sc->nr.file_taken)
4815 wakeup_flusher_threads(WB_REASON_VMSCAN);
4817 /* whether this lruvec should be rotated */
4818 return nr_to_scan < 0;
4821 static int shrink_one(struct lruvec *lruvec, struct scan_control *sc)
4823 bool success;
4824 unsigned long scanned = sc->nr_scanned;
4825 unsigned long reclaimed = sc->nr_reclaimed;
4826 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
4827 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4829 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4830 if (mem_cgroup_below_min(NULL, memcg))
4831 return MEMCG_LRU_YOUNG;
4833 if (mem_cgroup_below_low(NULL, memcg)) {
4834 /* see the comment on MEMCG_NR_GENS */
4835 if (READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL)
4836 return MEMCG_LRU_TAIL;
4838 memcg_memory_event(memcg, MEMCG_LOW);
4841 success = try_to_shrink_lruvec(lruvec, sc);
4843 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg, sc->priority);
4845 if (!sc->proactive)
4846 vmpressure(sc->gfp_mask, memcg, false, sc->nr_scanned - scanned,
4847 sc->nr_reclaimed - reclaimed);
4849 flush_reclaim_state(sc);
4851 if (success && mem_cgroup_online(memcg))
4852 return MEMCG_LRU_YOUNG;
4854 if (!success && lruvec_is_sizable(lruvec, sc))
4855 return 0;
4857 /* one retry if offlined or too small */
4858 return READ_ONCE(lruvec->lrugen.seg) != MEMCG_LRU_TAIL ?
4859 MEMCG_LRU_TAIL : MEMCG_LRU_YOUNG;
4862 static void shrink_many(struct pglist_data *pgdat, struct scan_control *sc)
4864 int op;
4865 int gen;
4866 int bin;
4867 int first_bin;
4868 struct lruvec *lruvec;
4869 struct lru_gen_folio *lrugen;
4870 struct mem_cgroup *memcg;
4871 struct hlist_nulls_node *pos;
4873 gen = get_memcg_gen(READ_ONCE(pgdat->memcg_lru.seq));
4874 bin = first_bin = get_random_u32_below(MEMCG_NR_BINS);
4875 restart:
4876 op = 0;
4877 memcg = NULL;
4879 rcu_read_lock();
4881 hlist_nulls_for_each_entry_rcu(lrugen, pos, &pgdat->memcg_lru.fifo[gen][bin], list) {
4882 if (op) {
4883 lru_gen_rotate_memcg(lruvec, op);
4884 op = 0;
4887 mem_cgroup_put(memcg);
4888 memcg = NULL;
4890 if (gen != READ_ONCE(lrugen->gen))
4891 continue;
4893 lruvec = container_of(lrugen, struct lruvec, lrugen);
4894 memcg = lruvec_memcg(lruvec);
4896 if (!mem_cgroup_tryget(memcg)) {
4897 lru_gen_release_memcg(memcg);
4898 memcg = NULL;
4899 continue;
4902 rcu_read_unlock();
4904 op = shrink_one(lruvec, sc);
4906 rcu_read_lock();
4908 if (should_abort_scan(lruvec, sc))
4909 break;
4912 rcu_read_unlock();
4914 if (op)
4915 lru_gen_rotate_memcg(lruvec, op);
4917 mem_cgroup_put(memcg);
4919 if (!is_a_nulls(pos))
4920 return;
4922 /* restart if raced with lru_gen_rotate_memcg() */
4923 if (gen != get_nulls_value(pos))
4924 goto restart;
4926 /* try the rest of the bins of the current generation */
4927 bin = get_memcg_bin(bin + 1);
4928 if (bin != first_bin)
4929 goto restart;
4932 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
4934 struct blk_plug plug;
4936 VM_WARN_ON_ONCE(root_reclaim(sc));
4937 VM_WARN_ON_ONCE(!sc->may_writepage || !sc->may_unmap);
4939 lru_add_drain();
4941 blk_start_plug(&plug);
4943 set_mm_walk(NULL, sc->proactive);
4945 if (try_to_shrink_lruvec(lruvec, sc))
4946 lru_gen_rotate_memcg(lruvec, MEMCG_LRU_YOUNG);
4948 clear_mm_walk();
4950 blk_finish_plug(&plug);
4953 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
4955 struct blk_plug plug;
4956 unsigned long reclaimed = sc->nr_reclaimed;
4958 VM_WARN_ON_ONCE(!root_reclaim(sc));
4961 * Unmapped clean folios are already prioritized. Scanning for more of
4962 * them is likely futile and can cause high reclaim latency when there
4963 * is a large number of memcgs.
4965 if (!sc->may_writepage || !sc->may_unmap)
4966 goto done;
4968 lru_add_drain();
4970 blk_start_plug(&plug);
4972 set_mm_walk(pgdat, sc->proactive);
4974 set_initial_priority(pgdat, sc);
4976 if (current_is_kswapd())
4977 sc->nr_reclaimed = 0;
4979 if (mem_cgroup_disabled())
4980 shrink_one(&pgdat->__lruvec, sc);
4981 else
4982 shrink_many(pgdat, sc);
4984 if (current_is_kswapd())
4985 sc->nr_reclaimed += reclaimed;
4987 clear_mm_walk();
4989 blk_finish_plug(&plug);
4990 done:
4991 if (sc->nr_reclaimed > reclaimed)
4992 pgdat->kswapd_failures = 0;
4995 /******************************************************************************
4996 * state change
4997 ******************************************************************************/
4999 static bool __maybe_unused state_is_valid(struct lruvec *lruvec)
5001 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5003 if (lrugen->enabled) {
5004 enum lru_list lru;
5006 for_each_evictable_lru(lru) {
5007 if (!list_empty(&lruvec->lists[lru]))
5008 return false;
5010 } else {
5011 int gen, type, zone;
5013 for_each_gen_type_zone(gen, type, zone) {
5014 if (!list_empty(&lrugen->folios[gen][type][zone]))
5015 return false;
5019 return true;
5022 static bool fill_evictable(struct lruvec *lruvec)
5024 enum lru_list lru;
5025 int remaining = MAX_LRU_BATCH;
5027 for_each_evictable_lru(lru) {
5028 int type = is_file_lru(lru);
5029 bool active = is_active_lru(lru);
5030 struct list_head *head = &lruvec->lists[lru];
5032 while (!list_empty(head)) {
5033 bool success;
5034 struct folio *folio = lru_to_folio(head);
5036 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5037 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio) != active, folio);
5038 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5039 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio) != -1, folio);
5041 lruvec_del_folio(lruvec, folio);
5042 success = lru_gen_add_folio(lruvec, folio, false);
5043 VM_WARN_ON_ONCE(!success);
5045 if (!--remaining)
5046 return false;
5050 return true;
5053 static bool drain_evictable(struct lruvec *lruvec)
5055 int gen, type, zone;
5056 int remaining = MAX_LRU_BATCH;
5058 for_each_gen_type_zone(gen, type, zone) {
5059 struct list_head *head = &lruvec->lrugen.folios[gen][type][zone];
5061 while (!list_empty(head)) {
5062 bool success;
5063 struct folio *folio = lru_to_folio(head);
5065 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio), folio);
5066 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio), folio);
5067 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio) != type, folio);
5068 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio) != zone, folio);
5070 success = lru_gen_del_folio(lruvec, folio, false);
5071 VM_WARN_ON_ONCE(!success);
5072 lruvec_add_folio(lruvec, folio);
5074 if (!--remaining)
5075 return false;
5079 return true;
5082 static void lru_gen_change_state(bool enabled)
5084 static DEFINE_MUTEX(state_mutex);
5086 struct mem_cgroup *memcg;
5088 cgroup_lock();
5089 cpus_read_lock();
5090 get_online_mems();
5091 mutex_lock(&state_mutex);
5093 if (enabled == lru_gen_enabled())
5094 goto unlock;
5096 if (enabled)
5097 static_branch_enable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5098 else
5099 static_branch_disable_cpuslocked(&lru_gen_caps[LRU_GEN_CORE]);
5101 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5102 do {
5103 int nid;
5105 for_each_node(nid) {
5106 struct lruvec *lruvec = get_lruvec(memcg, nid);
5108 spin_lock_irq(&lruvec->lru_lock);
5110 VM_WARN_ON_ONCE(!seq_is_valid(lruvec));
5111 VM_WARN_ON_ONCE(!state_is_valid(lruvec));
5113 lruvec->lrugen.enabled = enabled;
5115 while (!(enabled ? fill_evictable(lruvec) : drain_evictable(lruvec))) {
5116 spin_unlock_irq(&lruvec->lru_lock);
5117 cond_resched();
5118 spin_lock_irq(&lruvec->lru_lock);
5121 spin_unlock_irq(&lruvec->lru_lock);
5124 cond_resched();
5125 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5126 unlock:
5127 mutex_unlock(&state_mutex);
5128 put_online_mems();
5129 cpus_read_unlock();
5130 cgroup_unlock();
5133 /******************************************************************************
5134 * sysfs interface
5135 ******************************************************************************/
5137 static ssize_t min_ttl_ms_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5139 return sysfs_emit(buf, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl)));
5142 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5143 static ssize_t min_ttl_ms_store(struct kobject *kobj, struct kobj_attribute *attr,
5144 const char *buf, size_t len)
5146 unsigned int msecs;
5148 if (kstrtouint(buf, 0, &msecs))
5149 return -EINVAL;
5151 WRITE_ONCE(lru_gen_min_ttl, msecs_to_jiffies(msecs));
5153 return len;
5156 static struct kobj_attribute lru_gen_min_ttl_attr = __ATTR_RW(min_ttl_ms);
5158 static ssize_t enabled_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
5160 unsigned int caps = 0;
5162 if (get_cap(LRU_GEN_CORE))
5163 caps |= BIT(LRU_GEN_CORE);
5165 if (should_walk_mmu())
5166 caps |= BIT(LRU_GEN_MM_WALK);
5168 if (should_clear_pmd_young())
5169 caps |= BIT(LRU_GEN_NONLEAF_YOUNG);
5171 return sysfs_emit(buf, "0x%04x\n", caps);
5174 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5175 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
5176 const char *buf, size_t len)
5178 int i;
5179 unsigned int caps;
5181 if (tolower(*buf) == 'n')
5182 caps = 0;
5183 else if (tolower(*buf) == 'y')
5184 caps = -1;
5185 else if (kstrtouint(buf, 0, &caps))
5186 return -EINVAL;
5188 for (i = 0; i < NR_LRU_GEN_CAPS; i++) {
5189 bool enabled = caps & BIT(i);
5191 if (i == LRU_GEN_CORE)
5192 lru_gen_change_state(enabled);
5193 else if (enabled)
5194 static_branch_enable(&lru_gen_caps[i]);
5195 else
5196 static_branch_disable(&lru_gen_caps[i]);
5199 return len;
5202 static struct kobj_attribute lru_gen_enabled_attr = __ATTR_RW(enabled);
5204 static struct attribute *lru_gen_attrs[] = {
5205 &lru_gen_min_ttl_attr.attr,
5206 &lru_gen_enabled_attr.attr,
5207 NULL
5210 static const struct attribute_group lru_gen_attr_group = {
5211 .name = "lru_gen",
5212 .attrs = lru_gen_attrs,
5215 /******************************************************************************
5216 * debugfs interface
5217 ******************************************************************************/
5219 static void *lru_gen_seq_start(struct seq_file *m, loff_t *pos)
5221 struct mem_cgroup *memcg;
5222 loff_t nr_to_skip = *pos;
5224 m->private = kvmalloc(PATH_MAX, GFP_KERNEL);
5225 if (!m->private)
5226 return ERR_PTR(-ENOMEM);
5228 memcg = mem_cgroup_iter(NULL, NULL, NULL);
5229 do {
5230 int nid;
5232 for_each_node_state(nid, N_MEMORY) {
5233 if (!nr_to_skip--)
5234 return get_lruvec(memcg, nid);
5236 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)));
5238 return NULL;
5241 static void lru_gen_seq_stop(struct seq_file *m, void *v)
5243 if (!IS_ERR_OR_NULL(v))
5244 mem_cgroup_iter_break(NULL, lruvec_memcg(v));
5246 kvfree(m->private);
5247 m->private = NULL;
5250 static void *lru_gen_seq_next(struct seq_file *m, void *v, loff_t *pos)
5252 int nid = lruvec_pgdat(v)->node_id;
5253 struct mem_cgroup *memcg = lruvec_memcg(v);
5255 ++*pos;
5257 nid = next_memory_node(nid);
5258 if (nid == MAX_NUMNODES) {
5259 memcg = mem_cgroup_iter(NULL, memcg, NULL);
5260 if (!memcg)
5261 return NULL;
5263 nid = first_memory_node;
5266 return get_lruvec(memcg, nid);
5269 static void lru_gen_seq_show_full(struct seq_file *m, struct lruvec *lruvec,
5270 unsigned long max_seq, unsigned long *min_seq,
5271 unsigned long seq)
5273 int i;
5274 int type, tier;
5275 int hist = lru_hist_from_seq(seq);
5276 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5277 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5279 for (tier = 0; tier < MAX_NR_TIERS; tier++) {
5280 seq_printf(m, " %10d", tier);
5281 for (type = 0; type < ANON_AND_FILE; type++) {
5282 const char *s = "xxx";
5283 unsigned long n[3] = {};
5285 if (seq == max_seq) {
5286 s = "RTx";
5287 n[0] = READ_ONCE(lrugen->avg_refaulted[type][tier]);
5288 n[1] = READ_ONCE(lrugen->avg_total[type][tier]);
5289 } else if (seq == min_seq[type] || NR_HIST_GENS > 1) {
5290 s = "rep";
5291 n[0] = atomic_long_read(&lrugen->refaulted[hist][type][tier]);
5292 n[1] = atomic_long_read(&lrugen->evicted[hist][type][tier]);
5293 if (tier)
5294 n[2] = READ_ONCE(lrugen->protected[hist][type][tier - 1]);
5297 for (i = 0; i < 3; i++)
5298 seq_printf(m, " %10lu%c", n[i], s[i]);
5300 seq_putc(m, '\n');
5303 if (!mm_state)
5304 return;
5306 seq_puts(m, " ");
5307 for (i = 0; i < NR_MM_STATS; i++) {
5308 const char *s = "xxxx";
5309 unsigned long n = 0;
5311 if (seq == max_seq && NR_HIST_GENS == 1) {
5312 s = "TYFA";
5313 n = READ_ONCE(mm_state->stats[hist][i]);
5314 } else if (seq != max_seq && NR_HIST_GENS > 1) {
5315 s = "tyfa";
5316 n = READ_ONCE(mm_state->stats[hist][i]);
5319 seq_printf(m, " %10lu%c", n, s[i]);
5321 seq_putc(m, '\n');
5324 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5325 static int lru_gen_seq_show(struct seq_file *m, void *v)
5327 unsigned long seq;
5328 bool full = !debugfs_real_fops(m->file)->write;
5329 struct lruvec *lruvec = v;
5330 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5331 int nid = lruvec_pgdat(lruvec)->node_id;
5332 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
5333 DEFINE_MAX_SEQ(lruvec);
5334 DEFINE_MIN_SEQ(lruvec);
5336 if (nid == first_memory_node) {
5337 const char *path = memcg ? m->private : "";
5339 #ifdef CONFIG_MEMCG
5340 if (memcg)
5341 cgroup_path(memcg->css.cgroup, m->private, PATH_MAX);
5342 #endif
5343 seq_printf(m, "memcg %5hu %s\n", mem_cgroup_id(memcg), path);
5346 seq_printf(m, " node %5d\n", nid);
5348 if (!full)
5349 seq = min_seq[LRU_GEN_ANON];
5350 else if (max_seq >= MAX_NR_GENS)
5351 seq = max_seq - MAX_NR_GENS + 1;
5352 else
5353 seq = 0;
5355 for (; seq <= max_seq; seq++) {
5356 int type, zone;
5357 int gen = lru_gen_from_seq(seq);
5358 unsigned long birth = READ_ONCE(lruvec->lrugen.timestamps[gen]);
5360 seq_printf(m, " %10lu %10u", seq, jiffies_to_msecs(jiffies - birth));
5362 for (type = 0; type < ANON_AND_FILE; type++) {
5363 unsigned long size = 0;
5364 char mark = full && seq < min_seq[type] ? 'x' : ' ';
5366 for (zone = 0; zone < MAX_NR_ZONES; zone++)
5367 size += max(READ_ONCE(lrugen->nr_pages[gen][type][zone]), 0L);
5369 seq_printf(m, " %10lu%c", size, mark);
5372 seq_putc(m, '\n');
5374 if (full)
5375 lru_gen_seq_show_full(m, lruvec, max_seq, min_seq, seq);
5378 return 0;
5381 static const struct seq_operations lru_gen_seq_ops = {
5382 .start = lru_gen_seq_start,
5383 .stop = lru_gen_seq_stop,
5384 .next = lru_gen_seq_next,
5385 .show = lru_gen_seq_show,
5388 static int run_aging(struct lruvec *lruvec, unsigned long seq,
5389 bool can_swap, bool force_scan)
5391 DEFINE_MAX_SEQ(lruvec);
5392 DEFINE_MIN_SEQ(lruvec);
5394 if (seq < max_seq)
5395 return 0;
5397 if (seq > max_seq)
5398 return -EINVAL;
5400 if (!force_scan && min_seq[!can_swap] + MAX_NR_GENS - 1 <= max_seq)
5401 return -ERANGE;
5403 try_to_inc_max_seq(lruvec, max_seq, can_swap, force_scan);
5405 return 0;
5408 static int run_eviction(struct lruvec *lruvec, unsigned long seq, struct scan_control *sc,
5409 int swappiness, unsigned long nr_to_reclaim)
5411 DEFINE_MAX_SEQ(lruvec);
5413 if (seq + MIN_NR_GENS > max_seq)
5414 return -EINVAL;
5416 sc->nr_reclaimed = 0;
5418 while (!signal_pending(current)) {
5419 DEFINE_MIN_SEQ(lruvec);
5421 if (seq < min_seq[!swappiness])
5422 return 0;
5424 if (sc->nr_reclaimed >= nr_to_reclaim)
5425 return 0;
5427 if (!evict_folios(lruvec, sc, swappiness))
5428 return 0;
5430 cond_resched();
5433 return -EINTR;
5436 static int run_cmd(char cmd, int memcg_id, int nid, unsigned long seq,
5437 struct scan_control *sc, int swappiness, unsigned long opt)
5439 struct lruvec *lruvec;
5440 int err = -EINVAL;
5441 struct mem_cgroup *memcg = NULL;
5443 if (nid < 0 || nid >= MAX_NUMNODES || !node_state(nid, N_MEMORY))
5444 return -EINVAL;
5446 if (!mem_cgroup_disabled()) {
5447 rcu_read_lock();
5449 memcg = mem_cgroup_from_id(memcg_id);
5450 if (!mem_cgroup_tryget(memcg))
5451 memcg = NULL;
5453 rcu_read_unlock();
5455 if (!memcg)
5456 return -EINVAL;
5459 if (memcg_id != mem_cgroup_id(memcg))
5460 goto done;
5462 lruvec = get_lruvec(memcg, nid);
5464 if (swappiness < MIN_SWAPPINESS)
5465 swappiness = get_swappiness(lruvec, sc);
5466 else if (swappiness > MAX_SWAPPINESS)
5467 goto done;
5469 switch (cmd) {
5470 case '+':
5471 err = run_aging(lruvec, seq, swappiness, opt);
5472 break;
5473 case '-':
5474 err = run_eviction(lruvec, seq, sc, swappiness, opt);
5475 break;
5477 done:
5478 mem_cgroup_put(memcg);
5480 return err;
5483 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5484 static ssize_t lru_gen_seq_write(struct file *file, const char __user *src,
5485 size_t len, loff_t *pos)
5487 void *buf;
5488 char *cur, *next;
5489 unsigned int flags;
5490 struct blk_plug plug;
5491 int err = -EINVAL;
5492 struct scan_control sc = {
5493 .may_writepage = true,
5494 .may_unmap = true,
5495 .may_swap = true,
5496 .reclaim_idx = MAX_NR_ZONES - 1,
5497 .gfp_mask = GFP_KERNEL,
5500 buf = kvmalloc(len + 1, GFP_KERNEL);
5501 if (!buf)
5502 return -ENOMEM;
5504 if (copy_from_user(buf, src, len)) {
5505 kvfree(buf);
5506 return -EFAULT;
5509 set_task_reclaim_state(current, &sc.reclaim_state);
5510 flags = memalloc_noreclaim_save();
5511 blk_start_plug(&plug);
5512 if (!set_mm_walk(NULL, true)) {
5513 err = -ENOMEM;
5514 goto done;
5517 next = buf;
5518 next[len] = '\0';
5520 while ((cur = strsep(&next, ",;\n"))) {
5521 int n;
5522 int end;
5523 char cmd;
5524 unsigned int memcg_id;
5525 unsigned int nid;
5526 unsigned long seq;
5527 unsigned int swappiness = -1;
5528 unsigned long opt = -1;
5530 cur = skip_spaces(cur);
5531 if (!*cur)
5532 continue;
5534 n = sscanf(cur, "%c %u %u %lu %n %u %n %lu %n", &cmd, &memcg_id, &nid,
5535 &seq, &end, &swappiness, &end, &opt, &end);
5536 if (n < 4 || cur[end]) {
5537 err = -EINVAL;
5538 break;
5541 err = run_cmd(cmd, memcg_id, nid, seq, &sc, swappiness, opt);
5542 if (err)
5543 break;
5545 done:
5546 clear_mm_walk();
5547 blk_finish_plug(&plug);
5548 memalloc_noreclaim_restore(flags);
5549 set_task_reclaim_state(current, NULL);
5551 kvfree(buf);
5553 return err ? : len;
5556 static int lru_gen_seq_open(struct inode *inode, struct file *file)
5558 return seq_open(file, &lru_gen_seq_ops);
5561 static const struct file_operations lru_gen_rw_fops = {
5562 .open = lru_gen_seq_open,
5563 .read = seq_read,
5564 .write = lru_gen_seq_write,
5565 .llseek = seq_lseek,
5566 .release = seq_release,
5569 static const struct file_operations lru_gen_ro_fops = {
5570 .open = lru_gen_seq_open,
5571 .read = seq_read,
5572 .llseek = seq_lseek,
5573 .release = seq_release,
5576 /******************************************************************************
5577 * initialization
5578 ******************************************************************************/
5580 void lru_gen_init_pgdat(struct pglist_data *pgdat)
5582 int i, j;
5584 spin_lock_init(&pgdat->memcg_lru.lock);
5586 for (i = 0; i < MEMCG_NR_GENS; i++) {
5587 for (j = 0; j < MEMCG_NR_BINS; j++)
5588 INIT_HLIST_NULLS_HEAD(&pgdat->memcg_lru.fifo[i][j], i);
5592 void lru_gen_init_lruvec(struct lruvec *lruvec)
5594 int i;
5595 int gen, type, zone;
5596 struct lru_gen_folio *lrugen = &lruvec->lrugen;
5597 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5599 lrugen->max_seq = MIN_NR_GENS + 1;
5600 lrugen->enabled = lru_gen_enabled();
5602 for (i = 0; i <= MIN_NR_GENS + 1; i++)
5603 lrugen->timestamps[i] = jiffies;
5605 for_each_gen_type_zone(gen, type, zone)
5606 INIT_LIST_HEAD(&lrugen->folios[gen][type][zone]);
5608 if (mm_state)
5609 mm_state->seq = MIN_NR_GENS;
5612 #ifdef CONFIG_MEMCG
5614 void lru_gen_init_memcg(struct mem_cgroup *memcg)
5616 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5618 if (!mm_list)
5619 return;
5621 INIT_LIST_HEAD(&mm_list->fifo);
5622 spin_lock_init(&mm_list->lock);
5625 void lru_gen_exit_memcg(struct mem_cgroup *memcg)
5627 int i;
5628 int nid;
5629 struct lru_gen_mm_list *mm_list = get_mm_list(memcg);
5631 VM_WARN_ON_ONCE(mm_list && !list_empty(&mm_list->fifo));
5633 for_each_node(nid) {
5634 struct lruvec *lruvec = get_lruvec(memcg, nid);
5635 struct lru_gen_mm_state *mm_state = get_mm_state(lruvec);
5637 VM_WARN_ON_ONCE(memchr_inv(lruvec->lrugen.nr_pages, 0,
5638 sizeof(lruvec->lrugen.nr_pages)));
5640 lruvec->lrugen.list.next = LIST_POISON1;
5642 if (!mm_state)
5643 continue;
5645 for (i = 0; i < NR_BLOOM_FILTERS; i++) {
5646 bitmap_free(mm_state->filters[i]);
5647 mm_state->filters[i] = NULL;
5652 #endif /* CONFIG_MEMCG */
5654 static int __init init_lru_gen(void)
5656 BUILD_BUG_ON(MIN_NR_GENS + 1 >= MAX_NR_GENS);
5657 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH) <= MAX_NR_GENS);
5659 if (sysfs_create_group(mm_kobj, &lru_gen_attr_group))
5660 pr_err("lru_gen: failed to create sysfs group\n");
5662 debugfs_create_file("lru_gen", 0644, NULL, NULL, &lru_gen_rw_fops);
5663 debugfs_create_file("lru_gen_full", 0444, NULL, NULL, &lru_gen_ro_fops);
5665 return 0;
5667 late_initcall(init_lru_gen);
5669 #else /* !CONFIG_LRU_GEN */
5671 static void lru_gen_age_node(struct pglist_data *pgdat, struct scan_control *sc)
5673 BUILD_BUG();
5676 static void lru_gen_shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5678 BUILD_BUG();
5681 static void lru_gen_shrink_node(struct pglist_data *pgdat, struct scan_control *sc)
5683 BUILD_BUG();
5686 #endif /* CONFIG_LRU_GEN */
5688 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
5690 unsigned long nr[NR_LRU_LISTS];
5691 unsigned long targets[NR_LRU_LISTS];
5692 unsigned long nr_to_scan;
5693 enum lru_list lru;
5694 unsigned long nr_reclaimed = 0;
5695 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
5696 bool proportional_reclaim;
5697 struct blk_plug plug;
5699 if (lru_gen_enabled() && !root_reclaim(sc)) {
5700 lru_gen_shrink_lruvec(lruvec, sc);
5701 return;
5704 get_scan_count(lruvec, sc, nr);
5706 /* Record the original scan target for proportional adjustments later */
5707 memcpy(targets, nr, sizeof(nr));
5710 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5711 * event that can occur when there is little memory pressure e.g.
5712 * multiple streaming readers/writers. Hence, we do not abort scanning
5713 * when the requested number of pages are reclaimed when scanning at
5714 * DEF_PRIORITY on the assumption that the fact we are direct
5715 * reclaiming implies that kswapd is not keeping up and it is best to
5716 * do a batch of work at once. For memcg reclaim one check is made to
5717 * abort proportional reclaim if either the file or anon lru has already
5718 * dropped to zero at the first pass.
5720 proportional_reclaim = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
5721 sc->priority == DEF_PRIORITY);
5723 blk_start_plug(&plug);
5724 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
5725 nr[LRU_INACTIVE_FILE]) {
5726 unsigned long nr_anon, nr_file, percentage;
5727 unsigned long nr_scanned;
5729 for_each_evictable_lru(lru) {
5730 if (nr[lru]) {
5731 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
5732 nr[lru] -= nr_to_scan;
5734 nr_reclaimed += shrink_list(lru, nr_to_scan,
5735 lruvec, sc);
5739 cond_resched();
5741 if (nr_reclaimed < nr_to_reclaim || proportional_reclaim)
5742 continue;
5745 * For kswapd and memcg, reclaim at least the number of pages
5746 * requested. Ensure that the anon and file LRUs are scanned
5747 * proportionally what was requested by get_scan_count(). We
5748 * stop reclaiming one LRU and reduce the amount scanning
5749 * proportional to the original scan target.
5751 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
5752 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
5755 * It's just vindictive to attack the larger once the smaller
5756 * has gone to zero. And given the way we stop scanning the
5757 * smaller below, this makes sure that we only make one nudge
5758 * towards proportionality once we've got nr_to_reclaim.
5760 if (!nr_file || !nr_anon)
5761 break;
5763 if (nr_file > nr_anon) {
5764 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
5765 targets[LRU_ACTIVE_ANON] + 1;
5766 lru = LRU_BASE;
5767 percentage = nr_anon * 100 / scan_target;
5768 } else {
5769 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
5770 targets[LRU_ACTIVE_FILE] + 1;
5771 lru = LRU_FILE;
5772 percentage = nr_file * 100 / scan_target;
5775 /* Stop scanning the smaller of the LRU */
5776 nr[lru] = 0;
5777 nr[lru + LRU_ACTIVE] = 0;
5780 * Recalculate the other LRU scan count based on its original
5781 * scan target and the percentage scanning already complete
5783 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
5784 nr_scanned = targets[lru] - nr[lru];
5785 nr[lru] = targets[lru] * (100 - percentage) / 100;
5786 nr[lru] -= min(nr[lru], nr_scanned);
5788 lru += LRU_ACTIVE;
5789 nr_scanned = targets[lru] - nr[lru];
5790 nr[lru] = targets[lru] * (100 - percentage) / 100;
5791 nr[lru] -= min(nr[lru], nr_scanned);
5793 blk_finish_plug(&plug);
5794 sc->nr_reclaimed += nr_reclaimed;
5797 * Even if we did not try to evict anon pages at all, we want to
5798 * rebalance the anon lru active/inactive ratio.
5800 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
5801 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
5802 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
5803 sc, LRU_ACTIVE_ANON);
5806 /* Use reclaim/compaction for costly allocs or under memory pressure */
5807 static bool in_reclaim_compaction(struct scan_control *sc)
5809 if (gfp_compaction_allowed(sc->gfp_mask) && sc->order &&
5810 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
5811 sc->priority < DEF_PRIORITY - 2))
5812 return true;
5814 return false;
5818 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5819 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5820 * true if more pages should be reclaimed such that when the page allocator
5821 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5822 * It will give up earlier than that if there is difficulty reclaiming pages.
5824 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
5825 unsigned long nr_reclaimed,
5826 struct scan_control *sc)
5828 unsigned long pages_for_compaction;
5829 unsigned long inactive_lru_pages;
5830 int z;
5832 /* If not in reclaim/compaction mode, stop */
5833 if (!in_reclaim_compaction(sc))
5834 return false;
5837 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5838 * number of pages that were scanned. This will return to the caller
5839 * with the risk reclaim/compaction and the resulting allocation attempt
5840 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5841 * allocations through requiring that the full LRU list has been scanned
5842 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5843 * scan, but that approximation was wrong, and there were corner cases
5844 * where always a non-zero amount of pages were scanned.
5846 if (!nr_reclaimed)
5847 return false;
5849 /* If compaction would go ahead or the allocation would succeed, stop */
5850 for (z = 0; z <= sc->reclaim_idx; z++) {
5851 struct zone *zone = &pgdat->node_zones[z];
5852 if (!managed_zone(zone))
5853 continue;
5855 /* Allocation can already succeed, nothing to do */
5856 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
5857 sc->reclaim_idx, 0))
5858 return false;
5860 if (compaction_suitable(zone, sc->order, sc->reclaim_idx))
5861 return false;
5865 * If we have not reclaimed enough pages for compaction and the
5866 * inactive lists are large enough, continue reclaiming
5868 pages_for_compaction = compact_gap(sc->order);
5869 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
5870 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
5871 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
5873 return inactive_lru_pages > pages_for_compaction;
5876 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
5878 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
5879 struct mem_cgroup_reclaim_cookie reclaim = {
5880 .pgdat = pgdat,
5882 struct mem_cgroup_reclaim_cookie *partial = &reclaim;
5883 struct mem_cgroup *memcg;
5886 * In most cases, direct reclaimers can do partial walks
5887 * through the cgroup tree, using an iterator state that
5888 * persists across invocations. This strikes a balance between
5889 * fairness and allocation latency.
5891 * For kswapd, reliable forward progress is more important
5892 * than a quick return to idle. Always do full walks.
5894 if (current_is_kswapd() || sc->memcg_full_walk)
5895 partial = NULL;
5897 memcg = mem_cgroup_iter(target_memcg, NULL, partial);
5898 do {
5899 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
5900 unsigned long reclaimed;
5901 unsigned long scanned;
5904 * This loop can become CPU-bound when target memcgs
5905 * aren't eligible for reclaim - either because they
5906 * don't have any reclaimable pages, or because their
5907 * memory is explicitly protected. Avoid soft lockups.
5909 cond_resched();
5911 mem_cgroup_calculate_protection(target_memcg, memcg);
5913 if (mem_cgroup_below_min(target_memcg, memcg)) {
5915 * Hard protection.
5916 * If there is no reclaimable memory, OOM.
5918 continue;
5919 } else if (mem_cgroup_below_low(target_memcg, memcg)) {
5921 * Soft protection.
5922 * Respect the protection only as long as
5923 * there is an unprotected supply
5924 * of reclaimable memory from other cgroups.
5926 if (!sc->memcg_low_reclaim) {
5927 sc->memcg_low_skipped = 1;
5928 continue;
5930 memcg_memory_event(memcg, MEMCG_LOW);
5933 reclaimed = sc->nr_reclaimed;
5934 scanned = sc->nr_scanned;
5936 shrink_lruvec(lruvec, sc);
5938 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
5939 sc->priority);
5941 /* Record the group's reclaim efficiency */
5942 if (!sc->proactive)
5943 vmpressure(sc->gfp_mask, memcg, false,
5944 sc->nr_scanned - scanned,
5945 sc->nr_reclaimed - reclaimed);
5947 /* If partial walks are allowed, bail once goal is reached */
5948 if (partial && sc->nr_reclaimed >= sc->nr_to_reclaim) {
5949 mem_cgroup_iter_break(target_memcg, memcg);
5950 break;
5952 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, partial)));
5955 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
5957 unsigned long nr_reclaimed, nr_scanned, nr_node_reclaimed;
5958 struct lruvec *target_lruvec;
5959 bool reclaimable = false;
5961 if (lru_gen_enabled() && root_reclaim(sc)) {
5962 memset(&sc->nr, 0, sizeof(sc->nr));
5963 lru_gen_shrink_node(pgdat, sc);
5964 return;
5967 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
5969 again:
5970 memset(&sc->nr, 0, sizeof(sc->nr));
5972 nr_reclaimed = sc->nr_reclaimed;
5973 nr_scanned = sc->nr_scanned;
5975 prepare_scan_control(pgdat, sc);
5977 shrink_node_memcgs(pgdat, sc);
5979 flush_reclaim_state(sc);
5981 nr_node_reclaimed = sc->nr_reclaimed - nr_reclaimed;
5983 /* Record the subtree's reclaim efficiency */
5984 if (!sc->proactive)
5985 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
5986 sc->nr_scanned - nr_scanned, nr_node_reclaimed);
5988 if (nr_node_reclaimed)
5989 reclaimable = true;
5991 if (current_is_kswapd()) {
5993 * If reclaim is isolating dirty pages under writeback,
5994 * it implies that the long-lived page allocation rate
5995 * is exceeding the page laundering rate. Either the
5996 * global limits are not being effective at throttling
5997 * processes due to the page distribution throughout
5998 * zones or there is heavy usage of a slow backing
5999 * device. The only option is to throttle from reclaim
6000 * context which is not ideal as there is no guarantee
6001 * the dirtying process is throttled in the same way
6002 * balance_dirty_pages() manages.
6004 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6005 * count the number of pages under pages flagged for
6006 * immediate reclaim and stall if any are encountered
6007 * in the nr_immediate check below.
6009 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
6010 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
6012 /* Allow kswapd to start writing pages during reclaim.*/
6013 if (sc->nr.unqueued_dirty &&
6014 sc->nr.unqueued_dirty == sc->nr.file_taken)
6015 set_bit(PGDAT_DIRTY, &pgdat->flags);
6018 * If kswapd scans pages marked for immediate
6019 * reclaim and under writeback (nr_immediate), it
6020 * implies that pages are cycling through the LRU
6021 * faster than they are written so forcibly stall
6022 * until some pages complete writeback.
6024 if (sc->nr.immediate)
6025 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
6029 * Tag a node/memcg as congested if all the dirty pages were marked
6030 * for writeback and immediate reclaim (counted in nr.congested).
6032 * Legacy memcg will stall in page writeback so avoid forcibly
6033 * stalling in reclaim_throttle().
6035 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested) {
6036 if (cgroup_reclaim(sc) && writeback_throttling_sane(sc))
6037 set_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags);
6039 if (current_is_kswapd())
6040 set_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags);
6044 * Stall direct reclaim for IO completions if the lruvec is
6045 * node is congested. Allow kswapd to continue until it
6046 * starts encountering unqueued dirty pages or cycling through
6047 * the LRU too quickly.
6049 if (!current_is_kswapd() && current_may_throttle() &&
6050 !sc->hibernation_mode &&
6051 (test_bit(LRUVEC_CGROUP_CONGESTED, &target_lruvec->flags) ||
6052 test_bit(LRUVEC_NODE_CONGESTED, &target_lruvec->flags)))
6053 reclaim_throttle(pgdat, VMSCAN_THROTTLE_CONGESTED);
6055 if (should_continue_reclaim(pgdat, nr_node_reclaimed, sc))
6056 goto again;
6059 * Kswapd gives up on balancing particular nodes after too
6060 * many failures to reclaim anything from them and goes to
6061 * sleep. On reclaim progress, reset the failure counter. A
6062 * successful direct reclaim run will revive a dormant kswapd.
6064 if (reclaimable)
6065 pgdat->kswapd_failures = 0;
6066 else if (sc->cache_trim_mode)
6067 sc->cache_trim_mode_failed = 1;
6071 * Returns true if compaction should go ahead for a costly-order request, or
6072 * the allocation would already succeed without compaction. Return false if we
6073 * should reclaim first.
6075 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
6077 unsigned long watermark;
6079 if (!gfp_compaction_allowed(sc->gfp_mask))
6080 return false;
6082 /* Allocation can already succeed, nothing to do */
6083 if (zone_watermark_ok(zone, sc->order, min_wmark_pages(zone),
6084 sc->reclaim_idx, 0))
6085 return true;
6087 /* Compaction cannot yet proceed. Do reclaim. */
6088 if (!compaction_suitable(zone, sc->order, sc->reclaim_idx))
6089 return false;
6092 * Compaction is already possible, but it takes time to run and there
6093 * are potentially other callers using the pages just freed. So proceed
6094 * with reclaim to make a buffer of free pages available to give
6095 * compaction a reasonable chance of completing and allocating the page.
6096 * Note that we won't actually reclaim the whole buffer in one attempt
6097 * as the target watermark in should_continue_reclaim() is lower. But if
6098 * we are already above the high+gap watermark, don't reclaim at all.
6100 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
6102 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
6105 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
6108 * If reclaim is making progress greater than 12% efficiency then
6109 * wake all the NOPROGRESS throttled tasks.
6111 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
6112 wait_queue_head_t *wqh;
6114 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
6115 if (waitqueue_active(wqh))
6116 wake_up(wqh);
6118 return;
6122 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6123 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6124 * under writeback and marked for immediate reclaim at the tail of the
6125 * LRU.
6127 if (current_is_kswapd() || cgroup_reclaim(sc))
6128 return;
6130 /* Throttle if making no progress at high prioities. */
6131 if (sc->priority == 1 && !sc->nr_reclaimed)
6132 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
6136 * This is the direct reclaim path, for page-allocating processes. We only
6137 * try to reclaim pages from zones which will satisfy the caller's allocation
6138 * request.
6140 * If a zone is deemed to be full of pinned pages then just give it a light
6141 * scan then give up on it.
6143 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
6145 struct zoneref *z;
6146 struct zone *zone;
6147 unsigned long nr_soft_reclaimed;
6148 unsigned long nr_soft_scanned;
6149 gfp_t orig_mask;
6150 pg_data_t *last_pgdat = NULL;
6151 pg_data_t *first_pgdat = NULL;
6154 * If the number of buffer_heads in the machine exceeds the maximum
6155 * allowed level, force direct reclaim to scan the highmem zone as
6156 * highmem pages could be pinning lowmem pages storing buffer_heads
6158 orig_mask = sc->gfp_mask;
6159 if (buffer_heads_over_limit) {
6160 sc->gfp_mask |= __GFP_HIGHMEM;
6161 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
6164 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6165 sc->reclaim_idx, sc->nodemask) {
6167 * Take care memory controller reclaiming has small influence
6168 * to global LRU.
6170 if (!cgroup_reclaim(sc)) {
6171 if (!cpuset_zone_allowed(zone,
6172 GFP_KERNEL | __GFP_HARDWALL))
6173 continue;
6176 * If we already have plenty of memory free for
6177 * compaction in this zone, don't free any more.
6178 * Even though compaction is invoked for any
6179 * non-zero order, only frequent costly order
6180 * reclamation is disruptive enough to become a
6181 * noticeable problem, like transparent huge
6182 * page allocations.
6184 if (IS_ENABLED(CONFIG_COMPACTION) &&
6185 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
6186 compaction_ready(zone, sc)) {
6187 sc->compaction_ready = true;
6188 continue;
6192 * Shrink each node in the zonelist once. If the
6193 * zonelist is ordered by zone (not the default) then a
6194 * node may be shrunk multiple times but in that case
6195 * the user prefers lower zones being preserved.
6197 if (zone->zone_pgdat == last_pgdat)
6198 continue;
6201 * This steals pages from memory cgroups over softlimit
6202 * and returns the number of reclaimed pages and
6203 * scanned pages. This works for global memory pressure
6204 * and balancing, not for a memcg's limit.
6206 nr_soft_scanned = 0;
6207 nr_soft_reclaimed = memcg1_soft_limit_reclaim(zone->zone_pgdat,
6208 sc->order, sc->gfp_mask,
6209 &nr_soft_scanned);
6210 sc->nr_reclaimed += nr_soft_reclaimed;
6211 sc->nr_scanned += nr_soft_scanned;
6212 /* need some check for avoid more shrink_zone() */
6215 if (!first_pgdat)
6216 first_pgdat = zone->zone_pgdat;
6218 /* See comment about same check for global reclaim above */
6219 if (zone->zone_pgdat == last_pgdat)
6220 continue;
6221 last_pgdat = zone->zone_pgdat;
6222 shrink_node(zone->zone_pgdat, sc);
6225 if (first_pgdat)
6226 consider_reclaim_throttle(first_pgdat, sc);
6229 * Restore to original mask to avoid the impact on the caller if we
6230 * promoted it to __GFP_HIGHMEM.
6232 sc->gfp_mask = orig_mask;
6235 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
6237 struct lruvec *target_lruvec;
6238 unsigned long refaults;
6240 if (lru_gen_enabled())
6241 return;
6243 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
6244 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
6245 target_lruvec->refaults[WORKINGSET_ANON] = refaults;
6246 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
6247 target_lruvec->refaults[WORKINGSET_FILE] = refaults;
6251 * This is the main entry point to direct page reclaim.
6253 * If a full scan of the inactive list fails to free enough memory then we
6254 * are "out of memory" and something needs to be killed.
6256 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6257 * high - the zone may be full of dirty or under-writeback pages, which this
6258 * caller can't do much about. We kick the writeback threads and take explicit
6259 * naps in the hope that some of these pages can be written. But if the
6260 * allocating task holds filesystem locks which prevent writeout this might not
6261 * work, and the allocation attempt will fail.
6263 * returns: 0, if no pages reclaimed
6264 * else, the number of pages reclaimed
6266 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
6267 struct scan_control *sc)
6269 int initial_priority = sc->priority;
6270 pg_data_t *last_pgdat;
6271 struct zoneref *z;
6272 struct zone *zone;
6273 retry:
6274 delayacct_freepages_start();
6276 if (!cgroup_reclaim(sc))
6277 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
6279 do {
6280 if (!sc->proactive)
6281 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
6282 sc->priority);
6283 sc->nr_scanned = 0;
6284 shrink_zones(zonelist, sc);
6286 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
6287 break;
6289 if (sc->compaction_ready)
6290 break;
6293 * If we're getting trouble reclaiming, start doing
6294 * writepage even in laptop mode.
6296 if (sc->priority < DEF_PRIORITY - 2)
6297 sc->may_writepage = 1;
6298 } while (--sc->priority >= 0);
6300 last_pgdat = NULL;
6301 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
6302 sc->nodemask) {
6303 if (zone->zone_pgdat == last_pgdat)
6304 continue;
6305 last_pgdat = zone->zone_pgdat;
6307 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
6309 if (cgroup_reclaim(sc)) {
6310 struct lruvec *lruvec;
6312 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
6313 zone->zone_pgdat);
6314 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6318 delayacct_freepages_end();
6320 if (sc->nr_reclaimed)
6321 return sc->nr_reclaimed;
6323 /* Aborted reclaim to try compaction? don't OOM, then */
6324 if (sc->compaction_ready)
6325 return 1;
6328 * In most cases, direct reclaimers can do partial walks
6329 * through the cgroup tree to meet the reclaim goal while
6330 * keeping latency low. Since the iterator state is shared
6331 * among all direct reclaim invocations (to retain fairness
6332 * among cgroups), though, high concurrency can result in
6333 * individual threads not seeing enough cgroups to make
6334 * meaningful forward progress. Avoid false OOMs in this case.
6336 if (!sc->memcg_full_walk) {
6337 sc->priority = initial_priority;
6338 sc->memcg_full_walk = 1;
6339 goto retry;
6343 * We make inactive:active ratio decisions based on the node's
6344 * composition of memory, but a restrictive reclaim_idx or a
6345 * memory.low cgroup setting can exempt large amounts of
6346 * memory from reclaim. Neither of which are very common, so
6347 * instead of doing costly eligibility calculations of the
6348 * entire cgroup subtree up front, we assume the estimates are
6349 * good, and retry with forcible deactivation if that fails.
6351 if (sc->skipped_deactivate) {
6352 sc->priority = initial_priority;
6353 sc->force_deactivate = 1;
6354 sc->skipped_deactivate = 0;
6355 goto retry;
6358 /* Untapped cgroup reserves? Don't OOM, retry. */
6359 if (sc->memcg_low_skipped) {
6360 sc->priority = initial_priority;
6361 sc->force_deactivate = 0;
6362 sc->memcg_low_reclaim = 1;
6363 sc->memcg_low_skipped = 0;
6364 goto retry;
6367 return 0;
6370 static bool allow_direct_reclaim(pg_data_t *pgdat)
6372 struct zone *zone;
6373 unsigned long pfmemalloc_reserve = 0;
6374 unsigned long free_pages = 0;
6375 int i;
6376 bool wmark_ok;
6378 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6379 return true;
6381 for (i = 0; i <= ZONE_NORMAL; i++) {
6382 zone = &pgdat->node_zones[i];
6383 if (!managed_zone(zone))
6384 continue;
6386 if (!zone_reclaimable_pages(zone))
6387 continue;
6389 pfmemalloc_reserve += min_wmark_pages(zone);
6390 free_pages += zone_page_state_snapshot(zone, NR_FREE_PAGES);
6393 /* If there are no reserves (unexpected config) then do not throttle */
6394 if (!pfmemalloc_reserve)
6395 return true;
6397 wmark_ok = free_pages > pfmemalloc_reserve / 2;
6399 /* kswapd must be awake if processes are being throttled */
6400 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
6401 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
6402 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
6404 wake_up_interruptible(&pgdat->kswapd_wait);
6407 return wmark_ok;
6411 * Throttle direct reclaimers if backing storage is backed by the network
6412 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6413 * depleted. kswapd will continue to make progress and wake the processes
6414 * when the low watermark is reached.
6416 * Returns true if a fatal signal was delivered during throttling. If this
6417 * happens, the page allocator should not consider triggering the OOM killer.
6419 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
6420 nodemask_t *nodemask)
6422 struct zoneref *z;
6423 struct zone *zone;
6424 pg_data_t *pgdat = NULL;
6427 * Kernel threads should not be throttled as they may be indirectly
6428 * responsible for cleaning pages necessary for reclaim to make forward
6429 * progress. kjournald for example may enter direct reclaim while
6430 * committing a transaction where throttling it could forcing other
6431 * processes to block on log_wait_commit().
6433 if (current->flags & PF_KTHREAD)
6434 goto out;
6437 * If a fatal signal is pending, this process should not throttle.
6438 * It should return quickly so it can exit and free its memory
6440 if (fatal_signal_pending(current))
6441 goto out;
6444 * Check if the pfmemalloc reserves are ok by finding the first node
6445 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6446 * GFP_KERNEL will be required for allocating network buffers when
6447 * swapping over the network so ZONE_HIGHMEM is unusable.
6449 * Throttling is based on the first usable node and throttled processes
6450 * wait on a queue until kswapd makes progress and wakes them. There
6451 * is an affinity then between processes waking up and where reclaim
6452 * progress has been made assuming the process wakes on the same node.
6453 * More importantly, processes running on remote nodes will not compete
6454 * for remote pfmemalloc reserves and processes on different nodes
6455 * should make reasonable progress.
6457 for_each_zone_zonelist_nodemask(zone, z, zonelist,
6458 gfp_zone(gfp_mask), nodemask) {
6459 if (zone_idx(zone) > ZONE_NORMAL)
6460 continue;
6462 /* Throttle based on the first usable node */
6463 pgdat = zone->zone_pgdat;
6464 if (allow_direct_reclaim(pgdat))
6465 goto out;
6466 break;
6469 /* If no zone was usable by the allocation flags then do not throttle */
6470 if (!pgdat)
6471 goto out;
6473 /* Account for the throttling */
6474 count_vm_event(PGSCAN_DIRECT_THROTTLE);
6477 * If the caller cannot enter the filesystem, it's possible that it
6478 * is due to the caller holding an FS lock or performing a journal
6479 * transaction in the case of a filesystem like ext[3|4]. In this case,
6480 * it is not safe to block on pfmemalloc_wait as kswapd could be
6481 * blocked waiting on the same lock. Instead, throttle for up to a
6482 * second before continuing.
6484 if (!(gfp_mask & __GFP_FS))
6485 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
6486 allow_direct_reclaim(pgdat), HZ);
6487 else
6488 /* Throttle until kswapd wakes the process */
6489 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
6490 allow_direct_reclaim(pgdat));
6492 if (fatal_signal_pending(current))
6493 return true;
6495 out:
6496 return false;
6499 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
6500 gfp_t gfp_mask, nodemask_t *nodemask)
6502 unsigned long nr_reclaimed;
6503 struct scan_control sc = {
6504 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6505 .gfp_mask = current_gfp_context(gfp_mask),
6506 .reclaim_idx = gfp_zone(gfp_mask),
6507 .order = order,
6508 .nodemask = nodemask,
6509 .priority = DEF_PRIORITY,
6510 .may_writepage = !laptop_mode,
6511 .may_unmap = 1,
6512 .may_swap = 1,
6516 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6517 * Confirm they are large enough for max values.
6519 BUILD_BUG_ON(MAX_PAGE_ORDER >= S8_MAX);
6520 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
6521 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
6524 * Do not enter reclaim if fatal signal was delivered while throttled.
6525 * 1 is returned so that the page allocator does not OOM kill at this
6526 * point.
6528 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
6529 return 1;
6531 set_task_reclaim_state(current, &sc.reclaim_state);
6532 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
6534 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6536 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
6537 set_task_reclaim_state(current, NULL);
6539 return nr_reclaimed;
6542 #ifdef CONFIG_MEMCG
6544 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6545 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
6546 gfp_t gfp_mask, bool noswap,
6547 pg_data_t *pgdat,
6548 unsigned long *nr_scanned)
6550 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
6551 struct scan_control sc = {
6552 .nr_to_reclaim = SWAP_CLUSTER_MAX,
6553 .target_mem_cgroup = memcg,
6554 .may_writepage = !laptop_mode,
6555 .may_unmap = 1,
6556 .reclaim_idx = MAX_NR_ZONES - 1,
6557 .may_swap = !noswap,
6560 WARN_ON_ONCE(!current->reclaim_state);
6562 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
6563 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
6565 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
6566 sc.gfp_mask);
6569 * NOTE: Although we can get the priority field, using it
6570 * here is not a good idea, since it limits the pages we can scan.
6571 * if we don't reclaim here, the shrink_node from balance_pgdat
6572 * will pick up pages from other mem cgroup's as well. We hack
6573 * the priority and make it zero.
6575 shrink_lruvec(lruvec, &sc);
6577 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
6579 *nr_scanned = sc.nr_scanned;
6581 return sc.nr_reclaimed;
6584 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
6585 unsigned long nr_pages,
6586 gfp_t gfp_mask,
6587 unsigned int reclaim_options,
6588 int *swappiness)
6590 unsigned long nr_reclaimed;
6591 unsigned int noreclaim_flag;
6592 struct scan_control sc = {
6593 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
6594 .proactive_swappiness = swappiness,
6595 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
6596 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
6597 .reclaim_idx = MAX_NR_ZONES - 1,
6598 .target_mem_cgroup = memcg,
6599 .priority = DEF_PRIORITY,
6600 .may_writepage = !laptop_mode,
6601 .may_unmap = 1,
6602 .may_swap = !!(reclaim_options & MEMCG_RECLAIM_MAY_SWAP),
6603 .proactive = !!(reclaim_options & MEMCG_RECLAIM_PROACTIVE),
6606 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6607 * equal pressure on all the nodes. This is based on the assumption that
6608 * the reclaim does not bail out early.
6610 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
6612 set_task_reclaim_state(current, &sc.reclaim_state);
6613 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
6614 noreclaim_flag = memalloc_noreclaim_save();
6616 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
6618 memalloc_noreclaim_restore(noreclaim_flag);
6619 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
6620 set_task_reclaim_state(current, NULL);
6622 return nr_reclaimed;
6624 #endif
6626 static void kswapd_age_node(struct pglist_data *pgdat, struct scan_control *sc)
6628 struct mem_cgroup *memcg;
6629 struct lruvec *lruvec;
6631 if (lru_gen_enabled()) {
6632 lru_gen_age_node(pgdat, sc);
6633 return;
6636 if (!can_age_anon_pages(pgdat, sc))
6637 return;
6639 lruvec = mem_cgroup_lruvec(NULL, pgdat);
6640 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
6641 return;
6643 memcg = mem_cgroup_iter(NULL, NULL, NULL);
6644 do {
6645 lruvec = mem_cgroup_lruvec(memcg, pgdat);
6646 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
6647 sc, LRU_ACTIVE_ANON);
6648 memcg = mem_cgroup_iter(NULL, memcg, NULL);
6649 } while (memcg);
6652 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
6654 int i;
6655 struct zone *zone;
6658 * Check for watermark boosts top-down as the higher zones
6659 * are more likely to be boosted. Both watermarks and boosts
6660 * should not be checked at the same time as reclaim would
6661 * start prematurely when there is no boosting and a lower
6662 * zone is balanced.
6664 for (i = highest_zoneidx; i >= 0; i--) {
6665 zone = pgdat->node_zones + i;
6666 if (!managed_zone(zone))
6667 continue;
6669 if (zone->watermark_boost)
6670 return true;
6673 return false;
6677 * Returns true if there is an eligible zone balanced for the request order
6678 * and highest_zoneidx
6680 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
6682 int i;
6683 unsigned long mark = -1;
6684 struct zone *zone;
6687 * Check watermarks bottom-up as lower zones are more likely to
6688 * meet watermarks.
6690 for (i = 0; i <= highest_zoneidx; i++) {
6691 zone = pgdat->node_zones + i;
6693 if (!managed_zone(zone))
6694 continue;
6696 if (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING)
6697 mark = promo_wmark_pages(zone);
6698 else
6699 mark = high_wmark_pages(zone);
6700 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
6701 return true;
6705 * If a node has no managed zone within highest_zoneidx, it does not
6706 * need balancing by definition. This can happen if a zone-restricted
6707 * allocation tries to wake a remote kswapd.
6709 if (mark == -1)
6710 return true;
6712 return false;
6715 /* Clear pgdat state for congested, dirty or under writeback. */
6716 static void clear_pgdat_congested(pg_data_t *pgdat)
6718 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
6720 clear_bit(LRUVEC_NODE_CONGESTED, &lruvec->flags);
6721 clear_bit(LRUVEC_CGROUP_CONGESTED, &lruvec->flags);
6722 clear_bit(PGDAT_DIRTY, &pgdat->flags);
6723 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
6727 * Prepare kswapd for sleeping. This verifies that there are no processes
6728 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6730 * Returns true if kswapd is ready to sleep
6732 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
6733 int highest_zoneidx)
6736 * The throttled processes are normally woken up in balance_pgdat() as
6737 * soon as allow_direct_reclaim() is true. But there is a potential
6738 * race between when kswapd checks the watermarks and a process gets
6739 * throttled. There is also a potential race if processes get
6740 * throttled, kswapd wakes, a large process exits thereby balancing the
6741 * zones, which causes kswapd to exit balance_pgdat() before reaching
6742 * the wake up checks. If kswapd is going to sleep, no process should
6743 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6744 * the wake up is premature, processes will wake kswapd and get
6745 * throttled again. The difference from wake ups in balance_pgdat() is
6746 * that here we are under prepare_to_wait().
6748 if (waitqueue_active(&pgdat->pfmemalloc_wait))
6749 wake_up_all(&pgdat->pfmemalloc_wait);
6751 /* Hopeless node, leave it to direct reclaim */
6752 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
6753 return true;
6755 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
6756 clear_pgdat_congested(pgdat);
6757 return true;
6760 return false;
6764 * kswapd shrinks a node of pages that are at or below the highest usable
6765 * zone that is currently unbalanced.
6767 * Returns true if kswapd scanned at least the requested number of pages to
6768 * reclaim or if the lack of progress was due to pages under writeback.
6769 * This is used to determine if the scanning priority needs to be raised.
6771 static bool kswapd_shrink_node(pg_data_t *pgdat,
6772 struct scan_control *sc)
6774 struct zone *zone;
6775 int z;
6776 unsigned long nr_reclaimed = sc->nr_reclaimed;
6778 /* Reclaim a number of pages proportional to the number of zones */
6779 sc->nr_to_reclaim = 0;
6780 for (z = 0; z <= sc->reclaim_idx; z++) {
6781 zone = pgdat->node_zones + z;
6782 if (!managed_zone(zone))
6783 continue;
6785 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
6789 * Historically care was taken to put equal pressure on all zones but
6790 * now pressure is applied based on node LRU order.
6792 shrink_node(pgdat, sc);
6795 * Fragmentation may mean that the system cannot be rebalanced for
6796 * high-order allocations. If twice the allocation size has been
6797 * reclaimed then recheck watermarks only at order-0 to prevent
6798 * excessive reclaim. Assume that a process requested a high-order
6799 * can direct reclaim/compact.
6801 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
6802 sc->order = 0;
6804 /* account for progress from mm_account_reclaimed_pages() */
6805 return max(sc->nr_scanned, sc->nr_reclaimed - nr_reclaimed) >= sc->nr_to_reclaim;
6808 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6809 static inline void
6810 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
6812 int i;
6813 struct zone *zone;
6815 for (i = 0; i <= highest_zoneidx; i++) {
6816 zone = pgdat->node_zones + i;
6818 if (!managed_zone(zone))
6819 continue;
6821 if (active)
6822 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6823 else
6824 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
6828 static inline void
6829 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6831 update_reclaim_active(pgdat, highest_zoneidx, true);
6834 static inline void
6835 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
6837 update_reclaim_active(pgdat, highest_zoneidx, false);
6841 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6842 * that are eligible for use by the caller until at least one zone is
6843 * balanced.
6845 * Returns the order kswapd finished reclaiming at.
6847 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6848 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6849 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6850 * or lower is eligible for reclaim until at least one usable zone is
6851 * balanced.
6853 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
6855 int i;
6856 unsigned long nr_soft_reclaimed;
6857 unsigned long nr_soft_scanned;
6858 unsigned long pflags;
6859 unsigned long nr_boost_reclaim;
6860 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
6861 bool boosted;
6862 struct zone *zone;
6863 struct scan_control sc = {
6864 .gfp_mask = GFP_KERNEL,
6865 .order = order,
6866 .may_unmap = 1,
6869 set_task_reclaim_state(current, &sc.reclaim_state);
6870 psi_memstall_enter(&pflags);
6871 __fs_reclaim_acquire(_THIS_IP_);
6873 count_vm_event(PAGEOUTRUN);
6876 * Account for the reclaim boost. Note that the zone boost is left in
6877 * place so that parallel allocations that are near the watermark will
6878 * stall or direct reclaim until kswapd is finished.
6880 nr_boost_reclaim = 0;
6881 for (i = 0; i <= highest_zoneidx; i++) {
6882 zone = pgdat->node_zones + i;
6883 if (!managed_zone(zone))
6884 continue;
6886 nr_boost_reclaim += zone->watermark_boost;
6887 zone_boosts[i] = zone->watermark_boost;
6889 boosted = nr_boost_reclaim;
6891 restart:
6892 set_reclaim_active(pgdat, highest_zoneidx);
6893 sc.priority = DEF_PRIORITY;
6894 do {
6895 unsigned long nr_reclaimed = sc.nr_reclaimed;
6896 bool raise_priority = true;
6897 bool balanced;
6898 bool ret;
6899 bool was_frozen;
6901 sc.reclaim_idx = highest_zoneidx;
6904 * If the number of buffer_heads exceeds the maximum allowed
6905 * then consider reclaiming from all zones. This has a dual
6906 * purpose -- on 64-bit systems it is expected that
6907 * buffer_heads are stripped during active rotation. On 32-bit
6908 * systems, highmem pages can pin lowmem memory and shrinking
6909 * buffers can relieve lowmem pressure. Reclaim may still not
6910 * go ahead if all eligible zones for the original allocation
6911 * request are balanced to avoid excessive reclaim from kswapd.
6913 if (buffer_heads_over_limit) {
6914 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
6915 zone = pgdat->node_zones + i;
6916 if (!managed_zone(zone))
6917 continue;
6919 sc.reclaim_idx = i;
6920 break;
6925 * If the pgdat is imbalanced then ignore boosting and preserve
6926 * the watermarks for a later time and restart. Note that the
6927 * zone watermarks will be still reset at the end of balancing
6928 * on the grounds that the normal reclaim should be enough to
6929 * re-evaluate if boosting is required when kswapd next wakes.
6931 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
6932 if (!balanced && nr_boost_reclaim) {
6933 nr_boost_reclaim = 0;
6934 goto restart;
6938 * If boosting is not active then only reclaim if there are no
6939 * eligible zones. Note that sc.reclaim_idx is not used as
6940 * buffer_heads_over_limit may have adjusted it.
6942 if (!nr_boost_reclaim && balanced)
6943 goto out;
6945 /* Limit the priority of boosting to avoid reclaim writeback */
6946 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
6947 raise_priority = false;
6950 * Do not writeback or swap pages for boosted reclaim. The
6951 * intent is to relieve pressure not issue sub-optimal IO
6952 * from reclaim context. If no pages are reclaimed, the
6953 * reclaim will be aborted.
6955 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
6956 sc.may_swap = !nr_boost_reclaim;
6959 * Do some background aging, to give pages a chance to be
6960 * referenced before reclaiming. All pages are rotated
6961 * regardless of classzone as this is about consistent aging.
6963 kswapd_age_node(pgdat, &sc);
6966 * If we're getting trouble reclaiming, start doing writepage
6967 * even in laptop mode.
6969 if (sc.priority < DEF_PRIORITY - 2)
6970 sc.may_writepage = 1;
6972 /* Call soft limit reclaim before calling shrink_node. */
6973 sc.nr_scanned = 0;
6974 nr_soft_scanned = 0;
6975 nr_soft_reclaimed = memcg1_soft_limit_reclaim(pgdat, sc.order,
6976 sc.gfp_mask, &nr_soft_scanned);
6977 sc.nr_reclaimed += nr_soft_reclaimed;
6980 * There should be no need to raise the scanning priority if
6981 * enough pages are already being scanned that that high
6982 * watermark would be met at 100% efficiency.
6984 if (kswapd_shrink_node(pgdat, &sc))
6985 raise_priority = false;
6988 * If the low watermark is met there is no need for processes
6989 * to be throttled on pfmemalloc_wait as they should not be
6990 * able to safely make forward progress. Wake them
6992 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
6993 allow_direct_reclaim(pgdat))
6994 wake_up_all(&pgdat->pfmemalloc_wait);
6996 /* Check if kswapd should be suspending */
6997 __fs_reclaim_release(_THIS_IP_);
6998 ret = kthread_freezable_should_stop(&was_frozen);
6999 __fs_reclaim_acquire(_THIS_IP_);
7000 if (was_frozen || ret)
7001 break;
7004 * Raise priority if scanning rate is too low or there was no
7005 * progress in reclaiming pages
7007 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
7008 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
7011 * If reclaim made no progress for a boost, stop reclaim as
7012 * IO cannot be queued and it could be an infinite loop in
7013 * extreme circumstances.
7015 if (nr_boost_reclaim && !nr_reclaimed)
7016 break;
7018 if (raise_priority || !nr_reclaimed)
7019 sc.priority--;
7020 } while (sc.priority >= 1);
7023 * Restart only if it went through the priority loop all the way,
7024 * but cache_trim_mode didn't work.
7026 if (!sc.nr_reclaimed && sc.priority < 1 &&
7027 !sc.no_cache_trim_mode && sc.cache_trim_mode_failed) {
7028 sc.no_cache_trim_mode = 1;
7029 goto restart;
7032 if (!sc.nr_reclaimed)
7033 pgdat->kswapd_failures++;
7035 out:
7036 clear_reclaim_active(pgdat, highest_zoneidx);
7038 /* If reclaim was boosted, account for the reclaim done in this pass */
7039 if (boosted) {
7040 unsigned long flags;
7042 for (i = 0; i <= highest_zoneidx; i++) {
7043 if (!zone_boosts[i])
7044 continue;
7046 /* Increments are under the zone lock */
7047 zone = pgdat->node_zones + i;
7048 spin_lock_irqsave(&zone->lock, flags);
7049 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
7050 spin_unlock_irqrestore(&zone->lock, flags);
7054 * As there is now likely space, wakeup kcompact to defragment
7055 * pageblocks.
7057 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
7060 snapshot_refaults(NULL, pgdat);
7061 __fs_reclaim_release(_THIS_IP_);
7062 psi_memstall_leave(&pflags);
7063 set_task_reclaim_state(current, NULL);
7066 * Return the order kswapd stopped reclaiming at as
7067 * prepare_kswapd_sleep() takes it into account. If another caller
7068 * entered the allocator slow path while kswapd was awake, order will
7069 * remain at the higher level.
7071 return sc.order;
7075 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7076 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7077 * not a valid index then either kswapd runs for first time or kswapd couldn't
7078 * sleep after previous reclaim attempt (node is still unbalanced). In that
7079 * case return the zone index of the previous kswapd reclaim cycle.
7081 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
7082 enum zone_type prev_highest_zoneidx)
7084 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7086 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
7089 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
7090 unsigned int highest_zoneidx)
7092 long remaining = 0;
7093 DEFINE_WAIT(wait);
7095 if (freezing(current) || kthread_should_stop())
7096 return;
7098 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7101 * Try to sleep for a short interval. Note that kcompactd will only be
7102 * woken if it is possible to sleep for a short interval. This is
7103 * deliberate on the assumption that if reclaim cannot keep an
7104 * eligible zone balanced that it's also unlikely that compaction will
7105 * succeed.
7107 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7109 * Compaction records what page blocks it recently failed to
7110 * isolate pages from and skips them in the future scanning.
7111 * When kswapd is going to sleep, it is reasonable to assume
7112 * that pages and compaction may succeed so reset the cache.
7114 reset_isolation_suitable(pgdat);
7117 * We have freed the memory, now we should compact it to make
7118 * allocation of the requested order possible.
7120 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
7122 remaining = schedule_timeout(HZ/10);
7125 * If woken prematurely then reset kswapd_highest_zoneidx and
7126 * order. The values will either be from a wakeup request or
7127 * the previous request that slept prematurely.
7129 if (remaining) {
7130 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
7131 kswapd_highest_zoneidx(pgdat,
7132 highest_zoneidx));
7134 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
7135 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
7138 finish_wait(&pgdat->kswapd_wait, &wait);
7139 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
7143 * After a short sleep, check if it was a premature sleep. If not, then
7144 * go fully to sleep until explicitly woken up.
7146 if (!remaining &&
7147 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
7148 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
7151 * vmstat counters are not perfectly accurate and the estimated
7152 * value for counters such as NR_FREE_PAGES can deviate from the
7153 * true value by nr_online_cpus * threshold. To avoid the zone
7154 * watermarks being breached while under pressure, we reduce the
7155 * per-cpu vmstat threshold while kswapd is awake and restore
7156 * them before going back to sleep.
7158 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
7160 if (!kthread_should_stop())
7161 schedule();
7163 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
7164 } else {
7165 if (remaining)
7166 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
7167 else
7168 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
7170 finish_wait(&pgdat->kswapd_wait, &wait);
7174 * The background pageout daemon, started as a kernel thread
7175 * from the init process.
7177 * This basically trickles out pages so that we have _some_
7178 * free memory available even if there is no other activity
7179 * that frees anything up. This is needed for things like routing
7180 * etc, where we otherwise might have all activity going on in
7181 * asynchronous contexts that cannot page things out.
7183 * If there are applications that are active memory-allocators
7184 * (most normal use), this basically shouldn't matter.
7186 static int kswapd(void *p)
7188 unsigned int alloc_order, reclaim_order;
7189 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
7190 pg_data_t *pgdat = (pg_data_t *)p;
7191 struct task_struct *tsk = current;
7192 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7194 if (!cpumask_empty(cpumask))
7195 set_cpus_allowed_ptr(tsk, cpumask);
7198 * Tell the memory management that we're a "memory allocator",
7199 * and that if we need more memory we should get access to it
7200 * regardless (see "__alloc_pages()"). "kswapd" should
7201 * never get caught in the normal page freeing logic.
7203 * (Kswapd normally doesn't need memory anyway, but sometimes
7204 * you need a small amount of memory in order to be able to
7205 * page out something else, and this flag essentially protects
7206 * us from recursively trying to free more memory as we're
7207 * trying to free the first piece of memory in the first place).
7209 tsk->flags |= PF_MEMALLOC | PF_KSWAPD;
7210 set_freezable();
7212 WRITE_ONCE(pgdat->kswapd_order, 0);
7213 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7214 atomic_set(&pgdat->nr_writeback_throttled, 0);
7215 for ( ; ; ) {
7216 bool was_frozen;
7218 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
7219 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7220 highest_zoneidx);
7222 kswapd_try_sleep:
7223 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
7224 highest_zoneidx);
7226 /* Read the new order and highest_zoneidx */
7227 alloc_order = READ_ONCE(pgdat->kswapd_order);
7228 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
7229 highest_zoneidx);
7230 WRITE_ONCE(pgdat->kswapd_order, 0);
7231 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
7233 if (kthread_freezable_should_stop(&was_frozen))
7234 break;
7237 * We can speed up thawing tasks if we don't call balance_pgdat
7238 * after returning from the refrigerator
7240 if (was_frozen)
7241 continue;
7244 * Reclaim begins at the requested order but if a high-order
7245 * reclaim fails then kswapd falls back to reclaiming for
7246 * order-0. If that happens, kswapd will consider sleeping
7247 * for the order it finished reclaiming at (reclaim_order)
7248 * but kcompactd is woken to compact for the original
7249 * request (alloc_order).
7251 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
7252 alloc_order);
7253 reclaim_order = balance_pgdat(pgdat, alloc_order,
7254 highest_zoneidx);
7255 if (reclaim_order < alloc_order)
7256 goto kswapd_try_sleep;
7259 tsk->flags &= ~(PF_MEMALLOC | PF_KSWAPD);
7261 return 0;
7265 * A zone is low on free memory or too fragmented for high-order memory. If
7266 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7267 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7268 * has failed or is not needed, still wake up kcompactd if only compaction is
7269 * needed.
7271 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
7272 enum zone_type highest_zoneidx)
7274 pg_data_t *pgdat;
7275 enum zone_type curr_idx;
7277 if (!managed_zone(zone))
7278 return;
7280 if (!cpuset_zone_allowed(zone, gfp_flags))
7281 return;
7283 pgdat = zone->zone_pgdat;
7284 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
7286 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
7287 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
7289 if (READ_ONCE(pgdat->kswapd_order) < order)
7290 WRITE_ONCE(pgdat->kswapd_order, order);
7292 if (!waitqueue_active(&pgdat->kswapd_wait))
7293 return;
7295 /* Hopeless node, leave it to direct reclaim if possible */
7296 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
7297 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
7298 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
7300 * There may be plenty of free memory available, but it's too
7301 * fragmented for high-order allocations. Wake up kcompactd
7302 * and rely on compaction_suitable() to determine if it's
7303 * needed. If it fails, it will defer subsequent attempts to
7304 * ratelimit its work.
7306 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
7307 wakeup_kcompactd(pgdat, order, highest_zoneidx);
7308 return;
7311 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
7312 gfp_flags);
7313 wake_up_interruptible(&pgdat->kswapd_wait);
7316 #ifdef CONFIG_HIBERNATION
7318 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7319 * freed pages.
7321 * Rather than trying to age LRUs the aim is to preserve the overall
7322 * LRU order by reclaiming preferentially
7323 * inactive > active > active referenced > active mapped
7325 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
7327 struct scan_control sc = {
7328 .nr_to_reclaim = nr_to_reclaim,
7329 .gfp_mask = GFP_HIGHUSER_MOVABLE,
7330 .reclaim_idx = MAX_NR_ZONES - 1,
7331 .priority = DEF_PRIORITY,
7332 .may_writepage = 1,
7333 .may_unmap = 1,
7334 .may_swap = 1,
7335 .hibernation_mode = 1,
7337 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7338 unsigned long nr_reclaimed;
7339 unsigned int noreclaim_flag;
7341 fs_reclaim_acquire(sc.gfp_mask);
7342 noreclaim_flag = memalloc_noreclaim_save();
7343 set_task_reclaim_state(current, &sc.reclaim_state);
7345 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
7347 set_task_reclaim_state(current, NULL);
7348 memalloc_noreclaim_restore(noreclaim_flag);
7349 fs_reclaim_release(sc.gfp_mask);
7351 return nr_reclaimed;
7353 #endif /* CONFIG_HIBERNATION */
7356 * This kswapd start function will be called by init and node-hot-add.
7358 void __meminit kswapd_run(int nid)
7360 pg_data_t *pgdat = NODE_DATA(nid);
7362 pgdat_kswapd_lock(pgdat);
7363 if (!pgdat->kswapd) {
7364 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
7365 if (IS_ERR(pgdat->kswapd)) {
7366 /* failure at boot is fatal */
7367 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7368 nid, PTR_ERR(pgdat->kswapd));
7369 BUG_ON(system_state < SYSTEM_RUNNING);
7370 pgdat->kswapd = NULL;
7373 pgdat_kswapd_unlock(pgdat);
7377 * Called by memory hotplug when all memory in a node is offlined. Caller must
7378 * be holding mem_hotplug_begin/done().
7380 void __meminit kswapd_stop(int nid)
7382 pg_data_t *pgdat = NODE_DATA(nid);
7383 struct task_struct *kswapd;
7385 pgdat_kswapd_lock(pgdat);
7386 kswapd = pgdat->kswapd;
7387 if (kswapd) {
7388 kthread_stop(kswapd);
7389 pgdat->kswapd = NULL;
7391 pgdat_kswapd_unlock(pgdat);
7394 static int __init kswapd_init(void)
7396 int nid;
7398 swap_setup();
7399 for_each_node_state(nid, N_MEMORY)
7400 kswapd_run(nid);
7401 return 0;
7404 module_init(kswapd_init)
7406 #ifdef CONFIG_NUMA
7408 * Node reclaim mode
7410 * If non-zero call node_reclaim when the number of free pages falls below
7411 * the watermarks.
7413 int node_reclaim_mode __read_mostly;
7416 * Priority for NODE_RECLAIM. This determines the fraction of pages
7417 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7418 * a zone.
7420 #define NODE_RECLAIM_PRIORITY 4
7423 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7424 * occur.
7426 int sysctl_min_unmapped_ratio = 1;
7429 * If the number of slab pages in a zone grows beyond this percentage then
7430 * slab reclaim needs to occur.
7432 int sysctl_min_slab_ratio = 5;
7434 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
7436 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
7437 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
7438 node_page_state(pgdat, NR_ACTIVE_FILE);
7441 * It's possible for there to be more file mapped pages than
7442 * accounted for by the pages on the file LRU lists because
7443 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7445 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
7448 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7449 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
7451 unsigned long nr_pagecache_reclaimable;
7452 unsigned long delta = 0;
7455 * If RECLAIM_UNMAP is set, then all file pages are considered
7456 * potentially reclaimable. Otherwise, we have to worry about
7457 * pages like swapcache and node_unmapped_file_pages() provides
7458 * a better estimate
7460 if (node_reclaim_mode & RECLAIM_UNMAP)
7461 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
7462 else
7463 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
7465 /* If we can't clean pages, remove dirty pages from consideration */
7466 if (!(node_reclaim_mode & RECLAIM_WRITE))
7467 delta += node_page_state(pgdat, NR_FILE_DIRTY);
7469 /* Watch for any possible underflows due to delta */
7470 if (unlikely(delta > nr_pagecache_reclaimable))
7471 delta = nr_pagecache_reclaimable;
7473 return nr_pagecache_reclaimable - delta;
7477 * Try to free up some pages from this node through reclaim.
7479 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7481 /* Minimum pages needed in order to stay on node */
7482 const unsigned long nr_pages = 1 << order;
7483 struct task_struct *p = current;
7484 unsigned int noreclaim_flag;
7485 struct scan_control sc = {
7486 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7487 .gfp_mask = current_gfp_context(gfp_mask),
7488 .order = order,
7489 .priority = NODE_RECLAIM_PRIORITY,
7490 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
7491 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
7492 .may_swap = 1,
7493 .reclaim_idx = gfp_zone(gfp_mask),
7495 unsigned long pflags;
7497 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
7498 sc.gfp_mask);
7500 cond_resched();
7501 psi_memstall_enter(&pflags);
7502 delayacct_freepages_start();
7503 fs_reclaim_acquire(sc.gfp_mask);
7505 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7507 noreclaim_flag = memalloc_noreclaim_save();
7508 set_task_reclaim_state(p, &sc.reclaim_state);
7510 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages ||
7511 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) > pgdat->min_slab_pages) {
7513 * Free memory by calling shrink node with increasing
7514 * priorities until we have enough memory freed.
7516 do {
7517 shrink_node(pgdat, &sc);
7518 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
7521 set_task_reclaim_state(p, NULL);
7522 memalloc_noreclaim_restore(noreclaim_flag);
7523 fs_reclaim_release(sc.gfp_mask);
7524 psi_memstall_leave(&pflags);
7525 delayacct_freepages_end();
7527 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
7529 return sc.nr_reclaimed >= nr_pages;
7532 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
7534 int ret;
7537 * Node reclaim reclaims unmapped file backed pages and
7538 * slab pages if we are over the defined limits.
7540 * A small portion of unmapped file backed pages is needed for
7541 * file I/O otherwise pages read by file I/O will be immediately
7542 * thrown out if the node is overallocated. So we do not reclaim
7543 * if less than a specified percentage of the node is used by
7544 * unmapped file backed pages.
7546 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
7547 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
7548 pgdat->min_slab_pages)
7549 return NODE_RECLAIM_FULL;
7552 * Do not scan if the allocation should not be delayed.
7554 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
7555 return NODE_RECLAIM_NOSCAN;
7558 * Only run node reclaim on the local node or on nodes that do not
7559 * have associated processors. This will favor the local processor
7560 * over remote processors and spread off node memory allocations
7561 * as wide as possible.
7563 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
7564 return NODE_RECLAIM_NOSCAN;
7566 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
7567 return NODE_RECLAIM_NOSCAN;
7569 ret = __node_reclaim(pgdat, gfp_mask, order);
7570 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
7572 if (ret)
7573 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS);
7574 else
7575 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
7577 return ret;
7579 #endif
7582 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7583 * lru list
7584 * @fbatch: Batch of lru folios to check.
7586 * Checks folios for evictability, if an evictable folio is in the unevictable
7587 * lru list, moves it to the appropriate evictable lru list. This function
7588 * should be only used for lru folios.
7590 void check_move_unevictable_folios(struct folio_batch *fbatch)
7592 struct lruvec *lruvec = NULL;
7593 int pgscanned = 0;
7594 int pgrescued = 0;
7595 int i;
7597 for (i = 0; i < fbatch->nr; i++) {
7598 struct folio *folio = fbatch->folios[i];
7599 int nr_pages = folio_nr_pages(folio);
7601 pgscanned += nr_pages;
7603 /* block memcg migration while the folio moves between lrus */
7604 if (!folio_test_clear_lru(folio))
7605 continue;
7607 lruvec = folio_lruvec_relock_irq(folio, lruvec);
7608 if (folio_evictable(folio) && folio_test_unevictable(folio)) {
7609 lruvec_del_folio(lruvec, folio);
7610 folio_clear_unevictable(folio);
7611 lruvec_add_folio(lruvec, folio);
7612 pgrescued += nr_pages;
7614 folio_set_lru(folio);
7617 if (lruvec) {
7618 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
7619 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7620 unlock_page_lruvec_irq(lruvec);
7621 } else if (pgscanned) {
7622 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
7625 EXPORT_SYMBOL_GPL(check_move_unevictable_folios);