1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
9 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for buffer_heads_over_limit */
30 #include <linux/mm_inline.h>
31 #include <linux/backing-dev.h>
32 #include <linux/rmap.h>
33 #include <linux/topology.h>
34 #include <linux/cpu.h>
35 #include <linux/cpuset.h>
36 #include <linux/compaction.h>
37 #include <linux/notifier.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/migrate.h>
43 #include <linux/delayacct.h>
44 #include <linux/sysctl.h>
45 #include <linux/memory-tiers.h>
46 #include <linux/oom.h>
47 #include <linux/pagevec.h>
48 #include <linux/prefetch.h>
49 #include <linux/printk.h>
50 #include <linux/dax.h>
51 #include <linux/psi.h>
52 #include <linux/pagewalk.h>
53 #include <linux/shmem_fs.h>
54 #include <linux/ctype.h>
55 #include <linux/debugfs.h>
56 #include <linux/khugepaged.h>
57 #include <linux/rculist_nulls.h>
58 #include <linux/random.h>
59 #include <linux/mmu_notifier.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
64 #include <linux/swapops.h>
65 #include <linux/balloon_compaction.h>
66 #include <linux/sched/sysctl.h>
71 #define CREATE_TRACE_POINTS
72 #include <trace/events/vmscan.h>
75 /* How many pages shrink_list() should reclaim */
76 unsigned long nr_to_reclaim
;
79 * Nodemask of nodes allowed by the caller. If NULL, all nodes
85 * The memory cgroup that hit its limit and as a result is the
86 * primary target of this reclaim invocation.
88 struct mem_cgroup
*target_mem_cgroup
;
91 * Scan pressure balancing between anon and file LRUs
93 unsigned long anon_cost
;
94 unsigned long file_cost
;
97 /* Swappiness value for proactive reclaim. Always use sc_swappiness()! */
98 int *proactive_swappiness
;
101 /* Can active folios be deactivated as part of reclaim? */
102 #define DEACTIVATE_ANON 1
103 #define DEACTIVATE_FILE 2
104 unsigned int may_deactivate
:2;
105 unsigned int force_deactivate
:1;
106 unsigned int skipped_deactivate
:1;
108 /* Writepage batching in laptop mode; RECLAIM_WRITE */
109 unsigned int may_writepage
:1;
111 /* Can mapped folios be reclaimed? */
112 unsigned int may_unmap
:1;
114 /* Can folios be swapped as part of reclaim? */
115 unsigned int may_swap
:1;
117 /* Not allow cache_trim_mode to be turned on as part of reclaim? */
118 unsigned int no_cache_trim_mode
:1;
120 /* Has cache_trim_mode failed at least once? */
121 unsigned int cache_trim_mode_failed
:1;
123 /* Proactive reclaim invoked by userspace through memory.reclaim */
124 unsigned int proactive
:1;
127 * Cgroup memory below memory.low is protected as long as we
128 * don't threaten to OOM. If any cgroup is reclaimed at
129 * reduced force or passed over entirely due to its memory.low
130 * setting (memcg_low_skipped), and nothing is reclaimed as a
131 * result, then go back for one more cycle that reclaims the protected
132 * memory (memcg_low_reclaim) to avert OOM.
134 unsigned int memcg_low_reclaim
:1;
135 unsigned int memcg_low_skipped
:1;
137 /* Shared cgroup tree walk failed, rescan the whole tree */
138 unsigned int memcg_full_walk
:1;
140 unsigned int hibernation_mode
:1;
142 /* One of the zones is ready for compaction */
143 unsigned int compaction_ready
:1;
145 /* There is easily reclaimable cold cache in the current node */
146 unsigned int cache_trim_mode
:1;
148 /* The file folios on the current node are dangerously low */
149 unsigned int file_is_tiny
:1;
151 /* Always discard instead of demoting to lower tier memory */
152 unsigned int no_demotion
:1;
154 /* Allocation order */
157 /* Scan (total_size >> priority) pages at once */
160 /* The highest zone to isolate folios for reclaim from */
163 /* This context's GFP mask */
166 /* Incremented by the number of inactive pages that were scanned */
167 unsigned long nr_scanned
;
169 /* Number of pages freed so far during a call to shrink_zones() */
170 unsigned long nr_reclaimed
;
174 unsigned int unqueued_dirty
;
175 unsigned int congested
;
176 unsigned int writeback
;
177 unsigned int immediate
;
178 unsigned int file_taken
;
182 /* for recording the reclaimed slab by now */
183 struct reclaim_state reclaim_state
;
186 #ifdef ARCH_HAS_PREFETCHW
187 #define prefetchw_prev_lru_folio(_folio, _base, _field) \
189 if ((_folio)->lru.prev != _base) { \
190 struct folio *prev; \
192 prev = lru_to_folio(&(_folio->lru)); \
193 prefetchw(&prev->_field); \
197 #define prefetchw_prev_lru_folio(_folio, _base, _field) do { } while (0)
201 * From 0 .. MAX_SWAPPINESS. Higher means more swappy.
203 int vm_swappiness
= 60;
207 /* Returns true for reclaim through cgroup limits or cgroup interfaces. */
208 static bool cgroup_reclaim(struct scan_control
*sc
)
210 return sc
->target_mem_cgroup
;
214 * Returns true for reclaim on the root cgroup. This is true for direct
215 * allocator reclaim and reclaim through cgroup interfaces on the root cgroup.
217 static bool root_reclaim(struct scan_control
*sc
)
219 return !sc
->target_mem_cgroup
|| mem_cgroup_is_root(sc
->target_mem_cgroup
);
223 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
224 * @sc: scan_control in question
226 * The normal page dirty throttling mechanism in balance_dirty_pages() is
227 * completely broken with the legacy memcg and direct stalling in
228 * shrink_folio_list() is used for throttling instead, which lacks all the
229 * niceties such as fairness, adaptive pausing, bandwidth proportional
230 * allocation and configurability.
232 * This function tests whether the vmscan currently in progress can assume
233 * that the normal dirty throttling mechanism is operational.
235 static bool writeback_throttling_sane(struct scan_control
*sc
)
237 if (!cgroup_reclaim(sc
))
239 #ifdef CONFIG_CGROUP_WRITEBACK
240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
246 static int sc_swappiness(struct scan_control
*sc
, struct mem_cgroup
*memcg
)
248 if (sc
->proactive
&& sc
->proactive_swappiness
)
249 return *sc
->proactive_swappiness
;
250 return mem_cgroup_swappiness(memcg
);
253 static bool cgroup_reclaim(struct scan_control
*sc
)
258 static bool root_reclaim(struct scan_control
*sc
)
263 static bool writeback_throttling_sane(struct scan_control
*sc
)
268 static int sc_swappiness(struct scan_control
*sc
, struct mem_cgroup
*memcg
)
270 return READ_ONCE(vm_swappiness
);
274 static void set_task_reclaim_state(struct task_struct
*task
,
275 struct reclaim_state
*rs
)
277 /* Check for an overwrite */
278 WARN_ON_ONCE(rs
&& task
->reclaim_state
);
280 /* Check for the nulling of an already-nulled member */
281 WARN_ON_ONCE(!rs
&& !task
->reclaim_state
);
283 task
->reclaim_state
= rs
;
287 * flush_reclaim_state(): add pages reclaimed outside of LRU-based reclaim to
288 * scan_control->nr_reclaimed.
290 static void flush_reclaim_state(struct scan_control
*sc
)
293 * Currently, reclaim_state->reclaimed includes three types of pages
294 * freed outside of vmscan:
296 * (2) Clean file pages from pruned inodes (on highmem systems).
297 * (3) XFS freed buffer pages.
299 * For all of these cases, we cannot universally link the pages to a
300 * single memcg. For example, a memcg-aware shrinker can free one object
301 * charged to the target memcg, causing an entire page to be freed.
302 * If we count the entire page as reclaimed from the memcg, we end up
303 * overestimating the reclaimed amount (potentially under-reclaiming).
305 * Only count such pages for global reclaim to prevent under-reclaiming
306 * from the target memcg; preventing unnecessary retries during memcg
307 * charging and false positives from proactive reclaim.
309 * For uncommon cases where the freed pages were actually mostly
310 * charged to the target memcg, we end up underestimating the reclaimed
311 * amount. This should be fine. The freed pages will be uncharged
312 * anyway, even if they are not counted here properly, and we will be
313 * able to make forward progress in charging (which is usually in a
316 * We can go one step further, and report the uncharged objcg pages in
317 * memcg reclaim, to make reporting more accurate and reduce
318 * underestimation, but it's probably not worth the complexity for now.
320 if (current
->reclaim_state
&& root_reclaim(sc
)) {
321 sc
->nr_reclaimed
+= current
->reclaim_state
->reclaimed
;
322 current
->reclaim_state
->reclaimed
= 0;
326 static bool can_demote(int nid
, struct scan_control
*sc
)
328 if (!numa_demotion_enabled
)
330 if (sc
&& sc
->no_demotion
)
332 if (next_demotion_node(nid
) == NUMA_NO_NODE
)
338 static inline bool can_reclaim_anon_pages(struct mem_cgroup
*memcg
,
340 struct scan_control
*sc
)
344 * For non-memcg reclaim, is there
345 * space in any swap device?
347 if (get_nr_swap_pages() > 0)
350 /* Is the memcg below its swap limit? */
351 if (mem_cgroup_get_nr_swap_pages(memcg
) > 0)
356 * The page can not be swapped.
358 * Can it be reclaimed from this node via demotion?
360 return can_demote(nid
, sc
);
364 * This misses isolated folios which are not accounted for to save counters.
365 * As the data only determines if reclaim or compaction continues, it is
366 * not expected that isolated folios will be a dominating factor.
368 unsigned long zone_reclaimable_pages(struct zone
*zone
)
372 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
373 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
374 if (can_reclaim_anon_pages(NULL
, zone_to_nid(zone
), NULL
))
375 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
376 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
378 * If there are no reclaimable file-backed or anonymous pages,
379 * ensure zones with sufficient free pages are not skipped.
380 * This prevents zones like DMA32 from being ignored in reclaim
381 * scenarios where they can still help alleviate memory pressure.
384 nr
= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
389 * lruvec_lru_size - Returns the number of pages on the given LRU list.
390 * @lruvec: lru vector
392 * @zone_idx: zones to consider (use MAX_NR_ZONES - 1 for the whole LRU list)
394 static unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
,
397 unsigned long size
= 0;
400 for (zid
= 0; zid
<= zone_idx
; zid
++) {
401 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
403 if (!managed_zone(zone
))
406 if (!mem_cgroup_disabled())
407 size
+= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
409 size
+= zone_page_state(zone
, NR_ZONE_LRU_BASE
+ lru
);
414 static unsigned long drop_slab_node(int nid
)
416 unsigned long freed
= 0;
417 struct mem_cgroup
*memcg
= NULL
;
419 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
421 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
422 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
435 for_each_online_node(nid
) {
436 if (fatal_signal_pending(current
))
439 freed
+= drop_slab_node(nid
);
441 } while ((freed
>> shift
++) > 1);
444 static int reclaimer_offset(void)
446 BUILD_BUG_ON(PGSTEAL_DIRECT
- PGSTEAL_KSWAPD
!=
447 PGDEMOTE_DIRECT
- PGDEMOTE_KSWAPD
);
448 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED
- PGSTEAL_KSWAPD
!=
449 PGDEMOTE_KHUGEPAGED
- PGDEMOTE_KSWAPD
);
450 BUILD_BUG_ON(PGSTEAL_DIRECT
- PGSTEAL_KSWAPD
!=
451 PGSCAN_DIRECT
- PGSCAN_KSWAPD
);
452 BUILD_BUG_ON(PGSTEAL_KHUGEPAGED
- PGSTEAL_KSWAPD
!=
453 PGSCAN_KHUGEPAGED
- PGSCAN_KSWAPD
);
455 if (current_is_kswapd())
457 if (current_is_khugepaged())
458 return PGSTEAL_KHUGEPAGED
- PGSTEAL_KSWAPD
;
459 return PGSTEAL_DIRECT
- PGSTEAL_KSWAPD
;
462 static inline int is_page_cache_freeable(struct folio
*folio
)
465 * A freeable page cache folio is referenced only by the caller
466 * that isolated the folio, the page cache and optional filesystem
467 * private data at folio->private.
469 return folio_ref_count(folio
) - folio_test_private(folio
) ==
470 1 + folio_nr_pages(folio
);
474 * We detected a synchronous write error writing a folio out. Probably
475 * -ENOSPC. We need to propagate that into the address_space for a subsequent
476 * fsync(), msync() or close().
478 * The tricky part is that after writepage we cannot touch the mapping: nothing
479 * prevents it from being freed up. But we have a ref on the folio and once
480 * that folio is locked, the mapping is pinned.
482 * We're allowed to run sleeping folio_lock() here because we know the caller has
485 static void handle_write_error(struct address_space
*mapping
,
486 struct folio
*folio
, int error
)
489 if (folio_mapping(folio
) == mapping
)
490 mapping_set_error(mapping
, error
);
494 static bool skip_throttle_noprogress(pg_data_t
*pgdat
)
496 int reclaimable
= 0, write_pending
= 0;
500 * If kswapd is disabled, reschedule if necessary but do not
501 * throttle as the system is likely near OOM.
503 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
507 * If there are a lot of dirty/writeback folios then do not
508 * throttle as throttling will occur when the folios cycle
509 * towards the end of the LRU if still under writeback.
511 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
512 struct zone
*zone
= pgdat
->node_zones
+ i
;
514 if (!managed_zone(zone
))
517 reclaimable
+= zone_reclaimable_pages(zone
);
518 write_pending
+= zone_page_state_snapshot(zone
,
519 NR_ZONE_WRITE_PENDING
);
521 if (2 * write_pending
<= reclaimable
)
527 void reclaim_throttle(pg_data_t
*pgdat
, enum vmscan_throttle_state reason
)
529 wait_queue_head_t
*wqh
= &pgdat
->reclaim_wait
[reason
];
534 * Do not throttle user workers, kthreads other than kswapd or
535 * workqueues. They may be required for reclaim to make
536 * forward progress (e.g. journalling workqueues or kthreads).
538 if (!current_is_kswapd() &&
539 current
->flags
& (PF_USER_WORKER
|PF_KTHREAD
)) {
545 * These figures are pulled out of thin air.
546 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
547 * parallel reclaimers which is a short-lived event so the timeout is
548 * short. Failing to make progress or waiting on writeback are
549 * potentially long-lived events so use a longer timeout. This is shaky
550 * logic as a failure to make progress could be due to anything from
551 * writeback to a slow device to excessive referenced folios at the tail
552 * of the inactive LRU.
555 case VMSCAN_THROTTLE_WRITEBACK
:
558 if (atomic_inc_return(&pgdat
->nr_writeback_throttled
) == 1) {
559 WRITE_ONCE(pgdat
->nr_reclaim_start
,
560 node_page_state(pgdat
, NR_THROTTLED_WRITTEN
));
564 case VMSCAN_THROTTLE_CONGESTED
:
566 case VMSCAN_THROTTLE_NOPROGRESS
:
567 if (skip_throttle_noprogress(pgdat
)) {
575 case VMSCAN_THROTTLE_ISOLATED
:
584 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
585 ret
= schedule_timeout(timeout
);
586 finish_wait(wqh
, &wait
);
588 if (reason
== VMSCAN_THROTTLE_WRITEBACK
)
589 atomic_dec(&pgdat
->nr_writeback_throttled
);
591 trace_mm_vmscan_throttled(pgdat
->node_id
, jiffies_to_usecs(timeout
),
592 jiffies_to_usecs(timeout
- ret
),
597 * Account for folios written if tasks are throttled waiting on dirty
598 * folios to clean. If enough folios have been cleaned since throttling
599 * started then wakeup the throttled tasks.
601 void __acct_reclaim_writeback(pg_data_t
*pgdat
, struct folio
*folio
,
604 unsigned long nr_written
;
606 node_stat_add_folio(folio
, NR_THROTTLED_WRITTEN
);
609 * This is an inaccurate read as the per-cpu deltas may not
610 * be synchronised. However, given that the system is
611 * writeback throttled, it is not worth taking the penalty
612 * of getting an accurate count. At worst, the throttle
613 * timeout guarantees forward progress.
615 nr_written
= node_page_state(pgdat
, NR_THROTTLED_WRITTEN
) -
616 READ_ONCE(pgdat
->nr_reclaim_start
);
618 if (nr_written
> SWAP_CLUSTER_MAX
* nr_throttled
)
619 wake_up(&pgdat
->reclaim_wait
[VMSCAN_THROTTLE_WRITEBACK
]);
622 /* possible outcome of pageout() */
624 /* failed to write folio out, folio is locked */
626 /* move folio to the active list, folio is locked */
628 /* folio has been sent to the disk successfully, folio is unlocked */
630 /* folio is clean and locked */
635 * pageout is called by shrink_folio_list() for each dirty folio.
636 * Calls ->writepage().
638 static pageout_t
pageout(struct folio
*folio
, struct address_space
*mapping
,
639 struct swap_iocb
**plug
, struct list_head
*folio_list
)
642 * If the folio is dirty, only perform writeback if that write
643 * will be non-blocking. To prevent this allocation from being
644 * stalled by pagecache activity. But note that there may be
645 * stalls if we need to run get_block(). We could test
646 * PagePrivate for that.
648 * If this process is currently in __generic_file_write_iter() against
649 * this folio's queue, we can perform writeback even if that
652 * If the folio is swapcache, write it back even if that would
653 * block, for some throttling. This happens by accident, because
654 * swap_backing_dev_info is bust: it doesn't reflect the
655 * congestion state of the swapdevs. Easy to fix, if needed.
657 if (!is_page_cache_freeable(folio
))
661 * Some data journaling orphaned folios can have
662 * folio->mapping == NULL while being dirty with clean buffers.
664 if (folio_test_private(folio
)) {
665 if (try_to_free_buffers(folio
)) {
666 folio_clear_dirty(folio
);
667 pr_info("%s: orphaned folio\n", __func__
);
673 if (mapping
->a_ops
->writepage
== NULL
)
674 return PAGE_ACTIVATE
;
676 if (folio_clear_dirty_for_io(folio
)) {
678 struct writeback_control wbc
= {
679 .sync_mode
= WB_SYNC_NONE
,
680 .nr_to_write
= SWAP_CLUSTER_MAX
,
682 .range_end
= LLONG_MAX
,
688 * The large shmem folio can be split if CONFIG_THP_SWAP is
689 * not enabled or contiguous swap entries are failed to
692 if (shmem_mapping(mapping
) && folio_test_large(folio
))
693 wbc
.list
= folio_list
;
695 folio_set_reclaim(folio
);
696 res
= mapping
->a_ops
->writepage(&folio
->page
, &wbc
);
698 handle_write_error(mapping
, folio
, res
);
699 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
700 folio_clear_reclaim(folio
);
701 return PAGE_ACTIVATE
;
704 if (!folio_test_writeback(folio
)) {
705 /* synchronous write or broken a_ops? */
706 folio_clear_reclaim(folio
);
708 trace_mm_vmscan_write_folio(folio
);
709 node_stat_add_folio(folio
, NR_VMSCAN_WRITE
);
717 * Same as remove_mapping, but if the folio is removed from the mapping, it
718 * gets returned with a refcount of 0.
720 static int __remove_mapping(struct address_space
*mapping
, struct folio
*folio
,
721 bool reclaimed
, struct mem_cgroup
*target_memcg
)
726 BUG_ON(!folio_test_locked(folio
));
727 BUG_ON(mapping
!= folio_mapping(folio
));
729 if (!folio_test_swapcache(folio
))
730 spin_lock(&mapping
->host
->i_lock
);
731 xa_lock_irq(&mapping
->i_pages
);
733 * The non racy check for a busy folio.
735 * Must be careful with the order of the tests. When someone has
736 * a ref to the folio, it may be possible that they dirty it then
737 * drop the reference. So if the dirty flag is tested before the
738 * refcount here, then the following race may occur:
740 * get_user_pages(&page);
741 * [user mapping goes away]
743 * !folio_test_dirty(folio) [good]
744 * folio_set_dirty(folio);
746 * !refcount(folio) [good, discard it]
748 * [oops, our write_to data is lost]
750 * Reversing the order of the tests ensures such a situation cannot
751 * escape unnoticed. The smp_rmb is needed to ensure the folio->flags
752 * load is not satisfied before that of folio->_refcount.
754 * Note that if the dirty flag is always set via folio_mark_dirty,
755 * and thus under the i_pages lock, then this ordering is not required.
757 refcount
= 1 + folio_nr_pages(folio
);
758 if (!folio_ref_freeze(folio
, refcount
))
760 /* note: atomic_cmpxchg in folio_ref_freeze provides the smp_rmb */
761 if (unlikely(folio_test_dirty(folio
))) {
762 folio_ref_unfreeze(folio
, refcount
);
766 if (folio_test_swapcache(folio
)) {
767 swp_entry_t swap
= folio
->swap
;
769 if (reclaimed
&& !mapping_exiting(mapping
))
770 shadow
= workingset_eviction(folio
, target_memcg
);
771 __delete_from_swap_cache(folio
, swap
, shadow
);
772 mem_cgroup_swapout(folio
, swap
);
773 xa_unlock_irq(&mapping
->i_pages
);
774 put_swap_folio(folio
, swap
);
776 void (*free_folio
)(struct folio
*);
778 free_folio
= mapping
->a_ops
->free_folio
;
780 * Remember a shadow entry for reclaimed file cache in
781 * order to detect refaults, thus thrashing, later on.
783 * But don't store shadows in an address space that is
784 * already exiting. This is not just an optimization,
785 * inode reclaim needs to empty out the radix tree or
786 * the nodes are lost. Don't plant shadows behind its
789 * We also don't store shadows for DAX mappings because the
790 * only page cache folios found in these are zero pages
791 * covering holes, and because we don't want to mix DAX
792 * exceptional entries and shadow exceptional entries in the
793 * same address_space.
795 if (reclaimed
&& folio_is_file_lru(folio
) &&
796 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
797 shadow
= workingset_eviction(folio
, target_memcg
);
798 __filemap_remove_folio(folio
, shadow
);
799 xa_unlock_irq(&mapping
->i_pages
);
800 if (mapping_shrinkable(mapping
))
801 inode_add_lru(mapping
->host
);
802 spin_unlock(&mapping
->host
->i_lock
);
811 xa_unlock_irq(&mapping
->i_pages
);
812 if (!folio_test_swapcache(folio
))
813 spin_unlock(&mapping
->host
->i_lock
);
818 * remove_mapping() - Attempt to remove a folio from its mapping.
819 * @mapping: The address space.
820 * @folio: The folio to remove.
822 * If the folio is dirty, under writeback or if someone else has a ref
823 * on it, removal will fail.
824 * Return: The number of pages removed from the mapping. 0 if the folio
825 * could not be removed.
826 * Context: The caller should have a single refcount on the folio and
829 long remove_mapping(struct address_space
*mapping
, struct folio
*folio
)
831 if (__remove_mapping(mapping
, folio
, false, NULL
)) {
833 * Unfreezing the refcount with 1 effectively
834 * drops the pagecache ref for us without requiring another
837 folio_ref_unfreeze(folio
, 1);
838 return folio_nr_pages(folio
);
844 * folio_putback_lru - Put previously isolated folio onto appropriate LRU list.
845 * @folio: Folio to be returned to an LRU list.
847 * Add previously isolated @folio to appropriate LRU list.
848 * The folio may still be unevictable for other reasons.
850 * Context: lru_lock must not be held, interrupts must be enabled.
852 void folio_putback_lru(struct folio
*folio
)
854 folio_add_lru(folio
);
855 folio_put(folio
); /* drop ref from isolate */
858 enum folio_references
{
860 FOLIOREF_RECLAIM_CLEAN
,
865 static enum folio_references
folio_check_references(struct folio
*folio
,
866 struct scan_control
*sc
)
868 int referenced_ptes
, referenced_folio
;
869 unsigned long vm_flags
;
871 referenced_ptes
= folio_referenced(folio
, 1, sc
->target_mem_cgroup
,
873 referenced_folio
= folio_test_clear_referenced(folio
);
876 * The supposedly reclaimable folio was found to be in a VM_LOCKED vma.
877 * Let the folio, now marked Mlocked, be moved to the unevictable list.
879 if (vm_flags
& VM_LOCKED
)
880 return FOLIOREF_ACTIVATE
;
883 * There are two cases to consider.
884 * 1) Rmap lock contention: rotate.
885 * 2) Skip the non-shared swapbacked folio mapped solely by
886 * the exiting or OOM-reaped process.
888 if (referenced_ptes
== -1)
889 return FOLIOREF_KEEP
;
891 if (referenced_ptes
) {
893 * All mapped folios start out with page table
894 * references from the instantiating fault, so we need
895 * to look twice if a mapped file/anon folio is used more
898 * Mark it and spare it for another trip around the
899 * inactive list. Another page table reference will
900 * lead to its activation.
902 * Note: the mark is set for activated folios as well
903 * so that recently deactivated but used folios are
906 folio_set_referenced(folio
);
908 if (referenced_folio
|| referenced_ptes
> 1)
909 return FOLIOREF_ACTIVATE
;
912 * Activate file-backed executable folios after first usage.
914 if ((vm_flags
& VM_EXEC
) && folio_is_file_lru(folio
))
915 return FOLIOREF_ACTIVATE
;
917 return FOLIOREF_KEEP
;
920 /* Reclaim if clean, defer dirty folios to writeback */
921 if (referenced_folio
&& folio_is_file_lru(folio
))
922 return FOLIOREF_RECLAIM_CLEAN
;
924 return FOLIOREF_RECLAIM
;
927 /* Check if a folio is dirty or under writeback */
928 static void folio_check_dirty_writeback(struct folio
*folio
,
929 bool *dirty
, bool *writeback
)
931 struct address_space
*mapping
;
934 * Anonymous folios are not handled by flushers and must be written
935 * from reclaim context. Do not stall reclaim based on them.
936 * MADV_FREE anonymous folios are put into inactive file list too.
937 * They could be mistakenly treated as file lru. So further anon
940 if (!folio_is_file_lru(folio
) ||
941 (folio_test_anon(folio
) && !folio_test_swapbacked(folio
))) {
947 /* By default assume that the folio flags are accurate */
948 *dirty
= folio_test_dirty(folio
);
949 *writeback
= folio_test_writeback(folio
);
951 /* Verify dirty/writeback state if the filesystem supports it */
952 if (!folio_test_private(folio
))
955 mapping
= folio_mapping(folio
);
956 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
957 mapping
->a_ops
->is_dirty_writeback(folio
, dirty
, writeback
);
960 struct folio
*alloc_migrate_folio(struct folio
*src
, unsigned long private)
963 nodemask_t
*allowed_mask
;
964 struct migration_target_control
*mtc
;
966 mtc
= (struct migration_target_control
*)private;
968 allowed_mask
= mtc
->nmask
;
970 * make sure we allocate from the target node first also trying to
971 * demote or reclaim pages from the target node via kswapd if we are
972 * low on free memory on target node. If we don't do this and if
973 * we have free memory on the slower(lower) memtier, we would start
974 * allocating pages from slower(lower) memory tiers without even forcing
975 * a demotion of cold pages from the target memtier. This can result
976 * in the kernel placing hot pages in slower(lower) memory tiers.
979 mtc
->gfp_mask
|= __GFP_THISNODE
;
980 dst
= alloc_migration_target(src
, (unsigned long)mtc
);
984 mtc
->gfp_mask
&= ~__GFP_THISNODE
;
985 mtc
->nmask
= allowed_mask
;
987 return alloc_migration_target(src
, (unsigned long)mtc
);
991 * Take folios on @demote_folios and attempt to demote them to another node.
992 * Folios which are not demoted are left on @demote_folios.
994 static unsigned int demote_folio_list(struct list_head
*demote_folios
,
995 struct pglist_data
*pgdat
)
997 int target_nid
= next_demotion_node(pgdat
->node_id
);
998 unsigned int nr_succeeded
;
999 nodemask_t allowed_mask
;
1001 struct migration_target_control mtc
= {
1003 * Allocate from 'node', or fail quickly and quietly.
1004 * When this happens, 'page' will likely just be discarded
1005 * instead of migrated.
1007 .gfp_mask
= (GFP_HIGHUSER_MOVABLE
& ~__GFP_RECLAIM
) | __GFP_NOWARN
|
1008 __GFP_NOMEMALLOC
| GFP_NOWAIT
,
1010 .nmask
= &allowed_mask
,
1011 .reason
= MR_DEMOTION
,
1014 if (list_empty(demote_folios
))
1017 if (target_nid
== NUMA_NO_NODE
)
1020 node_get_allowed_targets(pgdat
, &allowed_mask
);
1022 /* Demotion ignores all cpuset and mempolicy settings */
1023 migrate_pages(demote_folios
, alloc_migrate_folio
, NULL
,
1024 (unsigned long)&mtc
, MIGRATE_ASYNC
, MR_DEMOTION
,
1027 return nr_succeeded
;
1030 static bool may_enter_fs(struct folio
*folio
, gfp_t gfp_mask
)
1032 if (gfp_mask
& __GFP_FS
)
1034 if (!folio_test_swapcache(folio
) || !(gfp_mask
& __GFP_IO
))
1037 * We can "enter_fs" for swap-cache with only __GFP_IO
1038 * providing this isn't SWP_FS_OPS.
1039 * ->flags can be updated non-atomicially (scan_swap_map_slots),
1040 * but that will never affect SWP_FS_OPS, so the data_race
1043 return !data_race(folio_swap_flags(folio
) & SWP_FS_OPS
);
1047 * shrink_folio_list() returns the number of reclaimed pages
1049 static unsigned int shrink_folio_list(struct list_head
*folio_list
,
1050 struct pglist_data
*pgdat
, struct scan_control
*sc
,
1051 struct reclaim_stat
*stat
, bool ignore_references
)
1053 struct folio_batch free_folios
;
1054 LIST_HEAD(ret_folios
);
1055 LIST_HEAD(demote_folios
);
1056 unsigned int nr_reclaimed
= 0;
1057 unsigned int pgactivate
= 0;
1058 bool do_demote_pass
;
1059 struct swap_iocb
*plug
= NULL
;
1061 folio_batch_init(&free_folios
);
1062 memset(stat
, 0, sizeof(*stat
));
1064 do_demote_pass
= can_demote(pgdat
->node_id
, sc
);
1067 while (!list_empty(folio_list
)) {
1068 struct address_space
*mapping
;
1069 struct folio
*folio
;
1070 enum folio_references references
= FOLIOREF_RECLAIM
;
1071 bool dirty
, writeback
;
1072 unsigned int nr_pages
;
1076 folio
= lru_to_folio(folio_list
);
1077 list_del(&folio
->lru
);
1079 if (!folio_trylock(folio
))
1082 VM_BUG_ON_FOLIO(folio_test_active(folio
), folio
);
1084 nr_pages
= folio_nr_pages(folio
);
1086 /* Account the number of base pages */
1087 sc
->nr_scanned
+= nr_pages
;
1089 if (unlikely(!folio_evictable(folio
)))
1090 goto activate_locked
;
1092 if (!sc
->may_unmap
&& folio_mapped(folio
))
1095 /* folio_update_gen() tried to promote this page? */
1096 if (lru_gen_enabled() && !ignore_references
&&
1097 folio_mapped(folio
) && folio_test_referenced(folio
))
1101 * The number of dirty pages determines if a node is marked
1102 * reclaim_congested. kswapd will stall and start writing
1103 * folios if the tail of the LRU is all dirty unqueued folios.
1105 folio_check_dirty_writeback(folio
, &dirty
, &writeback
);
1106 if (dirty
|| writeback
)
1107 stat
->nr_dirty
+= nr_pages
;
1109 if (dirty
&& !writeback
)
1110 stat
->nr_unqueued_dirty
+= nr_pages
;
1113 * Treat this folio as congested if folios are cycling
1114 * through the LRU so quickly that the folios marked
1115 * for immediate reclaim are making it to the end of
1116 * the LRU a second time.
1118 if (writeback
&& folio_test_reclaim(folio
))
1119 stat
->nr_congested
+= nr_pages
;
1122 * If a folio at the tail of the LRU is under writeback, there
1123 * are three cases to consider.
1125 * 1) If reclaim is encountering an excessive number
1126 * of folios under writeback and this folio has both
1127 * the writeback and reclaim flags set, then it
1128 * indicates that folios are being queued for I/O but
1129 * are being recycled through the LRU before the I/O
1130 * can complete. Waiting on the folio itself risks an
1131 * indefinite stall if it is impossible to writeback
1132 * the folio due to I/O error or disconnected storage
1133 * so instead note that the LRU is being scanned too
1134 * quickly and the caller can stall after the folio
1135 * list has been processed.
1137 * 2) Global or new memcg reclaim encounters a folio that is
1138 * not marked for immediate reclaim, or the caller does not
1139 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1140 * not to fs). In this case mark the folio for immediate
1141 * reclaim and continue scanning.
1143 * Require may_enter_fs() because we would wait on fs, which
1144 * may not have submitted I/O yet. And the loop driver might
1145 * enter reclaim, and deadlock if it waits on a folio for
1146 * which it is needed to do the write (loop masks off
1147 * __GFP_IO|__GFP_FS for this reason); but more thought
1148 * would probably show more reasons.
1150 * 3) Legacy memcg encounters a folio that already has the
1151 * reclaim flag set. memcg does not have any dirty folio
1152 * throttling so we could easily OOM just because too many
1153 * folios are in writeback and there is nothing else to
1154 * reclaim. Wait for the writeback to complete.
1156 * In cases 1) and 2) we activate the folios to get them out of
1157 * the way while we continue scanning for clean folios on the
1158 * inactive list and refilling from the active list. The
1159 * observation here is that waiting for disk writes is more
1160 * expensive than potentially causing reloads down the line.
1161 * Since they're marked for immediate reclaim, they won't put
1162 * memory pressure on the cache working set any longer than it
1163 * takes to write them to disk.
1165 if (folio_test_writeback(folio
)) {
1167 if (current_is_kswapd() &&
1168 folio_test_reclaim(folio
) &&
1169 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1170 stat
->nr_immediate
+= nr_pages
;
1171 goto activate_locked
;
1174 } else if (writeback_throttling_sane(sc
) ||
1175 !folio_test_reclaim(folio
) ||
1176 !may_enter_fs(folio
, sc
->gfp_mask
)) {
1178 * This is slightly racy -
1179 * folio_end_writeback() might have
1180 * just cleared the reclaim flag, then
1181 * setting the reclaim flag here ends up
1182 * interpreted as the readahead flag - but
1183 * that does not matter enough to care.
1184 * What we do want is for this folio to
1185 * have the reclaim flag set next time
1186 * memcg reclaim reaches the tests above,
1187 * so it will then wait for writeback to
1188 * avoid OOM; and it's also appropriate
1189 * in global reclaim.
1191 folio_set_reclaim(folio
);
1192 stat
->nr_writeback
+= nr_pages
;
1193 goto activate_locked
;
1197 folio_unlock(folio
);
1198 folio_wait_writeback(folio
);
1199 /* then go back and try same folio again */
1200 list_add_tail(&folio
->lru
, folio_list
);
1205 if (!ignore_references
)
1206 references
= folio_check_references(folio
, sc
);
1208 switch (references
) {
1209 case FOLIOREF_ACTIVATE
:
1210 goto activate_locked
;
1212 stat
->nr_ref_keep
+= nr_pages
;
1214 case FOLIOREF_RECLAIM
:
1215 case FOLIOREF_RECLAIM_CLEAN
:
1216 ; /* try to reclaim the folio below */
1220 * Before reclaiming the folio, try to relocate
1221 * its contents to another node.
1223 if (do_demote_pass
&&
1224 (thp_migration_supported() || !folio_test_large(folio
))) {
1225 list_add(&folio
->lru
, &demote_folios
);
1226 folio_unlock(folio
);
1231 * Anonymous process memory has backing store?
1232 * Try to allocate it some swap space here.
1233 * Lazyfree folio could be freed directly
1235 if (folio_test_anon(folio
) && folio_test_swapbacked(folio
)) {
1236 if (!folio_test_swapcache(folio
)) {
1237 if (!(sc
->gfp_mask
& __GFP_IO
))
1239 if (folio_maybe_dma_pinned(folio
))
1241 if (folio_test_large(folio
)) {
1242 /* cannot split folio, skip it */
1243 if (!can_split_folio(folio
, 1, NULL
))
1244 goto activate_locked
;
1246 * Split partially mapped folios right away.
1247 * We can free the unmapped pages without IO.
1249 if (data_race(!list_empty(&folio
->_deferred_list
) &&
1250 folio_test_partially_mapped(folio
)) &&
1251 split_folio_to_list(folio
, folio_list
))
1252 goto activate_locked
;
1254 if (!add_to_swap(folio
)) {
1255 int __maybe_unused order
= folio_order(folio
);
1257 if (!folio_test_large(folio
))
1258 goto activate_locked_split
;
1259 /* Fallback to swap normal pages */
1260 if (split_folio_to_list(folio
, folio_list
))
1261 goto activate_locked
;
1262 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1263 if (nr_pages
>= HPAGE_PMD_NR
) {
1264 count_memcg_folio_events(folio
,
1265 THP_SWPOUT_FALLBACK
, 1);
1266 count_vm_event(THP_SWPOUT_FALLBACK
);
1269 count_mthp_stat(order
, MTHP_STAT_SWPOUT_FALLBACK
);
1270 if (!add_to_swap(folio
))
1271 goto activate_locked_split
;
1277 * If the folio was split above, the tail pages will make
1278 * their own pass through this function and be accounted
1281 if ((nr_pages
> 1) && !folio_test_large(folio
)) {
1282 sc
->nr_scanned
-= (nr_pages
- 1);
1287 * The folio is mapped into the page tables of one or more
1288 * processes. Try to unmap it here.
1290 if (folio_mapped(folio
)) {
1291 enum ttu_flags flags
= TTU_BATCH_FLUSH
;
1292 bool was_swapbacked
= folio_test_swapbacked(folio
);
1294 if (folio_test_pmd_mappable(folio
))
1295 flags
|= TTU_SPLIT_HUGE_PMD
;
1297 * Without TTU_SYNC, try_to_unmap will only begin to
1298 * hold PTL from the first present PTE within a large
1299 * folio. Some initial PTEs might be skipped due to
1300 * races with parallel PTE writes in which PTEs can be
1301 * cleared temporarily before being written new present
1302 * values. This will lead to a large folio is still
1303 * mapped while some subpages have been partially
1304 * unmapped after try_to_unmap; TTU_SYNC helps
1305 * try_to_unmap acquire PTL from the first PTE,
1306 * eliminating the influence of temporary PTE values.
1308 if (folio_test_large(folio
))
1311 try_to_unmap(folio
, flags
);
1312 if (folio_mapped(folio
)) {
1313 stat
->nr_unmap_fail
+= nr_pages
;
1314 if (!was_swapbacked
&&
1315 folio_test_swapbacked(folio
))
1316 stat
->nr_lazyfree_fail
+= nr_pages
;
1317 goto activate_locked
;
1322 * Folio is unmapped now so it cannot be newly pinned anymore.
1323 * No point in trying to reclaim folio if it is pinned.
1324 * Furthermore we don't want to reclaim underlying fs metadata
1325 * if the folio is pinned and thus potentially modified by the
1326 * pinning process as that may upset the filesystem.
1328 if (folio_maybe_dma_pinned(folio
))
1329 goto activate_locked
;
1331 mapping
= folio_mapping(folio
);
1332 if (folio_test_dirty(folio
)) {
1334 * Only kswapd can writeback filesystem folios
1335 * to avoid risk of stack overflow. But avoid
1336 * injecting inefficient single-folio I/O into
1337 * flusher writeback as much as possible: only
1338 * write folios when we've encountered many
1339 * dirty folios, and when we've already scanned
1340 * the rest of the LRU for clean folios and see
1341 * the same dirty folios again (with the reclaim
1344 if (folio_is_file_lru(folio
) &&
1345 (!current_is_kswapd() ||
1346 !folio_test_reclaim(folio
) ||
1347 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1349 * Immediately reclaim when written back.
1350 * Similar in principle to folio_deactivate()
1351 * except we already have the folio isolated
1352 * and know it's dirty
1354 node_stat_mod_folio(folio
, NR_VMSCAN_IMMEDIATE
,
1356 folio_set_reclaim(folio
);
1358 goto activate_locked
;
1361 if (references
== FOLIOREF_RECLAIM_CLEAN
)
1363 if (!may_enter_fs(folio
, sc
->gfp_mask
))
1365 if (!sc
->may_writepage
)
1369 * Folio is dirty. Flush the TLB if a writable entry
1370 * potentially exists to avoid CPU writes after I/O
1371 * starts and then write it out here.
1373 try_to_unmap_flush_dirty();
1374 switch (pageout(folio
, mapping
, &plug
, folio_list
)) {
1379 * If shmem folio is split when writeback to swap,
1380 * the tail pages will make their own pass through
1381 * this function and be accounted then.
1383 if (nr_pages
> 1 && !folio_test_large(folio
)) {
1384 sc
->nr_scanned
-= (nr_pages
- 1);
1387 goto activate_locked
;
1389 if (nr_pages
> 1 && !folio_test_large(folio
)) {
1390 sc
->nr_scanned
-= (nr_pages
- 1);
1393 stat
->nr_pageout
+= nr_pages
;
1395 if (folio_test_writeback(folio
))
1397 if (folio_test_dirty(folio
))
1401 * A synchronous write - probably a ramdisk. Go
1402 * ahead and try to reclaim the folio.
1404 if (!folio_trylock(folio
))
1406 if (folio_test_dirty(folio
) ||
1407 folio_test_writeback(folio
))
1409 mapping
= folio_mapping(folio
);
1412 ; /* try to free the folio below */
1417 * If the folio has buffers, try to free the buffer
1418 * mappings associated with this folio. If we succeed
1419 * we try to free the folio as well.
1421 * We do this even if the folio is dirty.
1422 * filemap_release_folio() does not perform I/O, but it
1423 * is possible for a folio to have the dirty flag set,
1424 * but it is actually clean (all its buffers are clean).
1425 * This happens if the buffers were written out directly,
1426 * with submit_bh(). ext3 will do this, as well as
1427 * the blockdev mapping. filemap_release_folio() will
1428 * discover that cleanness and will drop the buffers
1429 * and mark the folio clean - it can be freed.
1431 * Rarely, folios can have buffers and no ->mapping.
1432 * These are the folios which were not successfully
1433 * invalidated in truncate_cleanup_folio(). We try to
1434 * drop those buffers here and if that worked, and the
1435 * folio is no longer mapped into process address space
1436 * (refcount == 1) it can be freed. Otherwise, leave
1437 * the folio on the LRU so it is swappable.
1439 if (folio_needs_release(folio
)) {
1440 if (!filemap_release_folio(folio
, sc
->gfp_mask
))
1441 goto activate_locked
;
1442 if (!mapping
&& folio_ref_count(folio
) == 1) {
1443 folio_unlock(folio
);
1444 if (folio_put_testzero(folio
))
1448 * rare race with speculative reference.
1449 * the speculative reference will free
1450 * this folio shortly, so we may
1451 * increment nr_reclaimed here (and
1452 * leave it off the LRU).
1454 nr_reclaimed
+= nr_pages
;
1460 if (folio_test_anon(folio
) && !folio_test_swapbacked(folio
)) {
1461 /* follow __remove_mapping for reference */
1462 if (!folio_ref_freeze(folio
, 1))
1465 * The folio has only one reference left, which is
1466 * from the isolation. After the caller puts the
1467 * folio back on the lru and drops the reference, the
1468 * folio will be freed anyway. It doesn't matter
1469 * which lru it goes on. So we don't bother checking
1470 * the dirty flag here.
1472 count_vm_events(PGLAZYFREED
, nr_pages
);
1473 count_memcg_folio_events(folio
, PGLAZYFREED
, nr_pages
);
1474 } else if (!mapping
|| !__remove_mapping(mapping
, folio
, true,
1475 sc
->target_mem_cgroup
))
1478 folio_unlock(folio
);
1481 * Folio may get swapped out as a whole, need to account
1484 nr_reclaimed
+= nr_pages
;
1486 folio_unqueue_deferred_split(folio
);
1487 if (folio_batch_add(&free_folios
, folio
) == 0) {
1488 mem_cgroup_uncharge_folios(&free_folios
);
1489 try_to_unmap_flush();
1490 free_unref_folios(&free_folios
);
1494 activate_locked_split
:
1496 * The tail pages that are failed to add into swap cache
1497 * reach here. Fixup nr_scanned and nr_pages.
1500 sc
->nr_scanned
-= (nr_pages
- 1);
1504 /* Not a candidate for swapping, so reclaim swap space. */
1505 if (folio_test_swapcache(folio
) &&
1506 (mem_cgroup_swap_full(folio
) || folio_test_mlocked(folio
)))
1507 folio_free_swap(folio
);
1508 VM_BUG_ON_FOLIO(folio_test_active(folio
), folio
);
1509 if (!folio_test_mlocked(folio
)) {
1510 int type
= folio_is_file_lru(folio
);
1511 folio_set_active(folio
);
1512 stat
->nr_activate
[type
] += nr_pages
;
1513 count_memcg_folio_events(folio
, PGACTIVATE
, nr_pages
);
1516 folio_unlock(folio
);
1518 list_add(&folio
->lru
, &ret_folios
);
1519 VM_BUG_ON_FOLIO(folio_test_lru(folio
) ||
1520 folio_test_unevictable(folio
), folio
);
1522 /* 'folio_list' is always empty here */
1524 /* Migrate folios selected for demotion */
1525 stat
->nr_demoted
= demote_folio_list(&demote_folios
, pgdat
);
1526 nr_reclaimed
+= stat
->nr_demoted
;
1527 /* Folios that could not be demoted are still in @demote_folios */
1528 if (!list_empty(&demote_folios
)) {
1529 /* Folios which weren't demoted go back on @folio_list */
1530 list_splice_init(&demote_folios
, folio_list
);
1533 * goto retry to reclaim the undemoted folios in folio_list if
1536 * Reclaiming directly from top tier nodes is not often desired
1537 * due to it breaking the LRU ordering: in general memory
1538 * should be reclaimed from lower tier nodes and demoted from
1541 * However, disabling reclaim from top tier nodes entirely
1542 * would cause ooms in edge scenarios where lower tier memory
1543 * is unreclaimable for whatever reason, eg memory being
1544 * mlocked or too hot to reclaim. We can disable reclaim
1545 * from top tier nodes in proactive reclaim though as that is
1546 * not real memory pressure.
1548 if (!sc
->proactive
) {
1549 do_demote_pass
= false;
1554 pgactivate
= stat
->nr_activate
[0] + stat
->nr_activate
[1];
1556 mem_cgroup_uncharge_folios(&free_folios
);
1557 try_to_unmap_flush();
1558 free_unref_folios(&free_folios
);
1560 list_splice(&ret_folios
, folio_list
);
1561 count_vm_events(PGACTIVATE
, pgactivate
);
1564 swap_write_unplug(plug
);
1565 return nr_reclaimed
;
1568 unsigned int reclaim_clean_pages_from_list(struct zone
*zone
,
1569 struct list_head
*folio_list
)
1571 struct scan_control sc
= {
1572 .gfp_mask
= GFP_KERNEL
,
1575 struct reclaim_stat stat
;
1576 unsigned int nr_reclaimed
;
1577 struct folio
*folio
, *next
;
1578 LIST_HEAD(clean_folios
);
1579 unsigned int noreclaim_flag
;
1581 list_for_each_entry_safe(folio
, next
, folio_list
, lru
) {
1582 if (!folio_test_hugetlb(folio
) && folio_is_file_lru(folio
) &&
1583 !folio_test_dirty(folio
) && !__folio_test_movable(folio
) &&
1584 !folio_test_unevictable(folio
)) {
1585 folio_clear_active(folio
);
1586 list_move(&folio
->lru
, &clean_folios
);
1591 * We should be safe here since we are only dealing with file pages and
1592 * we are not kswapd and therefore cannot write dirty file pages. But
1593 * call memalloc_noreclaim_save() anyway, just in case these conditions
1594 * change in the future.
1596 noreclaim_flag
= memalloc_noreclaim_save();
1597 nr_reclaimed
= shrink_folio_list(&clean_folios
, zone
->zone_pgdat
, &sc
,
1599 memalloc_noreclaim_restore(noreclaim_flag
);
1601 list_splice(&clean_folios
, folio_list
);
1602 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
,
1603 -(long)nr_reclaimed
);
1605 * Since lazyfree pages are isolated from file LRU from the beginning,
1606 * they will rotate back to anonymous LRU in the end if it failed to
1607 * discard so isolated count will be mismatched.
1608 * Compensate the isolated count for both LRU lists.
1610 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_ANON
,
1611 stat
.nr_lazyfree_fail
);
1612 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
,
1613 -(long)stat
.nr_lazyfree_fail
);
1614 return nr_reclaimed
;
1618 * Update LRU sizes after isolating pages. The LRU size updates must
1619 * be complete before mem_cgroup_update_lru_size due to a sanity check.
1621 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1622 enum lru_list lru
, unsigned long *nr_zone_taken
)
1626 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1627 if (!nr_zone_taken
[zid
])
1630 update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1636 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
1638 * lruvec->lru_lock is heavily contended. Some of the functions that
1639 * shrink the lists perform better by taking out a batch of pages
1640 * and working on them outside the LRU lock.
1642 * For pagecache intensive workloads, this function is the hottest
1643 * spot in the kernel (apart from copy_*_user functions).
1645 * Lru_lock must be held before calling this function.
1647 * @nr_to_scan: The number of eligible pages to look through on the list.
1648 * @lruvec: The LRU vector to pull pages from.
1649 * @dst: The temp list to put pages on to.
1650 * @nr_scanned: The number of pages that were scanned.
1651 * @sc: The scan_control struct for this reclaim session
1652 * @lru: LRU list id for isolating
1654 * returns how many pages were moved onto *@dst.
1656 static unsigned long isolate_lru_folios(unsigned long nr_to_scan
,
1657 struct lruvec
*lruvec
, struct list_head
*dst
,
1658 unsigned long *nr_scanned
, struct scan_control
*sc
,
1661 struct list_head
*src
= &lruvec
->lists
[lru
];
1662 unsigned long nr_taken
= 0;
1663 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1664 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1665 unsigned long skipped
= 0;
1666 unsigned long scan
, total_scan
, nr_pages
;
1667 LIST_HEAD(folios_skipped
);
1671 while (scan
< nr_to_scan
&& !list_empty(src
)) {
1672 struct list_head
*move_to
= src
;
1673 struct folio
*folio
;
1675 folio
= lru_to_folio(src
);
1676 prefetchw_prev_lru_folio(folio
, src
, flags
);
1678 nr_pages
= folio_nr_pages(folio
);
1679 total_scan
+= nr_pages
;
1681 if (folio_zonenum(folio
) > sc
->reclaim_idx
) {
1682 nr_skipped
[folio_zonenum(folio
)] += nr_pages
;
1683 move_to
= &folios_skipped
;
1688 * Do not count skipped folios because that makes the function
1689 * return with no isolated folios if the LRU mostly contains
1690 * ineligible folios. This causes the VM to not reclaim any
1691 * folios, triggering a premature OOM.
1692 * Account all pages in a folio.
1696 if (!folio_test_lru(folio
))
1698 if (!sc
->may_unmap
&& folio_mapped(folio
))
1702 * Be careful not to clear the lru flag until after we're
1703 * sure the folio is not being freed elsewhere -- the
1704 * folio release code relies on it.
1706 if (unlikely(!folio_try_get(folio
)))
1709 if (!folio_test_clear_lru(folio
)) {
1710 /* Another thread is already isolating this folio */
1715 nr_taken
+= nr_pages
;
1716 nr_zone_taken
[folio_zonenum(folio
)] += nr_pages
;
1719 list_move(&folio
->lru
, move_to
);
1723 * Splice any skipped folios to the start of the LRU list. Note that
1724 * this disrupts the LRU order when reclaiming for lower zones but
1725 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1726 * scanning would soon rescan the same folios to skip and waste lots
1729 if (!list_empty(&folios_skipped
)) {
1732 list_splice(&folios_skipped
, src
);
1733 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1734 if (!nr_skipped
[zid
])
1737 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1738 skipped
+= nr_skipped
[zid
];
1741 *nr_scanned
= total_scan
;
1742 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1743 total_scan
, skipped
, nr_taken
, lru
);
1744 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1749 * folio_isolate_lru() - Try to isolate a folio from its LRU list.
1750 * @folio: Folio to isolate from its LRU list.
1752 * Isolate a @folio from an LRU list and adjust the vmstat statistic
1753 * corresponding to whatever LRU list the folio was on.
1755 * The folio will have its LRU flag cleared. If it was found on the
1756 * active list, it will have the Active flag set. If it was found on the
1757 * unevictable list, it will have the Unevictable flag set. These flags
1758 * may need to be cleared by the caller before letting the page go.
1762 * (1) Must be called with an elevated refcount on the folio. This is a
1763 * fundamental difference from isolate_lru_folios() (which is called
1764 * without a stable reference).
1765 * (2) The lru_lock must not be held.
1766 * (3) Interrupts must be enabled.
1768 * Return: true if the folio was removed from an LRU list.
1769 * false if the folio was not on an LRU list.
1771 bool folio_isolate_lru(struct folio
*folio
)
1775 VM_BUG_ON_FOLIO(!folio_ref_count(folio
), folio
);
1777 if (folio_test_clear_lru(folio
)) {
1778 struct lruvec
*lruvec
;
1781 lruvec
= folio_lruvec_lock_irq(folio
);
1782 lruvec_del_folio(lruvec
, folio
);
1783 unlock_page_lruvec_irq(lruvec
);
1791 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1792 * then get rescheduled. When there are massive number of tasks doing page
1793 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1794 * the LRU list will go small and be scanned faster than necessary, leading to
1795 * unnecessary swapping, thrashing and OOM.
1797 static bool too_many_isolated(struct pglist_data
*pgdat
, int file
,
1798 struct scan_control
*sc
)
1800 unsigned long inactive
, isolated
;
1803 if (current_is_kswapd())
1806 if (!writeback_throttling_sane(sc
))
1810 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1811 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1813 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1814 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1818 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1819 * won't get blocked by normal direct-reclaimers, forming a circular
1822 if (gfp_has_io_fs(sc
->gfp_mask
))
1825 too_many
= isolated
> inactive
;
1827 /* Wake up tasks throttled due to too_many_isolated. */
1829 wake_throttle_isolated(pgdat
);
1835 * move_folios_to_lru() moves folios from private @list to appropriate LRU list.
1837 * Returns the number of pages moved to the given lruvec.
1839 static unsigned int move_folios_to_lru(struct lruvec
*lruvec
,
1840 struct list_head
*list
)
1842 int nr_pages
, nr_moved
= 0;
1843 struct folio_batch free_folios
;
1845 folio_batch_init(&free_folios
);
1846 while (!list_empty(list
)) {
1847 struct folio
*folio
= lru_to_folio(list
);
1849 VM_BUG_ON_FOLIO(folio_test_lru(folio
), folio
);
1850 list_del(&folio
->lru
);
1851 if (unlikely(!folio_evictable(folio
))) {
1852 spin_unlock_irq(&lruvec
->lru_lock
);
1853 folio_putback_lru(folio
);
1854 spin_lock_irq(&lruvec
->lru_lock
);
1859 * The folio_set_lru needs to be kept here for list integrity.
1861 * #0 move_folios_to_lru #1 release_pages
1862 * if (!folio_put_testzero())
1863 * if (folio_put_testzero())
1864 * !lru //skip lru_lock
1866 * list_add(&folio->lru,)
1867 * list_add(&folio->lru,)
1869 folio_set_lru(folio
);
1871 if (unlikely(folio_put_testzero(folio
))) {
1872 __folio_clear_lru_flags(folio
);
1874 folio_unqueue_deferred_split(folio
);
1875 if (folio_batch_add(&free_folios
, folio
) == 0) {
1876 spin_unlock_irq(&lruvec
->lru_lock
);
1877 mem_cgroup_uncharge_folios(&free_folios
);
1878 free_unref_folios(&free_folios
);
1879 spin_lock_irq(&lruvec
->lru_lock
);
1886 * All pages were isolated from the same lruvec (and isolation
1887 * inhibits memcg migration).
1889 VM_BUG_ON_FOLIO(!folio_matches_lruvec(folio
, lruvec
), folio
);
1890 lruvec_add_folio(lruvec
, folio
);
1891 nr_pages
= folio_nr_pages(folio
);
1892 nr_moved
+= nr_pages
;
1893 if (folio_test_active(folio
))
1894 workingset_age_nonresident(lruvec
, nr_pages
);
1897 if (free_folios
.nr
) {
1898 spin_unlock_irq(&lruvec
->lru_lock
);
1899 mem_cgroup_uncharge_folios(&free_folios
);
1900 free_unref_folios(&free_folios
);
1901 spin_lock_irq(&lruvec
->lru_lock
);
1908 * If a kernel thread (such as nfsd for loop-back mounts) services a backing
1909 * device by writing to the page cache it sets PF_LOCAL_THROTTLE. In this case
1910 * we should not throttle. Otherwise it is safe to do so.
1912 static int current_may_throttle(void)
1914 return !(current
->flags
& PF_LOCAL_THROTTLE
);
1918 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1919 * of reclaimed pages
1921 static unsigned long shrink_inactive_list(unsigned long nr_to_scan
,
1922 struct lruvec
*lruvec
, struct scan_control
*sc
,
1925 LIST_HEAD(folio_list
);
1926 unsigned long nr_scanned
;
1927 unsigned int nr_reclaimed
= 0;
1928 unsigned long nr_taken
;
1929 struct reclaim_stat stat
;
1930 bool file
= is_file_lru(lru
);
1931 enum vm_event_item item
;
1932 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1933 bool stalled
= false;
1935 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1939 /* wait a bit for the reclaimer. */
1941 reclaim_throttle(pgdat
, VMSCAN_THROTTLE_ISOLATED
);
1943 /* We are about to die and free our memory. Return now. */
1944 if (fatal_signal_pending(current
))
1945 return SWAP_CLUSTER_MAX
;
1950 spin_lock_irq(&lruvec
->lru_lock
);
1952 nr_taken
= isolate_lru_folios(nr_to_scan
, lruvec
, &folio_list
,
1953 &nr_scanned
, sc
, lru
);
1955 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1956 item
= PGSCAN_KSWAPD
+ reclaimer_offset();
1957 if (!cgroup_reclaim(sc
))
1958 __count_vm_events(item
, nr_scanned
);
1959 __count_memcg_events(lruvec_memcg(lruvec
), item
, nr_scanned
);
1960 __count_vm_events(PGSCAN_ANON
+ file
, nr_scanned
);
1962 spin_unlock_irq(&lruvec
->lru_lock
);
1967 nr_reclaimed
= shrink_folio_list(&folio_list
, pgdat
, sc
, &stat
, false);
1969 spin_lock_irq(&lruvec
->lru_lock
);
1970 move_folios_to_lru(lruvec
, &folio_list
);
1972 __mod_lruvec_state(lruvec
, PGDEMOTE_KSWAPD
+ reclaimer_offset(),
1974 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1975 item
= PGSTEAL_KSWAPD
+ reclaimer_offset();
1976 if (!cgroup_reclaim(sc
))
1977 __count_vm_events(item
, nr_reclaimed
);
1978 __count_memcg_events(lruvec_memcg(lruvec
), item
, nr_reclaimed
);
1979 __count_vm_events(PGSTEAL_ANON
+ file
, nr_reclaimed
);
1980 spin_unlock_irq(&lruvec
->lru_lock
);
1982 lru_note_cost(lruvec
, file
, stat
.nr_pageout
, nr_scanned
- nr_reclaimed
);
1985 * If dirty folios are scanned that are not queued for IO, it
1986 * implies that flushers are not doing their job. This can
1987 * happen when memory pressure pushes dirty folios to the end of
1988 * the LRU before the dirty limits are breached and the dirty
1989 * data has expired. It can also happen when the proportion of
1990 * dirty folios grows not through writes but through memory
1991 * pressure reclaiming all the clean cache. And in some cases,
1992 * the flushers simply cannot keep up with the allocation
1993 * rate. Nudge the flusher threads in case they are asleep.
1995 if (stat
.nr_unqueued_dirty
== nr_taken
) {
1996 wakeup_flusher_threads(WB_REASON_VMSCAN
);
1998 * For cgroupv1 dirty throttling is achieved by waking up
1999 * the kernel flusher here and later waiting on folios
2000 * which are in writeback to finish (see shrink_folio_list()).
2002 * Flusher may not be able to issue writeback quickly
2003 * enough for cgroupv1 writeback throttling to work
2004 * on a large system.
2006 if (!writeback_throttling_sane(sc
))
2007 reclaim_throttle(pgdat
, VMSCAN_THROTTLE_WRITEBACK
);
2010 sc
->nr
.dirty
+= stat
.nr_dirty
;
2011 sc
->nr
.congested
+= stat
.nr_congested
;
2012 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
2013 sc
->nr
.writeback
+= stat
.nr_writeback
;
2014 sc
->nr
.immediate
+= stat
.nr_immediate
;
2015 sc
->nr
.taken
+= nr_taken
;
2017 sc
->nr
.file_taken
+= nr_taken
;
2019 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
2020 nr_scanned
, nr_reclaimed
, &stat
, sc
->priority
, file
);
2021 return nr_reclaimed
;
2025 * shrink_active_list() moves folios from the active LRU to the inactive LRU.
2027 * We move them the other way if the folio is referenced by one or more
2030 * If the folios are mostly unmapped, the processing is fast and it is
2031 * appropriate to hold lru_lock across the whole operation. But if
2032 * the folios are mapped, the processing is slow (folio_referenced()), so
2033 * we should drop lru_lock around each folio. It's impossible to balance
2034 * this, so instead we remove the folios from the LRU while processing them.
2035 * It is safe to rely on the active flag against the non-LRU folios in here
2036 * because nobody will play with that bit on a non-LRU folio.
2038 * The downside is that we have to touch folio->_refcount against each folio.
2039 * But we had to alter folio->flags anyway.
2041 static void shrink_active_list(unsigned long nr_to_scan
,
2042 struct lruvec
*lruvec
,
2043 struct scan_control
*sc
,
2046 unsigned long nr_taken
;
2047 unsigned long nr_scanned
;
2048 unsigned long vm_flags
;
2049 LIST_HEAD(l_hold
); /* The folios which were snipped off */
2050 LIST_HEAD(l_active
);
2051 LIST_HEAD(l_inactive
);
2052 unsigned nr_deactivate
, nr_activate
;
2053 unsigned nr_rotated
= 0;
2054 bool file
= is_file_lru(lru
);
2055 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2059 spin_lock_irq(&lruvec
->lru_lock
);
2061 nr_taken
= isolate_lru_folios(nr_to_scan
, lruvec
, &l_hold
,
2062 &nr_scanned
, sc
, lru
);
2064 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2066 if (!cgroup_reclaim(sc
))
2067 __count_vm_events(PGREFILL
, nr_scanned
);
2068 __count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2070 spin_unlock_irq(&lruvec
->lru_lock
);
2072 while (!list_empty(&l_hold
)) {
2073 struct folio
*folio
;
2076 folio
= lru_to_folio(&l_hold
);
2077 list_del(&folio
->lru
);
2079 if (unlikely(!folio_evictable(folio
))) {
2080 folio_putback_lru(folio
);
2084 if (unlikely(buffer_heads_over_limit
)) {
2085 if (folio_needs_release(folio
) &&
2086 folio_trylock(folio
)) {
2087 filemap_release_folio(folio
, 0);
2088 folio_unlock(folio
);
2092 /* Referenced or rmap lock contention: rotate */
2093 if (folio_referenced(folio
, 0, sc
->target_mem_cgroup
,
2096 * Identify referenced, file-backed active folios and
2097 * give them one more trip around the active list. So
2098 * that executable code get better chances to stay in
2099 * memory under moderate memory pressure. Anon folios
2100 * are not likely to be evicted by use-once streaming
2101 * IO, plus JVM can create lots of anon VM_EXEC folios,
2102 * so we ignore them here.
2104 if ((vm_flags
& VM_EXEC
) && folio_is_file_lru(folio
)) {
2105 nr_rotated
+= folio_nr_pages(folio
);
2106 list_add(&folio
->lru
, &l_active
);
2111 folio_clear_active(folio
); /* we are de-activating */
2112 folio_set_workingset(folio
);
2113 list_add(&folio
->lru
, &l_inactive
);
2117 * Move folios back to the lru list.
2119 spin_lock_irq(&lruvec
->lru_lock
);
2121 nr_activate
= move_folios_to_lru(lruvec
, &l_active
);
2122 nr_deactivate
= move_folios_to_lru(lruvec
, &l_inactive
);
2124 __count_vm_events(PGDEACTIVATE
, nr_deactivate
);
2125 __count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
, nr_deactivate
);
2127 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2128 spin_unlock_irq(&lruvec
->lru_lock
);
2131 lru_note_cost(lruvec
, file
, 0, nr_rotated
);
2132 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2133 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2136 static unsigned int reclaim_folio_list(struct list_head
*folio_list
,
2137 struct pglist_data
*pgdat
)
2139 struct reclaim_stat stat
;
2140 unsigned int nr_reclaimed
;
2141 struct folio
*folio
;
2142 struct scan_control sc
= {
2143 .gfp_mask
= GFP_KERNEL
,
2150 nr_reclaimed
= shrink_folio_list(folio_list
, pgdat
, &sc
, &stat
, true);
2151 while (!list_empty(folio_list
)) {
2152 folio
= lru_to_folio(folio_list
);
2153 list_del(&folio
->lru
);
2154 folio_putback_lru(folio
);
2156 trace_mm_vmscan_reclaim_pages(pgdat
->node_id
, sc
.nr_scanned
, nr_reclaimed
, &stat
);
2158 return nr_reclaimed
;
2161 unsigned long reclaim_pages(struct list_head
*folio_list
)
2164 unsigned int nr_reclaimed
= 0;
2165 LIST_HEAD(node_folio_list
);
2166 unsigned int noreclaim_flag
;
2168 if (list_empty(folio_list
))
2169 return nr_reclaimed
;
2171 noreclaim_flag
= memalloc_noreclaim_save();
2173 nid
= folio_nid(lru_to_folio(folio_list
));
2175 struct folio
*folio
= lru_to_folio(folio_list
);
2177 if (nid
== folio_nid(folio
)) {
2178 folio_clear_active(folio
);
2179 list_move(&folio
->lru
, &node_folio_list
);
2183 nr_reclaimed
+= reclaim_folio_list(&node_folio_list
, NODE_DATA(nid
));
2184 nid
= folio_nid(lru_to_folio(folio_list
));
2185 } while (!list_empty(folio_list
));
2187 nr_reclaimed
+= reclaim_folio_list(&node_folio_list
, NODE_DATA(nid
));
2189 memalloc_noreclaim_restore(noreclaim_flag
);
2191 return nr_reclaimed
;
2194 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2195 struct lruvec
*lruvec
, struct scan_control
*sc
)
2197 if (is_active_lru(lru
)) {
2198 if (sc
->may_deactivate
& (1 << is_file_lru(lru
)))
2199 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2201 sc
->skipped_deactivate
= 1;
2205 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2209 * The inactive anon list should be small enough that the VM never has
2210 * to do too much work.
2212 * The inactive file list should be small enough to leave most memory
2213 * to the established workingset on the scan-resistant active list,
2214 * but large enough to avoid thrashing the aggregate readahead window.
2216 * Both inactive lists should also be large enough that each inactive
2217 * folio has a chance to be referenced again before it is reclaimed.
2219 * If that fails and refaulting is observed, the inactive list grows.
2221 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE folios
2222 * on this LRU, maintained by the pageout code. An inactive_ratio
2223 * of 3 means 3:1 or 25% of the folios are kept on the inactive list.
2226 * memory ratio inactive
2227 * -------------------------------------
2236 static bool inactive_is_low(struct lruvec
*lruvec
, enum lru_list inactive_lru
)
2238 enum lru_list active_lru
= inactive_lru
+ LRU_ACTIVE
;
2239 unsigned long inactive
, active
;
2240 unsigned long inactive_ratio
;
2243 inactive
= lruvec_page_state(lruvec
, NR_LRU_BASE
+ inactive_lru
);
2244 active
= lruvec_page_state(lruvec
, NR_LRU_BASE
+ active_lru
);
2246 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2248 inactive_ratio
= int_sqrt(10 * gb
);
2252 return inactive
* inactive_ratio
< active
;
2262 static void prepare_scan_control(pg_data_t
*pgdat
, struct scan_control
*sc
)
2265 struct lruvec
*target_lruvec
;
2267 if (lru_gen_enabled())
2270 target_lruvec
= mem_cgroup_lruvec(sc
->target_mem_cgroup
, pgdat
);
2273 * Flush the memory cgroup stats in rate-limited way as we don't need
2274 * most accurate stats here. We may switch to regular stats flushing
2275 * in the future once it is cheap enough.
2277 mem_cgroup_flush_stats_ratelimited(sc
->target_mem_cgroup
);
2280 * Determine the scan balance between anon and file LRUs.
2282 spin_lock_irq(&target_lruvec
->lru_lock
);
2283 sc
->anon_cost
= target_lruvec
->anon_cost
;
2284 sc
->file_cost
= target_lruvec
->file_cost
;
2285 spin_unlock_irq(&target_lruvec
->lru_lock
);
2288 * Target desirable inactive:active list ratios for the anon
2289 * and file LRU lists.
2291 if (!sc
->force_deactivate
) {
2292 unsigned long refaults
;
2295 * When refaults are being observed, it means a new
2296 * workingset is being established. Deactivate to get
2297 * rid of any stale active pages quickly.
2299 refaults
= lruvec_page_state(target_lruvec
,
2300 WORKINGSET_ACTIVATE_ANON
);
2301 if (refaults
!= target_lruvec
->refaults
[WORKINGSET_ANON
] ||
2302 inactive_is_low(target_lruvec
, LRU_INACTIVE_ANON
))
2303 sc
->may_deactivate
|= DEACTIVATE_ANON
;
2305 sc
->may_deactivate
&= ~DEACTIVATE_ANON
;
2307 refaults
= lruvec_page_state(target_lruvec
,
2308 WORKINGSET_ACTIVATE_FILE
);
2309 if (refaults
!= target_lruvec
->refaults
[WORKINGSET_FILE
] ||
2310 inactive_is_low(target_lruvec
, LRU_INACTIVE_FILE
))
2311 sc
->may_deactivate
|= DEACTIVATE_FILE
;
2313 sc
->may_deactivate
&= ~DEACTIVATE_FILE
;
2315 sc
->may_deactivate
= DEACTIVATE_ANON
| DEACTIVATE_FILE
;
2318 * If we have plenty of inactive file pages that aren't
2319 * thrashing, try to reclaim those first before touching
2322 file
= lruvec_page_state(target_lruvec
, NR_INACTIVE_FILE
);
2323 if (file
>> sc
->priority
&& !(sc
->may_deactivate
& DEACTIVATE_FILE
) &&
2324 !sc
->no_cache_trim_mode
)
2325 sc
->cache_trim_mode
= 1;
2327 sc
->cache_trim_mode
= 0;
2330 * Prevent the reclaimer from falling into the cache trap: as
2331 * cache pages start out inactive, every cache fault will tip
2332 * the scan balance towards the file LRU. And as the file LRU
2333 * shrinks, so does the window for rotation from references.
2334 * This means we have a runaway feedback loop where a tiny
2335 * thrashing file LRU becomes infinitely more attractive than
2336 * anon pages. Try to detect this based on file LRU size.
2338 if (!cgroup_reclaim(sc
)) {
2339 unsigned long total_high_wmark
= 0;
2340 unsigned long free
, anon
;
2343 free
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2344 file
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2345 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2347 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2348 struct zone
*zone
= &pgdat
->node_zones
[z
];
2350 if (!managed_zone(zone
))
2353 total_high_wmark
+= high_wmark_pages(zone
);
2357 * Consider anon: if that's low too, this isn't a
2358 * runaway file reclaim problem, but rather just
2359 * extreme pressure. Reclaim as per usual then.
2361 anon
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2364 file
+ free
<= total_high_wmark
&&
2365 !(sc
->may_deactivate
& DEACTIVATE_ANON
) &&
2366 anon
>> sc
->priority
;
2371 * Determine how aggressively the anon and file LRU lists should be
2374 * nr[0] = anon inactive folios to scan; nr[1] = anon active folios to scan
2375 * nr[2] = file inactive folios to scan; nr[3] = file active folios to scan
2377 static void get_scan_count(struct lruvec
*lruvec
, struct scan_control
*sc
,
2380 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2381 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
2382 unsigned long anon_cost
, file_cost
, total_cost
;
2383 int swappiness
= sc_swappiness(sc
, memcg
);
2384 u64 fraction
[ANON_AND_FILE
];
2385 u64 denominator
= 0; /* gcc */
2386 enum scan_balance scan_balance
;
2387 unsigned long ap
, fp
;
2390 /* If we have no swap space, do not bother scanning anon folios. */
2391 if (!sc
->may_swap
|| !can_reclaim_anon_pages(memcg
, pgdat
->node_id
, sc
)) {
2392 scan_balance
= SCAN_FILE
;
2397 * Global reclaim will swap to prevent OOM even with no
2398 * swappiness, but memcg users want to use this knob to
2399 * disable swapping for individual groups completely when
2400 * using the memory controller's swap limit feature would be
2403 if (cgroup_reclaim(sc
) && !swappiness
) {
2404 scan_balance
= SCAN_FILE
;
2409 * Do not apply any pressure balancing cleverness when the
2410 * system is close to OOM, scan both anon and file equally
2411 * (unless the swappiness setting disagrees with swapping).
2413 if (!sc
->priority
&& swappiness
) {
2414 scan_balance
= SCAN_EQUAL
;
2419 * If the system is almost out of file pages, force-scan anon.
2421 if (sc
->file_is_tiny
) {
2422 scan_balance
= SCAN_ANON
;
2427 * If there is enough inactive page cache, we do not reclaim
2428 * anything from the anonymous working right now.
2430 if (sc
->cache_trim_mode
) {
2431 scan_balance
= SCAN_FILE
;
2435 scan_balance
= SCAN_FRACT
;
2437 * Calculate the pressure balance between anon and file pages.
2439 * The amount of pressure we put on each LRU is inversely
2440 * proportional to the cost of reclaiming each list, as
2441 * determined by the share of pages that are refaulting, times
2442 * the relative IO cost of bringing back a swapped out
2443 * anonymous page vs reloading a filesystem page (swappiness).
2445 * Although we limit that influence to ensure no list gets
2446 * left behind completely: at least a third of the pressure is
2447 * applied, before swappiness.
2449 * With swappiness at 100, anon and file have equal IO cost.
2451 total_cost
= sc
->anon_cost
+ sc
->file_cost
;
2452 anon_cost
= total_cost
+ sc
->anon_cost
;
2453 file_cost
= total_cost
+ sc
->file_cost
;
2454 total_cost
= anon_cost
+ file_cost
;
2456 ap
= swappiness
* (total_cost
+ 1);
2457 ap
/= anon_cost
+ 1;
2459 fp
= (MAX_SWAPPINESS
- swappiness
) * (total_cost
+ 1);
2460 fp
/= file_cost
+ 1;
2464 denominator
= ap
+ fp
;
2466 for_each_evictable_lru(lru
) {
2467 bool file
= is_file_lru(lru
);
2468 unsigned long lruvec_size
;
2469 unsigned long low
, min
;
2472 lruvec_size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2473 mem_cgroup_protection(sc
->target_mem_cgroup
, memcg
,
2478 * Scale a cgroup's reclaim pressure by proportioning
2479 * its current usage to its memory.low or memory.min
2482 * This is important, as otherwise scanning aggression
2483 * becomes extremely binary -- from nothing as we
2484 * approach the memory protection threshold, to totally
2485 * nominal as we exceed it. This results in requiring
2486 * setting extremely liberal protection thresholds. It
2487 * also means we simply get no protection at all if we
2488 * set it too low, which is not ideal.
2490 * If there is any protection in place, we reduce scan
2491 * pressure by how much of the total memory used is
2492 * within protection thresholds.
2494 * There is one special case: in the first reclaim pass,
2495 * we skip over all groups that are within their low
2496 * protection. If that fails to reclaim enough pages to
2497 * satisfy the reclaim goal, we come back and override
2498 * the best-effort low protection. However, we still
2499 * ideally want to honor how well-behaved groups are in
2500 * that case instead of simply punishing them all
2501 * equally. As such, we reclaim them based on how much
2502 * memory they are using, reducing the scan pressure
2503 * again by how much of the total memory used is under
2506 unsigned long cgroup_size
= mem_cgroup_size(memcg
);
2507 unsigned long protection
;
2509 /* memory.low scaling, make sure we retry before OOM */
2510 if (!sc
->memcg_low_reclaim
&& low
> min
) {
2512 sc
->memcg_low_skipped
= 1;
2517 /* Avoid TOCTOU with earlier protection check */
2518 cgroup_size
= max(cgroup_size
, protection
);
2520 scan
= lruvec_size
- lruvec_size
* protection
/
2524 * Minimally target SWAP_CLUSTER_MAX pages to keep
2525 * reclaim moving forwards, avoiding decrementing
2526 * sc->priority further than desirable.
2528 scan
= max(scan
, SWAP_CLUSTER_MAX
);
2533 scan
>>= sc
->priority
;
2536 * If the cgroup's already been deleted, make sure to
2537 * scrape out the remaining cache.
2539 if (!scan
&& !mem_cgroup_online(memcg
))
2540 scan
= min(lruvec_size
, SWAP_CLUSTER_MAX
);
2542 switch (scan_balance
) {
2544 /* Scan lists relative to size */
2548 * Scan types proportional to swappiness and
2549 * their relative recent reclaim efficiency.
2550 * Make sure we don't miss the last page on
2551 * the offlined memory cgroups because of a
2554 scan
= mem_cgroup_online(memcg
) ?
2555 div64_u64(scan
* fraction
[file
], denominator
) :
2556 DIV64_U64_ROUND_UP(scan
* fraction
[file
],
2561 /* Scan one type exclusively */
2562 if ((scan_balance
== SCAN_FILE
) != file
)
2566 /* Look ma, no brain */
2575 * Anonymous LRU management is a waste if there is
2576 * ultimately no way to reclaim the memory.
2578 static bool can_age_anon_pages(struct pglist_data
*pgdat
,
2579 struct scan_control
*sc
)
2581 /* Aging the anon LRU is valuable if swap is present: */
2582 if (total_swap_pages
> 0)
2585 /* Also valuable if anon pages can be demoted: */
2586 return can_demote(pgdat
->node_id
, sc
);
2589 #ifdef CONFIG_LRU_GEN
2591 #ifdef CONFIG_LRU_GEN_ENABLED
2592 DEFINE_STATIC_KEY_ARRAY_TRUE(lru_gen_caps
, NR_LRU_GEN_CAPS
);
2593 #define get_cap(cap) static_branch_likely(&lru_gen_caps[cap])
2595 DEFINE_STATIC_KEY_ARRAY_FALSE(lru_gen_caps
, NR_LRU_GEN_CAPS
);
2596 #define get_cap(cap) static_branch_unlikely(&lru_gen_caps[cap])
2599 static bool should_walk_mmu(void)
2601 return arch_has_hw_pte_young() && get_cap(LRU_GEN_MM_WALK
);
2604 static bool should_clear_pmd_young(void)
2606 return arch_has_hw_nonleaf_pmd_young() && get_cap(LRU_GEN_NONLEAF_YOUNG
);
2609 /******************************************************************************
2611 ******************************************************************************/
2613 #define DEFINE_MAX_SEQ(lruvec) \
2614 unsigned long max_seq = READ_ONCE((lruvec)->lrugen.max_seq)
2616 #define DEFINE_MIN_SEQ(lruvec) \
2617 unsigned long min_seq[ANON_AND_FILE] = { \
2618 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_ANON]), \
2619 READ_ONCE((lruvec)->lrugen.min_seq[LRU_GEN_FILE]), \
2622 #define for_each_gen_type_zone(gen, type, zone) \
2623 for ((gen) = 0; (gen) < MAX_NR_GENS; (gen)++) \
2624 for ((type) = 0; (type) < ANON_AND_FILE; (type)++) \
2625 for ((zone) = 0; (zone) < MAX_NR_ZONES; (zone)++)
2627 #define get_memcg_gen(seq) ((seq) % MEMCG_NR_GENS)
2628 #define get_memcg_bin(bin) ((bin) % MEMCG_NR_BINS)
2630 static struct lruvec
*get_lruvec(struct mem_cgroup
*memcg
, int nid
)
2632 struct pglist_data
*pgdat
= NODE_DATA(nid
);
2636 struct lruvec
*lruvec
= &memcg
->nodeinfo
[nid
]->lruvec
;
2638 /* see the comment in mem_cgroup_lruvec() */
2640 lruvec
->pgdat
= pgdat
;
2645 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2647 return &pgdat
->__lruvec
;
2650 static int get_swappiness(struct lruvec
*lruvec
, struct scan_control
*sc
)
2652 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
2653 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2658 if (!can_demote(pgdat
->node_id
, sc
) &&
2659 mem_cgroup_get_nr_swap_pages(memcg
) < MIN_LRU_BATCH
)
2662 return sc_swappiness(sc
, memcg
);
2665 static int get_nr_gens(struct lruvec
*lruvec
, int type
)
2667 return lruvec
->lrugen
.max_seq
- lruvec
->lrugen
.min_seq
[type
] + 1;
2670 static bool __maybe_unused
seq_is_valid(struct lruvec
*lruvec
)
2672 /* see the comment on lru_gen_folio */
2673 return get_nr_gens(lruvec
, LRU_GEN_FILE
) >= MIN_NR_GENS
&&
2674 get_nr_gens(lruvec
, LRU_GEN_FILE
) <= get_nr_gens(lruvec
, LRU_GEN_ANON
) &&
2675 get_nr_gens(lruvec
, LRU_GEN_ANON
) <= MAX_NR_GENS
;
2678 /******************************************************************************
2680 ******************************************************************************/
2683 * Bloom filters with m=1<<15, k=2 and the false positive rates of ~1/5 when
2684 * n=10,000 and ~1/2 when n=20,000, where, conventionally, m is the number of
2685 * bits in a bitmap, k is the number of hash functions and n is the number of
2688 * Page table walkers use one of the two filters to reduce their search space.
2689 * To get rid of non-leaf entries that no longer have enough leaf entries, the
2690 * aging uses the double-buffering technique to flip to the other filter each
2691 * time it produces a new generation. For non-leaf entries that have enough
2692 * leaf entries, the aging carries them over to the next generation in
2693 * walk_pmd_range(); the eviction also report them when walking the rmap
2694 * in lru_gen_look_around().
2696 * For future optimizations:
2697 * 1. It's not necessary to keep both filters all the time. The spare one can be
2698 * freed after the RCU grace period and reallocated if needed again.
2699 * 2. And when reallocating, it's worth scaling its size according to the number
2700 * of inserted entries in the other filter, to reduce the memory overhead on
2701 * small systems and false positives on large systems.
2702 * 3. Jenkins' hash function is an alternative to Knuth's.
2704 #define BLOOM_FILTER_SHIFT 15
2706 static inline int filter_gen_from_seq(unsigned long seq
)
2708 return seq
% NR_BLOOM_FILTERS
;
2711 static void get_item_key(void *item
, int *key
)
2713 u32 hash
= hash_ptr(item
, BLOOM_FILTER_SHIFT
* 2);
2715 BUILD_BUG_ON(BLOOM_FILTER_SHIFT
* 2 > BITS_PER_TYPE(u32
));
2717 key
[0] = hash
& (BIT(BLOOM_FILTER_SHIFT
) - 1);
2718 key
[1] = hash
>> BLOOM_FILTER_SHIFT
;
2721 static bool test_bloom_filter(struct lru_gen_mm_state
*mm_state
, unsigned long seq
,
2725 unsigned long *filter
;
2726 int gen
= filter_gen_from_seq(seq
);
2728 filter
= READ_ONCE(mm_state
->filters
[gen
]);
2732 get_item_key(item
, key
);
2734 return test_bit(key
[0], filter
) && test_bit(key
[1], filter
);
2737 static void update_bloom_filter(struct lru_gen_mm_state
*mm_state
, unsigned long seq
,
2741 unsigned long *filter
;
2742 int gen
= filter_gen_from_seq(seq
);
2744 filter
= READ_ONCE(mm_state
->filters
[gen
]);
2748 get_item_key(item
, key
);
2750 if (!test_bit(key
[0], filter
))
2751 set_bit(key
[0], filter
);
2752 if (!test_bit(key
[1], filter
))
2753 set_bit(key
[1], filter
);
2756 static void reset_bloom_filter(struct lru_gen_mm_state
*mm_state
, unsigned long seq
)
2758 unsigned long *filter
;
2759 int gen
= filter_gen_from_seq(seq
);
2761 filter
= mm_state
->filters
[gen
];
2763 bitmap_clear(filter
, 0, BIT(BLOOM_FILTER_SHIFT
));
2767 filter
= bitmap_zalloc(BIT(BLOOM_FILTER_SHIFT
),
2768 __GFP_HIGH
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
2769 WRITE_ONCE(mm_state
->filters
[gen
], filter
);
2772 /******************************************************************************
2774 ******************************************************************************/
2776 #ifdef CONFIG_LRU_GEN_WALKS_MMU
2778 static struct lru_gen_mm_list
*get_mm_list(struct mem_cgroup
*memcg
)
2780 static struct lru_gen_mm_list mm_list
= {
2781 .fifo
= LIST_HEAD_INIT(mm_list
.fifo
),
2782 .lock
= __SPIN_LOCK_UNLOCKED(mm_list
.lock
),
2787 return &memcg
->mm_list
;
2789 VM_WARN_ON_ONCE(!mem_cgroup_disabled());
2794 static struct lru_gen_mm_state
*get_mm_state(struct lruvec
*lruvec
)
2796 return &lruvec
->mm_state
;
2799 static struct mm_struct
*get_next_mm(struct lru_gen_mm_walk
*walk
)
2802 struct mm_struct
*mm
;
2803 struct pglist_data
*pgdat
= lruvec_pgdat(walk
->lruvec
);
2804 struct lru_gen_mm_state
*mm_state
= get_mm_state(walk
->lruvec
);
2806 mm
= list_entry(mm_state
->head
, struct mm_struct
, lru_gen
.list
);
2807 key
= pgdat
->node_id
% BITS_PER_TYPE(mm
->lru_gen
.bitmap
);
2809 if (!walk
->force_scan
&& !test_bit(key
, &mm
->lru_gen
.bitmap
))
2812 clear_bit(key
, &mm
->lru_gen
.bitmap
);
2814 return mmget_not_zero(mm
) ? mm
: NULL
;
2817 void lru_gen_add_mm(struct mm_struct
*mm
)
2820 struct mem_cgroup
*memcg
= get_mem_cgroup_from_mm(mm
);
2821 struct lru_gen_mm_list
*mm_list
= get_mm_list(memcg
);
2823 VM_WARN_ON_ONCE(!list_empty(&mm
->lru_gen
.list
));
2825 VM_WARN_ON_ONCE(mm
->lru_gen
.memcg
);
2826 mm
->lru_gen
.memcg
= memcg
;
2828 spin_lock(&mm_list
->lock
);
2830 for_each_node_state(nid
, N_MEMORY
) {
2831 struct lruvec
*lruvec
= get_lruvec(memcg
, nid
);
2832 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
2834 /* the first addition since the last iteration */
2835 if (mm_state
->tail
== &mm_list
->fifo
)
2836 mm_state
->tail
= &mm
->lru_gen
.list
;
2839 list_add_tail(&mm
->lru_gen
.list
, &mm_list
->fifo
);
2841 spin_unlock(&mm_list
->lock
);
2844 void lru_gen_del_mm(struct mm_struct
*mm
)
2847 struct lru_gen_mm_list
*mm_list
;
2848 struct mem_cgroup
*memcg
= NULL
;
2850 if (list_empty(&mm
->lru_gen
.list
))
2854 memcg
= mm
->lru_gen
.memcg
;
2856 mm_list
= get_mm_list(memcg
);
2858 spin_lock(&mm_list
->lock
);
2860 for_each_node(nid
) {
2861 struct lruvec
*lruvec
= get_lruvec(memcg
, nid
);
2862 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
2864 /* where the current iteration continues after */
2865 if (mm_state
->head
== &mm
->lru_gen
.list
)
2866 mm_state
->head
= mm_state
->head
->prev
;
2868 /* where the last iteration ended before */
2869 if (mm_state
->tail
== &mm
->lru_gen
.list
)
2870 mm_state
->tail
= mm_state
->tail
->next
;
2873 list_del_init(&mm
->lru_gen
.list
);
2875 spin_unlock(&mm_list
->lock
);
2878 mem_cgroup_put(mm
->lru_gen
.memcg
);
2879 mm
->lru_gen
.memcg
= NULL
;
2884 void lru_gen_migrate_mm(struct mm_struct
*mm
)
2886 struct mem_cgroup
*memcg
;
2887 struct task_struct
*task
= rcu_dereference_protected(mm
->owner
, true);
2889 VM_WARN_ON_ONCE(task
->mm
!= mm
);
2890 lockdep_assert_held(&task
->alloc_lock
);
2892 /* for mm_update_next_owner() */
2893 if (mem_cgroup_disabled())
2896 /* migration can happen before addition */
2897 if (!mm
->lru_gen
.memcg
)
2901 memcg
= mem_cgroup_from_task(task
);
2903 if (memcg
== mm
->lru_gen
.memcg
)
2906 VM_WARN_ON_ONCE(list_empty(&mm
->lru_gen
.list
));
2913 #else /* !CONFIG_LRU_GEN_WALKS_MMU */
2915 static struct lru_gen_mm_list
*get_mm_list(struct mem_cgroup
*memcg
)
2920 static struct lru_gen_mm_state
*get_mm_state(struct lruvec
*lruvec
)
2925 static struct mm_struct
*get_next_mm(struct lru_gen_mm_walk
*walk
)
2932 static void reset_mm_stats(struct lru_gen_mm_walk
*walk
, bool last
)
2936 struct lruvec
*lruvec
= walk
->lruvec
;
2937 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
2939 lockdep_assert_held(&get_mm_list(lruvec_memcg(lruvec
))->lock
);
2941 hist
= lru_hist_from_seq(walk
->seq
);
2943 for (i
= 0; i
< NR_MM_STATS
; i
++) {
2944 WRITE_ONCE(mm_state
->stats
[hist
][i
],
2945 mm_state
->stats
[hist
][i
] + walk
->mm_stats
[i
]);
2946 walk
->mm_stats
[i
] = 0;
2949 if (NR_HIST_GENS
> 1 && last
) {
2950 hist
= lru_hist_from_seq(walk
->seq
+ 1);
2952 for (i
= 0; i
< NR_MM_STATS
; i
++)
2953 WRITE_ONCE(mm_state
->stats
[hist
][i
], 0);
2957 static bool iterate_mm_list(struct lru_gen_mm_walk
*walk
, struct mm_struct
**iter
)
2961 struct mm_struct
*mm
= NULL
;
2962 struct lruvec
*lruvec
= walk
->lruvec
;
2963 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
2964 struct lru_gen_mm_list
*mm_list
= get_mm_list(memcg
);
2965 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
2968 * mm_state->seq is incremented after each iteration of mm_list. There
2969 * are three interesting cases for this page table walker:
2970 * 1. It tries to start a new iteration with a stale max_seq: there is
2971 * nothing left to do.
2972 * 2. It started the next iteration: it needs to reset the Bloom filter
2973 * so that a fresh set of PTE tables can be recorded.
2974 * 3. It ended the current iteration: it needs to reset the mm stats
2975 * counters and tell its caller to increment max_seq.
2977 spin_lock(&mm_list
->lock
);
2979 VM_WARN_ON_ONCE(mm_state
->seq
+ 1 < walk
->seq
);
2981 if (walk
->seq
<= mm_state
->seq
)
2984 if (!mm_state
->head
)
2985 mm_state
->head
= &mm_list
->fifo
;
2987 if (mm_state
->head
== &mm_list
->fifo
)
2991 mm_state
->head
= mm_state
->head
->next
;
2992 if (mm_state
->head
== &mm_list
->fifo
) {
2993 WRITE_ONCE(mm_state
->seq
, mm_state
->seq
+ 1);
2998 /* force scan for those added after the last iteration */
2999 if (!mm_state
->tail
|| mm_state
->tail
== mm_state
->head
) {
3000 mm_state
->tail
= mm_state
->head
->next
;
3001 walk
->force_scan
= true;
3003 } while (!(mm
= get_next_mm(walk
)));
3006 reset_mm_stats(walk
, last
);
3008 spin_unlock(&mm_list
->lock
);
3011 reset_bloom_filter(mm_state
, walk
->seq
+ 1);
3021 static bool iterate_mm_list_nowalk(struct lruvec
*lruvec
, unsigned long seq
)
3023 bool success
= false;
3024 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
3025 struct lru_gen_mm_list
*mm_list
= get_mm_list(memcg
);
3026 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
3028 spin_lock(&mm_list
->lock
);
3030 VM_WARN_ON_ONCE(mm_state
->seq
+ 1 < seq
);
3032 if (seq
> mm_state
->seq
) {
3033 mm_state
->head
= NULL
;
3034 mm_state
->tail
= NULL
;
3035 WRITE_ONCE(mm_state
->seq
, mm_state
->seq
+ 1);
3039 spin_unlock(&mm_list
->lock
);
3044 /******************************************************************************
3046 ******************************************************************************/
3049 * A feedback loop based on Proportional-Integral-Derivative (PID) controller.
3051 * The P term is refaulted/(evicted+protected) from a tier in the generation
3052 * currently being evicted; the I term is the exponential moving average of the
3053 * P term over the generations previously evicted, using the smoothing factor
3054 * 1/2; the D term isn't supported.
3056 * The setpoint (SP) is always the first tier of one type; the process variable
3057 * (PV) is either any tier of the other type or any other tier of the same
3060 * The error is the difference between the SP and the PV; the correction is to
3061 * turn off protection when SP>PV or turn on protection when SP<PV.
3063 * For future optimizations:
3064 * 1. The D term may discount the other two terms over time so that long-lived
3065 * generations can resist stale information.
3068 unsigned long refaulted
;
3069 unsigned long total
;
3073 static void read_ctrl_pos(struct lruvec
*lruvec
, int type
, int tier
, int gain
,
3074 struct ctrl_pos
*pos
)
3076 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3077 int hist
= lru_hist_from_seq(lrugen
->min_seq
[type
]);
3079 pos
->refaulted
= lrugen
->avg_refaulted
[type
][tier
] +
3080 atomic_long_read(&lrugen
->refaulted
[hist
][type
][tier
]);
3081 pos
->total
= lrugen
->avg_total
[type
][tier
] +
3082 atomic_long_read(&lrugen
->evicted
[hist
][type
][tier
]);
3084 pos
->total
+= lrugen
->protected[hist
][type
][tier
- 1];
3088 static void reset_ctrl_pos(struct lruvec
*lruvec
, int type
, bool carryover
)
3091 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3092 bool clear
= carryover
? NR_HIST_GENS
== 1 : NR_HIST_GENS
> 1;
3093 unsigned long seq
= carryover
? lrugen
->min_seq
[type
] : lrugen
->max_seq
+ 1;
3095 lockdep_assert_held(&lruvec
->lru_lock
);
3097 if (!carryover
&& !clear
)
3100 hist
= lru_hist_from_seq(seq
);
3102 for (tier
= 0; tier
< MAX_NR_TIERS
; tier
++) {
3106 sum
= lrugen
->avg_refaulted
[type
][tier
] +
3107 atomic_long_read(&lrugen
->refaulted
[hist
][type
][tier
]);
3108 WRITE_ONCE(lrugen
->avg_refaulted
[type
][tier
], sum
/ 2);
3110 sum
= lrugen
->avg_total
[type
][tier
] +
3111 atomic_long_read(&lrugen
->evicted
[hist
][type
][tier
]);
3113 sum
+= lrugen
->protected[hist
][type
][tier
- 1];
3114 WRITE_ONCE(lrugen
->avg_total
[type
][tier
], sum
/ 2);
3118 atomic_long_set(&lrugen
->refaulted
[hist
][type
][tier
], 0);
3119 atomic_long_set(&lrugen
->evicted
[hist
][type
][tier
], 0);
3121 WRITE_ONCE(lrugen
->protected[hist
][type
][tier
- 1], 0);
3126 static bool positive_ctrl_err(struct ctrl_pos
*sp
, struct ctrl_pos
*pv
)
3129 * Return true if the PV has a limited number of refaults or a lower
3130 * refaulted/total than the SP.
3132 return pv
->refaulted
< MIN_LRU_BATCH
||
3133 pv
->refaulted
* (sp
->total
+ MIN_LRU_BATCH
) * sp
->gain
<=
3134 (sp
->refaulted
+ 1) * pv
->total
* pv
->gain
;
3137 /******************************************************************************
3139 ******************************************************************************/
3141 /* promote pages accessed through page tables */
3142 static int folio_update_gen(struct folio
*folio
, int gen
)
3144 unsigned long new_flags
, old_flags
= READ_ONCE(folio
->flags
);
3146 VM_WARN_ON_ONCE(gen
>= MAX_NR_GENS
);
3149 /* lru_gen_del_folio() has isolated this page? */
3150 if (!(old_flags
& LRU_GEN_MASK
)) {
3151 /* for shrink_folio_list() */
3152 new_flags
= old_flags
| BIT(PG_referenced
);
3156 new_flags
= old_flags
& ~(LRU_GEN_MASK
| LRU_REFS_MASK
| LRU_REFS_FLAGS
);
3157 new_flags
|= (gen
+ 1UL) << LRU_GEN_PGOFF
;
3158 } while (!try_cmpxchg(&folio
->flags
, &old_flags
, new_flags
));
3160 return ((old_flags
& LRU_GEN_MASK
) >> LRU_GEN_PGOFF
) - 1;
3163 /* protect pages accessed multiple times through file descriptors */
3164 static int folio_inc_gen(struct lruvec
*lruvec
, struct folio
*folio
, bool reclaiming
)
3166 int type
= folio_is_file_lru(folio
);
3167 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3168 int new_gen
, old_gen
= lru_gen_from_seq(lrugen
->min_seq
[type
]);
3169 unsigned long new_flags
, old_flags
= READ_ONCE(folio
->flags
);
3171 VM_WARN_ON_ONCE_FOLIO(!(old_flags
& LRU_GEN_MASK
), folio
);
3174 new_gen
= ((old_flags
& LRU_GEN_MASK
) >> LRU_GEN_PGOFF
) - 1;
3175 /* folio_update_gen() has promoted this page? */
3176 if (new_gen
>= 0 && new_gen
!= old_gen
)
3179 new_gen
= (old_gen
+ 1) % MAX_NR_GENS
;
3181 new_flags
= old_flags
& ~(LRU_GEN_MASK
| LRU_REFS_MASK
| LRU_REFS_FLAGS
);
3182 new_flags
|= (new_gen
+ 1UL) << LRU_GEN_PGOFF
;
3183 /* for folio_end_writeback() */
3185 new_flags
|= BIT(PG_reclaim
);
3186 } while (!try_cmpxchg(&folio
->flags
, &old_flags
, new_flags
));
3188 lru_gen_update_size(lruvec
, folio
, old_gen
, new_gen
);
3193 static void update_batch_size(struct lru_gen_mm_walk
*walk
, struct folio
*folio
,
3194 int old_gen
, int new_gen
)
3196 int type
= folio_is_file_lru(folio
);
3197 int zone
= folio_zonenum(folio
);
3198 int delta
= folio_nr_pages(folio
);
3200 VM_WARN_ON_ONCE(old_gen
>= MAX_NR_GENS
);
3201 VM_WARN_ON_ONCE(new_gen
>= MAX_NR_GENS
);
3205 walk
->nr_pages
[old_gen
][type
][zone
] -= delta
;
3206 walk
->nr_pages
[new_gen
][type
][zone
] += delta
;
3209 static void reset_batch_size(struct lru_gen_mm_walk
*walk
)
3211 int gen
, type
, zone
;
3212 struct lruvec
*lruvec
= walk
->lruvec
;
3213 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3217 for_each_gen_type_zone(gen
, type
, zone
) {
3218 enum lru_list lru
= type
* LRU_INACTIVE_FILE
;
3219 int delta
= walk
->nr_pages
[gen
][type
][zone
];
3224 walk
->nr_pages
[gen
][type
][zone
] = 0;
3225 WRITE_ONCE(lrugen
->nr_pages
[gen
][type
][zone
],
3226 lrugen
->nr_pages
[gen
][type
][zone
] + delta
);
3228 if (lru_gen_is_active(lruvec
, gen
))
3230 __update_lru_size(lruvec
, lru
, zone
, delta
);
3234 static int should_skip_vma(unsigned long start
, unsigned long end
, struct mm_walk
*args
)
3236 struct address_space
*mapping
;
3237 struct vm_area_struct
*vma
= args
->vma
;
3238 struct lru_gen_mm_walk
*walk
= args
->private;
3240 if (!vma_is_accessible(vma
))
3243 if (is_vm_hugetlb_page(vma
))
3246 if (!vma_has_recency(vma
))
3249 if (vma
->vm_flags
& (VM_LOCKED
| VM_SPECIAL
))
3252 if (vma
== get_gate_vma(vma
->vm_mm
))
3255 if (vma_is_anonymous(vma
))
3256 return !walk
->can_swap
;
3258 if (WARN_ON_ONCE(!vma
->vm_file
|| !vma
->vm_file
->f_mapping
))
3261 mapping
= vma
->vm_file
->f_mapping
;
3262 if (mapping_unevictable(mapping
))
3265 if (shmem_mapping(mapping
))
3266 return !walk
->can_swap
;
3268 /* to exclude special mappings like dax, etc. */
3269 return !mapping
->a_ops
->read_folio
;
3273 * Some userspace memory allocators map many single-page VMAs. Instead of
3274 * returning back to the PGD table for each of such VMAs, finish an entire PMD
3275 * table to reduce zigzags and improve cache performance.
3277 static bool get_next_vma(unsigned long mask
, unsigned long size
, struct mm_walk
*args
,
3278 unsigned long *vm_start
, unsigned long *vm_end
)
3280 unsigned long start
= round_up(*vm_end
, size
);
3281 unsigned long end
= (start
| ~mask
) + 1;
3282 VMA_ITERATOR(vmi
, args
->mm
, start
);
3284 VM_WARN_ON_ONCE(mask
& size
);
3285 VM_WARN_ON_ONCE((start
& mask
) != (*vm_start
& mask
));
3287 for_each_vma(vmi
, args
->vma
) {
3288 if (end
&& end
<= args
->vma
->vm_start
)
3291 if (should_skip_vma(args
->vma
->vm_start
, args
->vma
->vm_end
, args
))
3294 *vm_start
= max(start
, args
->vma
->vm_start
);
3295 *vm_end
= min(end
- 1, args
->vma
->vm_end
- 1) + 1;
3303 static unsigned long get_pte_pfn(pte_t pte
, struct vm_area_struct
*vma
, unsigned long addr
,
3304 struct pglist_data
*pgdat
)
3306 unsigned long pfn
= pte_pfn(pte
);
3308 VM_WARN_ON_ONCE(addr
< vma
->vm_start
|| addr
>= vma
->vm_end
);
3310 if (!pte_present(pte
) || is_zero_pfn(pfn
))
3313 if (WARN_ON_ONCE(pte_devmap(pte
) || pte_special(pte
)))
3316 if (!pte_young(pte
) && !mm_has_notifiers(vma
->vm_mm
))
3319 if (WARN_ON_ONCE(!pfn_valid(pfn
)))
3322 if (pfn
< pgdat
->node_start_pfn
|| pfn
>= pgdat_end_pfn(pgdat
))
3328 static unsigned long get_pmd_pfn(pmd_t pmd
, struct vm_area_struct
*vma
, unsigned long addr
,
3329 struct pglist_data
*pgdat
)
3331 unsigned long pfn
= pmd_pfn(pmd
);
3333 VM_WARN_ON_ONCE(addr
< vma
->vm_start
|| addr
>= vma
->vm_end
);
3335 if (!pmd_present(pmd
) || is_huge_zero_pmd(pmd
))
3338 if (WARN_ON_ONCE(pmd_devmap(pmd
)))
3341 if (!pmd_young(pmd
) && !mm_has_notifiers(vma
->vm_mm
))
3344 if (WARN_ON_ONCE(!pfn_valid(pfn
)))
3347 if (pfn
< pgdat
->node_start_pfn
|| pfn
>= pgdat_end_pfn(pgdat
))
3353 static struct folio
*get_pfn_folio(unsigned long pfn
, struct mem_cgroup
*memcg
,
3354 struct pglist_data
*pgdat
, bool can_swap
)
3356 struct folio
*folio
;
3358 folio
= pfn_folio(pfn
);
3359 if (folio_nid(folio
) != pgdat
->node_id
)
3362 if (folio_memcg(folio
) != memcg
)
3365 /* file VMAs can contain anon pages from COW */
3366 if (!folio_is_file_lru(folio
) && !can_swap
)
3372 static bool suitable_to_scan(int total
, int young
)
3374 int n
= clamp_t(int, cache_line_size() / sizeof(pte_t
), 2, 8);
3376 /* suitable if the average number of young PTEs per cacheline is >=1 */
3377 return young
* n
>= total
;
3380 static bool walk_pte_range(pmd_t
*pmd
, unsigned long start
, unsigned long end
,
3381 struct mm_walk
*args
)
3389 struct lru_gen_mm_walk
*walk
= args
->private;
3390 struct mem_cgroup
*memcg
= lruvec_memcg(walk
->lruvec
);
3391 struct pglist_data
*pgdat
= lruvec_pgdat(walk
->lruvec
);
3392 DEFINE_MAX_SEQ(walk
->lruvec
);
3393 int old_gen
, new_gen
= lru_gen_from_seq(max_seq
);
3396 pte
= pte_offset_map_rw_nolock(args
->mm
, pmd
, start
& PMD_MASK
, &pmdval
,
3400 if (!spin_trylock(ptl
)) {
3405 if (unlikely(!pmd_same(pmdval
, pmdp_get_lockless(pmd
)))) {
3406 pte_unmap_unlock(pte
, ptl
);
3410 arch_enter_lazy_mmu_mode();
3412 for (i
= pte_index(start
), addr
= start
; addr
!= end
; i
++, addr
+= PAGE_SIZE
) {
3414 struct folio
*folio
;
3415 pte_t ptent
= ptep_get(pte
+ i
);
3418 walk
->mm_stats
[MM_LEAF_TOTAL
]++;
3420 pfn
= get_pte_pfn(ptent
, args
->vma
, addr
, pgdat
);
3424 folio
= get_pfn_folio(pfn
, memcg
, pgdat
, walk
->can_swap
);
3428 if (!ptep_clear_young_notify(args
->vma
, addr
, pte
+ i
))
3432 walk
->mm_stats
[MM_LEAF_YOUNG
]++;
3434 if (pte_dirty(ptent
) && !folio_test_dirty(folio
) &&
3435 !(folio_test_anon(folio
) && folio_test_swapbacked(folio
) &&
3436 !folio_test_swapcache(folio
)))
3437 folio_mark_dirty(folio
);
3439 old_gen
= folio_update_gen(folio
, new_gen
);
3440 if (old_gen
>= 0 && old_gen
!= new_gen
)
3441 update_batch_size(walk
, folio
, old_gen
, new_gen
);
3444 if (i
< PTRS_PER_PTE
&& get_next_vma(PMD_MASK
, PAGE_SIZE
, args
, &start
, &end
))
3447 arch_leave_lazy_mmu_mode();
3448 pte_unmap_unlock(pte
, ptl
);
3450 return suitable_to_scan(total
, young
);
3453 static void walk_pmd_range_locked(pud_t
*pud
, unsigned long addr
, struct vm_area_struct
*vma
,
3454 struct mm_walk
*args
, unsigned long *bitmap
, unsigned long *first
)
3459 struct lru_gen_mm_walk
*walk
= args
->private;
3460 struct mem_cgroup
*memcg
= lruvec_memcg(walk
->lruvec
);
3461 struct pglist_data
*pgdat
= lruvec_pgdat(walk
->lruvec
);
3462 DEFINE_MAX_SEQ(walk
->lruvec
);
3463 int old_gen
, new_gen
= lru_gen_from_seq(max_seq
);
3465 VM_WARN_ON_ONCE(pud_leaf(*pud
));
3467 /* try to batch at most 1+MIN_LRU_BATCH+1 entries */
3470 bitmap_zero(bitmap
, MIN_LRU_BATCH
);
3474 i
= addr
== -1 ? 0 : pmd_index(addr
) - pmd_index(*first
);
3475 if (i
&& i
<= MIN_LRU_BATCH
) {
3476 __set_bit(i
- 1, bitmap
);
3480 pmd
= pmd_offset(pud
, *first
);
3482 ptl
= pmd_lockptr(args
->mm
, pmd
);
3483 if (!spin_trylock(ptl
))
3486 arch_enter_lazy_mmu_mode();
3490 struct folio
*folio
;
3492 /* don't round down the first address */
3493 addr
= i
? (*first
& PMD_MASK
) + i
* PMD_SIZE
: *first
;
3495 if (!pmd_present(pmd
[i
]))
3498 if (!pmd_trans_huge(pmd
[i
])) {
3499 if (!walk
->force_scan
&& should_clear_pmd_young() &&
3500 !mm_has_notifiers(args
->mm
))
3501 pmdp_test_and_clear_young(vma
, addr
, pmd
+ i
);
3505 pfn
= get_pmd_pfn(pmd
[i
], vma
, addr
, pgdat
);
3509 folio
= get_pfn_folio(pfn
, memcg
, pgdat
, walk
->can_swap
);
3513 if (!pmdp_clear_young_notify(vma
, addr
, pmd
+ i
))
3516 walk
->mm_stats
[MM_LEAF_YOUNG
]++;
3518 if (pmd_dirty(pmd
[i
]) && !folio_test_dirty(folio
) &&
3519 !(folio_test_anon(folio
) && folio_test_swapbacked(folio
) &&
3520 !folio_test_swapcache(folio
)))
3521 folio_mark_dirty(folio
);
3523 old_gen
= folio_update_gen(folio
, new_gen
);
3524 if (old_gen
>= 0 && old_gen
!= new_gen
)
3525 update_batch_size(walk
, folio
, old_gen
, new_gen
);
3527 i
= i
> MIN_LRU_BATCH
? 0 : find_next_bit(bitmap
, MIN_LRU_BATCH
, i
) + 1;
3528 } while (i
<= MIN_LRU_BATCH
);
3530 arch_leave_lazy_mmu_mode();
3536 static void walk_pmd_range(pud_t
*pud
, unsigned long start
, unsigned long end
,
3537 struct mm_walk
*args
)
3543 struct vm_area_struct
*vma
;
3544 DECLARE_BITMAP(bitmap
, MIN_LRU_BATCH
);
3545 unsigned long first
= -1;
3546 struct lru_gen_mm_walk
*walk
= args
->private;
3547 struct lru_gen_mm_state
*mm_state
= get_mm_state(walk
->lruvec
);
3549 VM_WARN_ON_ONCE(pud_leaf(*pud
));
3552 * Finish an entire PMD in two passes: the first only reaches to PTE
3553 * tables to avoid taking the PMD lock; the second, if necessary, takes
3554 * the PMD lock to clear the accessed bit in PMD entries.
3556 pmd
= pmd_offset(pud
, start
& PUD_MASK
);
3558 /* walk_pte_range() may call get_next_vma() */
3560 for (i
= pmd_index(start
), addr
= start
; addr
!= end
; i
++, addr
= next
) {
3561 pmd_t val
= pmdp_get_lockless(pmd
+ i
);
3563 next
= pmd_addr_end(addr
, end
);
3565 if (!pmd_present(val
) || is_huge_zero_pmd(val
)) {
3566 walk
->mm_stats
[MM_LEAF_TOTAL
]++;
3570 if (pmd_trans_huge(val
)) {
3571 struct pglist_data
*pgdat
= lruvec_pgdat(walk
->lruvec
);
3572 unsigned long pfn
= get_pmd_pfn(val
, vma
, addr
, pgdat
);
3574 walk
->mm_stats
[MM_LEAF_TOTAL
]++;
3577 walk_pmd_range_locked(pud
, addr
, vma
, args
, bitmap
, &first
);
3581 if (!walk
->force_scan
&& should_clear_pmd_young() &&
3582 !mm_has_notifiers(args
->mm
)) {
3583 if (!pmd_young(val
))
3586 walk_pmd_range_locked(pud
, addr
, vma
, args
, bitmap
, &first
);
3589 if (!walk
->force_scan
&& !test_bloom_filter(mm_state
, walk
->seq
, pmd
+ i
))
3592 walk
->mm_stats
[MM_NONLEAF_FOUND
]++;
3594 if (!walk_pte_range(&val
, addr
, next
, args
))
3597 walk
->mm_stats
[MM_NONLEAF_ADDED
]++;
3599 /* carry over to the next generation */
3600 update_bloom_filter(mm_state
, walk
->seq
+ 1, pmd
+ i
);
3603 walk_pmd_range_locked(pud
, -1, vma
, args
, bitmap
, &first
);
3605 if (i
< PTRS_PER_PMD
&& get_next_vma(PUD_MASK
, PMD_SIZE
, args
, &start
, &end
))
3609 static int walk_pud_range(p4d_t
*p4d
, unsigned long start
, unsigned long end
,
3610 struct mm_walk
*args
)
3616 struct lru_gen_mm_walk
*walk
= args
->private;
3618 VM_WARN_ON_ONCE(p4d_leaf(*p4d
));
3620 pud
= pud_offset(p4d
, start
& P4D_MASK
);
3622 for (i
= pud_index(start
), addr
= start
; addr
!= end
; i
++, addr
= next
) {
3623 pud_t val
= READ_ONCE(pud
[i
]);
3625 next
= pud_addr_end(addr
, end
);
3627 if (!pud_present(val
) || WARN_ON_ONCE(pud_leaf(val
)))
3630 walk_pmd_range(&val
, addr
, next
, args
);
3632 if (need_resched() || walk
->batched
>= MAX_LRU_BATCH
) {
3633 end
= (addr
| ~PUD_MASK
) + 1;
3638 if (i
< PTRS_PER_PUD
&& get_next_vma(P4D_MASK
, PUD_SIZE
, args
, &start
, &end
))
3641 end
= round_up(end
, P4D_SIZE
);
3643 if (!end
|| !args
->vma
)
3646 walk
->next_addr
= max(end
, args
->vma
->vm_start
);
3651 static void walk_mm(struct mm_struct
*mm
, struct lru_gen_mm_walk
*walk
)
3653 static const struct mm_walk_ops mm_walk_ops
= {
3654 .test_walk
= should_skip_vma
,
3655 .p4d_entry
= walk_pud_range
,
3656 .walk_lock
= PGWALK_RDLOCK
,
3659 struct lruvec
*lruvec
= walk
->lruvec
;
3661 walk
->next_addr
= FIRST_USER_ADDRESS
;
3664 DEFINE_MAX_SEQ(lruvec
);
3668 /* another thread might have called inc_max_seq() */
3669 if (walk
->seq
!= max_seq
)
3672 /* the caller might be holding the lock for write */
3673 if (mmap_read_trylock(mm
)) {
3674 err
= walk_page_range(mm
, walk
->next_addr
, ULONG_MAX
, &mm_walk_ops
, walk
);
3676 mmap_read_unlock(mm
);
3679 if (walk
->batched
) {
3680 spin_lock_irq(&lruvec
->lru_lock
);
3681 reset_batch_size(walk
);
3682 spin_unlock_irq(&lruvec
->lru_lock
);
3686 } while (err
== -EAGAIN
);
3689 static struct lru_gen_mm_walk
*set_mm_walk(struct pglist_data
*pgdat
, bool force_alloc
)
3691 struct lru_gen_mm_walk
*walk
= current
->reclaim_state
->mm_walk
;
3693 if (pgdat
&& current_is_kswapd()) {
3694 VM_WARN_ON_ONCE(walk
);
3696 walk
= &pgdat
->mm_walk
;
3697 } else if (!walk
&& force_alloc
) {
3698 VM_WARN_ON_ONCE(current_is_kswapd());
3700 walk
= kzalloc(sizeof(*walk
), __GFP_HIGH
| __GFP_NOMEMALLOC
| __GFP_NOWARN
);
3703 current
->reclaim_state
->mm_walk
= walk
;
3708 static void clear_mm_walk(void)
3710 struct lru_gen_mm_walk
*walk
= current
->reclaim_state
->mm_walk
;
3712 VM_WARN_ON_ONCE(walk
&& memchr_inv(walk
->nr_pages
, 0, sizeof(walk
->nr_pages
)));
3713 VM_WARN_ON_ONCE(walk
&& memchr_inv(walk
->mm_stats
, 0, sizeof(walk
->mm_stats
)));
3715 current
->reclaim_state
->mm_walk
= NULL
;
3717 if (!current_is_kswapd())
3721 static bool inc_min_seq(struct lruvec
*lruvec
, int type
, bool can_swap
)
3724 int remaining
= MAX_LRU_BATCH
;
3725 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3726 int new_gen
, old_gen
= lru_gen_from_seq(lrugen
->min_seq
[type
]);
3728 if (type
== LRU_GEN_ANON
&& !can_swap
)
3731 /* prevent cold/hot inversion if force_scan is true */
3732 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3733 struct list_head
*head
= &lrugen
->folios
[old_gen
][type
][zone
];
3735 while (!list_empty(head
)) {
3736 struct folio
*folio
= lru_to_folio(head
);
3738 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio
), folio
);
3739 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio
), folio
);
3740 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio
) != type
, folio
);
3741 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio
) != zone
, folio
);
3743 new_gen
= folio_inc_gen(lruvec
, folio
, false);
3744 list_move_tail(&folio
->lru
, &lrugen
->folios
[new_gen
][type
][zone
]);
3751 reset_ctrl_pos(lruvec
, type
, true);
3752 WRITE_ONCE(lrugen
->min_seq
[type
], lrugen
->min_seq
[type
] + 1);
3757 static bool try_to_inc_min_seq(struct lruvec
*lruvec
, bool can_swap
)
3759 int gen
, type
, zone
;
3760 bool success
= false;
3761 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3762 DEFINE_MIN_SEQ(lruvec
);
3764 VM_WARN_ON_ONCE(!seq_is_valid(lruvec
));
3766 /* find the oldest populated generation */
3767 for (type
= !can_swap
; type
< ANON_AND_FILE
; type
++) {
3768 while (min_seq
[type
] + MIN_NR_GENS
<= lrugen
->max_seq
) {
3769 gen
= lru_gen_from_seq(min_seq
[type
]);
3771 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3772 if (!list_empty(&lrugen
->folios
[gen
][type
][zone
]))
3782 /* see the comment on lru_gen_folio */
3784 min_seq
[LRU_GEN_ANON
] = min(min_seq
[LRU_GEN_ANON
], min_seq
[LRU_GEN_FILE
]);
3785 min_seq
[LRU_GEN_FILE
] = max(min_seq
[LRU_GEN_ANON
], lrugen
->min_seq
[LRU_GEN_FILE
]);
3788 for (type
= !can_swap
; type
< ANON_AND_FILE
; type
++) {
3789 if (min_seq
[type
] == lrugen
->min_seq
[type
])
3792 reset_ctrl_pos(lruvec
, type
, true);
3793 WRITE_ONCE(lrugen
->min_seq
[type
], min_seq
[type
]);
3800 static bool inc_max_seq(struct lruvec
*lruvec
, unsigned long seq
,
3801 bool can_swap
, bool force_scan
)
3806 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3808 if (seq
< READ_ONCE(lrugen
->max_seq
))
3811 spin_lock_irq(&lruvec
->lru_lock
);
3813 VM_WARN_ON_ONCE(!seq_is_valid(lruvec
));
3815 success
= seq
== lrugen
->max_seq
;
3819 for (type
= ANON_AND_FILE
- 1; type
>= 0; type
--) {
3820 if (get_nr_gens(lruvec
, type
) != MAX_NR_GENS
)
3823 VM_WARN_ON_ONCE(!force_scan
&& (type
== LRU_GEN_FILE
|| can_swap
));
3825 if (inc_min_seq(lruvec
, type
, can_swap
))
3828 spin_unlock_irq(&lruvec
->lru_lock
);
3834 * Update the active/inactive LRU sizes for compatibility. Both sides of
3835 * the current max_seq need to be covered, since max_seq+1 can overlap
3836 * with min_seq[LRU_GEN_ANON] if swapping is constrained. And if they do
3837 * overlap, cold/hot inversion happens.
3839 prev
= lru_gen_from_seq(lrugen
->max_seq
- 1);
3840 next
= lru_gen_from_seq(lrugen
->max_seq
+ 1);
3842 for (type
= 0; type
< ANON_AND_FILE
; type
++) {
3843 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
3844 enum lru_list lru
= type
* LRU_INACTIVE_FILE
;
3845 long delta
= lrugen
->nr_pages
[prev
][type
][zone
] -
3846 lrugen
->nr_pages
[next
][type
][zone
];
3851 __update_lru_size(lruvec
, lru
, zone
, delta
);
3852 __update_lru_size(lruvec
, lru
+ LRU_ACTIVE
, zone
, -delta
);
3856 for (type
= 0; type
< ANON_AND_FILE
; type
++)
3857 reset_ctrl_pos(lruvec
, type
, false);
3859 WRITE_ONCE(lrugen
->timestamps
[next
], jiffies
);
3860 /* make sure preceding modifications appear */
3861 smp_store_release(&lrugen
->max_seq
, lrugen
->max_seq
+ 1);
3863 spin_unlock_irq(&lruvec
->lru_lock
);
3868 static bool try_to_inc_max_seq(struct lruvec
*lruvec
, unsigned long seq
,
3869 bool can_swap
, bool force_scan
)
3872 struct lru_gen_mm_walk
*walk
;
3873 struct mm_struct
*mm
= NULL
;
3874 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3875 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
3877 VM_WARN_ON_ONCE(seq
> READ_ONCE(lrugen
->max_seq
));
3880 return inc_max_seq(lruvec
, seq
, can_swap
, force_scan
);
3882 /* see the comment in iterate_mm_list() */
3883 if (seq
<= READ_ONCE(mm_state
->seq
))
3887 * If the hardware doesn't automatically set the accessed bit, fallback
3888 * to lru_gen_look_around(), which only clears the accessed bit in a
3889 * handful of PTEs. Spreading the work out over a period of time usually
3890 * is less efficient, but it avoids bursty page faults.
3892 if (!should_walk_mmu()) {
3893 success
= iterate_mm_list_nowalk(lruvec
, seq
);
3897 walk
= set_mm_walk(NULL
, true);
3899 success
= iterate_mm_list_nowalk(lruvec
, seq
);
3903 walk
->lruvec
= lruvec
;
3905 walk
->can_swap
= can_swap
;
3906 walk
->force_scan
= force_scan
;
3909 success
= iterate_mm_list(walk
, &mm
);
3915 success
= inc_max_seq(lruvec
, seq
, can_swap
, force_scan
);
3916 WARN_ON_ONCE(!success
);
3922 /******************************************************************************
3923 * working set protection
3924 ******************************************************************************/
3926 static void set_initial_priority(struct pglist_data
*pgdat
, struct scan_control
*sc
)
3929 unsigned long reclaimable
;
3931 if (sc
->priority
!= DEF_PRIORITY
|| sc
->nr_to_reclaim
< MIN_LRU_BATCH
)
3934 * Determine the initial priority based on
3935 * (total >> priority) * reclaimed_to_scanned_ratio = nr_to_reclaim,
3936 * where reclaimed_to_scanned_ratio = inactive / total.
3938 reclaimable
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
3939 if (can_reclaim_anon_pages(NULL
, pgdat
->node_id
, sc
))
3940 reclaimable
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
3942 /* round down reclaimable and round up sc->nr_to_reclaim */
3943 priority
= fls_long(reclaimable
) - 1 - fls_long(sc
->nr_to_reclaim
- 1);
3946 * The estimation is based on LRU pages only, so cap it to prevent
3947 * overshoots of shrinker objects by large margins.
3949 sc
->priority
= clamp(priority
, DEF_PRIORITY
/ 2, DEF_PRIORITY
);
3952 static bool lruvec_is_sizable(struct lruvec
*lruvec
, struct scan_control
*sc
)
3954 int gen
, type
, zone
;
3955 unsigned long total
= 0;
3956 bool can_swap
= get_swappiness(lruvec
, sc
);
3957 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
3958 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
3959 DEFINE_MAX_SEQ(lruvec
);
3960 DEFINE_MIN_SEQ(lruvec
);
3962 for (type
= !can_swap
; type
< ANON_AND_FILE
; type
++) {
3965 for (seq
= min_seq
[type
]; seq
<= max_seq
; seq
++) {
3966 gen
= lru_gen_from_seq(seq
);
3968 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++)
3969 total
+= max(READ_ONCE(lrugen
->nr_pages
[gen
][type
][zone
]), 0L);
3973 /* whether the size is big enough to be helpful */
3974 return mem_cgroup_online(memcg
) ? (total
>> sc
->priority
) : total
;
3977 static bool lruvec_is_reclaimable(struct lruvec
*lruvec
, struct scan_control
*sc
,
3978 unsigned long min_ttl
)
3981 unsigned long birth
;
3982 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
3983 DEFINE_MIN_SEQ(lruvec
);
3985 if (mem_cgroup_below_min(NULL
, memcg
))
3988 if (!lruvec_is_sizable(lruvec
, sc
))
3991 /* see the comment on lru_gen_folio */
3992 gen
= lru_gen_from_seq(min_seq
[LRU_GEN_FILE
]);
3993 birth
= READ_ONCE(lruvec
->lrugen
.timestamps
[gen
]);
3995 return time_is_before_jiffies(birth
+ min_ttl
);
3998 /* to protect the working set of the last N jiffies */
3999 static unsigned long lru_gen_min_ttl __read_mostly
;
4001 static void lru_gen_age_node(struct pglist_data
*pgdat
, struct scan_control
*sc
)
4003 struct mem_cgroup
*memcg
;
4004 unsigned long min_ttl
= READ_ONCE(lru_gen_min_ttl
);
4005 bool reclaimable
= !min_ttl
;
4007 VM_WARN_ON_ONCE(!current_is_kswapd());
4009 set_initial_priority(pgdat
, sc
);
4011 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
4013 struct lruvec
*lruvec
= mem_cgroup_lruvec(memcg
, pgdat
);
4015 mem_cgroup_calculate_protection(NULL
, memcg
);
4018 reclaimable
= lruvec_is_reclaimable(lruvec
, sc
, min_ttl
);
4019 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)));
4022 * The main goal is to OOM kill if every generation from all memcgs is
4023 * younger than min_ttl. However, another possibility is all memcgs are
4024 * either too small or below min.
4026 if (!reclaimable
&& mutex_trylock(&oom_lock
)) {
4027 struct oom_control oc
= {
4028 .gfp_mask
= sc
->gfp_mask
,
4033 mutex_unlock(&oom_lock
);
4037 /******************************************************************************
4038 * rmap/PT walk feedback
4039 ******************************************************************************/
4042 * This function exploits spatial locality when shrink_folio_list() walks the
4043 * rmap. It scans the adjacent PTEs of a young PTE and promotes hot pages. If
4044 * the scan was done cacheline efficiently, it adds the PMD entry pointing to
4045 * the PTE table to the Bloom filter. This forms a feedback loop between the
4046 * eviction and the aging.
4048 bool lru_gen_look_around(struct page_vma_mapped_walk
*pvmw
)
4051 unsigned long start
;
4053 struct lru_gen_mm_walk
*walk
;
4055 pte_t
*pte
= pvmw
->pte
;
4056 unsigned long addr
= pvmw
->address
;
4057 struct vm_area_struct
*vma
= pvmw
->vma
;
4058 struct folio
*folio
= pfn_folio(pvmw
->pfn
);
4059 bool can_swap
= !folio_is_file_lru(folio
);
4060 struct mem_cgroup
*memcg
= folio_memcg(folio
);
4061 struct pglist_data
*pgdat
= folio_pgdat(folio
);
4062 struct lruvec
*lruvec
= mem_cgroup_lruvec(memcg
, pgdat
);
4063 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
4064 DEFINE_MAX_SEQ(lruvec
);
4065 int old_gen
, new_gen
= lru_gen_from_seq(max_seq
);
4067 lockdep_assert_held(pvmw
->ptl
);
4068 VM_WARN_ON_ONCE_FOLIO(folio_test_lru(folio
), folio
);
4070 if (!ptep_clear_young_notify(vma
, addr
, pte
))
4073 if (spin_is_contended(pvmw
->ptl
))
4076 /* exclude special VMAs containing anon pages from COW */
4077 if (vma
->vm_flags
& VM_SPECIAL
)
4080 /* avoid taking the LRU lock under the PTL when possible */
4081 walk
= current
->reclaim_state
? current
->reclaim_state
->mm_walk
: NULL
;
4083 start
= max(addr
& PMD_MASK
, vma
->vm_start
);
4084 end
= min(addr
| ~PMD_MASK
, vma
->vm_end
- 1) + 1;
4086 if (end
- start
== PAGE_SIZE
)
4089 if (end
- start
> MIN_LRU_BATCH
* PAGE_SIZE
) {
4090 if (addr
- start
< MIN_LRU_BATCH
* PAGE_SIZE
/ 2)
4091 end
= start
+ MIN_LRU_BATCH
* PAGE_SIZE
;
4092 else if (end
- addr
< MIN_LRU_BATCH
* PAGE_SIZE
/ 2)
4093 start
= end
- MIN_LRU_BATCH
* PAGE_SIZE
;
4095 start
= addr
- MIN_LRU_BATCH
* PAGE_SIZE
/ 2;
4096 end
= addr
+ MIN_LRU_BATCH
* PAGE_SIZE
/ 2;
4100 arch_enter_lazy_mmu_mode();
4102 pte
-= (addr
- start
) / PAGE_SIZE
;
4104 for (i
= 0, addr
= start
; addr
!= end
; i
++, addr
+= PAGE_SIZE
) {
4106 pte_t ptent
= ptep_get(pte
+ i
);
4108 pfn
= get_pte_pfn(ptent
, vma
, addr
, pgdat
);
4112 folio
= get_pfn_folio(pfn
, memcg
, pgdat
, can_swap
);
4116 if (!ptep_clear_young_notify(vma
, addr
, pte
+ i
))
4121 if (pte_dirty(ptent
) && !folio_test_dirty(folio
) &&
4122 !(folio_test_anon(folio
) && folio_test_swapbacked(folio
) &&
4123 !folio_test_swapcache(folio
)))
4124 folio_mark_dirty(folio
);
4127 old_gen
= folio_update_gen(folio
, new_gen
);
4128 if (old_gen
>= 0 && old_gen
!= new_gen
)
4129 update_batch_size(walk
, folio
, old_gen
, new_gen
);
4134 old_gen
= folio_lru_gen(folio
);
4136 folio_set_referenced(folio
);
4137 else if (old_gen
!= new_gen
) {
4138 folio_clear_lru_refs(folio
);
4139 folio_activate(folio
);
4143 arch_leave_lazy_mmu_mode();
4145 /* feedback from rmap walkers to page table walkers */
4146 if (mm_state
&& suitable_to_scan(i
, young
))
4147 update_bloom_filter(mm_state
, max_seq
, pvmw
->pmd
);
4152 /******************************************************************************
4154 ******************************************************************************/
4156 /* see the comment on MEMCG_NR_GENS */
4165 static void lru_gen_rotate_memcg(struct lruvec
*lruvec
, int op
)
4169 unsigned long flags
;
4170 int bin
= get_random_u32_below(MEMCG_NR_BINS
);
4171 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
4173 spin_lock_irqsave(&pgdat
->memcg_lru
.lock
, flags
);
4175 VM_WARN_ON_ONCE(hlist_nulls_unhashed(&lruvec
->lrugen
.list
));
4178 new = old
= lruvec
->lrugen
.gen
;
4180 /* see the comment on MEMCG_NR_GENS */
4181 if (op
== MEMCG_LRU_HEAD
)
4182 seg
= MEMCG_LRU_HEAD
;
4183 else if (op
== MEMCG_LRU_TAIL
)
4184 seg
= MEMCG_LRU_TAIL
;
4185 else if (op
== MEMCG_LRU_OLD
)
4186 new = get_memcg_gen(pgdat
->memcg_lru
.seq
);
4187 else if (op
== MEMCG_LRU_YOUNG
)
4188 new = get_memcg_gen(pgdat
->memcg_lru
.seq
+ 1);
4190 VM_WARN_ON_ONCE(true);
4192 WRITE_ONCE(lruvec
->lrugen
.seg
, seg
);
4193 WRITE_ONCE(lruvec
->lrugen
.gen
, new);
4195 hlist_nulls_del_rcu(&lruvec
->lrugen
.list
);
4197 if (op
== MEMCG_LRU_HEAD
|| op
== MEMCG_LRU_OLD
)
4198 hlist_nulls_add_head_rcu(&lruvec
->lrugen
.list
, &pgdat
->memcg_lru
.fifo
[new][bin
]);
4200 hlist_nulls_add_tail_rcu(&lruvec
->lrugen
.list
, &pgdat
->memcg_lru
.fifo
[new][bin
]);
4202 pgdat
->memcg_lru
.nr_memcgs
[old
]--;
4203 pgdat
->memcg_lru
.nr_memcgs
[new]++;
4205 if (!pgdat
->memcg_lru
.nr_memcgs
[old
] && old
== get_memcg_gen(pgdat
->memcg_lru
.seq
))
4206 WRITE_ONCE(pgdat
->memcg_lru
.seq
, pgdat
->memcg_lru
.seq
+ 1);
4208 spin_unlock_irqrestore(&pgdat
->memcg_lru
.lock
, flags
);
4213 void lru_gen_online_memcg(struct mem_cgroup
*memcg
)
4217 int bin
= get_random_u32_below(MEMCG_NR_BINS
);
4219 for_each_node(nid
) {
4220 struct pglist_data
*pgdat
= NODE_DATA(nid
);
4221 struct lruvec
*lruvec
= get_lruvec(memcg
, nid
);
4223 spin_lock_irq(&pgdat
->memcg_lru
.lock
);
4225 VM_WARN_ON_ONCE(!hlist_nulls_unhashed(&lruvec
->lrugen
.list
));
4227 gen
= get_memcg_gen(pgdat
->memcg_lru
.seq
);
4229 lruvec
->lrugen
.gen
= gen
;
4231 hlist_nulls_add_tail_rcu(&lruvec
->lrugen
.list
, &pgdat
->memcg_lru
.fifo
[gen
][bin
]);
4232 pgdat
->memcg_lru
.nr_memcgs
[gen
]++;
4234 spin_unlock_irq(&pgdat
->memcg_lru
.lock
);
4238 void lru_gen_offline_memcg(struct mem_cgroup
*memcg
)
4242 for_each_node(nid
) {
4243 struct lruvec
*lruvec
= get_lruvec(memcg
, nid
);
4245 lru_gen_rotate_memcg(lruvec
, MEMCG_LRU_OLD
);
4249 void lru_gen_release_memcg(struct mem_cgroup
*memcg
)
4254 for_each_node(nid
) {
4255 struct pglist_data
*pgdat
= NODE_DATA(nid
);
4256 struct lruvec
*lruvec
= get_lruvec(memcg
, nid
);
4258 spin_lock_irq(&pgdat
->memcg_lru
.lock
);
4260 if (hlist_nulls_unhashed(&lruvec
->lrugen
.list
))
4263 gen
= lruvec
->lrugen
.gen
;
4265 hlist_nulls_del_init_rcu(&lruvec
->lrugen
.list
);
4266 pgdat
->memcg_lru
.nr_memcgs
[gen
]--;
4268 if (!pgdat
->memcg_lru
.nr_memcgs
[gen
] && gen
== get_memcg_gen(pgdat
->memcg_lru
.seq
))
4269 WRITE_ONCE(pgdat
->memcg_lru
.seq
, pgdat
->memcg_lru
.seq
+ 1);
4271 spin_unlock_irq(&pgdat
->memcg_lru
.lock
);
4275 void lru_gen_soft_reclaim(struct mem_cgroup
*memcg
, int nid
)
4277 struct lruvec
*lruvec
= get_lruvec(memcg
, nid
);
4279 /* see the comment on MEMCG_NR_GENS */
4280 if (READ_ONCE(lruvec
->lrugen
.seg
) != MEMCG_LRU_HEAD
)
4281 lru_gen_rotate_memcg(lruvec
, MEMCG_LRU_HEAD
);
4284 #endif /* CONFIG_MEMCG */
4286 /******************************************************************************
4288 ******************************************************************************/
4290 static bool sort_folio(struct lruvec
*lruvec
, struct folio
*folio
, struct scan_control
*sc
,
4294 bool dirty
, writeback
;
4295 int gen
= folio_lru_gen(folio
);
4296 int type
= folio_is_file_lru(folio
);
4297 int zone
= folio_zonenum(folio
);
4298 int delta
= folio_nr_pages(folio
);
4299 int refs
= folio_lru_refs(folio
);
4300 int tier
= lru_tier_from_refs(refs
);
4301 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
4303 VM_WARN_ON_ONCE_FOLIO(gen
>= MAX_NR_GENS
, folio
);
4306 if (!folio_evictable(folio
)) {
4307 success
= lru_gen_del_folio(lruvec
, folio
, true);
4308 VM_WARN_ON_ONCE_FOLIO(!success
, folio
);
4309 folio_set_unevictable(folio
);
4310 lruvec_add_folio(lruvec
, folio
);
4311 __count_vm_events(UNEVICTABLE_PGCULLED
, delta
);
4316 if (gen
!= lru_gen_from_seq(lrugen
->min_seq
[type
])) {
4317 list_move(&folio
->lru
, &lrugen
->folios
[gen
][type
][zone
]);
4322 if (tier
> tier_idx
|| refs
== BIT(LRU_REFS_WIDTH
)) {
4323 int hist
= lru_hist_from_seq(lrugen
->min_seq
[type
]);
4325 gen
= folio_inc_gen(lruvec
, folio
, false);
4326 list_move_tail(&folio
->lru
, &lrugen
->folios
[gen
][type
][zone
]);
4328 WRITE_ONCE(lrugen
->protected[hist
][type
][tier
- 1],
4329 lrugen
->protected[hist
][type
][tier
- 1] + delta
);
4334 if (!folio_test_lru(folio
) || zone
> sc
->reclaim_idx
) {
4335 gen
= folio_inc_gen(lruvec
, folio
, false);
4336 list_move_tail(&folio
->lru
, &lrugen
->folios
[gen
][type
][zone
]);
4340 dirty
= folio_test_dirty(folio
);
4341 writeback
= folio_test_writeback(folio
);
4342 if (type
== LRU_GEN_FILE
&& dirty
) {
4343 sc
->nr
.file_taken
+= delta
;
4345 sc
->nr
.unqueued_dirty
+= delta
;
4348 /* waiting for writeback */
4349 if (folio_test_locked(folio
) || writeback
||
4350 (type
== LRU_GEN_FILE
&& dirty
)) {
4351 gen
= folio_inc_gen(lruvec
, folio
, true);
4352 list_move(&folio
->lru
, &lrugen
->folios
[gen
][type
][zone
]);
4359 static bool isolate_folio(struct lruvec
*lruvec
, struct folio
*folio
, struct scan_control
*sc
)
4363 /* swap constrained */
4364 if (!(sc
->gfp_mask
& __GFP_IO
) &&
4365 (folio_test_dirty(folio
) ||
4366 (folio_test_anon(folio
) && !folio_test_swapcache(folio
))))
4369 /* raced with release_pages() */
4370 if (!folio_try_get(folio
))
4373 /* raced with another isolation */
4374 if (!folio_test_clear_lru(folio
)) {
4379 /* see the comment on MAX_NR_TIERS */
4380 if (!folio_test_referenced(folio
))
4381 folio_clear_lru_refs(folio
);
4383 /* for shrink_folio_list() */
4384 folio_clear_reclaim(folio
);
4385 folio_clear_referenced(folio
);
4387 success
= lru_gen_del_folio(lruvec
, folio
, true);
4388 VM_WARN_ON_ONCE_FOLIO(!success
, folio
);
4393 static int scan_folios(struct lruvec
*lruvec
, struct scan_control
*sc
,
4394 int type
, int tier
, struct list_head
*list
)
4398 enum vm_event_item item
;
4403 int remaining
= MAX_LRU_BATCH
;
4404 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
4405 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
4407 VM_WARN_ON_ONCE(!list_empty(list
));
4409 if (get_nr_gens(lruvec
, type
) == MIN_NR_GENS
)
4412 gen
= lru_gen_from_seq(lrugen
->min_seq
[type
]);
4414 for (i
= MAX_NR_ZONES
; i
> 0; i
--) {
4416 int skipped_zone
= 0;
4417 int zone
= (sc
->reclaim_idx
+ i
) % MAX_NR_ZONES
;
4418 struct list_head
*head
= &lrugen
->folios
[gen
][type
][zone
];
4420 while (!list_empty(head
)) {
4421 struct folio
*folio
= lru_to_folio(head
);
4422 int delta
= folio_nr_pages(folio
);
4424 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio
), folio
);
4425 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio
), folio
);
4426 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio
) != type
, folio
);
4427 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio
) != zone
, folio
);
4431 if (sort_folio(lruvec
, folio
, sc
, tier
))
4433 else if (isolate_folio(lruvec
, folio
, sc
)) {
4434 list_add(&folio
->lru
, list
);
4437 list_move(&folio
->lru
, &moved
);
4438 skipped_zone
+= delta
;
4441 if (!--remaining
|| max(isolated
, skipped_zone
) >= MIN_LRU_BATCH
)
4446 list_splice(&moved
, head
);
4447 __count_zid_vm_events(PGSCAN_SKIP
, zone
, skipped_zone
);
4448 skipped
+= skipped_zone
;
4451 if (!remaining
|| isolated
>= MIN_LRU_BATCH
)
4455 item
= PGSCAN_KSWAPD
+ reclaimer_offset();
4456 if (!cgroup_reclaim(sc
)) {
4457 __count_vm_events(item
, isolated
);
4458 __count_vm_events(PGREFILL
, sorted
);
4460 __count_memcg_events(memcg
, item
, isolated
);
4461 __count_memcg_events(memcg
, PGREFILL
, sorted
);
4462 __count_vm_events(PGSCAN_ANON
+ type
, isolated
);
4463 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, MAX_LRU_BATCH
,
4464 scanned
, skipped
, isolated
,
4465 type
? LRU_INACTIVE_FILE
: LRU_INACTIVE_ANON
);
4466 if (type
== LRU_GEN_FILE
)
4467 sc
->nr
.file_taken
+= isolated
;
4469 * There might not be eligible folios due to reclaim_idx. Check the
4470 * remaining to prevent livelock if it's not making progress.
4472 return isolated
|| !remaining
? scanned
: 0;
4475 static int get_tier_idx(struct lruvec
*lruvec
, int type
)
4478 struct ctrl_pos sp
, pv
;
4481 * To leave a margin for fluctuations, use a larger gain factor (1:2).
4482 * This value is chosen because any other tier would have at least twice
4483 * as many refaults as the first tier.
4485 read_ctrl_pos(lruvec
, type
, 0, 1, &sp
);
4486 for (tier
= 1; tier
< MAX_NR_TIERS
; tier
++) {
4487 read_ctrl_pos(lruvec
, type
, tier
, 2, &pv
);
4488 if (!positive_ctrl_err(&sp
, &pv
))
4495 static int get_type_to_scan(struct lruvec
*lruvec
, int swappiness
, int *tier_idx
)
4498 struct ctrl_pos sp
, pv
;
4499 int gain
[ANON_AND_FILE
] = { swappiness
, MAX_SWAPPINESS
- swappiness
};
4502 * Compare the first tier of anon with that of file to determine which
4503 * type to scan. Also need to compare other tiers of the selected type
4504 * with the first tier of the other type to determine the last tier (of
4505 * the selected type) to evict.
4507 read_ctrl_pos(lruvec
, LRU_GEN_ANON
, 0, gain
[LRU_GEN_ANON
], &sp
);
4508 read_ctrl_pos(lruvec
, LRU_GEN_FILE
, 0, gain
[LRU_GEN_FILE
], &pv
);
4509 type
= positive_ctrl_err(&sp
, &pv
);
4511 read_ctrl_pos(lruvec
, !type
, 0, gain
[!type
], &sp
);
4512 for (tier
= 1; tier
< MAX_NR_TIERS
; tier
++) {
4513 read_ctrl_pos(lruvec
, type
, tier
, gain
[type
], &pv
);
4514 if (!positive_ctrl_err(&sp
, &pv
))
4518 *tier_idx
= tier
- 1;
4523 static int isolate_folios(struct lruvec
*lruvec
, struct scan_control
*sc
, int swappiness
,
4524 int *type_scanned
, struct list_head
*list
)
4530 DEFINE_MIN_SEQ(lruvec
);
4533 * Try to make the obvious choice first, and if anon and file are both
4534 * available from the same generation,
4535 * 1. Interpret swappiness 1 as file first and MAX_SWAPPINESS as anon
4537 * 2. If !__GFP_IO, file first since clean pagecache is more likely to
4538 * exist than clean swapcache.
4541 type
= LRU_GEN_FILE
;
4542 else if (min_seq
[LRU_GEN_ANON
] < min_seq
[LRU_GEN_FILE
])
4543 type
= LRU_GEN_ANON
;
4544 else if (swappiness
== 1)
4545 type
= LRU_GEN_FILE
;
4546 else if (swappiness
== MAX_SWAPPINESS
)
4547 type
= LRU_GEN_ANON
;
4548 else if (!(sc
->gfp_mask
& __GFP_IO
))
4549 type
= LRU_GEN_FILE
;
4551 type
= get_type_to_scan(lruvec
, swappiness
, &tier
);
4553 for (i
= !swappiness
; i
< ANON_AND_FILE
; i
++) {
4555 tier
= get_tier_idx(lruvec
, type
);
4557 scanned
= scan_folios(lruvec
, sc
, type
, tier
, list
);
4565 *type_scanned
= type
;
4570 static int evict_folios(struct lruvec
*lruvec
, struct scan_control
*sc
, int swappiness
)
4577 struct folio
*folio
;
4579 enum vm_event_item item
;
4580 struct reclaim_stat stat
;
4581 struct lru_gen_mm_walk
*walk
;
4582 bool skip_retry
= false;
4583 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
4584 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
4586 spin_lock_irq(&lruvec
->lru_lock
);
4588 scanned
= isolate_folios(lruvec
, sc
, swappiness
, &type
, &list
);
4590 scanned
+= try_to_inc_min_seq(lruvec
, swappiness
);
4592 if (get_nr_gens(lruvec
, !swappiness
) == MIN_NR_GENS
)
4595 spin_unlock_irq(&lruvec
->lru_lock
);
4597 if (list_empty(&list
))
4600 reclaimed
= shrink_folio_list(&list
, pgdat
, sc
, &stat
, false);
4601 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
4602 sc
->nr_reclaimed
+= reclaimed
;
4603 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
4604 scanned
, reclaimed
, &stat
, sc
->priority
,
4605 type
? LRU_INACTIVE_FILE
: LRU_INACTIVE_ANON
);
4607 list_for_each_entry_safe_reverse(folio
, next
, &list
, lru
) {
4608 if (!folio_evictable(folio
)) {
4609 list_del(&folio
->lru
);
4610 folio_putback_lru(folio
);
4614 if (folio_test_reclaim(folio
) &&
4615 (folio_test_dirty(folio
) || folio_test_writeback(folio
))) {
4616 /* restore LRU_REFS_FLAGS cleared by isolate_folio() */
4617 if (folio_test_workingset(folio
))
4618 folio_set_referenced(folio
);
4622 if (skip_retry
|| folio_test_active(folio
) || folio_test_referenced(folio
) ||
4623 folio_mapped(folio
) || folio_test_locked(folio
) ||
4624 folio_test_dirty(folio
) || folio_test_writeback(folio
)) {
4625 /* don't add rejected folios to the oldest generation */
4626 set_mask_bits(&folio
->flags
, LRU_REFS_MASK
| LRU_REFS_FLAGS
,
4631 /* retry folios that may have missed folio_rotate_reclaimable() */
4632 list_move(&folio
->lru
, &clean
);
4635 spin_lock_irq(&lruvec
->lru_lock
);
4637 move_folios_to_lru(lruvec
, &list
);
4639 walk
= current
->reclaim_state
->mm_walk
;
4640 if (walk
&& walk
->batched
) {
4641 walk
->lruvec
= lruvec
;
4642 reset_batch_size(walk
);
4645 item
= PGSTEAL_KSWAPD
+ reclaimer_offset();
4646 if (!cgroup_reclaim(sc
))
4647 __count_vm_events(item
, reclaimed
);
4648 __count_memcg_events(memcg
, item
, reclaimed
);
4649 __count_vm_events(PGSTEAL_ANON
+ type
, reclaimed
);
4651 spin_unlock_irq(&lruvec
->lru_lock
);
4653 list_splice_init(&clean
, &list
);
4655 if (!list_empty(&list
)) {
4663 static bool should_run_aging(struct lruvec
*lruvec
, unsigned long max_seq
,
4664 bool can_swap
, unsigned long *nr_to_scan
)
4666 int gen
, type
, zone
;
4667 unsigned long old
= 0;
4668 unsigned long young
= 0;
4669 unsigned long total
= 0;
4670 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
4671 DEFINE_MIN_SEQ(lruvec
);
4673 /* whether this lruvec is completely out of cold folios */
4674 if (min_seq
[!can_swap
] + MIN_NR_GENS
> max_seq
) {
4679 for (type
= !can_swap
; type
< ANON_AND_FILE
; type
++) {
4682 for (seq
= min_seq
[type
]; seq
<= max_seq
; seq
++) {
4683 unsigned long size
= 0;
4685 gen
= lru_gen_from_seq(seq
);
4687 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++)
4688 size
+= max(READ_ONCE(lrugen
->nr_pages
[gen
][type
][zone
]), 0L);
4693 else if (seq
+ MIN_NR_GENS
== max_seq
)
4698 *nr_to_scan
= total
;
4701 * The aging tries to be lazy to reduce the overhead, while the eviction
4702 * stalls when the number of generations reaches MIN_NR_GENS. Hence, the
4703 * ideal number of generations is MIN_NR_GENS+1.
4705 if (min_seq
[!can_swap
] + MIN_NR_GENS
< max_seq
)
4709 * It's also ideal to spread pages out evenly, i.e., 1/(MIN_NR_GENS+1)
4710 * of the total number of pages for each generation. A reasonable range
4711 * for this average portion is [1/MIN_NR_GENS, 1/(MIN_NR_GENS+2)]. The
4712 * aging cares about the upper bound of hot pages, while the eviction
4713 * cares about the lower bound of cold pages.
4715 if (young
* MIN_NR_GENS
> total
)
4717 if (old
* (MIN_NR_GENS
+ 2) < total
)
4724 * For future optimizations:
4725 * 1. Defer try_to_inc_max_seq() to workqueues to reduce latency for memcg
4728 static long get_nr_to_scan(struct lruvec
*lruvec
, struct scan_control
*sc
, bool can_swap
)
4731 unsigned long nr_to_scan
;
4732 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
4733 DEFINE_MAX_SEQ(lruvec
);
4735 if (mem_cgroup_below_min(sc
->target_mem_cgroup
, memcg
))
4738 success
= should_run_aging(lruvec
, max_seq
, can_swap
, &nr_to_scan
);
4740 /* try to scrape all its memory if this memcg was deleted */
4741 if (nr_to_scan
&& !mem_cgroup_online(memcg
))
4744 /* try to get away with not aging at the default priority */
4745 if (!success
|| sc
->priority
== DEF_PRIORITY
)
4746 return nr_to_scan
>> sc
->priority
;
4748 /* stop scanning this lruvec as it's low on cold folios */
4749 return try_to_inc_max_seq(lruvec
, max_seq
, can_swap
, false) ? -1 : 0;
4752 static bool should_abort_scan(struct lruvec
*lruvec
, struct scan_control
*sc
)
4755 enum zone_watermarks mark
;
4757 /* don't abort memcg reclaim to ensure fairness */
4758 if (!root_reclaim(sc
))
4761 if (sc
->nr_reclaimed
>= max(sc
->nr_to_reclaim
, compact_gap(sc
->order
)))
4764 /* check the order to exclude compaction-induced reclaim */
4765 if (!current_is_kswapd() || sc
->order
)
4768 mark
= sysctl_numa_balancing_mode
& NUMA_BALANCING_MEMORY_TIERING
?
4769 WMARK_PROMO
: WMARK_HIGH
;
4771 for (i
= 0; i
<= sc
->reclaim_idx
; i
++) {
4772 struct zone
*zone
= lruvec_pgdat(lruvec
)->node_zones
+ i
;
4773 unsigned long size
= wmark_pages(zone
, mark
) + MIN_LRU_BATCH
;
4775 if (managed_zone(zone
) && !zone_watermark_ok(zone
, 0, size
, sc
->reclaim_idx
, 0))
4779 /* kswapd should abort if all eligible zones are safe */
4783 static bool try_to_shrink_lruvec(struct lruvec
*lruvec
, struct scan_control
*sc
)
4786 unsigned long scanned
= 0;
4787 int swappiness
= get_swappiness(lruvec
, sc
);
4792 nr_to_scan
= get_nr_to_scan(lruvec
, sc
, swappiness
);
4793 if (nr_to_scan
<= 0)
4796 delta
= evict_folios(lruvec
, sc
, swappiness
);
4801 if (scanned
>= nr_to_scan
)
4804 if (should_abort_scan(lruvec
, sc
))
4811 * If too many file cache in the coldest generation can't be evicted
4812 * due to being dirty, wake up the flusher.
4814 if (sc
->nr
.unqueued_dirty
&& sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
4815 wakeup_flusher_threads(WB_REASON_VMSCAN
);
4817 /* whether this lruvec should be rotated */
4818 return nr_to_scan
< 0;
4821 static int shrink_one(struct lruvec
*lruvec
, struct scan_control
*sc
)
4824 unsigned long scanned
= sc
->nr_scanned
;
4825 unsigned long reclaimed
= sc
->nr_reclaimed
;
4826 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
4827 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
4829 /* lru_gen_age_node() called mem_cgroup_calculate_protection() */
4830 if (mem_cgroup_below_min(NULL
, memcg
))
4831 return MEMCG_LRU_YOUNG
;
4833 if (mem_cgroup_below_low(NULL
, memcg
)) {
4834 /* see the comment on MEMCG_NR_GENS */
4835 if (READ_ONCE(lruvec
->lrugen
.seg
) != MEMCG_LRU_TAIL
)
4836 return MEMCG_LRU_TAIL
;
4838 memcg_memory_event(memcg
, MEMCG_LOW
);
4841 success
= try_to_shrink_lruvec(lruvec
, sc
);
4843 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, memcg
, sc
->priority
);
4846 vmpressure(sc
->gfp_mask
, memcg
, false, sc
->nr_scanned
- scanned
,
4847 sc
->nr_reclaimed
- reclaimed
);
4849 flush_reclaim_state(sc
);
4851 if (success
&& mem_cgroup_online(memcg
))
4852 return MEMCG_LRU_YOUNG
;
4854 if (!success
&& lruvec_is_sizable(lruvec
, sc
))
4857 /* one retry if offlined or too small */
4858 return READ_ONCE(lruvec
->lrugen
.seg
) != MEMCG_LRU_TAIL
?
4859 MEMCG_LRU_TAIL
: MEMCG_LRU_YOUNG
;
4862 static void shrink_many(struct pglist_data
*pgdat
, struct scan_control
*sc
)
4868 struct lruvec
*lruvec
;
4869 struct lru_gen_folio
*lrugen
;
4870 struct mem_cgroup
*memcg
;
4871 struct hlist_nulls_node
*pos
;
4873 gen
= get_memcg_gen(READ_ONCE(pgdat
->memcg_lru
.seq
));
4874 bin
= first_bin
= get_random_u32_below(MEMCG_NR_BINS
);
4881 hlist_nulls_for_each_entry_rcu(lrugen
, pos
, &pgdat
->memcg_lru
.fifo
[gen
][bin
], list
) {
4883 lru_gen_rotate_memcg(lruvec
, op
);
4887 mem_cgroup_put(memcg
);
4890 if (gen
!= READ_ONCE(lrugen
->gen
))
4893 lruvec
= container_of(lrugen
, struct lruvec
, lrugen
);
4894 memcg
= lruvec_memcg(lruvec
);
4896 if (!mem_cgroup_tryget(memcg
)) {
4897 lru_gen_release_memcg(memcg
);
4904 op
= shrink_one(lruvec
, sc
);
4908 if (should_abort_scan(lruvec
, sc
))
4915 lru_gen_rotate_memcg(lruvec
, op
);
4917 mem_cgroup_put(memcg
);
4919 if (!is_a_nulls(pos
))
4922 /* restart if raced with lru_gen_rotate_memcg() */
4923 if (gen
!= get_nulls_value(pos
))
4926 /* try the rest of the bins of the current generation */
4927 bin
= get_memcg_bin(bin
+ 1);
4928 if (bin
!= first_bin
)
4932 static void lru_gen_shrink_lruvec(struct lruvec
*lruvec
, struct scan_control
*sc
)
4934 struct blk_plug plug
;
4936 VM_WARN_ON_ONCE(root_reclaim(sc
));
4937 VM_WARN_ON_ONCE(!sc
->may_writepage
|| !sc
->may_unmap
);
4941 blk_start_plug(&plug
);
4943 set_mm_walk(NULL
, sc
->proactive
);
4945 if (try_to_shrink_lruvec(lruvec
, sc
))
4946 lru_gen_rotate_memcg(lruvec
, MEMCG_LRU_YOUNG
);
4950 blk_finish_plug(&plug
);
4953 static void lru_gen_shrink_node(struct pglist_data
*pgdat
, struct scan_control
*sc
)
4955 struct blk_plug plug
;
4956 unsigned long reclaimed
= sc
->nr_reclaimed
;
4958 VM_WARN_ON_ONCE(!root_reclaim(sc
));
4961 * Unmapped clean folios are already prioritized. Scanning for more of
4962 * them is likely futile and can cause high reclaim latency when there
4963 * is a large number of memcgs.
4965 if (!sc
->may_writepage
|| !sc
->may_unmap
)
4970 blk_start_plug(&plug
);
4972 set_mm_walk(pgdat
, sc
->proactive
);
4974 set_initial_priority(pgdat
, sc
);
4976 if (current_is_kswapd())
4977 sc
->nr_reclaimed
= 0;
4979 if (mem_cgroup_disabled())
4980 shrink_one(&pgdat
->__lruvec
, sc
);
4982 shrink_many(pgdat
, sc
);
4984 if (current_is_kswapd())
4985 sc
->nr_reclaimed
+= reclaimed
;
4989 blk_finish_plug(&plug
);
4991 if (sc
->nr_reclaimed
> reclaimed
)
4992 pgdat
->kswapd_failures
= 0;
4995 /******************************************************************************
4997 ******************************************************************************/
4999 static bool __maybe_unused
state_is_valid(struct lruvec
*lruvec
)
5001 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
5003 if (lrugen
->enabled
) {
5006 for_each_evictable_lru(lru
) {
5007 if (!list_empty(&lruvec
->lists
[lru
]))
5011 int gen
, type
, zone
;
5013 for_each_gen_type_zone(gen
, type
, zone
) {
5014 if (!list_empty(&lrugen
->folios
[gen
][type
][zone
]))
5022 static bool fill_evictable(struct lruvec
*lruvec
)
5025 int remaining
= MAX_LRU_BATCH
;
5027 for_each_evictable_lru(lru
) {
5028 int type
= is_file_lru(lru
);
5029 bool active
= is_active_lru(lru
);
5030 struct list_head
*head
= &lruvec
->lists
[lru
];
5032 while (!list_empty(head
)) {
5034 struct folio
*folio
= lru_to_folio(head
);
5036 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio
), folio
);
5037 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio
) != active
, folio
);
5038 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio
) != type
, folio
);
5039 VM_WARN_ON_ONCE_FOLIO(folio_lru_gen(folio
) != -1, folio
);
5041 lruvec_del_folio(lruvec
, folio
);
5042 success
= lru_gen_add_folio(lruvec
, folio
, false);
5043 VM_WARN_ON_ONCE(!success
);
5053 static bool drain_evictable(struct lruvec
*lruvec
)
5055 int gen
, type
, zone
;
5056 int remaining
= MAX_LRU_BATCH
;
5058 for_each_gen_type_zone(gen
, type
, zone
) {
5059 struct list_head
*head
= &lruvec
->lrugen
.folios
[gen
][type
][zone
];
5061 while (!list_empty(head
)) {
5063 struct folio
*folio
= lru_to_folio(head
);
5065 VM_WARN_ON_ONCE_FOLIO(folio_test_unevictable(folio
), folio
);
5066 VM_WARN_ON_ONCE_FOLIO(folio_test_active(folio
), folio
);
5067 VM_WARN_ON_ONCE_FOLIO(folio_is_file_lru(folio
) != type
, folio
);
5068 VM_WARN_ON_ONCE_FOLIO(folio_zonenum(folio
) != zone
, folio
);
5070 success
= lru_gen_del_folio(lruvec
, folio
, false);
5071 VM_WARN_ON_ONCE(!success
);
5072 lruvec_add_folio(lruvec
, folio
);
5082 static void lru_gen_change_state(bool enabled
)
5084 static DEFINE_MUTEX(state_mutex
);
5086 struct mem_cgroup
*memcg
;
5091 mutex_lock(&state_mutex
);
5093 if (enabled
== lru_gen_enabled())
5097 static_branch_enable_cpuslocked(&lru_gen_caps
[LRU_GEN_CORE
]);
5099 static_branch_disable_cpuslocked(&lru_gen_caps
[LRU_GEN_CORE
]);
5101 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
5105 for_each_node(nid
) {
5106 struct lruvec
*lruvec
= get_lruvec(memcg
, nid
);
5108 spin_lock_irq(&lruvec
->lru_lock
);
5110 VM_WARN_ON_ONCE(!seq_is_valid(lruvec
));
5111 VM_WARN_ON_ONCE(!state_is_valid(lruvec
));
5113 lruvec
->lrugen
.enabled
= enabled
;
5115 while (!(enabled
? fill_evictable(lruvec
) : drain_evictable(lruvec
))) {
5116 spin_unlock_irq(&lruvec
->lru_lock
);
5118 spin_lock_irq(&lruvec
->lru_lock
);
5121 spin_unlock_irq(&lruvec
->lru_lock
);
5125 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)));
5127 mutex_unlock(&state_mutex
);
5133 /******************************************************************************
5135 ******************************************************************************/
5137 static ssize_t
min_ttl_ms_show(struct kobject
*kobj
, struct kobj_attribute
*attr
, char *buf
)
5139 return sysfs_emit(buf
, "%u\n", jiffies_to_msecs(READ_ONCE(lru_gen_min_ttl
)));
5142 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5143 static ssize_t
min_ttl_ms_store(struct kobject
*kobj
, struct kobj_attribute
*attr
,
5144 const char *buf
, size_t len
)
5148 if (kstrtouint(buf
, 0, &msecs
))
5151 WRITE_ONCE(lru_gen_min_ttl
, msecs_to_jiffies(msecs
));
5156 static struct kobj_attribute lru_gen_min_ttl_attr
= __ATTR_RW(min_ttl_ms
);
5158 static ssize_t
enabled_show(struct kobject
*kobj
, struct kobj_attribute
*attr
, char *buf
)
5160 unsigned int caps
= 0;
5162 if (get_cap(LRU_GEN_CORE
))
5163 caps
|= BIT(LRU_GEN_CORE
);
5165 if (should_walk_mmu())
5166 caps
|= BIT(LRU_GEN_MM_WALK
);
5168 if (should_clear_pmd_young())
5169 caps
|= BIT(LRU_GEN_NONLEAF_YOUNG
);
5171 return sysfs_emit(buf
, "0x%04x\n", caps
);
5174 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5175 static ssize_t
enabled_store(struct kobject
*kobj
, struct kobj_attribute
*attr
,
5176 const char *buf
, size_t len
)
5181 if (tolower(*buf
) == 'n')
5183 else if (tolower(*buf
) == 'y')
5185 else if (kstrtouint(buf
, 0, &caps
))
5188 for (i
= 0; i
< NR_LRU_GEN_CAPS
; i
++) {
5189 bool enabled
= caps
& BIT(i
);
5191 if (i
== LRU_GEN_CORE
)
5192 lru_gen_change_state(enabled
);
5194 static_branch_enable(&lru_gen_caps
[i
]);
5196 static_branch_disable(&lru_gen_caps
[i
]);
5202 static struct kobj_attribute lru_gen_enabled_attr
= __ATTR_RW(enabled
);
5204 static struct attribute
*lru_gen_attrs
[] = {
5205 &lru_gen_min_ttl_attr
.attr
,
5206 &lru_gen_enabled_attr
.attr
,
5210 static const struct attribute_group lru_gen_attr_group
= {
5212 .attrs
= lru_gen_attrs
,
5215 /******************************************************************************
5217 ******************************************************************************/
5219 static void *lru_gen_seq_start(struct seq_file
*m
, loff_t
*pos
)
5221 struct mem_cgroup
*memcg
;
5222 loff_t nr_to_skip
= *pos
;
5224 m
->private = kvmalloc(PATH_MAX
, GFP_KERNEL
);
5226 return ERR_PTR(-ENOMEM
);
5228 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
5232 for_each_node_state(nid
, N_MEMORY
) {
5234 return get_lruvec(memcg
, nid
);
5236 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)));
5241 static void lru_gen_seq_stop(struct seq_file
*m
, void *v
)
5243 if (!IS_ERR_OR_NULL(v
))
5244 mem_cgroup_iter_break(NULL
, lruvec_memcg(v
));
5250 static void *lru_gen_seq_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5252 int nid
= lruvec_pgdat(v
)->node_id
;
5253 struct mem_cgroup
*memcg
= lruvec_memcg(v
);
5257 nid
= next_memory_node(nid
);
5258 if (nid
== MAX_NUMNODES
) {
5259 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
5263 nid
= first_memory_node
;
5266 return get_lruvec(memcg
, nid
);
5269 static void lru_gen_seq_show_full(struct seq_file
*m
, struct lruvec
*lruvec
,
5270 unsigned long max_seq
, unsigned long *min_seq
,
5275 int hist
= lru_hist_from_seq(seq
);
5276 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
5277 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
5279 for (tier
= 0; tier
< MAX_NR_TIERS
; tier
++) {
5280 seq_printf(m
, " %10d", tier
);
5281 for (type
= 0; type
< ANON_AND_FILE
; type
++) {
5282 const char *s
= "xxx";
5283 unsigned long n
[3] = {};
5285 if (seq
== max_seq
) {
5287 n
[0] = READ_ONCE(lrugen
->avg_refaulted
[type
][tier
]);
5288 n
[1] = READ_ONCE(lrugen
->avg_total
[type
][tier
]);
5289 } else if (seq
== min_seq
[type
] || NR_HIST_GENS
> 1) {
5291 n
[0] = atomic_long_read(&lrugen
->refaulted
[hist
][type
][tier
]);
5292 n
[1] = atomic_long_read(&lrugen
->evicted
[hist
][type
][tier
]);
5294 n
[2] = READ_ONCE(lrugen
->protected[hist
][type
][tier
- 1]);
5297 for (i
= 0; i
< 3; i
++)
5298 seq_printf(m
, " %10lu%c", n
[i
], s
[i
]);
5307 for (i
= 0; i
< NR_MM_STATS
; i
++) {
5308 const char *s
= "xxxx";
5309 unsigned long n
= 0;
5311 if (seq
== max_seq
&& NR_HIST_GENS
== 1) {
5313 n
= READ_ONCE(mm_state
->stats
[hist
][i
]);
5314 } else if (seq
!= max_seq
&& NR_HIST_GENS
> 1) {
5316 n
= READ_ONCE(mm_state
->stats
[hist
][i
]);
5319 seq_printf(m
, " %10lu%c", n
, s
[i
]);
5324 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5325 static int lru_gen_seq_show(struct seq_file
*m
, void *v
)
5328 bool full
= !debugfs_real_fops(m
->file
)->write
;
5329 struct lruvec
*lruvec
= v
;
5330 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
5331 int nid
= lruvec_pgdat(lruvec
)->node_id
;
5332 struct mem_cgroup
*memcg
= lruvec_memcg(lruvec
);
5333 DEFINE_MAX_SEQ(lruvec
);
5334 DEFINE_MIN_SEQ(lruvec
);
5336 if (nid
== first_memory_node
) {
5337 const char *path
= memcg
? m
->private : "";
5341 cgroup_path(memcg
->css
.cgroup
, m
->private, PATH_MAX
);
5343 seq_printf(m
, "memcg %5hu %s\n", mem_cgroup_id(memcg
), path
);
5346 seq_printf(m
, " node %5d\n", nid
);
5349 seq
= min_seq
[LRU_GEN_ANON
];
5350 else if (max_seq
>= MAX_NR_GENS
)
5351 seq
= max_seq
- MAX_NR_GENS
+ 1;
5355 for (; seq
<= max_seq
; seq
++) {
5357 int gen
= lru_gen_from_seq(seq
);
5358 unsigned long birth
= READ_ONCE(lruvec
->lrugen
.timestamps
[gen
]);
5360 seq_printf(m
, " %10lu %10u", seq
, jiffies_to_msecs(jiffies
- birth
));
5362 for (type
= 0; type
< ANON_AND_FILE
; type
++) {
5363 unsigned long size
= 0;
5364 char mark
= full
&& seq
< min_seq
[type
] ? 'x' : ' ';
5366 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++)
5367 size
+= max(READ_ONCE(lrugen
->nr_pages
[gen
][type
][zone
]), 0L);
5369 seq_printf(m
, " %10lu%c", size
, mark
);
5375 lru_gen_seq_show_full(m
, lruvec
, max_seq
, min_seq
, seq
);
5381 static const struct seq_operations lru_gen_seq_ops
= {
5382 .start
= lru_gen_seq_start
,
5383 .stop
= lru_gen_seq_stop
,
5384 .next
= lru_gen_seq_next
,
5385 .show
= lru_gen_seq_show
,
5388 static int run_aging(struct lruvec
*lruvec
, unsigned long seq
,
5389 bool can_swap
, bool force_scan
)
5391 DEFINE_MAX_SEQ(lruvec
);
5392 DEFINE_MIN_SEQ(lruvec
);
5400 if (!force_scan
&& min_seq
[!can_swap
] + MAX_NR_GENS
- 1 <= max_seq
)
5403 try_to_inc_max_seq(lruvec
, max_seq
, can_swap
, force_scan
);
5408 static int run_eviction(struct lruvec
*lruvec
, unsigned long seq
, struct scan_control
*sc
,
5409 int swappiness
, unsigned long nr_to_reclaim
)
5411 DEFINE_MAX_SEQ(lruvec
);
5413 if (seq
+ MIN_NR_GENS
> max_seq
)
5416 sc
->nr_reclaimed
= 0;
5418 while (!signal_pending(current
)) {
5419 DEFINE_MIN_SEQ(lruvec
);
5421 if (seq
< min_seq
[!swappiness
])
5424 if (sc
->nr_reclaimed
>= nr_to_reclaim
)
5427 if (!evict_folios(lruvec
, sc
, swappiness
))
5436 static int run_cmd(char cmd
, int memcg_id
, int nid
, unsigned long seq
,
5437 struct scan_control
*sc
, int swappiness
, unsigned long opt
)
5439 struct lruvec
*lruvec
;
5441 struct mem_cgroup
*memcg
= NULL
;
5443 if (nid
< 0 || nid
>= MAX_NUMNODES
|| !node_state(nid
, N_MEMORY
))
5446 if (!mem_cgroup_disabled()) {
5449 memcg
= mem_cgroup_from_id(memcg_id
);
5450 if (!mem_cgroup_tryget(memcg
))
5459 if (memcg_id
!= mem_cgroup_id(memcg
))
5462 lruvec
= get_lruvec(memcg
, nid
);
5464 if (swappiness
< MIN_SWAPPINESS
)
5465 swappiness
= get_swappiness(lruvec
, sc
);
5466 else if (swappiness
> MAX_SWAPPINESS
)
5471 err
= run_aging(lruvec
, seq
, swappiness
, opt
);
5474 err
= run_eviction(lruvec
, seq
, sc
, swappiness
, opt
);
5478 mem_cgroup_put(memcg
);
5483 /* see Documentation/admin-guide/mm/multigen_lru.rst for details */
5484 static ssize_t
lru_gen_seq_write(struct file
*file
, const char __user
*src
,
5485 size_t len
, loff_t
*pos
)
5490 struct blk_plug plug
;
5492 struct scan_control sc
= {
5493 .may_writepage
= true,
5496 .reclaim_idx
= MAX_NR_ZONES
- 1,
5497 .gfp_mask
= GFP_KERNEL
,
5500 buf
= kvmalloc(len
+ 1, GFP_KERNEL
);
5504 if (copy_from_user(buf
, src
, len
)) {
5509 set_task_reclaim_state(current
, &sc
.reclaim_state
);
5510 flags
= memalloc_noreclaim_save();
5511 blk_start_plug(&plug
);
5512 if (!set_mm_walk(NULL
, true)) {
5520 while ((cur
= strsep(&next
, ",;\n"))) {
5524 unsigned int memcg_id
;
5527 unsigned int swappiness
= -1;
5528 unsigned long opt
= -1;
5530 cur
= skip_spaces(cur
);
5534 n
= sscanf(cur
, "%c %u %u %lu %n %u %n %lu %n", &cmd
, &memcg_id
, &nid
,
5535 &seq
, &end
, &swappiness
, &end
, &opt
, &end
);
5536 if (n
< 4 || cur
[end
]) {
5541 err
= run_cmd(cmd
, memcg_id
, nid
, seq
, &sc
, swappiness
, opt
);
5547 blk_finish_plug(&plug
);
5548 memalloc_noreclaim_restore(flags
);
5549 set_task_reclaim_state(current
, NULL
);
5556 static int lru_gen_seq_open(struct inode
*inode
, struct file
*file
)
5558 return seq_open(file
, &lru_gen_seq_ops
);
5561 static const struct file_operations lru_gen_rw_fops
= {
5562 .open
= lru_gen_seq_open
,
5564 .write
= lru_gen_seq_write
,
5565 .llseek
= seq_lseek
,
5566 .release
= seq_release
,
5569 static const struct file_operations lru_gen_ro_fops
= {
5570 .open
= lru_gen_seq_open
,
5572 .llseek
= seq_lseek
,
5573 .release
= seq_release
,
5576 /******************************************************************************
5578 ******************************************************************************/
5580 void lru_gen_init_pgdat(struct pglist_data
*pgdat
)
5584 spin_lock_init(&pgdat
->memcg_lru
.lock
);
5586 for (i
= 0; i
< MEMCG_NR_GENS
; i
++) {
5587 for (j
= 0; j
< MEMCG_NR_BINS
; j
++)
5588 INIT_HLIST_NULLS_HEAD(&pgdat
->memcg_lru
.fifo
[i
][j
], i
);
5592 void lru_gen_init_lruvec(struct lruvec
*lruvec
)
5595 int gen
, type
, zone
;
5596 struct lru_gen_folio
*lrugen
= &lruvec
->lrugen
;
5597 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
5599 lrugen
->max_seq
= MIN_NR_GENS
+ 1;
5600 lrugen
->enabled
= lru_gen_enabled();
5602 for (i
= 0; i
<= MIN_NR_GENS
+ 1; i
++)
5603 lrugen
->timestamps
[i
] = jiffies
;
5605 for_each_gen_type_zone(gen
, type
, zone
)
5606 INIT_LIST_HEAD(&lrugen
->folios
[gen
][type
][zone
]);
5609 mm_state
->seq
= MIN_NR_GENS
;
5614 void lru_gen_init_memcg(struct mem_cgroup
*memcg
)
5616 struct lru_gen_mm_list
*mm_list
= get_mm_list(memcg
);
5621 INIT_LIST_HEAD(&mm_list
->fifo
);
5622 spin_lock_init(&mm_list
->lock
);
5625 void lru_gen_exit_memcg(struct mem_cgroup
*memcg
)
5629 struct lru_gen_mm_list
*mm_list
= get_mm_list(memcg
);
5631 VM_WARN_ON_ONCE(mm_list
&& !list_empty(&mm_list
->fifo
));
5633 for_each_node(nid
) {
5634 struct lruvec
*lruvec
= get_lruvec(memcg
, nid
);
5635 struct lru_gen_mm_state
*mm_state
= get_mm_state(lruvec
);
5637 VM_WARN_ON_ONCE(memchr_inv(lruvec
->lrugen
.nr_pages
, 0,
5638 sizeof(lruvec
->lrugen
.nr_pages
)));
5640 lruvec
->lrugen
.list
.next
= LIST_POISON1
;
5645 for (i
= 0; i
< NR_BLOOM_FILTERS
; i
++) {
5646 bitmap_free(mm_state
->filters
[i
]);
5647 mm_state
->filters
[i
] = NULL
;
5652 #endif /* CONFIG_MEMCG */
5654 static int __init
init_lru_gen(void)
5656 BUILD_BUG_ON(MIN_NR_GENS
+ 1 >= MAX_NR_GENS
);
5657 BUILD_BUG_ON(BIT(LRU_GEN_WIDTH
) <= MAX_NR_GENS
);
5659 if (sysfs_create_group(mm_kobj
, &lru_gen_attr_group
))
5660 pr_err("lru_gen: failed to create sysfs group\n");
5662 debugfs_create_file("lru_gen", 0644, NULL
, NULL
, &lru_gen_rw_fops
);
5663 debugfs_create_file("lru_gen_full", 0444, NULL
, NULL
, &lru_gen_ro_fops
);
5667 late_initcall(init_lru_gen
);
5669 #else /* !CONFIG_LRU_GEN */
5671 static void lru_gen_age_node(struct pglist_data
*pgdat
, struct scan_control
*sc
)
5676 static void lru_gen_shrink_lruvec(struct lruvec
*lruvec
, struct scan_control
*sc
)
5681 static void lru_gen_shrink_node(struct pglist_data
*pgdat
, struct scan_control
*sc
)
5686 #endif /* CONFIG_LRU_GEN */
5688 static void shrink_lruvec(struct lruvec
*lruvec
, struct scan_control
*sc
)
5690 unsigned long nr
[NR_LRU_LISTS
];
5691 unsigned long targets
[NR_LRU_LISTS
];
5692 unsigned long nr_to_scan
;
5694 unsigned long nr_reclaimed
= 0;
5695 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
5696 bool proportional_reclaim
;
5697 struct blk_plug plug
;
5699 if (lru_gen_enabled() && !root_reclaim(sc
)) {
5700 lru_gen_shrink_lruvec(lruvec
, sc
);
5704 get_scan_count(lruvec
, sc
, nr
);
5706 /* Record the original scan target for proportional adjustments later */
5707 memcpy(targets
, nr
, sizeof(nr
));
5710 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
5711 * event that can occur when there is little memory pressure e.g.
5712 * multiple streaming readers/writers. Hence, we do not abort scanning
5713 * when the requested number of pages are reclaimed when scanning at
5714 * DEF_PRIORITY on the assumption that the fact we are direct
5715 * reclaiming implies that kswapd is not keeping up and it is best to
5716 * do a batch of work at once. For memcg reclaim one check is made to
5717 * abort proportional reclaim if either the file or anon lru has already
5718 * dropped to zero at the first pass.
5720 proportional_reclaim
= (!cgroup_reclaim(sc
) && !current_is_kswapd() &&
5721 sc
->priority
== DEF_PRIORITY
);
5723 blk_start_plug(&plug
);
5724 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
5725 nr
[LRU_INACTIVE_FILE
]) {
5726 unsigned long nr_anon
, nr_file
, percentage
;
5727 unsigned long nr_scanned
;
5729 for_each_evictable_lru(lru
) {
5731 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
5732 nr
[lru
] -= nr_to_scan
;
5734 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
5741 if (nr_reclaimed
< nr_to_reclaim
|| proportional_reclaim
)
5745 * For kswapd and memcg, reclaim at least the number of pages
5746 * requested. Ensure that the anon and file LRUs are scanned
5747 * proportionally what was requested by get_scan_count(). We
5748 * stop reclaiming one LRU and reduce the amount scanning
5749 * proportional to the original scan target.
5751 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
5752 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
5755 * It's just vindictive to attack the larger once the smaller
5756 * has gone to zero. And given the way we stop scanning the
5757 * smaller below, this makes sure that we only make one nudge
5758 * towards proportionality once we've got nr_to_reclaim.
5760 if (!nr_file
|| !nr_anon
)
5763 if (nr_file
> nr_anon
) {
5764 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
5765 targets
[LRU_ACTIVE_ANON
] + 1;
5767 percentage
= nr_anon
* 100 / scan_target
;
5769 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
5770 targets
[LRU_ACTIVE_FILE
] + 1;
5772 percentage
= nr_file
* 100 / scan_target
;
5775 /* Stop scanning the smaller of the LRU */
5777 nr
[lru
+ LRU_ACTIVE
] = 0;
5780 * Recalculate the other LRU scan count based on its original
5781 * scan target and the percentage scanning already complete
5783 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
5784 nr_scanned
= targets
[lru
] - nr
[lru
];
5785 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
5786 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
5789 nr_scanned
= targets
[lru
] - nr
[lru
];
5790 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
5791 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
5793 blk_finish_plug(&plug
);
5794 sc
->nr_reclaimed
+= nr_reclaimed
;
5797 * Even if we did not try to evict anon pages at all, we want to
5798 * rebalance the anon lru active/inactive ratio.
5800 if (can_age_anon_pages(lruvec_pgdat(lruvec
), sc
) &&
5801 inactive_is_low(lruvec
, LRU_INACTIVE_ANON
))
5802 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
5803 sc
, LRU_ACTIVE_ANON
);
5806 /* Use reclaim/compaction for costly allocs or under memory pressure */
5807 static bool in_reclaim_compaction(struct scan_control
*sc
)
5809 if (gfp_compaction_allowed(sc
->gfp_mask
) && sc
->order
&&
5810 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
5811 sc
->priority
< DEF_PRIORITY
- 2))
5818 * Reclaim/compaction is used for high-order allocation requests. It reclaims
5819 * order-0 pages before compacting the zone. should_continue_reclaim() returns
5820 * true if more pages should be reclaimed such that when the page allocator
5821 * calls try_to_compact_pages() that it will have enough free pages to succeed.
5822 * It will give up earlier than that if there is difficulty reclaiming pages.
5824 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
5825 unsigned long nr_reclaimed
,
5826 struct scan_control
*sc
)
5828 unsigned long pages_for_compaction
;
5829 unsigned long inactive_lru_pages
;
5832 /* If not in reclaim/compaction mode, stop */
5833 if (!in_reclaim_compaction(sc
))
5837 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
5838 * number of pages that were scanned. This will return to the caller
5839 * with the risk reclaim/compaction and the resulting allocation attempt
5840 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
5841 * allocations through requiring that the full LRU list has been scanned
5842 * first, by assuming that zero delta of sc->nr_scanned means full LRU
5843 * scan, but that approximation was wrong, and there were corner cases
5844 * where always a non-zero amount of pages were scanned.
5849 /* If compaction would go ahead or the allocation would succeed, stop */
5850 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
5851 struct zone
*zone
= &pgdat
->node_zones
[z
];
5852 if (!managed_zone(zone
))
5855 /* Allocation can already succeed, nothing to do */
5856 if (zone_watermark_ok(zone
, sc
->order
, min_wmark_pages(zone
),
5857 sc
->reclaim_idx
, 0))
5860 if (compaction_suitable(zone
, sc
->order
, sc
->reclaim_idx
))
5865 * If we have not reclaimed enough pages for compaction and the
5866 * inactive lists are large enough, continue reclaiming
5868 pages_for_compaction
= compact_gap(sc
->order
);
5869 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
5870 if (can_reclaim_anon_pages(NULL
, pgdat
->node_id
, sc
))
5871 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
5873 return inactive_lru_pages
> pages_for_compaction
;
5876 static void shrink_node_memcgs(pg_data_t
*pgdat
, struct scan_control
*sc
)
5878 struct mem_cgroup
*target_memcg
= sc
->target_mem_cgroup
;
5879 struct mem_cgroup_reclaim_cookie reclaim
= {
5882 struct mem_cgroup_reclaim_cookie
*partial
= &reclaim
;
5883 struct mem_cgroup
*memcg
;
5886 * In most cases, direct reclaimers can do partial walks
5887 * through the cgroup tree, using an iterator state that
5888 * persists across invocations. This strikes a balance between
5889 * fairness and allocation latency.
5891 * For kswapd, reliable forward progress is more important
5892 * than a quick return to idle. Always do full walks.
5894 if (current_is_kswapd() || sc
->memcg_full_walk
)
5897 memcg
= mem_cgroup_iter(target_memcg
, NULL
, partial
);
5899 struct lruvec
*lruvec
= mem_cgroup_lruvec(memcg
, pgdat
);
5900 unsigned long reclaimed
;
5901 unsigned long scanned
;
5904 * This loop can become CPU-bound when target memcgs
5905 * aren't eligible for reclaim - either because they
5906 * don't have any reclaimable pages, or because their
5907 * memory is explicitly protected. Avoid soft lockups.
5911 mem_cgroup_calculate_protection(target_memcg
, memcg
);
5913 if (mem_cgroup_below_min(target_memcg
, memcg
)) {
5916 * If there is no reclaimable memory, OOM.
5919 } else if (mem_cgroup_below_low(target_memcg
, memcg
)) {
5922 * Respect the protection only as long as
5923 * there is an unprotected supply
5924 * of reclaimable memory from other cgroups.
5926 if (!sc
->memcg_low_reclaim
) {
5927 sc
->memcg_low_skipped
= 1;
5930 memcg_memory_event(memcg
, MEMCG_LOW
);
5933 reclaimed
= sc
->nr_reclaimed
;
5934 scanned
= sc
->nr_scanned
;
5936 shrink_lruvec(lruvec
, sc
);
5938 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
, memcg
,
5941 /* Record the group's reclaim efficiency */
5943 vmpressure(sc
->gfp_mask
, memcg
, false,
5944 sc
->nr_scanned
- scanned
,
5945 sc
->nr_reclaimed
- reclaimed
);
5947 /* If partial walks are allowed, bail once goal is reached */
5948 if (partial
&& sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
5949 mem_cgroup_iter_break(target_memcg
, memcg
);
5952 } while ((memcg
= mem_cgroup_iter(target_memcg
, memcg
, partial
)));
5955 static void shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
5957 unsigned long nr_reclaimed
, nr_scanned
, nr_node_reclaimed
;
5958 struct lruvec
*target_lruvec
;
5959 bool reclaimable
= false;
5961 if (lru_gen_enabled() && root_reclaim(sc
)) {
5962 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
5963 lru_gen_shrink_node(pgdat
, sc
);
5967 target_lruvec
= mem_cgroup_lruvec(sc
->target_mem_cgroup
, pgdat
);
5970 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
5972 nr_reclaimed
= sc
->nr_reclaimed
;
5973 nr_scanned
= sc
->nr_scanned
;
5975 prepare_scan_control(pgdat
, sc
);
5977 shrink_node_memcgs(pgdat
, sc
);
5979 flush_reclaim_state(sc
);
5981 nr_node_reclaimed
= sc
->nr_reclaimed
- nr_reclaimed
;
5983 /* Record the subtree's reclaim efficiency */
5985 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
5986 sc
->nr_scanned
- nr_scanned
, nr_node_reclaimed
);
5988 if (nr_node_reclaimed
)
5991 if (current_is_kswapd()) {
5993 * If reclaim is isolating dirty pages under writeback,
5994 * it implies that the long-lived page allocation rate
5995 * is exceeding the page laundering rate. Either the
5996 * global limits are not being effective at throttling
5997 * processes due to the page distribution throughout
5998 * zones or there is heavy usage of a slow backing
5999 * device. The only option is to throttle from reclaim
6000 * context which is not ideal as there is no guarantee
6001 * the dirtying process is throttled in the same way
6002 * balance_dirty_pages() manages.
6004 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
6005 * count the number of pages under pages flagged for
6006 * immediate reclaim and stall if any are encountered
6007 * in the nr_immediate check below.
6009 if (sc
->nr
.writeback
&& sc
->nr
.writeback
== sc
->nr
.taken
)
6010 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
6012 /* Allow kswapd to start writing pages during reclaim.*/
6013 if (sc
->nr
.unqueued_dirty
&&
6014 sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
6015 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
6018 * If kswapd scans pages marked for immediate
6019 * reclaim and under writeback (nr_immediate), it
6020 * implies that pages are cycling through the LRU
6021 * faster than they are written so forcibly stall
6022 * until some pages complete writeback.
6024 if (sc
->nr
.immediate
)
6025 reclaim_throttle(pgdat
, VMSCAN_THROTTLE_WRITEBACK
);
6029 * Tag a node/memcg as congested if all the dirty pages were marked
6030 * for writeback and immediate reclaim (counted in nr.congested).
6032 * Legacy memcg will stall in page writeback so avoid forcibly
6033 * stalling in reclaim_throttle().
6035 if (sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
) {
6036 if (cgroup_reclaim(sc
) && writeback_throttling_sane(sc
))
6037 set_bit(LRUVEC_CGROUP_CONGESTED
, &target_lruvec
->flags
);
6039 if (current_is_kswapd())
6040 set_bit(LRUVEC_NODE_CONGESTED
, &target_lruvec
->flags
);
6044 * Stall direct reclaim for IO completions if the lruvec is
6045 * node is congested. Allow kswapd to continue until it
6046 * starts encountering unqueued dirty pages or cycling through
6047 * the LRU too quickly.
6049 if (!current_is_kswapd() && current_may_throttle() &&
6050 !sc
->hibernation_mode
&&
6051 (test_bit(LRUVEC_CGROUP_CONGESTED
, &target_lruvec
->flags
) ||
6052 test_bit(LRUVEC_NODE_CONGESTED
, &target_lruvec
->flags
)))
6053 reclaim_throttle(pgdat
, VMSCAN_THROTTLE_CONGESTED
);
6055 if (should_continue_reclaim(pgdat
, nr_node_reclaimed
, sc
))
6059 * Kswapd gives up on balancing particular nodes after too
6060 * many failures to reclaim anything from them and goes to
6061 * sleep. On reclaim progress, reset the failure counter. A
6062 * successful direct reclaim run will revive a dormant kswapd.
6065 pgdat
->kswapd_failures
= 0;
6066 else if (sc
->cache_trim_mode
)
6067 sc
->cache_trim_mode_failed
= 1;
6071 * Returns true if compaction should go ahead for a costly-order request, or
6072 * the allocation would already succeed without compaction. Return false if we
6073 * should reclaim first.
6075 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
6077 unsigned long watermark
;
6079 if (!gfp_compaction_allowed(sc
->gfp_mask
))
6082 /* Allocation can already succeed, nothing to do */
6083 if (zone_watermark_ok(zone
, sc
->order
, min_wmark_pages(zone
),
6084 sc
->reclaim_idx
, 0))
6087 /* Compaction cannot yet proceed. Do reclaim. */
6088 if (!compaction_suitable(zone
, sc
->order
, sc
->reclaim_idx
))
6092 * Compaction is already possible, but it takes time to run and there
6093 * are potentially other callers using the pages just freed. So proceed
6094 * with reclaim to make a buffer of free pages available to give
6095 * compaction a reasonable chance of completing and allocating the page.
6096 * Note that we won't actually reclaim the whole buffer in one attempt
6097 * as the target watermark in should_continue_reclaim() is lower. But if
6098 * we are already above the high+gap watermark, don't reclaim at all.
6100 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
6102 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
6105 static void consider_reclaim_throttle(pg_data_t
*pgdat
, struct scan_control
*sc
)
6108 * If reclaim is making progress greater than 12% efficiency then
6109 * wake all the NOPROGRESS throttled tasks.
6111 if (sc
->nr_reclaimed
> (sc
->nr_scanned
>> 3)) {
6112 wait_queue_head_t
*wqh
;
6114 wqh
= &pgdat
->reclaim_wait
[VMSCAN_THROTTLE_NOPROGRESS
];
6115 if (waitqueue_active(wqh
))
6122 * Do not throttle kswapd or cgroup reclaim on NOPROGRESS as it will
6123 * throttle on VMSCAN_THROTTLE_WRITEBACK if there are too many pages
6124 * under writeback and marked for immediate reclaim at the tail of the
6127 if (current_is_kswapd() || cgroup_reclaim(sc
))
6130 /* Throttle if making no progress at high prioities. */
6131 if (sc
->priority
== 1 && !sc
->nr_reclaimed
)
6132 reclaim_throttle(pgdat
, VMSCAN_THROTTLE_NOPROGRESS
);
6136 * This is the direct reclaim path, for page-allocating processes. We only
6137 * try to reclaim pages from zones which will satisfy the caller's allocation
6140 * If a zone is deemed to be full of pinned pages then just give it a light
6141 * scan then give up on it.
6143 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
6147 unsigned long nr_soft_reclaimed
;
6148 unsigned long nr_soft_scanned
;
6150 pg_data_t
*last_pgdat
= NULL
;
6151 pg_data_t
*first_pgdat
= NULL
;
6154 * If the number of buffer_heads in the machine exceeds the maximum
6155 * allowed level, force direct reclaim to scan the highmem zone as
6156 * highmem pages could be pinning lowmem pages storing buffer_heads
6158 orig_mask
= sc
->gfp_mask
;
6159 if (buffer_heads_over_limit
) {
6160 sc
->gfp_mask
|= __GFP_HIGHMEM
;
6161 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
6164 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
6165 sc
->reclaim_idx
, sc
->nodemask
) {
6167 * Take care memory controller reclaiming has small influence
6170 if (!cgroup_reclaim(sc
)) {
6171 if (!cpuset_zone_allowed(zone
,
6172 GFP_KERNEL
| __GFP_HARDWALL
))
6176 * If we already have plenty of memory free for
6177 * compaction in this zone, don't free any more.
6178 * Even though compaction is invoked for any
6179 * non-zero order, only frequent costly order
6180 * reclamation is disruptive enough to become a
6181 * noticeable problem, like transparent huge
6184 if (IS_ENABLED(CONFIG_COMPACTION
) &&
6185 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
6186 compaction_ready(zone
, sc
)) {
6187 sc
->compaction_ready
= true;
6192 * Shrink each node in the zonelist once. If the
6193 * zonelist is ordered by zone (not the default) then a
6194 * node may be shrunk multiple times but in that case
6195 * the user prefers lower zones being preserved.
6197 if (zone
->zone_pgdat
== last_pgdat
)
6201 * This steals pages from memory cgroups over softlimit
6202 * and returns the number of reclaimed pages and
6203 * scanned pages. This works for global memory pressure
6204 * and balancing, not for a memcg's limit.
6206 nr_soft_scanned
= 0;
6207 nr_soft_reclaimed
= memcg1_soft_limit_reclaim(zone
->zone_pgdat
,
6208 sc
->order
, sc
->gfp_mask
,
6210 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
6211 sc
->nr_scanned
+= nr_soft_scanned
;
6212 /* need some check for avoid more shrink_zone() */
6216 first_pgdat
= zone
->zone_pgdat
;
6218 /* See comment about same check for global reclaim above */
6219 if (zone
->zone_pgdat
== last_pgdat
)
6221 last_pgdat
= zone
->zone_pgdat
;
6222 shrink_node(zone
->zone_pgdat
, sc
);
6226 consider_reclaim_throttle(first_pgdat
, sc
);
6229 * Restore to original mask to avoid the impact on the caller if we
6230 * promoted it to __GFP_HIGHMEM.
6232 sc
->gfp_mask
= orig_mask
;
6235 static void snapshot_refaults(struct mem_cgroup
*target_memcg
, pg_data_t
*pgdat
)
6237 struct lruvec
*target_lruvec
;
6238 unsigned long refaults
;
6240 if (lru_gen_enabled())
6243 target_lruvec
= mem_cgroup_lruvec(target_memcg
, pgdat
);
6244 refaults
= lruvec_page_state(target_lruvec
, WORKINGSET_ACTIVATE_ANON
);
6245 target_lruvec
->refaults
[WORKINGSET_ANON
] = refaults
;
6246 refaults
= lruvec_page_state(target_lruvec
, WORKINGSET_ACTIVATE_FILE
);
6247 target_lruvec
->refaults
[WORKINGSET_FILE
] = refaults
;
6251 * This is the main entry point to direct page reclaim.
6253 * If a full scan of the inactive list fails to free enough memory then we
6254 * are "out of memory" and something needs to be killed.
6256 * If the caller is !__GFP_FS then the probability of a failure is reasonably
6257 * high - the zone may be full of dirty or under-writeback pages, which this
6258 * caller can't do much about. We kick the writeback threads and take explicit
6259 * naps in the hope that some of these pages can be written. But if the
6260 * allocating task holds filesystem locks which prevent writeout this might not
6261 * work, and the allocation attempt will fail.
6263 * returns: 0, if no pages reclaimed
6264 * else, the number of pages reclaimed
6266 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
6267 struct scan_control
*sc
)
6269 int initial_priority
= sc
->priority
;
6270 pg_data_t
*last_pgdat
;
6274 delayacct_freepages_start();
6276 if (!cgroup_reclaim(sc
))
6277 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
6281 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
6284 shrink_zones(zonelist
, sc
);
6286 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
6289 if (sc
->compaction_ready
)
6293 * If we're getting trouble reclaiming, start doing
6294 * writepage even in laptop mode.
6296 if (sc
->priority
< DEF_PRIORITY
- 2)
6297 sc
->may_writepage
= 1;
6298 } while (--sc
->priority
>= 0);
6301 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
6303 if (zone
->zone_pgdat
== last_pgdat
)
6305 last_pgdat
= zone
->zone_pgdat
;
6307 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
6309 if (cgroup_reclaim(sc
)) {
6310 struct lruvec
*lruvec
;
6312 lruvec
= mem_cgroup_lruvec(sc
->target_mem_cgroup
,
6314 clear_bit(LRUVEC_CGROUP_CONGESTED
, &lruvec
->flags
);
6318 delayacct_freepages_end();
6320 if (sc
->nr_reclaimed
)
6321 return sc
->nr_reclaimed
;
6323 /* Aborted reclaim to try compaction? don't OOM, then */
6324 if (sc
->compaction_ready
)
6328 * In most cases, direct reclaimers can do partial walks
6329 * through the cgroup tree to meet the reclaim goal while
6330 * keeping latency low. Since the iterator state is shared
6331 * among all direct reclaim invocations (to retain fairness
6332 * among cgroups), though, high concurrency can result in
6333 * individual threads not seeing enough cgroups to make
6334 * meaningful forward progress. Avoid false OOMs in this case.
6336 if (!sc
->memcg_full_walk
) {
6337 sc
->priority
= initial_priority
;
6338 sc
->memcg_full_walk
= 1;
6343 * We make inactive:active ratio decisions based on the node's
6344 * composition of memory, but a restrictive reclaim_idx or a
6345 * memory.low cgroup setting can exempt large amounts of
6346 * memory from reclaim. Neither of which are very common, so
6347 * instead of doing costly eligibility calculations of the
6348 * entire cgroup subtree up front, we assume the estimates are
6349 * good, and retry with forcible deactivation if that fails.
6351 if (sc
->skipped_deactivate
) {
6352 sc
->priority
= initial_priority
;
6353 sc
->force_deactivate
= 1;
6354 sc
->skipped_deactivate
= 0;
6358 /* Untapped cgroup reserves? Don't OOM, retry. */
6359 if (sc
->memcg_low_skipped
) {
6360 sc
->priority
= initial_priority
;
6361 sc
->force_deactivate
= 0;
6362 sc
->memcg_low_reclaim
= 1;
6363 sc
->memcg_low_skipped
= 0;
6370 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
6373 unsigned long pfmemalloc_reserve
= 0;
6374 unsigned long free_pages
= 0;
6378 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
6381 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
6382 zone
= &pgdat
->node_zones
[i
];
6383 if (!managed_zone(zone
))
6386 if (!zone_reclaimable_pages(zone
))
6389 pfmemalloc_reserve
+= min_wmark_pages(zone
);
6390 free_pages
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
6393 /* If there are no reserves (unexpected config) then do not throttle */
6394 if (!pfmemalloc_reserve
)
6397 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
6399 /* kswapd must be awake if processes are being throttled */
6400 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
6401 if (READ_ONCE(pgdat
->kswapd_highest_zoneidx
) > ZONE_NORMAL
)
6402 WRITE_ONCE(pgdat
->kswapd_highest_zoneidx
, ZONE_NORMAL
);
6404 wake_up_interruptible(&pgdat
->kswapd_wait
);
6411 * Throttle direct reclaimers if backing storage is backed by the network
6412 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
6413 * depleted. kswapd will continue to make progress and wake the processes
6414 * when the low watermark is reached.
6416 * Returns true if a fatal signal was delivered during throttling. If this
6417 * happens, the page allocator should not consider triggering the OOM killer.
6419 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
6420 nodemask_t
*nodemask
)
6424 pg_data_t
*pgdat
= NULL
;
6427 * Kernel threads should not be throttled as they may be indirectly
6428 * responsible for cleaning pages necessary for reclaim to make forward
6429 * progress. kjournald for example may enter direct reclaim while
6430 * committing a transaction where throttling it could forcing other
6431 * processes to block on log_wait_commit().
6433 if (current
->flags
& PF_KTHREAD
)
6437 * If a fatal signal is pending, this process should not throttle.
6438 * It should return quickly so it can exit and free its memory
6440 if (fatal_signal_pending(current
))
6444 * Check if the pfmemalloc reserves are ok by finding the first node
6445 * with a usable ZONE_NORMAL or lower zone. The expectation is that
6446 * GFP_KERNEL will be required for allocating network buffers when
6447 * swapping over the network so ZONE_HIGHMEM is unusable.
6449 * Throttling is based on the first usable node and throttled processes
6450 * wait on a queue until kswapd makes progress and wakes them. There
6451 * is an affinity then between processes waking up and where reclaim
6452 * progress has been made assuming the process wakes on the same node.
6453 * More importantly, processes running on remote nodes will not compete
6454 * for remote pfmemalloc reserves and processes on different nodes
6455 * should make reasonable progress.
6457 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
6458 gfp_zone(gfp_mask
), nodemask
) {
6459 if (zone_idx(zone
) > ZONE_NORMAL
)
6462 /* Throttle based on the first usable node */
6463 pgdat
= zone
->zone_pgdat
;
6464 if (allow_direct_reclaim(pgdat
))
6469 /* If no zone was usable by the allocation flags then do not throttle */
6473 /* Account for the throttling */
6474 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
6477 * If the caller cannot enter the filesystem, it's possible that it
6478 * is due to the caller holding an FS lock or performing a journal
6479 * transaction in the case of a filesystem like ext[3|4]. In this case,
6480 * it is not safe to block on pfmemalloc_wait as kswapd could be
6481 * blocked waiting on the same lock. Instead, throttle for up to a
6482 * second before continuing.
6484 if (!(gfp_mask
& __GFP_FS
))
6485 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
6486 allow_direct_reclaim(pgdat
), HZ
);
6488 /* Throttle until kswapd wakes the process */
6489 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
6490 allow_direct_reclaim(pgdat
));
6492 if (fatal_signal_pending(current
))
6499 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
6500 gfp_t gfp_mask
, nodemask_t
*nodemask
)
6502 unsigned long nr_reclaimed
;
6503 struct scan_control sc
= {
6504 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
6505 .gfp_mask
= current_gfp_context(gfp_mask
),
6506 .reclaim_idx
= gfp_zone(gfp_mask
),
6508 .nodemask
= nodemask
,
6509 .priority
= DEF_PRIORITY
,
6510 .may_writepage
= !laptop_mode
,
6516 * scan_control uses s8 fields for order, priority, and reclaim_idx.
6517 * Confirm they are large enough for max values.
6519 BUILD_BUG_ON(MAX_PAGE_ORDER
>= S8_MAX
);
6520 BUILD_BUG_ON(DEF_PRIORITY
> S8_MAX
);
6521 BUILD_BUG_ON(MAX_NR_ZONES
> S8_MAX
);
6524 * Do not enter reclaim if fatal signal was delivered while throttled.
6525 * 1 is returned so that the page allocator does not OOM kill at this
6528 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
6531 set_task_reclaim_state(current
, &sc
.reclaim_state
);
6532 trace_mm_vmscan_direct_reclaim_begin(order
, sc
.gfp_mask
);
6534 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
6536 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
6537 set_task_reclaim_state(current
, NULL
);
6539 return nr_reclaimed
;
6544 /* Only used by soft limit reclaim. Do not reuse for anything else. */
6545 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
6546 gfp_t gfp_mask
, bool noswap
,
6548 unsigned long *nr_scanned
)
6550 struct lruvec
*lruvec
= mem_cgroup_lruvec(memcg
, pgdat
);
6551 struct scan_control sc
= {
6552 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
6553 .target_mem_cgroup
= memcg
,
6554 .may_writepage
= !laptop_mode
,
6556 .reclaim_idx
= MAX_NR_ZONES
- 1,
6557 .may_swap
= !noswap
,
6560 WARN_ON_ONCE(!current
->reclaim_state
);
6562 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
6563 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
6565 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
6569 * NOTE: Although we can get the priority field, using it
6570 * here is not a good idea, since it limits the pages we can scan.
6571 * if we don't reclaim here, the shrink_node from balance_pgdat
6572 * will pick up pages from other mem cgroup's as well. We hack
6573 * the priority and make it zero.
6575 shrink_lruvec(lruvec
, &sc
);
6577 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
6579 *nr_scanned
= sc
.nr_scanned
;
6581 return sc
.nr_reclaimed
;
6584 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
6585 unsigned long nr_pages
,
6587 unsigned int reclaim_options
,
6590 unsigned long nr_reclaimed
;
6591 unsigned int noreclaim_flag
;
6592 struct scan_control sc
= {
6593 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
6594 .proactive_swappiness
= swappiness
,
6595 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
6596 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
6597 .reclaim_idx
= MAX_NR_ZONES
- 1,
6598 .target_mem_cgroup
= memcg
,
6599 .priority
= DEF_PRIORITY
,
6600 .may_writepage
= !laptop_mode
,
6602 .may_swap
= !!(reclaim_options
& MEMCG_RECLAIM_MAY_SWAP
),
6603 .proactive
= !!(reclaim_options
& MEMCG_RECLAIM_PROACTIVE
),
6606 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
6607 * equal pressure on all the nodes. This is based on the assumption that
6608 * the reclaim does not bail out early.
6610 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
6612 set_task_reclaim_state(current
, &sc
.reclaim_state
);
6613 trace_mm_vmscan_memcg_reclaim_begin(0, sc
.gfp_mask
);
6614 noreclaim_flag
= memalloc_noreclaim_save();
6616 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
6618 memalloc_noreclaim_restore(noreclaim_flag
);
6619 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
6620 set_task_reclaim_state(current
, NULL
);
6622 return nr_reclaimed
;
6626 static void kswapd_age_node(struct pglist_data
*pgdat
, struct scan_control
*sc
)
6628 struct mem_cgroup
*memcg
;
6629 struct lruvec
*lruvec
;
6631 if (lru_gen_enabled()) {
6632 lru_gen_age_node(pgdat
, sc
);
6636 if (!can_age_anon_pages(pgdat
, sc
))
6639 lruvec
= mem_cgroup_lruvec(NULL
, pgdat
);
6640 if (!inactive_is_low(lruvec
, LRU_INACTIVE_ANON
))
6643 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
6645 lruvec
= mem_cgroup_lruvec(memcg
, pgdat
);
6646 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
6647 sc
, LRU_ACTIVE_ANON
);
6648 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
6652 static bool pgdat_watermark_boosted(pg_data_t
*pgdat
, int highest_zoneidx
)
6658 * Check for watermark boosts top-down as the higher zones
6659 * are more likely to be boosted. Both watermarks and boosts
6660 * should not be checked at the same time as reclaim would
6661 * start prematurely when there is no boosting and a lower
6664 for (i
= highest_zoneidx
; i
>= 0; i
--) {
6665 zone
= pgdat
->node_zones
+ i
;
6666 if (!managed_zone(zone
))
6669 if (zone
->watermark_boost
)
6677 * Returns true if there is an eligible zone balanced for the request order
6678 * and highest_zoneidx
6680 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int highest_zoneidx
)
6683 unsigned long mark
= -1;
6687 * Check watermarks bottom-up as lower zones are more likely to
6690 for (i
= 0; i
<= highest_zoneidx
; i
++) {
6691 zone
= pgdat
->node_zones
+ i
;
6693 if (!managed_zone(zone
))
6696 if (sysctl_numa_balancing_mode
& NUMA_BALANCING_MEMORY_TIERING
)
6697 mark
= promo_wmark_pages(zone
);
6699 mark
= high_wmark_pages(zone
);
6700 if (zone_watermark_ok_safe(zone
, order
, mark
, highest_zoneidx
))
6705 * If a node has no managed zone within highest_zoneidx, it does not
6706 * need balancing by definition. This can happen if a zone-restricted
6707 * allocation tries to wake a remote kswapd.
6715 /* Clear pgdat state for congested, dirty or under writeback. */
6716 static void clear_pgdat_congested(pg_data_t
*pgdat
)
6718 struct lruvec
*lruvec
= mem_cgroup_lruvec(NULL
, pgdat
);
6720 clear_bit(LRUVEC_NODE_CONGESTED
, &lruvec
->flags
);
6721 clear_bit(LRUVEC_CGROUP_CONGESTED
, &lruvec
->flags
);
6722 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
6723 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
6727 * Prepare kswapd for sleeping. This verifies that there are no processes
6728 * waiting in throttle_direct_reclaim() and that watermarks have been met.
6730 * Returns true if kswapd is ready to sleep
6732 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
,
6733 int highest_zoneidx
)
6736 * The throttled processes are normally woken up in balance_pgdat() as
6737 * soon as allow_direct_reclaim() is true. But there is a potential
6738 * race between when kswapd checks the watermarks and a process gets
6739 * throttled. There is also a potential race if processes get
6740 * throttled, kswapd wakes, a large process exits thereby balancing the
6741 * zones, which causes kswapd to exit balance_pgdat() before reaching
6742 * the wake up checks. If kswapd is going to sleep, no process should
6743 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
6744 * the wake up is premature, processes will wake kswapd and get
6745 * throttled again. The difference from wake ups in balance_pgdat() is
6746 * that here we are under prepare_to_wait().
6748 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
6749 wake_up_all(&pgdat
->pfmemalloc_wait
);
6751 /* Hopeless node, leave it to direct reclaim */
6752 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
6755 if (pgdat_balanced(pgdat
, order
, highest_zoneidx
)) {
6756 clear_pgdat_congested(pgdat
);
6764 * kswapd shrinks a node of pages that are at or below the highest usable
6765 * zone that is currently unbalanced.
6767 * Returns true if kswapd scanned at least the requested number of pages to
6768 * reclaim or if the lack of progress was due to pages under writeback.
6769 * This is used to determine if the scanning priority needs to be raised.
6771 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
6772 struct scan_control
*sc
)
6776 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
6778 /* Reclaim a number of pages proportional to the number of zones */
6779 sc
->nr_to_reclaim
= 0;
6780 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
6781 zone
= pgdat
->node_zones
+ z
;
6782 if (!managed_zone(zone
))
6785 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
6789 * Historically care was taken to put equal pressure on all zones but
6790 * now pressure is applied based on node LRU order.
6792 shrink_node(pgdat
, sc
);
6795 * Fragmentation may mean that the system cannot be rebalanced for
6796 * high-order allocations. If twice the allocation size has been
6797 * reclaimed then recheck watermarks only at order-0 to prevent
6798 * excessive reclaim. Assume that a process requested a high-order
6799 * can direct reclaim/compact.
6801 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
6804 /* account for progress from mm_account_reclaimed_pages() */
6805 return max(sc
->nr_scanned
, sc
->nr_reclaimed
- nr_reclaimed
) >= sc
->nr_to_reclaim
;
6808 /* Page allocator PCP high watermark is lowered if reclaim is active. */
6810 update_reclaim_active(pg_data_t
*pgdat
, int highest_zoneidx
, bool active
)
6815 for (i
= 0; i
<= highest_zoneidx
; i
++) {
6816 zone
= pgdat
->node_zones
+ i
;
6818 if (!managed_zone(zone
))
6822 set_bit(ZONE_RECLAIM_ACTIVE
, &zone
->flags
);
6824 clear_bit(ZONE_RECLAIM_ACTIVE
, &zone
->flags
);
6829 set_reclaim_active(pg_data_t
*pgdat
, int highest_zoneidx
)
6831 update_reclaim_active(pgdat
, highest_zoneidx
, true);
6835 clear_reclaim_active(pg_data_t
*pgdat
, int highest_zoneidx
)
6837 update_reclaim_active(pgdat
, highest_zoneidx
, false);
6841 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
6842 * that are eligible for use by the caller until at least one zone is
6845 * Returns the order kswapd finished reclaiming at.
6847 * kswapd scans the zones in the highmem->normal->dma direction. It skips
6848 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
6849 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
6850 * or lower is eligible for reclaim until at least one usable zone is
6853 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int highest_zoneidx
)
6856 unsigned long nr_soft_reclaimed
;
6857 unsigned long nr_soft_scanned
;
6858 unsigned long pflags
;
6859 unsigned long nr_boost_reclaim
;
6860 unsigned long zone_boosts
[MAX_NR_ZONES
] = { 0, };
6863 struct scan_control sc
= {
6864 .gfp_mask
= GFP_KERNEL
,
6869 set_task_reclaim_state(current
, &sc
.reclaim_state
);
6870 psi_memstall_enter(&pflags
);
6871 __fs_reclaim_acquire(_THIS_IP_
);
6873 count_vm_event(PAGEOUTRUN
);
6876 * Account for the reclaim boost. Note that the zone boost is left in
6877 * place so that parallel allocations that are near the watermark will
6878 * stall or direct reclaim until kswapd is finished.
6880 nr_boost_reclaim
= 0;
6881 for (i
= 0; i
<= highest_zoneidx
; i
++) {
6882 zone
= pgdat
->node_zones
+ i
;
6883 if (!managed_zone(zone
))
6886 nr_boost_reclaim
+= zone
->watermark_boost
;
6887 zone_boosts
[i
] = zone
->watermark_boost
;
6889 boosted
= nr_boost_reclaim
;
6892 set_reclaim_active(pgdat
, highest_zoneidx
);
6893 sc
.priority
= DEF_PRIORITY
;
6895 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
6896 bool raise_priority
= true;
6901 sc
.reclaim_idx
= highest_zoneidx
;
6904 * If the number of buffer_heads exceeds the maximum allowed
6905 * then consider reclaiming from all zones. This has a dual
6906 * purpose -- on 64-bit systems it is expected that
6907 * buffer_heads are stripped during active rotation. On 32-bit
6908 * systems, highmem pages can pin lowmem memory and shrinking
6909 * buffers can relieve lowmem pressure. Reclaim may still not
6910 * go ahead if all eligible zones for the original allocation
6911 * request are balanced to avoid excessive reclaim from kswapd.
6913 if (buffer_heads_over_limit
) {
6914 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
6915 zone
= pgdat
->node_zones
+ i
;
6916 if (!managed_zone(zone
))
6925 * If the pgdat is imbalanced then ignore boosting and preserve
6926 * the watermarks for a later time and restart. Note that the
6927 * zone watermarks will be still reset at the end of balancing
6928 * on the grounds that the normal reclaim should be enough to
6929 * re-evaluate if boosting is required when kswapd next wakes.
6931 balanced
= pgdat_balanced(pgdat
, sc
.order
, highest_zoneidx
);
6932 if (!balanced
&& nr_boost_reclaim
) {
6933 nr_boost_reclaim
= 0;
6938 * If boosting is not active then only reclaim if there are no
6939 * eligible zones. Note that sc.reclaim_idx is not used as
6940 * buffer_heads_over_limit may have adjusted it.
6942 if (!nr_boost_reclaim
&& balanced
)
6945 /* Limit the priority of boosting to avoid reclaim writeback */
6946 if (nr_boost_reclaim
&& sc
.priority
== DEF_PRIORITY
- 2)
6947 raise_priority
= false;
6950 * Do not writeback or swap pages for boosted reclaim. The
6951 * intent is to relieve pressure not issue sub-optimal IO
6952 * from reclaim context. If no pages are reclaimed, the
6953 * reclaim will be aborted.
6955 sc
.may_writepage
= !laptop_mode
&& !nr_boost_reclaim
;
6956 sc
.may_swap
= !nr_boost_reclaim
;
6959 * Do some background aging, to give pages a chance to be
6960 * referenced before reclaiming. All pages are rotated
6961 * regardless of classzone as this is about consistent aging.
6963 kswapd_age_node(pgdat
, &sc
);
6966 * If we're getting trouble reclaiming, start doing writepage
6967 * even in laptop mode.
6969 if (sc
.priority
< DEF_PRIORITY
- 2)
6970 sc
.may_writepage
= 1;
6972 /* Call soft limit reclaim before calling shrink_node. */
6974 nr_soft_scanned
= 0;
6975 nr_soft_reclaimed
= memcg1_soft_limit_reclaim(pgdat
, sc
.order
,
6976 sc
.gfp_mask
, &nr_soft_scanned
);
6977 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
6980 * There should be no need to raise the scanning priority if
6981 * enough pages are already being scanned that that high
6982 * watermark would be met at 100% efficiency.
6984 if (kswapd_shrink_node(pgdat
, &sc
))
6985 raise_priority
= false;
6988 * If the low watermark is met there is no need for processes
6989 * to be throttled on pfmemalloc_wait as they should not be
6990 * able to safely make forward progress. Wake them
6992 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
6993 allow_direct_reclaim(pgdat
))
6994 wake_up_all(&pgdat
->pfmemalloc_wait
);
6996 /* Check if kswapd should be suspending */
6997 __fs_reclaim_release(_THIS_IP_
);
6998 ret
= kthread_freezable_should_stop(&was_frozen
);
6999 __fs_reclaim_acquire(_THIS_IP_
);
7000 if (was_frozen
|| ret
)
7004 * Raise priority if scanning rate is too low or there was no
7005 * progress in reclaiming pages
7007 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
7008 nr_boost_reclaim
-= min(nr_boost_reclaim
, nr_reclaimed
);
7011 * If reclaim made no progress for a boost, stop reclaim as
7012 * IO cannot be queued and it could be an infinite loop in
7013 * extreme circumstances.
7015 if (nr_boost_reclaim
&& !nr_reclaimed
)
7018 if (raise_priority
|| !nr_reclaimed
)
7020 } while (sc
.priority
>= 1);
7023 * Restart only if it went through the priority loop all the way,
7024 * but cache_trim_mode didn't work.
7026 if (!sc
.nr_reclaimed
&& sc
.priority
< 1 &&
7027 !sc
.no_cache_trim_mode
&& sc
.cache_trim_mode_failed
) {
7028 sc
.no_cache_trim_mode
= 1;
7032 if (!sc
.nr_reclaimed
)
7033 pgdat
->kswapd_failures
++;
7036 clear_reclaim_active(pgdat
, highest_zoneidx
);
7038 /* If reclaim was boosted, account for the reclaim done in this pass */
7040 unsigned long flags
;
7042 for (i
= 0; i
<= highest_zoneidx
; i
++) {
7043 if (!zone_boosts
[i
])
7046 /* Increments are under the zone lock */
7047 zone
= pgdat
->node_zones
+ i
;
7048 spin_lock_irqsave(&zone
->lock
, flags
);
7049 zone
->watermark_boost
-= min(zone
->watermark_boost
, zone_boosts
[i
]);
7050 spin_unlock_irqrestore(&zone
->lock
, flags
);
7054 * As there is now likely space, wakeup kcompact to defragment
7057 wakeup_kcompactd(pgdat
, pageblock_order
, highest_zoneidx
);
7060 snapshot_refaults(NULL
, pgdat
);
7061 __fs_reclaim_release(_THIS_IP_
);
7062 psi_memstall_leave(&pflags
);
7063 set_task_reclaim_state(current
, NULL
);
7066 * Return the order kswapd stopped reclaiming at as
7067 * prepare_kswapd_sleep() takes it into account. If another caller
7068 * entered the allocator slow path while kswapd was awake, order will
7069 * remain at the higher level.
7075 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
7076 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
7077 * not a valid index then either kswapd runs for first time or kswapd couldn't
7078 * sleep after previous reclaim attempt (node is still unbalanced). In that
7079 * case return the zone index of the previous kswapd reclaim cycle.
7081 static enum zone_type
kswapd_highest_zoneidx(pg_data_t
*pgdat
,
7082 enum zone_type prev_highest_zoneidx
)
7084 enum zone_type curr_idx
= READ_ONCE(pgdat
->kswapd_highest_zoneidx
);
7086 return curr_idx
== MAX_NR_ZONES
? prev_highest_zoneidx
: curr_idx
;
7089 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
7090 unsigned int highest_zoneidx
)
7095 if (freezing(current
) || kthread_should_stop())
7098 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
7101 * Try to sleep for a short interval. Note that kcompactd will only be
7102 * woken if it is possible to sleep for a short interval. This is
7103 * deliberate on the assumption that if reclaim cannot keep an
7104 * eligible zone balanced that it's also unlikely that compaction will
7107 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, highest_zoneidx
)) {
7109 * Compaction records what page blocks it recently failed to
7110 * isolate pages from and skips them in the future scanning.
7111 * When kswapd is going to sleep, it is reasonable to assume
7112 * that pages and compaction may succeed so reset the cache.
7114 reset_isolation_suitable(pgdat
);
7117 * We have freed the memory, now we should compact it to make
7118 * allocation of the requested order possible.
7120 wakeup_kcompactd(pgdat
, alloc_order
, highest_zoneidx
);
7122 remaining
= schedule_timeout(HZ
/10);
7125 * If woken prematurely then reset kswapd_highest_zoneidx and
7126 * order. The values will either be from a wakeup request or
7127 * the previous request that slept prematurely.
7130 WRITE_ONCE(pgdat
->kswapd_highest_zoneidx
,
7131 kswapd_highest_zoneidx(pgdat
,
7134 if (READ_ONCE(pgdat
->kswapd_order
) < reclaim_order
)
7135 WRITE_ONCE(pgdat
->kswapd_order
, reclaim_order
);
7138 finish_wait(&pgdat
->kswapd_wait
, &wait
);
7139 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
7143 * After a short sleep, check if it was a premature sleep. If not, then
7144 * go fully to sleep until explicitly woken up.
7147 prepare_kswapd_sleep(pgdat
, reclaim_order
, highest_zoneidx
)) {
7148 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
7151 * vmstat counters are not perfectly accurate and the estimated
7152 * value for counters such as NR_FREE_PAGES can deviate from the
7153 * true value by nr_online_cpus * threshold. To avoid the zone
7154 * watermarks being breached while under pressure, we reduce the
7155 * per-cpu vmstat threshold while kswapd is awake and restore
7156 * them before going back to sleep.
7158 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
7160 if (!kthread_should_stop())
7163 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
7166 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
7168 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
7170 finish_wait(&pgdat
->kswapd_wait
, &wait
);
7174 * The background pageout daemon, started as a kernel thread
7175 * from the init process.
7177 * This basically trickles out pages so that we have _some_
7178 * free memory available even if there is no other activity
7179 * that frees anything up. This is needed for things like routing
7180 * etc, where we otherwise might have all activity going on in
7181 * asynchronous contexts that cannot page things out.
7183 * If there are applications that are active memory-allocators
7184 * (most normal use), this basically shouldn't matter.
7186 static int kswapd(void *p
)
7188 unsigned int alloc_order
, reclaim_order
;
7189 unsigned int highest_zoneidx
= MAX_NR_ZONES
- 1;
7190 pg_data_t
*pgdat
= (pg_data_t
*)p
;
7191 struct task_struct
*tsk
= current
;
7192 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
7194 if (!cpumask_empty(cpumask
))
7195 set_cpus_allowed_ptr(tsk
, cpumask
);
7198 * Tell the memory management that we're a "memory allocator",
7199 * and that if we need more memory we should get access to it
7200 * regardless (see "__alloc_pages()"). "kswapd" should
7201 * never get caught in the normal page freeing logic.
7203 * (Kswapd normally doesn't need memory anyway, but sometimes
7204 * you need a small amount of memory in order to be able to
7205 * page out something else, and this flag essentially protects
7206 * us from recursively trying to free more memory as we're
7207 * trying to free the first piece of memory in the first place).
7209 tsk
->flags
|= PF_MEMALLOC
| PF_KSWAPD
;
7212 WRITE_ONCE(pgdat
->kswapd_order
, 0);
7213 WRITE_ONCE(pgdat
->kswapd_highest_zoneidx
, MAX_NR_ZONES
);
7214 atomic_set(&pgdat
->nr_writeback_throttled
, 0);
7218 alloc_order
= reclaim_order
= READ_ONCE(pgdat
->kswapd_order
);
7219 highest_zoneidx
= kswapd_highest_zoneidx(pgdat
,
7223 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
7226 /* Read the new order and highest_zoneidx */
7227 alloc_order
= READ_ONCE(pgdat
->kswapd_order
);
7228 highest_zoneidx
= kswapd_highest_zoneidx(pgdat
,
7230 WRITE_ONCE(pgdat
->kswapd_order
, 0);
7231 WRITE_ONCE(pgdat
->kswapd_highest_zoneidx
, MAX_NR_ZONES
);
7233 if (kthread_freezable_should_stop(&was_frozen
))
7237 * We can speed up thawing tasks if we don't call balance_pgdat
7238 * after returning from the refrigerator
7244 * Reclaim begins at the requested order but if a high-order
7245 * reclaim fails then kswapd falls back to reclaiming for
7246 * order-0. If that happens, kswapd will consider sleeping
7247 * for the order it finished reclaiming at (reclaim_order)
7248 * but kcompactd is woken to compact for the original
7249 * request (alloc_order).
7251 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, highest_zoneidx
,
7253 reclaim_order
= balance_pgdat(pgdat
, alloc_order
,
7255 if (reclaim_order
< alloc_order
)
7256 goto kswapd_try_sleep
;
7259 tsk
->flags
&= ~(PF_MEMALLOC
| PF_KSWAPD
);
7265 * A zone is low on free memory or too fragmented for high-order memory. If
7266 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
7267 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
7268 * has failed or is not needed, still wake up kcompactd if only compaction is
7271 void wakeup_kswapd(struct zone
*zone
, gfp_t gfp_flags
, int order
,
7272 enum zone_type highest_zoneidx
)
7275 enum zone_type curr_idx
;
7277 if (!managed_zone(zone
))
7280 if (!cpuset_zone_allowed(zone
, gfp_flags
))
7283 pgdat
= zone
->zone_pgdat
;
7284 curr_idx
= READ_ONCE(pgdat
->kswapd_highest_zoneidx
);
7286 if (curr_idx
== MAX_NR_ZONES
|| curr_idx
< highest_zoneidx
)
7287 WRITE_ONCE(pgdat
->kswapd_highest_zoneidx
, highest_zoneidx
);
7289 if (READ_ONCE(pgdat
->kswapd_order
) < order
)
7290 WRITE_ONCE(pgdat
->kswapd_order
, order
);
7292 if (!waitqueue_active(&pgdat
->kswapd_wait
))
7295 /* Hopeless node, leave it to direct reclaim if possible */
7296 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
||
7297 (pgdat_balanced(pgdat
, order
, highest_zoneidx
) &&
7298 !pgdat_watermark_boosted(pgdat
, highest_zoneidx
))) {
7300 * There may be plenty of free memory available, but it's too
7301 * fragmented for high-order allocations. Wake up kcompactd
7302 * and rely on compaction_suitable() to determine if it's
7303 * needed. If it fails, it will defer subsequent attempts to
7304 * ratelimit its work.
7306 if (!(gfp_flags
& __GFP_DIRECT_RECLAIM
))
7307 wakeup_kcompactd(pgdat
, order
, highest_zoneidx
);
7311 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, highest_zoneidx
, order
,
7313 wake_up_interruptible(&pgdat
->kswapd_wait
);
7316 #ifdef CONFIG_HIBERNATION
7318 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
7321 * Rather than trying to age LRUs the aim is to preserve the overall
7322 * LRU order by reclaiming preferentially
7323 * inactive > active > active referenced > active mapped
7325 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
7327 struct scan_control sc
= {
7328 .nr_to_reclaim
= nr_to_reclaim
,
7329 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
7330 .reclaim_idx
= MAX_NR_ZONES
- 1,
7331 .priority
= DEF_PRIORITY
,
7335 .hibernation_mode
= 1,
7337 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
7338 unsigned long nr_reclaimed
;
7339 unsigned int noreclaim_flag
;
7341 fs_reclaim_acquire(sc
.gfp_mask
);
7342 noreclaim_flag
= memalloc_noreclaim_save();
7343 set_task_reclaim_state(current
, &sc
.reclaim_state
);
7345 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
7347 set_task_reclaim_state(current
, NULL
);
7348 memalloc_noreclaim_restore(noreclaim_flag
);
7349 fs_reclaim_release(sc
.gfp_mask
);
7351 return nr_reclaimed
;
7353 #endif /* CONFIG_HIBERNATION */
7356 * This kswapd start function will be called by init and node-hot-add.
7358 void __meminit
kswapd_run(int nid
)
7360 pg_data_t
*pgdat
= NODE_DATA(nid
);
7362 pgdat_kswapd_lock(pgdat
);
7363 if (!pgdat
->kswapd
) {
7364 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
7365 if (IS_ERR(pgdat
->kswapd
)) {
7366 /* failure at boot is fatal */
7367 pr_err("Failed to start kswapd on node %d,ret=%ld\n",
7368 nid
, PTR_ERR(pgdat
->kswapd
));
7369 BUG_ON(system_state
< SYSTEM_RUNNING
);
7370 pgdat
->kswapd
= NULL
;
7373 pgdat_kswapd_unlock(pgdat
);
7377 * Called by memory hotplug when all memory in a node is offlined. Caller must
7378 * be holding mem_hotplug_begin/done().
7380 void __meminit
kswapd_stop(int nid
)
7382 pg_data_t
*pgdat
= NODE_DATA(nid
);
7383 struct task_struct
*kswapd
;
7385 pgdat_kswapd_lock(pgdat
);
7386 kswapd
= pgdat
->kswapd
;
7388 kthread_stop(kswapd
);
7389 pgdat
->kswapd
= NULL
;
7391 pgdat_kswapd_unlock(pgdat
);
7394 static int __init
kswapd_init(void)
7399 for_each_node_state(nid
, N_MEMORY
)
7404 module_init(kswapd_init
)
7410 * If non-zero call node_reclaim when the number of free pages falls below
7413 int node_reclaim_mode __read_mostly
;
7416 * Priority for NODE_RECLAIM. This determines the fraction of pages
7417 * of a node considered for each zone_reclaim. 4 scans 1/16th of
7420 #define NODE_RECLAIM_PRIORITY 4
7423 * Percentage of pages in a zone that must be unmapped for node_reclaim to
7426 int sysctl_min_unmapped_ratio
= 1;
7429 * If the number of slab pages in a zone grows beyond this percentage then
7430 * slab reclaim needs to occur.
7432 int sysctl_min_slab_ratio
= 5;
7434 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
7436 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
7437 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
7438 node_page_state(pgdat
, NR_ACTIVE_FILE
);
7441 * It's possible for there to be more file mapped pages than
7442 * accounted for by the pages on the file LRU lists because
7443 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
7445 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
7448 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
7449 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
7451 unsigned long nr_pagecache_reclaimable
;
7452 unsigned long delta
= 0;
7455 * If RECLAIM_UNMAP is set, then all file pages are considered
7456 * potentially reclaimable. Otherwise, we have to worry about
7457 * pages like swapcache and node_unmapped_file_pages() provides
7460 if (node_reclaim_mode
& RECLAIM_UNMAP
)
7461 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
7463 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
7465 /* If we can't clean pages, remove dirty pages from consideration */
7466 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
7467 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
7469 /* Watch for any possible underflows due to delta */
7470 if (unlikely(delta
> nr_pagecache_reclaimable
))
7471 delta
= nr_pagecache_reclaimable
;
7473 return nr_pagecache_reclaimable
- delta
;
7477 * Try to free up some pages from this node through reclaim.
7479 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
7481 /* Minimum pages needed in order to stay on node */
7482 const unsigned long nr_pages
= 1 << order
;
7483 struct task_struct
*p
= current
;
7484 unsigned int noreclaim_flag
;
7485 struct scan_control sc
= {
7486 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
7487 .gfp_mask
= current_gfp_context(gfp_mask
),
7489 .priority
= NODE_RECLAIM_PRIORITY
,
7490 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
7491 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
7493 .reclaim_idx
= gfp_zone(gfp_mask
),
7495 unsigned long pflags
;
7497 trace_mm_vmscan_node_reclaim_begin(pgdat
->node_id
, order
,
7501 psi_memstall_enter(&pflags
);
7502 delayacct_freepages_start();
7503 fs_reclaim_acquire(sc
.gfp_mask
);
7505 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
7507 noreclaim_flag
= memalloc_noreclaim_save();
7508 set_task_reclaim_state(p
, &sc
.reclaim_state
);
7510 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
||
7511 node_page_state_pages(pgdat
, NR_SLAB_RECLAIMABLE_B
) > pgdat
->min_slab_pages
) {
7513 * Free memory by calling shrink node with increasing
7514 * priorities until we have enough memory freed.
7517 shrink_node(pgdat
, &sc
);
7518 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
7521 set_task_reclaim_state(p
, NULL
);
7522 memalloc_noreclaim_restore(noreclaim_flag
);
7523 fs_reclaim_release(sc
.gfp_mask
);
7524 psi_memstall_leave(&pflags
);
7525 delayacct_freepages_end();
7527 trace_mm_vmscan_node_reclaim_end(sc
.nr_reclaimed
);
7529 return sc
.nr_reclaimed
>= nr_pages
;
7532 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
7537 * Node reclaim reclaims unmapped file backed pages and
7538 * slab pages if we are over the defined limits.
7540 * A small portion of unmapped file backed pages is needed for
7541 * file I/O otherwise pages read by file I/O will be immediately
7542 * thrown out if the node is overallocated. So we do not reclaim
7543 * if less than a specified percentage of the node is used by
7544 * unmapped file backed pages.
7546 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
7547 node_page_state_pages(pgdat
, NR_SLAB_RECLAIMABLE_B
) <=
7548 pgdat
->min_slab_pages
)
7549 return NODE_RECLAIM_FULL
;
7552 * Do not scan if the allocation should not be delayed.
7554 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
7555 return NODE_RECLAIM_NOSCAN
;
7558 * Only run node reclaim on the local node or on nodes that do not
7559 * have associated processors. This will favor the local processor
7560 * over remote processors and spread off node memory allocations
7561 * as wide as possible.
7563 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
7564 return NODE_RECLAIM_NOSCAN
;
7566 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
7567 return NODE_RECLAIM_NOSCAN
;
7569 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
7570 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
7573 count_vm_event(PGSCAN_ZONE_RECLAIM_SUCCESS
);
7575 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
7582 * check_move_unevictable_folios - Move evictable folios to appropriate zone
7584 * @fbatch: Batch of lru folios to check.
7586 * Checks folios for evictability, if an evictable folio is in the unevictable
7587 * lru list, moves it to the appropriate evictable lru list. This function
7588 * should be only used for lru folios.
7590 void check_move_unevictable_folios(struct folio_batch
*fbatch
)
7592 struct lruvec
*lruvec
= NULL
;
7597 for (i
= 0; i
< fbatch
->nr
; i
++) {
7598 struct folio
*folio
= fbatch
->folios
[i
];
7599 int nr_pages
= folio_nr_pages(folio
);
7601 pgscanned
+= nr_pages
;
7603 /* block memcg migration while the folio moves between lrus */
7604 if (!folio_test_clear_lru(folio
))
7607 lruvec
= folio_lruvec_relock_irq(folio
, lruvec
);
7608 if (folio_evictable(folio
) && folio_test_unevictable(folio
)) {
7609 lruvec_del_folio(lruvec
, folio
);
7610 folio_clear_unevictable(folio
);
7611 lruvec_add_folio(lruvec
, folio
);
7612 pgrescued
+= nr_pages
;
7614 folio_set_lru(folio
);
7618 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
7619 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
7620 unlock_page_lruvec_irq(lruvec
);
7621 } else if (pgscanned
) {
7622 count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
7625 EXPORT_SYMBOL_GPL(check_move_unevictable_folios
);