1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * zswap.c - zswap driver file
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
11 * Copyright (C) 2012 Seth Jennings <sjenning@linux.vnet.ibm.com>
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
42 /*********************************
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_long_t zswap_stored_pages
= ATOMIC_INIT(0);
49 * The statistics below are not protected from concurrent access for
50 * performance reasons so they may not be a 100% accurate. However,
51 * they do provide useful information on roughly how many times a
52 * certain event is occurring.
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit
;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages
;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail
;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail
;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor
;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail
;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail
;
70 /* Shrinker work queue */
71 static struct workqueue_struct
*shrink_wq
;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full
;
75 /*********************************
77 **********************************/
79 #define ZSWAP_PARAM_UNSET ""
81 static int zswap_setup(void);
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON
, zswap_ever_enabled
);
85 static bool zswap_enabled
= IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON
);
86 static int zswap_enabled_param_set(const char *,
87 const struct kernel_param
*);
88 static const struct kernel_param_ops zswap_enabled_param_ops
= {
89 .set
= zswap_enabled_param_set
,
90 .get
= param_get_bool
,
92 module_param_cb(enabled
, &zswap_enabled_param_ops
, &zswap_enabled
, 0644);
94 /* Crypto compressor to use */
95 static char *zswap_compressor
= CONFIG_ZSWAP_COMPRESSOR_DEFAULT
;
96 static int zswap_compressor_param_set(const char *,
97 const struct kernel_param
*);
98 static const struct kernel_param_ops zswap_compressor_param_ops
= {
99 .set
= zswap_compressor_param_set
,
100 .get
= param_get_charp
,
101 .free
= param_free_charp
,
103 module_param_cb(compressor
, &zswap_compressor_param_ops
,
104 &zswap_compressor
, 0644);
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type
= CONFIG_ZSWAP_ZPOOL_DEFAULT
;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param
*);
109 static const struct kernel_param_ops zswap_zpool_param_ops
= {
110 .set
= zswap_zpool_param_set
,
111 .get
= param_get_charp
,
112 .free
= param_free_charp
,
114 module_param_cb(zpool
, &zswap_zpool_param_ops
, &zswap_zpool_type
, 0644);
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent
= 20;
118 module_param_named(max_pool_percent
, zswap_max_pool_percent
, uint
, 0644);
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent
= 90; /* of max pool size */
122 module_param_named(accept_threshold_percent
, zswap_accept_thr_percent
,
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled
= IS_ENABLED(
127 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON
);
128 module_param_named(shrinker_enabled
, zswap_shrinker_enabled
, bool, 0644);
130 bool zswap_is_enabled(void)
132 return zswap_enabled
;
135 bool zswap_never_enabled(void)
137 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON
, &zswap_ever_enabled
);
140 /*********************************
142 **********************************/
144 struct crypto_acomp_ctx
{
145 struct crypto_acomp
*acomp
;
146 struct acomp_req
*req
;
147 struct crypto_wait wait
;
154 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155 * The only case where lru_lock is not acquired while holding tree.lock is
156 * when a zswap_entry is taken off the lru for writeback, in that case it
157 * needs to be verified that it's still valid in the tree.
161 struct crypto_acomp_ctx __percpu
*acomp_ctx
;
162 struct percpu_ref ref
;
163 struct list_head list
;
164 struct work_struct release_work
;
165 struct hlist_node node
;
166 char tfm_name
[CRYPTO_MAX_ALG_NAME
];
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru
;
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock
);
174 static struct mem_cgroup
*zswap_next_shrink
;
175 static struct work_struct zswap_shrink_work
;
176 static struct shrinker
*zswap_shrinker
;
181 * This structure contains the metadata for tracking a single compressed
184 * swpentry - associated swap entry, the offset indexes into the red-black tree
185 * length - the length in bytes of the compressed page data. Needed during
187 * referenced - true if the entry recently entered the zswap pool. Unset by the
188 * writeback logic. The entry is only reclaimed by the writeback
189 * logic if referenced is unset. See comments in the shrinker
190 * section for context.
191 * pool - the zswap_pool the entry's data is in
192 * handle - zpool allocation handle that stores the compressed page data
193 * objcg - the obj_cgroup that the compressed memory is charged to
194 * lru - handle to the pool's lru used to evict pages.
197 swp_entry_t swpentry
;
200 struct zswap_pool
*pool
;
201 unsigned long handle
;
202 struct obj_cgroup
*objcg
;
203 struct list_head lru
;
206 static struct xarray
*zswap_trees
[MAX_SWAPFILES
];
207 static unsigned int nr_zswap_trees
[MAX_SWAPFILES
];
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools
);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock
);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count
= ATOMIC_INIT(0);
216 enum zswap_init_type
{
222 static enum zswap_init_type zswap_init_state
;
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock
);
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool
;
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
234 static inline struct xarray
*swap_zswap_tree(swp_entry_t swp
)
236 return &zswap_trees
[swp_type(swp
)][swp_offset(swp
)
237 >> SWAP_ADDRESS_SPACE_SHIFT
];
240 #define zswap_pool_debug(msg, p) \
241 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
242 zpool_get_type((p)->zpool))
244 /*********************************
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref
*ref
);
249 static struct zswap_pool
*zswap_pool_create(char *type
, char *compressor
)
251 struct zswap_pool
*pool
;
252 char name
[38]; /* 'zswap' + 32 char (max) num + \0 */
253 gfp_t gfp
= __GFP_NORETRY
| __GFP_NOWARN
| __GFP_KSWAPD_RECLAIM
;
256 if (!zswap_has_pool
) {
257 /* if either are unset, pool initialization failed, and we
258 * need both params to be set correctly before trying to
261 if (!strcmp(type
, ZSWAP_PARAM_UNSET
))
263 if (!strcmp(compressor
, ZSWAP_PARAM_UNSET
))
267 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
271 /* unique name for each pool specifically required by zsmalloc */
272 snprintf(name
, 38, "zswap%x", atomic_inc_return(&zswap_pools_count
));
273 pool
->zpool
= zpool_create_pool(type
, name
, gfp
);
275 pr_err("%s zpool not available\n", type
);
278 pr_debug("using %s zpool\n", zpool_get_type(pool
->zpool
));
280 strscpy(pool
->tfm_name
, compressor
, sizeof(pool
->tfm_name
));
282 pool
->acomp_ctx
= alloc_percpu(*pool
->acomp_ctx
);
283 if (!pool
->acomp_ctx
) {
284 pr_err("percpu alloc failed\n");
288 ret
= cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE
,
293 /* being the current pool takes 1 ref; this func expects the
294 * caller to always add the new pool as the current pool
296 ret
= percpu_ref_init(&pool
->ref
, __zswap_pool_empty
,
297 PERCPU_REF_ALLOW_REINIT
, GFP_KERNEL
);
300 INIT_LIST_HEAD(&pool
->list
);
302 zswap_pool_debug("created", pool
);
307 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE
, &pool
->node
);
310 free_percpu(pool
->acomp_ctx
);
312 zpool_destroy_pool(pool
->zpool
);
317 static struct zswap_pool
*__zswap_pool_create_fallback(void)
319 bool has_comp
, has_zpool
;
321 has_comp
= crypto_has_acomp(zswap_compressor
, 0, 0);
322 if (!has_comp
&& strcmp(zswap_compressor
,
323 CONFIG_ZSWAP_COMPRESSOR_DEFAULT
)) {
324 pr_err("compressor %s not available, using default %s\n",
325 zswap_compressor
, CONFIG_ZSWAP_COMPRESSOR_DEFAULT
);
326 param_free_charp(&zswap_compressor
);
327 zswap_compressor
= CONFIG_ZSWAP_COMPRESSOR_DEFAULT
;
328 has_comp
= crypto_has_acomp(zswap_compressor
, 0, 0);
331 pr_err("default compressor %s not available\n",
333 param_free_charp(&zswap_compressor
);
334 zswap_compressor
= ZSWAP_PARAM_UNSET
;
337 has_zpool
= zpool_has_pool(zswap_zpool_type
);
338 if (!has_zpool
&& strcmp(zswap_zpool_type
,
339 CONFIG_ZSWAP_ZPOOL_DEFAULT
)) {
340 pr_err("zpool %s not available, using default %s\n",
341 zswap_zpool_type
, CONFIG_ZSWAP_ZPOOL_DEFAULT
);
342 param_free_charp(&zswap_zpool_type
);
343 zswap_zpool_type
= CONFIG_ZSWAP_ZPOOL_DEFAULT
;
344 has_zpool
= zpool_has_pool(zswap_zpool_type
);
347 pr_err("default zpool %s not available\n",
349 param_free_charp(&zswap_zpool_type
);
350 zswap_zpool_type
= ZSWAP_PARAM_UNSET
;
353 if (!has_comp
|| !has_zpool
)
356 return zswap_pool_create(zswap_zpool_type
, zswap_compressor
);
359 static void zswap_pool_destroy(struct zswap_pool
*pool
)
361 zswap_pool_debug("destroying", pool
);
363 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE
, &pool
->node
);
364 free_percpu(pool
->acomp_ctx
);
366 zpool_destroy_pool(pool
->zpool
);
370 static void __zswap_pool_release(struct work_struct
*work
)
372 struct zswap_pool
*pool
= container_of(work
, typeof(*pool
),
377 /* nobody should have been able to get a ref... */
378 WARN_ON(!percpu_ref_is_zero(&pool
->ref
));
379 percpu_ref_exit(&pool
->ref
);
381 /* pool is now off zswap_pools list and has no references. */
382 zswap_pool_destroy(pool
);
385 static struct zswap_pool
*zswap_pool_current(void);
387 static void __zswap_pool_empty(struct percpu_ref
*ref
)
389 struct zswap_pool
*pool
;
391 pool
= container_of(ref
, typeof(*pool
), ref
);
393 spin_lock_bh(&zswap_pools_lock
);
395 WARN_ON(pool
== zswap_pool_current());
397 list_del_rcu(&pool
->list
);
399 INIT_WORK(&pool
->release_work
, __zswap_pool_release
);
400 schedule_work(&pool
->release_work
);
402 spin_unlock_bh(&zswap_pools_lock
);
405 static int __must_check
zswap_pool_tryget(struct zswap_pool
*pool
)
410 return percpu_ref_tryget(&pool
->ref
);
413 /* The caller must already have a reference. */
414 static void zswap_pool_get(struct zswap_pool
*pool
)
416 percpu_ref_get(&pool
->ref
);
419 static void zswap_pool_put(struct zswap_pool
*pool
)
421 percpu_ref_put(&pool
->ref
);
424 static struct zswap_pool
*__zswap_pool_current(void)
426 struct zswap_pool
*pool
;
428 pool
= list_first_or_null_rcu(&zswap_pools
, typeof(*pool
), list
);
429 WARN_ONCE(!pool
&& zswap_has_pool
,
430 "%s: no page storage pool!\n", __func__
);
435 static struct zswap_pool
*zswap_pool_current(void)
437 assert_spin_locked(&zswap_pools_lock
);
439 return __zswap_pool_current();
442 static struct zswap_pool
*zswap_pool_current_get(void)
444 struct zswap_pool
*pool
;
448 pool
= __zswap_pool_current();
449 if (!zswap_pool_tryget(pool
))
457 /* type and compressor must be null-terminated */
458 static struct zswap_pool
*zswap_pool_find_get(char *type
, char *compressor
)
460 struct zswap_pool
*pool
;
462 assert_spin_locked(&zswap_pools_lock
);
464 list_for_each_entry_rcu(pool
, &zswap_pools
, list
) {
465 if (strcmp(pool
->tfm_name
, compressor
))
467 if (strcmp(zpool_get_type(pool
->zpool
), type
))
469 /* if we can't get it, it's about to be destroyed */
470 if (!zswap_pool_tryget(pool
))
478 static unsigned long zswap_max_pages(void)
480 return totalram_pages() * zswap_max_pool_percent
/ 100;
483 static unsigned long zswap_accept_thr_pages(void)
485 return zswap_max_pages() * zswap_accept_thr_percent
/ 100;
488 unsigned long zswap_total_pages(void)
490 struct zswap_pool
*pool
;
491 unsigned long total
= 0;
494 list_for_each_entry_rcu(pool
, &zswap_pools
, list
)
495 total
+= zpool_get_total_pages(pool
->zpool
);
501 static bool zswap_check_limits(void)
503 unsigned long cur_pages
= zswap_total_pages();
504 unsigned long max_pages
= zswap_max_pages();
506 if (cur_pages
>= max_pages
) {
507 zswap_pool_limit_hit
++;
508 zswap_pool_reached_full
= true;
509 } else if (zswap_pool_reached_full
&&
510 cur_pages
<= zswap_accept_thr_pages()) {
511 zswap_pool_reached_full
= false;
513 return zswap_pool_reached_full
;
516 /*********************************
518 **********************************/
520 static bool zswap_pool_changed(const char *s
, const struct kernel_param
*kp
)
522 /* no change required */
523 if (!strcmp(s
, *(char **)kp
->arg
) && zswap_has_pool
)
528 /* val must be a null-terminated string */
529 static int __zswap_param_set(const char *val
, const struct kernel_param
*kp
,
530 char *type
, char *compressor
)
532 struct zswap_pool
*pool
, *put_pool
= NULL
;
533 char *s
= strstrip((char *)val
);
535 bool new_pool
= false;
537 mutex_lock(&zswap_init_lock
);
538 switch (zswap_init_state
) {
540 /* if this is load-time (pre-init) param setting,
541 * don't create a pool; that's done during init.
543 ret
= param_set_charp(s
, kp
);
545 case ZSWAP_INIT_SUCCEED
:
546 new_pool
= zswap_pool_changed(s
, kp
);
548 case ZSWAP_INIT_FAILED
:
549 pr_err("can't set param, initialization failed\n");
552 mutex_unlock(&zswap_init_lock
);
554 /* no need to create a new pool, return directly */
559 if (!zpool_has_pool(s
)) {
560 pr_err("zpool %s not available\n", s
);
564 } else if (!compressor
) {
565 if (!crypto_has_acomp(s
, 0, 0)) {
566 pr_err("compressor %s not available\n", s
);
575 spin_lock_bh(&zswap_pools_lock
);
577 pool
= zswap_pool_find_get(type
, compressor
);
579 zswap_pool_debug("using existing", pool
);
580 WARN_ON(pool
== zswap_pool_current());
581 list_del_rcu(&pool
->list
);
584 spin_unlock_bh(&zswap_pools_lock
);
587 pool
= zswap_pool_create(type
, compressor
);
590 * Restore the initial ref dropped by percpu_ref_kill()
591 * when the pool was decommissioned and switch it again
594 percpu_ref_resurrect(&pool
->ref
);
596 /* Drop the ref from zswap_pool_find_get(). */
597 zswap_pool_put(pool
);
601 ret
= param_set_charp(s
, kp
);
605 spin_lock_bh(&zswap_pools_lock
);
608 put_pool
= zswap_pool_current();
609 list_add_rcu(&pool
->list
, &zswap_pools
);
610 zswap_has_pool
= true;
612 /* add the possibly pre-existing pool to the end of the pools
613 * list; if it's new (and empty) then it'll be removed and
614 * destroyed by the put after we drop the lock
616 list_add_tail_rcu(&pool
->list
, &zswap_pools
);
620 spin_unlock_bh(&zswap_pools_lock
);
622 if (!zswap_has_pool
&& !pool
) {
623 /* if initial pool creation failed, and this pool creation also
624 * failed, maybe both compressor and zpool params were bad.
625 * Allow changing this param, so pool creation will succeed
626 * when the other param is changed. We already verified this
627 * param is ok in the zpool_has_pool() or crypto_has_acomp()
630 ret
= param_set_charp(s
, kp
);
633 /* drop the ref from either the old current pool,
634 * or the new pool we failed to add
637 percpu_ref_kill(&put_pool
->ref
);
642 static int zswap_compressor_param_set(const char *val
,
643 const struct kernel_param
*kp
)
645 return __zswap_param_set(val
, kp
, zswap_zpool_type
, NULL
);
648 static int zswap_zpool_param_set(const char *val
,
649 const struct kernel_param
*kp
)
651 return __zswap_param_set(val
, kp
, NULL
, zswap_compressor
);
654 static int zswap_enabled_param_set(const char *val
,
655 const struct kernel_param
*kp
)
659 /* if this is load-time (pre-init) param setting, only set param. */
660 if (system_state
!= SYSTEM_RUNNING
)
661 return param_set_bool(val
, kp
);
663 mutex_lock(&zswap_init_lock
);
664 switch (zswap_init_state
) {
669 case ZSWAP_INIT_SUCCEED
:
671 pr_err("can't enable, no pool configured\n");
673 ret
= param_set_bool(val
, kp
);
675 case ZSWAP_INIT_FAILED
:
676 pr_err("can't enable, initialization failed\n");
678 mutex_unlock(&zswap_init_lock
);
683 /*********************************
685 **********************************/
687 /* should be called under RCU */
689 static inline struct mem_cgroup
*mem_cgroup_from_entry(struct zswap_entry
*entry
)
691 return entry
->objcg
? obj_cgroup_memcg(entry
->objcg
) : NULL
;
694 static inline struct mem_cgroup
*mem_cgroup_from_entry(struct zswap_entry
*entry
)
700 static inline int entry_to_nid(struct zswap_entry
*entry
)
702 return page_to_nid(virt_to_page(entry
));
705 static void zswap_lru_add(struct list_lru
*list_lru
, struct zswap_entry
*entry
)
707 int nid
= entry_to_nid(entry
);
708 struct mem_cgroup
*memcg
;
711 * Note that it is safe to use rcu_read_lock() here, even in the face of
712 * concurrent memcg offlining:
714 * 1. list_lru_add() is called before list_lru_one is dead. The
715 * new entry will be reparented to memcg's parent's list_lru.
716 * 2. list_lru_add() is called after list_lru_one is dead. The
717 * new entry will be added directly to memcg's parent's list_lru.
719 * Similar reasoning holds for list_lru_del().
722 memcg
= mem_cgroup_from_entry(entry
);
723 /* will always succeed */
724 list_lru_add(list_lru
, &entry
->lru
, nid
, memcg
);
728 static void zswap_lru_del(struct list_lru
*list_lru
, struct zswap_entry
*entry
)
730 int nid
= entry_to_nid(entry
);
731 struct mem_cgroup
*memcg
;
734 memcg
= mem_cgroup_from_entry(entry
);
735 /* will always succeed */
736 list_lru_del(list_lru
, &entry
->lru
, nid
, memcg
);
740 void zswap_lruvec_state_init(struct lruvec
*lruvec
)
742 atomic_long_set(&lruvec
->zswap_lruvec_state
.nr_disk_swapins
, 0);
745 void zswap_folio_swapin(struct folio
*folio
)
747 struct lruvec
*lruvec
;
750 lruvec
= folio_lruvec(folio
);
751 atomic_long_inc(&lruvec
->zswap_lruvec_state
.nr_disk_swapins
);
756 * This function should be called when a memcg is being offlined.
758 * Since the global shrinker shrink_worker() may hold a reference
759 * of the memcg, we must check and release the reference in
762 * shrink_worker() must handle the case where this function releases
763 * the reference of memcg being shrunk.
765 void zswap_memcg_offline_cleanup(struct mem_cgroup
*memcg
)
767 /* lock out zswap shrinker walking memcg tree */
768 spin_lock(&zswap_shrink_lock
);
769 if (zswap_next_shrink
== memcg
) {
771 zswap_next_shrink
= mem_cgroup_iter(NULL
, zswap_next_shrink
, NULL
);
772 } while (zswap_next_shrink
&& !mem_cgroup_online(zswap_next_shrink
));
774 spin_unlock(&zswap_shrink_lock
);
777 /*********************************
778 * zswap entry functions
779 **********************************/
780 static struct kmem_cache
*zswap_entry_cache
;
782 static struct zswap_entry
*zswap_entry_cache_alloc(gfp_t gfp
, int nid
)
784 struct zswap_entry
*entry
;
785 entry
= kmem_cache_alloc_node(zswap_entry_cache
, gfp
, nid
);
791 static void zswap_entry_cache_free(struct zswap_entry
*entry
)
793 kmem_cache_free(zswap_entry_cache
, entry
);
797 * Carries out the common pattern of freeing and entry's zpool allocation,
798 * freeing the entry itself, and decrementing the number of stored pages.
800 static void zswap_entry_free(struct zswap_entry
*entry
)
802 zswap_lru_del(&zswap_list_lru
, entry
);
803 zpool_free(entry
->pool
->zpool
, entry
->handle
);
804 zswap_pool_put(entry
->pool
);
806 obj_cgroup_uncharge_zswap(entry
->objcg
, entry
->length
);
807 obj_cgroup_put(entry
->objcg
);
809 zswap_entry_cache_free(entry
);
810 atomic_long_dec(&zswap_stored_pages
);
813 /*********************************
814 * compressed storage functions
815 **********************************/
816 static int zswap_cpu_comp_prepare(unsigned int cpu
, struct hlist_node
*node
)
818 struct zswap_pool
*pool
= hlist_entry(node
, struct zswap_pool
, node
);
819 struct crypto_acomp_ctx
*acomp_ctx
= per_cpu_ptr(pool
->acomp_ctx
, cpu
);
820 struct crypto_acomp
*acomp
;
821 struct acomp_req
*req
;
824 mutex_init(&acomp_ctx
->mutex
);
826 acomp_ctx
->buffer
= kmalloc_node(PAGE_SIZE
* 2, GFP_KERNEL
, cpu_to_node(cpu
));
827 if (!acomp_ctx
->buffer
)
830 acomp
= crypto_alloc_acomp_node(pool
->tfm_name
, 0, 0, cpu_to_node(cpu
));
832 pr_err("could not alloc crypto acomp %s : %ld\n",
833 pool
->tfm_name
, PTR_ERR(acomp
));
834 ret
= PTR_ERR(acomp
);
837 acomp_ctx
->acomp
= acomp
;
838 acomp_ctx
->is_sleepable
= acomp_is_async(acomp
);
840 req
= acomp_request_alloc(acomp_ctx
->acomp
);
842 pr_err("could not alloc crypto acomp_request %s\n",
847 acomp_ctx
->req
= req
;
849 crypto_init_wait(&acomp_ctx
->wait
);
851 * if the backend of acomp is async zip, crypto_req_done() will wakeup
852 * crypto_wait_req(); if the backend of acomp is scomp, the callback
853 * won't be called, crypto_wait_req() will return without blocking.
855 acomp_request_set_callback(req
, CRYPTO_TFM_REQ_MAY_BACKLOG
,
856 crypto_req_done
, &acomp_ctx
->wait
);
861 crypto_free_acomp(acomp_ctx
->acomp
);
863 kfree(acomp_ctx
->buffer
);
867 static int zswap_cpu_comp_dead(unsigned int cpu
, struct hlist_node
*node
)
869 struct zswap_pool
*pool
= hlist_entry(node
, struct zswap_pool
, node
);
870 struct crypto_acomp_ctx
*acomp_ctx
= per_cpu_ptr(pool
->acomp_ctx
, cpu
);
872 if (!IS_ERR_OR_NULL(acomp_ctx
)) {
873 if (!IS_ERR_OR_NULL(acomp_ctx
->req
))
874 acomp_request_free(acomp_ctx
->req
);
875 if (!IS_ERR_OR_NULL(acomp_ctx
->acomp
))
876 crypto_free_acomp(acomp_ctx
->acomp
);
877 kfree(acomp_ctx
->buffer
);
883 /* Prevent CPU hotplug from freeing up the per-CPU acomp_ctx resources */
884 static struct crypto_acomp_ctx
*acomp_ctx_get_cpu(struct crypto_acomp_ctx __percpu
*acomp_ctx
)
887 return raw_cpu_ptr(acomp_ctx
);
890 static void acomp_ctx_put_cpu(void)
895 static bool zswap_compress(struct page
*page
, struct zswap_entry
*entry
,
896 struct zswap_pool
*pool
)
898 struct crypto_acomp_ctx
*acomp_ctx
;
899 struct scatterlist input
, output
;
900 int comp_ret
= 0, alloc_ret
= 0;
901 unsigned int dlen
= PAGE_SIZE
;
902 unsigned long handle
;
908 acomp_ctx
= acomp_ctx_get_cpu(pool
->acomp_ctx
);
909 mutex_lock(&acomp_ctx
->mutex
);
911 dst
= acomp_ctx
->buffer
;
912 sg_init_table(&input
, 1);
913 sg_set_page(&input
, page
, PAGE_SIZE
, 0);
916 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
917 * and hardware-accelerators may won't check the dst buffer size, so
918 * giving the dst buffer with enough length to avoid buffer overflow.
920 sg_init_one(&output
, dst
, PAGE_SIZE
* 2);
921 acomp_request_set_params(acomp_ctx
->req
, &input
, &output
, PAGE_SIZE
, dlen
);
924 * it maybe looks a little bit silly that we send an asynchronous request,
925 * then wait for its completion synchronously. This makes the process look
926 * synchronous in fact.
927 * Theoretically, acomp supports users send multiple acomp requests in one
928 * acomp instance, then get those requests done simultaneously. but in this
929 * case, zswap actually does store and load page by page, there is no
930 * existing method to send the second page before the first page is done
931 * in one thread doing zwap.
932 * but in different threads running on different cpu, we have different
933 * acomp instance, so multiple threads can do (de)compression in parallel.
935 comp_ret
= crypto_wait_req(crypto_acomp_compress(acomp_ctx
->req
), &acomp_ctx
->wait
);
936 dlen
= acomp_ctx
->req
->dlen
;
941 gfp
= __GFP_NORETRY
| __GFP_NOWARN
| __GFP_KSWAPD_RECLAIM
;
942 if (zpool_malloc_support_movable(zpool
))
943 gfp
|= __GFP_HIGHMEM
| __GFP_MOVABLE
;
944 alloc_ret
= zpool_malloc(zpool
, dlen
, gfp
, &handle
);
948 buf
= zpool_map_handle(zpool
, handle
, ZPOOL_MM_WO
);
949 memcpy(buf
, dst
, dlen
);
950 zpool_unmap_handle(zpool
, handle
);
952 entry
->handle
= handle
;
953 entry
->length
= dlen
;
956 if (comp_ret
== -ENOSPC
|| alloc_ret
== -ENOSPC
)
957 zswap_reject_compress_poor
++;
959 zswap_reject_compress_fail
++;
961 zswap_reject_alloc_fail
++;
963 mutex_unlock(&acomp_ctx
->mutex
);
965 return comp_ret
== 0 && alloc_ret
== 0;
968 static void zswap_decompress(struct zswap_entry
*entry
, struct folio
*folio
)
970 struct zpool
*zpool
= entry
->pool
->zpool
;
971 struct scatterlist input
, output
;
972 struct crypto_acomp_ctx
*acomp_ctx
;
975 acomp_ctx
= acomp_ctx_get_cpu(entry
->pool
->acomp_ctx
);
976 mutex_lock(&acomp_ctx
->mutex
);
978 src
= zpool_map_handle(zpool
, entry
->handle
, ZPOOL_MM_RO
);
980 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
981 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
982 * resort to copying the buffer to a temporary one.
983 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
984 * such as a kmap address of high memory or even ever a vmap address.
985 * However, sg_init_one is only equipped to handle linearly mapped low memory.
986 * In such cases, we also must copy the buffer to a temporary and lowmem one.
988 if ((acomp_ctx
->is_sleepable
&& !zpool_can_sleep_mapped(zpool
)) ||
989 !virt_addr_valid(src
)) {
990 memcpy(acomp_ctx
->buffer
, src
, entry
->length
);
991 src
= acomp_ctx
->buffer
;
992 zpool_unmap_handle(zpool
, entry
->handle
);
995 sg_init_one(&input
, src
, entry
->length
);
996 sg_init_table(&output
, 1);
997 sg_set_folio(&output
, folio
, PAGE_SIZE
, 0);
998 acomp_request_set_params(acomp_ctx
->req
, &input
, &output
, entry
->length
, PAGE_SIZE
);
999 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx
->req
), &acomp_ctx
->wait
));
1000 BUG_ON(acomp_ctx
->req
->dlen
!= PAGE_SIZE
);
1001 mutex_unlock(&acomp_ctx
->mutex
);
1003 if (src
!= acomp_ctx
->buffer
)
1004 zpool_unmap_handle(zpool
, entry
->handle
);
1005 acomp_ctx_put_cpu();
1008 /*********************************
1010 **********************************/
1012 * Attempts to free an entry by adding a folio to the swap cache,
1013 * decompressing the entry data into the folio, and issuing a
1014 * bio write to write the folio back to the swap device.
1016 * This can be thought of as a "resumed writeback" of the folio
1017 * to the swap device. We are basically resuming the same swap
1018 * writeback path that was intercepted with the zswap_store()
1019 * in the first place. After the folio has been decompressed into
1020 * the swap cache, the compressed version stored by zswap can be
1023 static int zswap_writeback_entry(struct zswap_entry
*entry
,
1024 swp_entry_t swpentry
)
1026 struct xarray
*tree
;
1027 pgoff_t offset
= swp_offset(swpentry
);
1028 struct folio
*folio
;
1029 struct mempolicy
*mpol
;
1030 bool folio_was_allocated
;
1031 struct writeback_control wbc
= {
1032 .sync_mode
= WB_SYNC_NONE
,
1035 /* try to allocate swap cache folio */
1036 mpol
= get_task_policy(current
);
1037 folio
= __read_swap_cache_async(swpentry
, GFP_KERNEL
, mpol
,
1038 NO_INTERLEAVE_INDEX
, &folio_was_allocated
, true);
1043 * Found an existing folio, we raced with swapin or concurrent
1044 * shrinker. We generally writeback cold folios from zswap, and
1045 * swapin means the folio just became hot, so skip this folio.
1046 * For unlikely concurrent shrinker case, it will be unlinked
1047 * and freed when invalidated by the concurrent shrinker anyway.
1049 if (!folio_was_allocated
) {
1055 * folio is locked, and the swapcache is now secured against
1056 * concurrent swapping to and from the slot, and concurrent
1057 * swapoff so we can safely dereference the zswap tree here.
1058 * Verify that the swap entry hasn't been invalidated and recycled
1059 * behind our backs, to avoid overwriting a new swap folio with
1060 * old compressed data. Only when this is successful can the entry
1063 tree
= swap_zswap_tree(swpentry
);
1064 if (entry
!= xa_cmpxchg(tree
, offset
, entry
, NULL
, GFP_KERNEL
)) {
1065 delete_from_swap_cache(folio
);
1066 folio_unlock(folio
);
1071 zswap_decompress(entry
, folio
);
1073 count_vm_event(ZSWPWB
);
1075 count_objcg_events(entry
->objcg
, ZSWPWB
, 1);
1077 zswap_entry_free(entry
);
1079 /* folio is up to date */
1080 folio_mark_uptodate(folio
);
1082 /* move it to the tail of the inactive list after end_writeback */
1083 folio_set_reclaim(folio
);
1085 /* start writeback */
1086 __swap_writepage(folio
, &wbc
);
1092 /*********************************
1093 * shrinker functions
1094 **********************************/
1096 * The dynamic shrinker is modulated by the following factors:
1098 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1099 * the entry a second chance) before rotating it in the LRU list. If the
1100 * entry is considered again by the shrinker, with its referenced bit unset,
1101 * it is written back. The writeback rate as a result is dynamically
1102 * adjusted by the pool activities - if the pool is dominated by new entries
1103 * (i.e lots of recent zswapouts), these entries will be protected and
1104 * the writeback rate will slow down. On the other hand, if the pool has a
1105 * lot of stagnant entries, these entries will be reclaimed immediately,
1106 * effectively increasing the writeback rate.
1108 * 2. Swapins counter: If we observe swapins, it is a sign that we are
1109 * overshrinking and should slow down. We maintain a swapins counter, which
1110 * is consumed and subtract from the number of eligible objects on the LRU
1111 * in zswap_shrinker_count().
1113 * 3. Compression ratio. The better the workload compresses, the less gains we
1114 * can expect from writeback. We scale down the number of objects available
1115 * for reclaim by this ratio.
1117 static enum lru_status
shrink_memcg_cb(struct list_head
*item
, struct list_lru_one
*l
,
1120 struct zswap_entry
*entry
= container_of(item
, struct zswap_entry
, lru
);
1121 bool *encountered_page_in_swapcache
= (bool *)arg
;
1122 swp_entry_t swpentry
;
1123 enum lru_status ret
= LRU_REMOVED_RETRY
;
1124 int writeback_result
;
1127 * Second chance algorithm: if the entry has its referenced bit set, give it
1128 * a second chance. Only clear the referenced bit and rotate it in the
1131 if (entry
->referenced
) {
1132 entry
->referenced
= false;
1137 * As soon as we drop the LRU lock, the entry can be freed by
1138 * a concurrent invalidation. This means the following:
1140 * 1. We extract the swp_entry_t to the stack, allowing
1141 * zswap_writeback_entry() to pin the swap entry and
1142 * then validate the zwap entry against that swap entry's
1143 * tree using pointer value comparison. Only when that
1144 * is successful can the entry be dereferenced.
1146 * 2. Usually, objects are taken off the LRU for reclaim. In
1147 * this case this isn't possible, because if reclaim fails
1148 * for whatever reason, we have no means of knowing if the
1149 * entry is alive to put it back on the LRU.
1151 * So rotate it before dropping the lock. If the entry is
1152 * written back or invalidated, the free path will unlink
1153 * it. For failures, rotation is the right thing as well.
1155 * Temporary failures, where the same entry should be tried
1156 * again immediately, almost never happen for this shrinker.
1157 * We don't do any trylocking; -ENOMEM comes closest,
1158 * but that's extremely rare and doesn't happen spuriously
1159 * either. Don't bother distinguishing this case.
1161 list_move_tail(item
, &l
->list
);
1164 * Once the lru lock is dropped, the entry might get freed. The
1165 * swpentry is copied to the stack, and entry isn't deref'd again
1166 * until the entry is verified to still be alive in the tree.
1168 swpentry
= entry
->swpentry
;
1171 * It's safe to drop the lock here because we return either
1172 * LRU_REMOVED_RETRY or LRU_RETRY.
1174 spin_unlock(&l
->lock
);
1176 writeback_result
= zswap_writeback_entry(entry
, swpentry
);
1178 if (writeback_result
) {
1179 zswap_reject_reclaim_fail
++;
1183 * Encountering a page already in swap cache is a sign that we are shrinking
1184 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1185 * shrinker context).
1187 if (writeback_result
== -EEXIST
&& encountered_page_in_swapcache
) {
1189 *encountered_page_in_swapcache
= true;
1192 zswap_written_back_pages
++;
1198 static unsigned long zswap_shrinker_scan(struct shrinker
*shrinker
,
1199 struct shrink_control
*sc
)
1201 unsigned long shrink_ret
;
1202 bool encountered_page_in_swapcache
= false;
1204 if (!zswap_shrinker_enabled
||
1205 !mem_cgroup_zswap_writeback_enabled(sc
->memcg
)) {
1210 shrink_ret
= list_lru_shrink_walk(&zswap_list_lru
, sc
, &shrink_memcg_cb
,
1211 &encountered_page_in_swapcache
);
1213 if (encountered_page_in_swapcache
)
1216 return shrink_ret
? shrink_ret
: SHRINK_STOP
;
1219 static unsigned long zswap_shrinker_count(struct shrinker
*shrinker
,
1220 struct shrink_control
*sc
)
1222 struct mem_cgroup
*memcg
= sc
->memcg
;
1223 struct lruvec
*lruvec
= mem_cgroup_lruvec(memcg
, NODE_DATA(sc
->nid
));
1224 atomic_long_t
*nr_disk_swapins
=
1225 &lruvec
->zswap_lruvec_state
.nr_disk_swapins
;
1226 unsigned long nr_backing
, nr_stored
, nr_freeable
, nr_disk_swapins_cur
,
1229 if (!zswap_shrinker_enabled
|| !mem_cgroup_zswap_writeback_enabled(memcg
))
1233 * The shrinker resumes swap writeback, which will enter block
1234 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1235 * rules (may_enter_fs()), which apply on a per-folio basis.
1237 if (!gfp_has_io_fs(sc
->gfp_mask
))
1241 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1242 * have them per-node and thus per-lruvec. Careful if memcg is
1243 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1244 * for the lruvec, but not for memcg_page_state().
1246 * Without memcg, use the zswap pool-wide metrics.
1248 if (!mem_cgroup_disabled()) {
1249 mem_cgroup_flush_stats(memcg
);
1250 nr_backing
= memcg_page_state(memcg
, MEMCG_ZSWAP_B
) >> PAGE_SHIFT
;
1251 nr_stored
= memcg_page_state(memcg
, MEMCG_ZSWAPPED
);
1253 nr_backing
= zswap_total_pages();
1254 nr_stored
= atomic_long_read(&zswap_stored_pages
);
1260 nr_freeable
= list_lru_shrink_count(&zswap_list_lru
, sc
);
1265 * Subtract from the lru size the number of pages that are recently swapped
1266 * in from disk. The idea is that had we protect the zswap's LRU by this
1267 * amount of pages, these disk swapins would not have happened.
1269 nr_disk_swapins_cur
= atomic_long_read(nr_disk_swapins
);
1271 if (nr_freeable
>= nr_disk_swapins_cur
)
1274 nr_remain
= nr_disk_swapins_cur
- nr_freeable
;
1275 } while (!atomic_long_try_cmpxchg(
1276 nr_disk_swapins
, &nr_disk_swapins_cur
, nr_remain
));
1278 nr_freeable
-= nr_disk_swapins_cur
- nr_remain
;
1283 * Scale the number of freeable pages by the memory saving factor.
1284 * This ensures that the better zswap compresses memory, the fewer
1285 * pages we will evict to swap (as it will otherwise incur IO for
1286 * relatively small memory saving).
1288 return mult_frac(nr_freeable
, nr_backing
, nr_stored
);
1291 static struct shrinker
*zswap_alloc_shrinker(void)
1293 struct shrinker
*shrinker
;
1296 shrinker_alloc(SHRINKER_NUMA_AWARE
| SHRINKER_MEMCG_AWARE
, "mm-zswap");
1300 shrinker
->scan_objects
= zswap_shrinker_scan
;
1301 shrinker
->count_objects
= zswap_shrinker_count
;
1302 shrinker
->batch
= 0;
1303 shrinker
->seeks
= DEFAULT_SEEKS
;
1307 static int shrink_memcg(struct mem_cgroup
*memcg
)
1309 int nid
, shrunk
= 0, scanned
= 0;
1311 if (!mem_cgroup_zswap_writeback_enabled(memcg
))
1315 * Skip zombies because their LRUs are reparented and we would be
1316 * reclaiming from the parent instead of the dead memcg.
1318 if (memcg
&& !mem_cgroup_online(memcg
))
1321 for_each_node_state(nid
, N_NORMAL_MEMORY
) {
1322 unsigned long nr_to_walk
= 1;
1324 shrunk
+= list_lru_walk_one(&zswap_list_lru
, nid
, memcg
,
1325 &shrink_memcg_cb
, NULL
, &nr_to_walk
);
1326 scanned
+= 1 - nr_to_walk
;
1332 return shrunk
? 0 : -EAGAIN
;
1335 static void shrink_worker(struct work_struct
*w
)
1337 struct mem_cgroup
*memcg
;
1338 int ret
, failures
= 0, attempts
= 0;
1341 /* Reclaim down to the accept threshold */
1342 thr
= zswap_accept_thr_pages();
1345 * Global reclaim will select cgroup in a round-robin fashion from all
1346 * online memcgs, but memcgs that have no pages in zswap and
1347 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1348 * candidates for shrinking.
1350 * Shrinking will be aborted if we encounter the following
1351 * MAX_RECLAIM_RETRIES times:
1352 * - No writeback-candidate memcgs found in a memcg tree walk.
1353 * - Shrinking a writeback-candidate memcg failed.
1355 * We save iteration cursor memcg into zswap_next_shrink,
1356 * which can be modified by the offline memcg cleaner
1357 * zswap_memcg_offline_cleanup().
1359 * Since the offline cleaner is called only once, we cannot leave an
1360 * offline memcg reference in zswap_next_shrink.
1361 * We can rely on the cleaner only if we get online memcg under lock.
1363 * If we get an offline memcg, we cannot determine if the cleaner has
1364 * already been called or will be called later. We must put back the
1365 * reference before returning from this function. Otherwise, the
1366 * offline memcg left in zswap_next_shrink will hold the reference
1367 * until the next run of shrink_worker().
1371 * Start shrinking from the next memcg after zswap_next_shrink.
1372 * When the offline cleaner has already advanced the cursor,
1373 * advancing the cursor here overlooks one memcg, but this
1374 * should be negligibly rare.
1376 * If we get an online memcg, keep the extra reference in case
1377 * the original one obtained by mem_cgroup_iter() is dropped by
1378 * zswap_memcg_offline_cleanup() while we are shrinking the
1381 spin_lock(&zswap_shrink_lock
);
1383 memcg
= mem_cgroup_iter(NULL
, zswap_next_shrink
, NULL
);
1384 zswap_next_shrink
= memcg
;
1385 } while (memcg
&& !mem_cgroup_tryget_online(memcg
));
1386 spin_unlock(&zswap_shrink_lock
);
1390 * Continue shrinking without incrementing failures if
1391 * we found candidate memcgs in the last tree walk.
1393 if (!attempts
&& ++failures
== MAX_RECLAIM_RETRIES
)
1400 ret
= shrink_memcg(memcg
);
1401 /* drop the extra reference */
1402 mem_cgroup_put(memcg
);
1405 * There are no writeback-candidate pages in the memcg.
1406 * This is not an issue as long as we can find another memcg
1407 * with pages in zswap. Skip this without incrementing attempts
1414 if (ret
&& ++failures
== MAX_RECLAIM_RETRIES
)
1418 } while (zswap_total_pages() > thr
);
1421 /*********************************
1423 **********************************/
1425 static ssize_t
zswap_store_page(struct page
*page
,
1426 struct obj_cgroup
*objcg
,
1427 struct zswap_pool
*pool
)
1429 swp_entry_t page_swpentry
= page_swap_entry(page
);
1430 struct zswap_entry
*entry
, *old
;
1432 /* allocate entry */
1433 entry
= zswap_entry_cache_alloc(GFP_KERNEL
, page_to_nid(page
));
1435 zswap_reject_kmemcache_fail
++;
1439 if (!zswap_compress(page
, entry
, pool
))
1440 goto compress_failed
;
1442 old
= xa_store(swap_zswap_tree(page_swpentry
),
1443 swp_offset(page_swpentry
),
1445 if (xa_is_err(old
)) {
1446 int err
= xa_err(old
);
1448 WARN_ONCE(err
!= -ENOMEM
, "unexpected xarray error: %d\n", err
);
1449 zswap_reject_alloc_fail
++;
1454 * We may have had an existing entry that became stale when
1455 * the folio was redirtied and now the new version is being
1456 * swapped out. Get rid of the old.
1459 zswap_entry_free(old
);
1462 * The entry is successfully compressed and stored in the tree, there is
1463 * no further possibility of failure. Grab refs to the pool and objcg.
1464 * These refs will be dropped by zswap_entry_free() when the entry is
1465 * removed from the tree.
1467 zswap_pool_get(pool
);
1469 obj_cgroup_get(objcg
);
1472 * We finish initializing the entry while it's already in xarray.
1473 * This is safe because:
1475 * 1. Concurrent stores and invalidations are excluded by folio lock.
1477 * 2. Writeback is excluded by the entry not being on the LRU yet.
1478 * The publishing order matters to prevent writeback from seeing
1479 * an incoherent entry.
1482 entry
->swpentry
= page_swpentry
;
1483 entry
->objcg
= objcg
;
1484 entry
->referenced
= true;
1485 if (entry
->length
) {
1486 INIT_LIST_HEAD(&entry
->lru
);
1487 zswap_lru_add(&zswap_list_lru
, entry
);
1490 return entry
->length
;
1493 zpool_free(pool
->zpool
, entry
->handle
);
1495 zswap_entry_cache_free(entry
);
1499 bool zswap_store(struct folio
*folio
)
1501 long nr_pages
= folio_nr_pages(folio
);
1502 swp_entry_t swp
= folio
->swap
;
1503 struct obj_cgroup
*objcg
= NULL
;
1504 struct mem_cgroup
*memcg
= NULL
;
1505 struct zswap_pool
*pool
;
1506 size_t compressed_bytes
= 0;
1510 VM_WARN_ON_ONCE(!folio_test_locked(folio
));
1511 VM_WARN_ON_ONCE(!folio_test_swapcache(folio
));
1516 objcg
= get_obj_cgroup_from_folio(folio
);
1517 if (objcg
&& !obj_cgroup_may_zswap(objcg
)) {
1518 memcg
= get_mem_cgroup_from_objcg(objcg
);
1519 if (shrink_memcg(memcg
)) {
1520 mem_cgroup_put(memcg
);
1523 mem_cgroup_put(memcg
);
1526 if (zswap_check_limits())
1529 pool
= zswap_pool_current_get();
1534 memcg
= get_mem_cgroup_from_objcg(objcg
);
1535 if (memcg_list_lru_alloc(memcg
, &zswap_list_lru
, GFP_KERNEL
)) {
1536 mem_cgroup_put(memcg
);
1539 mem_cgroup_put(memcg
);
1542 for (index
= 0; index
< nr_pages
; ++index
) {
1543 struct page
*page
= folio_page(folio
, index
);
1546 bytes
= zswap_store_page(page
, objcg
, pool
);
1549 compressed_bytes
+= bytes
;
1553 obj_cgroup_charge_zswap(objcg
, compressed_bytes
);
1554 count_objcg_events(objcg
, ZSWPOUT
, nr_pages
);
1557 atomic_long_add(nr_pages
, &zswap_stored_pages
);
1558 count_vm_events(ZSWPOUT
, nr_pages
);
1563 zswap_pool_put(pool
);
1565 obj_cgroup_put(objcg
);
1566 if (!ret
&& zswap_pool_reached_full
)
1567 queue_work(shrink_wq
, &zswap_shrink_work
);
1570 * If the zswap store fails or zswap is disabled, we must invalidate
1571 * the possibly stale entries which were previously stored at the
1572 * offsets corresponding to each page of the folio. Otherwise,
1573 * writeback could overwrite the new data in the swapfile.
1576 unsigned type
= swp_type(swp
);
1577 pgoff_t offset
= swp_offset(swp
);
1578 struct zswap_entry
*entry
;
1579 struct xarray
*tree
;
1581 for (index
= 0; index
< nr_pages
; ++index
) {
1582 tree
= swap_zswap_tree(swp_entry(type
, offset
+ index
));
1583 entry
= xa_erase(tree
, offset
+ index
);
1585 zswap_entry_free(entry
);
1592 bool zswap_load(struct folio
*folio
)
1594 swp_entry_t swp
= folio
->swap
;
1595 pgoff_t offset
= swp_offset(swp
);
1596 bool swapcache
= folio_test_swapcache(folio
);
1597 struct xarray
*tree
= swap_zswap_tree(swp
);
1598 struct zswap_entry
*entry
;
1600 VM_WARN_ON_ONCE(!folio_test_locked(folio
));
1602 if (zswap_never_enabled())
1606 * Large folios should not be swapped in while zswap is being used, as
1607 * they are not properly handled. Zswap does not properly load large
1608 * folios, and a large folio may only be partially in zswap.
1610 * Return true without marking the folio uptodate so that an IO error is
1611 * emitted (e.g. do_swap_page() will sigbus).
1613 if (WARN_ON_ONCE(folio_test_large(folio
)))
1617 * When reading into the swapcache, invalidate our entry. The
1618 * swapcache can be the authoritative owner of the page and
1619 * its mappings, and the pressure that results from having two
1620 * in-memory copies outweighs any benefits of caching the
1623 * (Most swapins go through the swapcache. The notable
1624 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1625 * files, which reads into a private page and may free it if
1626 * the fault fails. We remain the primary owner of the entry.)
1629 entry
= xa_erase(tree
, offset
);
1631 entry
= xa_load(tree
, offset
);
1636 zswap_decompress(entry
, folio
);
1638 count_vm_event(ZSWPIN
);
1640 count_objcg_events(entry
->objcg
, ZSWPIN
, 1);
1643 zswap_entry_free(entry
);
1644 folio_mark_dirty(folio
);
1647 folio_mark_uptodate(folio
);
1651 void zswap_invalidate(swp_entry_t swp
)
1653 pgoff_t offset
= swp_offset(swp
);
1654 struct xarray
*tree
= swap_zswap_tree(swp
);
1655 struct zswap_entry
*entry
;
1660 entry
= xa_erase(tree
, offset
);
1662 zswap_entry_free(entry
);
1665 int zswap_swapon(int type
, unsigned long nr_pages
)
1667 struct xarray
*trees
, *tree
;
1670 nr
= DIV_ROUND_UP(nr_pages
, SWAP_ADDRESS_SPACE_PAGES
);
1671 trees
= kvcalloc(nr
, sizeof(*tree
), GFP_KERNEL
);
1673 pr_err("alloc failed, zswap disabled for swap type %d\n", type
);
1677 for (i
= 0; i
< nr
; i
++)
1680 nr_zswap_trees
[type
] = nr
;
1681 zswap_trees
[type
] = trees
;
1685 void zswap_swapoff(int type
)
1687 struct xarray
*trees
= zswap_trees
[type
];
1693 /* try_to_unuse() invalidated all the entries already */
1694 for (i
= 0; i
< nr_zswap_trees
[type
]; i
++)
1695 WARN_ON_ONCE(!xa_empty(trees
+ i
));
1698 nr_zswap_trees
[type
] = 0;
1699 zswap_trees
[type
] = NULL
;
1702 /*********************************
1704 **********************************/
1705 #ifdef CONFIG_DEBUG_FS
1706 #include <linux/debugfs.h>
1708 static struct dentry
*zswap_debugfs_root
;
1710 static int debugfs_get_total_size(void *data
, u64
*val
)
1712 *val
= zswap_total_pages() * PAGE_SIZE
;
1715 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops
, debugfs_get_total_size
, NULL
, "%llu\n");
1717 static int debugfs_get_stored_pages(void *data
, u64
*val
)
1719 *val
= atomic_long_read(&zswap_stored_pages
);
1722 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops
, debugfs_get_stored_pages
, NULL
, "%llu\n");
1724 static int zswap_debugfs_init(void)
1726 if (!debugfs_initialized())
1729 zswap_debugfs_root
= debugfs_create_dir("zswap", NULL
);
1731 debugfs_create_u64("pool_limit_hit", 0444,
1732 zswap_debugfs_root
, &zswap_pool_limit_hit
);
1733 debugfs_create_u64("reject_reclaim_fail", 0444,
1734 zswap_debugfs_root
, &zswap_reject_reclaim_fail
);
1735 debugfs_create_u64("reject_alloc_fail", 0444,
1736 zswap_debugfs_root
, &zswap_reject_alloc_fail
);
1737 debugfs_create_u64("reject_kmemcache_fail", 0444,
1738 zswap_debugfs_root
, &zswap_reject_kmemcache_fail
);
1739 debugfs_create_u64("reject_compress_fail", 0444,
1740 zswap_debugfs_root
, &zswap_reject_compress_fail
);
1741 debugfs_create_u64("reject_compress_poor", 0444,
1742 zswap_debugfs_root
, &zswap_reject_compress_poor
);
1743 debugfs_create_u64("written_back_pages", 0444,
1744 zswap_debugfs_root
, &zswap_written_back_pages
);
1745 debugfs_create_file("pool_total_size", 0444,
1746 zswap_debugfs_root
, NULL
, &total_size_fops
);
1747 debugfs_create_file("stored_pages", 0444,
1748 zswap_debugfs_root
, NULL
, &stored_pages_fops
);
1753 static int zswap_debugfs_init(void)
1759 /*********************************
1760 * module init and exit
1761 **********************************/
1762 static int zswap_setup(void)
1764 struct zswap_pool
*pool
;
1767 zswap_entry_cache
= KMEM_CACHE(zswap_entry
, 0);
1768 if (!zswap_entry_cache
) {
1769 pr_err("entry cache creation failed\n");
1773 ret
= cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE
,
1774 "mm/zswap_pool:prepare",
1775 zswap_cpu_comp_prepare
,
1776 zswap_cpu_comp_dead
);
1780 shrink_wq
= alloc_workqueue("zswap-shrink",
1781 WQ_UNBOUND
|WQ_MEM_RECLAIM
, 1);
1783 goto shrink_wq_fail
;
1785 zswap_shrinker
= zswap_alloc_shrinker();
1786 if (!zswap_shrinker
)
1788 if (list_lru_init_memcg(&zswap_list_lru
, zswap_shrinker
))
1790 shrinker_register(zswap_shrinker
);
1792 INIT_WORK(&zswap_shrink_work
, shrink_worker
);
1794 pool
= __zswap_pool_create_fallback();
1796 pr_info("loaded using pool %s/%s\n", pool
->tfm_name
,
1797 zpool_get_type(pool
->zpool
));
1798 list_add(&pool
->list
, &zswap_pools
);
1799 zswap_has_pool
= true;
1800 static_branch_enable(&zswap_ever_enabled
);
1802 pr_err("pool creation failed\n");
1803 zswap_enabled
= false;
1806 if (zswap_debugfs_init())
1807 pr_warn("debugfs initialization failed\n");
1808 zswap_init_state
= ZSWAP_INIT_SUCCEED
;
1812 shrinker_free(zswap_shrinker
);
1814 destroy_workqueue(shrink_wq
);
1816 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE
);
1818 kmem_cache_destroy(zswap_entry_cache
);
1820 /* if built-in, we aren't unloaded on failure; don't allow use */
1821 zswap_init_state
= ZSWAP_INIT_FAILED
;
1822 zswap_enabled
= false;
1826 static int __init
zswap_init(void)
1830 return zswap_setup();
1832 /* must be late so crypto has time to come up */
1833 late_initcall(zswap_init
);
1835 MODULE_AUTHOR("Seth Jennings <sjennings@variantweb.net>");
1836 MODULE_DESCRIPTION("Compressed cache for swap pages");