Merge tag 'hwmon-for-v6.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / net / ipv6 / ip6_fib.c
blobc134ba202c4cd1673d30ac8312268b070776556c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Linux INET6 implementation
4 * Forwarding Information Database
6 * Authors:
7 * Pedro Roque <roque@di.fc.ul.pt>
9 * Changes:
10 * Yuji SEKIYA @USAGI: Support default route on router node;
11 * remove ip6_null_entry from the top of
12 * routing table.
13 * Ville Nuorvala: Fixed routing subtrees.
16 #define pr_fmt(fmt) "IPv6: " fmt
18 #include <linux/bpf.h>
19 #include <linux/errno.h>
20 #include <linux/types.h>
21 #include <linux/net.h>
22 #include <linux/route.h>
23 #include <linux/netdevice.h>
24 #include <linux/in6.h>
25 #include <linux/init.h>
26 #include <linux/list.h>
27 #include <linux/slab.h>
29 #include <net/ip.h>
30 #include <net/ipv6.h>
31 #include <net/ndisc.h>
32 #include <net/addrconf.h>
33 #include <net/lwtunnel.h>
34 #include <net/fib_notifier.h>
36 #include <net/ip_fib.h>
37 #include <net/ip6_fib.h>
38 #include <net/ip6_route.h>
40 static struct kmem_cache *fib6_node_kmem __read_mostly;
42 struct fib6_cleaner {
43 struct fib6_walker w;
44 struct net *net;
45 int (*func)(struct fib6_info *, void *arg);
46 int sernum;
47 void *arg;
48 bool skip_notify;
51 #ifdef CONFIG_IPV6_SUBTREES
52 #define FWS_INIT FWS_S
53 #else
54 #define FWS_INIT FWS_L
55 #endif
57 static struct fib6_info *fib6_find_prefix(struct net *net,
58 struct fib6_table *table,
59 struct fib6_node *fn);
60 static struct fib6_node *fib6_repair_tree(struct net *net,
61 struct fib6_table *table,
62 struct fib6_node *fn);
63 static int fib6_walk(struct net *net, struct fib6_walker *w);
64 static int fib6_walk_continue(struct fib6_walker *w);
67 * A routing update causes an increase of the serial number on the
68 * affected subtree. This allows for cached routes to be asynchronously
69 * tested when modifications are made to the destination cache as a
70 * result of redirects, path MTU changes, etc.
73 static void fib6_gc_timer_cb(struct timer_list *t);
75 #define FOR_WALKERS(net, w) \
76 list_for_each_entry(w, &(net)->ipv6.fib6_walkers, lh)
78 static void fib6_walker_link(struct net *net, struct fib6_walker *w)
80 write_lock_bh(&net->ipv6.fib6_walker_lock);
81 list_add(&w->lh, &net->ipv6.fib6_walkers);
82 write_unlock_bh(&net->ipv6.fib6_walker_lock);
85 static void fib6_walker_unlink(struct net *net, struct fib6_walker *w)
87 write_lock_bh(&net->ipv6.fib6_walker_lock);
88 list_del(&w->lh);
89 write_unlock_bh(&net->ipv6.fib6_walker_lock);
92 static int fib6_new_sernum(struct net *net)
94 int new, old = atomic_read(&net->ipv6.fib6_sernum);
96 do {
97 new = old < INT_MAX ? old + 1 : 1;
98 } while (!atomic_try_cmpxchg(&net->ipv6.fib6_sernum, &old, new));
100 return new;
103 enum {
104 FIB6_NO_SERNUM_CHANGE = 0,
107 void fib6_update_sernum(struct net *net, struct fib6_info *f6i)
109 struct fib6_node *fn;
111 fn = rcu_dereference_protected(f6i->fib6_node,
112 lockdep_is_held(&f6i->fib6_table->tb6_lock));
113 if (fn)
114 WRITE_ONCE(fn->fn_sernum, fib6_new_sernum(net));
118 * Auxiliary address test functions for the radix tree.
120 * These assume a 32bit processor (although it will work on
121 * 64bit processors)
125 * test bit
127 #if defined(__LITTLE_ENDIAN)
128 # define BITOP_BE32_SWIZZLE (0x1F & ~7)
129 #else
130 # define BITOP_BE32_SWIZZLE 0
131 #endif
133 static __be32 addr_bit_set(const void *token, int fn_bit)
135 const __be32 *addr = token;
137 * Here,
138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 * is optimized version of
140 * htonl(1 << ((~fn_bit)&0x1F))
141 * See include/asm-generic/bitops/le.h.
143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 addr[fn_bit >> 5];
147 struct fib6_info *fib6_info_alloc(gfp_t gfp_flags, bool with_fib6_nh)
149 struct fib6_info *f6i;
150 size_t sz = sizeof(*f6i);
152 if (with_fib6_nh)
153 sz += sizeof(struct fib6_nh);
155 f6i = kzalloc(sz, gfp_flags);
156 if (!f6i)
157 return NULL;
159 /* fib6_siblings is a union with nh_list, so this initializes both */
160 INIT_LIST_HEAD(&f6i->fib6_siblings);
161 refcount_set(&f6i->fib6_ref, 1);
163 INIT_HLIST_NODE(&f6i->gc_link);
165 return f6i;
168 void fib6_info_destroy_rcu(struct rcu_head *head)
170 struct fib6_info *f6i = container_of(head, struct fib6_info, rcu);
172 WARN_ON(f6i->fib6_node);
174 if (f6i->nh)
175 nexthop_put(f6i->nh);
176 else
177 fib6_nh_release(f6i->fib6_nh);
179 ip_fib_metrics_put(f6i->fib6_metrics);
180 kfree(f6i);
182 EXPORT_SYMBOL_GPL(fib6_info_destroy_rcu);
184 static struct fib6_node *node_alloc(struct net *net)
186 struct fib6_node *fn;
188 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
189 if (fn)
190 net->ipv6.rt6_stats->fib_nodes++;
192 return fn;
195 static void node_free_immediate(struct net *net, struct fib6_node *fn)
197 kmem_cache_free(fib6_node_kmem, fn);
198 net->ipv6.rt6_stats->fib_nodes--;
201 static void node_free(struct net *net, struct fib6_node *fn)
203 kfree_rcu(fn, rcu);
204 net->ipv6.rt6_stats->fib_nodes--;
207 static void fib6_free_table(struct fib6_table *table)
209 inetpeer_invalidate_tree(&table->tb6_peers);
210 kfree(table);
213 static void fib6_link_table(struct net *net, struct fib6_table *tb)
215 unsigned int h;
218 * Initialize table lock at a single place to give lockdep a key,
219 * tables aren't visible prior to being linked to the list.
221 spin_lock_init(&tb->tb6_lock);
222 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
225 * No protection necessary, this is the only list mutatation
226 * operation, tables never disappear once they exist.
228 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
231 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
233 static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
235 struct fib6_table *table;
237 table = kzalloc(sizeof(*table), GFP_ATOMIC);
238 if (table) {
239 table->tb6_id = id;
240 rcu_assign_pointer(table->tb6_root.leaf,
241 net->ipv6.fib6_null_entry);
242 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
243 inet_peer_base_init(&table->tb6_peers);
244 INIT_HLIST_HEAD(&table->tb6_gc_hlist);
247 return table;
250 struct fib6_table *fib6_new_table(struct net *net, u32 id)
252 struct fib6_table *tb;
254 if (id == 0)
255 id = RT6_TABLE_MAIN;
256 tb = fib6_get_table(net, id);
257 if (tb)
258 return tb;
260 tb = fib6_alloc_table(net, id);
261 if (tb)
262 fib6_link_table(net, tb);
264 return tb;
266 EXPORT_SYMBOL_GPL(fib6_new_table);
268 struct fib6_table *fib6_get_table(struct net *net, u32 id)
270 struct fib6_table *tb;
271 struct hlist_head *head;
272 unsigned int h;
274 if (id == 0)
275 id = RT6_TABLE_MAIN;
276 h = id & (FIB6_TABLE_HASHSZ - 1);
277 rcu_read_lock();
278 head = &net->ipv6.fib_table_hash[h];
279 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
280 if (tb->tb6_id == id) {
281 rcu_read_unlock();
282 return tb;
285 rcu_read_unlock();
287 return NULL;
289 EXPORT_SYMBOL_GPL(fib6_get_table);
291 static void __net_init fib6_tables_init(struct net *net)
293 fib6_link_table(net, net->ipv6.fib6_main_tbl);
294 fib6_link_table(net, net->ipv6.fib6_local_tbl);
296 #else
298 struct fib6_table *fib6_new_table(struct net *net, u32 id)
300 return fib6_get_table(net, id);
303 struct fib6_table *fib6_get_table(struct net *net, u32 id)
305 return net->ipv6.fib6_main_tbl;
308 struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
309 const struct sk_buff *skb,
310 int flags, pol_lookup_t lookup)
312 struct rt6_info *rt;
314 rt = pol_lookup_func(lookup,
315 net, net->ipv6.fib6_main_tbl, fl6, skb, flags);
316 if (rt->dst.error == -EAGAIN) {
317 ip6_rt_put_flags(rt, flags);
318 rt = net->ipv6.ip6_null_entry;
319 if (!(flags & RT6_LOOKUP_F_DST_NOREF))
320 dst_hold(&rt->dst);
323 return &rt->dst;
326 /* called with rcu lock held; no reference taken on fib6_info */
327 int fib6_lookup(struct net *net, int oif, struct flowi6 *fl6,
328 struct fib6_result *res, int flags)
330 return fib6_table_lookup(net, net->ipv6.fib6_main_tbl, oif, fl6,
331 res, flags);
334 static void __net_init fib6_tables_init(struct net *net)
336 fib6_link_table(net, net->ipv6.fib6_main_tbl);
339 #endif
341 unsigned int fib6_tables_seq_read(const struct net *net)
343 unsigned int h, fib_seq = 0;
345 rcu_read_lock();
346 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
347 const struct hlist_head *head = &net->ipv6.fib_table_hash[h];
348 const struct fib6_table *tb;
350 hlist_for_each_entry_rcu(tb, head, tb6_hlist)
351 fib_seq += READ_ONCE(tb->fib_seq);
353 rcu_read_unlock();
355 return fib_seq;
358 static int call_fib6_entry_notifier(struct notifier_block *nb,
359 enum fib_event_type event_type,
360 struct fib6_info *rt,
361 struct netlink_ext_ack *extack)
363 struct fib6_entry_notifier_info info = {
364 .info.extack = extack,
365 .rt = rt,
368 return call_fib6_notifier(nb, event_type, &info.info);
371 static int call_fib6_multipath_entry_notifier(struct notifier_block *nb,
372 enum fib_event_type event_type,
373 struct fib6_info *rt,
374 unsigned int nsiblings,
375 struct netlink_ext_ack *extack)
377 struct fib6_entry_notifier_info info = {
378 .info.extack = extack,
379 .rt = rt,
380 .nsiblings = nsiblings,
383 return call_fib6_notifier(nb, event_type, &info.info);
386 int call_fib6_entry_notifiers(struct net *net,
387 enum fib_event_type event_type,
388 struct fib6_info *rt,
389 struct netlink_ext_ack *extack)
391 struct fib6_entry_notifier_info info = {
392 .info.extack = extack,
393 .rt = rt,
396 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
397 return call_fib6_notifiers(net, event_type, &info.info);
400 int call_fib6_multipath_entry_notifiers(struct net *net,
401 enum fib_event_type event_type,
402 struct fib6_info *rt,
403 unsigned int nsiblings,
404 struct netlink_ext_ack *extack)
406 struct fib6_entry_notifier_info info = {
407 .info.extack = extack,
408 .rt = rt,
409 .nsiblings = nsiblings,
412 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
413 return call_fib6_notifiers(net, event_type, &info.info);
416 int call_fib6_entry_notifiers_replace(struct net *net, struct fib6_info *rt)
418 struct fib6_entry_notifier_info info = {
419 .rt = rt,
420 .nsiblings = rt->fib6_nsiblings,
423 WRITE_ONCE(rt->fib6_table->fib_seq, rt->fib6_table->fib_seq + 1);
424 return call_fib6_notifiers(net, FIB_EVENT_ENTRY_REPLACE, &info.info);
427 struct fib6_dump_arg {
428 struct net *net;
429 struct notifier_block *nb;
430 struct netlink_ext_ack *extack;
433 static int fib6_rt_dump(struct fib6_info *rt, struct fib6_dump_arg *arg)
435 enum fib_event_type fib_event = FIB_EVENT_ENTRY_REPLACE;
436 int err;
438 if (!rt || rt == arg->net->ipv6.fib6_null_entry)
439 return 0;
441 if (rt->fib6_nsiblings)
442 err = call_fib6_multipath_entry_notifier(arg->nb, fib_event,
444 rt->fib6_nsiblings,
445 arg->extack);
446 else
447 err = call_fib6_entry_notifier(arg->nb, fib_event, rt,
448 arg->extack);
450 return err;
453 static int fib6_node_dump(struct fib6_walker *w)
455 int err;
457 err = fib6_rt_dump(w->leaf, w->args);
458 w->leaf = NULL;
459 return err;
462 static int fib6_table_dump(struct net *net, struct fib6_table *tb,
463 struct fib6_walker *w)
465 int err;
467 w->root = &tb->tb6_root;
468 spin_lock_bh(&tb->tb6_lock);
469 err = fib6_walk(net, w);
470 spin_unlock_bh(&tb->tb6_lock);
471 return err;
474 /* Called with rcu_read_lock() */
475 int fib6_tables_dump(struct net *net, struct notifier_block *nb,
476 struct netlink_ext_ack *extack)
478 struct fib6_dump_arg arg;
479 struct fib6_walker *w;
480 unsigned int h;
481 int err = 0;
483 w = kzalloc(sizeof(*w), GFP_ATOMIC);
484 if (!w)
485 return -ENOMEM;
487 w->func = fib6_node_dump;
488 arg.net = net;
489 arg.nb = nb;
490 arg.extack = extack;
491 w->args = &arg;
493 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
494 struct hlist_head *head = &net->ipv6.fib_table_hash[h];
495 struct fib6_table *tb;
497 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
498 err = fib6_table_dump(net, tb, w);
499 if (err)
500 goto out;
504 out:
505 kfree(w);
507 /* The tree traversal function should never return a positive value. */
508 return err > 0 ? -EINVAL : err;
511 static int fib6_dump_node(struct fib6_walker *w)
513 int res;
514 struct fib6_info *rt;
516 for_each_fib6_walker_rt(w) {
517 res = rt6_dump_route(rt, w->args, w->skip_in_node);
518 if (res >= 0) {
519 /* Frame is full, suspend walking */
520 w->leaf = rt;
522 /* We'll restart from this node, so if some routes were
523 * already dumped, skip them next time.
525 w->skip_in_node += res;
527 return 1;
529 w->skip_in_node = 0;
531 /* Multipath routes are dumped in one route with the
532 * RTA_MULTIPATH attribute. Jump 'rt' to point to the
533 * last sibling of this route (no need to dump the
534 * sibling routes again)
536 if (rt->fib6_nsiblings)
537 rt = list_last_entry(&rt->fib6_siblings,
538 struct fib6_info,
539 fib6_siblings);
541 w->leaf = NULL;
542 return 0;
545 static void fib6_dump_end(struct netlink_callback *cb)
547 struct net *net = sock_net(cb->skb->sk);
548 struct fib6_walker *w = (void *)cb->args[2];
550 if (w) {
551 if (cb->args[4]) {
552 cb->args[4] = 0;
553 fib6_walker_unlink(net, w);
555 cb->args[2] = 0;
556 kfree(w);
558 cb->done = (void *)cb->args[3];
559 cb->args[1] = 3;
562 static int fib6_dump_done(struct netlink_callback *cb)
564 fib6_dump_end(cb);
565 return cb->done ? cb->done(cb) : 0;
568 static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
569 struct netlink_callback *cb)
571 struct net *net = sock_net(skb->sk);
572 struct fib6_walker *w;
573 int res;
575 w = (void *)cb->args[2];
576 w->root = &table->tb6_root;
578 if (cb->args[4] == 0) {
579 w->count = 0;
580 w->skip = 0;
581 w->skip_in_node = 0;
583 spin_lock_bh(&table->tb6_lock);
584 res = fib6_walk(net, w);
585 spin_unlock_bh(&table->tb6_lock);
586 if (res > 0) {
587 cb->args[4] = 1;
588 cb->args[5] = READ_ONCE(w->root->fn_sernum);
590 } else {
591 int sernum = READ_ONCE(w->root->fn_sernum);
592 if (cb->args[5] != sernum) {
593 /* Begin at the root if the tree changed */
594 cb->args[5] = sernum;
595 w->state = FWS_INIT;
596 w->node = w->root;
597 w->skip = w->count;
598 w->skip_in_node = 0;
599 } else
600 w->skip = 0;
602 spin_lock_bh(&table->tb6_lock);
603 res = fib6_walk_continue(w);
604 spin_unlock_bh(&table->tb6_lock);
605 if (res <= 0) {
606 fib6_walker_unlink(net, w);
607 cb->args[4] = 0;
611 return res;
614 static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
616 struct rt6_rtnl_dump_arg arg = {
617 .filter.dump_exceptions = true,
618 .filter.dump_routes = true,
619 .filter.rtnl_held = false,
621 const struct nlmsghdr *nlh = cb->nlh;
622 struct net *net = sock_net(skb->sk);
623 unsigned int e = 0, s_e;
624 struct hlist_head *head;
625 struct fib6_walker *w;
626 struct fib6_table *tb;
627 unsigned int h, s_h;
628 int err = 0;
630 rcu_read_lock();
631 if (cb->strict_check) {
632 err = ip_valid_fib_dump_req(net, nlh, &arg.filter, cb);
633 if (err < 0)
634 goto unlock;
635 } else if (nlmsg_len(nlh) >= sizeof(struct rtmsg)) {
636 struct rtmsg *rtm = nlmsg_data(nlh);
638 if (rtm->rtm_flags & RTM_F_PREFIX)
639 arg.filter.flags = RTM_F_PREFIX;
642 w = (void *)cb->args[2];
643 if (!w) {
644 /* New dump:
646 * 1. allocate and initialize walker.
648 w = kzalloc(sizeof(*w), GFP_ATOMIC);
649 if (!w) {
650 err = -ENOMEM;
651 goto unlock;
653 w->func = fib6_dump_node;
654 cb->args[2] = (long)w;
656 /* 2. hook callback destructor.
658 cb->args[3] = (long)cb->done;
659 cb->done = fib6_dump_done;
663 arg.skb = skb;
664 arg.cb = cb;
665 arg.net = net;
666 w->args = &arg;
668 if (arg.filter.table_id) {
669 tb = fib6_get_table(net, arg.filter.table_id);
670 if (!tb) {
671 if (rtnl_msg_family(cb->nlh) != PF_INET6)
672 goto unlock;
674 NL_SET_ERR_MSG_MOD(cb->extack, "FIB table does not exist");
675 err = -ENOENT;
676 goto unlock;
679 if (!cb->args[0]) {
680 err = fib6_dump_table(tb, skb, cb);
681 if (!err)
682 cb->args[0] = 1;
684 goto unlock;
687 s_h = cb->args[0];
688 s_e = cb->args[1];
690 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
691 e = 0;
692 head = &net->ipv6.fib_table_hash[h];
693 hlist_for_each_entry_rcu(tb, head, tb6_hlist) {
694 if (e < s_e)
695 goto next;
696 err = fib6_dump_table(tb, skb, cb);
697 if (err != 0)
698 goto out;
699 next:
700 e++;
703 out:
704 cb->args[1] = e;
705 cb->args[0] = h;
707 unlock:
708 rcu_read_unlock();
709 if (err <= 0)
710 fib6_dump_end(cb);
711 return err;
714 void fib6_metric_set(struct fib6_info *f6i, int metric, u32 val)
716 if (!f6i)
717 return;
719 if (f6i->fib6_metrics == &dst_default_metrics) {
720 struct dst_metrics *p = kzalloc(sizeof(*p), GFP_ATOMIC);
722 if (!p)
723 return;
725 refcount_set(&p->refcnt, 1);
726 f6i->fib6_metrics = p;
729 f6i->fib6_metrics->metrics[metric - 1] = val;
733 * Routing Table
735 * return the appropriate node for a routing tree "add" operation
736 * by either creating and inserting or by returning an existing
737 * node.
740 static struct fib6_node *fib6_add_1(struct net *net,
741 struct fib6_table *table,
742 struct fib6_node *root,
743 struct in6_addr *addr, int plen,
744 int offset, int allow_create,
745 int replace_required,
746 struct netlink_ext_ack *extack)
748 struct fib6_node *fn, *in, *ln;
749 struct fib6_node *pn = NULL;
750 struct rt6key *key;
751 int bit;
752 __be32 dir = 0;
754 /* insert node in tree */
756 fn = root;
758 do {
759 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
760 lockdep_is_held(&table->tb6_lock));
761 key = (struct rt6key *)((u8 *)leaf + offset);
764 * Prefix match
766 if (plen < fn->fn_bit ||
767 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
768 if (!allow_create) {
769 if (replace_required) {
770 NL_SET_ERR_MSG(extack,
771 "Can not replace route - no match found");
772 pr_warn("Can't replace route, no match found\n");
773 return ERR_PTR(-ENOENT);
775 pr_warn("NLM_F_CREATE should be set when creating new route\n");
777 goto insert_above;
781 * Exact match ?
784 if (plen == fn->fn_bit) {
785 /* clean up an intermediate node */
786 if (!(fn->fn_flags & RTN_RTINFO)) {
787 RCU_INIT_POINTER(fn->leaf, NULL);
788 fib6_info_release(leaf);
789 /* remove null_entry in the root node */
790 } else if (fn->fn_flags & RTN_TL_ROOT &&
791 rcu_access_pointer(fn->leaf) ==
792 net->ipv6.fib6_null_entry) {
793 RCU_INIT_POINTER(fn->leaf, NULL);
796 return fn;
800 * We have more bits to go
803 /* Try to walk down on tree. */
804 dir = addr_bit_set(addr, fn->fn_bit);
805 pn = fn;
806 fn = dir ?
807 rcu_dereference_protected(fn->right,
808 lockdep_is_held(&table->tb6_lock)) :
809 rcu_dereference_protected(fn->left,
810 lockdep_is_held(&table->tb6_lock));
811 } while (fn);
813 if (!allow_create) {
814 /* We should not create new node because
815 * NLM_F_REPLACE was specified without NLM_F_CREATE
816 * I assume it is safe to require NLM_F_CREATE when
817 * REPLACE flag is used! Later we may want to remove the
818 * check for replace_required, because according
819 * to netlink specification, NLM_F_CREATE
820 * MUST be specified if new route is created.
821 * That would keep IPv6 consistent with IPv4
823 if (replace_required) {
824 NL_SET_ERR_MSG(extack,
825 "Can not replace route - no match found");
826 pr_warn("Can't replace route, no match found\n");
827 return ERR_PTR(-ENOENT);
829 pr_warn("NLM_F_CREATE should be set when creating new route\n");
832 * We walked to the bottom of tree.
833 * Create new leaf node without children.
836 ln = node_alloc(net);
838 if (!ln)
839 return ERR_PTR(-ENOMEM);
840 ln->fn_bit = plen;
841 RCU_INIT_POINTER(ln->parent, pn);
843 if (dir)
844 rcu_assign_pointer(pn->right, ln);
845 else
846 rcu_assign_pointer(pn->left, ln);
848 return ln;
851 insert_above:
853 * split since we don't have a common prefix anymore or
854 * we have a less significant route.
855 * we've to insert an intermediate node on the list
856 * this new node will point to the one we need to create
857 * and the current
860 pn = rcu_dereference_protected(fn->parent,
861 lockdep_is_held(&table->tb6_lock));
863 /* find 1st bit in difference between the 2 addrs.
865 See comment in __ipv6_addr_diff: bit may be an invalid value,
866 but if it is >= plen, the value is ignored in any case.
869 bit = __ipv6_addr_diff(addr, &key->addr, sizeof(*addr));
872 * (intermediate)[in]
873 * / \
874 * (new leaf node)[ln] (old node)[fn]
876 if (plen > bit) {
877 in = node_alloc(net);
878 ln = node_alloc(net);
880 if (!in || !ln) {
881 if (in)
882 node_free_immediate(net, in);
883 if (ln)
884 node_free_immediate(net, ln);
885 return ERR_PTR(-ENOMEM);
889 * new intermediate node.
890 * RTN_RTINFO will
891 * be off since that an address that chooses one of
892 * the branches would not match less specific routes
893 * in the other branch
896 in->fn_bit = bit;
898 RCU_INIT_POINTER(in->parent, pn);
899 in->leaf = fn->leaf;
900 fib6_info_hold(rcu_dereference_protected(in->leaf,
901 lockdep_is_held(&table->tb6_lock)));
903 /* update parent pointer */
904 if (dir)
905 rcu_assign_pointer(pn->right, in);
906 else
907 rcu_assign_pointer(pn->left, in);
909 ln->fn_bit = plen;
911 RCU_INIT_POINTER(ln->parent, in);
912 rcu_assign_pointer(fn->parent, in);
914 if (addr_bit_set(addr, bit)) {
915 rcu_assign_pointer(in->right, ln);
916 rcu_assign_pointer(in->left, fn);
917 } else {
918 rcu_assign_pointer(in->left, ln);
919 rcu_assign_pointer(in->right, fn);
921 } else { /* plen <= bit */
924 * (new leaf node)[ln]
925 * / \
926 * (old node)[fn] NULL
929 ln = node_alloc(net);
931 if (!ln)
932 return ERR_PTR(-ENOMEM);
934 ln->fn_bit = plen;
936 RCU_INIT_POINTER(ln->parent, pn);
938 if (addr_bit_set(&key->addr, plen))
939 RCU_INIT_POINTER(ln->right, fn);
940 else
941 RCU_INIT_POINTER(ln->left, fn);
943 rcu_assign_pointer(fn->parent, ln);
945 if (dir)
946 rcu_assign_pointer(pn->right, ln);
947 else
948 rcu_assign_pointer(pn->left, ln);
950 return ln;
953 static void __fib6_drop_pcpu_from(struct fib6_nh *fib6_nh,
954 const struct fib6_info *match,
955 const struct fib6_table *table)
957 int cpu;
959 if (!fib6_nh->rt6i_pcpu)
960 return;
962 rcu_read_lock();
963 /* release the reference to this fib entry from
964 * all of its cached pcpu routes
966 for_each_possible_cpu(cpu) {
967 struct rt6_info **ppcpu_rt;
968 struct rt6_info *pcpu_rt;
970 ppcpu_rt = per_cpu_ptr(fib6_nh->rt6i_pcpu, cpu);
972 /* Paired with xchg() in rt6_get_pcpu_route() */
973 pcpu_rt = READ_ONCE(*ppcpu_rt);
975 /* only dropping the 'from' reference if the cached route
976 * is using 'match'. The cached pcpu_rt->from only changes
977 * from a fib6_info to NULL (ip6_dst_destroy); it can never
978 * change from one fib6_info reference to another
980 if (pcpu_rt && rcu_access_pointer(pcpu_rt->from) == match) {
981 struct fib6_info *from;
983 from = unrcu_pointer(xchg(&pcpu_rt->from, NULL));
984 fib6_info_release(from);
987 rcu_read_unlock();
990 struct fib6_nh_pcpu_arg {
991 struct fib6_info *from;
992 const struct fib6_table *table;
995 static int fib6_nh_drop_pcpu_from(struct fib6_nh *nh, void *_arg)
997 struct fib6_nh_pcpu_arg *arg = _arg;
999 __fib6_drop_pcpu_from(nh, arg->from, arg->table);
1000 return 0;
1003 static void fib6_drop_pcpu_from(struct fib6_info *f6i,
1004 const struct fib6_table *table)
1006 /* Make sure rt6_make_pcpu_route() wont add other percpu routes
1007 * while we are cleaning them here.
1009 f6i->fib6_destroying = 1;
1010 mb(); /* paired with the cmpxchg() in rt6_make_pcpu_route() */
1012 if (f6i->nh) {
1013 struct fib6_nh_pcpu_arg arg = {
1014 .from = f6i,
1015 .table = table
1018 nexthop_for_each_fib6_nh(f6i->nh, fib6_nh_drop_pcpu_from,
1019 &arg);
1020 } else {
1021 struct fib6_nh *fib6_nh;
1023 fib6_nh = f6i->fib6_nh;
1024 __fib6_drop_pcpu_from(fib6_nh, f6i, table);
1028 static void fib6_purge_rt(struct fib6_info *rt, struct fib6_node *fn,
1029 struct net *net)
1031 struct fib6_table *table = rt->fib6_table;
1033 /* Flush all cached dst in exception table */
1034 rt6_flush_exceptions(rt);
1035 fib6_drop_pcpu_from(rt, table);
1037 if (rt->nh && !list_empty(&rt->nh_list))
1038 list_del_init(&rt->nh_list);
1040 if (refcount_read(&rt->fib6_ref) != 1) {
1041 /* This route is used as dummy address holder in some split
1042 * nodes. It is not leaked, but it still holds other resources,
1043 * which must be released in time. So, scan ascendant nodes
1044 * and replace dummy references to this route with references
1045 * to still alive ones.
1047 while (fn) {
1048 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1049 lockdep_is_held(&table->tb6_lock));
1050 struct fib6_info *new_leaf;
1051 if (!(fn->fn_flags & RTN_RTINFO) && leaf == rt) {
1052 new_leaf = fib6_find_prefix(net, table, fn);
1053 fib6_info_hold(new_leaf);
1055 rcu_assign_pointer(fn->leaf, new_leaf);
1056 fib6_info_release(rt);
1058 fn = rcu_dereference_protected(fn->parent,
1059 lockdep_is_held(&table->tb6_lock));
1063 fib6_clean_expires(rt);
1064 fib6_remove_gc_list(rt);
1068 * Insert routing information in a node.
1071 static int fib6_add_rt2node(struct fib6_node *fn, struct fib6_info *rt,
1072 struct nl_info *info,
1073 struct netlink_ext_ack *extack)
1075 struct fib6_info *leaf = rcu_dereference_protected(fn->leaf,
1076 lockdep_is_held(&rt->fib6_table->tb6_lock));
1077 struct fib6_info *iter = NULL;
1078 struct fib6_info __rcu **ins;
1079 struct fib6_info __rcu **fallback_ins = NULL;
1080 int replace = (info->nlh &&
1081 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
1082 int add = (!info->nlh ||
1083 (info->nlh->nlmsg_flags & NLM_F_CREATE));
1084 int found = 0;
1085 bool rt_can_ecmp = rt6_qualify_for_ecmp(rt);
1086 bool notify_sibling_rt = false;
1087 u16 nlflags = NLM_F_EXCL;
1088 int err;
1090 if (info->nlh && (info->nlh->nlmsg_flags & NLM_F_APPEND))
1091 nlflags |= NLM_F_APPEND;
1093 ins = &fn->leaf;
1095 for (iter = leaf; iter;
1096 iter = rcu_dereference_protected(iter->fib6_next,
1097 lockdep_is_held(&rt->fib6_table->tb6_lock))) {
1099 * Search for duplicates
1102 if (iter->fib6_metric == rt->fib6_metric) {
1104 * Same priority level
1106 if (info->nlh &&
1107 (info->nlh->nlmsg_flags & NLM_F_EXCL))
1108 return -EEXIST;
1110 nlflags &= ~NLM_F_EXCL;
1111 if (replace) {
1112 if (rt_can_ecmp == rt6_qualify_for_ecmp(iter)) {
1113 found++;
1114 break;
1116 fallback_ins = fallback_ins ?: ins;
1117 goto next_iter;
1120 if (rt6_duplicate_nexthop(iter, rt)) {
1121 if (rt->fib6_nsiblings)
1122 rt->fib6_nsiblings = 0;
1123 if (!(iter->fib6_flags & RTF_EXPIRES))
1124 return -EEXIST;
1125 if (!(rt->fib6_flags & RTF_EXPIRES)) {
1126 fib6_clean_expires(iter);
1127 fib6_remove_gc_list(iter);
1128 } else {
1129 fib6_set_expires(iter, rt->expires);
1130 fib6_add_gc_list(iter);
1133 if (rt->fib6_pmtu)
1134 fib6_metric_set(iter, RTAX_MTU,
1135 rt->fib6_pmtu);
1136 return -EEXIST;
1138 /* If we have the same destination and the same metric,
1139 * but not the same gateway, then the route we try to
1140 * add is sibling to this route, increment our counter
1141 * of siblings, and later we will add our route to the
1142 * list.
1143 * Only static routes (which don't have flag
1144 * RTF_EXPIRES) are used for ECMPv6.
1146 * To avoid long list, we only had siblings if the
1147 * route have a gateway.
1149 if (rt_can_ecmp &&
1150 rt6_qualify_for_ecmp(iter))
1151 rt->fib6_nsiblings++;
1154 if (iter->fib6_metric > rt->fib6_metric)
1155 break;
1157 next_iter:
1158 ins = &iter->fib6_next;
1161 if (fallback_ins && !found) {
1162 /* No matching route with same ecmp-able-ness found, replace
1163 * first matching route
1165 ins = fallback_ins;
1166 iter = rcu_dereference_protected(*ins,
1167 lockdep_is_held(&rt->fib6_table->tb6_lock));
1168 found++;
1171 /* Reset round-robin state, if necessary */
1172 if (ins == &fn->leaf)
1173 fn->rr_ptr = NULL;
1175 /* Link this route to others same route. */
1176 if (rt->fib6_nsiblings) {
1177 unsigned int fib6_nsiblings;
1178 struct fib6_info *sibling, *temp_sibling;
1180 /* Find the first route that have the same metric */
1181 sibling = leaf;
1182 notify_sibling_rt = true;
1183 while (sibling) {
1184 if (sibling->fib6_metric == rt->fib6_metric &&
1185 rt6_qualify_for_ecmp(sibling)) {
1186 list_add_tail_rcu(&rt->fib6_siblings,
1187 &sibling->fib6_siblings);
1188 break;
1190 sibling = rcu_dereference_protected(sibling->fib6_next,
1191 lockdep_is_held(&rt->fib6_table->tb6_lock));
1192 notify_sibling_rt = false;
1194 /* For each sibling in the list, increment the counter of
1195 * siblings. BUG() if counters does not match, list of siblings
1196 * is broken!
1198 fib6_nsiblings = 0;
1199 list_for_each_entry_safe(sibling, temp_sibling,
1200 &rt->fib6_siblings, fib6_siblings) {
1201 sibling->fib6_nsiblings++;
1202 BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings);
1203 fib6_nsiblings++;
1205 BUG_ON(fib6_nsiblings != rt->fib6_nsiblings);
1206 rt6_multipath_rebalance(temp_sibling);
1210 * insert node
1212 if (!replace) {
1213 if (!add)
1214 pr_warn("NLM_F_CREATE should be set when creating new route\n");
1216 add:
1217 nlflags |= NLM_F_CREATE;
1219 /* The route should only be notified if it is the first
1220 * route in the node or if it is added as a sibling
1221 * route to the first route in the node.
1223 if (!info->skip_notify_kernel &&
1224 (notify_sibling_rt || ins == &fn->leaf)) {
1225 enum fib_event_type fib_event;
1227 if (notify_sibling_rt)
1228 fib_event = FIB_EVENT_ENTRY_APPEND;
1229 else
1230 fib_event = FIB_EVENT_ENTRY_REPLACE;
1231 err = call_fib6_entry_notifiers(info->nl_net,
1232 fib_event, rt,
1233 extack);
1234 if (err) {
1235 struct fib6_info *sibling, *next_sibling;
1237 /* If the route has siblings, then it first
1238 * needs to be unlinked from them.
1240 if (!rt->fib6_nsiblings)
1241 return err;
1243 list_for_each_entry_safe(sibling, next_sibling,
1244 &rt->fib6_siblings,
1245 fib6_siblings)
1246 sibling->fib6_nsiblings--;
1247 rt->fib6_nsiblings = 0;
1248 list_del_rcu(&rt->fib6_siblings);
1249 rt6_multipath_rebalance(next_sibling);
1250 return err;
1254 rcu_assign_pointer(rt->fib6_next, iter);
1255 fib6_info_hold(rt);
1256 rcu_assign_pointer(rt->fib6_node, fn);
1257 rcu_assign_pointer(*ins, rt);
1258 if (!info->skip_notify)
1259 inet6_rt_notify(RTM_NEWROUTE, rt, info, nlflags);
1260 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
1262 if (!(fn->fn_flags & RTN_RTINFO)) {
1263 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1264 fn->fn_flags |= RTN_RTINFO;
1267 } else {
1268 int nsiblings;
1270 if (!found) {
1271 if (add)
1272 goto add;
1273 pr_warn("NLM_F_REPLACE set, but no existing node found!\n");
1274 return -ENOENT;
1277 if (!info->skip_notify_kernel && ins == &fn->leaf) {
1278 err = call_fib6_entry_notifiers(info->nl_net,
1279 FIB_EVENT_ENTRY_REPLACE,
1280 rt, extack);
1281 if (err)
1282 return err;
1285 fib6_info_hold(rt);
1286 rcu_assign_pointer(rt->fib6_node, fn);
1287 rt->fib6_next = iter->fib6_next;
1288 rcu_assign_pointer(*ins, rt);
1289 if (!info->skip_notify)
1290 inet6_rt_notify(RTM_NEWROUTE, rt, info, NLM_F_REPLACE);
1291 if (!(fn->fn_flags & RTN_RTINFO)) {
1292 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
1293 fn->fn_flags |= RTN_RTINFO;
1295 nsiblings = iter->fib6_nsiblings;
1296 iter->fib6_node = NULL;
1297 fib6_purge_rt(iter, fn, info->nl_net);
1298 if (rcu_access_pointer(fn->rr_ptr) == iter)
1299 fn->rr_ptr = NULL;
1300 fib6_info_release(iter);
1302 if (nsiblings) {
1303 /* Replacing an ECMP route, remove all siblings */
1304 ins = &rt->fib6_next;
1305 iter = rcu_dereference_protected(*ins,
1306 lockdep_is_held(&rt->fib6_table->tb6_lock));
1307 while (iter) {
1308 if (iter->fib6_metric > rt->fib6_metric)
1309 break;
1310 if (rt6_qualify_for_ecmp(iter)) {
1311 *ins = iter->fib6_next;
1312 iter->fib6_node = NULL;
1313 fib6_purge_rt(iter, fn, info->nl_net);
1314 if (rcu_access_pointer(fn->rr_ptr) == iter)
1315 fn->rr_ptr = NULL;
1316 fib6_info_release(iter);
1317 nsiblings--;
1318 info->nl_net->ipv6.rt6_stats->fib_rt_entries--;
1319 } else {
1320 ins = &iter->fib6_next;
1322 iter = rcu_dereference_protected(*ins,
1323 lockdep_is_held(&rt->fib6_table->tb6_lock));
1325 WARN_ON(nsiblings != 0);
1329 return 0;
1332 static void fib6_start_gc(struct net *net, struct fib6_info *rt)
1334 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
1335 (rt->fib6_flags & RTF_EXPIRES))
1336 mod_timer(&net->ipv6.ip6_fib_timer,
1337 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1340 void fib6_force_start_gc(struct net *net)
1342 if (!timer_pending(&net->ipv6.ip6_fib_timer))
1343 mod_timer(&net->ipv6.ip6_fib_timer,
1344 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
1347 static void __fib6_update_sernum_upto_root(struct fib6_info *rt,
1348 int sernum)
1350 struct fib6_node *fn = rcu_dereference_protected(rt->fib6_node,
1351 lockdep_is_held(&rt->fib6_table->tb6_lock));
1353 /* paired with smp_rmb() in fib6_get_cookie_safe() */
1354 smp_wmb();
1355 while (fn) {
1356 WRITE_ONCE(fn->fn_sernum, sernum);
1357 fn = rcu_dereference_protected(fn->parent,
1358 lockdep_is_held(&rt->fib6_table->tb6_lock));
1362 void fib6_update_sernum_upto_root(struct net *net, struct fib6_info *rt)
1364 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(net));
1367 /* allow ipv4 to update sernum via ipv6_stub */
1368 void fib6_update_sernum_stub(struct net *net, struct fib6_info *f6i)
1370 spin_lock_bh(&f6i->fib6_table->tb6_lock);
1371 fib6_update_sernum_upto_root(net, f6i);
1372 spin_unlock_bh(&f6i->fib6_table->tb6_lock);
1376 * Add routing information to the routing tree.
1377 * <destination addr>/<source addr>
1378 * with source addr info in sub-trees
1379 * Need to own table->tb6_lock
1382 int fib6_add(struct fib6_node *root, struct fib6_info *rt,
1383 struct nl_info *info, struct netlink_ext_ack *extack)
1385 struct fib6_table *table = rt->fib6_table;
1386 struct fib6_node *fn;
1387 #ifdef CONFIG_IPV6_SUBTREES
1388 struct fib6_node *pn = NULL;
1389 #endif
1390 int err = -ENOMEM;
1391 int allow_create = 1;
1392 int replace_required = 0;
1394 if (info->nlh) {
1395 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
1396 allow_create = 0;
1397 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
1398 replace_required = 1;
1400 if (!allow_create && !replace_required)
1401 pr_warn("RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
1403 fn = fib6_add_1(info->nl_net, table, root,
1404 &rt->fib6_dst.addr, rt->fib6_dst.plen,
1405 offsetof(struct fib6_info, fib6_dst), allow_create,
1406 replace_required, extack);
1407 if (IS_ERR(fn)) {
1408 err = PTR_ERR(fn);
1409 fn = NULL;
1410 goto out;
1413 #ifdef CONFIG_IPV6_SUBTREES
1414 pn = fn;
1416 if (rt->fib6_src.plen) {
1417 struct fib6_node *sn;
1419 if (!rcu_access_pointer(fn->subtree)) {
1420 struct fib6_node *sfn;
1423 * Create subtree.
1425 * fn[main tree]
1427 * sfn[subtree root]
1429 * sn[new leaf node]
1432 /* Create subtree root node */
1433 sfn = node_alloc(info->nl_net);
1434 if (!sfn)
1435 goto failure;
1437 fib6_info_hold(info->nl_net->ipv6.fib6_null_entry);
1438 rcu_assign_pointer(sfn->leaf,
1439 info->nl_net->ipv6.fib6_null_entry);
1440 sfn->fn_flags = RTN_ROOT;
1442 /* Now add the first leaf node to new subtree */
1444 sn = fib6_add_1(info->nl_net, table, sfn,
1445 &rt->fib6_src.addr, rt->fib6_src.plen,
1446 offsetof(struct fib6_info, fib6_src),
1447 allow_create, replace_required, extack);
1449 if (IS_ERR(sn)) {
1450 /* If it is failed, discard just allocated
1451 root, and then (in failure) stale node
1452 in main tree.
1454 node_free_immediate(info->nl_net, sfn);
1455 err = PTR_ERR(sn);
1456 goto failure;
1459 /* Now link new subtree to main tree */
1460 rcu_assign_pointer(sfn->parent, fn);
1461 rcu_assign_pointer(fn->subtree, sfn);
1462 } else {
1463 sn = fib6_add_1(info->nl_net, table, FIB6_SUBTREE(fn),
1464 &rt->fib6_src.addr, rt->fib6_src.plen,
1465 offsetof(struct fib6_info, fib6_src),
1466 allow_create, replace_required, extack);
1468 if (IS_ERR(sn)) {
1469 err = PTR_ERR(sn);
1470 goto failure;
1474 if (!rcu_access_pointer(fn->leaf)) {
1475 if (fn->fn_flags & RTN_TL_ROOT) {
1476 /* put back null_entry for root node */
1477 rcu_assign_pointer(fn->leaf,
1478 info->nl_net->ipv6.fib6_null_entry);
1479 } else {
1480 fib6_info_hold(rt);
1481 rcu_assign_pointer(fn->leaf, rt);
1484 fn = sn;
1486 #endif
1488 err = fib6_add_rt2node(fn, rt, info, extack);
1489 if (!err) {
1490 if (rt->nh)
1491 list_add(&rt->nh_list, &rt->nh->f6i_list);
1492 __fib6_update_sernum_upto_root(rt, fib6_new_sernum(info->nl_net));
1494 if (rt->fib6_flags & RTF_EXPIRES)
1495 fib6_add_gc_list(rt);
1497 fib6_start_gc(info->nl_net, rt);
1500 out:
1501 if (err) {
1502 #ifdef CONFIG_IPV6_SUBTREES
1504 * If fib6_add_1 has cleared the old leaf pointer in the
1505 * super-tree leaf node we have to find a new one for it.
1507 if (pn != fn) {
1508 struct fib6_info *pn_leaf =
1509 rcu_dereference_protected(pn->leaf,
1510 lockdep_is_held(&table->tb6_lock));
1511 if (pn_leaf == rt) {
1512 pn_leaf = NULL;
1513 RCU_INIT_POINTER(pn->leaf, NULL);
1514 fib6_info_release(rt);
1516 if (!pn_leaf && !(pn->fn_flags & RTN_RTINFO)) {
1517 pn_leaf = fib6_find_prefix(info->nl_net, table,
1518 pn);
1519 if (!pn_leaf)
1520 pn_leaf =
1521 info->nl_net->ipv6.fib6_null_entry;
1522 fib6_info_hold(pn_leaf);
1523 rcu_assign_pointer(pn->leaf, pn_leaf);
1526 #endif
1527 goto failure;
1528 } else if (fib6_requires_src(rt)) {
1529 fib6_routes_require_src_inc(info->nl_net);
1531 return err;
1533 failure:
1534 /* fn->leaf could be NULL and fib6_repair_tree() needs to be called if:
1535 * 1. fn is an intermediate node and we failed to add the new
1536 * route to it in both subtree creation failure and fib6_add_rt2node()
1537 * failure case.
1538 * 2. fn is the root node in the table and we fail to add the first
1539 * default route to it.
1541 if (fn &&
1542 (!(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)) ||
1543 (fn->fn_flags & RTN_TL_ROOT &&
1544 !rcu_access_pointer(fn->leaf))))
1545 fib6_repair_tree(info->nl_net, table, fn);
1546 return err;
1550 * Routing tree lookup
1554 struct lookup_args {
1555 int offset; /* key offset on fib6_info */
1556 const struct in6_addr *addr; /* search key */
1559 static struct fib6_node *fib6_node_lookup_1(struct fib6_node *root,
1560 struct lookup_args *args)
1562 struct fib6_node *fn;
1563 __be32 dir;
1565 if (unlikely(args->offset == 0))
1566 return NULL;
1569 * Descend on a tree
1572 fn = root;
1574 for (;;) {
1575 struct fib6_node *next;
1577 dir = addr_bit_set(args->addr, fn->fn_bit);
1579 next = dir ? rcu_dereference(fn->right) :
1580 rcu_dereference(fn->left);
1582 if (next) {
1583 fn = next;
1584 continue;
1586 break;
1589 while (fn) {
1590 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1592 if (subtree || fn->fn_flags & RTN_RTINFO) {
1593 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1594 struct rt6key *key;
1596 if (!leaf)
1597 goto backtrack;
1599 key = (struct rt6key *) ((u8 *)leaf + args->offset);
1601 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
1602 #ifdef CONFIG_IPV6_SUBTREES
1603 if (subtree) {
1604 struct fib6_node *sfn;
1605 sfn = fib6_node_lookup_1(subtree,
1606 args + 1);
1607 if (!sfn)
1608 goto backtrack;
1609 fn = sfn;
1611 #endif
1612 if (fn->fn_flags & RTN_RTINFO)
1613 return fn;
1616 backtrack:
1617 if (fn->fn_flags & RTN_ROOT)
1618 break;
1620 fn = rcu_dereference(fn->parent);
1623 return NULL;
1626 /* called with rcu_read_lock() held
1628 struct fib6_node *fib6_node_lookup(struct fib6_node *root,
1629 const struct in6_addr *daddr,
1630 const struct in6_addr *saddr)
1632 struct fib6_node *fn;
1633 struct lookup_args args[] = {
1635 .offset = offsetof(struct fib6_info, fib6_dst),
1636 .addr = daddr,
1638 #ifdef CONFIG_IPV6_SUBTREES
1640 .offset = offsetof(struct fib6_info, fib6_src),
1641 .addr = saddr,
1643 #endif
1645 .offset = 0, /* sentinel */
1649 fn = fib6_node_lookup_1(root, daddr ? args : args + 1);
1650 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1651 fn = root;
1653 return fn;
1657 * Get node with specified destination prefix (and source prefix,
1658 * if subtrees are used)
1659 * exact_match == true means we try to find fn with exact match of
1660 * the passed in prefix addr
1661 * exact_match == false means we try to find fn with longest prefix
1662 * match of the passed in prefix addr. This is useful for finding fn
1663 * for cached route as it will be stored in the exception table under
1664 * the node with longest prefix length.
1668 static struct fib6_node *fib6_locate_1(struct fib6_node *root,
1669 const struct in6_addr *addr,
1670 int plen, int offset,
1671 bool exact_match)
1673 struct fib6_node *fn, *prev = NULL;
1675 for (fn = root; fn ; ) {
1676 struct fib6_info *leaf = rcu_dereference(fn->leaf);
1677 struct rt6key *key;
1679 /* This node is being deleted */
1680 if (!leaf) {
1681 if (plen <= fn->fn_bit)
1682 goto out;
1683 else
1684 goto next;
1687 key = (struct rt6key *)((u8 *)leaf + offset);
1690 * Prefix match
1692 if (plen < fn->fn_bit ||
1693 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1694 goto out;
1696 if (plen == fn->fn_bit)
1697 return fn;
1699 if (fn->fn_flags & RTN_RTINFO)
1700 prev = fn;
1702 next:
1704 * We have more bits to go
1706 if (addr_bit_set(addr, fn->fn_bit))
1707 fn = rcu_dereference(fn->right);
1708 else
1709 fn = rcu_dereference(fn->left);
1711 out:
1712 if (exact_match)
1713 return NULL;
1714 else
1715 return prev;
1718 struct fib6_node *fib6_locate(struct fib6_node *root,
1719 const struct in6_addr *daddr, int dst_len,
1720 const struct in6_addr *saddr, int src_len,
1721 bool exact_match)
1723 struct fib6_node *fn;
1725 fn = fib6_locate_1(root, daddr, dst_len,
1726 offsetof(struct fib6_info, fib6_dst),
1727 exact_match);
1729 #ifdef CONFIG_IPV6_SUBTREES
1730 if (src_len) {
1731 WARN_ON(saddr == NULL);
1732 if (fn) {
1733 struct fib6_node *subtree = FIB6_SUBTREE(fn);
1735 if (subtree) {
1736 fn = fib6_locate_1(subtree, saddr, src_len,
1737 offsetof(struct fib6_info, fib6_src),
1738 exact_match);
1742 #endif
1744 if (fn && fn->fn_flags & RTN_RTINFO)
1745 return fn;
1747 return NULL;
1752 * Deletion
1756 static struct fib6_info *fib6_find_prefix(struct net *net,
1757 struct fib6_table *table,
1758 struct fib6_node *fn)
1760 struct fib6_node *child_left, *child_right;
1762 if (fn->fn_flags & RTN_ROOT)
1763 return net->ipv6.fib6_null_entry;
1765 while (fn) {
1766 child_left = rcu_dereference_protected(fn->left,
1767 lockdep_is_held(&table->tb6_lock));
1768 child_right = rcu_dereference_protected(fn->right,
1769 lockdep_is_held(&table->tb6_lock));
1770 if (child_left)
1771 return rcu_dereference_protected(child_left->leaf,
1772 lockdep_is_held(&table->tb6_lock));
1773 if (child_right)
1774 return rcu_dereference_protected(child_right->leaf,
1775 lockdep_is_held(&table->tb6_lock));
1777 fn = FIB6_SUBTREE(fn);
1779 return NULL;
1783 * Called to trim the tree of intermediate nodes when possible. "fn"
1784 * is the node we want to try and remove.
1785 * Need to own table->tb6_lock
1788 static struct fib6_node *fib6_repair_tree(struct net *net,
1789 struct fib6_table *table,
1790 struct fib6_node *fn)
1792 int children;
1793 int nstate;
1794 struct fib6_node *child;
1795 struct fib6_walker *w;
1796 int iter = 0;
1798 /* Set fn->leaf to null_entry for root node. */
1799 if (fn->fn_flags & RTN_TL_ROOT) {
1800 rcu_assign_pointer(fn->leaf, net->ipv6.fib6_null_entry);
1801 return fn;
1804 for (;;) {
1805 struct fib6_node *fn_r = rcu_dereference_protected(fn->right,
1806 lockdep_is_held(&table->tb6_lock));
1807 struct fib6_node *fn_l = rcu_dereference_protected(fn->left,
1808 lockdep_is_held(&table->tb6_lock));
1809 struct fib6_node *pn = rcu_dereference_protected(fn->parent,
1810 lockdep_is_held(&table->tb6_lock));
1811 struct fib6_node *pn_r = rcu_dereference_protected(pn->right,
1812 lockdep_is_held(&table->tb6_lock));
1813 struct fib6_node *pn_l = rcu_dereference_protected(pn->left,
1814 lockdep_is_held(&table->tb6_lock));
1815 struct fib6_info *fn_leaf = rcu_dereference_protected(fn->leaf,
1816 lockdep_is_held(&table->tb6_lock));
1817 struct fib6_info *pn_leaf = rcu_dereference_protected(pn->leaf,
1818 lockdep_is_held(&table->tb6_lock));
1819 struct fib6_info *new_fn_leaf;
1821 pr_debug("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1822 iter++;
1824 WARN_ON(fn->fn_flags & RTN_RTINFO);
1825 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1826 WARN_ON(fn_leaf);
1828 children = 0;
1829 child = NULL;
1830 if (fn_r) {
1831 child = fn_r;
1832 children |= 1;
1834 if (fn_l) {
1835 child = fn_l;
1836 children |= 2;
1839 if (children == 3 || FIB6_SUBTREE(fn)
1840 #ifdef CONFIG_IPV6_SUBTREES
1841 /* Subtree root (i.e. fn) may have one child */
1842 || (children && fn->fn_flags & RTN_ROOT)
1843 #endif
1845 new_fn_leaf = fib6_find_prefix(net, table, fn);
1846 #if RT6_DEBUG >= 2
1847 if (!new_fn_leaf) {
1848 WARN_ON(!new_fn_leaf);
1849 new_fn_leaf = net->ipv6.fib6_null_entry;
1851 #endif
1852 fib6_info_hold(new_fn_leaf);
1853 rcu_assign_pointer(fn->leaf, new_fn_leaf);
1854 return pn;
1857 #ifdef CONFIG_IPV6_SUBTREES
1858 if (FIB6_SUBTREE(pn) == fn) {
1859 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1860 RCU_INIT_POINTER(pn->subtree, NULL);
1861 nstate = FWS_L;
1862 } else {
1863 WARN_ON(fn->fn_flags & RTN_ROOT);
1864 #endif
1865 if (pn_r == fn)
1866 rcu_assign_pointer(pn->right, child);
1867 else if (pn_l == fn)
1868 rcu_assign_pointer(pn->left, child);
1869 #if RT6_DEBUG >= 2
1870 else
1871 WARN_ON(1);
1872 #endif
1873 if (child)
1874 rcu_assign_pointer(child->parent, pn);
1875 nstate = FWS_R;
1876 #ifdef CONFIG_IPV6_SUBTREES
1878 #endif
1880 read_lock(&net->ipv6.fib6_walker_lock);
1881 FOR_WALKERS(net, w) {
1882 if (!child) {
1883 if (w->node == fn) {
1884 pr_debug("W %p adjusted by delnode 1, s=%d/%d\n",
1885 w, w->state, nstate);
1886 w->node = pn;
1887 w->state = nstate;
1889 } else {
1890 if (w->node == fn) {
1891 w->node = child;
1892 if (children&2) {
1893 pr_debug("W %p adjusted by delnode 2, s=%d\n",
1894 w, w->state);
1895 w->state = w->state >= FWS_R ? FWS_U : FWS_INIT;
1896 } else {
1897 pr_debug("W %p adjusted by delnode 2, s=%d\n",
1898 w, w->state);
1899 w->state = w->state >= FWS_C ? FWS_U : FWS_INIT;
1904 read_unlock(&net->ipv6.fib6_walker_lock);
1906 node_free(net, fn);
1907 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1908 return pn;
1910 RCU_INIT_POINTER(pn->leaf, NULL);
1911 fib6_info_release(pn_leaf);
1912 fn = pn;
1916 static void fib6_del_route(struct fib6_table *table, struct fib6_node *fn,
1917 struct fib6_info __rcu **rtp, struct nl_info *info)
1919 struct fib6_info *leaf, *replace_rt = NULL;
1920 struct fib6_walker *w;
1921 struct fib6_info *rt = rcu_dereference_protected(*rtp,
1922 lockdep_is_held(&table->tb6_lock));
1923 struct net *net = info->nl_net;
1924 bool notify_del = false;
1926 /* If the deleted route is the first in the node and it is not part of
1927 * a multipath route, then we need to replace it with the next route
1928 * in the node, if exists.
1930 leaf = rcu_dereference_protected(fn->leaf,
1931 lockdep_is_held(&table->tb6_lock));
1932 if (leaf == rt && !rt->fib6_nsiblings) {
1933 if (rcu_access_pointer(rt->fib6_next))
1934 replace_rt = rcu_dereference_protected(rt->fib6_next,
1935 lockdep_is_held(&table->tb6_lock));
1936 else
1937 notify_del = true;
1940 /* Unlink it */
1941 *rtp = rt->fib6_next;
1942 rt->fib6_node = NULL;
1943 net->ipv6.rt6_stats->fib_rt_entries--;
1944 net->ipv6.rt6_stats->fib_discarded_routes++;
1946 /* Reset round-robin state, if necessary */
1947 if (rcu_access_pointer(fn->rr_ptr) == rt)
1948 fn->rr_ptr = NULL;
1950 /* Remove this entry from other siblings */
1951 if (rt->fib6_nsiblings) {
1952 struct fib6_info *sibling, *next_sibling;
1954 /* The route is deleted from a multipath route. If this
1955 * multipath route is the first route in the node, then we need
1956 * to emit a delete notification. Otherwise, we need to skip
1957 * the notification.
1959 if (rt->fib6_metric == leaf->fib6_metric &&
1960 rt6_qualify_for_ecmp(leaf))
1961 notify_del = true;
1962 list_for_each_entry_safe(sibling, next_sibling,
1963 &rt->fib6_siblings, fib6_siblings)
1964 sibling->fib6_nsiblings--;
1965 rt->fib6_nsiblings = 0;
1966 list_del_rcu(&rt->fib6_siblings);
1967 rt6_multipath_rebalance(next_sibling);
1970 /* Adjust walkers */
1971 read_lock(&net->ipv6.fib6_walker_lock);
1972 FOR_WALKERS(net, w) {
1973 if (w->state == FWS_C && w->leaf == rt) {
1974 pr_debug("walker %p adjusted by delroute\n", w);
1975 w->leaf = rcu_dereference_protected(rt->fib6_next,
1976 lockdep_is_held(&table->tb6_lock));
1977 if (!w->leaf)
1978 w->state = FWS_U;
1981 read_unlock(&net->ipv6.fib6_walker_lock);
1983 /* If it was last route, call fib6_repair_tree() to:
1984 * 1. For root node, put back null_entry as how the table was created.
1985 * 2. For other nodes, expunge its radix tree node.
1987 if (!rcu_access_pointer(fn->leaf)) {
1988 if (!(fn->fn_flags & RTN_TL_ROOT)) {
1989 fn->fn_flags &= ~RTN_RTINFO;
1990 net->ipv6.rt6_stats->fib_route_nodes--;
1992 fn = fib6_repair_tree(net, table, fn);
1995 fib6_purge_rt(rt, fn, net);
1997 if (!info->skip_notify_kernel) {
1998 if (notify_del)
1999 call_fib6_entry_notifiers(net, FIB_EVENT_ENTRY_DEL,
2000 rt, NULL);
2001 else if (replace_rt)
2002 call_fib6_entry_notifiers_replace(net, replace_rt);
2004 if (!info->skip_notify)
2005 inet6_rt_notify(RTM_DELROUTE, rt, info, 0);
2007 fib6_info_release(rt);
2010 /* Need to own table->tb6_lock */
2011 int fib6_del(struct fib6_info *rt, struct nl_info *info)
2013 struct net *net = info->nl_net;
2014 struct fib6_info __rcu **rtp;
2015 struct fib6_info __rcu **rtp_next;
2016 struct fib6_table *table;
2017 struct fib6_node *fn;
2019 if (rt == net->ipv6.fib6_null_entry)
2020 return -ENOENT;
2022 table = rt->fib6_table;
2023 fn = rcu_dereference_protected(rt->fib6_node,
2024 lockdep_is_held(&table->tb6_lock));
2025 if (!fn)
2026 return -ENOENT;
2028 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
2031 * Walk the leaf entries looking for ourself
2034 for (rtp = &fn->leaf; *rtp; rtp = rtp_next) {
2035 struct fib6_info *cur = rcu_dereference_protected(*rtp,
2036 lockdep_is_held(&table->tb6_lock));
2037 if (rt == cur) {
2038 if (fib6_requires_src(cur))
2039 fib6_routes_require_src_dec(info->nl_net);
2040 fib6_del_route(table, fn, rtp, info);
2041 return 0;
2043 rtp_next = &cur->fib6_next;
2045 return -ENOENT;
2049 * Tree traversal function.
2051 * Certainly, it is not interrupt safe.
2052 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
2053 * It means, that we can modify tree during walking
2054 * and use this function for garbage collection, clone pruning,
2055 * cleaning tree when a device goes down etc. etc.
2057 * It guarantees that every node will be traversed,
2058 * and that it will be traversed only once.
2060 * Callback function w->func may return:
2061 * 0 -> continue walking.
2062 * positive value -> walking is suspended (used by tree dumps,
2063 * and probably by gc, if it will be split to several slices)
2064 * negative value -> terminate walking.
2066 * The function itself returns:
2067 * 0 -> walk is complete.
2068 * >0 -> walk is incomplete (i.e. suspended)
2069 * <0 -> walk is terminated by an error.
2071 * This function is called with tb6_lock held.
2074 static int fib6_walk_continue(struct fib6_walker *w)
2076 struct fib6_node *fn, *pn, *left, *right;
2078 /* w->root should always be table->tb6_root */
2079 WARN_ON_ONCE(!(w->root->fn_flags & RTN_TL_ROOT));
2081 for (;;) {
2082 fn = w->node;
2083 if (!fn)
2084 return 0;
2086 switch (w->state) {
2087 #ifdef CONFIG_IPV6_SUBTREES
2088 case FWS_S:
2089 if (FIB6_SUBTREE(fn)) {
2090 w->node = FIB6_SUBTREE(fn);
2091 continue;
2093 w->state = FWS_L;
2094 fallthrough;
2095 #endif
2096 case FWS_L:
2097 left = rcu_dereference_protected(fn->left, 1);
2098 if (left) {
2099 w->node = left;
2100 w->state = FWS_INIT;
2101 continue;
2103 w->state = FWS_R;
2104 fallthrough;
2105 case FWS_R:
2106 right = rcu_dereference_protected(fn->right, 1);
2107 if (right) {
2108 w->node = right;
2109 w->state = FWS_INIT;
2110 continue;
2112 w->state = FWS_C;
2113 w->leaf = rcu_dereference_protected(fn->leaf, 1);
2114 fallthrough;
2115 case FWS_C:
2116 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
2117 int err;
2119 if (w->skip) {
2120 w->skip--;
2121 goto skip;
2124 err = w->func(w);
2125 if (err)
2126 return err;
2128 w->count++;
2129 continue;
2131 skip:
2132 w->state = FWS_U;
2133 fallthrough;
2134 case FWS_U:
2135 if (fn == w->root)
2136 return 0;
2137 pn = rcu_dereference_protected(fn->parent, 1);
2138 left = rcu_dereference_protected(pn->left, 1);
2139 right = rcu_dereference_protected(pn->right, 1);
2140 w->node = pn;
2141 #ifdef CONFIG_IPV6_SUBTREES
2142 if (FIB6_SUBTREE(pn) == fn) {
2143 WARN_ON(!(fn->fn_flags & RTN_ROOT));
2144 w->state = FWS_L;
2145 continue;
2147 #endif
2148 if (left == fn) {
2149 w->state = FWS_R;
2150 continue;
2152 if (right == fn) {
2153 w->state = FWS_C;
2154 w->leaf = rcu_dereference_protected(w->node->leaf, 1);
2155 continue;
2157 #if RT6_DEBUG >= 2
2158 WARN_ON(1);
2159 #endif
2164 static int fib6_walk(struct net *net, struct fib6_walker *w)
2166 int res;
2168 w->state = FWS_INIT;
2169 w->node = w->root;
2171 fib6_walker_link(net, w);
2172 res = fib6_walk_continue(w);
2173 if (res <= 0)
2174 fib6_walker_unlink(net, w);
2175 return res;
2178 static int fib6_clean_node(struct fib6_walker *w)
2180 int res;
2181 struct fib6_info *rt;
2182 struct fib6_cleaner *c = container_of(w, struct fib6_cleaner, w);
2183 struct nl_info info = {
2184 .nl_net = c->net,
2185 .skip_notify = c->skip_notify,
2188 if (c->sernum != FIB6_NO_SERNUM_CHANGE &&
2189 READ_ONCE(w->node->fn_sernum) != c->sernum)
2190 WRITE_ONCE(w->node->fn_sernum, c->sernum);
2192 if (!c->func) {
2193 WARN_ON_ONCE(c->sernum == FIB6_NO_SERNUM_CHANGE);
2194 w->leaf = NULL;
2195 return 0;
2198 for_each_fib6_walker_rt(w) {
2199 res = c->func(rt, c->arg);
2200 if (res == -1) {
2201 w->leaf = rt;
2202 res = fib6_del(rt, &info);
2203 if (res) {
2204 #if RT6_DEBUG >= 2
2205 pr_debug("%s: del failed: rt=%p@%p err=%d\n",
2206 __func__, rt,
2207 rcu_access_pointer(rt->fib6_node),
2208 res);
2209 #endif
2210 continue;
2212 return 0;
2213 } else if (res == -2) {
2214 if (WARN_ON(!rt->fib6_nsiblings))
2215 continue;
2216 rt = list_last_entry(&rt->fib6_siblings,
2217 struct fib6_info, fib6_siblings);
2218 continue;
2220 WARN_ON(res != 0);
2222 w->leaf = rt;
2223 return 0;
2227 * Convenient frontend to tree walker.
2229 * func is called on each route.
2230 * It may return -2 -> skip multipath route.
2231 * -1 -> delete this route.
2232 * 0 -> continue walking
2235 static void fib6_clean_tree(struct net *net, struct fib6_node *root,
2236 int (*func)(struct fib6_info *, void *arg),
2237 int sernum, void *arg, bool skip_notify)
2239 struct fib6_cleaner c;
2241 c.w.root = root;
2242 c.w.func = fib6_clean_node;
2243 c.w.count = 0;
2244 c.w.skip = 0;
2245 c.w.skip_in_node = 0;
2246 c.func = func;
2247 c.sernum = sernum;
2248 c.arg = arg;
2249 c.net = net;
2250 c.skip_notify = skip_notify;
2252 fib6_walk(net, &c.w);
2255 static void __fib6_clean_all(struct net *net,
2256 int (*func)(struct fib6_info *, void *),
2257 int sernum, void *arg, bool skip_notify)
2259 struct fib6_table *table;
2260 struct hlist_head *head;
2261 unsigned int h;
2263 rcu_read_lock();
2264 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2265 head = &net->ipv6.fib_table_hash[h];
2266 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2267 spin_lock_bh(&table->tb6_lock);
2268 fib6_clean_tree(net, &table->tb6_root,
2269 func, sernum, arg, skip_notify);
2270 spin_unlock_bh(&table->tb6_lock);
2273 rcu_read_unlock();
2276 void fib6_clean_all(struct net *net, int (*func)(struct fib6_info *, void *),
2277 void *arg)
2279 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, false);
2282 void fib6_clean_all_skip_notify(struct net *net,
2283 int (*func)(struct fib6_info *, void *),
2284 void *arg)
2286 __fib6_clean_all(net, func, FIB6_NO_SERNUM_CHANGE, arg, true);
2289 static void fib6_flush_trees(struct net *net)
2291 int new_sernum = fib6_new_sernum(net);
2293 __fib6_clean_all(net, NULL, new_sernum, NULL, false);
2297 * Garbage collection
2300 static int fib6_age(struct fib6_info *rt, struct fib6_gc_args *gc_args)
2302 unsigned long now = jiffies;
2305 * check addrconf expiration here.
2306 * Routes are expired even if they are in use.
2309 if (rt->fib6_flags & RTF_EXPIRES && rt->expires) {
2310 if (time_after(now, rt->expires)) {
2311 pr_debug("expiring %p\n", rt);
2312 return -1;
2314 gc_args->more++;
2317 /* Also age clones in the exception table.
2318 * Note, that clones are aged out
2319 * only if they are not in use now.
2321 rt6_age_exceptions(rt, gc_args, now);
2323 return 0;
2326 static void fib6_gc_table(struct net *net,
2327 struct fib6_table *tb6,
2328 struct fib6_gc_args *gc_args)
2330 struct fib6_info *rt;
2331 struct hlist_node *n;
2332 struct nl_info info = {
2333 .nl_net = net,
2334 .skip_notify = false,
2337 hlist_for_each_entry_safe(rt, n, &tb6->tb6_gc_hlist, gc_link)
2338 if (fib6_age(rt, gc_args) == -1)
2339 fib6_del(rt, &info);
2342 static void fib6_gc_all(struct net *net, struct fib6_gc_args *gc_args)
2344 struct fib6_table *table;
2345 struct hlist_head *head;
2346 unsigned int h;
2348 rcu_read_lock();
2349 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
2350 head = &net->ipv6.fib_table_hash[h];
2351 hlist_for_each_entry_rcu(table, head, tb6_hlist) {
2352 spin_lock_bh(&table->tb6_lock);
2354 fib6_gc_table(net, table, gc_args);
2356 spin_unlock_bh(&table->tb6_lock);
2359 rcu_read_unlock();
2362 void fib6_run_gc(unsigned long expires, struct net *net, bool force)
2364 struct fib6_gc_args gc_args;
2365 unsigned long now;
2367 if (force) {
2368 spin_lock_bh(&net->ipv6.fib6_gc_lock);
2369 } else if (!spin_trylock_bh(&net->ipv6.fib6_gc_lock)) {
2370 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
2371 return;
2373 gc_args.timeout = expires ? (int)expires :
2374 net->ipv6.sysctl.ip6_rt_gc_interval;
2375 gc_args.more = 0;
2377 fib6_gc_all(net, &gc_args);
2378 now = jiffies;
2379 net->ipv6.ip6_rt_last_gc = now;
2381 if (gc_args.more)
2382 mod_timer(&net->ipv6.ip6_fib_timer,
2383 round_jiffies(now
2384 + net->ipv6.sysctl.ip6_rt_gc_interval));
2385 else
2386 del_timer(&net->ipv6.ip6_fib_timer);
2387 spin_unlock_bh(&net->ipv6.fib6_gc_lock);
2390 static void fib6_gc_timer_cb(struct timer_list *t)
2392 struct net *arg = from_timer(arg, t, ipv6.ip6_fib_timer);
2394 fib6_run_gc(0, arg, true);
2397 static int __net_init fib6_net_init(struct net *net)
2399 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
2400 int err;
2402 err = fib6_notifier_init(net);
2403 if (err)
2404 return err;
2406 /* Default to 3-tuple */
2407 net->ipv6.sysctl.multipath_hash_fields =
2408 FIB_MULTIPATH_HASH_FIELD_DEFAULT_MASK;
2410 spin_lock_init(&net->ipv6.fib6_gc_lock);
2411 rwlock_init(&net->ipv6.fib6_walker_lock);
2412 INIT_LIST_HEAD(&net->ipv6.fib6_walkers);
2413 timer_setup(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, 0);
2415 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
2416 if (!net->ipv6.rt6_stats)
2417 goto out_notifier;
2419 /* Avoid false sharing : Use at least a full cache line */
2420 size = max_t(size_t, size, L1_CACHE_BYTES);
2422 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
2423 if (!net->ipv6.fib_table_hash)
2424 goto out_rt6_stats;
2426 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
2427 GFP_KERNEL);
2428 if (!net->ipv6.fib6_main_tbl)
2429 goto out_fib_table_hash;
2431 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
2432 rcu_assign_pointer(net->ipv6.fib6_main_tbl->tb6_root.leaf,
2433 net->ipv6.fib6_null_entry);
2434 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
2435 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2436 inet_peer_base_init(&net->ipv6.fib6_main_tbl->tb6_peers);
2437 INIT_HLIST_HEAD(&net->ipv6.fib6_main_tbl->tb6_gc_hlist);
2439 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2440 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
2441 GFP_KERNEL);
2442 if (!net->ipv6.fib6_local_tbl)
2443 goto out_fib6_main_tbl;
2444 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
2445 rcu_assign_pointer(net->ipv6.fib6_local_tbl->tb6_root.leaf,
2446 net->ipv6.fib6_null_entry);
2447 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
2448 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
2449 inet_peer_base_init(&net->ipv6.fib6_local_tbl->tb6_peers);
2450 INIT_HLIST_HEAD(&net->ipv6.fib6_local_tbl->tb6_gc_hlist);
2451 #endif
2452 fib6_tables_init(net);
2454 return 0;
2456 #ifdef CONFIG_IPV6_MULTIPLE_TABLES
2457 out_fib6_main_tbl:
2458 kfree(net->ipv6.fib6_main_tbl);
2459 #endif
2460 out_fib_table_hash:
2461 kfree(net->ipv6.fib_table_hash);
2462 out_rt6_stats:
2463 kfree(net->ipv6.rt6_stats);
2464 out_notifier:
2465 fib6_notifier_exit(net);
2466 return -ENOMEM;
2469 static void fib6_net_exit(struct net *net)
2471 unsigned int i;
2473 del_timer_sync(&net->ipv6.ip6_fib_timer);
2475 for (i = 0; i < FIB6_TABLE_HASHSZ; i++) {
2476 struct hlist_head *head = &net->ipv6.fib_table_hash[i];
2477 struct hlist_node *tmp;
2478 struct fib6_table *tb;
2480 hlist_for_each_entry_safe(tb, tmp, head, tb6_hlist) {
2481 hlist_del(&tb->tb6_hlist);
2482 fib6_free_table(tb);
2486 kfree(net->ipv6.fib_table_hash);
2487 kfree(net->ipv6.rt6_stats);
2488 fib6_notifier_exit(net);
2491 static struct pernet_operations fib6_net_ops = {
2492 .init = fib6_net_init,
2493 .exit = fib6_net_exit,
2496 static const struct rtnl_msg_handler fib6_rtnl_msg_handlers[] __initconst_or_module = {
2497 {.owner = THIS_MODULE, .protocol = PF_INET6, .msgtype = RTM_GETROUTE,
2498 .dumpit = inet6_dump_fib,
2499 .flags = RTNL_FLAG_DUMP_UNLOCKED | RTNL_FLAG_DUMP_SPLIT_NLM_DONE},
2502 int __init fib6_init(void)
2504 int ret = -ENOMEM;
2506 fib6_node_kmem = KMEM_CACHE(fib6_node,
2507 SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT);
2508 if (!fib6_node_kmem)
2509 goto out;
2511 ret = register_pernet_subsys(&fib6_net_ops);
2512 if (ret)
2513 goto out_kmem_cache_create;
2515 ret = rtnl_register_many(fib6_rtnl_msg_handlers);
2516 if (ret)
2517 goto out_unregister_subsys;
2519 __fib6_flush_trees = fib6_flush_trees;
2520 out:
2521 return ret;
2523 out_unregister_subsys:
2524 unregister_pernet_subsys(&fib6_net_ops);
2525 out_kmem_cache_create:
2526 kmem_cache_destroy(fib6_node_kmem);
2527 goto out;
2530 void fib6_gc_cleanup(void)
2532 unregister_pernet_subsys(&fib6_net_ops);
2533 kmem_cache_destroy(fib6_node_kmem);
2536 #ifdef CONFIG_PROC_FS
2537 static int ipv6_route_native_seq_show(struct seq_file *seq, void *v)
2539 struct fib6_info *rt = v;
2540 struct ipv6_route_iter *iter = seq->private;
2541 struct fib6_nh *fib6_nh = rt->fib6_nh;
2542 unsigned int flags = rt->fib6_flags;
2543 const struct net_device *dev;
2545 if (rt->nh)
2546 fib6_nh = nexthop_fib6_nh(rt->nh);
2548 seq_printf(seq, "%pi6 %02x ", &rt->fib6_dst.addr, rt->fib6_dst.plen);
2550 #ifdef CONFIG_IPV6_SUBTREES
2551 seq_printf(seq, "%pi6 %02x ", &rt->fib6_src.addr, rt->fib6_src.plen);
2552 #else
2553 seq_puts(seq, "00000000000000000000000000000000 00 ");
2554 #endif
2555 if (fib6_nh->fib_nh_gw_family) {
2556 flags |= RTF_GATEWAY;
2557 seq_printf(seq, "%pi6", &fib6_nh->fib_nh_gw6);
2558 } else {
2559 seq_puts(seq, "00000000000000000000000000000000");
2562 dev = fib6_nh->fib_nh_dev;
2563 seq_printf(seq, " %08x %08x %08x %08x %8s\n",
2564 rt->fib6_metric, refcount_read(&rt->fib6_ref), 0,
2565 flags, dev ? dev->name : "");
2566 iter->w.leaf = NULL;
2567 return 0;
2570 static int ipv6_route_yield(struct fib6_walker *w)
2572 struct ipv6_route_iter *iter = w->args;
2574 if (!iter->skip)
2575 return 1;
2577 do {
2578 iter->w.leaf = rcu_dereference_protected(
2579 iter->w.leaf->fib6_next,
2580 lockdep_is_held(&iter->tbl->tb6_lock));
2581 iter->skip--;
2582 if (!iter->skip && iter->w.leaf)
2583 return 1;
2584 } while (iter->w.leaf);
2586 return 0;
2589 static void ipv6_route_seq_setup_walk(struct ipv6_route_iter *iter,
2590 struct net *net)
2592 memset(&iter->w, 0, sizeof(iter->w));
2593 iter->w.func = ipv6_route_yield;
2594 iter->w.root = &iter->tbl->tb6_root;
2595 iter->w.state = FWS_INIT;
2596 iter->w.node = iter->w.root;
2597 iter->w.args = iter;
2598 iter->sernum = READ_ONCE(iter->w.root->fn_sernum);
2599 INIT_LIST_HEAD(&iter->w.lh);
2600 fib6_walker_link(net, &iter->w);
2603 static struct fib6_table *ipv6_route_seq_next_table(struct fib6_table *tbl,
2604 struct net *net)
2606 unsigned int h;
2607 struct hlist_node *node;
2609 if (tbl) {
2610 h = (tbl->tb6_id & (FIB6_TABLE_HASHSZ - 1)) + 1;
2611 node = rcu_dereference(hlist_next_rcu(&tbl->tb6_hlist));
2612 } else {
2613 h = 0;
2614 node = NULL;
2617 while (!node && h < FIB6_TABLE_HASHSZ) {
2618 node = rcu_dereference(
2619 hlist_first_rcu(&net->ipv6.fib_table_hash[h++]));
2621 return hlist_entry_safe(node, struct fib6_table, tb6_hlist);
2624 static void ipv6_route_check_sernum(struct ipv6_route_iter *iter)
2626 int sernum = READ_ONCE(iter->w.root->fn_sernum);
2628 if (iter->sernum != sernum) {
2629 iter->sernum = sernum;
2630 iter->w.state = FWS_INIT;
2631 iter->w.node = iter->w.root;
2632 WARN_ON(iter->w.skip);
2633 iter->w.skip = iter->w.count;
2637 static void *ipv6_route_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2639 int r;
2640 struct fib6_info *n;
2641 struct net *net = seq_file_net(seq);
2642 struct ipv6_route_iter *iter = seq->private;
2644 ++(*pos);
2645 if (!v)
2646 goto iter_table;
2648 n = rcu_dereference(((struct fib6_info *)v)->fib6_next);
2649 if (n)
2650 return n;
2652 iter_table:
2653 ipv6_route_check_sernum(iter);
2654 spin_lock_bh(&iter->tbl->tb6_lock);
2655 r = fib6_walk_continue(&iter->w);
2656 spin_unlock_bh(&iter->tbl->tb6_lock);
2657 if (r > 0) {
2658 return iter->w.leaf;
2659 } else if (r < 0) {
2660 fib6_walker_unlink(net, &iter->w);
2661 return NULL;
2663 fib6_walker_unlink(net, &iter->w);
2665 iter->tbl = ipv6_route_seq_next_table(iter->tbl, net);
2666 if (!iter->tbl)
2667 return NULL;
2669 ipv6_route_seq_setup_walk(iter, net);
2670 goto iter_table;
2673 static void *ipv6_route_seq_start(struct seq_file *seq, loff_t *pos)
2674 __acquires(RCU)
2676 struct net *net = seq_file_net(seq);
2677 struct ipv6_route_iter *iter = seq->private;
2679 rcu_read_lock();
2680 iter->tbl = ipv6_route_seq_next_table(NULL, net);
2681 iter->skip = *pos;
2683 if (iter->tbl) {
2684 loff_t p = 0;
2686 ipv6_route_seq_setup_walk(iter, net);
2687 return ipv6_route_seq_next(seq, NULL, &p);
2688 } else {
2689 return NULL;
2693 static bool ipv6_route_iter_active(struct ipv6_route_iter *iter)
2695 struct fib6_walker *w = &iter->w;
2696 return w->node && !(w->state == FWS_U && w->node == w->root);
2699 static void ipv6_route_native_seq_stop(struct seq_file *seq, void *v)
2700 __releases(RCU)
2702 struct net *net = seq_file_net(seq);
2703 struct ipv6_route_iter *iter = seq->private;
2705 if (ipv6_route_iter_active(iter))
2706 fib6_walker_unlink(net, &iter->w);
2708 rcu_read_unlock();
2711 #if IS_BUILTIN(CONFIG_IPV6) && defined(CONFIG_BPF_SYSCALL)
2712 static int ipv6_route_prog_seq_show(struct bpf_prog *prog,
2713 struct bpf_iter_meta *meta,
2714 void *v)
2716 struct bpf_iter__ipv6_route ctx;
2718 ctx.meta = meta;
2719 ctx.rt = v;
2720 return bpf_iter_run_prog(prog, &ctx);
2723 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2725 struct ipv6_route_iter *iter = seq->private;
2726 struct bpf_iter_meta meta;
2727 struct bpf_prog *prog;
2728 int ret;
2730 meta.seq = seq;
2731 prog = bpf_iter_get_info(&meta, false);
2732 if (!prog)
2733 return ipv6_route_native_seq_show(seq, v);
2735 ret = ipv6_route_prog_seq_show(prog, &meta, v);
2736 iter->w.leaf = NULL;
2738 return ret;
2741 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2743 struct bpf_iter_meta meta;
2744 struct bpf_prog *prog;
2746 if (!v) {
2747 meta.seq = seq;
2748 prog = bpf_iter_get_info(&meta, true);
2749 if (prog)
2750 (void)ipv6_route_prog_seq_show(prog, &meta, v);
2753 ipv6_route_native_seq_stop(seq, v);
2755 #else
2756 static int ipv6_route_seq_show(struct seq_file *seq, void *v)
2758 return ipv6_route_native_seq_show(seq, v);
2761 static void ipv6_route_seq_stop(struct seq_file *seq, void *v)
2763 ipv6_route_native_seq_stop(seq, v);
2765 #endif
2767 const struct seq_operations ipv6_route_seq_ops = {
2768 .start = ipv6_route_seq_start,
2769 .next = ipv6_route_seq_next,
2770 .stop = ipv6_route_seq_stop,
2771 .show = ipv6_route_seq_show
2773 #endif /* CONFIG_PROC_FS */