Merge tag 'hwmon-for-v6.13-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux.git] / net / ipv6 / xfrm6_input.c
blob4abc5e9d63227aed6792ba265c265d605f49f710
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * xfrm6_input.c: based on net/ipv4/xfrm4_input.c
5 * Authors:
6 * Mitsuru KANDA @USAGI
7 * Kazunori MIYAZAWA @USAGI
8 * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
9 * YOSHIFUJI Hideaki @USAGI
10 * IPv6 support
13 #include <linux/module.h>
14 #include <linux/string.h>
15 #include <linux/netfilter.h>
16 #include <linux/netfilter_ipv6.h>
17 #include <net/ipv6.h>
18 #include <net/xfrm.h>
19 #include <net/protocol.h>
20 #include <net/gro.h>
22 int xfrm6_rcv_spi(struct sk_buff *skb, int nexthdr, __be32 spi,
23 struct ip6_tnl *t)
25 XFRM_TUNNEL_SKB_CB(skb)->tunnel.ip6 = t;
26 XFRM_SPI_SKB_CB(skb)->family = AF_INET6;
27 XFRM_SPI_SKB_CB(skb)->daddroff = offsetof(struct ipv6hdr, daddr);
28 return xfrm_input(skb, nexthdr, spi, 0);
30 EXPORT_SYMBOL(xfrm6_rcv_spi);
32 static int xfrm6_transport_finish2(struct net *net, struct sock *sk,
33 struct sk_buff *skb)
35 if (xfrm_trans_queue(skb, ip6_rcv_finish)) {
36 kfree_skb(skb);
37 return NET_RX_DROP;
40 return 0;
43 int xfrm6_transport_finish(struct sk_buff *skb, int async)
45 struct xfrm_offload *xo = xfrm_offload(skb);
46 int nhlen = -skb_network_offset(skb);
48 skb_network_header(skb)[IP6CB(skb)->nhoff] =
49 XFRM_MODE_SKB_CB(skb)->protocol;
51 #ifndef CONFIG_NETFILTER
52 if (!async)
53 return 1;
54 #endif
56 __skb_push(skb, nhlen);
57 ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
58 skb_postpush_rcsum(skb, skb_network_header(skb), nhlen);
60 if (xo && (xo->flags & XFRM_GRO)) {
61 /* The full l2 header needs to be preserved so that re-injecting the packet at l2
62 * works correctly in the presence of vlan tags.
64 skb_mac_header_rebuild_full(skb, xo->orig_mac_len);
65 skb_reset_network_header(skb);
66 skb_reset_transport_header(skb);
67 return 0;
70 NF_HOOK(NFPROTO_IPV6, NF_INET_PRE_ROUTING,
71 dev_net(skb->dev), NULL, skb, skb->dev, NULL,
72 xfrm6_transport_finish2);
73 return 0;
76 static int __xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb, bool pull)
78 struct udp_sock *up = udp_sk(sk);
79 struct udphdr *uh;
80 struct ipv6hdr *ip6h;
81 int len;
82 int ip6hlen = sizeof(struct ipv6hdr);
83 __u8 *udpdata;
84 __be32 *udpdata32;
85 u16 encap_type;
87 encap_type = READ_ONCE(up->encap_type);
88 /* if this is not encapsulated socket, then just return now */
89 if (!encap_type)
90 return 1;
92 /* If this is a paged skb, make sure we pull up
93 * whatever data we need to look at. */
94 len = skb->len - sizeof(struct udphdr);
95 if (!pskb_may_pull(skb, sizeof(struct udphdr) + min(len, 8)))
96 return 1;
98 /* Now we can get the pointers */
99 uh = udp_hdr(skb);
100 udpdata = (__u8 *)uh + sizeof(struct udphdr);
101 udpdata32 = (__be32 *)udpdata;
103 switch (encap_type) {
104 default:
105 case UDP_ENCAP_ESPINUDP:
106 /* Check if this is a keepalive packet. If so, eat it. */
107 if (len == 1 && udpdata[0] == 0xff) {
108 return -EINVAL;
109 } else if (len > sizeof(struct ip_esp_hdr) && udpdata32[0] != 0) {
110 /* ESP Packet without Non-ESP header */
111 len = sizeof(struct udphdr);
112 } else
113 /* Must be an IKE packet.. pass it through */
114 return 1;
115 break;
118 /* At this point we are sure that this is an ESPinUDP packet,
119 * so we need to remove 'len' bytes from the packet (the UDP
120 * header and optional ESP marker bytes) and then modify the
121 * protocol to ESP, and then call into the transform receiver.
123 if (skb_unclone(skb, GFP_ATOMIC))
124 return -EINVAL;
126 /* Now we can update and verify the packet length... */
127 ip6h = ipv6_hdr(skb);
128 ip6h->payload_len = htons(ntohs(ip6h->payload_len) - len);
129 if (skb->len < ip6hlen + len) {
130 /* packet is too small!?! */
131 return -EINVAL;
134 /* pull the data buffer up to the ESP header and set the
135 * transport header to point to ESP. Keep UDP on the stack
136 * for later.
138 if (pull) {
139 __skb_pull(skb, len);
140 skb_reset_transport_header(skb);
141 } else {
142 skb_set_transport_header(skb, len);
145 /* process ESP */
146 return 0;
149 /* If it's a keepalive packet, then just eat it.
150 * If it's an encapsulated packet, then pass it to the
151 * IPsec xfrm input.
152 * Returns 0 if skb passed to xfrm or was dropped.
153 * Returns >0 if skb should be passed to UDP.
154 * Returns <0 if skb should be resubmitted (-ret is protocol)
156 int xfrm6_udp_encap_rcv(struct sock *sk, struct sk_buff *skb)
158 int ret;
160 if (skb->protocol == htons(ETH_P_IP))
161 return xfrm4_udp_encap_rcv(sk, skb);
163 ret = __xfrm6_udp_encap_rcv(sk, skb, true);
164 if (!ret)
165 return xfrm6_rcv_encap(skb, IPPROTO_ESP, 0,
166 udp_sk(sk)->encap_type);
168 if (ret < 0) {
169 kfree_skb(skb);
170 return 0;
173 return ret;
176 struct sk_buff *xfrm6_gro_udp_encap_rcv(struct sock *sk, struct list_head *head,
177 struct sk_buff *skb)
179 int offset = skb_gro_offset(skb);
180 const struct net_offload *ops;
181 struct sk_buff *pp = NULL;
182 int ret;
184 if (skb->protocol == htons(ETH_P_IP))
185 return xfrm4_gro_udp_encap_rcv(sk, head, skb);
187 offset = offset - sizeof(struct udphdr);
189 if (!pskb_pull(skb, offset))
190 return NULL;
192 rcu_read_lock();
193 ops = rcu_dereference(inet6_offloads[IPPROTO_ESP]);
194 if (!ops || !ops->callbacks.gro_receive)
195 goto out;
197 ret = __xfrm6_udp_encap_rcv(sk, skb, false);
198 if (ret)
199 goto out;
201 skb_push(skb, offset);
202 NAPI_GRO_CB(skb)->proto = IPPROTO_UDP;
204 pp = call_gro_receive(ops->callbacks.gro_receive, head, skb);
205 rcu_read_unlock();
207 return pp;
209 out:
210 rcu_read_unlock();
211 skb_push(skb, offset);
212 NAPI_GRO_CB(skb)->same_flow = 0;
213 NAPI_GRO_CB(skb)->flush = 1;
215 return NULL;
218 int xfrm6_rcv_tnl(struct sk_buff *skb, struct ip6_tnl *t)
220 return xfrm6_rcv_spi(skb, skb_network_header(skb)[IP6CB(skb)->nhoff],
221 0, t);
223 EXPORT_SYMBOL(xfrm6_rcv_tnl);
225 int xfrm6_rcv(struct sk_buff *skb)
227 return xfrm6_rcv_tnl(skb, NULL);
229 EXPORT_SYMBOL(xfrm6_rcv);
230 int xfrm6_input_addr(struct sk_buff *skb, xfrm_address_t *daddr,
231 xfrm_address_t *saddr, u8 proto)
233 struct net *net = dev_net(skb->dev);
234 struct xfrm_state *x = NULL;
235 struct sec_path *sp;
236 int i = 0;
238 sp = secpath_set(skb);
239 if (!sp) {
240 XFRM_INC_STATS(net, LINUX_MIB_XFRMINERROR);
241 goto drop;
244 if (1 + sp->len == XFRM_MAX_DEPTH) {
245 XFRM_INC_STATS(net, LINUX_MIB_XFRMINBUFFERERROR);
246 goto drop;
249 for (i = 0; i < 3; i++) {
250 xfrm_address_t *dst, *src;
252 switch (i) {
253 case 0:
254 dst = daddr;
255 src = saddr;
256 break;
257 case 1:
258 /* lookup state with wild-card source address */
259 dst = daddr;
260 src = (xfrm_address_t *)&in6addr_any;
261 break;
262 default:
263 /* lookup state with wild-card addresses */
264 dst = (xfrm_address_t *)&in6addr_any;
265 src = (xfrm_address_t *)&in6addr_any;
266 break;
269 x = xfrm_state_lookup_byaddr(net, skb->mark, dst, src, proto, AF_INET6);
270 if (!x)
271 continue;
273 if (unlikely(x->dir && x->dir != XFRM_SA_DIR_IN)) {
274 XFRM_INC_STATS(net, LINUX_MIB_XFRMINSTATEDIRERROR);
275 xfrm_state_put(x);
276 x = NULL;
277 continue;
280 spin_lock(&x->lock);
282 if ((!i || (x->props.flags & XFRM_STATE_WILDRECV)) &&
283 likely(x->km.state == XFRM_STATE_VALID) &&
284 !xfrm_state_check_expire(x)) {
285 spin_unlock(&x->lock);
286 if (x->type->input(x, skb) > 0) {
287 /* found a valid state */
288 break;
290 } else
291 spin_unlock(&x->lock);
293 xfrm_state_put(x);
294 x = NULL;
297 if (!x) {
298 XFRM_INC_STATS(net, LINUX_MIB_XFRMINNOSTATES);
299 xfrm_audit_state_notfound_simple(skb, AF_INET6);
300 goto drop;
303 sp->xvec[sp->len++] = x;
305 spin_lock(&x->lock);
307 x->curlft.bytes += skb->len;
308 x->curlft.packets++;
310 spin_unlock(&x->lock);
312 return 1;
314 drop:
315 return -1;
317 EXPORT_SYMBOL(xfrm6_input_addr);