1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2010-2013 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2019-2022 Intel Corporation
6 #include <linux/netdevice.h>
7 #include <linux/types.h>
8 #include <linux/skbuff.h>
9 #include <linux/debugfs.h>
10 #include <linux/random.h>
11 #include <linux/moduleparam.h>
12 #include <linux/ieee80211.h>
13 #include <linux/minmax.h>
14 #include <net/mac80211.h>
17 #include "rc80211_minstrel_ht.h"
19 #define AVG_AMPDU_SIZE 16
20 #define AVG_PKT_SIZE 1200
22 /* Number of bits for an average sized packet */
23 #define MCS_NBITS ((AVG_PKT_SIZE * AVG_AMPDU_SIZE) << 3)
25 /* Number of symbols for a packet with (bps) bits per symbol */
26 #define MCS_NSYMS(bps) DIV_ROUND_UP(MCS_NBITS, (bps))
28 /* Transmission time (nanoseconds) for a packet containing (syms) symbols */
29 #define MCS_SYMBOL_TIME(sgi, syms) \
31 ((syms) * 18000 + 4000) / 5 : /* syms * 3.6 us */ \
32 ((syms) * 1000) << 2 /* syms * 4 us */ \
35 /* Transmit duration for the raw data part of an average sized packet */
36 #define MCS_DURATION(streams, sgi, bps) \
37 (MCS_SYMBOL_TIME(sgi, MCS_NSYMS((streams) * (bps))) / AVG_AMPDU_SIZE)
44 * Define group sort order: HT40 -> SGI -> #streams
46 #define GROUP_IDX(_streams, _sgi, _ht40) \
47 MINSTREL_HT_GROUP_0 + \
48 MINSTREL_MAX_STREAMS * 2 * _ht40 + \
49 MINSTREL_MAX_STREAMS * _sgi + \
52 #define _MAX(a, b) (((a)>(b))?(a):(b))
54 #define GROUP_SHIFT(duration) \
55 _MAX(0, 16 - __builtin_clz(duration))
57 /* MCS rate information for an MCS group */
58 #define __MCS_GROUP(_streams, _sgi, _ht40, _s) \
59 [GROUP_IDX(_streams, _sgi, _ht40)] = { \
60 .streams = _streams, \
64 IEEE80211_TX_RC_MCS | \
65 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \
66 (_ht40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \
68 MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26) >> _s, \
69 MCS_DURATION(_streams, _sgi, _ht40 ? 108 : 52) >> _s, \
70 MCS_DURATION(_streams, _sgi, _ht40 ? 162 : 78) >> _s, \
71 MCS_DURATION(_streams, _sgi, _ht40 ? 216 : 104) >> _s, \
72 MCS_DURATION(_streams, _sgi, _ht40 ? 324 : 156) >> _s, \
73 MCS_DURATION(_streams, _sgi, _ht40 ? 432 : 208) >> _s, \
74 MCS_DURATION(_streams, _sgi, _ht40 ? 486 : 234) >> _s, \
75 MCS_DURATION(_streams, _sgi, _ht40 ? 540 : 260) >> _s \
79 #define MCS_GROUP_SHIFT(_streams, _sgi, _ht40) \
80 GROUP_SHIFT(MCS_DURATION(_streams, _sgi, _ht40 ? 54 : 26))
82 #define MCS_GROUP(_streams, _sgi, _ht40) \
83 __MCS_GROUP(_streams, _sgi, _ht40, \
84 MCS_GROUP_SHIFT(_streams, _sgi, _ht40))
86 #define VHT_GROUP_IDX(_streams, _sgi, _bw) \
87 (MINSTREL_VHT_GROUP_0 + \
88 MINSTREL_MAX_STREAMS * 2 * (_bw) + \
89 MINSTREL_MAX_STREAMS * (_sgi) + \
92 #define BW2VBPS(_bw, r3, r2, r1) \
93 (_bw == BW_80 ? r3 : _bw == BW_40 ? r2 : r1)
95 #define __VHT_GROUP(_streams, _sgi, _bw, _s) \
96 [VHT_GROUP_IDX(_streams, _sgi, _bw)] = { \
97 .streams = _streams, \
101 IEEE80211_TX_RC_VHT_MCS | \
102 (_sgi ? IEEE80211_TX_RC_SHORT_GI : 0) | \
103 (_bw == BW_80 ? IEEE80211_TX_RC_80_MHZ_WIDTH : \
104 _bw == BW_40 ? IEEE80211_TX_RC_40_MHZ_WIDTH : 0), \
106 MCS_DURATION(_streams, _sgi, \
107 BW2VBPS(_bw, 117, 54, 26)) >> _s, \
108 MCS_DURATION(_streams, _sgi, \
109 BW2VBPS(_bw, 234, 108, 52)) >> _s, \
110 MCS_DURATION(_streams, _sgi, \
111 BW2VBPS(_bw, 351, 162, 78)) >> _s, \
112 MCS_DURATION(_streams, _sgi, \
113 BW2VBPS(_bw, 468, 216, 104)) >> _s, \
114 MCS_DURATION(_streams, _sgi, \
115 BW2VBPS(_bw, 702, 324, 156)) >> _s, \
116 MCS_DURATION(_streams, _sgi, \
117 BW2VBPS(_bw, 936, 432, 208)) >> _s, \
118 MCS_DURATION(_streams, _sgi, \
119 BW2VBPS(_bw, 1053, 486, 234)) >> _s, \
120 MCS_DURATION(_streams, _sgi, \
121 BW2VBPS(_bw, 1170, 540, 260)) >> _s, \
122 MCS_DURATION(_streams, _sgi, \
123 BW2VBPS(_bw, 1404, 648, 312)) >> _s, \
124 MCS_DURATION(_streams, _sgi, \
125 BW2VBPS(_bw, 1560, 720, 346)) >> _s \
129 #define VHT_GROUP_SHIFT(_streams, _sgi, _bw) \
130 GROUP_SHIFT(MCS_DURATION(_streams, _sgi, \
131 BW2VBPS(_bw, 117, 54, 26)))
133 #define VHT_GROUP(_streams, _sgi, _bw) \
134 __VHT_GROUP(_streams, _sgi, _bw, \
135 VHT_GROUP_SHIFT(_streams, _sgi, _bw))
137 #define CCK_DURATION(_bitrate, _short) \
138 (1000 * (10 /* SIFS */ + \
139 (_short ? 72 + 24 : 144 + 48) + \
140 (8 * (AVG_PKT_SIZE + 4) * 10) / (_bitrate)))
142 #define CCK_DURATION_LIST(_short, _s) \
143 CCK_DURATION(10, _short) >> _s, \
144 CCK_DURATION(20, _short) >> _s, \
145 CCK_DURATION(55, _short) >> _s, \
146 CCK_DURATION(110, _short) >> _s
148 #define __CCK_GROUP(_s) \
149 [MINSTREL_CCK_GROUP] = { \
154 CCK_DURATION_LIST(false, _s), \
155 CCK_DURATION_LIST(true, _s) \
159 #define CCK_GROUP_SHIFT \
160 GROUP_SHIFT(CCK_DURATION(10, false))
162 #define CCK_GROUP __CCK_GROUP(CCK_GROUP_SHIFT)
164 #define OFDM_DURATION(_bitrate) \
165 (1000 * (16 /* SIFS + signal ext */ + \
166 16 /* T_PREAMBLE */ + \
168 4 * (((16 + 80 * (AVG_PKT_SIZE + 4) + 6) / \
171 #define OFDM_DURATION_LIST(_s) \
172 OFDM_DURATION(60) >> _s, \
173 OFDM_DURATION(90) >> _s, \
174 OFDM_DURATION(120) >> _s, \
175 OFDM_DURATION(180) >> _s, \
176 OFDM_DURATION(240) >> _s, \
177 OFDM_DURATION(360) >> _s, \
178 OFDM_DURATION(480) >> _s, \
179 OFDM_DURATION(540) >> _s
181 #define __OFDM_GROUP(_s) \
182 [MINSTREL_OFDM_GROUP] = { \
187 OFDM_DURATION_LIST(_s), \
191 #define OFDM_GROUP_SHIFT \
192 GROUP_SHIFT(OFDM_DURATION(60))
194 #define OFDM_GROUP __OFDM_GROUP(OFDM_GROUP_SHIFT)
197 static bool minstrel_vht_only
= true;
198 module_param(minstrel_vht_only
, bool, 0644);
199 MODULE_PARM_DESC(minstrel_vht_only
,
200 "Use only VHT rates when VHT is supported by sta.");
203 * To enable sufficiently targeted rate sampling, MCS rates are divided into
204 * groups, based on the number of streams and flags (HT40, SGI) that they
207 * Sortorder has to be fixed for GROUP_IDX macro to be applicable:
208 * BW -> SGI -> #streams
210 const struct mcs_group minstrel_mcs_groups
[] = {
211 MCS_GROUP(1, 0, BW_20
),
212 MCS_GROUP(2, 0, BW_20
),
213 MCS_GROUP(3, 0, BW_20
),
214 MCS_GROUP(4, 0, BW_20
),
216 MCS_GROUP(1, 1, BW_20
),
217 MCS_GROUP(2, 1, BW_20
),
218 MCS_GROUP(3, 1, BW_20
),
219 MCS_GROUP(4, 1, BW_20
),
221 MCS_GROUP(1, 0, BW_40
),
222 MCS_GROUP(2, 0, BW_40
),
223 MCS_GROUP(3, 0, BW_40
),
224 MCS_GROUP(4, 0, BW_40
),
226 MCS_GROUP(1, 1, BW_40
),
227 MCS_GROUP(2, 1, BW_40
),
228 MCS_GROUP(3, 1, BW_40
),
229 MCS_GROUP(4, 1, BW_40
),
234 VHT_GROUP(1, 0, BW_20
),
235 VHT_GROUP(2, 0, BW_20
),
236 VHT_GROUP(3, 0, BW_20
),
237 VHT_GROUP(4, 0, BW_20
),
239 VHT_GROUP(1, 1, BW_20
),
240 VHT_GROUP(2, 1, BW_20
),
241 VHT_GROUP(3, 1, BW_20
),
242 VHT_GROUP(4, 1, BW_20
),
244 VHT_GROUP(1, 0, BW_40
),
245 VHT_GROUP(2, 0, BW_40
),
246 VHT_GROUP(3, 0, BW_40
),
247 VHT_GROUP(4, 0, BW_40
),
249 VHT_GROUP(1, 1, BW_40
),
250 VHT_GROUP(2, 1, BW_40
),
251 VHT_GROUP(3, 1, BW_40
),
252 VHT_GROUP(4, 1, BW_40
),
254 VHT_GROUP(1, 0, BW_80
),
255 VHT_GROUP(2, 0, BW_80
),
256 VHT_GROUP(3, 0, BW_80
),
257 VHT_GROUP(4, 0, BW_80
),
259 VHT_GROUP(1, 1, BW_80
),
260 VHT_GROUP(2, 1, BW_80
),
261 VHT_GROUP(3, 1, BW_80
),
262 VHT_GROUP(4, 1, BW_80
),
265 const s16 minstrel_cck_bitrates
[4] = { 10, 20, 55, 110 };
266 const s16 minstrel_ofdm_bitrates
[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
267 static u8 sample_table
[SAMPLE_COLUMNS
][MCS_GROUP_RATES
] __read_mostly
;
268 static const u8 minstrel_sample_seq
[] = {
269 MINSTREL_SAMPLE_TYPE_INC
,
270 MINSTREL_SAMPLE_TYPE_JUMP
,
271 MINSTREL_SAMPLE_TYPE_INC
,
272 MINSTREL_SAMPLE_TYPE_JUMP
,
273 MINSTREL_SAMPLE_TYPE_INC
,
274 MINSTREL_SAMPLE_TYPE_SLOW
,
278 minstrel_ht_update_rates(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
);
281 * Some VHT MCSes are invalid (when Ndbps / Nes is not an integer)
282 * e.g for MCS9@20MHzx1Nss: Ndbps=8x52*(5/6) Nes=1
284 * Returns the valid mcs map for struct minstrel_mcs_group_data.supported
287 minstrel_get_valid_vht_rates(int bw
, int nss
, __le16 mcs_map
)
292 if (nss
!= 3 && nss
!= 6)
294 } else if (bw
== BW_80
) {
295 if (nss
== 3 || nss
== 7)
300 WARN_ON(bw
!= BW_40
);
303 switch ((le16_to_cpu(mcs_map
) >> (2 * (nss
- 1))) & 3) {
304 case IEEE80211_VHT_MCS_SUPPORT_0_7
:
307 case IEEE80211_VHT_MCS_SUPPORT_0_8
:
310 case IEEE80211_VHT_MCS_SUPPORT_0_9
:
316 return 0x3ff & ~mask
;
320 minstrel_ht_is_legacy_group(int group
)
322 return group
== MINSTREL_CCK_GROUP
||
323 group
== MINSTREL_OFDM_GROUP
;
327 * Look up an MCS group index based on mac80211 rate information
330 minstrel_ht_get_group_idx(struct ieee80211_tx_rate
*rate
)
332 return GROUP_IDX((rate
->idx
/ 8) + 1,
333 !!(rate
->flags
& IEEE80211_TX_RC_SHORT_GI
),
334 !!(rate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
));
338 * Look up an MCS group index based on new cfg80211 rate_info.
341 minstrel_ht_ri_get_group_idx(struct rate_info
*rate
)
343 return GROUP_IDX((rate
->mcs
/ 8) + 1,
344 !!(rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
),
345 !!(rate
->bw
& RATE_INFO_BW_40
));
349 minstrel_vht_get_group_idx(struct ieee80211_tx_rate
*rate
)
351 return VHT_GROUP_IDX(ieee80211_rate_get_vht_nss(rate
),
352 !!(rate
->flags
& IEEE80211_TX_RC_SHORT_GI
),
353 !!(rate
->flags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) +
354 2*!!(rate
->flags
& IEEE80211_TX_RC_80_MHZ_WIDTH
));
358 * Look up an MCS group index based on new cfg80211 rate_info.
361 minstrel_vht_ri_get_group_idx(struct rate_info
*rate
)
363 return VHT_GROUP_IDX(rate
->nss
,
364 !!(rate
->flags
& RATE_INFO_FLAGS_SHORT_GI
),
365 !!(rate
->bw
& RATE_INFO_BW_40
) +
366 2*!!(rate
->bw
& RATE_INFO_BW_80
));
369 static struct minstrel_rate_stats
*
370 minstrel_ht_get_stats(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
,
371 struct ieee80211_tx_rate
*rate
)
375 if (rate
->flags
& IEEE80211_TX_RC_MCS
) {
376 group
= minstrel_ht_get_group_idx(rate
);
381 if (rate
->flags
& IEEE80211_TX_RC_VHT_MCS
) {
382 group
= minstrel_vht_get_group_idx(rate
);
383 idx
= ieee80211_rate_get_vht_mcs(rate
);
387 group
= MINSTREL_CCK_GROUP
;
388 for (idx
= 0; idx
< ARRAY_SIZE(mp
->cck_rates
); idx
++) {
389 if (!(mi
->supported
[group
] & BIT(idx
)))
392 if (rate
->idx
!= mp
->cck_rates
[idx
])
396 if ((mi
->supported
[group
] & BIT(idx
+ 4)) &&
397 (rate
->flags
& IEEE80211_TX_RC_USE_SHORT_PREAMBLE
))
402 group
= MINSTREL_OFDM_GROUP
;
403 for (idx
= 0; idx
< ARRAY_SIZE(mp
->ofdm_rates
[0]); idx
++)
404 if (rate
->idx
== mp
->ofdm_rates
[mi
->band
][idx
])
409 return &mi
->groups
[group
].rates
[idx
];
413 * Get the minstrel rate statistics for specified STA and rate info.
415 static struct minstrel_rate_stats
*
416 minstrel_ht_ri_get_stats(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
,
417 struct ieee80211_rate_status
*rate_status
)
420 struct rate_info
*rate
= &rate_status
->rate_idx
;
422 if (rate
->flags
& RATE_INFO_FLAGS_MCS
) {
423 group
= minstrel_ht_ri_get_group_idx(rate
);
428 if (rate
->flags
& RATE_INFO_FLAGS_VHT_MCS
) {
429 group
= minstrel_vht_ri_get_group_idx(rate
);
434 group
= MINSTREL_CCK_GROUP
;
435 for (idx
= 0; idx
< ARRAY_SIZE(mp
->cck_rates
); idx
++) {
436 if (rate
->legacy
!= minstrel_cck_bitrates
[ mp
->cck_rates
[idx
] ])
440 if ((mi
->supported
[group
] & BIT(idx
+ 4)) &&
441 mi
->use_short_preamble
)
446 group
= MINSTREL_OFDM_GROUP
;
447 for (idx
= 0; idx
< ARRAY_SIZE(mp
->ofdm_rates
[0]); idx
++)
448 if (rate
->legacy
== minstrel_ofdm_bitrates
[ mp
->ofdm_rates
[mi
->band
][idx
] ])
453 return &mi
->groups
[group
].rates
[idx
];
456 static inline struct minstrel_rate_stats
*
457 minstrel_get_ratestats(struct minstrel_ht_sta
*mi
, int index
)
459 return &mi
->groups
[MI_RATE_GROUP(index
)].rates
[MI_RATE_IDX(index
)];
462 static inline int minstrel_get_duration(int index
)
464 const struct mcs_group
*group
= &minstrel_mcs_groups
[MI_RATE_GROUP(index
)];
465 unsigned int duration
= group
->duration
[MI_RATE_IDX(index
)];
467 return duration
<< group
->shift
;
471 minstrel_ht_avg_ampdu_len(struct minstrel_ht_sta
*mi
)
475 if (mi
->avg_ampdu_len
)
476 return MINSTREL_TRUNC(mi
->avg_ampdu_len
);
478 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(mi
->max_tp_rate
[0])))
481 duration
= minstrel_get_duration(mi
->max_tp_rate
[0]);
483 if (duration
> 400 * 1000)
486 if (duration
> 250 * 1000)
489 if (duration
> 150 * 1000)
496 * Return current throughput based on the average A-MPDU length, taking into
497 * account the expected number of retransmissions and their expected length
500 minstrel_ht_get_tp_avg(struct minstrel_ht_sta
*mi
, int group
, int rate
,
503 unsigned int nsecs
= 0, overhead
= mi
->overhead
;
504 unsigned int ampdu_len
= 1;
506 /* do not account throughput if success prob is below 10% */
507 if (prob_avg
< MINSTREL_FRAC(10, 100))
510 if (minstrel_ht_is_legacy_group(group
))
511 overhead
= mi
->overhead_legacy
;
513 ampdu_len
= minstrel_ht_avg_ampdu_len(mi
);
515 nsecs
= 1000 * overhead
/ ampdu_len
;
516 nsecs
+= minstrel_mcs_groups
[group
].duration
[rate
] <<
517 minstrel_mcs_groups
[group
].shift
;
520 * For the throughput calculation, limit the probability value to 90% to
521 * account for collision related packet error rate fluctuation
522 * (prob is scaled - see MINSTREL_FRAC above)
524 if (prob_avg
> MINSTREL_FRAC(90, 100))
525 prob_avg
= MINSTREL_FRAC(90, 100);
527 return MINSTREL_TRUNC(100 * ((prob_avg
* 1000000) / nsecs
));
531 * Find & sort topmost throughput rates
533 * If multiple rates provide equal throughput the sorting is based on their
534 * current success probability. Higher success probability is preferred among
535 * MCS groups, CCK rates do not provide aggregation and are therefore at last.
538 minstrel_ht_sort_best_tp_rates(struct minstrel_ht_sta
*mi
, u16 index
,
541 int cur_group
, cur_idx
, cur_tp_avg
, cur_prob
;
542 int tmp_group
, tmp_idx
, tmp_tp_avg
, tmp_prob
;
543 int j
= MAX_THR_RATES
;
545 cur_group
= MI_RATE_GROUP(index
);
546 cur_idx
= MI_RATE_IDX(index
);
547 cur_prob
= mi
->groups
[cur_group
].rates
[cur_idx
].prob_avg
;
548 cur_tp_avg
= minstrel_ht_get_tp_avg(mi
, cur_group
, cur_idx
, cur_prob
);
551 tmp_group
= MI_RATE_GROUP(tp_list
[j
- 1]);
552 tmp_idx
= MI_RATE_IDX(tp_list
[j
- 1]);
553 tmp_prob
= mi
->groups
[tmp_group
].rates
[tmp_idx
].prob_avg
;
554 tmp_tp_avg
= minstrel_ht_get_tp_avg(mi
, tmp_group
, tmp_idx
,
556 if (cur_tp_avg
< tmp_tp_avg
||
557 (cur_tp_avg
== tmp_tp_avg
&& cur_prob
<= tmp_prob
))
562 if (j
< MAX_THR_RATES
- 1) {
563 memmove(&tp_list
[j
+ 1], &tp_list
[j
], (sizeof(*tp_list
) *
564 (MAX_THR_RATES
- (j
+ 1))));
566 if (j
< MAX_THR_RATES
)
571 * Find and set the topmost probability rate per sta and per group
574 minstrel_ht_set_best_prob_rate(struct minstrel_ht_sta
*mi
, u16
*dest
, u16 index
)
576 struct minstrel_mcs_group_data
*mg
;
577 struct minstrel_rate_stats
*mrs
;
578 int tmp_group
, tmp_idx
, tmp_tp_avg
, tmp_prob
;
579 int max_tp_group
, max_tp_idx
, max_tp_prob
;
580 int cur_tp_avg
, cur_group
, cur_idx
;
581 int max_gpr_group
, max_gpr_idx
;
582 int max_gpr_tp_avg
, max_gpr_prob
;
584 cur_group
= MI_RATE_GROUP(index
);
585 cur_idx
= MI_RATE_IDX(index
);
586 mg
= &mi
->groups
[cur_group
];
587 mrs
= &mg
->rates
[cur_idx
];
589 tmp_group
= MI_RATE_GROUP(*dest
);
590 tmp_idx
= MI_RATE_IDX(*dest
);
591 tmp_prob
= mi
->groups
[tmp_group
].rates
[tmp_idx
].prob_avg
;
592 tmp_tp_avg
= minstrel_ht_get_tp_avg(mi
, tmp_group
, tmp_idx
, tmp_prob
);
594 /* if max_tp_rate[0] is from MCS_GROUP max_prob_rate get selected from
595 * MCS_GROUP as well as CCK_GROUP rates do not allow aggregation */
596 max_tp_group
= MI_RATE_GROUP(mi
->max_tp_rate
[0]);
597 max_tp_idx
= MI_RATE_IDX(mi
->max_tp_rate
[0]);
598 max_tp_prob
= mi
->groups
[max_tp_group
].rates
[max_tp_idx
].prob_avg
;
600 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index
)) &&
601 !minstrel_ht_is_legacy_group(max_tp_group
))
604 /* skip rates faster than max tp rate with lower prob */
605 if (minstrel_get_duration(mi
->max_tp_rate
[0]) > minstrel_get_duration(index
) &&
606 mrs
->prob_avg
< max_tp_prob
)
609 max_gpr_group
= MI_RATE_GROUP(mg
->max_group_prob_rate
);
610 max_gpr_idx
= MI_RATE_IDX(mg
->max_group_prob_rate
);
611 max_gpr_prob
= mi
->groups
[max_gpr_group
].rates
[max_gpr_idx
].prob_avg
;
613 if (mrs
->prob_avg
> MINSTREL_FRAC(75, 100)) {
614 cur_tp_avg
= minstrel_ht_get_tp_avg(mi
, cur_group
, cur_idx
,
616 if (cur_tp_avg
> tmp_tp_avg
)
619 max_gpr_tp_avg
= minstrel_ht_get_tp_avg(mi
, max_gpr_group
,
622 if (cur_tp_avg
> max_gpr_tp_avg
)
623 mg
->max_group_prob_rate
= index
;
625 if (mrs
->prob_avg
> tmp_prob
)
627 if (mrs
->prob_avg
> max_gpr_prob
)
628 mg
->max_group_prob_rate
= index
;
634 * Assign new rate set per sta and use CCK rates only if the fastest
635 * rate (max_tp_rate[0]) is from CCK group. This prohibits such sorted
636 * rate sets where MCS and CCK rates are mixed, because CCK rates can
637 * not use aggregation.
640 minstrel_ht_assign_best_tp_rates(struct minstrel_ht_sta
*mi
,
641 u16 tmp_mcs_tp_rate
[MAX_THR_RATES
],
642 u16 tmp_legacy_tp_rate
[MAX_THR_RATES
])
644 unsigned int tmp_group
, tmp_idx
, tmp_cck_tp
, tmp_mcs_tp
, tmp_prob
;
647 tmp_group
= MI_RATE_GROUP(tmp_legacy_tp_rate
[0]);
648 tmp_idx
= MI_RATE_IDX(tmp_legacy_tp_rate
[0]);
649 tmp_prob
= mi
->groups
[tmp_group
].rates
[tmp_idx
].prob_avg
;
650 tmp_cck_tp
= minstrel_ht_get_tp_avg(mi
, tmp_group
, tmp_idx
, tmp_prob
);
652 tmp_group
= MI_RATE_GROUP(tmp_mcs_tp_rate
[0]);
653 tmp_idx
= MI_RATE_IDX(tmp_mcs_tp_rate
[0]);
654 tmp_prob
= mi
->groups
[tmp_group
].rates
[tmp_idx
].prob_avg
;
655 tmp_mcs_tp
= minstrel_ht_get_tp_avg(mi
, tmp_group
, tmp_idx
, tmp_prob
);
657 if (tmp_cck_tp
> tmp_mcs_tp
) {
658 for(i
= 0; i
< MAX_THR_RATES
; i
++) {
659 minstrel_ht_sort_best_tp_rates(mi
, tmp_legacy_tp_rate
[i
],
667 * Try to increase robustness of max_prob rate by decrease number of
668 * streams if possible.
671 minstrel_ht_prob_rate_reduce_streams(struct minstrel_ht_sta
*mi
)
673 struct minstrel_mcs_group_data
*mg
;
674 int tmp_max_streams
, group
, tmp_idx
, tmp_prob
;
677 if (!mi
->sta
->deflink
.ht_cap
.ht_supported
)
680 group
= MI_RATE_GROUP(mi
->max_tp_rate
[0]);
681 tmp_max_streams
= minstrel_mcs_groups
[group
].streams
;
682 for (group
= 0; group
< ARRAY_SIZE(minstrel_mcs_groups
); group
++) {
683 mg
= &mi
->groups
[group
];
684 if (!mi
->supported
[group
] || group
== MINSTREL_CCK_GROUP
)
687 tmp_idx
= MI_RATE_IDX(mg
->max_group_prob_rate
);
688 tmp_prob
= mi
->groups
[group
].rates
[tmp_idx
].prob_avg
;
690 if (tmp_tp
< minstrel_ht_get_tp_avg(mi
, group
, tmp_idx
, tmp_prob
) &&
691 (minstrel_mcs_groups
[group
].streams
< tmp_max_streams
)) {
692 mi
->max_prob_rate
= mg
->max_group_prob_rate
;
693 tmp_tp
= minstrel_ht_get_tp_avg(mi
, group
,
701 __minstrel_ht_get_sample_rate(struct minstrel_ht_sta
*mi
,
702 enum minstrel_sample_type type
)
704 u16
*rates
= mi
->sample
[type
].sample_rates
;
708 for (i
= 0; i
< MINSTREL_SAMPLE_RATES
; i
++) {
721 minstrel_ewma(int old
, int new, int weight
)
726 incr
= (EWMA_DIV
- weight
) * diff
/ EWMA_DIV
;
731 static inline int minstrel_filter_avg_add(u16
*prev_1
, u16
*prev_2
, s32 in
)
745 val
= MINSTREL_AVG_COEFF1
* in
;
746 val
+= MINSTREL_AVG_COEFF2
* out_1
;
747 val
+= MINSTREL_AVG_COEFF3
* out_2
;
748 val
>>= MINSTREL_SCALE
;
750 if (val
> 1 << MINSTREL_SCALE
)
751 val
= 1 << MINSTREL_SCALE
;
763 * Recalculate statistics and counters of a given rate
766 minstrel_ht_calc_rate_stats(struct minstrel_priv
*mp
,
767 struct minstrel_rate_stats
*mrs
)
769 unsigned int cur_prob
;
771 if (unlikely(mrs
->attempts
> 0)) {
772 cur_prob
= MINSTREL_FRAC(mrs
->success
, mrs
->attempts
);
773 minstrel_filter_avg_add(&mrs
->prob_avg
,
774 &mrs
->prob_avg_1
, cur_prob
);
775 mrs
->att_hist
+= mrs
->attempts
;
776 mrs
->succ_hist
+= mrs
->success
;
779 mrs
->last_success
= mrs
->success
;
780 mrs
->last_attempts
= mrs
->attempts
;
786 minstrel_ht_find_sample_rate(struct minstrel_ht_sta
*mi
, int type
, int idx
)
790 for (i
= 0; i
< MINSTREL_SAMPLE_RATES
; i
++) {
791 u16 cur
= mi
->sample
[type
].sample_rates
[i
];
804 minstrel_ht_move_sample_rates(struct minstrel_ht_sta
*mi
, int type
,
805 u32 fast_rate_dur
, u32 slow_rate_dur
)
807 u16
*rates
= mi
->sample
[type
].sample_rates
;
810 for (i
= 0, j
= 0; i
< MINSTREL_SAMPLE_RATES
; i
++) {
819 duration
= minstrel_get_duration(cur
);
821 case MINSTREL_SAMPLE_TYPE_SLOW
:
822 valid
= duration
> fast_rate_dur
&&
823 duration
< slow_rate_dur
;
825 case MINSTREL_SAMPLE_TYPE_INC
:
826 case MINSTREL_SAMPLE_TYPE_JUMP
:
827 valid
= duration
< fast_rate_dur
;
850 minstrel_ht_group_min_rate_offset(struct minstrel_ht_sta
*mi
, int group
,
853 u16 supported
= mi
->supported
[group
];
856 for (i
= 0; i
< MCS_GROUP_RATES
&& supported
; i
++, supported
>>= 1) {
857 if (!(supported
& BIT(0)))
860 if (minstrel_get_duration(MI_RATE(group
, i
)) >= max_duration
)
870 * Incremental update rates:
871 * Flip through groups and pick the first group rate that is faster than the
872 * highest currently selected rate
875 minstrel_ht_next_inc_rate(struct minstrel_ht_sta
*mi
, u32 fast_rate_dur
)
877 u8 type
= MINSTREL_SAMPLE_TYPE_INC
;
881 group
= mi
->sample
[type
].sample_group
;
882 for (i
= 0; i
< ARRAY_SIZE(minstrel_mcs_groups
); i
++) {
883 group
= (group
+ 1) % ARRAY_SIZE(minstrel_mcs_groups
);
885 index
= minstrel_ht_group_min_rate_offset(mi
, group
,
890 index
= MI_RATE(group
, index
& 0xf);
891 if (!minstrel_ht_find_sample_rate(mi
, type
, index
))
897 mi
->sample
[type
].sample_group
= group
;
903 minstrel_ht_next_group_sample_rate(struct minstrel_ht_sta
*mi
, int group
,
904 u16 supported
, int offset
)
906 struct minstrel_mcs_group_data
*mg
= &mi
->groups
[group
];
910 for (i
= 0; i
< MCS_GROUP_RATES
; i
++) {
911 idx
= sample_table
[mg
->column
][mg
->index
];
912 if (++mg
->index
>= MCS_GROUP_RATES
) {
914 if (++mg
->column
>= ARRAY_SIZE(sample_table
))
921 if (!(supported
& BIT(idx
)))
924 return MI_RATE(group
, idx
);
932 * Sample random rates, use those that are faster than the highest
933 * currently selected rate. Rates between the fastest and the slowest
934 * get sorted into the slow sample bucket, but only if it has room
937 minstrel_ht_next_jump_rate(struct minstrel_ht_sta
*mi
, u32 fast_rate_dur
,
938 u32 slow_rate_dur
, int *slow_rate_ofs
)
940 struct minstrel_rate_stats
*mrs
;
941 u32 max_duration
= slow_rate_dur
;
942 int i
, index
, offset
;
948 if (*slow_rate_ofs
>= MINSTREL_SAMPLE_RATES
)
949 max_duration
= fast_rate_dur
;
951 slow_rates
= mi
->sample
[MINSTREL_SAMPLE_TYPE_SLOW
].sample_rates
;
952 group
= mi
->sample
[MINSTREL_SAMPLE_TYPE_JUMP
].sample_group
;
953 for (i
= 0; i
< ARRAY_SIZE(minstrel_mcs_groups
); i
++) {
956 group
= (group
+ 1) % ARRAY_SIZE(minstrel_mcs_groups
);
958 supported
= mi
->supported
[group
];
962 offset
= minstrel_ht_group_min_rate_offset(mi
, group
,
967 index
= minstrel_ht_next_group_sample_rate(mi
, group
, supported
,
972 duration
= minstrel_get_duration(index
);
973 if (duration
< fast_rate_dur
)
974 type
= MINSTREL_SAMPLE_TYPE_JUMP
;
976 type
= MINSTREL_SAMPLE_TYPE_SLOW
;
978 if (minstrel_ht_find_sample_rate(mi
, type
, index
))
981 if (type
== MINSTREL_SAMPLE_TYPE_JUMP
)
984 if (*slow_rate_ofs
>= MINSTREL_SAMPLE_RATES
)
987 if (duration
>= slow_rate_dur
)
990 /* skip slow rates with high success probability */
991 mrs
= minstrel_get_ratestats(mi
, index
);
992 if (mrs
->prob_avg
> MINSTREL_FRAC(95, 100))
995 slow_rates
[(*slow_rate_ofs
)++] = index
;
996 if (*slow_rate_ofs
>= MINSTREL_SAMPLE_RATES
)
997 max_duration
= fast_rate_dur
;
1002 mi
->sample
[MINSTREL_SAMPLE_TYPE_JUMP
].sample_group
= group
;
1008 minstrel_ht_refill_sample_rates(struct minstrel_ht_sta
*mi
)
1010 u32 prob_dur
= minstrel_get_duration(mi
->max_prob_rate
);
1011 u32 tp_dur
= minstrel_get_duration(mi
->max_tp_rate
[0]);
1012 u32 tp2_dur
= minstrel_get_duration(mi
->max_tp_rate
[1]);
1013 u32 fast_rate_dur
= min(min(tp_dur
, tp2_dur
), prob_dur
);
1014 u32 slow_rate_dur
= max(max(tp_dur
, tp2_dur
), prob_dur
);
1018 rates
= mi
->sample
[MINSTREL_SAMPLE_TYPE_INC
].sample_rates
;
1019 i
= minstrel_ht_move_sample_rates(mi
, MINSTREL_SAMPLE_TYPE_INC
,
1020 fast_rate_dur
, slow_rate_dur
);
1021 while (i
< MINSTREL_SAMPLE_RATES
) {
1022 rates
[i
] = minstrel_ht_next_inc_rate(mi
, tp_dur
);
1029 rates
= mi
->sample
[MINSTREL_SAMPLE_TYPE_JUMP
].sample_rates
;
1030 i
= minstrel_ht_move_sample_rates(mi
, MINSTREL_SAMPLE_TYPE_JUMP
,
1031 fast_rate_dur
, slow_rate_dur
);
1032 j
= minstrel_ht_move_sample_rates(mi
, MINSTREL_SAMPLE_TYPE_SLOW
,
1033 fast_rate_dur
, slow_rate_dur
);
1034 while (i
< MINSTREL_SAMPLE_RATES
) {
1035 rates
[i
] = minstrel_ht_next_jump_rate(mi
, fast_rate_dur
,
1043 for (i
= 0; i
< ARRAY_SIZE(mi
->sample
); i
++)
1044 memcpy(mi
->sample
[i
].cur_sample_rates
, mi
->sample
[i
].sample_rates
,
1045 sizeof(mi
->sample
[i
].cur_sample_rates
));
1050 * Update rate statistics and select new primary rates
1052 * Rules for rate selection:
1053 * - max_prob_rate must use only one stream, as a tradeoff between delivery
1054 * probability and throughput during strong fluctuations
1055 * - as long as the max prob rate has a probability of more than 75%, pick
1056 * higher throughput rates, even if the probability is a bit lower
1059 minstrel_ht_update_stats(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
)
1061 struct minstrel_mcs_group_data
*mg
;
1062 struct minstrel_rate_stats
*mrs
;
1063 int group
, i
, j
, cur_prob
;
1064 u16 tmp_mcs_tp_rate
[MAX_THR_RATES
], tmp_group_tp_rate
[MAX_THR_RATES
];
1065 u16 tmp_legacy_tp_rate
[MAX_THR_RATES
], tmp_max_prob_rate
;
1067 bool ht_supported
= mi
->sta
->deflink
.ht_cap
.ht_supported
;
1069 if (mi
->ampdu_packets
> 0) {
1070 if (!ieee80211_hw_check(mp
->hw
, TX_STATUS_NO_AMPDU_LEN
))
1071 mi
->avg_ampdu_len
= minstrel_ewma(mi
->avg_ampdu_len
,
1072 MINSTREL_FRAC(mi
->ampdu_len
, mi
->ampdu_packets
),
1075 mi
->avg_ampdu_len
= 0;
1077 mi
->ampdu_packets
= 0;
1080 if (mi
->supported
[MINSTREL_CCK_GROUP
])
1081 group
= MINSTREL_CCK_GROUP
;
1082 else if (mi
->supported
[MINSTREL_OFDM_GROUP
])
1083 group
= MINSTREL_OFDM_GROUP
;
1087 index
= MI_RATE(group
, 0);
1088 for (j
= 0; j
< ARRAY_SIZE(tmp_legacy_tp_rate
); j
++)
1089 tmp_legacy_tp_rate
[j
] = index
;
1091 if (mi
->supported
[MINSTREL_VHT_GROUP_0
])
1092 group
= MINSTREL_VHT_GROUP_0
;
1093 else if (ht_supported
)
1094 group
= MINSTREL_HT_GROUP_0
;
1095 else if (mi
->supported
[MINSTREL_CCK_GROUP
])
1096 group
= MINSTREL_CCK_GROUP
;
1098 group
= MINSTREL_OFDM_GROUP
;
1100 index
= MI_RATE(group
, 0);
1101 tmp_max_prob_rate
= index
;
1102 for (j
= 0; j
< ARRAY_SIZE(tmp_mcs_tp_rate
); j
++)
1103 tmp_mcs_tp_rate
[j
] = index
;
1105 /* Find best rate sets within all MCS groups*/
1106 for (group
= 0; group
< ARRAY_SIZE(minstrel_mcs_groups
); group
++) {
1107 u16
*tp_rate
= tmp_mcs_tp_rate
;
1110 mg
= &mi
->groups
[group
];
1111 if (!mi
->supported
[group
])
1114 /* (re)Initialize group rate indexes */
1115 for(j
= 0; j
< MAX_THR_RATES
; j
++)
1116 tmp_group_tp_rate
[j
] = MI_RATE(group
, 0);
1118 if (group
== MINSTREL_CCK_GROUP
&& ht_supported
)
1119 tp_rate
= tmp_legacy_tp_rate
;
1121 for (i
= MCS_GROUP_RATES
- 1; i
>= 0; i
--) {
1122 if (!(mi
->supported
[group
] & BIT(i
)))
1125 index
= MI_RATE(group
, i
);
1127 mrs
= &mg
->rates
[i
];
1128 mrs
->retry_updated
= false;
1129 minstrel_ht_calc_rate_stats(mp
, mrs
);
1132 last_prob
= max(last_prob
, mrs
->prob_avg
);
1134 mrs
->prob_avg
= max(last_prob
, mrs
->prob_avg
);
1135 cur_prob
= mrs
->prob_avg
;
1137 if (minstrel_ht_get_tp_avg(mi
, group
, i
, cur_prob
) == 0)
1140 /* Find max throughput rate set */
1141 minstrel_ht_sort_best_tp_rates(mi
, index
, tp_rate
);
1143 /* Find max throughput rate set within a group */
1144 minstrel_ht_sort_best_tp_rates(mi
, index
,
1148 memcpy(mg
->max_group_tp_rate
, tmp_group_tp_rate
,
1149 sizeof(mg
->max_group_tp_rate
));
1152 /* Assign new rate set per sta */
1153 minstrel_ht_assign_best_tp_rates(mi
, tmp_mcs_tp_rate
,
1154 tmp_legacy_tp_rate
);
1155 memcpy(mi
->max_tp_rate
, tmp_mcs_tp_rate
, sizeof(mi
->max_tp_rate
));
1157 for (group
= 0; group
< ARRAY_SIZE(minstrel_mcs_groups
); group
++) {
1158 if (!mi
->supported
[group
])
1161 mg
= &mi
->groups
[group
];
1162 mg
->max_group_prob_rate
= MI_RATE(group
, 0);
1164 for (i
= 0; i
< MCS_GROUP_RATES
; i
++) {
1165 if (!(mi
->supported
[group
] & BIT(i
)))
1168 index
= MI_RATE(group
, i
);
1170 /* Find max probability rate per group and global */
1171 minstrel_ht_set_best_prob_rate(mi
, &tmp_max_prob_rate
,
1176 mi
->max_prob_rate
= tmp_max_prob_rate
;
1178 /* Try to increase robustness of max_prob_rate*/
1179 minstrel_ht_prob_rate_reduce_streams(mi
);
1180 minstrel_ht_refill_sample_rates(mi
);
1182 #ifdef CONFIG_MAC80211_DEBUGFS
1183 /* use fixed index if set */
1184 if (mp
->fixed_rate_idx
!= -1) {
1185 for (i
= 0; i
< 4; i
++)
1186 mi
->max_tp_rate
[i
] = mp
->fixed_rate_idx
;
1187 mi
->max_prob_rate
= mp
->fixed_rate_idx
;
1191 /* Reset update timer */
1192 mi
->last_stats_update
= jiffies
;
1193 mi
->sample_time
= jiffies
;
1197 minstrel_ht_txstat_valid(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
,
1198 struct ieee80211_tx_rate
*rate
)
1208 if (rate
->flags
& IEEE80211_TX_RC_MCS
||
1209 rate
->flags
& IEEE80211_TX_RC_VHT_MCS
)
1212 for (i
= 0; i
< ARRAY_SIZE(mp
->cck_rates
); i
++)
1213 if (rate
->idx
== mp
->cck_rates
[i
])
1216 for (i
= 0; i
< ARRAY_SIZE(mp
->ofdm_rates
[0]); i
++)
1217 if (rate
->idx
== mp
->ofdm_rates
[mi
->band
][i
])
1224 * Check whether rate_status contains valid information.
1227 minstrel_ht_ri_txstat_valid(struct minstrel_priv
*mp
,
1228 struct minstrel_ht_sta
*mi
,
1229 struct ieee80211_rate_status
*rate_status
)
1235 if (!rate_status
->try_count
)
1238 if (rate_status
->rate_idx
.flags
& RATE_INFO_FLAGS_MCS
||
1239 rate_status
->rate_idx
.flags
& RATE_INFO_FLAGS_VHT_MCS
)
1242 for (i
= 0; i
< ARRAY_SIZE(mp
->cck_rates
); i
++) {
1243 if (rate_status
->rate_idx
.legacy
==
1244 minstrel_cck_bitrates
[ mp
->cck_rates
[i
] ])
1248 for (i
= 0; i
< ARRAY_SIZE(mp
->ofdm_rates
); i
++) {
1249 if (rate_status
->rate_idx
.legacy
==
1250 minstrel_ofdm_bitrates
[ mp
->ofdm_rates
[mi
->band
][i
] ])
1258 minstrel_downgrade_rate(struct minstrel_ht_sta
*mi
, u16
*idx
, bool primary
)
1260 int group
, orig_group
;
1262 orig_group
= group
= MI_RATE_GROUP(*idx
);
1266 if (!mi
->supported
[group
])
1269 if (minstrel_mcs_groups
[group
].streams
>
1270 minstrel_mcs_groups
[orig_group
].streams
)
1274 *idx
= mi
->groups
[group
].max_group_tp_rate
[0];
1276 *idx
= mi
->groups
[group
].max_group_tp_rate
[1];
1282 minstrel_ht_tx_status(void *priv
, struct ieee80211_supported_band
*sband
,
1283 void *priv_sta
, struct ieee80211_tx_status
*st
)
1285 struct ieee80211_tx_info
*info
= st
->info
;
1286 struct minstrel_ht_sta
*mi
= priv_sta
;
1287 struct ieee80211_tx_rate
*ar
= info
->status
.rates
;
1288 struct minstrel_rate_stats
*rate
, *rate2
;
1289 struct minstrel_priv
*mp
= priv
;
1290 u32 update_interval
= mp
->update_interval
;
1291 bool last
, update
= false;
1294 /* Ignore packet that was sent with noAck flag */
1295 if (info
->flags
& IEEE80211_TX_CTL_NO_ACK
)
1298 /* This packet was aggregated but doesn't carry status info */
1299 if ((info
->flags
& IEEE80211_TX_CTL_AMPDU
) &&
1300 !(info
->flags
& IEEE80211_TX_STAT_AMPDU
))
1303 if (!(info
->flags
& IEEE80211_TX_STAT_AMPDU
)) {
1304 info
->status
.ampdu_ack_len
=
1305 (info
->flags
& IEEE80211_TX_STAT_ACK
? 1 : 0);
1306 info
->status
.ampdu_len
= 1;
1310 if (mi
->total_packets
>= ~0 - info
->status
.ampdu_len
) {
1311 mi
->total_packets
= 0;
1312 mi
->sample_packets
= 0;
1315 mi
->total_packets
+= info
->status
.ampdu_len
;
1316 if (info
->flags
& IEEE80211_TX_CTL_RATE_CTRL_PROBE
)
1317 mi
->sample_packets
+= info
->status
.ampdu_len
;
1319 mi
->ampdu_packets
++;
1320 mi
->ampdu_len
+= info
->status
.ampdu_len
;
1322 if (st
->rates
&& st
->n_rates
) {
1323 last
= !minstrel_ht_ri_txstat_valid(mp
, mi
, &(st
->rates
[0]));
1324 for (i
= 0; !last
; i
++) {
1325 last
= (i
== st
->n_rates
- 1) ||
1326 !minstrel_ht_ri_txstat_valid(mp
, mi
,
1327 &(st
->rates
[i
+ 1]));
1329 rate
= minstrel_ht_ri_get_stats(mp
, mi
,
1333 rate
->success
+= info
->status
.ampdu_ack_len
;
1335 rate
->attempts
+= st
->rates
[i
].try_count
*
1336 info
->status
.ampdu_len
;
1339 last
= !minstrel_ht_txstat_valid(mp
, mi
, &ar
[0]);
1340 for (i
= 0; !last
; i
++) {
1341 last
= (i
== IEEE80211_TX_MAX_RATES
- 1) ||
1342 !minstrel_ht_txstat_valid(mp
, mi
, &ar
[i
+ 1]);
1344 rate
= minstrel_ht_get_stats(mp
, mi
, &ar
[i
]);
1346 rate
->success
+= info
->status
.ampdu_ack_len
;
1348 rate
->attempts
+= ar
[i
].count
* info
->status
.ampdu_len
;
1352 if (mp
->hw
->max_rates
> 1) {
1354 * check for sudden death of spatial multiplexing,
1355 * downgrade to a lower number of streams if necessary.
1357 rate
= minstrel_get_ratestats(mi
, mi
->max_tp_rate
[0]);
1358 if (rate
->attempts
> 30 &&
1359 rate
->success
< rate
->attempts
/ 4) {
1360 minstrel_downgrade_rate(mi
, &mi
->max_tp_rate
[0], true);
1364 rate2
= minstrel_get_ratestats(mi
, mi
->max_tp_rate
[1]);
1365 if (rate2
->attempts
> 30 &&
1366 rate2
->success
< rate2
->attempts
/ 4) {
1367 minstrel_downgrade_rate(mi
, &mi
->max_tp_rate
[1], false);
1372 if (time_after(jiffies
, mi
->last_stats_update
+ update_interval
)) {
1374 minstrel_ht_update_stats(mp
, mi
);
1378 minstrel_ht_update_rates(mp
, mi
);
1382 minstrel_calc_retransmit(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
,
1385 struct minstrel_rate_stats
*mrs
;
1386 unsigned int tx_time
, tx_time_rtscts
, tx_time_data
;
1387 unsigned int cw
= mp
->cw_min
;
1388 unsigned int ctime
= 0;
1389 unsigned int t_slot
= 9; /* FIXME */
1390 unsigned int ampdu_len
= minstrel_ht_avg_ampdu_len(mi
);
1391 unsigned int overhead
= 0, overhead_rtscts
= 0;
1393 mrs
= minstrel_get_ratestats(mi
, index
);
1394 if (mrs
->prob_avg
< MINSTREL_FRAC(1, 10)) {
1395 mrs
->retry_count
= 1;
1396 mrs
->retry_count_rtscts
= 1;
1400 mrs
->retry_count
= 2;
1401 mrs
->retry_count_rtscts
= 2;
1402 mrs
->retry_updated
= true;
1404 tx_time_data
= minstrel_get_duration(index
) * ampdu_len
/ 1000;
1406 /* Contention time for first 2 tries */
1407 ctime
= (t_slot
* cw
) >> 1;
1408 cw
= min((cw
<< 1) | 1, mp
->cw_max
);
1409 ctime
+= (t_slot
* cw
) >> 1;
1410 cw
= min((cw
<< 1) | 1, mp
->cw_max
);
1412 if (minstrel_ht_is_legacy_group(MI_RATE_GROUP(index
))) {
1413 overhead
= mi
->overhead_legacy
;
1414 overhead_rtscts
= mi
->overhead_legacy_rtscts
;
1416 overhead
= mi
->overhead
;
1417 overhead_rtscts
= mi
->overhead_rtscts
;
1420 /* Total TX time for data and Contention after first 2 tries */
1421 tx_time
= ctime
+ 2 * (overhead
+ tx_time_data
);
1422 tx_time_rtscts
= ctime
+ 2 * (overhead_rtscts
+ tx_time_data
);
1424 /* See how many more tries we can fit inside segment size */
1426 /* Contention time for this try */
1427 ctime
= (t_slot
* cw
) >> 1;
1428 cw
= min((cw
<< 1) | 1, mp
->cw_max
);
1430 /* Total TX time after this try */
1431 tx_time
+= ctime
+ overhead
+ tx_time_data
;
1432 tx_time_rtscts
+= ctime
+ overhead_rtscts
+ tx_time_data
;
1434 if (tx_time_rtscts
< mp
->segment_size
)
1435 mrs
->retry_count_rtscts
++;
1436 } while ((tx_time
< mp
->segment_size
) &&
1437 (++mrs
->retry_count
< mp
->max_retry
));
1442 minstrel_ht_set_rate(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
,
1443 struct ieee80211_sta_rates
*ratetbl
, int offset
, int index
)
1445 int group_idx
= MI_RATE_GROUP(index
);
1446 const struct mcs_group
*group
= &minstrel_mcs_groups
[group_idx
];
1447 struct minstrel_rate_stats
*mrs
;
1449 u16 flags
= group
->flags
;
1451 mrs
= minstrel_get_ratestats(mi
, index
);
1452 if (!mrs
->retry_updated
)
1453 minstrel_calc_retransmit(mp
, mi
, index
);
1455 if (mrs
->prob_avg
< MINSTREL_FRAC(20, 100) || !mrs
->retry_count
) {
1456 ratetbl
->rate
[offset
].count
= 2;
1457 ratetbl
->rate
[offset
].count_rts
= 2;
1458 ratetbl
->rate
[offset
].count_cts
= 2;
1460 ratetbl
->rate
[offset
].count
= mrs
->retry_count
;
1461 ratetbl
->rate
[offset
].count_cts
= mrs
->retry_count
;
1462 ratetbl
->rate
[offset
].count_rts
= mrs
->retry_count_rtscts
;
1465 index
= MI_RATE_IDX(index
);
1466 if (group_idx
== MINSTREL_CCK_GROUP
)
1467 idx
= mp
->cck_rates
[index
% ARRAY_SIZE(mp
->cck_rates
)];
1468 else if (group_idx
== MINSTREL_OFDM_GROUP
)
1469 idx
= mp
->ofdm_rates
[mi
->band
][index
%
1470 ARRAY_SIZE(mp
->ofdm_rates
[0])];
1471 else if (flags
& IEEE80211_TX_RC_VHT_MCS
)
1472 idx
= ((group
->streams
- 1) << 4) |
1475 idx
= index
+ (group
->streams
- 1) * 8;
1477 /* enable RTS/CTS if needed:
1478 * - if station is in dynamic SMPS (and streams > 1)
1479 * - for fallback rates, to increase chances of getting through
1482 (mi
->sta
->deflink
.smps_mode
== IEEE80211_SMPS_DYNAMIC
&&
1483 group
->streams
> 1)) {
1484 ratetbl
->rate
[offset
].count
= ratetbl
->rate
[offset
].count_rts
;
1485 flags
|= IEEE80211_TX_RC_USE_RTS_CTS
;
1488 ratetbl
->rate
[offset
].idx
= idx
;
1489 ratetbl
->rate
[offset
].flags
= flags
;
1493 minstrel_ht_get_prob_avg(struct minstrel_ht_sta
*mi
, int rate
)
1495 int group
= MI_RATE_GROUP(rate
);
1496 rate
= MI_RATE_IDX(rate
);
1497 return mi
->groups
[group
].rates
[rate
].prob_avg
;
1501 minstrel_ht_get_max_amsdu_len(struct minstrel_ht_sta
*mi
)
1503 int group
= MI_RATE_GROUP(mi
->max_prob_rate
);
1504 const struct mcs_group
*g
= &minstrel_mcs_groups
[group
];
1505 int rate
= MI_RATE_IDX(mi
->max_prob_rate
);
1506 unsigned int duration
;
1508 /* Disable A-MSDU if max_prob_rate is bad */
1509 if (mi
->groups
[group
].rates
[rate
].prob_avg
< MINSTREL_FRAC(50, 100))
1512 duration
= g
->duration
[rate
];
1513 duration
<<= g
->shift
;
1515 /* If the rate is slower than single-stream MCS1, make A-MSDU limit small */
1516 if (duration
> MCS_DURATION(1, 0, 52))
1520 * If the rate is slower than single-stream MCS4, limit A-MSDU to usual
1523 if (duration
> MCS_DURATION(1, 0, 104))
1527 * If the rate is slower than single-stream MCS7, or if the max throughput
1528 * rate success probability is less than 75%, limit A-MSDU to twice the usual
1531 if (duration
> MCS_DURATION(1, 0, 260) ||
1532 (minstrel_ht_get_prob_avg(mi
, mi
->max_tp_rate
[0]) <
1533 MINSTREL_FRAC(75, 100)))
1537 * HT A-MPDU limits maximum MPDU size under BA agreement to 4095 bytes.
1538 * Since aggregation sessions are started/stopped without txq flush, use
1539 * the limit here to avoid the complexity of having to de-aggregate
1540 * packets in the queue.
1542 if (!mi
->sta
->deflink
.vht_cap
.vht_supported
)
1543 return IEEE80211_MAX_MPDU_LEN_HT_BA
;
1550 minstrel_ht_update_rates(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
)
1552 struct ieee80211_sta_rates
*rates
;
1554 int max_rates
= min_t(int, mp
->hw
->max_rates
, IEEE80211_TX_RATE_TABLE_SIZE
);
1556 rates
= kzalloc(sizeof(*rates
), GFP_ATOMIC
);
1560 /* Start with max_tp_rate[0] */
1561 minstrel_ht_set_rate(mp
, mi
, rates
, i
++, mi
->max_tp_rate
[0]);
1563 /* Fill up remaining, keep one entry for max_probe_rate */
1564 for (; i
< (max_rates
- 1); i
++)
1565 minstrel_ht_set_rate(mp
, mi
, rates
, i
, mi
->max_tp_rate
[i
]);
1568 minstrel_ht_set_rate(mp
, mi
, rates
, i
++, mi
->max_prob_rate
);
1570 if (i
< IEEE80211_TX_RATE_TABLE_SIZE
)
1571 rates
->rate
[i
].idx
= -1;
1573 mi
->sta
->deflink
.agg
.max_rc_amsdu_len
= minstrel_ht_get_max_amsdu_len(mi
);
1574 ieee80211_sta_recalc_aggregates(mi
->sta
);
1575 rate_control_set_rates(mp
->hw
, mi
->sta
, rates
);
1579 minstrel_ht_get_sample_rate(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
)
1583 if (mp
->hw
->max_rates
> 1) {
1584 seq
= mi
->sample_seq
;
1585 mi
->sample_seq
= (seq
+ 1) % ARRAY_SIZE(minstrel_sample_seq
);
1586 seq
= minstrel_sample_seq
[seq
];
1588 seq
= MINSTREL_SAMPLE_TYPE_INC
;
1591 return __minstrel_ht_get_sample_rate(mi
, seq
);
1595 minstrel_ht_get_rate(void *priv
, struct ieee80211_sta
*sta
, void *priv_sta
,
1596 struct ieee80211_tx_rate_control
*txrc
)
1598 const struct mcs_group
*sample_group
;
1599 struct ieee80211_tx_info
*info
= IEEE80211_SKB_CB(txrc
->skb
);
1600 struct ieee80211_tx_rate
*rate
= &info
->status
.rates
[0];
1601 struct minstrel_ht_sta
*mi
= priv_sta
;
1602 struct minstrel_priv
*mp
= priv
;
1605 info
->flags
|= mi
->tx_flags
;
1607 #ifdef CONFIG_MAC80211_DEBUGFS
1608 if (mp
->fixed_rate_idx
!= -1)
1612 /* Don't use EAPOL frames for sampling on non-mrr hw */
1613 if (mp
->hw
->max_rates
== 1 &&
1614 (info
->control
.flags
& IEEE80211_TX_CTRL_PORT_CTRL_PROTO
))
1617 if (time_is_after_jiffies(mi
->sample_time
))
1620 mi
->sample_time
= jiffies
+ MINSTREL_SAMPLE_INTERVAL
;
1621 sample_idx
= minstrel_ht_get_sample_rate(mp
, mi
);
1625 sample_group
= &minstrel_mcs_groups
[MI_RATE_GROUP(sample_idx
)];
1626 sample_idx
= MI_RATE_IDX(sample_idx
);
1628 if (sample_group
== &minstrel_mcs_groups
[MINSTREL_CCK_GROUP
] &&
1629 (sample_idx
>= 4) != txrc
->short_preamble
)
1632 info
->flags
|= IEEE80211_TX_CTL_RATE_CTRL_PROBE
;
1635 if (sample_group
== &minstrel_mcs_groups
[MINSTREL_CCK_GROUP
]) {
1636 int idx
= sample_idx
% ARRAY_SIZE(mp
->cck_rates
);
1637 rate
->idx
= mp
->cck_rates
[idx
];
1638 } else if (sample_group
== &minstrel_mcs_groups
[MINSTREL_OFDM_GROUP
]) {
1639 int idx
= sample_idx
% ARRAY_SIZE(mp
->ofdm_rates
[0]);
1640 rate
->idx
= mp
->ofdm_rates
[mi
->band
][idx
];
1641 } else if (sample_group
->flags
& IEEE80211_TX_RC_VHT_MCS
) {
1642 ieee80211_rate_set_vht(rate
, MI_RATE_IDX(sample_idx
),
1643 sample_group
->streams
);
1645 rate
->idx
= sample_idx
+ (sample_group
->streams
- 1) * 8;
1648 rate
->flags
= sample_group
->flags
;
1652 minstrel_ht_update_cck(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
,
1653 struct ieee80211_supported_band
*sband
,
1654 struct ieee80211_sta
*sta
)
1658 if (sband
->band
!= NL80211_BAND_2GHZ
)
1661 if (sta
->deflink
.ht_cap
.ht_supported
&&
1662 !ieee80211_hw_check(mp
->hw
, SUPPORTS_HT_CCK_RATES
))
1665 for (i
= 0; i
< 4; i
++) {
1666 if (mp
->cck_rates
[i
] == 0xff ||
1667 !rate_supported(sta
, sband
->band
, mp
->cck_rates
[i
]))
1670 mi
->supported
[MINSTREL_CCK_GROUP
] |= BIT(i
);
1671 if (sband
->bitrates
[i
].flags
& IEEE80211_RATE_SHORT_PREAMBLE
)
1672 mi
->supported
[MINSTREL_CCK_GROUP
] |= BIT(i
+ 4);
1677 minstrel_ht_update_ofdm(struct minstrel_priv
*mp
, struct minstrel_ht_sta
*mi
,
1678 struct ieee80211_supported_band
*sband
,
1679 struct ieee80211_sta
*sta
)
1684 if (sta
->deflink
.ht_cap
.ht_supported
)
1687 rates
= mp
->ofdm_rates
[sband
->band
];
1688 for (i
= 0; i
< ARRAY_SIZE(mp
->ofdm_rates
[0]); i
++) {
1689 if (rates
[i
] == 0xff ||
1690 !rate_supported(sta
, sband
->band
, rates
[i
]))
1693 mi
->supported
[MINSTREL_OFDM_GROUP
] |= BIT(i
);
1698 minstrel_ht_update_caps(void *priv
, struct ieee80211_supported_band
*sband
,
1699 struct cfg80211_chan_def
*chandef
,
1700 struct ieee80211_sta
*sta
, void *priv_sta
)
1702 struct minstrel_priv
*mp
= priv
;
1703 struct minstrel_ht_sta
*mi
= priv_sta
;
1704 struct ieee80211_mcs_info
*mcs
= &sta
->deflink
.ht_cap
.mcs
;
1705 u16 ht_cap
= sta
->deflink
.ht_cap
.cap
;
1706 struct ieee80211_sta_vht_cap
*vht_cap
= &sta
->deflink
.vht_cap
;
1707 const struct ieee80211_rate
*ctl_rate
;
1708 struct sta_info
*sta_info
;
1715 BUILD_BUG_ON(ARRAY_SIZE(minstrel_mcs_groups
) != MINSTREL_GROUPS_NB
);
1717 if (vht_cap
->vht_supported
)
1718 use_vht
= vht_cap
->vht_mcs
.tx_mcs_map
!= cpu_to_le16(~0);
1722 memset(mi
, 0, sizeof(*mi
));
1725 mi
->band
= sband
->band
;
1726 mi
->last_stats_update
= jiffies
;
1728 ack_dur
= ieee80211_frame_duration(sband
->band
, 10, 60, 1, 1);
1729 mi
->overhead
= ieee80211_frame_duration(sband
->band
, 0, 60, 1, 1);
1730 mi
->overhead
+= ack_dur
;
1731 mi
->overhead_rtscts
= mi
->overhead
+ 2 * ack_dur
;
1733 ctl_rate
= &sband
->bitrates
[rate_lowest_index(sband
, sta
)];
1734 erp
= ctl_rate
->flags
& IEEE80211_RATE_ERP_G
;
1735 ack_dur
= ieee80211_frame_duration(sband
->band
, 10,
1736 ctl_rate
->bitrate
, erp
, 1);
1737 mi
->overhead_legacy
= ack_dur
;
1738 mi
->overhead_legacy_rtscts
= mi
->overhead_legacy
+ 2 * ack_dur
;
1740 mi
->avg_ampdu_len
= MINSTREL_FRAC(1, 1);
1743 stbc
= (ht_cap
& IEEE80211_HT_CAP_RX_STBC
) >>
1744 IEEE80211_HT_CAP_RX_STBC_SHIFT
;
1746 ldpc
= ht_cap
& IEEE80211_HT_CAP_LDPC_CODING
;
1748 stbc
= (vht_cap
->cap
& IEEE80211_VHT_CAP_RXSTBC_MASK
) >>
1749 IEEE80211_VHT_CAP_RXSTBC_SHIFT
;
1751 ldpc
= vht_cap
->cap
& IEEE80211_VHT_CAP_RXLDPC
;
1754 mi
->tx_flags
|= stbc
<< IEEE80211_TX_CTL_STBC_SHIFT
;
1756 mi
->tx_flags
|= IEEE80211_TX_CTL_LDPC
;
1758 for (i
= 0; i
< ARRAY_SIZE(mi
->groups
); i
++) {
1759 u32 gflags
= minstrel_mcs_groups
[i
].flags
;
1762 mi
->supported
[i
] = 0;
1763 if (minstrel_ht_is_legacy_group(i
))
1766 if (gflags
& IEEE80211_TX_RC_SHORT_GI
) {
1767 if (gflags
& IEEE80211_TX_RC_40_MHZ_WIDTH
) {
1768 if (!(ht_cap
& IEEE80211_HT_CAP_SGI_40
))
1771 if (!(ht_cap
& IEEE80211_HT_CAP_SGI_20
))
1776 if (gflags
& IEEE80211_TX_RC_40_MHZ_WIDTH
&&
1777 sta
->deflink
.bandwidth
< IEEE80211_STA_RX_BW_40
)
1780 nss
= minstrel_mcs_groups
[i
].streams
;
1782 /* Mark MCS > 7 as unsupported if STA is in static SMPS mode */
1783 if (sta
->deflink
.smps_mode
== IEEE80211_SMPS_STATIC
&& nss
> 1)
1787 if (gflags
& IEEE80211_TX_RC_MCS
) {
1788 if (use_vht
&& minstrel_vht_only
)
1791 mi
->supported
[i
] = mcs
->rx_mask
[nss
- 1];
1796 if (!vht_cap
->vht_supported
||
1797 WARN_ON(!(gflags
& IEEE80211_TX_RC_VHT_MCS
)) ||
1798 WARN_ON(gflags
& IEEE80211_TX_RC_160_MHZ_WIDTH
))
1801 if (gflags
& IEEE80211_TX_RC_80_MHZ_WIDTH
) {
1802 if (sta
->deflink
.bandwidth
< IEEE80211_STA_RX_BW_80
||
1803 ((gflags
& IEEE80211_TX_RC_SHORT_GI
) &&
1804 !(vht_cap
->cap
& IEEE80211_VHT_CAP_SHORT_GI_80
))) {
1809 if (gflags
& IEEE80211_TX_RC_40_MHZ_WIDTH
)
1811 else if (gflags
& IEEE80211_TX_RC_80_MHZ_WIDTH
)
1816 mi
->supported
[i
] = minstrel_get_valid_vht_rates(bw
, nss
,
1817 vht_cap
->vht_mcs
.tx_mcs_map
);
1820 sta_info
= container_of(sta
, struct sta_info
, sta
);
1821 mi
->use_short_preamble
= test_sta_flag(sta_info
, WLAN_STA_SHORT_PREAMBLE
) &&
1822 sta_info
->sdata
->vif
.bss_conf
.use_short_preamble
;
1824 minstrel_ht_update_cck(mp
, mi
, sband
, sta
);
1825 minstrel_ht_update_ofdm(mp
, mi
, sband
, sta
);
1827 /* create an initial rate table with the lowest supported rates */
1828 minstrel_ht_update_stats(mp
, mi
);
1829 minstrel_ht_update_rates(mp
, mi
);
1833 minstrel_ht_rate_init(void *priv
, struct ieee80211_supported_band
*sband
,
1834 struct cfg80211_chan_def
*chandef
,
1835 struct ieee80211_sta
*sta
, void *priv_sta
)
1837 minstrel_ht_update_caps(priv
, sband
, chandef
, sta
, priv_sta
);
1841 minstrel_ht_rate_update(void *priv
, struct ieee80211_supported_band
*sband
,
1842 struct cfg80211_chan_def
*chandef
,
1843 struct ieee80211_sta
*sta
, void *priv_sta
,
1846 minstrel_ht_update_caps(priv
, sband
, chandef
, sta
, priv_sta
);
1850 minstrel_ht_alloc_sta(void *priv
, struct ieee80211_sta
*sta
, gfp_t gfp
)
1852 struct ieee80211_supported_band
*sband
;
1853 struct minstrel_ht_sta
*mi
;
1854 struct minstrel_priv
*mp
= priv
;
1855 struct ieee80211_hw
*hw
= mp
->hw
;
1859 for (i
= 0; i
< NUM_NL80211_BANDS
; i
++) {
1860 sband
= hw
->wiphy
->bands
[i
];
1861 if (sband
&& sband
->n_bitrates
> max_rates
)
1862 max_rates
= sband
->n_bitrates
;
1865 return kzalloc(sizeof(*mi
), gfp
);
1869 minstrel_ht_free_sta(void *priv
, struct ieee80211_sta
*sta
, void *priv_sta
)
1875 minstrel_ht_fill_rate_array(u8
*dest
, struct ieee80211_supported_band
*sband
,
1876 const s16
*bitrates
, int n_rates
, u32 rate_flags
)
1880 for (i
= 0; i
< sband
->n_bitrates
; i
++) {
1881 struct ieee80211_rate
*rate
= &sband
->bitrates
[i
];
1883 if ((rate_flags
& sband
->bitrates
[i
].flags
) != rate_flags
)
1886 for (j
= 0; j
< n_rates
; j
++) {
1887 if (rate
->bitrate
!= bitrates
[j
])
1897 minstrel_ht_init_cck_rates(struct minstrel_priv
*mp
)
1899 static const s16 bitrates
[4] = { 10, 20, 55, 110 };
1900 struct ieee80211_supported_band
*sband
;
1901 u32 rate_flags
= ieee80211_chandef_rate_flags(&mp
->hw
->conf
.chandef
);
1903 memset(mp
->cck_rates
, 0xff, sizeof(mp
->cck_rates
));
1904 sband
= mp
->hw
->wiphy
->bands
[NL80211_BAND_2GHZ
];
1908 BUILD_BUG_ON(ARRAY_SIZE(mp
->cck_rates
) != ARRAY_SIZE(bitrates
));
1909 minstrel_ht_fill_rate_array(mp
->cck_rates
, sband
,
1910 minstrel_cck_bitrates
,
1911 ARRAY_SIZE(minstrel_cck_bitrates
),
1916 minstrel_ht_init_ofdm_rates(struct minstrel_priv
*mp
, enum nl80211_band band
)
1918 static const s16 bitrates
[8] = { 60, 90, 120, 180, 240, 360, 480, 540 };
1919 struct ieee80211_supported_band
*sband
;
1920 u32 rate_flags
= ieee80211_chandef_rate_flags(&mp
->hw
->conf
.chandef
);
1922 memset(mp
->ofdm_rates
[band
], 0xff, sizeof(mp
->ofdm_rates
[band
]));
1923 sband
= mp
->hw
->wiphy
->bands
[band
];
1927 BUILD_BUG_ON(ARRAY_SIZE(mp
->ofdm_rates
[band
]) != ARRAY_SIZE(bitrates
));
1928 minstrel_ht_fill_rate_array(mp
->ofdm_rates
[band
], sband
,
1929 minstrel_ofdm_bitrates
,
1930 ARRAY_SIZE(minstrel_ofdm_bitrates
),
1935 minstrel_ht_alloc(struct ieee80211_hw
*hw
)
1937 struct minstrel_priv
*mp
;
1940 mp
= kzalloc(sizeof(struct minstrel_priv
), GFP_ATOMIC
);
1944 /* contention window settings
1945 * Just an approximation. Using the per-queue values would complicate
1946 * the calculations and is probably unnecessary */
1950 /* maximum time that the hw is allowed to stay in one MRR segment */
1951 mp
->segment_size
= 6000;
1953 if (hw
->max_rate_tries
> 0)
1954 mp
->max_retry
= hw
->max_rate_tries
;
1956 /* safe default, does not necessarily have to match hw properties */
1960 mp
->update_interval
= HZ
/ 20;
1962 minstrel_ht_init_cck_rates(mp
);
1963 for (i
= 0; i
< ARRAY_SIZE(mp
->hw
->wiphy
->bands
); i
++)
1964 minstrel_ht_init_ofdm_rates(mp
, i
);
1969 #ifdef CONFIG_MAC80211_DEBUGFS
1970 static void minstrel_ht_add_debugfs(struct ieee80211_hw
*hw
, void *priv
,
1971 struct dentry
*debugfsdir
)
1973 struct minstrel_priv
*mp
= priv
;
1975 mp
->fixed_rate_idx
= (u32
) -1;
1976 debugfs_create_u32("fixed_rate_idx", S_IRUGO
| S_IWUGO
, debugfsdir
,
1977 &mp
->fixed_rate_idx
);
1982 minstrel_ht_free(void *priv
)
1987 static u32
minstrel_ht_get_expected_throughput(void *priv_sta
)
1989 struct minstrel_ht_sta
*mi
= priv_sta
;
1990 int i
, j
, prob
, tp_avg
;
1992 i
= MI_RATE_GROUP(mi
->max_tp_rate
[0]);
1993 j
= MI_RATE_IDX(mi
->max_tp_rate
[0]);
1994 prob
= mi
->groups
[i
].rates
[j
].prob_avg
;
1996 /* convert tp_avg from pkt per second in kbps */
1997 tp_avg
= minstrel_ht_get_tp_avg(mi
, i
, j
, prob
) * 10;
1998 tp_avg
= tp_avg
* AVG_PKT_SIZE
* 8 / 1024;
2003 static const struct rate_control_ops mac80211_minstrel_ht
= {
2004 .name
= "minstrel_ht",
2005 .capa
= RATE_CTRL_CAPA_AMPDU_TRIGGER
,
2006 .tx_status_ext
= minstrel_ht_tx_status
,
2007 .get_rate
= minstrel_ht_get_rate
,
2008 .rate_init
= minstrel_ht_rate_init
,
2009 .rate_update
= minstrel_ht_rate_update
,
2010 .alloc_sta
= minstrel_ht_alloc_sta
,
2011 .free_sta
= minstrel_ht_free_sta
,
2012 .alloc
= minstrel_ht_alloc
,
2013 .free
= minstrel_ht_free
,
2014 #ifdef CONFIG_MAC80211_DEBUGFS
2015 .add_debugfs
= minstrel_ht_add_debugfs
,
2016 .add_sta_debugfs
= minstrel_ht_add_sta_debugfs
,
2018 .get_expected_throughput
= minstrel_ht_get_expected_throughput
,
2022 static void __init
init_sample_table(void)
2024 int col
, i
, new_idx
;
2025 u8 rnd
[MCS_GROUP_RATES
];
2027 memset(sample_table
, 0xff, sizeof(sample_table
));
2028 for (col
= 0; col
< SAMPLE_COLUMNS
; col
++) {
2029 get_random_bytes(rnd
, sizeof(rnd
));
2030 for (i
= 0; i
< MCS_GROUP_RATES
; i
++) {
2031 new_idx
= (i
+ rnd
[i
]) % MCS_GROUP_RATES
;
2032 while (sample_table
[col
][new_idx
] != 0xff)
2033 new_idx
= (new_idx
+ 1) % MCS_GROUP_RATES
;
2035 sample_table
[col
][new_idx
] = i
;
2041 rc80211_minstrel_init(void)
2043 init_sample_table();
2044 return ieee80211_rate_control_register(&mac80211_minstrel_ht
);
2048 rc80211_minstrel_exit(void)
2050 ieee80211_rate_control_unregister(&mac80211_minstrel_ht
);