Linux 6.14-rc1
[linux.git] / net / sched / sch_pie.c
blobbb1fa9aa530b2737d901a7a76c481398cb1b75a2
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (C) 2013 Cisco Systems, Inc, 2013.
4 * Author: Vijay Subramanian <vijaynsu@cisco.com>
5 * Author: Mythili Prabhu <mysuryan@cisco.com>
7 * ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
8 * University of Oslo, Norway.
10 * References:
11 * RFC 8033: https://tools.ietf.org/html/rfc8033
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/types.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/skbuff.h>
20 #include <net/pkt_sched.h>
21 #include <net/inet_ecn.h>
22 #include <net/pie.h>
24 /* private data for the Qdisc */
25 struct pie_sched_data {
26 struct pie_vars vars;
27 struct pie_params params;
28 struct pie_stats stats;
29 struct timer_list adapt_timer;
30 struct Qdisc *sch;
33 bool pie_drop_early(struct Qdisc *sch, struct pie_params *params,
34 struct pie_vars *vars, u32 backlog, u32 packet_size)
36 u64 rnd;
37 u64 local_prob = vars->prob;
38 u32 mtu = psched_mtu(qdisc_dev(sch));
40 /* If there is still burst allowance left skip random early drop */
41 if (vars->burst_time > 0)
42 return false;
44 /* If current delay is less than half of target, and
45 * if drop prob is low already, disable early_drop
47 if ((vars->qdelay < params->target / 2) &&
48 (vars->prob < MAX_PROB / 5))
49 return false;
51 /* If we have fewer than 2 mtu-sized packets, disable pie_drop_early,
52 * similar to min_th in RED
54 if (backlog < 2 * mtu)
55 return false;
57 /* If bytemode is turned on, use packet size to compute new
58 * probablity. Smaller packets will have lower drop prob in this case
60 if (params->bytemode && packet_size <= mtu)
61 local_prob = (u64)packet_size * div_u64(local_prob, mtu);
62 else
63 local_prob = vars->prob;
65 if (local_prob == 0)
66 vars->accu_prob = 0;
67 else
68 vars->accu_prob += local_prob;
70 if (vars->accu_prob < (MAX_PROB / 100) * 85)
71 return false;
72 if (vars->accu_prob >= (MAX_PROB / 2) * 17)
73 return true;
75 get_random_bytes(&rnd, 8);
76 if ((rnd >> BITS_PER_BYTE) < local_prob) {
77 vars->accu_prob = 0;
78 return true;
81 return false;
83 EXPORT_SYMBOL_GPL(pie_drop_early);
85 static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
86 struct sk_buff **to_free)
88 enum skb_drop_reason reason = SKB_DROP_REASON_QDISC_OVERLIMIT;
89 struct pie_sched_data *q = qdisc_priv(sch);
90 bool enqueue = false;
92 if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
93 q->stats.overlimit++;
94 goto out;
97 reason = SKB_DROP_REASON_QDISC_CONGESTED;
99 if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog,
100 skb->len)) {
101 enqueue = true;
102 } else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
103 INET_ECN_set_ce(skb)) {
104 /* If packet is ecn capable, mark it if drop probability
105 * is lower than 10%, else drop it.
107 q->stats.ecn_mark++;
108 enqueue = true;
111 /* we can enqueue the packet */
112 if (enqueue) {
113 /* Set enqueue time only when dq_rate_estimator is disabled. */
114 if (!q->params.dq_rate_estimator)
115 pie_set_enqueue_time(skb);
117 q->stats.packets_in++;
118 if (qdisc_qlen(sch) > q->stats.maxq)
119 q->stats.maxq = qdisc_qlen(sch);
121 return qdisc_enqueue_tail(skb, sch);
124 out:
125 q->stats.dropped++;
126 q->vars.accu_prob = 0;
127 return qdisc_drop_reason(skb, sch, to_free, reason);
130 static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
131 [TCA_PIE_TARGET] = {.type = NLA_U32},
132 [TCA_PIE_LIMIT] = {.type = NLA_U32},
133 [TCA_PIE_TUPDATE] = {.type = NLA_U32},
134 [TCA_PIE_ALPHA] = {.type = NLA_U32},
135 [TCA_PIE_BETA] = {.type = NLA_U32},
136 [TCA_PIE_ECN] = {.type = NLA_U32},
137 [TCA_PIE_BYTEMODE] = {.type = NLA_U32},
138 [TCA_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32},
141 static int pie_change(struct Qdisc *sch, struct nlattr *opt,
142 struct netlink_ext_ack *extack)
144 struct pie_sched_data *q = qdisc_priv(sch);
145 struct nlattr *tb[TCA_PIE_MAX + 1];
146 unsigned int qlen, dropped = 0;
147 int err;
149 err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy,
150 NULL);
151 if (err < 0)
152 return err;
154 sch_tree_lock(sch);
156 /* convert from microseconds to pschedtime */
157 if (tb[TCA_PIE_TARGET]) {
158 /* target is in us */
159 u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
161 /* convert to pschedtime */
162 WRITE_ONCE(q->params.target,
163 PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC));
166 /* tupdate is in jiffies */
167 if (tb[TCA_PIE_TUPDATE])
168 WRITE_ONCE(q->params.tupdate,
169 usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE])));
171 if (tb[TCA_PIE_LIMIT]) {
172 u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
174 WRITE_ONCE(q->params.limit, limit);
175 WRITE_ONCE(sch->limit, limit);
178 if (tb[TCA_PIE_ALPHA])
179 WRITE_ONCE(q->params.alpha, nla_get_u32(tb[TCA_PIE_ALPHA]));
181 if (tb[TCA_PIE_BETA])
182 WRITE_ONCE(q->params.beta, nla_get_u32(tb[TCA_PIE_BETA]));
184 if (tb[TCA_PIE_ECN])
185 WRITE_ONCE(q->params.ecn, nla_get_u32(tb[TCA_PIE_ECN]));
187 if (tb[TCA_PIE_BYTEMODE])
188 WRITE_ONCE(q->params.bytemode,
189 nla_get_u32(tb[TCA_PIE_BYTEMODE]));
191 if (tb[TCA_PIE_DQ_RATE_ESTIMATOR])
192 WRITE_ONCE(q->params.dq_rate_estimator,
193 nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]));
195 /* Drop excess packets if new limit is lower */
196 qlen = sch->q.qlen;
197 while (sch->q.qlen > sch->limit) {
198 struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
200 dropped += qdisc_pkt_len(skb);
201 qdisc_qstats_backlog_dec(sch, skb);
202 rtnl_qdisc_drop(skb, sch);
204 qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
206 sch_tree_unlock(sch);
207 return 0;
210 void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params,
211 struct pie_vars *vars, u32 backlog)
213 psched_time_t now = psched_get_time();
214 u32 dtime = 0;
216 /* If dq_rate_estimator is disabled, calculate qdelay using the
217 * packet timestamp.
219 if (!params->dq_rate_estimator) {
220 vars->qdelay = now - pie_get_enqueue_time(skb);
222 if (vars->dq_tstamp != DTIME_INVALID)
223 dtime = now - vars->dq_tstamp;
225 vars->dq_tstamp = now;
227 if (backlog == 0)
228 vars->qdelay = 0;
230 if (dtime == 0)
231 return;
233 goto burst_allowance_reduction;
236 /* If current queue is about 10 packets or more and dq_count is unset
237 * we have enough packets to calculate the drain rate. Save
238 * current time as dq_tstamp and start measurement cycle.
240 if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) {
241 vars->dq_tstamp = psched_get_time();
242 vars->dq_count = 0;
245 /* Calculate the average drain rate from this value. If queue length
246 * has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset
247 * the dq_count to -1 as we don't have enough packets to calculate the
248 * drain rate anymore. The following if block is entered only when we
249 * have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
250 * and we calculate the drain rate for the threshold here. dq_count is
251 * in bytes, time difference in psched_time, hence rate is in
252 * bytes/psched_time.
254 if (vars->dq_count != DQCOUNT_INVALID) {
255 vars->dq_count += skb->len;
257 if (vars->dq_count >= QUEUE_THRESHOLD) {
258 u32 count = vars->dq_count << PIE_SCALE;
260 dtime = now - vars->dq_tstamp;
262 if (dtime == 0)
263 return;
265 count = count / dtime;
267 if (vars->avg_dq_rate == 0)
268 vars->avg_dq_rate = count;
269 else
270 vars->avg_dq_rate =
271 (vars->avg_dq_rate -
272 (vars->avg_dq_rate >> 3)) + (count >> 3);
274 /* If the queue has receded below the threshold, we hold
275 * on to the last drain rate calculated, else we reset
276 * dq_count to 0 to re-enter the if block when the next
277 * packet is dequeued
279 if (backlog < QUEUE_THRESHOLD) {
280 vars->dq_count = DQCOUNT_INVALID;
281 } else {
282 vars->dq_count = 0;
283 vars->dq_tstamp = psched_get_time();
286 goto burst_allowance_reduction;
290 return;
292 burst_allowance_reduction:
293 if (vars->burst_time > 0) {
294 if (vars->burst_time > dtime)
295 vars->burst_time -= dtime;
296 else
297 vars->burst_time = 0;
300 EXPORT_SYMBOL_GPL(pie_process_dequeue);
302 void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars,
303 u32 backlog)
305 psched_time_t qdelay = 0; /* in pschedtime */
306 psched_time_t qdelay_old = 0; /* in pschedtime */
307 s64 delta = 0; /* determines the change in probability */
308 u64 oldprob;
309 u64 alpha, beta;
310 u32 power;
311 bool update_prob = true;
313 if (params->dq_rate_estimator) {
314 qdelay_old = vars->qdelay;
315 vars->qdelay_old = vars->qdelay;
317 if (vars->avg_dq_rate > 0)
318 qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate;
319 else
320 qdelay = 0;
321 } else {
322 qdelay = vars->qdelay;
323 qdelay_old = vars->qdelay_old;
326 /* If qdelay is zero and backlog is not, it means backlog is very small,
327 * so we do not update probability in this round.
329 if (qdelay == 0 && backlog != 0)
330 update_prob = false;
332 /* In the algorithm, alpha and beta are between 0 and 2 with typical
333 * value for alpha as 0.125. In this implementation, we use values 0-32
334 * passed from user space to represent this. Also, alpha and beta have
335 * unit of HZ and need to be scaled before they can used to update
336 * probability. alpha/beta are updated locally below by scaling down
337 * by 16 to come to 0-2 range.
339 alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
340 beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
342 /* We scale alpha and beta differently depending on how heavy the
343 * congestion is. Please see RFC 8033 for details.
345 if (vars->prob < MAX_PROB / 10) {
346 alpha >>= 1;
347 beta >>= 1;
349 power = 100;
350 while (vars->prob < div_u64(MAX_PROB, power) &&
351 power <= 1000000) {
352 alpha >>= 2;
353 beta >>= 2;
354 power *= 10;
358 /* alpha and beta should be between 0 and 32, in multiples of 1/16 */
359 delta += alpha * (qdelay - params->target);
360 delta += beta * (qdelay - qdelay_old);
362 oldprob = vars->prob;
364 /* to ensure we increase probability in steps of no more than 2% */
365 if (delta > (s64)(MAX_PROB / (100 / 2)) &&
366 vars->prob >= MAX_PROB / 10)
367 delta = (MAX_PROB / 100) * 2;
369 /* Non-linear drop:
370 * Tune drop probability to increase quickly for high delays(>= 250ms)
371 * 250ms is derived through experiments and provides error protection
374 if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
375 delta += MAX_PROB / (100 / 2);
377 vars->prob += delta;
379 if (delta > 0) {
380 /* prevent overflow */
381 if (vars->prob < oldprob) {
382 vars->prob = MAX_PROB;
383 /* Prevent normalization error. If probability is at
384 * maximum value already, we normalize it here, and
385 * skip the check to do a non-linear drop in the next
386 * section.
388 update_prob = false;
390 } else {
391 /* prevent underflow */
392 if (vars->prob > oldprob)
393 vars->prob = 0;
396 /* Non-linear drop in probability: Reduce drop probability quickly if
397 * delay is 0 for 2 consecutive Tupdate periods.
400 if (qdelay == 0 && qdelay_old == 0 && update_prob)
401 /* Reduce drop probability to 98.4% */
402 vars->prob -= vars->prob / 64;
404 vars->qdelay = qdelay;
405 vars->backlog_old = backlog;
407 /* We restart the measurement cycle if the following conditions are met
408 * 1. If the delay has been low for 2 consecutive Tupdate periods
409 * 2. Calculated drop probability is zero
410 * 3. If average dq_rate_estimator is enabled, we have at least one
411 * estimate for the avg_dq_rate ie., is a non-zero value
413 if ((vars->qdelay < params->target / 2) &&
414 (vars->qdelay_old < params->target / 2) &&
415 vars->prob == 0 &&
416 (!params->dq_rate_estimator || vars->avg_dq_rate > 0)) {
417 pie_vars_init(vars);
420 if (!params->dq_rate_estimator)
421 vars->qdelay_old = qdelay;
423 EXPORT_SYMBOL_GPL(pie_calculate_probability);
425 static void pie_timer(struct timer_list *t)
427 struct pie_sched_data *q = from_timer(q, t, adapt_timer);
428 struct Qdisc *sch = q->sch;
429 spinlock_t *root_lock;
431 rcu_read_lock();
432 root_lock = qdisc_lock(qdisc_root_sleeping(sch));
433 spin_lock(root_lock);
434 pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog);
436 /* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
437 if (q->params.tupdate)
438 mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
439 spin_unlock(root_lock);
440 rcu_read_unlock();
443 static int pie_init(struct Qdisc *sch, struct nlattr *opt,
444 struct netlink_ext_ack *extack)
446 struct pie_sched_data *q = qdisc_priv(sch);
448 pie_params_init(&q->params);
449 pie_vars_init(&q->vars);
450 sch->limit = q->params.limit;
452 q->sch = sch;
453 timer_setup(&q->adapt_timer, pie_timer, 0);
455 if (opt) {
456 int err = pie_change(sch, opt, extack);
458 if (err)
459 return err;
462 mod_timer(&q->adapt_timer, jiffies + HZ / 2);
463 return 0;
466 static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
468 struct pie_sched_data *q = qdisc_priv(sch);
469 struct nlattr *opts;
471 opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
472 if (!opts)
473 goto nla_put_failure;
475 /* convert target from pschedtime to us */
476 if (nla_put_u32(skb, TCA_PIE_TARGET,
477 ((u32)PSCHED_TICKS2NS(READ_ONCE(q->params.target))) /
478 NSEC_PER_USEC) ||
479 nla_put_u32(skb, TCA_PIE_LIMIT, READ_ONCE(sch->limit)) ||
480 nla_put_u32(skb, TCA_PIE_TUPDATE,
481 jiffies_to_usecs(READ_ONCE(q->params.tupdate))) ||
482 nla_put_u32(skb, TCA_PIE_ALPHA, READ_ONCE(q->params.alpha)) ||
483 nla_put_u32(skb, TCA_PIE_BETA, READ_ONCE(q->params.beta)) ||
484 nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
485 nla_put_u32(skb, TCA_PIE_BYTEMODE,
486 READ_ONCE(q->params.bytemode)) ||
487 nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR,
488 READ_ONCE(q->params.dq_rate_estimator)))
489 goto nla_put_failure;
491 return nla_nest_end(skb, opts);
493 nla_put_failure:
494 nla_nest_cancel(skb, opts);
495 return -1;
498 static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
500 struct pie_sched_data *q = qdisc_priv(sch);
501 struct tc_pie_xstats st = {
502 .prob = q->vars.prob << BITS_PER_BYTE,
503 .delay = ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) /
504 NSEC_PER_USEC,
505 .packets_in = q->stats.packets_in,
506 .overlimit = q->stats.overlimit,
507 .maxq = q->stats.maxq,
508 .dropped = q->stats.dropped,
509 .ecn_mark = q->stats.ecn_mark,
512 /* avg_dq_rate is only valid if dq_rate_estimator is enabled */
513 st.dq_rate_estimating = q->params.dq_rate_estimator;
515 /* unscale and return dq_rate in bytes per sec */
516 if (q->params.dq_rate_estimator)
517 st.avg_dq_rate = q->vars.avg_dq_rate *
518 (PSCHED_TICKS_PER_SEC) >> PIE_SCALE;
520 return gnet_stats_copy_app(d, &st, sizeof(st));
523 static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
525 struct pie_sched_data *q = qdisc_priv(sch);
526 struct sk_buff *skb = qdisc_dequeue_head(sch);
528 if (!skb)
529 return NULL;
531 pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog);
532 return skb;
535 static void pie_reset(struct Qdisc *sch)
537 struct pie_sched_data *q = qdisc_priv(sch);
539 qdisc_reset_queue(sch);
540 pie_vars_init(&q->vars);
543 static void pie_destroy(struct Qdisc *sch)
545 struct pie_sched_data *q = qdisc_priv(sch);
547 q->params.tupdate = 0;
548 del_timer_sync(&q->adapt_timer);
551 static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
552 .id = "pie",
553 .priv_size = sizeof(struct pie_sched_data),
554 .enqueue = pie_qdisc_enqueue,
555 .dequeue = pie_qdisc_dequeue,
556 .peek = qdisc_peek_dequeued,
557 .init = pie_init,
558 .destroy = pie_destroy,
559 .reset = pie_reset,
560 .change = pie_change,
561 .dump = pie_dump,
562 .dump_stats = pie_dump_stats,
563 .owner = THIS_MODULE,
565 MODULE_ALIAS_NET_SCH("pie");
567 static int __init pie_module_init(void)
569 return register_qdisc(&pie_qdisc_ops);
572 static void __exit pie_module_exit(void)
574 unregister_qdisc(&pie_qdisc_ops);
577 module_init(pie_module_init);
578 module_exit(pie_module_exit);
580 MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
581 MODULE_AUTHOR("Vijay Subramanian");
582 MODULE_AUTHOR("Mythili Prabhu");
583 MODULE_LICENSE("GPL");