1 /* SPDX-License-Identifier: GPL-2.0 */
2 /* XDP user-space ring structure
3 * Copyright(c) 2018 Intel Corporation.
6 #ifndef _LINUX_XSK_QUEUE_H
7 #define _LINUX_XSK_QUEUE_H
9 #include <linux/types.h>
10 #include <linux/if_xdp.h>
11 #include <net/xdp_sock.h>
12 #include <net/xsk_buff_pool.h>
17 u32 producer ____cacheline_aligned_in_smp
;
18 /* Hinder the adjacent cache prefetcher to prefetch the consumer
19 * pointer if the producer pointer is touched and vice versa.
21 u32 pad1 ____cacheline_aligned_in_smp
;
22 u32 consumer ____cacheline_aligned_in_smp
;
23 u32 pad2 ____cacheline_aligned_in_smp
;
25 u32 pad3 ____cacheline_aligned_in_smp
;
28 /* Used for the RX and TX queues for packets */
29 struct xdp_rxtx_ring
{
31 struct xdp_desc desc
[] ____cacheline_aligned_in_smp
;
34 /* Used for the fill and completion queues for buffers */
35 struct xdp_umem_ring
{
37 u64 desc
[] ____cacheline_aligned_in_smp
;
45 struct xdp_ring
*ring
;
47 u64 queue_empty_descs
;
48 size_t ring_vmalloc_size
;
56 /* The structure of the shared state of the rings are a simple
57 * circular buffer, as outlined in
58 * Documentation/core-api/circular-buffers.rst. For the Rx and
59 * completion ring, the kernel is the producer and user space is the
60 * consumer. For the Tx and fill rings, the kernel is the consumer and
61 * user space is the producer.
65 * if (LOAD ->consumer) { (A) LOAD.acq ->producer (C)
66 * STORE $data LOAD $data
67 * STORE.rel ->producer (B) STORE.rel ->consumer (D)
70 * (A) pairs with (D), and (B) pairs with (C).
72 * Starting with (B), it protects the data from being written after
73 * the producer pointer. If this barrier was missing, the consumer
74 * could observe the producer pointer being set and thus load the data
75 * before the producer has written the new data. The consumer would in
76 * this case load the old data.
78 * (C) protects the consumer from speculatively loading the data before
79 * the producer pointer actually has been read. If we do not have this
80 * barrier, some architectures could load old data as speculative loads
81 * are not discarded as the CPU does not know there is a dependency
82 * between ->producer and data.
84 * (A) is a control dependency that separates the load of ->consumer
85 * from the stores of $data. In case ->consumer indicates there is no
86 * room in the buffer to store $data we do not. The dependency will
87 * order both of the stores after the loads. So no barrier is needed.
89 * (D) protects the load of the data to be observed to happen after the
90 * store of the consumer pointer. If we did not have this memory
91 * barrier, the producer could observe the consumer pointer being set
92 * and overwrite the data with a new value before the consumer got the
93 * chance to read the old value. The consumer would thus miss reading
94 * the old entry and very likely read the new entry twice, once right
95 * now and again after circling through the ring.
98 /* The operations on the rings are the following:
102 * RESERVE entries PEEK in the ring for entries
103 * WRITE data into the ring READ data from the ring
104 * SUBMIT entries RELEASE entries
106 * The producer reserves one or more entries in the ring. It can then
107 * fill in these entries and finally submit them so that they can be
108 * seen and read by the consumer.
110 * The consumer peeks into the ring to see if the producer has written
111 * any new entries. If so, the consumer can then read these entries
112 * and when it is done reading them release them back to the producer
113 * so that the producer can use these slots to fill in new entries.
115 * The function names below reflect these operations.
118 /* Functions that read and validate content from consumer rings. */
120 static inline void __xskq_cons_read_addr_unchecked(struct xsk_queue
*q
, u32 cached_cons
, u64
*addr
)
122 struct xdp_umem_ring
*ring
= (struct xdp_umem_ring
*)q
->ring
;
123 u32 idx
= cached_cons
& q
->ring_mask
;
125 *addr
= ring
->desc
[idx
];
128 static inline bool xskq_cons_read_addr_unchecked(struct xsk_queue
*q
, u64
*addr
)
130 if (q
->cached_cons
!= q
->cached_prod
) {
131 __xskq_cons_read_addr_unchecked(q
, q
->cached_cons
, addr
);
138 static inline bool xp_unused_options_set(u32 options
)
140 return options
& ~(XDP_PKT_CONTD
| XDP_TX_METADATA
);
143 static inline bool xp_aligned_validate_desc(struct xsk_buff_pool
*pool
,
144 struct xdp_desc
*desc
)
146 u64 addr
= desc
->addr
- pool
->tx_metadata_len
;
147 u64 len
= desc
->len
+ pool
->tx_metadata_len
;
148 u64 offset
= addr
& (pool
->chunk_size
- 1);
153 if (offset
+ len
> pool
->chunk_size
)
156 if (addr
>= pool
->addrs_cnt
)
159 if (xp_unused_options_set(desc
->options
))
164 static inline bool xp_unaligned_validate_desc(struct xsk_buff_pool
*pool
,
165 struct xdp_desc
*desc
)
167 u64 addr
= xp_unaligned_add_offset_to_addr(desc
->addr
) - pool
->tx_metadata_len
;
168 u64 len
= desc
->len
+ pool
->tx_metadata_len
;
173 if (len
> pool
->chunk_size
)
176 if (addr
>= pool
->addrs_cnt
|| addr
+ len
> pool
->addrs_cnt
||
177 xp_desc_crosses_non_contig_pg(pool
, addr
, len
))
180 if (xp_unused_options_set(desc
->options
))
185 static inline bool xp_validate_desc(struct xsk_buff_pool
*pool
,
186 struct xdp_desc
*desc
)
188 return pool
->unaligned
? xp_unaligned_validate_desc(pool
, desc
) :
189 xp_aligned_validate_desc(pool
, desc
);
192 static inline bool xskq_has_descs(struct xsk_queue
*q
)
194 return q
->cached_cons
!= q
->cached_prod
;
197 static inline bool xskq_cons_is_valid_desc(struct xsk_queue
*q
,
199 struct xsk_buff_pool
*pool
)
201 if (!xp_validate_desc(pool
, d
)) {
208 static inline bool xskq_cons_read_desc(struct xsk_queue
*q
,
209 struct xdp_desc
*desc
,
210 struct xsk_buff_pool
*pool
)
212 if (q
->cached_cons
!= q
->cached_prod
) {
213 struct xdp_rxtx_ring
*ring
= (struct xdp_rxtx_ring
*)q
->ring
;
214 u32 idx
= q
->cached_cons
& q
->ring_mask
;
216 *desc
= ring
->desc
[idx
];
217 return xskq_cons_is_valid_desc(q
, desc
, pool
);
220 q
->queue_empty_descs
++;
224 static inline void xskq_cons_release_n(struct xsk_queue
*q
, u32 cnt
)
226 q
->cached_cons
+= cnt
;
229 static inline void parse_desc(struct xsk_queue
*q
, struct xsk_buff_pool
*pool
,
230 struct xdp_desc
*desc
, struct parsed_desc
*parsed
)
232 parsed
->valid
= xskq_cons_is_valid_desc(q
, desc
, pool
);
233 parsed
->mb
= xp_mb_desc(desc
);
237 u32
xskq_cons_read_desc_batch(struct xsk_queue
*q
, struct xsk_buff_pool
*pool
,
240 u32 cached_cons
= q
->cached_cons
, nb_entries
= 0;
241 struct xdp_desc
*descs
= pool
->tx_descs
;
242 u32 total_descs
= 0, nr_frags
= 0;
244 /* track first entry, if stumble upon *any* invalid descriptor, rewind
245 * current packet that consists of frags and stop the processing
247 while (cached_cons
!= q
->cached_prod
&& nb_entries
< max
) {
248 struct xdp_rxtx_ring
*ring
= (struct xdp_rxtx_ring
*)q
->ring
;
249 u32 idx
= cached_cons
& q
->ring_mask
;
250 struct parsed_desc parsed
;
252 descs
[nb_entries
] = ring
->desc
[idx
];
254 parse_desc(q
, pool
, &descs
[nb_entries
], &parsed
);
255 if (unlikely(!parsed
.valid
))
258 if (likely(!parsed
.mb
)) {
259 total_descs
+= (nr_frags
+ 1);
263 if (nr_frags
== pool
->xdp_zc_max_segs
) {
271 cached_cons
-= nr_frags
;
272 /* Release valid plus any invalid entries */
273 xskq_cons_release_n(q
, cached_cons
- q
->cached_cons
);
277 /* Functions for consumers */
279 static inline void __xskq_cons_release(struct xsk_queue
*q
)
281 smp_store_release(&q
->ring
->consumer
, q
->cached_cons
); /* D, matchees A */
284 static inline void __xskq_cons_peek(struct xsk_queue
*q
)
286 /* Refresh the local pointer */
287 q
->cached_prod
= smp_load_acquire(&q
->ring
->producer
); /* C, matches B */
290 static inline void xskq_cons_get_entries(struct xsk_queue
*q
)
292 __xskq_cons_release(q
);
296 static inline u32
xskq_cons_nb_entries(struct xsk_queue
*q
, u32 max
)
298 u32 entries
= q
->cached_prod
- q
->cached_cons
;
304 entries
= q
->cached_prod
- q
->cached_cons
;
306 return entries
>= max
? max
: entries
;
309 static inline bool xskq_cons_peek_addr_unchecked(struct xsk_queue
*q
, u64
*addr
)
311 if (q
->cached_prod
== q
->cached_cons
)
312 xskq_cons_get_entries(q
);
313 return xskq_cons_read_addr_unchecked(q
, addr
);
316 static inline bool xskq_cons_peek_desc(struct xsk_queue
*q
,
317 struct xdp_desc
*desc
,
318 struct xsk_buff_pool
*pool
)
320 if (q
->cached_prod
== q
->cached_cons
)
321 xskq_cons_get_entries(q
);
322 return xskq_cons_read_desc(q
, desc
, pool
);
325 /* To improve performance in the xskq_cons_release functions, only update local state here.
326 * Reflect this to global state when we get new entries from the ring in
327 * xskq_cons_get_entries() and whenever Rx or Tx processing are completed in the NAPI loop.
329 static inline void xskq_cons_release(struct xsk_queue
*q
)
334 static inline void xskq_cons_cancel_n(struct xsk_queue
*q
, u32 cnt
)
336 q
->cached_cons
-= cnt
;
339 static inline u32
xskq_cons_present_entries(struct xsk_queue
*q
)
341 /* No barriers needed since data is not accessed */
342 return READ_ONCE(q
->ring
->producer
) - READ_ONCE(q
->ring
->consumer
);
345 /* Functions for producers */
347 static inline u32
xskq_prod_nb_free(struct xsk_queue
*q
, u32 max
)
349 u32 free_entries
= q
->nentries
- (q
->cached_prod
- q
->cached_cons
);
351 if (free_entries
>= max
)
354 /* Refresh the local tail pointer */
355 q
->cached_cons
= READ_ONCE(q
->ring
->consumer
);
356 free_entries
= q
->nentries
- (q
->cached_prod
- q
->cached_cons
);
358 return free_entries
>= max
? max
: free_entries
;
361 static inline bool xskq_prod_is_full(struct xsk_queue
*q
)
363 return xskq_prod_nb_free(q
, 1) ? false : true;
366 static inline void xskq_prod_cancel_n(struct xsk_queue
*q
, u32 cnt
)
368 q
->cached_prod
-= cnt
;
371 static inline int xskq_prod_reserve(struct xsk_queue
*q
)
373 if (xskq_prod_is_full(q
))
381 static inline int xskq_prod_reserve_addr(struct xsk_queue
*q
, u64 addr
)
383 struct xdp_umem_ring
*ring
= (struct xdp_umem_ring
*)q
->ring
;
385 if (xskq_prod_is_full(q
))
389 ring
->desc
[q
->cached_prod
++ & q
->ring_mask
] = addr
;
393 static inline void xskq_prod_write_addr_batch(struct xsk_queue
*q
, struct xdp_desc
*descs
,
396 struct xdp_umem_ring
*ring
= (struct xdp_umem_ring
*)q
->ring
;
400 cached_prod
= q
->cached_prod
;
401 for (i
= 0; i
< nb_entries
; i
++)
402 ring
->desc
[cached_prod
++ & q
->ring_mask
] = descs
[i
].addr
;
403 q
->cached_prod
= cached_prod
;
406 static inline int xskq_prod_reserve_desc(struct xsk_queue
*q
,
407 u64 addr
, u32 len
, u32 flags
)
409 struct xdp_rxtx_ring
*ring
= (struct xdp_rxtx_ring
*)q
->ring
;
412 if (xskq_prod_is_full(q
))
416 idx
= q
->cached_prod
++ & q
->ring_mask
;
417 ring
->desc
[idx
].addr
= addr
;
418 ring
->desc
[idx
].len
= len
;
419 ring
->desc
[idx
].options
= flags
;
424 static inline void __xskq_prod_submit(struct xsk_queue
*q
, u32 idx
)
426 smp_store_release(&q
->ring
->producer
, idx
); /* B, matches C */
429 static inline void xskq_prod_submit(struct xsk_queue
*q
)
431 __xskq_prod_submit(q
, q
->cached_prod
);
434 static inline void xskq_prod_submit_n(struct xsk_queue
*q
, u32 nb_entries
)
436 __xskq_prod_submit(q
, q
->ring
->producer
+ nb_entries
);
439 static inline bool xskq_prod_is_empty(struct xsk_queue
*q
)
441 /* No barriers needed since data is not accessed */
442 return READ_ONCE(q
->ring
->consumer
) == READ_ONCE(q
->ring
->producer
);
445 /* For both producers and consumers */
447 static inline u64
xskq_nb_invalid_descs(struct xsk_queue
*q
)
449 return q
? q
->invalid_descs
: 0;
452 static inline u64
xskq_nb_queue_empty_descs(struct xsk_queue
*q
)
454 return q
? q
->queue_empty_descs
: 0;
457 struct xsk_queue
*xskq_create(u32 nentries
, bool umem_queue
);
458 void xskq_destroy(struct xsk_queue
*q_ops
);
460 #endif /* _LINUX_XSK_QUEUE_H */