Linux 6.13-rc4
[linux.git] / rust / kernel / alloc / kbox.rs
blob9ce414361c2c6dd8eea09b11041f6c307cbc7864
1 // SPDX-License-Identifier: GPL-2.0
3 //! Implementation of [`Box`].
5 #[allow(unused_imports)] // Used in doc comments.
6 use super::allocator::{KVmalloc, Kmalloc, Vmalloc};
7 use super::{AllocError, Allocator, Flags};
8 use core::alloc::Layout;
9 use core::fmt;
10 use core::marker::PhantomData;
11 use core::mem::ManuallyDrop;
12 use core::mem::MaybeUninit;
13 use core::ops::{Deref, DerefMut};
14 use core::pin::Pin;
15 use core::ptr::NonNull;
16 use core::result::Result;
18 use crate::init::{InPlaceInit, InPlaceWrite, Init, PinInit};
19 use crate::types::ForeignOwnable;
21 /// The kernel's [`Box`] type -- a heap allocation for a single value of type `T`.
22 ///
23 /// This is the kernel's version of the Rust stdlib's `Box`. There are several differences,
24 /// for example no `noalias` attribute is emitted and partially moving out of a `Box` is not
25 /// supported. There are also several API differences, e.g. `Box` always requires an [`Allocator`]
26 /// implementation to be passed as generic, page [`Flags`] when allocating memory and all functions
27 /// that may allocate memory are fallible.
28 ///
29 /// `Box` works with any of the kernel's allocators, e.g. [`Kmalloc`], [`Vmalloc`] or [`KVmalloc`].
30 /// There are aliases for `Box` with these allocators ([`KBox`], [`VBox`], [`KVBox`]).
31 ///
32 /// When dropping a [`Box`], the value is also dropped and the heap memory is automatically freed.
33 ///
34 /// # Examples
35 ///
36 /// ```
37 /// let b = KBox::<u64>::new(24_u64, GFP_KERNEL)?;
38 ///
39 /// assert_eq!(*b, 24_u64);
40 /// # Ok::<(), Error>(())
41 /// ```
42 ///
43 /// ```
44 /// # use kernel::bindings;
45 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
46 /// struct Huge([u8; SIZE]);
47 ///
48 /// assert!(KBox::<Huge>::new_uninit(GFP_KERNEL | __GFP_NOWARN).is_err());
49 /// ```
50 ///
51 /// ```
52 /// # use kernel::bindings;
53 /// const SIZE: usize = bindings::KMALLOC_MAX_SIZE as usize + 1;
54 /// struct Huge([u8; SIZE]);
55 ///
56 /// assert!(KVBox::<Huge>::new_uninit(GFP_KERNEL).is_ok());
57 /// ```
58 ///
59 /// # Invariants
60 ///
61 /// `self.0` is always properly aligned and either points to memory allocated with `A` or, for
62 /// zero-sized types, is a dangling, well aligned pointer.
63 #[repr(transparent)]
64 pub struct Box<T: ?Sized, A: Allocator>(NonNull<T>, PhantomData<A>);
66 /// Type alias for [`Box`] with a [`Kmalloc`] allocator.
67 ///
68 /// # Examples
69 ///
70 /// ```
71 /// let b = KBox::new(24_u64, GFP_KERNEL)?;
72 ///
73 /// assert_eq!(*b, 24_u64);
74 /// # Ok::<(), Error>(())
75 /// ```
76 pub type KBox<T> = Box<T, super::allocator::Kmalloc>;
78 /// Type alias for [`Box`] with a [`Vmalloc`] allocator.
79 ///
80 /// # Examples
81 ///
82 /// ```
83 /// let b = VBox::new(24_u64, GFP_KERNEL)?;
84 ///
85 /// assert_eq!(*b, 24_u64);
86 /// # Ok::<(), Error>(())
87 /// ```
88 pub type VBox<T> = Box<T, super::allocator::Vmalloc>;
90 /// Type alias for [`Box`] with a [`KVmalloc`] allocator.
91 ///
92 /// # Examples
93 ///
94 /// ```
95 /// let b = KVBox::new(24_u64, GFP_KERNEL)?;
96 ///
97 /// assert_eq!(*b, 24_u64);
98 /// # Ok::<(), Error>(())
99 /// ```
100 pub type KVBox<T> = Box<T, super::allocator::KVmalloc>;
102 // SAFETY: `Box` is `Send` if `T` is `Send` because the `Box` owns a `T`.
103 unsafe impl<T, A> Send for Box<T, A>
104 where
105     T: Send + ?Sized,
106     A: Allocator,
110 // SAFETY: `Box` is `Sync` if `T` is `Sync` because the `Box` owns a `T`.
111 unsafe impl<T, A> Sync for Box<T, A>
112 where
113     T: Sync + ?Sized,
114     A: Allocator,
118 impl<T, A> Box<T, A>
119 where
120     T: ?Sized,
121     A: Allocator,
123     /// Creates a new `Box<T, A>` from a raw pointer.
124     ///
125     /// # Safety
126     ///
127     /// For non-ZSTs, `raw` must point at an allocation allocated with `A` that is sufficiently
128     /// aligned for and holds a valid `T`. The caller passes ownership of the allocation to the
129     /// `Box`.
130     ///
131     /// For ZSTs, `raw` must be a dangling, well aligned pointer.
132     #[inline]
133     pub const unsafe fn from_raw(raw: *mut T) -> Self {
134         // INVARIANT: Validity of `raw` is guaranteed by the safety preconditions of this function.
135         // SAFETY: By the safety preconditions of this function, `raw` is not a NULL pointer.
136         Self(unsafe { NonNull::new_unchecked(raw) }, PhantomData)
137     }
139     /// Consumes the `Box<T, A>` and returns a raw pointer.
140     ///
141     /// This will not run the destructor of `T` and for non-ZSTs the allocation will stay alive
142     /// indefinitely. Use [`Box::from_raw`] to recover the [`Box`], drop the value and free the
143     /// allocation, if any.
144     ///
145     /// # Examples
146     ///
147     /// ```
148     /// let x = KBox::new(24, GFP_KERNEL)?;
149     /// let ptr = KBox::into_raw(x);
150     /// // SAFETY: `ptr` comes from a previous call to `KBox::into_raw`.
151     /// let x = unsafe { KBox::from_raw(ptr) };
152     ///
153     /// assert_eq!(*x, 24);
154     /// # Ok::<(), Error>(())
155     /// ```
156     #[inline]
157     pub fn into_raw(b: Self) -> *mut T {
158         ManuallyDrop::new(b).0.as_ptr()
159     }
161     /// Consumes and leaks the `Box<T, A>` and returns a mutable reference.
162     ///
163     /// See [`Box::into_raw`] for more details.
164     #[inline]
165     pub fn leak<'a>(b: Self) -> &'a mut T {
166         // SAFETY: `Box::into_raw` always returns a properly aligned and dereferenceable pointer
167         // which points to an initialized instance of `T`.
168         unsafe { &mut *Box::into_raw(b) }
169     }
172 impl<T, A> Box<MaybeUninit<T>, A>
173 where
174     A: Allocator,
176     /// Converts a `Box<MaybeUninit<T>, A>` to a `Box<T, A>`.
177     ///
178     /// It is undefined behavior to call this function while the value inside of `b` is not yet
179     /// fully initialized.
180     ///
181     /// # Safety
182     ///
183     /// Callers must ensure that the value inside of `b` is in an initialized state.
184     pub unsafe fn assume_init(self) -> Box<T, A> {
185         let raw = Self::into_raw(self);
187         // SAFETY: `raw` comes from a previous call to `Box::into_raw`. By the safety requirements
188         // of this function, the value inside the `Box` is in an initialized state. Hence, it is
189         // safe to reconstruct the `Box` as `Box<T, A>`.
190         unsafe { Box::from_raw(raw.cast()) }
191     }
193     /// Writes the value and converts to `Box<T, A>`.
194     pub fn write(mut self, value: T) -> Box<T, A> {
195         (*self).write(value);
197         // SAFETY: We've just initialized `b`'s value.
198         unsafe { self.assume_init() }
199     }
202 impl<T, A> Box<T, A>
203 where
204     A: Allocator,
206     /// Creates a new `Box<T, A>` and initializes its contents with `x`.
207     ///
208     /// New memory is allocated with `A`. The allocation may fail, in which case an error is
209     /// returned. For ZSTs no memory is allocated.
210     pub fn new(x: T, flags: Flags) -> Result<Self, AllocError> {
211         let b = Self::new_uninit(flags)?;
212         Ok(Box::write(b, x))
213     }
215     /// Creates a new `Box<T, A>` with uninitialized contents.
216     ///
217     /// New memory is allocated with `A`. The allocation may fail, in which case an error is
218     /// returned. For ZSTs no memory is allocated.
219     ///
220     /// # Examples
221     ///
222     /// ```
223     /// let b = KBox::<u64>::new_uninit(GFP_KERNEL)?;
224     /// let b = KBox::write(b, 24);
225     ///
226     /// assert_eq!(*b, 24_u64);
227     /// # Ok::<(), Error>(())
228     /// ```
229     pub fn new_uninit(flags: Flags) -> Result<Box<MaybeUninit<T>, A>, AllocError> {
230         let layout = Layout::new::<MaybeUninit<T>>();
231         let ptr = A::alloc(layout, flags)?;
233         // INVARIANT: `ptr` is either a dangling pointer or points to memory allocated with `A`,
234         // which is sufficient in size and alignment for storing a `T`.
235         Ok(Box(ptr.cast(), PhantomData))
236     }
238     /// Constructs a new `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then `x` will be
239     /// pinned in memory and can't be moved.
240     #[inline]
241     pub fn pin(x: T, flags: Flags) -> Result<Pin<Box<T, A>>, AllocError>
242     where
243         A: 'static,
244     {
245         Ok(Self::new(x, flags)?.into())
246     }
248     /// Forgets the contents (does not run the destructor), but keeps the allocation.
249     fn forget_contents(this: Self) -> Box<MaybeUninit<T>, A> {
250         let ptr = Self::into_raw(this);
252         // SAFETY: `ptr` is valid, because it came from `Box::into_raw`.
253         unsafe { Box::from_raw(ptr.cast()) }
254     }
256     /// Drops the contents, but keeps the allocation.
257     ///
258     /// # Examples
259     ///
260     /// ```
261     /// let value = KBox::new([0; 32], GFP_KERNEL)?;
262     /// assert_eq!(*value, [0; 32]);
263     /// let value = KBox::drop_contents(value);
264     /// // Now we can re-use `value`:
265     /// let value = KBox::write(value, [1; 32]);
266     /// assert_eq!(*value, [1; 32]);
267     /// # Ok::<(), Error>(())
268     /// ```
269     pub fn drop_contents(this: Self) -> Box<MaybeUninit<T>, A> {
270         let ptr = this.0.as_ptr();
272         // SAFETY: `ptr` is valid, because it came from `this`. After this call we never access the
273         // value stored in `this` again.
274         unsafe { core::ptr::drop_in_place(ptr) };
276         Self::forget_contents(this)
277     }
279     /// Moves the `Box`'s value out of the `Box` and consumes the `Box`.
280     pub fn into_inner(b: Self) -> T {
281         // SAFETY: By the type invariant `&*b` is valid for `read`.
282         let value = unsafe { core::ptr::read(&*b) };
283         let _ = Self::forget_contents(b);
284         value
285     }
288 impl<T, A> From<Box<T, A>> for Pin<Box<T, A>>
289 where
290     T: ?Sized,
291     A: Allocator,
293     /// Converts a `Box<T, A>` into a `Pin<Box<T, A>>`. If `T` does not implement [`Unpin`], then
294     /// `*b` will be pinned in memory and can't be moved.
295     ///
296     /// This moves `b` into `Pin` without moving `*b` or allocating and copying any memory.
297     fn from(b: Box<T, A>) -> Self {
298         // SAFETY: The value wrapped inside a `Pin<Box<T, A>>` cannot be moved or replaced as long
299         // as `T` does not implement `Unpin`.
300         unsafe { Pin::new_unchecked(b) }
301     }
304 impl<T, A> InPlaceWrite<T> for Box<MaybeUninit<T>, A>
305 where
306     A: Allocator + 'static,
308     type Initialized = Box<T, A>;
310     fn write_init<E>(mut self, init: impl Init<T, E>) -> Result<Self::Initialized, E> {
311         let slot = self.as_mut_ptr();
312         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
313         // slot is valid.
314         unsafe { init.__init(slot)? };
315         // SAFETY: All fields have been initialized.
316         Ok(unsafe { Box::assume_init(self) })
317     }
319     fn write_pin_init<E>(mut self, init: impl PinInit<T, E>) -> Result<Pin<Self::Initialized>, E> {
320         let slot = self.as_mut_ptr();
321         // SAFETY: When init errors/panics, slot will get deallocated but not dropped,
322         // slot is valid and will not be moved, because we pin it later.
323         unsafe { init.__pinned_init(slot)? };
324         // SAFETY: All fields have been initialized.
325         Ok(unsafe { Box::assume_init(self) }.into())
326     }
329 impl<T, A> InPlaceInit<T> for Box<T, A>
330 where
331     A: Allocator + 'static,
333     type PinnedSelf = Pin<Self>;
335     #[inline]
336     fn try_pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Pin<Self>, E>
337     where
338         E: From<AllocError>,
339     {
340         Box::<_, A>::new_uninit(flags)?.write_pin_init(init)
341     }
343     #[inline]
344     fn try_init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
345     where
346         E: From<AllocError>,
347     {
348         Box::<_, A>::new_uninit(flags)?.write_init(init)
349     }
352 impl<T: 'static, A> ForeignOwnable for Box<T, A>
353 where
354     A: Allocator,
356     type Borrowed<'a> = &'a T;
358     fn into_foreign(self) -> *const crate::ffi::c_void {
359         Box::into_raw(self) as _
360     }
362     unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
363         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
364         // call to `Self::into_foreign`.
365         unsafe { Box::from_raw(ptr as _) }
366     }
368     unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> &'a T {
369         // SAFETY: The safety requirements of this method ensure that the object remains alive and
370         // immutable for the duration of 'a.
371         unsafe { &*ptr.cast() }
372     }
375 impl<T: 'static, A> ForeignOwnable for Pin<Box<T, A>>
376 where
377     A: Allocator,
379     type Borrowed<'a> = Pin<&'a T>;
381     fn into_foreign(self) -> *const crate::ffi::c_void {
382         // SAFETY: We are still treating the box as pinned.
383         Box::into_raw(unsafe { Pin::into_inner_unchecked(self) }) as _
384     }
386     unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
387         // SAFETY: The safety requirements of this function ensure that `ptr` comes from a previous
388         // call to `Self::into_foreign`.
389         unsafe { Pin::new_unchecked(Box::from_raw(ptr as _)) }
390     }
392     unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> Pin<&'a T> {
393         // SAFETY: The safety requirements for this function ensure that the object is still alive,
394         // so it is safe to dereference the raw pointer.
395         // The safety requirements of `from_foreign` also ensure that the object remains alive for
396         // the lifetime of the returned value.
397         let r = unsafe { &*ptr.cast() };
399         // SAFETY: This pointer originates from a `Pin<Box<T>>`.
400         unsafe { Pin::new_unchecked(r) }
401     }
404 impl<T, A> Deref for Box<T, A>
405 where
406     T: ?Sized,
407     A: Allocator,
409     type Target = T;
411     fn deref(&self) -> &T {
412         // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
413         // instance of `T`.
414         unsafe { self.0.as_ref() }
415     }
418 impl<T, A> DerefMut for Box<T, A>
419 where
420     T: ?Sized,
421     A: Allocator,
423     fn deref_mut(&mut self) -> &mut T {
424         // SAFETY: `self.0` is always properly aligned, dereferenceable and points to an initialized
425         // instance of `T`.
426         unsafe { self.0.as_mut() }
427     }
430 impl<T, A> fmt::Debug for Box<T, A>
431 where
432     T: ?Sized + fmt::Debug,
433     A: Allocator,
435     fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
436         fmt::Debug::fmt(&**self, f)
437     }
440 impl<T, A> Drop for Box<T, A>
441 where
442     T: ?Sized,
443     A: Allocator,
445     fn drop(&mut self) {
446         let layout = Layout::for_value::<T>(self);
448         // SAFETY: The pointer in `self.0` is guaranteed to be valid by the type invariant.
449         unsafe { core::ptr::drop_in_place::<T>(self.deref_mut()) };
451         // SAFETY:
452         // - `self.0` was previously allocated with `A`.
453         // - `layout` is equal to the `Layout´ `self.0` was allocated with.
454         unsafe { A::free(self.0.cast(), layout) };
455     }