1 // SPDX-License-Identifier: GPL-2.0
3 // Copyright (C) 2024 Google LLC.
5 //! A wrapper around `Arc` for linked lists.
7 use crate::alloc::{AllocError, Flags};
9 use crate::sync::{Arc, ArcBorrow, UniqueArc};
10 use core::marker::PhantomPinned;
13 use core::sync::atomic::{AtomicBool, Ordering};
15 /// Declares that this type has some way to ensure that there is exactly one `ListArc` instance for
18 /// Types that implement this trait should include some kind of logic for keeping track of whether
19 /// a [`ListArc`] exists or not. We refer to this logic as "the tracking inside `T`".
21 /// We allow the case where the tracking inside `T` thinks that a [`ListArc`] exists, but actually,
22 /// there isn't a [`ListArc`]. However, we do not allow the opposite situation where a [`ListArc`]
23 /// exists, but the tracking thinks it doesn't. This is because the former can at most result in us
24 /// failing to create a [`ListArc`] when the operation could succeed, whereas the latter can result
25 /// in the creation of two [`ListArc`] references. Only the latter situation can lead to memory
28 /// A consequence of the above is that you may implement the tracking inside `T` by not actually
29 /// keeping track of anything. To do this, you always claim that a [`ListArc`] exists, even if
30 /// there isn't one. This implementation is allowed by the above rule, but it means that
31 /// [`ListArc`] references can only be created if you have ownership of *all* references to the
32 /// refcounted object, as you otherwise have no way of knowing whether a [`ListArc`] exists.
33 pub trait ListArcSafe<const ID: u64 = 0> {
34 /// Informs the tracking inside this type that it now has a [`ListArc`] reference.
36 /// This method may be called even if the tracking inside this type thinks that a `ListArc`
37 /// reference exists. (But only if that's not actually the case.)
41 /// Must not be called if a [`ListArc`] already exist for this value.
42 unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>);
44 /// Informs the tracking inside this type that there is no [`ListArc`] reference anymore.
48 /// Must only be called if there is no [`ListArc`] reference, but the tracking thinks there is.
49 unsafe fn on_drop_list_arc(&self);
52 /// Declares that this type is able to safely attempt to create `ListArc`s at any time.
56 /// The guarantees of `try_new_list_arc` must be upheld.
57 pub unsafe trait TryNewListArc<const ID: u64 = 0>: ListArcSafe<ID> {
58 /// Attempts to convert an `Arc<Self>` into an `ListArc<Self>`. Returns `true` if the
59 /// conversion was successful.
61 /// This method should not be called directly. Use [`ListArc::try_from_arc`] instead.
65 /// If this call returns `true`, then there is no [`ListArc`] pointing to this value.
66 /// Additionally, this call will have transitioned the tracking inside `Self` from not thinking
67 /// that a [`ListArc`] exists, to thinking that a [`ListArc`] exists.
68 fn try_new_list_arc(&self) -> bool;
71 /// Declares that this type supports [`ListArc`].
73 /// This macro supports a few different strategies for implementing the tracking inside the type:
75 /// * The `untracked` strategy does not actually keep track of whether a [`ListArc`] exists. When
76 /// using this strategy, the only way to create a [`ListArc`] is using a [`UniqueArc`].
77 /// * The `tracked_by` strategy defers the tracking to a field of the struct. The user much specify
78 /// which field to defer the tracking to. The field must implement [`ListArcSafe`]. If the field
79 /// implements [`TryNewListArc`], then the type will also implement [`TryNewListArc`].
81 /// The `tracked_by` strategy is usually used by deferring to a field of type
82 /// [`AtomicTracker`]. However, it is also possible to defer the tracking to another struct
83 /// using also using this macro.
85 macro_rules! impl_list_arc_safe {
86 (impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty { untracked; } $($rest:tt)*) => {
87 impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t {
88 unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {}
89 unsafe fn on_drop_list_arc(&self) {}
91 $crate::list::impl_list_arc_safe! { $($rest)* }
94 (impl$({$($generics:tt)*})? ListArcSafe<$num:tt> for $t:ty {
95 tracked_by $field:ident : $fty:ty;
97 impl$(<$($generics)*>)? $crate::list::ListArcSafe<$num> for $t {
98 unsafe fn on_create_list_arc_from_unique(self: ::core::pin::Pin<&mut Self>) {
99 $crate::assert_pinned!($t, $field, $fty, inline);
101 // SAFETY: This field is structurally pinned as per the above assertion.
103 ::core::pin::Pin::map_unchecked_mut(self, |me| &mut me.$field)
105 // SAFETY: The caller promises that there is no `ListArc`.
107 <$fty as $crate::list::ListArcSafe<$num>>::on_create_list_arc_from_unique(field)
110 unsafe fn on_drop_list_arc(&self) {
111 // SAFETY: The caller promises that there is no `ListArc` reference, and also
112 // promises that the tracking thinks there is a `ListArc` reference.
113 unsafe { <$fty as $crate::list::ListArcSafe<$num>>::on_drop_list_arc(&self.$field) };
116 unsafe impl$(<$($generics)*>)? $crate::list::TryNewListArc<$num> for $t
118 $fty: TryNewListArc<$num>,
120 fn try_new_list_arc(&self) -> bool {
121 <$fty as $crate::list::TryNewListArc<$num>>::try_new_list_arc(&self.$field)
124 $crate::list::impl_list_arc_safe! { $($rest)* }
129 pub use impl_list_arc_safe;
131 /// A wrapper around [`Arc`] that's guaranteed unique for the given id.
133 /// The `ListArc` type can be thought of as a special reference to a refcounted object that owns the
134 /// permission to manipulate the `next`/`prev` pointers stored in the refcounted object. By ensuring
135 /// that each object has only one `ListArc` reference, the owner of that reference is assured
136 /// exclusive access to the `next`/`prev` pointers. When a `ListArc` is inserted into a [`List`],
137 /// the [`List`] takes ownership of the `ListArc` reference.
139 /// There are various strategies to ensuring that a value has only one `ListArc` reference. The
140 /// simplest is to convert a [`UniqueArc`] into a `ListArc`. However, the refcounted object could
141 /// also keep track of whether a `ListArc` exists using a boolean, which could allow for the
142 /// creation of new `ListArc` references from an [`Arc`] reference. Whatever strategy is used, the
143 /// relevant tracking is referred to as "the tracking inside `T`", and the [`ListArcSafe`] trait
144 /// (and its subtraits) are used to update the tracking when a `ListArc` is created or destroyed.
146 /// Note that we allow the case where the tracking inside `T` thinks that a `ListArc` exists, but
147 /// actually, there isn't a `ListArc`. However, we do not allow the opposite situation where a
148 /// `ListArc` exists, but the tracking thinks it doesn't. This is because the former can at most
149 /// result in us failing to create a `ListArc` when the operation could succeed, whereas the latter
150 /// can result in the creation of two `ListArc` references.
152 /// While this `ListArc` is unique for the given id, there still might exist normal `Arc`
153 /// references to the object.
157 /// * Each reference counted object has at most one `ListArc` for each value of `ID`.
158 /// * The tracking inside `T` is aware that a `ListArc` reference exists.
160 /// [`List`]: crate::list::List
162 #[cfg_attr(CONFIG_RUSTC_HAS_COERCE_POINTEE, derive(core::marker::CoercePointee))]
163 pub struct ListArc<T, const ID: u64 = 0>
165 T: ListArcSafe<ID> + ?Sized,
170 impl<T: ListArcSafe<ID>, const ID: u64> ListArc<T, ID> {
171 /// Constructs a new reference counted instance of `T`.
173 pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
174 Ok(Self::from(UniqueArc::new(contents, flags)?))
177 /// Use the given initializer to in-place initialize a `T`.
179 /// If `T: !Unpin` it will not be able to move afterwards.
180 // We don't implement `InPlaceInit` because `ListArc` is implicitly pinned. This is similar to
181 // what we do for `Arc`.
183 pub fn pin_init<E>(init: impl PinInit<T, E>, flags: Flags) -> Result<Self, E>
187 Ok(Self::from(UniqueArc::try_pin_init(init, flags)?))
190 /// Use the given initializer to in-place initialize a `T`.
192 /// This is equivalent to [`ListArc<T>::pin_init`], since a [`ListArc`] is always pinned.
194 pub fn init<E>(init: impl Init<T, E>, flags: Flags) -> Result<Self, E>
198 Ok(Self::from(UniqueArc::try_init(init, flags)?))
202 impl<T, const ID: u64> From<UniqueArc<T>> for ListArc<T, ID>
204 T: ListArcSafe<ID> + ?Sized,
206 /// Convert a [`UniqueArc`] into a [`ListArc`].
208 fn from(unique: UniqueArc<T>) -> Self {
209 Self::from(Pin::from(unique))
213 impl<T, const ID: u64> From<Pin<UniqueArc<T>>> for ListArc<T, ID>
215 T: ListArcSafe<ID> + ?Sized,
217 /// Convert a pinned [`UniqueArc`] into a [`ListArc`].
219 fn from(mut unique: Pin<UniqueArc<T>>) -> Self {
220 // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
221 unsafe { T::on_create_list_arc_from_unique(unique.as_mut()) };
222 let arc = Arc::from(unique);
223 // SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`,
224 // so we can create a `ListArc`.
225 unsafe { Self::transmute_from_arc(arc) }
229 impl<T, const ID: u64> ListArc<T, ID>
231 T: ListArcSafe<ID> + ?Sized,
233 /// Creates two `ListArc`s from a [`UniqueArc`].
235 /// The two ids must be different.
237 pub fn pair_from_unique<const ID2: u64>(unique: UniqueArc<T>) -> (Self, ListArc<T, ID2>)
241 Self::pair_from_pin_unique(Pin::from(unique))
244 /// Creates two `ListArc`s from a pinned [`UniqueArc`].
246 /// The two ids must be different.
248 pub fn pair_from_pin_unique<const ID2: u64>(
249 mut unique: Pin<UniqueArc<T>>,
250 ) -> (Self, ListArc<T, ID2>)
254 build_assert!(ID != ID2);
256 // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
257 unsafe { <T as ListArcSafe<ID>>::on_create_list_arc_from_unique(unique.as_mut()) };
258 // SAFETY: We have a `UniqueArc`, so there is no `ListArc`.
259 unsafe { <T as ListArcSafe<ID2>>::on_create_list_arc_from_unique(unique.as_mut()) };
261 let arc1 = Arc::from(unique);
262 let arc2 = Arc::clone(&arc1);
264 // SAFETY: We just called `on_create_list_arc_from_unique` on an arc without a `ListArc`
265 // for both IDs (which are different), so we can create two `ListArc`s.
268 Self::transmute_from_arc(arc1),
269 ListArc::transmute_from_arc(arc2),
274 /// Try to create a new `ListArc`.
276 /// This fails if this value already has a `ListArc`.
277 pub fn try_from_arc(arc: Arc<T>) -> Result<Self, Arc<T>>
279 T: TryNewListArc<ID>,
281 if arc.try_new_list_arc() {
282 // SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think
283 // that a `ListArc` exists. This lets us create a `ListArc`.
284 Ok(unsafe { Self::transmute_from_arc(arc) })
290 /// Try to create a new `ListArc`.
292 /// This fails if this value already has a `ListArc`.
293 pub fn try_from_arc_borrow(arc: ArcBorrow<'_, T>) -> Option<Self>
295 T: TryNewListArc<ID>,
297 if arc.try_new_list_arc() {
298 // SAFETY: The `try_new_list_arc` method returned true, so we made the tracking think
299 // that a `ListArc` exists. This lets us create a `ListArc`.
300 Some(unsafe { Self::transmute_from_arc(Arc::from(arc)) })
306 /// Try to create a new `ListArc`.
308 /// If it's not possible to create a new `ListArc`, then the `Arc` is dropped. This will never
309 /// run the destructor of the value.
310 pub fn try_from_arc_or_drop(arc: Arc<T>) -> Option<Self>
312 T: TryNewListArc<ID>,
314 match Self::try_from_arc(arc) {
315 Ok(list_arc) => Some(list_arc),
316 Err(arc) => Arc::into_unique_or_drop(arc).map(Self::from),
320 /// Transmutes an [`Arc`] into a `ListArc` without updating the tracking inside `T`.
324 /// * The value must not already have a `ListArc` reference.
325 /// * The tracking inside `T` must think that there is a `ListArc` reference.
327 unsafe fn transmute_from_arc(arc: Arc<T>) -> Self {
328 // INVARIANT: By the safety requirements, the invariants on `ListArc` are satisfied.
332 /// Transmutes a `ListArc` into an [`Arc`] without updating the tracking inside `T`.
334 /// After this call, the tracking inside `T` will still think that there is a `ListArc`
337 fn transmute_to_arc(self) -> Arc<T> {
338 // Use a transmute to skip destructor.
340 // SAFETY: ListArc is repr(transparent).
341 unsafe { core::mem::transmute(self) }
344 /// Convert ownership of this `ListArc` into a raw pointer.
346 /// The returned pointer is indistinguishable from pointers returned by [`Arc::into_raw`]. The
347 /// tracking inside `T` will still think that a `ListArc` exists after this call.
349 pub fn into_raw(self) -> *const T {
350 Arc::into_raw(Self::transmute_to_arc(self))
353 /// Take ownership of the `ListArc` from a raw pointer.
357 /// * `ptr` must satisfy the safety requirements of [`Arc::from_raw`].
358 /// * The value must not already have a `ListArc` reference.
359 /// * The tracking inside `T` must think that there is a `ListArc` reference.
361 pub unsafe fn from_raw(ptr: *const T) -> Self {
362 // SAFETY: The pointer satisfies the safety requirements for `Arc::from_raw`.
363 let arc = unsafe { Arc::from_raw(ptr) };
364 // SAFETY: The value doesn't already have a `ListArc` reference, but the tracking thinks it
366 unsafe { Self::transmute_from_arc(arc) }
369 /// Converts the `ListArc` into an [`Arc`].
371 pub fn into_arc(self) -> Arc<T> {
372 let arc = Self::transmute_to_arc(self);
373 // SAFETY: There is no longer a `ListArc`, but the tracking thinks there is.
374 unsafe { T::on_drop_list_arc(&arc) };
378 /// Clone a `ListArc` into an [`Arc`].
380 pub fn clone_arc(&self) -> Arc<T> {
384 /// Returns a reference to an [`Arc`] from the given [`ListArc`].
386 /// This is useful when the argument of a function call is an [`&Arc`] (e.g., in a method
387 /// receiver), but we have a [`ListArc`] instead.
391 pub fn as_arc(&self) -> &Arc<T> {
395 /// Returns an [`ArcBorrow`] from the given [`ListArc`].
397 /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
398 /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
400 pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
401 self.arc.as_arc_borrow()
404 /// Compare whether two [`ListArc`] pointers reference the same underlying object.
406 pub fn ptr_eq(this: &Self, other: &Self) -> bool {
407 Arc::ptr_eq(&this.arc, &other.arc)
411 impl<T, const ID: u64> Deref for ListArc<T, ID>
413 T: ListArcSafe<ID> + ?Sized,
418 fn deref(&self) -> &Self::Target {
423 impl<T, const ID: u64> Drop for ListArc<T, ID>
425 T: ListArcSafe<ID> + ?Sized,
429 // SAFETY: There is no longer a `ListArc`, but the tracking thinks there is by the type
430 // invariants on `Self`.
431 unsafe { T::on_drop_list_arc(&self.arc) };
435 impl<T, const ID: u64> AsRef<Arc<T>> for ListArc<T, ID>
437 T: ListArcSafe<ID> + ?Sized,
440 fn as_ref(&self) -> &Arc<T> {
445 // This is to allow coercion from `ListArc<T>` to `ListArc<U>` if `T` can be converted to the
446 // dynamically-sized type (DST) `U`.
447 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
448 impl<T, U, const ID: u64> core::ops::CoerceUnsized<ListArc<U, ID>> for ListArc<T, ID>
450 T: ListArcSafe<ID> + core::marker::Unsize<U> + ?Sized,
451 U: ListArcSafe<ID> + ?Sized,
455 // This is to allow `ListArc<U>` to be dispatched on when `ListArc<T>` can be coerced into
457 #[cfg(not(CONFIG_RUSTC_HAS_COERCE_POINTEE))]
458 impl<T, U, const ID: u64> core::ops::DispatchFromDyn<ListArc<U, ID>> for ListArc<T, ID>
460 T: ListArcSafe<ID> + core::marker::Unsize<U> + ?Sized,
461 U: ListArcSafe<ID> + ?Sized,
465 /// A utility for tracking whether a [`ListArc`] exists using an atomic.
469 /// If the boolean is `false`, then there is no [`ListArc`] for this value.
471 pub struct AtomicTracker<const ID: u64 = 0> {
473 // This value needs to be pinned to justify the INVARIANT: comment in `AtomicTracker::new`.
477 impl<const ID: u64> AtomicTracker<ID> {
478 /// Creates a new initializer for this type.
479 pub fn new() -> impl PinInit<Self> {
480 // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
481 // not be constructed in an `Arc` that already has a `ListArc`.
483 inner: AtomicBool::new(false),
488 fn project_inner(self: Pin<&mut Self>) -> &mut AtomicBool {
489 // SAFETY: The `inner` field is not structurally pinned, so we may obtain a mutable
490 // reference to it even if we only have a pinned reference to `self`.
491 unsafe { &mut Pin::into_inner_unchecked(self).inner }
495 impl<const ID: u64> ListArcSafe<ID> for AtomicTracker<ID> {
496 unsafe fn on_create_list_arc_from_unique(self: Pin<&mut Self>) {
497 // INVARIANT: We just created a ListArc, so the boolean should be true.
498 *self.project_inner().get_mut() = true;
501 unsafe fn on_drop_list_arc(&self) {
502 // INVARIANT: We just dropped a ListArc, so the boolean should be false.
503 self.inner.store(false, Ordering::Release);
507 // SAFETY: If this method returns `true`, then by the type invariant there is no `ListArc` before
508 // this call, so it is okay to create a new `ListArc`.
510 // The acquire ordering will synchronize with the release store from the destruction of any
511 // previous `ListArc`, so if there was a previous `ListArc`, then the destruction of the previous
512 // `ListArc` happens-before the creation of the new `ListArc`.
513 unsafe impl<const ID: u64> TryNewListArc<ID> for AtomicTracker<ID> {
514 fn try_new_list_arc(&self) -> bool {
515 // INVARIANT: If this method returns true, then the boolean used to be false, and is no
516 // longer false, so it is okay for the caller to create a new [`ListArc`].
518 .compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)