Linux 6.13-rc4
[linux.git] / rust / kernel / task.rs
blob07bc22a7645c0c7d792a0a163dd55b8ff0fe5f92
1 // SPDX-License-Identifier: GPL-2.0
3 //! Tasks (threads and processes).
4 //!
5 //! C header: [`include/linux/sched.h`](srctree/include/linux/sched.h).
7 use crate::{
8     bindings,
9     ffi::{c_int, c_long, c_uint},
10     pid_namespace::PidNamespace,
11     types::{ARef, NotThreadSafe, Opaque},
13 use core::{
14     cmp::{Eq, PartialEq},
15     ops::Deref,
16     ptr,
19 /// A sentinel value used for infinite timeouts.
20 pub const MAX_SCHEDULE_TIMEOUT: c_long = c_long::MAX;
22 /// Bitmask for tasks that are sleeping in an interruptible state.
23 pub const TASK_INTERRUPTIBLE: c_int = bindings::TASK_INTERRUPTIBLE as c_int;
24 /// Bitmask for tasks that are sleeping in an uninterruptible state.
25 pub const TASK_UNINTERRUPTIBLE: c_int = bindings::TASK_UNINTERRUPTIBLE as c_int;
26 /// Convenience constant for waking up tasks regardless of whether they are in interruptible or
27 /// uninterruptible sleep.
28 pub const TASK_NORMAL: c_uint = bindings::TASK_NORMAL as c_uint;
30 /// Returns the currently running task.
31 #[macro_export]
32 macro_rules! current {
33     () => {
34         // SAFETY: Deref + addr-of below create a temporary `TaskRef` that cannot outlive the
35         // caller.
36         unsafe { &*$crate::task::Task::current() }
37     };
40 /// Returns the currently running task's pid namespace.
41 #[macro_export]
42 macro_rules! current_pid_ns {
43     () => {
44         // SAFETY: Deref + addr-of below create a temporary `PidNamespaceRef` that cannot outlive
45         // the caller.
46         unsafe { &*$crate::task::Task::current_pid_ns() }
47     };
50 /// Wraps the kernel's `struct task_struct`.
51 ///
52 /// # Invariants
53 ///
54 /// All instances are valid tasks created by the C portion of the kernel.
55 ///
56 /// Instances of this type are always refcounted, that is, a call to `get_task_struct` ensures
57 /// that the allocation remains valid at least until the matching call to `put_task_struct`.
58 ///
59 /// # Examples
60 ///
61 /// The following is an example of getting the PID of the current thread with zero additional cost
62 /// when compared to the C version:
63 ///
64 /// ```
65 /// let pid = current!().pid();
66 /// ```
67 ///
68 /// Getting the PID of the current process, also zero additional cost:
69 ///
70 /// ```
71 /// let pid = current!().group_leader().pid();
72 /// ```
73 ///
74 /// Getting the current task and storing it in some struct. The reference count is automatically
75 /// incremented when creating `State` and decremented when it is dropped:
76 ///
77 /// ```
78 /// use kernel::{task::Task, types::ARef};
79 ///
80 /// struct State {
81 ///     creator: ARef<Task>,
82 ///     index: u32,
83 /// }
84 ///
85 /// impl State {
86 ///     fn new() -> Self {
87 ///         Self {
88 ///             creator: current!().into(),
89 ///             index: 0,
90 ///         }
91 ///     }
92 /// }
93 /// ```
94 #[repr(transparent)]
95 pub struct Task(pub(crate) Opaque<bindings::task_struct>);
97 // SAFETY: By design, the only way to access a `Task` is via the `current` function or via an
98 // `ARef<Task>` obtained through the `AlwaysRefCounted` impl. This means that the only situation in
99 // which a `Task` can be accessed mutably is when the refcount drops to zero and the destructor
100 // runs. It is safe for that to happen on any thread, so it is ok for this type to be `Send`.
101 unsafe impl Send for Task {}
103 // SAFETY: It's OK to access `Task` through shared references from other threads because we're
104 // either accessing properties that don't change (e.g., `pid`, `group_leader`) or that are properly
105 // synchronised by C code (e.g., `signal_pending`).
106 unsafe impl Sync for Task {}
108 /// The type of process identifiers (PIDs).
109 type Pid = bindings::pid_t;
111 /// The type of user identifiers (UIDs).
112 #[derive(Copy, Clone)]
113 pub struct Kuid {
114     kuid: bindings::kuid_t,
117 impl Task {
118     /// Returns a raw pointer to the current task.
119     ///
120     /// It is up to the user to use the pointer correctly.
121     #[inline]
122     pub fn current_raw() -> *mut bindings::task_struct {
123         // SAFETY: Getting the current pointer is always safe.
124         unsafe { bindings::get_current() }
125     }
127     /// Returns a task reference for the currently executing task/thread.
128     ///
129     /// The recommended way to get the current task/thread is to use the
130     /// [`current`] macro because it is safe.
131     ///
132     /// # Safety
133     ///
134     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
135     pub unsafe fn current() -> impl Deref<Target = Task> {
136         struct TaskRef<'a> {
137             task: &'a Task,
138             _not_send: NotThreadSafe,
139         }
141         impl Deref for TaskRef<'_> {
142             type Target = Task;
144             fn deref(&self) -> &Self::Target {
145                 self.task
146             }
147         }
149         let current = Task::current_raw();
150         TaskRef {
151             // SAFETY: If the current thread is still running, the current task is valid. Given
152             // that `TaskRef` is not `Send`, we know it cannot be transferred to another thread
153             // (where it could potentially outlive the caller).
154             task: unsafe { &*current.cast() },
155             _not_send: NotThreadSafe,
156         }
157     }
159     /// Returns a PidNamespace reference for the currently executing task's/thread's pid namespace.
160     ///
161     /// This function can be used to create an unbounded lifetime by e.g., storing the returned
162     /// PidNamespace in a global variable which would be a bug. So the recommended way to get the
163     /// current task's/thread's pid namespace is to use the [`current_pid_ns`] macro because it is
164     /// safe.
165     ///
166     /// # Safety
167     ///
168     /// Callers must ensure that the returned object doesn't outlive the current task/thread.
169     pub unsafe fn current_pid_ns() -> impl Deref<Target = PidNamespace> {
170         struct PidNamespaceRef<'a> {
171             task: &'a PidNamespace,
172             _not_send: NotThreadSafe,
173         }
175         impl Deref for PidNamespaceRef<'_> {
176             type Target = PidNamespace;
178             fn deref(&self) -> &Self::Target {
179                 self.task
180             }
181         }
183         // The lifetime of `PidNamespace` is bound to `Task` and `struct pid`.
184         //
185         // The `PidNamespace` of a `Task` doesn't ever change once the `Task` is alive. A
186         // `unshare(CLONE_NEWPID)` or `setns(fd_pidns/pidfd, CLONE_NEWPID)` will not have an effect
187         // on the calling `Task`'s pid namespace. It will only effect the pid namespace of children
188         // created by the calling `Task`. This invariant guarantees that after having acquired a
189         // reference to a `Task`'s pid namespace it will remain unchanged.
190         //
191         // When a task has exited and been reaped `release_task()` will be called. This will set
192         // the `PidNamespace` of the task to `NULL`. So retrieving the `PidNamespace` of a task
193         // that is dead will return `NULL`. Note, that neither holding the RCU lock nor holding a
194         // referencing count to
195         // the `Task` will prevent `release_task()` being called.
196         //
197         // In order to retrieve the `PidNamespace` of a `Task` the `task_active_pid_ns()` function
198         // can be used. There are two cases to consider:
199         //
200         // (1) retrieving the `PidNamespace` of the `current` task
201         // (2) retrieving the `PidNamespace` of a non-`current` task
202         //
203         // From system call context retrieving the `PidNamespace` for case (1) is always safe and
204         // requires neither RCU locking nor a reference count to be held. Retrieving the
205         // `PidNamespace` after `release_task()` for current will return `NULL` but no codepath
206         // like that is exposed to Rust.
207         //
208         // Retrieving the `PidNamespace` from system call context for (2) requires RCU protection.
209         // Accessing `PidNamespace` outside of RCU protection requires a reference count that
210         // must've been acquired while holding the RCU lock. Note that accessing a non-`current`
211         // task means `NULL` can be returned as the non-`current` task could have already passed
212         // through `release_task()`.
213         //
214         // To retrieve (1) the `current_pid_ns!()` macro should be used which ensure that the
215         // returned `PidNamespace` cannot outlive the calling scope. The associated
216         // `current_pid_ns()` function should not be called directly as it could be abused to
217         // created an unbounded lifetime for `PidNamespace`. The `current_pid_ns!()` macro allows
218         // Rust to handle the common case of accessing `current`'s `PidNamespace` without RCU
219         // protection and without having to acquire a reference count.
220         //
221         // For (2) the `task_get_pid_ns()` method must be used. This will always acquire a
222         // reference on `PidNamespace` and will return an `Option` to force the caller to
223         // explicitly handle the case where `PidNamespace` is `None`, something that tends to be
224         // forgotten when doing the equivalent operation in `C`. Missing RCU primitives make it
225         // difficult to perform operations that are otherwise safe without holding a reference
226         // count as long as RCU protection is guaranteed. But it is not important currently. But we
227         // do want it in the future.
228         //
229         // Note for (2) the required RCU protection around calling `task_active_pid_ns()`
230         // synchronizes against putting the last reference of the associated `struct pid` of
231         // `task->thread_pid`. The `struct pid` stored in that field is used to retrieve the
232         // `PidNamespace` of the caller. When `release_task()` is called `task->thread_pid` will be
233         // `NULL`ed and `put_pid()` on said `struct pid` will be delayed in `free_pid()` via
234         // `call_rcu()` allowing everyone with an RCU protected access to the `struct pid` acquired
235         // from `task->thread_pid` to finish.
236         //
237         // SAFETY: The current task's pid namespace is valid as long as the current task is running.
238         let pidns = unsafe { bindings::task_active_pid_ns(Task::current_raw()) };
239         PidNamespaceRef {
240             // SAFETY: If the current thread is still running, the current task and its associated
241             // pid namespace are valid. `PidNamespaceRef` is not `Send`, so we know it cannot be
242             // transferred to another thread (where it could potentially outlive the current
243             // `Task`). The caller needs to ensure that the PidNamespaceRef doesn't outlive the
244             // current task/thread.
245             task: unsafe { PidNamespace::from_ptr(pidns) },
246             _not_send: NotThreadSafe,
247         }
248     }
250     /// Returns a raw pointer to the task.
251     #[inline]
252     pub fn as_ptr(&self) -> *mut bindings::task_struct {
253         self.0.get()
254     }
256     /// Returns the group leader of the given task.
257     pub fn group_leader(&self) -> &Task {
258         // SAFETY: The group leader of a task never changes after initialization, so reading this
259         // field is not a data race.
260         let ptr = unsafe { *ptr::addr_of!((*self.as_ptr()).group_leader) };
262         // SAFETY: The lifetime of the returned task reference is tied to the lifetime of `self`,
263         // and given that a task has a reference to its group leader, we know it must be valid for
264         // the lifetime of the returned task reference.
265         unsafe { &*ptr.cast() }
266     }
268     /// Returns the PID of the given task.
269     pub fn pid(&self) -> Pid {
270         // SAFETY: The pid of a task never changes after initialization, so reading this field is
271         // not a data race.
272         unsafe { *ptr::addr_of!((*self.as_ptr()).pid) }
273     }
275     /// Returns the UID of the given task.
276     pub fn uid(&self) -> Kuid {
277         // SAFETY: It's always safe to call `task_uid` on a valid task.
278         Kuid::from_raw(unsafe { bindings::task_uid(self.as_ptr()) })
279     }
281     /// Returns the effective UID of the given task.
282     pub fn euid(&self) -> Kuid {
283         // SAFETY: It's always safe to call `task_euid` on a valid task.
284         Kuid::from_raw(unsafe { bindings::task_euid(self.as_ptr()) })
285     }
287     /// Determines whether the given task has pending signals.
288     pub fn signal_pending(&self) -> bool {
289         // SAFETY: It's always safe to call `signal_pending` on a valid task.
290         unsafe { bindings::signal_pending(self.as_ptr()) != 0 }
291     }
293     /// Returns task's pid namespace with elevated reference count
294     pub fn get_pid_ns(&self) -> Option<ARef<PidNamespace>> {
295         // SAFETY: By the type invariant, we know that `self.0` is valid.
296         let ptr = unsafe { bindings::task_get_pid_ns(self.as_ptr()) };
297         if ptr.is_null() {
298             None
299         } else {
300             // SAFETY: `ptr` is valid by the safety requirements of this function. And we own a
301             // reference count via `task_get_pid_ns()`.
302             // CAST: `Self` is a `repr(transparent)` wrapper around `bindings::pid_namespace`.
303             Some(unsafe { ARef::from_raw(ptr::NonNull::new_unchecked(ptr.cast::<PidNamespace>())) })
304         }
305     }
307     /// Returns the given task's pid in the provided pid namespace.
308     #[doc(alias = "task_tgid_nr_ns")]
309     pub fn tgid_nr_ns(&self, pidns: Option<&PidNamespace>) -> Pid {
310         let pidns = match pidns {
311             Some(pidns) => pidns.as_ptr(),
312             None => core::ptr::null_mut(),
313         };
314         // SAFETY: By the type invariant, we know that `self.0` is valid. We received a valid
315         // PidNamespace that we can use as a pointer or we received an empty PidNamespace and
316         // thus pass a null pointer. The underlying C function is safe to be used with NULL
317         // pointers.
318         unsafe { bindings::task_tgid_nr_ns(self.as_ptr(), pidns) }
319     }
321     /// Wakes up the task.
322     pub fn wake_up(&self) {
323         // SAFETY: It's always safe to call `signal_pending` on a valid task, even if the task
324         // running.
325         unsafe { bindings::wake_up_process(self.as_ptr()) };
326     }
329 // SAFETY: The type invariants guarantee that `Task` is always refcounted.
330 unsafe impl crate::types::AlwaysRefCounted for Task {
331     fn inc_ref(&self) {
332         // SAFETY: The existence of a shared reference means that the refcount is nonzero.
333         unsafe { bindings::get_task_struct(self.as_ptr()) };
334     }
336     unsafe fn dec_ref(obj: ptr::NonNull<Self>) {
337         // SAFETY: The safety requirements guarantee that the refcount is nonzero.
338         unsafe { bindings::put_task_struct(obj.cast().as_ptr()) }
339     }
342 impl Kuid {
343     /// Get the current euid.
344     #[inline]
345     pub fn current_euid() -> Kuid {
346         // SAFETY: Just an FFI call.
347         Self::from_raw(unsafe { bindings::current_euid() })
348     }
350     /// Create a `Kuid` given the raw C type.
351     #[inline]
352     pub fn from_raw(kuid: bindings::kuid_t) -> Self {
353         Self { kuid }
354     }
356     /// Turn this kuid into the raw C type.
357     #[inline]
358     pub fn into_raw(self) -> bindings::kuid_t {
359         self.kuid
360     }
362     /// Converts this kernel UID into a userspace UID.
363     ///
364     /// Uses the namespace of the current task.
365     #[inline]
366     pub fn into_uid_in_current_ns(self) -> bindings::uid_t {
367         // SAFETY: Just an FFI call.
368         unsafe { bindings::from_kuid(bindings::current_user_ns(), self.kuid) }
369     }
372 impl PartialEq for Kuid {
373     #[inline]
374     fn eq(&self, other: &Kuid) -> bool {
375         // SAFETY: Just an FFI call.
376         unsafe { bindings::uid_eq(self.kuid, other.kuid) }
377     }
380 impl Eq for Kuid {}