1 // SPDX-License-Identifier: GPL-2.0
3 // Freescale DMA ALSA SoC PCM driver
5 // Author: Timur Tabi <timur@freescale.com>
7 // Copyright 2007-2010 Freescale Semiconductor, Inc.
9 // This driver implements ASoC support for the Elo DMA controller, which is
10 // the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
11 // the PCM driver is what handles the DMA buffer.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/platform_device.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <linux/gfp.h>
20 #include <linux/of_address.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_platform.h>
23 #include <linux/list.h>
24 #include <linux/slab.h>
26 #include <sound/core.h>
27 #include <sound/pcm.h>
28 #include <sound/pcm_params.h>
29 #include <sound/soc.h>
34 #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
36 #define DRV_NAME "fsl_dma"
39 * The formats that the DMA controller supports, which is anything
40 * that is 8, 16, or 32 bits.
42 #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
43 SNDRV_PCM_FMTBIT_U8 | \
44 SNDRV_PCM_FMTBIT_S16_LE | \
45 SNDRV_PCM_FMTBIT_S16_BE | \
46 SNDRV_PCM_FMTBIT_U16_LE | \
47 SNDRV_PCM_FMTBIT_U16_BE | \
48 SNDRV_PCM_FMTBIT_S24_LE | \
49 SNDRV_PCM_FMTBIT_S24_BE | \
50 SNDRV_PCM_FMTBIT_U24_LE | \
51 SNDRV_PCM_FMTBIT_U24_BE | \
52 SNDRV_PCM_FMTBIT_S32_LE | \
53 SNDRV_PCM_FMTBIT_S32_BE | \
54 SNDRV_PCM_FMTBIT_U32_LE | \
55 SNDRV_PCM_FMTBIT_U32_BE)
57 struct snd_soc_component_driver dai
;
58 dma_addr_t ssi_stx_phys
;
59 dma_addr_t ssi_srx_phys
;
60 unsigned int ssi_fifo_depth
;
61 struct ccsr_dma_channel __iomem
*channel
;
67 * The number of DMA links to use. Two is the bare minimum, but if you
68 * have really small links you might need more.
70 #define NUM_DMA_LINKS 2
72 /** fsl_dma_private: p-substream DMA data
74 * Each substream has a 1-to-1 association with a DMA channel.
76 * The link[] array is first because it needs to be aligned on a 32-byte
77 * boundary, so putting it first will ensure alignment without padding the
80 * @link[]: array of link descriptors
81 * @dma_channel: pointer to the DMA channel's registers
82 * @irq: IRQ for this DMA channel
83 * @substream: pointer to the substream object, needed by the ISR
84 * @ssi_sxx_phys: bus address of the STX or SRX register to use
85 * @ld_buf_phys: physical address of the LD buffer
86 * @current_link: index into link[] of the link currently being processed
87 * @dma_buf_phys: physical address of the DMA buffer
88 * @dma_buf_next: physical address of the next period to process
89 * @dma_buf_end: physical address of the byte after the end of the DMA
90 * @buffer period_size: the size of a single period
91 * @num_periods: the number of periods in the DMA buffer
93 struct fsl_dma_private
{
94 struct fsl_dma_link_descriptor link
[NUM_DMA_LINKS
];
95 struct ccsr_dma_channel __iomem
*dma_channel
;
97 struct snd_pcm_substream
*substream
;
98 dma_addr_t ssi_sxx_phys
;
99 unsigned int ssi_fifo_depth
;
100 dma_addr_t ld_buf_phys
;
101 unsigned int current_link
;
102 dma_addr_t dma_buf_phys
;
103 dma_addr_t dma_buf_next
;
104 dma_addr_t dma_buf_end
;
106 unsigned int num_periods
;
110 * fsl_dma_hardare: define characteristics of the PCM hardware.
112 * The PCM hardware is the Freescale DMA controller. This structure defines
113 * the capabilities of that hardware.
115 * Since the sampling rate and data format are not controlled by the DMA
116 * controller, we specify no limits for those values. The only exception is
117 * period_bytes_min, which is set to a reasonably low value to prevent the
118 * DMA controller from generating too many interrupts per second.
120 * Since each link descriptor has a 32-bit byte count field, we set
121 * period_bytes_max to the largest 32-bit number. We also have no maximum
124 * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
125 * limitation in the SSI driver requires the sample rates for playback and
126 * capture to be the same.
128 static const struct snd_pcm_hardware fsl_dma_hardware
= {
130 .info
= SNDRV_PCM_INFO_INTERLEAVED
|
131 SNDRV_PCM_INFO_MMAP
|
132 SNDRV_PCM_INFO_MMAP_VALID
|
133 SNDRV_PCM_INFO_JOINT_DUPLEX
|
134 SNDRV_PCM_INFO_PAUSE
,
135 .formats
= FSLDMA_PCM_FORMATS
,
136 .period_bytes_min
= 512, /* A reasonable limit */
137 .period_bytes_max
= (u32
) -1,
138 .periods_min
= NUM_DMA_LINKS
,
139 .periods_max
= (unsigned int) -1,
140 .buffer_bytes_max
= 128 * 1024, /* A reasonable limit */
144 * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
146 * This function should be called by the ISR whenever the DMA controller
147 * halts data transfer.
149 static void fsl_dma_abort_stream(struct snd_pcm_substream
*substream
)
151 snd_pcm_stop_xrun(substream
);
155 * fsl_dma_update_pointers - update LD pointers to point to the next period
157 * As each period is completed, this function changes the link
158 * descriptor pointers for that period to point to the next period.
160 static void fsl_dma_update_pointers(struct fsl_dma_private
*dma_private
)
162 struct fsl_dma_link_descriptor
*link
=
163 &dma_private
->link
[dma_private
->current_link
];
165 /* Update our link descriptors to point to the next period. On a 36-bit
166 * system, we also need to update the ESAD bits. We also set (keep) the
167 * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
169 if (dma_private
->substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
170 link
->source_addr
= cpu_to_be32(dma_private
->dma_buf_next
);
171 #ifdef CONFIG_PHYS_64BIT
172 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
173 upper_32_bits(dma_private
->dma_buf_next
));
176 link
->dest_addr
= cpu_to_be32(dma_private
->dma_buf_next
);
177 #ifdef CONFIG_PHYS_64BIT
178 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
179 upper_32_bits(dma_private
->dma_buf_next
));
183 /* Update our variables for next time */
184 dma_private
->dma_buf_next
+= dma_private
->period_size
;
186 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
187 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
189 if (++dma_private
->current_link
>= NUM_DMA_LINKS
)
190 dma_private
->current_link
= 0;
194 * fsl_dma_isr: interrupt handler for the DMA controller
196 * @irq: IRQ of the DMA channel
197 * @dev_id: pointer to the dma_private structure for this DMA channel
199 static irqreturn_t
fsl_dma_isr(int irq
, void *dev_id
)
201 struct fsl_dma_private
*dma_private
= dev_id
;
202 struct snd_pcm_substream
*substream
= dma_private
->substream
;
203 struct snd_soc_pcm_runtime
*rtd
= snd_soc_substream_to_rtd(substream
);
204 struct device
*dev
= rtd
->dev
;
205 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
206 irqreturn_t ret
= IRQ_NONE
;
209 /* We got an interrupt, so read the status register to see what we
210 were interrupted for.
212 sr
= in_be32(&dma_channel
->sr
);
214 if (sr
& CCSR_DMA_SR_TE
) {
215 dev_err(dev
, "dma transmit error\n");
216 fsl_dma_abort_stream(substream
);
217 sr2
|= CCSR_DMA_SR_TE
;
221 if (sr
& CCSR_DMA_SR_CH
)
224 if (sr
& CCSR_DMA_SR_PE
) {
225 dev_err(dev
, "dma programming error\n");
226 fsl_dma_abort_stream(substream
);
227 sr2
|= CCSR_DMA_SR_PE
;
231 if (sr
& CCSR_DMA_SR_EOLNI
) {
232 sr2
|= CCSR_DMA_SR_EOLNI
;
236 if (sr
& CCSR_DMA_SR_CB
)
239 if (sr
& CCSR_DMA_SR_EOSI
) {
240 /* Tell ALSA we completed a period. */
241 snd_pcm_period_elapsed(substream
);
244 * Update our link descriptors to point to the next period. We
245 * only need to do this if the number of periods is not equal to
246 * the number of links.
248 if (dma_private
->num_periods
!= NUM_DMA_LINKS
)
249 fsl_dma_update_pointers(dma_private
);
251 sr2
|= CCSR_DMA_SR_EOSI
;
255 if (sr
& CCSR_DMA_SR_EOLSI
) {
256 sr2
|= CCSR_DMA_SR_EOLSI
;
260 /* Clear the bits that we set */
262 out_be32(&dma_channel
->sr
, sr2
);
268 * fsl_dma_new: initialize this PCM driver.
270 * This function is called when the codec driver calls snd_soc_new_pcms(),
271 * once for each .dai_link in the machine driver's snd_soc_card
274 * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
275 * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
276 * is specified. Therefore, any DMA buffers we allocate will always be in low
277 * memory, but we support for 36-bit physical addresses anyway.
279 * Regardless of where the memory is actually allocated, since the device can
280 * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
282 static int fsl_dma_new(struct snd_soc_component
*component
,
283 struct snd_soc_pcm_runtime
*rtd
)
285 struct snd_card
*card
= rtd
->card
->snd_card
;
286 struct snd_pcm
*pcm
= rtd
->pcm
;
289 ret
= dma_coerce_mask_and_coherent(card
->dev
, DMA_BIT_MASK(36));
293 return snd_pcm_set_fixed_buffer_all(pcm
, SNDRV_DMA_TYPE_DEV
,
295 fsl_dma_hardware
.buffer_bytes_max
);
299 * fsl_dma_open: open a new substream.
301 * Each substream has its own DMA buffer.
303 * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
304 * descriptors that ping-pong from one period to the next. For example, if
305 * there are six periods and two link descriptors, this is how they look
306 * before playback starts:
308 * The last link descriptor
309 * ____________ points back to the first
318 * _________________________________________
319 * | | | | | | | The DMA buffer is
320 * | | | | | | | divided into 6 parts
321 * |______|______|______|______|______|______|
323 * and here's how they look after the first period is finished playing:
335 * _________________________________________
338 * |______|______|______|______|______|______|
340 * The first link descriptor now points to the third period. The DMA
341 * controller is currently playing the second period. When it finishes, it
342 * will jump back to the first descriptor and play the third period.
344 * There are four reasons we do this:
346 * 1. The only way to get the DMA controller to automatically restart the
347 * transfer when it gets to the end of the buffer is to use chaining
348 * mode. Basic direct mode doesn't offer that feature.
349 * 2. We need to receive an interrupt at the end of every period. The DMA
350 * controller can generate an interrupt at the end of every link transfer
351 * (aka segment). Making each period into a DMA segment will give us the
352 * interrupts we need.
353 * 3. By creating only two link descriptors, regardless of the number of
354 * periods, we do not need to reallocate the link descriptors if the
355 * number of periods changes.
356 * 4. All of the audio data is still stored in a single, contiguous DMA
357 * buffer, which is what ALSA expects. We're just dividing it into
358 * contiguous parts, and creating a link descriptor for each one.
360 static int fsl_dma_open(struct snd_soc_component
*component
,
361 struct snd_pcm_substream
*substream
)
363 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
364 struct device
*dev
= component
->dev
;
365 struct dma_object
*dma
=
366 container_of(component
->driver
, struct dma_object
, dai
);
367 struct fsl_dma_private
*dma_private
;
368 struct ccsr_dma_channel __iomem
*dma_channel
;
369 dma_addr_t ld_buf_phys
;
370 u64 temp_link
; /* Pointer to next link descriptor */
376 * Reject any DMA buffer whose size is not a multiple of the period
377 * size. We need to make sure that the DMA buffer can be evenly divided
380 ret
= snd_pcm_hw_constraint_integer(runtime
,
381 SNDRV_PCM_HW_PARAM_PERIODS
);
383 dev_err(dev
, "invalid buffer size\n");
388 dev_err(dev
, "dma channel already assigned\n");
392 dma_private
= dma_alloc_coherent(dev
, sizeof(struct fsl_dma_private
),
393 &ld_buf_phys
, GFP_KERNEL
);
395 dev_err(dev
, "can't allocate dma private data\n");
398 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
)
399 dma_private
->ssi_sxx_phys
= dma
->ssi_stx_phys
;
401 dma_private
->ssi_sxx_phys
= dma
->ssi_srx_phys
;
403 dma_private
->ssi_fifo_depth
= dma
->ssi_fifo_depth
;
404 dma_private
->dma_channel
= dma
->channel
;
405 dma_private
->irq
= dma
->irq
;
406 dma_private
->substream
= substream
;
407 dma_private
->ld_buf_phys
= ld_buf_phys
;
408 dma_private
->dma_buf_phys
= substream
->dma_buffer
.addr
;
410 ret
= request_irq(dma_private
->irq
, fsl_dma_isr
, 0, "fsldma-audio",
413 dev_err(dev
, "can't register ISR for IRQ %u (ret=%i)\n",
414 dma_private
->irq
, ret
);
415 dma_free_coherent(dev
, sizeof(struct fsl_dma_private
),
416 dma_private
, dma_private
->ld_buf_phys
);
420 dma
->assigned
= true;
422 snd_soc_set_runtime_hwparams(substream
, &fsl_dma_hardware
);
423 runtime
->private_data
= dma_private
;
425 /* Program the fixed DMA controller parameters */
427 dma_channel
= dma_private
->dma_channel
;
429 temp_link
= dma_private
->ld_buf_phys
+
430 sizeof(struct fsl_dma_link_descriptor
);
432 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
433 dma_private
->link
[i
].next
= cpu_to_be64(temp_link
);
435 temp_link
+= sizeof(struct fsl_dma_link_descriptor
);
437 /* The last link descriptor points to the first */
438 dma_private
->link
[i
- 1].next
= cpu_to_be64(dma_private
->ld_buf_phys
);
440 /* Tell the DMA controller where the first link descriptor is */
441 out_be32(&dma_channel
->clndar
,
442 CCSR_DMA_CLNDAR_ADDR(dma_private
->ld_buf_phys
));
443 out_be32(&dma_channel
->eclndar
,
444 CCSR_DMA_ECLNDAR_ADDR(dma_private
->ld_buf_phys
));
446 /* The manual says the BCR must be clear before enabling EMP */
447 out_be32(&dma_channel
->bcr
, 0);
450 * Program the mode register for interrupts, external master control,
451 * and source/destination hold. Also clear the Channel Abort bit.
453 mr
= in_be32(&dma_channel
->mr
) &
454 ~(CCSR_DMA_MR_CA
| CCSR_DMA_MR_DAHE
| CCSR_DMA_MR_SAHE
);
457 * We want External Master Start and External Master Pause enabled,
458 * because the SSI is controlling the DMA controller. We want the DMA
459 * controller to be set up in advance, and then we signal only the SSI
460 * to start transferring.
462 * We want End-Of-Segment Interrupts enabled, because this will generate
463 * an interrupt at the end of each segment (each link descriptor
464 * represents one segment). Each DMA segment is the same thing as an
465 * ALSA period, so this is how we get an interrupt at the end of every
468 * We want Error Interrupt enabled, so that we can get an error if
469 * the DMA controller is mis-programmed somehow.
471 mr
|= CCSR_DMA_MR_EOSIE
| CCSR_DMA_MR_EIE
| CCSR_DMA_MR_EMP_EN
|
474 /* For playback, we want the destination address to be held. For
475 capture, set the source address to be held. */
476 mr
|= (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) ?
477 CCSR_DMA_MR_DAHE
: CCSR_DMA_MR_SAHE
;
479 out_be32(&dma_channel
->mr
, mr
);
485 * fsl_dma_hw_params: continue initializing the DMA links
487 * This function obtains hardware parameters about the opened stream and
488 * programs the DMA controller accordingly.
490 * One drawback of big-endian is that when copying integers of different
491 * sizes to a fixed-sized register, the address to which the integer must be
492 * copied is dependent on the size of the integer.
494 * For example, if P is the address of a 32-bit register, and X is a 32-bit
495 * integer, then X should be copied to address P. However, if X is a 16-bit
496 * integer, then it should be copied to P+2. If X is an 8-bit register,
497 * then it should be copied to P+3.
499 * So for playback of 8-bit samples, the DMA controller must transfer single
500 * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
501 * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
503 * For 24-bit samples, the offset is 1 byte. However, the DMA controller
504 * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
505 * and 8 bytes at a time). So we do not support packed 24-bit samples.
506 * 24-bit data must be padded to 32 bits.
508 static int fsl_dma_hw_params(struct snd_soc_component
*component
,
509 struct snd_pcm_substream
*substream
,
510 struct snd_pcm_hw_params
*hw_params
)
512 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
513 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
514 struct device
*dev
= component
->dev
;
516 /* Number of bits per sample */
517 unsigned int sample_bits
=
518 snd_pcm_format_physical_width(params_format(hw_params
));
520 /* Number of bytes per frame */
521 unsigned int sample_bytes
= sample_bits
/ 8;
523 /* Bus address of SSI STX register */
524 dma_addr_t ssi_sxx_phys
= dma_private
->ssi_sxx_phys
;
526 /* Size of the DMA buffer, in bytes */
527 size_t buffer_size
= params_buffer_bytes(hw_params
);
529 /* Number of bytes per period */
530 size_t period_size
= params_period_bytes(hw_params
);
532 /* Pointer to next period */
533 dma_addr_t temp_addr
= substream
->dma_buffer
.addr
;
535 /* Pointer to DMA controller */
536 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
538 u32 mr
; /* DMA Mode Register */
542 /* Initialize our DMA tracking variables */
543 dma_private
->period_size
= period_size
;
544 dma_private
->num_periods
= params_periods(hw_params
);
545 dma_private
->dma_buf_end
= dma_private
->dma_buf_phys
+ buffer_size
;
546 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
+
547 (NUM_DMA_LINKS
* period_size
);
549 if (dma_private
->dma_buf_next
>= dma_private
->dma_buf_end
)
550 /* This happens if the number of periods == NUM_DMA_LINKS */
551 dma_private
->dma_buf_next
= dma_private
->dma_buf_phys
;
553 mr
= in_be32(&dma_channel
->mr
) & ~(CCSR_DMA_MR_BWC_MASK
|
554 CCSR_DMA_MR_SAHTS_MASK
| CCSR_DMA_MR_DAHTS_MASK
);
556 /* Due to a quirk of the SSI's STX register, the target address
557 * for the DMA operations depends on the sample size. So we calculate
558 * that offset here. While we're at it, also tell the DMA controller
559 * how much data to transfer per sample.
561 switch (sample_bits
) {
563 mr
|= CCSR_DMA_MR_DAHTS_1
| CCSR_DMA_MR_SAHTS_1
;
567 mr
|= CCSR_DMA_MR_DAHTS_2
| CCSR_DMA_MR_SAHTS_2
;
571 mr
|= CCSR_DMA_MR_DAHTS_4
| CCSR_DMA_MR_SAHTS_4
;
574 /* We should never get here */
575 dev_err(dev
, "unsupported sample size %u\n", sample_bits
);
580 * BWC determines how many bytes are sent/received before the DMA
581 * controller checks the SSI to see if it needs to stop. BWC should
582 * always be a multiple of the frame size, so that we always transmit
583 * whole frames. Each frame occupies two slots in the FIFO. The
584 * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
585 * (MR[BWC] can only represent even powers of two).
587 * To simplify the process, we set BWC to the largest value that is
588 * less than or equal to the FIFO watermark. For playback, this ensures
589 * that we transfer the maximum amount without overrunning the FIFO.
590 * For capture, this ensures that we transfer the maximum amount without
591 * underrunning the FIFO.
594 * w = SSI watermark value (which equals f - 2)
595 * b = DMA bandwidth count (in bytes)
596 * s = sample size (in bytes, which equals frame_size * 2)
598 * For playback, we never transmit more than the transmit FIFO
599 * watermark, otherwise we might write more data than the FIFO can hold.
600 * The watermark is equal to the FIFO depth minus two.
602 * For capture, two equations must hold:
606 * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
607 * b = s * w, which is equal to
608 * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
610 mr
|= CCSR_DMA_MR_BWC((dma_private
->ssi_fifo_depth
- 2) * sample_bytes
);
612 out_be32(&dma_channel
->mr
, mr
);
614 for (i
= 0; i
< NUM_DMA_LINKS
; i
++) {
615 struct fsl_dma_link_descriptor
*link
= &dma_private
->link
[i
];
617 link
->count
= cpu_to_be32(period_size
);
619 /* The snoop bit tells the DMA controller whether it should tell
620 * the ECM to snoop during a read or write to an address. For
621 * audio, we use DMA to transfer data between memory and an I/O
622 * device (the SSI's STX0 or SRX0 register). Snooping is only
623 * needed if there is a cache, so we need to snoop memory
624 * addresses only. For playback, that means we snoop the source
625 * but not the destination. For capture, we snoop the
626 * destination but not the source.
628 * Note that failing to snoop properly is unlikely to cause
629 * cache incoherency if the period size is larger than the
630 * size of L1 cache. This is because filling in one period will
631 * flush out the data for the previous period. So if you
632 * increased period_bytes_min to a large enough size, you might
633 * get more performance by not snooping, and you'll still be
634 * okay. You'll need to update fsl_dma_update_pointers() also.
636 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
637 link
->source_addr
= cpu_to_be32(temp_addr
);
638 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
639 upper_32_bits(temp_addr
));
641 link
->dest_addr
= cpu_to_be32(ssi_sxx_phys
);
642 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_NOSNOOP
|
643 upper_32_bits(ssi_sxx_phys
));
645 link
->source_addr
= cpu_to_be32(ssi_sxx_phys
);
646 link
->source_attr
= cpu_to_be32(CCSR_DMA_ATR_NOSNOOP
|
647 upper_32_bits(ssi_sxx_phys
));
649 link
->dest_addr
= cpu_to_be32(temp_addr
);
650 link
->dest_attr
= cpu_to_be32(CCSR_DMA_ATR_SNOOP
|
651 upper_32_bits(temp_addr
));
654 temp_addr
+= period_size
;
661 * fsl_dma_pointer: determine the current position of the DMA transfer
663 * This function is called by ALSA when ALSA wants to know where in the
664 * stream buffer the hardware currently is.
666 * For playback, the SAR register contains the physical address of the most
667 * recent DMA transfer. For capture, the value is in the DAR register.
669 * The base address of the buffer is stored in the source_addr field of the
670 * first link descriptor.
672 static snd_pcm_uframes_t
fsl_dma_pointer(struct snd_soc_component
*component
,
673 struct snd_pcm_substream
*substream
)
675 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
676 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
677 struct device
*dev
= component
->dev
;
678 struct ccsr_dma_channel __iomem
*dma_channel
= dma_private
->dma_channel
;
680 snd_pcm_uframes_t frames
;
682 /* Obtain the current DMA pointer, but don't read the ESAD bits if we
683 * only have 32-bit DMA addresses. This function is typically called
684 * in interrupt context, so we need to optimize it.
686 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
687 position
= in_be32(&dma_channel
->sar
);
688 #ifdef CONFIG_PHYS_64BIT
689 position
|= (u64
)(in_be32(&dma_channel
->satr
) &
690 CCSR_DMA_ATR_ESAD_MASK
) << 32;
693 position
= in_be32(&dma_channel
->dar
);
694 #ifdef CONFIG_PHYS_64BIT
695 position
|= (u64
)(in_be32(&dma_channel
->datr
) &
696 CCSR_DMA_ATR_ESAD_MASK
) << 32;
701 * When capture is started, the SSI immediately starts to fill its FIFO.
702 * This means that the DMA controller is not started until the FIFO is
703 * full. However, ALSA calls this function before that happens, when
704 * MR.DAR is still zero. In this case, just return zero to indicate
705 * that nothing has been received yet.
710 if ((position
< dma_private
->dma_buf_phys
) ||
711 (position
> dma_private
->dma_buf_end
)) {
712 dev_err(dev
, "dma pointer is out of range, halting stream\n");
713 return SNDRV_PCM_POS_XRUN
;
716 frames
= bytes_to_frames(runtime
, position
- dma_private
->dma_buf_phys
);
719 * If the current address is just past the end of the buffer, wrap it
722 if (frames
== runtime
->buffer_size
)
729 * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
731 * Release the resources allocated in fsl_dma_hw_params() and de-program the
734 * This function can be called multiple times.
736 static int fsl_dma_hw_free(struct snd_soc_component
*component
,
737 struct snd_pcm_substream
*substream
)
739 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
740 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
743 struct ccsr_dma_channel __iomem
*dma_channel
;
745 dma_channel
= dma_private
->dma_channel
;
748 out_be32(&dma_channel
->mr
, CCSR_DMA_MR_CA
);
749 out_be32(&dma_channel
->mr
, 0);
751 /* Reset all the other registers */
752 out_be32(&dma_channel
->sr
, -1);
753 out_be32(&dma_channel
->clndar
, 0);
754 out_be32(&dma_channel
->eclndar
, 0);
755 out_be32(&dma_channel
->satr
, 0);
756 out_be32(&dma_channel
->sar
, 0);
757 out_be32(&dma_channel
->datr
, 0);
758 out_be32(&dma_channel
->dar
, 0);
759 out_be32(&dma_channel
->bcr
, 0);
760 out_be32(&dma_channel
->nlndar
, 0);
761 out_be32(&dma_channel
->enlndar
, 0);
768 * fsl_dma_close: close the stream.
770 static int fsl_dma_close(struct snd_soc_component
*component
,
771 struct snd_pcm_substream
*substream
)
773 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
774 struct fsl_dma_private
*dma_private
= runtime
->private_data
;
775 struct device
*dev
= component
->dev
;
776 struct dma_object
*dma
=
777 container_of(component
->driver
, struct dma_object
, dai
);
780 if (dma_private
->irq
)
781 free_irq(dma_private
->irq
, dma_private
);
783 /* Deallocate the fsl_dma_private structure */
784 dma_free_coherent(dev
, sizeof(struct fsl_dma_private
),
785 dma_private
, dma_private
->ld_buf_phys
);
786 substream
->runtime
->private_data
= NULL
;
789 dma
->assigned
= false;
795 * find_ssi_node -- returns the SSI node that points to its DMA channel node
797 * Although this DMA driver attempts to operate independently of the other
798 * devices, it still needs to determine some information about the SSI device
799 * that it's working with. Unfortunately, the device tree does not contain
800 * a pointer from the DMA channel node to the SSI node -- the pointer goes the
801 * other way. So we need to scan the device tree for SSI nodes until we find
802 * the one that points to the given DMA channel node. It's ugly, but at least
803 * it's contained in this one function.
805 static struct device_node
*find_ssi_node(struct device_node
*dma_channel_np
)
807 struct device_node
*ssi_np
, *np
;
809 for_each_compatible_node(ssi_np
, NULL
, "fsl,mpc8610-ssi") {
810 /* Check each DMA phandle to see if it points to us. We
811 * assume that device_node pointers are a valid comparison.
813 np
= of_parse_phandle(ssi_np
, "fsl,playback-dma", 0);
815 if (np
== dma_channel_np
)
818 np
= of_parse_phandle(ssi_np
, "fsl,capture-dma", 0);
820 if (np
== dma_channel_np
)
827 static int fsl_soc_dma_probe(struct platform_device
*pdev
)
829 struct dma_object
*dma
;
830 struct device_node
*np
= pdev
->dev
.of_node
;
831 struct device_node
*ssi_np
;
833 const uint32_t *iprop
;
836 /* Find the SSI node that points to us. */
837 ssi_np
= find_ssi_node(np
);
839 dev_err(&pdev
->dev
, "cannot find parent SSI node\n");
843 ret
= of_address_to_resource(ssi_np
, 0, &res
);
845 dev_err(&pdev
->dev
, "could not determine resources for %pOF\n",
851 dma
= kzalloc(sizeof(*dma
), GFP_KERNEL
);
857 dma
->dai
.name
= DRV_NAME
;
858 dma
->dai
.open
= fsl_dma_open
;
859 dma
->dai
.close
= fsl_dma_close
;
860 dma
->dai
.hw_params
= fsl_dma_hw_params
;
861 dma
->dai
.hw_free
= fsl_dma_hw_free
;
862 dma
->dai
.pointer
= fsl_dma_pointer
;
863 dma
->dai
.pcm_construct
= fsl_dma_new
;
865 /* Store the SSI-specific information that we need */
866 dma
->ssi_stx_phys
= res
.start
+ REG_SSI_STX0
;
867 dma
->ssi_srx_phys
= res
.start
+ REG_SSI_SRX0
;
869 iprop
= of_get_property(ssi_np
, "fsl,fifo-depth", NULL
);
871 dma
->ssi_fifo_depth
= be32_to_cpup(iprop
);
873 /* Older 8610 DTs didn't have the fifo-depth property */
874 dma
->ssi_fifo_depth
= 8;
878 ret
= devm_snd_soc_register_component(&pdev
->dev
, &dma
->dai
, NULL
, 0);
880 dev_err(&pdev
->dev
, "could not register platform\n");
885 dma
->channel
= of_iomap(np
, 0);
886 dma
->irq
= irq_of_parse_and_map(np
, 0);
888 dev_set_drvdata(&pdev
->dev
, dma
);
893 static void fsl_soc_dma_remove(struct platform_device
*pdev
)
895 struct dma_object
*dma
= dev_get_drvdata(&pdev
->dev
);
897 iounmap(dma
->channel
);
898 irq_dispose_mapping(dma
->irq
);
902 static const struct of_device_id fsl_soc_dma_ids
[] = {
903 { .compatible
= "fsl,ssi-dma-channel", },
906 MODULE_DEVICE_TABLE(of
, fsl_soc_dma_ids
);
908 static struct platform_driver fsl_soc_dma_driver
= {
910 .name
= "fsl-pcm-audio",
911 .of_match_table
= fsl_soc_dma_ids
,
913 .probe
= fsl_soc_dma_probe
,
914 .remove
= fsl_soc_dma_remove
,
917 module_platform_driver(fsl_soc_dma_driver
);
919 MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
920 MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
921 MODULE_LICENSE("GPL v2");