1 // SPDX-License-Identifier: GPL-2.0
4 #include <linux/atomic.h>
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/firmware.h>
9 #include <linux/interrupt.h>
10 #include <linux/kobject.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/miscdevice.h>
15 #include <linux/of_address.h>
16 #include <linux/of_irq.h>
17 #include <linux/of_platform.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sysfs.h>
22 #include <linux/types.h>
23 #include <linux/gcd.h>
24 #include <sound/dmaengine_pcm.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/tlv.h>
29 #include <sound/core.h>
31 #include "fsl_easrc.h"
34 #define FSL_EASRC_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
35 SNDRV_PCM_FMTBIT_U16_LE | \
36 SNDRV_PCM_FMTBIT_S24_LE | \
37 SNDRV_PCM_FMTBIT_S24_3LE | \
38 SNDRV_PCM_FMTBIT_U24_LE | \
39 SNDRV_PCM_FMTBIT_U24_3LE | \
40 SNDRV_PCM_FMTBIT_S32_LE | \
41 SNDRV_PCM_FMTBIT_U32_LE | \
42 SNDRV_PCM_FMTBIT_S20_3LE | \
43 SNDRV_PCM_FMTBIT_U20_3LE | \
44 SNDRV_PCM_FMTBIT_FLOAT_LE)
46 static int fsl_easrc_iec958_put_bits(struct snd_kcontrol
*kcontrol
,
47 struct snd_ctl_elem_value
*ucontrol
)
49 struct snd_soc_component
*comp
= snd_kcontrol_chip(kcontrol
);
50 struct fsl_asrc
*easrc
= snd_soc_component_get_drvdata(comp
);
51 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
52 struct soc_mreg_control
*mc
=
53 (struct soc_mreg_control
*)kcontrol
->private_value
;
54 unsigned int regval
= ucontrol
->value
.integer
.value
[0];
56 easrc_priv
->bps_iec958
[mc
->regbase
] = regval
;
61 static int fsl_easrc_iec958_get_bits(struct snd_kcontrol
*kcontrol
,
62 struct snd_ctl_elem_value
*ucontrol
)
64 struct snd_soc_component
*comp
= snd_kcontrol_chip(kcontrol
);
65 struct fsl_asrc
*easrc
= snd_soc_component_get_drvdata(comp
);
66 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
67 struct soc_mreg_control
*mc
=
68 (struct soc_mreg_control
*)kcontrol
->private_value
;
70 ucontrol
->value
.enumerated
.item
[0] = easrc_priv
->bps_iec958
[mc
->regbase
];
75 static int fsl_easrc_get_reg(struct snd_kcontrol
*kcontrol
,
76 struct snd_ctl_elem_value
*ucontrol
)
78 struct snd_soc_component
*component
= snd_kcontrol_chip(kcontrol
);
79 struct soc_mreg_control
*mc
=
80 (struct soc_mreg_control
*)kcontrol
->private_value
;
83 regval
= snd_soc_component_read(component
, mc
->regbase
);
85 ucontrol
->value
.integer
.value
[0] = regval
;
90 static int fsl_easrc_set_reg(struct snd_kcontrol
*kcontrol
,
91 struct snd_ctl_elem_value
*ucontrol
)
93 struct snd_soc_component
*component
= snd_kcontrol_chip(kcontrol
);
94 struct soc_mreg_control
*mc
=
95 (struct soc_mreg_control
*)kcontrol
->private_value
;
96 unsigned int regval
= ucontrol
->value
.integer
.value
[0];
99 ret
= snd_soc_component_write(component
, mc
->regbase
, regval
);
106 #define SOC_SINGLE_REG_RW(xname, xreg) \
107 { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
108 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
109 .info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
110 .put = fsl_easrc_set_reg, \
111 .private_value = (unsigned long)&(struct soc_mreg_control) \
112 { .regbase = xreg, .regcount = 1, .nbits = 32, \
113 .invert = 0, .min = 0, .max = 0xffffffff, } }
115 #define SOC_SINGLE_VAL_RW(xname, xreg) \
116 { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
117 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
118 .info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
119 .put = fsl_easrc_iec958_put_bits, \
120 .private_value = (unsigned long)&(struct soc_mreg_control) \
121 { .regbase = xreg, .regcount = 1, .nbits = 32, \
122 .invert = 0, .min = 0, .max = 2, } }
124 static const struct snd_kcontrol_new fsl_easrc_snd_controls
[] = {
125 SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
126 SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
127 SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
128 SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
130 SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
131 SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
132 SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
133 SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
135 SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
136 SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
137 SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
138 SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
140 SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
141 SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
142 SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
143 SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
144 SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
145 SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
146 SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
147 SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
148 SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
149 SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
150 SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
151 SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
152 SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
153 SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
154 SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
155 SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
156 SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
157 SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
158 SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
159 SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
160 SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
161 SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
162 SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
163 SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
167 * fsl_easrc_set_rs_ratio
169 * According to the resample taps, calculate the resample ratio
170 * ratio = in_rate / out_rate
172 static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair
*ctx
)
174 struct fsl_asrc
*easrc
= ctx
->asrc
;
175 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
176 struct fsl_easrc_ctx_priv
*ctx_priv
= ctx
->private;
177 unsigned int in_rate
= ctx_priv
->in_params
.norm_rate
;
178 unsigned int out_rate
= ctx_priv
->out_params
.norm_rate
;
179 unsigned int frac_bits
;
183 switch (easrc_priv
->rs_num_taps
) {
184 case EASRC_RS_32_TAPS
:
185 /* integer bits = 5; */
188 case EASRC_RS_64_TAPS
:
189 /* integer bits = 6; */
192 case EASRC_RS_128_TAPS
:
193 /* integer bits = 7; */
200 val
= (u64
)in_rate
<< frac_bits
;
201 do_div(val
, out_rate
);
202 r
= (uint32_t *)&val
;
204 if (r
[1] & 0xFFFFF000) {
205 dev_err(&easrc
->pdev
->dev
, "ratio exceed range\n");
209 regmap_write(easrc
->regmap
, REG_EASRC_RRL(ctx
->index
),
210 EASRC_RRL_RS_RL(r
[0]));
211 regmap_write(easrc
->regmap
, REG_EASRC_RRH(ctx
->index
),
212 EASRC_RRH_RS_RH(r
[1]));
217 /* Normalize input and output sample rates */
218 static void fsl_easrc_normalize_rates(struct fsl_asrc_pair
*ctx
)
220 struct fsl_easrc_ctx_priv
*ctx_priv
;
226 ctx_priv
= ctx
->private;
228 a
= ctx_priv
->in_params
.sample_rate
;
229 b
= ctx_priv
->out_params
.sample_rate
;
233 /* Divide by gcd to normalize the rate */
234 ctx_priv
->in_params
.norm_rate
= ctx_priv
->in_params
.sample_rate
/ a
;
235 ctx_priv
->out_params
.norm_rate
= ctx_priv
->out_params
.sample_rate
/ a
;
238 /* Resets the pointer of the coeff memory pointers */
239 static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc
*easrc
,
240 unsigned int ctx_id
, int mem_type
)
248 dev
= &easrc
->pdev
->dev
;
251 case EASRC_PF_COEFF_MEM
:
252 /* This resets the prefilter memory pointer addr */
253 if (ctx_id
>= EASRC_CTX_MAX_NUM
) {
254 dev_err(dev
, "Invalid context id[%d]\n", ctx_id
);
258 reg
= REG_EASRC_CCE1(ctx_id
);
259 mask
= EASRC_CCE1_COEF_MEM_RST_MASK
;
260 val
= EASRC_CCE1_COEF_MEM_RST
;
262 case EASRC_RS_COEFF_MEM
:
263 /* This resets the resampling memory pointer addr */
264 reg
= REG_EASRC_CRCC
;
265 mask
= EASRC_CRCC_RS_CPR_MASK
;
266 val
= EASRC_CRCC_RS_CPR
;
269 dev_err(dev
, "Unknown memory type\n");
274 * To reset the write pointer back to zero, the register field
275 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
278 regmap_update_bits(easrc
->regmap
, reg
, mask
, 0);
279 regmap_update_bits(easrc
->regmap
, reg
, mask
, val
);
280 regmap_update_bits(easrc
->regmap
, reg
, mask
, 0);
285 static inline uint32_t bits_taps_to_val(unsigned int t
)
288 case EASRC_RS_32_TAPS
:
290 case EASRC_RS_64_TAPS
:
292 case EASRC_RS_128_TAPS
:
299 static int fsl_easrc_resampler_config(struct fsl_asrc
*easrc
)
301 struct device
*dev
= &easrc
->pdev
->dev
;
302 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
303 struct asrc_firmware_hdr
*hdr
= easrc_priv
->firmware_hdr
;
304 struct interp_params
*interp
= easrc_priv
->interp
;
305 struct interp_params
*selected_interp
= NULL
;
306 unsigned int num_coeff
;
313 dev_err(dev
, "firmware not loaded!\n");
317 for (i
= 0; i
< hdr
->interp_scen
; i
++) {
318 if ((interp
[i
].num_taps
- 1) !=
319 bits_taps_to_val(easrc_priv
->rs_num_taps
))
322 coef
= interp
[i
].coeff
;
323 selected_interp
= &interp
[i
];
324 dev_dbg(dev
, "Selected interp_filter: %u taps - %u phases\n",
325 selected_interp
->num_taps
,
326 selected_interp
->num_phases
);
330 if (!selected_interp
) {
331 dev_err(dev
, "failed to get interpreter configuration\n");
336 * RS_LOW - first half of center tap of the sinc function
337 * RS_HIGH - second half of center tap of the sinc function
338 * This is due to the fact the resampling function must be
339 * symetrical - i.e. odd number of taps
341 r
= (uint32_t *)&selected_interp
->center_tap
;
342 regmap_write(easrc
->regmap
, REG_EASRC_RCTCL
, EASRC_RCTCL_RS_CL(r
[0]));
343 regmap_write(easrc
->regmap
, REG_EASRC_RCTCH
, EASRC_RCTCH_RS_CH(r
[1]));
346 * Write Number of Resampling Coefficient Taps
347 * 00b - 32-Tap Resampling Filter
348 * 01b - 64-Tap Resampling Filter
349 * 10b - 128-Tap Resampling Filter
352 regmap_update_bits(easrc
->regmap
, REG_EASRC_CRCC
,
353 EASRC_CRCC_RS_TAPS_MASK
,
354 EASRC_CRCC_RS_TAPS(easrc_priv
->rs_num_taps
));
356 /* Reset prefilter coefficient pointer back to 0 */
357 ret
= fsl_easrc_coeff_mem_ptr_reset(easrc
, 0, EASRC_RS_COEFF_MEM
);
362 * When the filter is programmed to run in:
363 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
364 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
365 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
366 * This means the number of writes is constant no matter
367 * the mode we are using
369 num_coeff
= 16 * 128 * 4;
371 for (i
= 0; i
< num_coeff
; i
++) {
372 r
= (uint32_t *)&coef
[i
];
373 regmap_write(easrc
->regmap
, REG_EASRC_CRCM
,
374 EASRC_CRCM_RS_CWD(r
[0]));
375 regmap_write(easrc
->regmap
, REG_EASRC_CRCM
,
376 EASRC_CRCM_RS_CWD(r
[1]));
383 * fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float)
384 * For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
385 * scale it by multiplying filter coefficients by 2^31
386 * For input int[16, 24, 32] -> output float32
387 * scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
389 * @easrc: Structure pointer of fsl_asrc
390 * @infilter : Pointer to non-scaled input filter
391 * @shift: The multiply factor
393 * @outfilter: scaled filter
395 static int fsl_easrc_normalize_filter(struct fsl_asrc
*easrc
,
400 struct device
*dev
= &easrc
->pdev
->dev
;
401 u64 coef
= *infilter
;
402 s64 exp
= (coef
& 0x7ff0000000000000ll
) >> 52;
406 * If exponent is zero (value == 0), or 7ff (value == NaNs)
407 * dont touch the content
409 if (exp
== 0 || exp
== 0x7ff) {
414 /* coef * 2^shift ==> exp + shift */
417 if ((shift
> 0 && exp
>= 0x7ff) || (shift
< 0 && exp
<= 0)) {
418 dev_err(dev
, "coef out of range\n");
422 outcoef
= (u64
)(coef
& 0x800FFFFFFFFFFFFFll
) + ((u64
)exp
<< 52);
423 *outfilter
= outcoef
;
428 static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc
*easrc
, int ctx_id
,
429 u64
*coef
, int n_taps
, int shift
)
431 struct device
*dev
= &easrc
->pdev
->dev
;
437 /* If STx_NUM_TAPS is set to 0x0 then return */
442 dev_err(dev
, "coef table is NULL\n");
447 * When switching between stages, the address pointer
448 * should be reset back to 0x0 before performing a write
450 ret
= fsl_easrc_coeff_mem_ptr_reset(easrc
, ctx_id
, EASRC_PF_COEFF_MEM
);
454 for (i
= 0; i
< (n_taps
+ 1) / 2; i
++) {
455 ret
= fsl_easrc_normalize_filter(easrc
, &coef
[i
], &tmp
, shift
);
459 r
= (uint32_t *)&tmp
;
460 regmap_write(easrc
->regmap
, REG_EASRC_PCF(ctx_id
),
462 regmap_write(easrc
->regmap
, REG_EASRC_PCF(ctx_id
),
469 static int fsl_easrc_prefilter_config(struct fsl_asrc
*easrc
,
472 struct prefil_params
*prefil
, *selected_prefil
= NULL
;
473 struct fsl_easrc_ctx_priv
*ctx_priv
;
474 struct fsl_easrc_priv
*easrc_priv
;
475 struct asrc_firmware_hdr
*hdr
;
476 struct fsl_asrc_pair
*ctx
;
478 u32 inrate
, outrate
, offset
= 0;
479 u32 in_s_rate
, out_s_rate
;
480 snd_pcm_format_t in_s_fmt
, out_s_fmt
;
486 dev
= &easrc
->pdev
->dev
;
488 if (ctx_id
>= EASRC_CTX_MAX_NUM
) {
489 dev_err(dev
, "Invalid context id[%d]\n", ctx_id
);
493 easrc_priv
= easrc
->private;
495 ctx
= easrc
->pair
[ctx_id
];
496 ctx_priv
= ctx
->private;
498 in_s_rate
= ctx_priv
->in_params
.sample_rate
;
499 out_s_rate
= ctx_priv
->out_params
.sample_rate
;
500 in_s_fmt
= ctx_priv
->in_params
.sample_format
;
501 out_s_fmt
= ctx_priv
->out_params
.sample_format
;
503 ctx_priv
->in_filled_sample
= bits_taps_to_val(easrc_priv
->rs_num_taps
) / 2;
504 ctx_priv
->out_missed_sample
= ctx_priv
->in_filled_sample
* out_s_rate
/ in_s_rate
;
506 ctx_priv
->st1_num_taps
= 0;
507 ctx_priv
->st2_num_taps
= 0;
509 regmap_write(easrc
->regmap
, REG_EASRC_CCE1(ctx_id
), 0);
510 regmap_write(easrc
->regmap
, REG_EASRC_CCE2(ctx_id
), 0);
513 * The audio float point data range is (-1, 1), the asrc would output
514 * all zero for float point input and integer output case, that is to
515 * drop the fractional part of the data directly.
517 * In order to support float to int conversion or int to float
518 * conversion we need to do special operation on the coefficient to
519 * enlarge/reduce the data to the expected range.
521 * For float to int case:
523 * 1. Create a 1 tap filter with center tap (only tap) of 2^31
524 * in 64 bits floating point.
525 * double value = (double)(((uint64_t)1) << 31)
526 * 2. Program 1 tap prefilter with center tap above.
529 * 1. If the filter is single stage filter, add "shift" to the exponent
530 * of stage 1 coefficients.
531 * 2. If the filter is two stage filter , add "shift" to the exponent
532 * of stage 2 coefficients.
534 * The "shift" is 31, same for int16, int24, int32 case.
536 * For int to float case:
538 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
539 * in 64 bits floating point.
540 * 2. Program 1 tap prefilter with center tap above.
543 * 1. If the filter is single stage filter, subtract "shift" to the
544 * exponent of stage 1 coefficients.
545 * 2. If the filter is two stage filter , subtract "shift" to the
546 * exponent of stage 2 coefficients.
548 * The "shift" is 15,23,31, different for int16, int24, int32 case.
551 if (out_s_rate
>= in_s_rate
) {
552 if (out_s_rate
== in_s_rate
)
553 regmap_update_bits(easrc
->regmap
,
554 REG_EASRC_CCE1(ctx_id
),
555 EASRC_CCE1_RS_BYPASS_MASK
,
556 EASRC_CCE1_RS_BYPASS
);
558 ctx_priv
->st1_num_taps
= 1;
559 ctx_priv
->st1_coeff
= &easrc_priv
->const_coeff
;
560 ctx_priv
->st1_num_exp
= 1;
561 ctx_priv
->st2_num_taps
= 0;
563 if (in_s_fmt
== SNDRV_PCM_FORMAT_FLOAT_LE
&&
564 out_s_fmt
!= SNDRV_PCM_FORMAT_FLOAT_LE
)
565 ctx_priv
->st1_addexp
= 31;
566 else if (in_s_fmt
!= SNDRV_PCM_FORMAT_FLOAT_LE
&&
567 out_s_fmt
== SNDRV_PCM_FORMAT_FLOAT_LE
)
568 ctx_priv
->st1_addexp
-= ctx_priv
->in_params
.fmt
.addexp
;
570 inrate
= ctx_priv
->in_params
.norm_rate
;
571 outrate
= ctx_priv
->out_params
.norm_rate
;
573 hdr
= easrc_priv
->firmware_hdr
;
574 prefil
= easrc_priv
->prefil
;
576 for (i
= 0; i
< hdr
->prefil_scen
; i
++) {
577 if (inrate
== prefil
[i
].insr
&&
578 outrate
== prefil
[i
].outsr
) {
579 selected_prefil
= &prefil
[i
];
580 dev_dbg(dev
, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
581 selected_prefil
->insr
,
582 selected_prefil
->outsr
,
583 selected_prefil
->st1_taps
,
584 selected_prefil
->st2_taps
);
589 if (!selected_prefil
) {
590 dev_err(dev
, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
592 out_s_rate
, outrate
);
597 * In prefilter coeff array, first st1_num_taps represent the
598 * stage1 prefilter coefficients followed by next st2_num_taps
599 * representing stage 2 coefficients
601 ctx_priv
->st1_num_taps
= selected_prefil
->st1_taps
;
602 ctx_priv
->st1_coeff
= selected_prefil
->coeff
;
603 ctx_priv
->st1_num_exp
= selected_prefil
->st1_exp
;
605 offset
= ((selected_prefil
->st1_taps
+ 1) / 2);
606 ctx_priv
->st2_num_taps
= selected_prefil
->st2_taps
;
607 ctx_priv
->st2_coeff
= selected_prefil
->coeff
+ offset
;
609 if (in_s_fmt
== SNDRV_PCM_FORMAT_FLOAT_LE
&&
610 out_s_fmt
!= SNDRV_PCM_FORMAT_FLOAT_LE
) {
611 /* only change stage2 coefficient for 2 stage case */
612 if (ctx_priv
->st2_num_taps
> 0)
613 ctx_priv
->st2_addexp
= 31;
615 ctx_priv
->st1_addexp
= 31;
616 } else if (in_s_fmt
!= SNDRV_PCM_FORMAT_FLOAT_LE
&&
617 out_s_fmt
== SNDRV_PCM_FORMAT_FLOAT_LE
) {
618 if (ctx_priv
->st2_num_taps
> 0)
619 ctx_priv
->st2_addexp
-= ctx_priv
->in_params
.fmt
.addexp
;
621 ctx_priv
->st1_addexp
-= ctx_priv
->in_params
.fmt
.addexp
;
625 ctx_priv
->in_filled_sample
+= (ctx_priv
->st1_num_taps
/ 2) * ctx_priv
->st1_num_exp
+
626 ctx_priv
->st2_num_taps
/ 2;
627 ctx_priv
->out_missed_sample
= ctx_priv
->in_filled_sample
* out_s_rate
/ in_s_rate
;
629 if (ctx_priv
->in_filled_sample
* out_s_rate
% in_s_rate
!= 0)
630 ctx_priv
->out_missed_sample
+= 1;
632 * To modify the value of a prefilter coefficient, the user must
633 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
634 * while the respective context RUN_EN bit is set to 0b0
636 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx_id
),
637 EASRC_CC_EN_MASK
, 0);
639 if (ctx_priv
->st1_num_taps
> EASRC_MAX_PF_TAPS
) {
640 dev_err(dev
, "ST1 taps [%d] mus be lower than %d\n",
641 ctx_priv
->st1_num_taps
, EASRC_MAX_PF_TAPS
);
646 /* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
647 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE2(ctx_id
),
648 EASRC_CCE2_ST1_TAPS_MASK
,
649 EASRC_CCE2_ST1_TAPS(ctx_priv
->st1_num_taps
- 1));
651 /* Prefilter Coefficient Write Select to write in ST1 coeff */
652 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE1(ctx_id
),
653 EASRC_CCE1_COEF_WS_MASK
,
654 EASRC_PF_ST1_COEFF_WR
<< EASRC_CCE1_COEF_WS_SHIFT
);
656 ret
= fsl_easrc_write_pf_coeff_mem(easrc
, ctx_id
,
658 ctx_priv
->st1_num_taps
,
659 ctx_priv
->st1_addexp
);
663 if (ctx_priv
->st2_num_taps
> 0) {
664 if (ctx_priv
->st2_num_taps
+ ctx_priv
->st1_num_taps
> EASRC_MAX_PF_TAPS
) {
665 dev_err(dev
, "ST2 taps [%d] mus be lower than %d\n",
666 ctx_priv
->st2_num_taps
, EASRC_MAX_PF_TAPS
);
671 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE1(ctx_id
),
672 EASRC_CCE1_PF_TSEN_MASK
,
675 * Enable prefilter stage1 writeback floating point
676 * which is used for FLOAT_LE case
678 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE1(ctx_id
),
679 EASRC_CCE1_PF_ST1_WBFP_MASK
,
680 EASRC_CCE1_PF_ST1_WBFP
);
682 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE1(ctx_id
),
683 EASRC_CCE1_PF_EXP_MASK
,
684 EASRC_CCE1_PF_EXP(ctx_priv
->st1_num_exp
- 1));
686 /* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
687 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE2(ctx_id
),
688 EASRC_CCE2_ST2_TAPS_MASK
,
689 EASRC_CCE2_ST2_TAPS(ctx_priv
->st2_num_taps
- 1));
691 /* Prefilter Coefficient Write Select to write in ST2 coeff */
692 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE1(ctx_id
),
693 EASRC_CCE1_COEF_WS_MASK
,
694 EASRC_PF_ST2_COEFF_WR
<< EASRC_CCE1_COEF_WS_SHIFT
);
696 ret
= fsl_easrc_write_pf_coeff_mem(easrc
, ctx_id
,
698 ctx_priv
->st2_num_taps
,
699 ctx_priv
->st2_addexp
);
710 static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair
*ctx
,
711 struct fsl_easrc_slot
*slot
)
713 struct fsl_easrc_ctx_priv
*ctx_priv
= ctx
->private;
714 int st1_mem_alloc
= 0, st2_mem_alloc
= 0;
715 int pf_mem_alloc
= 0;
716 int max_channels
= 8 - slot
->num_channel
;
719 if (ctx_priv
->st1_num_taps
> 0) {
720 if (ctx_priv
->st2_num_taps
> 0)
722 (ctx_priv
->st1_num_taps
- 1) * ctx_priv
->st1_num_exp
+ 1;
724 st1_mem_alloc
= ctx_priv
->st1_num_taps
;
727 if (ctx_priv
->st2_num_taps
> 0)
728 st2_mem_alloc
= ctx_priv
->st2_num_taps
;
730 pf_mem_alloc
= st1_mem_alloc
+ st2_mem_alloc
;
732 if (pf_mem_alloc
!= 0)
733 channels
= (6144 - slot
->pf_mem_used
) / pf_mem_alloc
;
737 if (channels
< max_channels
)
738 max_channels
= channels
;
743 static int fsl_easrc_config_one_slot(struct fsl_asrc_pair
*ctx
,
744 struct fsl_easrc_slot
*slot
,
745 unsigned int slot_ctx_idx
,
746 unsigned int *req_channels
,
747 unsigned int *start_channel
,
748 unsigned int *avail_channel
)
750 struct fsl_asrc
*easrc
= ctx
->asrc
;
751 struct fsl_easrc_ctx_priv
*ctx_priv
= ctx
->private;
752 int st1_chanxexp
, st1_mem_alloc
= 0, st2_mem_alloc
;
753 unsigned int reg0
, reg1
, reg2
, reg3
;
756 if (slot
->slot_index
== 0) {
757 reg0
= REG_EASRC_DPCS0R0(slot_ctx_idx
);
758 reg1
= REG_EASRC_DPCS0R1(slot_ctx_idx
);
759 reg2
= REG_EASRC_DPCS0R2(slot_ctx_idx
);
760 reg3
= REG_EASRC_DPCS0R3(slot_ctx_idx
);
762 reg0
= REG_EASRC_DPCS1R0(slot_ctx_idx
);
763 reg1
= REG_EASRC_DPCS1R1(slot_ctx_idx
);
764 reg2
= REG_EASRC_DPCS1R2(slot_ctx_idx
);
765 reg3
= REG_EASRC_DPCS1R3(slot_ctx_idx
);
768 if (*req_channels
<= *avail_channel
) {
769 slot
->num_channel
= *req_channels
;
772 slot
->num_channel
= *avail_channel
;
773 *req_channels
-= *avail_channel
;
776 slot
->min_channel
= *start_channel
;
777 slot
->max_channel
= *start_channel
+ slot
->num_channel
- 1;
778 slot
->ctx_index
= ctx
->index
;
780 *start_channel
+= slot
->num_channel
;
782 regmap_update_bits(easrc
->regmap
, reg0
,
783 EASRC_DPCS0R0_MAXCH_MASK
,
784 EASRC_DPCS0R0_MAXCH(slot
->max_channel
));
786 regmap_update_bits(easrc
->regmap
, reg0
,
787 EASRC_DPCS0R0_MINCH_MASK
,
788 EASRC_DPCS0R0_MINCH(slot
->min_channel
));
790 regmap_update_bits(easrc
->regmap
, reg0
,
791 EASRC_DPCS0R0_NUMCH_MASK
,
792 EASRC_DPCS0R0_NUMCH(slot
->num_channel
- 1));
794 regmap_update_bits(easrc
->regmap
, reg0
,
795 EASRC_DPCS0R0_CTXNUM_MASK
,
796 EASRC_DPCS0R0_CTXNUM(slot
->ctx_index
));
798 if (ctx_priv
->st1_num_taps
> 0) {
799 if (ctx_priv
->st2_num_taps
> 0)
801 (ctx_priv
->st1_num_taps
- 1) * slot
->num_channel
*
802 ctx_priv
->st1_num_exp
+ slot
->num_channel
;
804 st1_mem_alloc
= ctx_priv
->st1_num_taps
* slot
->num_channel
;
806 slot
->pf_mem_used
= st1_mem_alloc
;
807 regmap_update_bits(easrc
->regmap
, reg2
,
808 EASRC_DPCS0R2_ST1_MA_MASK
,
809 EASRC_DPCS0R2_ST1_MA(st1_mem_alloc
));
811 if (slot
->slot_index
== 1)
812 addr
= PREFILTER_MEM_LEN
- st1_mem_alloc
;
816 regmap_update_bits(easrc
->regmap
, reg2
,
817 EASRC_DPCS0R2_ST1_SA_MASK
,
818 EASRC_DPCS0R2_ST1_SA(addr
));
821 if (ctx_priv
->st2_num_taps
> 0) {
822 st1_chanxexp
= slot
->num_channel
* (ctx_priv
->st1_num_exp
- 1);
824 regmap_update_bits(easrc
->regmap
, reg1
,
825 EASRC_DPCS0R1_ST1_EXP_MASK
,
826 EASRC_DPCS0R1_ST1_EXP(st1_chanxexp
));
828 st2_mem_alloc
= slot
->num_channel
* ctx_priv
->st2_num_taps
;
829 slot
->pf_mem_used
+= st2_mem_alloc
;
830 regmap_update_bits(easrc
->regmap
, reg3
,
831 EASRC_DPCS0R3_ST2_MA_MASK
,
832 EASRC_DPCS0R3_ST2_MA(st2_mem_alloc
));
834 if (slot
->slot_index
== 1)
835 addr
= PREFILTER_MEM_LEN
- st1_mem_alloc
- st2_mem_alloc
;
837 addr
= st1_mem_alloc
;
839 regmap_update_bits(easrc
->regmap
, reg3
,
840 EASRC_DPCS0R3_ST2_SA_MASK
,
841 EASRC_DPCS0R3_ST2_SA(addr
));
844 regmap_update_bits(easrc
->regmap
, reg0
,
845 EASRC_DPCS0R0_EN_MASK
, EASRC_DPCS0R0_EN
);
851 * fsl_easrc_config_slot
853 * A single context can be split amongst any of the 4 context processing pipes
855 * The total number of channels consumed within the context processor must be
856 * less than or equal to 8. if a single context is configured to contain more
857 * than 8 channels then it must be distributed across multiple context
858 * processing pipe slots.
861 static int fsl_easrc_config_slot(struct fsl_asrc
*easrc
, unsigned int ctx_id
)
863 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
864 struct fsl_asrc_pair
*ctx
= easrc
->pair
[ctx_id
];
865 int req_channels
= ctx
->channels
;
866 int start_channel
= 0, avail_channel
;
867 struct fsl_easrc_slot
*slot0
, *slot1
;
868 struct fsl_easrc_slot
*slota
, *slotb
;
871 if (req_channels
<= 0)
874 for (i
= 0; i
< EASRC_CTX_MAX_NUM
; i
++) {
875 slot0
= &easrc_priv
->slot
[i
][0];
876 slot1
= &easrc_priv
->slot
[i
][1];
878 if (slot0
->busy
&& slot1
->busy
) {
880 } else if ((slot0
->busy
&& slot0
->ctx_index
== ctx
->index
) ||
881 (slot1
->busy
&& slot1
->ctx_index
== ctx
->index
)) {
883 } else if (!slot0
->busy
) {
886 slota
->slot_index
= 0;
887 } else if (!slot1
->busy
) {
890 slota
->slot_index
= 1;
893 if (!slota
|| !slotb
)
896 avail_channel
= fsl_easrc_max_ch_for_slot(ctx
, slotb
);
897 if (avail_channel
<= 0)
900 ret
= fsl_easrc_config_one_slot(ctx
, slota
, i
, &req_channels
,
901 &start_channel
, &avail_channel
);
905 if (req_channels
> 0)
911 if (req_channels
> 0) {
912 dev_err(&easrc
->pdev
->dev
, "no avail slot.\n");
920 * fsl_easrc_release_slot
922 * Clear the slot configuration
924 static int fsl_easrc_release_slot(struct fsl_asrc
*easrc
, unsigned int ctx_id
)
926 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
927 struct fsl_asrc_pair
*ctx
= easrc
->pair
[ctx_id
];
930 for (i
= 0; i
< EASRC_CTX_MAX_NUM
; i
++) {
931 if (easrc_priv
->slot
[i
][0].busy
&&
932 easrc_priv
->slot
[i
][0].ctx_index
== ctx
->index
) {
933 easrc_priv
->slot
[i
][0].busy
= false;
934 easrc_priv
->slot
[i
][0].num_channel
= 0;
935 easrc_priv
->slot
[i
][0].pf_mem_used
= 0;
937 regmap_write(easrc
->regmap
, REG_EASRC_DPCS0R0(i
), 0);
938 regmap_write(easrc
->regmap
, REG_EASRC_DPCS0R1(i
), 0);
939 regmap_write(easrc
->regmap
, REG_EASRC_DPCS0R2(i
), 0);
940 regmap_write(easrc
->regmap
, REG_EASRC_DPCS0R3(i
), 0);
943 if (easrc_priv
->slot
[i
][1].busy
&&
944 easrc_priv
->slot
[i
][1].ctx_index
== ctx
->index
) {
945 easrc_priv
->slot
[i
][1].busy
= false;
946 easrc_priv
->slot
[i
][1].num_channel
= 0;
947 easrc_priv
->slot
[i
][1].pf_mem_used
= 0;
949 regmap_write(easrc
->regmap
, REG_EASRC_DPCS1R0(i
), 0);
950 regmap_write(easrc
->regmap
, REG_EASRC_DPCS1R1(i
), 0);
951 regmap_write(easrc
->regmap
, REG_EASRC_DPCS1R2(i
), 0);
952 regmap_write(easrc
->regmap
, REG_EASRC_DPCS1R3(i
), 0);
960 * fsl_easrc_config_context
962 * Configure the register relate with context.
964 static int fsl_easrc_config_context(struct fsl_asrc
*easrc
, unsigned int ctx_id
)
966 struct fsl_easrc_ctx_priv
*ctx_priv
;
967 struct fsl_asrc_pair
*ctx
;
969 unsigned long lock_flags
;
975 dev
= &easrc
->pdev
->dev
;
977 if (ctx_id
>= EASRC_CTX_MAX_NUM
) {
978 dev_err(dev
, "Invalid context id[%d]\n", ctx_id
);
982 ctx
= easrc
->pair
[ctx_id
];
984 ctx_priv
= ctx
->private;
986 fsl_easrc_normalize_rates(ctx
);
988 ret
= fsl_easrc_set_rs_ratio(ctx
);
992 /* Initialize the context coeficients */
993 ret
= fsl_easrc_prefilter_config(easrc
, ctx
->index
);
997 spin_lock_irqsave(&easrc
->lock
, lock_flags
);
998 ret
= fsl_easrc_config_slot(easrc
, ctx
->index
);
999 spin_unlock_irqrestore(&easrc
->lock
, lock_flags
);
1004 * Both prefilter and resampling filters can use following
1005 * initialization modes:
1007 * 1 - replication mode
1008 * 0 - software control
1010 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE1(ctx_id
),
1011 EASRC_CCE1_RS_INIT_MASK
,
1012 EASRC_CCE1_RS_INIT(ctx_priv
->rs_init_mode
));
1014 regmap_update_bits(easrc
->regmap
, REG_EASRC_CCE1(ctx_id
),
1015 EASRC_CCE1_PF_INIT_MASK
,
1016 EASRC_CCE1_PF_INIT(ctx_priv
->pf_init_mode
));
1019 * Context Input FIFO Watermark
1020 * DMA request is generated when input FIFO < FIFO_WTMK
1022 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx_id
),
1023 EASRC_CC_FIFO_WTMK_MASK
,
1024 EASRC_CC_FIFO_WTMK(ctx_priv
->in_params
.fifo_wtmk
));
1027 * Context Output FIFO Watermark
1028 * DMA request is generated when output FIFO > FIFO_WTMK
1029 * So we set fifo_wtmk -1 to register.
1031 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx_id
),
1032 EASRC_COC_FIFO_WTMK_MASK
,
1033 EASRC_COC_FIFO_WTMK(ctx_priv
->out_params
.fifo_wtmk
- 1));
1035 /* Number of channels */
1036 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx_id
),
1038 EASRC_CC_CHEN(ctx
->channels
- 1));
1042 static int fsl_easrc_process_format(struct fsl_asrc_pair
*ctx
,
1043 struct fsl_easrc_data_fmt
*fmt
,
1044 snd_pcm_format_t raw_fmt
)
1046 struct fsl_asrc
*easrc
= ctx
->asrc
;
1047 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
1054 * Context Input Floating Point Format
1055 * 0 - Integer Format
1056 * 1 - Single Precision FP Format
1058 fmt
->floating_point
= !snd_pcm_format_linear(raw_fmt
);
1059 fmt
->sample_pos
= 0;
1062 /* Get the data width */
1063 switch (snd_pcm_format_width(raw_fmt
)) {
1065 fmt
->width
= EASRC_WIDTH_16_BIT
;
1069 fmt
->width
= EASRC_WIDTH_20_BIT
;
1073 fmt
->width
= EASRC_WIDTH_24_BIT
;
1077 fmt
->width
= EASRC_WIDTH_32_BIT
;
1085 case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE
:
1086 fmt
->width
= easrc_priv
->bps_iec958
[ctx
->index
];
1088 fmt
->floating_point
= 0;
1089 if (fmt
->width
== EASRC_WIDTH_16_BIT
) {
1090 fmt
->sample_pos
= 12;
1092 } else if (fmt
->width
== EASRC_WIDTH_20_BIT
) {
1093 fmt
->sample_pos
= 8;
1095 } else if (fmt
->width
== EASRC_WIDTH_24_BIT
) {
1096 fmt
->sample_pos
= 4;
1109 ret
= snd_pcm_format_big_endian(raw_fmt
);
1113 fmt
->endianness
= ret
;
1117 * 0b - Signed Format
1118 * 1b - Unsigned Format
1120 fmt
->unsign
= snd_pcm_format_unsigned(raw_fmt
) > 0 ? 1 : 0;
1125 static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair
*ctx
,
1126 snd_pcm_format_t
*in_raw_format
,
1127 snd_pcm_format_t
*out_raw_format
)
1129 struct fsl_asrc
*easrc
= ctx
->asrc
;
1130 struct fsl_easrc_ctx_priv
*ctx_priv
= ctx
->private;
1131 struct fsl_easrc_data_fmt
*in_fmt
= &ctx_priv
->in_params
.fmt
;
1132 struct fsl_easrc_data_fmt
*out_fmt
= &ctx_priv
->out_params
.fmt
;
1135 /* Get the bitfield values for input data format */
1136 if (in_raw_format
&& out_raw_format
) {
1137 ret
= fsl_easrc_process_format(ctx
, in_fmt
, *in_raw_format
);
1142 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1144 EASRC_CC_BPS(in_fmt
->width
));
1145 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1146 EASRC_CC_ENDIANNESS_MASK
,
1147 in_fmt
->endianness
<< EASRC_CC_ENDIANNESS_SHIFT
);
1148 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1150 in_fmt
->floating_point
<< EASRC_CC_FMT_SHIFT
);
1151 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1152 EASRC_CC_INSIGN_MASK
,
1153 in_fmt
->unsign
<< EASRC_CC_INSIGN_SHIFT
);
1155 /* In Sample Position */
1156 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1157 EASRC_CC_SAMPLE_POS_MASK
,
1158 EASRC_CC_SAMPLE_POS(in_fmt
->sample_pos
));
1160 /* Get the bitfield values for input data format */
1161 if (in_raw_format
&& out_raw_format
) {
1162 ret
= fsl_easrc_process_format(ctx
, out_fmt
, *out_raw_format
);
1167 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx
->index
),
1169 EASRC_COC_BPS(out_fmt
->width
));
1170 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx
->index
),
1171 EASRC_COC_ENDIANNESS_MASK
,
1172 out_fmt
->endianness
<< EASRC_COC_ENDIANNESS_SHIFT
);
1173 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx
->index
),
1175 out_fmt
->floating_point
<< EASRC_COC_FMT_SHIFT
);
1176 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx
->index
),
1177 EASRC_COC_OUTSIGN_MASK
,
1178 out_fmt
->unsign
<< EASRC_COC_OUTSIGN_SHIFT
);
1180 /* Out Sample Position */
1181 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx
->index
),
1182 EASRC_COC_SAMPLE_POS_MASK
,
1183 EASRC_COC_SAMPLE_POS(out_fmt
->sample_pos
));
1185 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx
->index
),
1186 EASRC_COC_IEC_EN_MASK
,
1187 out_fmt
->iec958
<< EASRC_COC_IEC_EN_SHIFT
);
1193 * The ASRC provides interleaving support in hardware to ensure that a
1194 * variety of sample sources can be internally combined
1195 * to conform with this format. Interleaving parameters are accessed
1196 * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
1198 static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair
*ctx
)
1200 struct fsl_easrc_ctx_priv
*ctx_priv
;
1201 struct fsl_asrc
*easrc
;
1207 ctx_priv
= ctx
->private;
1209 /* input interleaving parameters */
1210 regmap_update_bits(easrc
->regmap
, REG_EASRC_CIA(ctx
->index
),
1211 EASRC_CIA_ITER_MASK
,
1212 EASRC_CIA_ITER(ctx_priv
->in_params
.iterations
));
1213 regmap_update_bits(easrc
->regmap
, REG_EASRC_CIA(ctx
->index
),
1214 EASRC_CIA_GRLEN_MASK
,
1215 EASRC_CIA_GRLEN(ctx_priv
->in_params
.group_len
));
1216 regmap_update_bits(easrc
->regmap
, REG_EASRC_CIA(ctx
->index
),
1217 EASRC_CIA_ACCLEN_MASK
,
1218 EASRC_CIA_ACCLEN(ctx_priv
->in_params
.access_len
));
1220 /* output interleaving parameters */
1221 regmap_update_bits(easrc
->regmap
, REG_EASRC_COA(ctx
->index
),
1222 EASRC_COA_ITER_MASK
,
1223 EASRC_COA_ITER(ctx_priv
->out_params
.iterations
));
1224 regmap_update_bits(easrc
->regmap
, REG_EASRC_COA(ctx
->index
),
1225 EASRC_COA_GRLEN_MASK
,
1226 EASRC_COA_GRLEN(ctx_priv
->out_params
.group_len
));
1227 regmap_update_bits(easrc
->regmap
, REG_EASRC_COA(ctx
->index
),
1228 EASRC_COA_ACCLEN_MASK
,
1229 EASRC_COA_ACCLEN(ctx_priv
->out_params
.access_len
));
1235 * Request one of the available contexts
1237 * Returns a negative number on error and >=0 as context id
1240 static int fsl_easrc_request_context(int channels
, struct fsl_asrc_pair
*ctx
)
1242 enum asrc_pair_index index
= ASRC_INVALID_PAIR
;
1243 struct fsl_asrc
*easrc
= ctx
->asrc
;
1245 unsigned long lock_flags
;
1249 dev
= &easrc
->pdev
->dev
;
1251 spin_lock_irqsave(&easrc
->lock
, lock_flags
);
1253 for (i
= ASRC_PAIR_A
; i
< EASRC_CTX_MAX_NUM
; i
++) {
1261 if (index
== ASRC_INVALID_PAIR
) {
1262 dev_err(dev
, "all contexts are busy\n");
1264 } else if (channels
> easrc
->channel_avail
) {
1265 dev_err(dev
, "can't give the required channels: %d\n",
1270 ctx
->channels
= channels
;
1271 easrc
->pair
[index
] = ctx
;
1272 easrc
->channel_avail
-= channels
;
1275 spin_unlock_irqrestore(&easrc
->lock
, lock_flags
);
1281 * Release the context
1283 * This funciton is mainly doing the revert thing in request context
1285 static void fsl_easrc_release_context(struct fsl_asrc_pair
*ctx
)
1287 unsigned long lock_flags
;
1288 struct fsl_asrc
*easrc
;
1295 spin_lock_irqsave(&easrc
->lock
, lock_flags
);
1297 fsl_easrc_release_slot(easrc
, ctx
->index
);
1299 easrc
->channel_avail
+= ctx
->channels
;
1300 easrc
->pair
[ctx
->index
] = NULL
;
1302 spin_unlock_irqrestore(&easrc
->lock
, lock_flags
);
1308 * Enable the DMA request and context
1310 static int fsl_easrc_start_context(struct fsl_asrc_pair
*ctx
)
1312 struct fsl_asrc
*easrc
= ctx
->asrc
;
1314 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1315 EASRC_CC_FWMDE_MASK
, EASRC_CC_FWMDE
);
1316 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx
->index
),
1317 EASRC_COC_FWMDE_MASK
, EASRC_COC_FWMDE
);
1318 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1319 EASRC_CC_EN_MASK
, EASRC_CC_EN
);
1326 * Disable the DMA request and context
1328 static int fsl_easrc_stop_context(struct fsl_asrc_pair
*ctx
)
1330 struct fsl_asrc
*easrc
= ctx
->asrc
;
1335 regmap_read(easrc
->regmap
, REG_EASRC_CC(ctx
->index
), &val
);
1337 if (val
& EASRC_CC_EN_MASK
) {
1338 regmap_update_bits(easrc
->regmap
,
1339 REG_EASRC_CC(ctx
->index
),
1340 EASRC_CC_STOP_MASK
, EASRC_CC_STOP
);
1342 regmap_read(easrc
->regmap
, REG_EASRC_SFS(ctx
->index
), &val
);
1343 val
&= EASRC_SFS_NSGO_MASK
;
1344 size
= val
>> EASRC_SFS_NSGO_SHIFT
;
1346 /* Read FIFO, drop the data */
1347 for (i
= 0; i
< size
* ctx
->channels
; i
++)
1348 regmap_read(easrc
->regmap
, REG_EASRC_RDFIFO(ctx
->index
), &val
);
1349 /* Check RUN_STOP_DONE */
1350 regmap_read(easrc
->regmap
, REG_EASRC_IRQF
, &val
);
1351 if (val
& EASRC_IRQF_RSD(1 << ctx
->index
)) {
1352 /*Clear RUN_STOP_DONE*/
1353 regmap_write_bits(easrc
->regmap
,
1355 EASRC_IRQF_RSD(1 << ctx
->index
),
1356 EASRC_IRQF_RSD(1 << ctx
->index
));
1363 dev_warn(&easrc
->pdev
->dev
, "RUN STOP fail\n");
1366 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1367 EASRC_CC_EN_MASK
| EASRC_CC_STOP_MASK
, 0);
1368 regmap_update_bits(easrc
->regmap
, REG_EASRC_CC(ctx
->index
),
1369 EASRC_CC_FWMDE_MASK
, 0);
1370 regmap_update_bits(easrc
->regmap
, REG_EASRC_COC(ctx
->index
),
1371 EASRC_COC_FWMDE_MASK
, 0);
1375 static struct dma_chan
*fsl_easrc_get_dma_channel(struct fsl_asrc_pair
*ctx
,
1378 struct fsl_asrc
*easrc
= ctx
->asrc
;
1379 enum asrc_pair_index index
= ctx
->index
;
1382 /* Example of dma name: ctx0_rx */
1383 sprintf(name
, "ctx%c_%cx", index
+ '0', dir
== IN
? 'r' : 't');
1385 return dma_request_slave_channel(&easrc
->pdev
->dev
, name
);
1388 static const unsigned int easrc_rates
[] = {
1389 8000, 11025, 12000, 16000,
1390 22050, 24000, 32000, 44100,
1391 48000, 64000, 88200, 96000,
1392 128000, 176400, 192000, 256000,
1393 352800, 384000, 705600, 768000,
1396 static const struct snd_pcm_hw_constraint_list easrc_rate_constraints
= {
1397 .count
= ARRAY_SIZE(easrc_rates
),
1398 .list
= easrc_rates
,
1401 static int fsl_easrc_startup(struct snd_pcm_substream
*substream
,
1402 struct snd_soc_dai
*dai
)
1404 return snd_pcm_hw_constraint_list(substream
->runtime
, 0,
1405 SNDRV_PCM_HW_PARAM_RATE
,
1406 &easrc_rate_constraints
);
1409 static int fsl_easrc_trigger(struct snd_pcm_substream
*substream
,
1410 int cmd
, struct snd_soc_dai
*dai
)
1412 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1413 struct fsl_asrc_pair
*ctx
= runtime
->private_data
;
1417 case SNDRV_PCM_TRIGGER_START
:
1418 case SNDRV_PCM_TRIGGER_RESUME
:
1419 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
1420 ret
= fsl_easrc_start_context(ctx
);
1424 case SNDRV_PCM_TRIGGER_STOP
:
1425 case SNDRV_PCM_TRIGGER_SUSPEND
:
1426 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
1427 ret
= fsl_easrc_stop_context(ctx
);
1438 static int fsl_easrc_hw_params(struct snd_pcm_substream
*substream
,
1439 struct snd_pcm_hw_params
*params
,
1440 struct snd_soc_dai
*dai
)
1442 struct fsl_asrc
*easrc
= snd_soc_dai_get_drvdata(dai
);
1443 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1444 struct device
*dev
= &easrc
->pdev
->dev
;
1445 struct fsl_asrc_pair
*ctx
= runtime
->private_data
;
1446 struct fsl_easrc_ctx_priv
*ctx_priv
= ctx
->private;
1447 unsigned int channels
= params_channels(params
);
1448 unsigned int rate
= params_rate(params
);
1449 snd_pcm_format_t format
= params_format(params
);
1452 ret
= fsl_easrc_request_context(channels
, ctx
);
1454 dev_err(dev
, "failed to request context\n");
1458 ctx_priv
->ctx_streams
|= BIT(substream
->stream
);
1461 * Set the input and output ratio so we can compute
1462 * the resampling ratio in RS_LOW/HIGH
1464 if (substream
->stream
== SNDRV_PCM_STREAM_PLAYBACK
) {
1465 ctx_priv
->in_params
.sample_rate
= rate
;
1466 ctx_priv
->in_params
.sample_format
= format
;
1467 ctx_priv
->out_params
.sample_rate
= easrc
->asrc_rate
;
1468 ctx_priv
->out_params
.sample_format
= easrc
->asrc_format
;
1470 ctx_priv
->out_params
.sample_rate
= rate
;
1471 ctx_priv
->out_params
.sample_format
= format
;
1472 ctx_priv
->in_params
.sample_rate
= easrc
->asrc_rate
;
1473 ctx_priv
->in_params
.sample_format
= easrc
->asrc_format
;
1476 ctx
->channels
= channels
;
1477 ctx_priv
->in_params
.fifo_wtmk
= 0x20;
1478 ctx_priv
->out_params
.fifo_wtmk
= 0x20;
1481 * Do only rate conversion and keep the same format for input
1484 ret
= fsl_easrc_set_ctx_format(ctx
,
1485 &ctx_priv
->in_params
.sample_format
,
1486 &ctx_priv
->out_params
.sample_format
);
1488 dev_err(dev
, "failed to set format %d", ret
);
1492 ret
= fsl_easrc_config_context(easrc
, ctx
->index
);
1494 dev_err(dev
, "failed to config context\n");
1498 ctx_priv
->in_params
.iterations
= 1;
1499 ctx_priv
->in_params
.group_len
= ctx
->channels
;
1500 ctx_priv
->in_params
.access_len
= ctx
->channels
;
1501 ctx_priv
->out_params
.iterations
= 1;
1502 ctx_priv
->out_params
.group_len
= ctx
->channels
;
1503 ctx_priv
->out_params
.access_len
= ctx
->channels
;
1505 ret
= fsl_easrc_set_ctx_organziation(ctx
);
1507 dev_err(dev
, "failed to set fifo organization\n");
1514 static int fsl_easrc_hw_free(struct snd_pcm_substream
*substream
,
1515 struct snd_soc_dai
*dai
)
1517 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
1518 struct fsl_asrc_pair
*ctx
= runtime
->private_data
;
1519 struct fsl_easrc_ctx_priv
*ctx_priv
;
1524 ctx_priv
= ctx
->private;
1526 if (ctx_priv
->ctx_streams
& BIT(substream
->stream
)) {
1527 ctx_priv
->ctx_streams
&= ~BIT(substream
->stream
);
1528 fsl_easrc_release_context(ctx
);
1534 static int fsl_easrc_dai_probe(struct snd_soc_dai
*cpu_dai
)
1536 struct fsl_asrc
*easrc
= dev_get_drvdata(cpu_dai
->dev
);
1538 snd_soc_dai_init_dma_data(cpu_dai
,
1539 &easrc
->dma_params_tx
,
1540 &easrc
->dma_params_rx
);
1544 static const struct snd_soc_dai_ops fsl_easrc_dai_ops
= {
1545 .probe
= fsl_easrc_dai_probe
,
1546 .startup
= fsl_easrc_startup
,
1547 .trigger
= fsl_easrc_trigger
,
1548 .hw_params
= fsl_easrc_hw_params
,
1549 .hw_free
= fsl_easrc_hw_free
,
1552 static struct snd_soc_dai_driver fsl_easrc_dai
= {
1554 .stream_name
= "ASRC-Playback",
1559 .rates
= SNDRV_PCM_RATE_KNOT
,
1560 .formats
= FSL_EASRC_FORMATS
,
1563 .stream_name
= "ASRC-Capture",
1568 .rates
= SNDRV_PCM_RATE_KNOT
,
1569 .formats
= FSL_EASRC_FORMATS
|
1570 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
,
1572 .ops
= &fsl_easrc_dai_ops
,
1575 static const struct snd_soc_component_driver fsl_easrc_component
= {
1576 .name
= "fsl-easrc-dai",
1577 .controls
= fsl_easrc_snd_controls
,
1578 .num_controls
= ARRAY_SIZE(fsl_easrc_snd_controls
),
1579 .legacy_dai_naming
= 1,
1582 static const struct reg_default fsl_easrc_reg_defaults
[] = {
1583 {REG_EASRC_WRFIFO(0), 0x00000000},
1584 {REG_EASRC_WRFIFO(1), 0x00000000},
1585 {REG_EASRC_WRFIFO(2), 0x00000000},
1586 {REG_EASRC_WRFIFO(3), 0x00000000},
1587 {REG_EASRC_RDFIFO(0), 0x00000000},
1588 {REG_EASRC_RDFIFO(1), 0x00000000},
1589 {REG_EASRC_RDFIFO(2), 0x00000000},
1590 {REG_EASRC_RDFIFO(3), 0x00000000},
1591 {REG_EASRC_CC(0), 0x00000000},
1592 {REG_EASRC_CC(1), 0x00000000},
1593 {REG_EASRC_CC(2), 0x00000000},
1594 {REG_EASRC_CC(3), 0x00000000},
1595 {REG_EASRC_CCE1(0), 0x00000000},
1596 {REG_EASRC_CCE1(1), 0x00000000},
1597 {REG_EASRC_CCE1(2), 0x00000000},
1598 {REG_EASRC_CCE1(3), 0x00000000},
1599 {REG_EASRC_CCE2(0), 0x00000000},
1600 {REG_EASRC_CCE2(1), 0x00000000},
1601 {REG_EASRC_CCE2(2), 0x00000000},
1602 {REG_EASRC_CCE2(3), 0x00000000},
1603 {REG_EASRC_CIA(0), 0x00000000},
1604 {REG_EASRC_CIA(1), 0x00000000},
1605 {REG_EASRC_CIA(2), 0x00000000},
1606 {REG_EASRC_CIA(3), 0x00000000},
1607 {REG_EASRC_DPCS0R0(0), 0x00000000},
1608 {REG_EASRC_DPCS0R0(1), 0x00000000},
1609 {REG_EASRC_DPCS0R0(2), 0x00000000},
1610 {REG_EASRC_DPCS0R0(3), 0x00000000},
1611 {REG_EASRC_DPCS0R1(0), 0x00000000},
1612 {REG_EASRC_DPCS0R1(1), 0x00000000},
1613 {REG_EASRC_DPCS0R1(2), 0x00000000},
1614 {REG_EASRC_DPCS0R1(3), 0x00000000},
1615 {REG_EASRC_DPCS0R2(0), 0x00000000},
1616 {REG_EASRC_DPCS0R2(1), 0x00000000},
1617 {REG_EASRC_DPCS0R2(2), 0x00000000},
1618 {REG_EASRC_DPCS0R2(3), 0x00000000},
1619 {REG_EASRC_DPCS0R3(0), 0x00000000},
1620 {REG_EASRC_DPCS0R3(1), 0x00000000},
1621 {REG_EASRC_DPCS0R3(2), 0x00000000},
1622 {REG_EASRC_DPCS0R3(3), 0x00000000},
1623 {REG_EASRC_DPCS1R0(0), 0x00000000},
1624 {REG_EASRC_DPCS1R0(1), 0x00000000},
1625 {REG_EASRC_DPCS1R0(2), 0x00000000},
1626 {REG_EASRC_DPCS1R0(3), 0x00000000},
1627 {REG_EASRC_DPCS1R1(0), 0x00000000},
1628 {REG_EASRC_DPCS1R1(1), 0x00000000},
1629 {REG_EASRC_DPCS1R1(2), 0x00000000},
1630 {REG_EASRC_DPCS1R1(3), 0x00000000},
1631 {REG_EASRC_DPCS1R2(0), 0x00000000},
1632 {REG_EASRC_DPCS1R2(1), 0x00000000},
1633 {REG_EASRC_DPCS1R2(2), 0x00000000},
1634 {REG_EASRC_DPCS1R2(3), 0x00000000},
1635 {REG_EASRC_DPCS1R3(0), 0x00000000},
1636 {REG_EASRC_DPCS1R3(1), 0x00000000},
1637 {REG_EASRC_DPCS1R3(2), 0x00000000},
1638 {REG_EASRC_DPCS1R3(3), 0x00000000},
1639 {REG_EASRC_COC(0), 0x00000000},
1640 {REG_EASRC_COC(1), 0x00000000},
1641 {REG_EASRC_COC(2), 0x00000000},
1642 {REG_EASRC_COC(3), 0x00000000},
1643 {REG_EASRC_COA(0), 0x00000000},
1644 {REG_EASRC_COA(1), 0x00000000},
1645 {REG_EASRC_COA(2), 0x00000000},
1646 {REG_EASRC_COA(3), 0x00000000},
1647 {REG_EASRC_SFS(0), 0x00000000},
1648 {REG_EASRC_SFS(1), 0x00000000},
1649 {REG_EASRC_SFS(2), 0x00000000},
1650 {REG_EASRC_SFS(3), 0x00000000},
1651 {REG_EASRC_RRL(0), 0x00000000},
1652 {REG_EASRC_RRL(1), 0x00000000},
1653 {REG_EASRC_RRL(2), 0x00000000},
1654 {REG_EASRC_RRL(3), 0x00000000},
1655 {REG_EASRC_RRH(0), 0x00000000},
1656 {REG_EASRC_RRH(1), 0x00000000},
1657 {REG_EASRC_RRH(2), 0x00000000},
1658 {REG_EASRC_RRH(3), 0x00000000},
1659 {REG_EASRC_RUC(0), 0x00000000},
1660 {REG_EASRC_RUC(1), 0x00000000},
1661 {REG_EASRC_RUC(2), 0x00000000},
1662 {REG_EASRC_RUC(3), 0x00000000},
1663 {REG_EASRC_RUR(0), 0x7FFFFFFF},
1664 {REG_EASRC_RUR(1), 0x7FFFFFFF},
1665 {REG_EASRC_RUR(2), 0x7FFFFFFF},
1666 {REG_EASRC_RUR(3), 0x7FFFFFFF},
1667 {REG_EASRC_RCTCL
, 0x00000000},
1668 {REG_EASRC_RCTCH
, 0x00000000},
1669 {REG_EASRC_PCF(0), 0x00000000},
1670 {REG_EASRC_PCF(1), 0x00000000},
1671 {REG_EASRC_PCF(2), 0x00000000},
1672 {REG_EASRC_PCF(3), 0x00000000},
1673 {REG_EASRC_CRCM
, 0x00000000},
1674 {REG_EASRC_CRCC
, 0x00000000},
1675 {REG_EASRC_IRQC
, 0x00000FFF},
1676 {REG_EASRC_IRQF
, 0x00000000},
1677 {REG_EASRC_CS0(0), 0x00000000},
1678 {REG_EASRC_CS0(1), 0x00000000},
1679 {REG_EASRC_CS0(2), 0x00000000},
1680 {REG_EASRC_CS0(3), 0x00000000},
1681 {REG_EASRC_CS1(0), 0x00000000},
1682 {REG_EASRC_CS1(1), 0x00000000},
1683 {REG_EASRC_CS1(2), 0x00000000},
1684 {REG_EASRC_CS1(3), 0x00000000},
1685 {REG_EASRC_CS2(0), 0x00000000},
1686 {REG_EASRC_CS2(1), 0x00000000},
1687 {REG_EASRC_CS2(2), 0x00000000},
1688 {REG_EASRC_CS2(3), 0x00000000},
1689 {REG_EASRC_CS3(0), 0x00000000},
1690 {REG_EASRC_CS3(1), 0x00000000},
1691 {REG_EASRC_CS3(2), 0x00000000},
1692 {REG_EASRC_CS3(3), 0x00000000},
1693 {REG_EASRC_CS4(0), 0x00000000},
1694 {REG_EASRC_CS4(1), 0x00000000},
1695 {REG_EASRC_CS4(2), 0x00000000},
1696 {REG_EASRC_CS4(3), 0x00000000},
1697 {REG_EASRC_CS5(0), 0x00000000},
1698 {REG_EASRC_CS5(1), 0x00000000},
1699 {REG_EASRC_CS5(2), 0x00000000},
1700 {REG_EASRC_CS5(3), 0x00000000},
1701 {REG_EASRC_DBGC
, 0x00000000},
1702 {REG_EASRC_DBGS
, 0x00000000},
1705 static const struct regmap_range fsl_easrc_readable_ranges
[] = {
1706 regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH
),
1707 regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
1708 regmap_reg_range(REG_EASRC_CRCC
, REG_EASRC_DBGS
),
1711 static const struct regmap_access_table fsl_easrc_readable_table
= {
1712 .yes_ranges
= fsl_easrc_readable_ranges
,
1713 .n_yes_ranges
= ARRAY_SIZE(fsl_easrc_readable_ranges
),
1716 static const struct regmap_range fsl_easrc_writeable_ranges
[] = {
1717 regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
1718 regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
1719 regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH
),
1720 regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC
),
1723 static const struct regmap_access_table fsl_easrc_writeable_table
= {
1724 .yes_ranges
= fsl_easrc_writeable_ranges
,
1725 .n_yes_ranges
= ARRAY_SIZE(fsl_easrc_writeable_ranges
),
1728 static const struct regmap_range fsl_easrc_volatileable_ranges
[] = {
1729 regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
1730 regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
1731 regmap_reg_range(REG_EASRC_IRQF
, REG_EASRC_IRQF
),
1732 regmap_reg_range(REG_EASRC_DBGS
, REG_EASRC_DBGS
),
1735 static const struct regmap_access_table fsl_easrc_volatileable_table
= {
1736 .yes_ranges
= fsl_easrc_volatileable_ranges
,
1737 .n_yes_ranges
= ARRAY_SIZE(fsl_easrc_volatileable_ranges
),
1740 static const struct regmap_config fsl_easrc_regmap_config
= {
1745 .max_register
= REG_EASRC_DBGS
,
1746 .reg_defaults
= fsl_easrc_reg_defaults
,
1747 .num_reg_defaults
= ARRAY_SIZE(fsl_easrc_reg_defaults
),
1748 .rd_table
= &fsl_easrc_readable_table
,
1749 .wr_table
= &fsl_easrc_writeable_table
,
1750 .volatile_table
= &fsl_easrc_volatileable_table
,
1751 .cache_type
= REGCACHE_MAPLE
,
1755 static void fsl_easrc_dump_firmware(struct fsl_asrc
*easrc
)
1757 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
1758 struct asrc_firmware_hdr
*firm
= easrc_priv
->firmware_hdr
;
1759 struct interp_params
*interp
= easrc_priv
->interp
;
1760 struct prefil_params
*prefil
= easrc_priv
->prefil
;
1761 struct device
*dev
= &easrc
->pdev
->dev
;
1764 if (firm
->magic
!= FIRMWARE_MAGIC
) {
1765 dev_err(dev
, "Wrong magic. Something went wrong!");
1769 dev_dbg(dev
, "Firmware v%u dump:\n", firm
->firmware_version
);
1770 dev_dbg(dev
, "Num prefilter scenarios: %u\n", firm
->prefil_scen
);
1771 dev_dbg(dev
, "Num interpolation scenarios: %u\n", firm
->interp_scen
);
1772 dev_dbg(dev
, "\nInterpolation scenarios:\n");
1774 for (i
= 0; i
< firm
->interp_scen
; i
++) {
1775 if (interp
[i
].magic
!= FIRMWARE_MAGIC
) {
1776 dev_dbg(dev
, "%d. wrong interp magic: %x\n",
1777 i
, interp
[i
].magic
);
1780 dev_dbg(dev
, "%d. taps: %u, phases: %u, center: %llu\n", i
,
1781 interp
[i
].num_taps
, interp
[i
].num_phases
,
1782 interp
[i
].center_tap
);
1785 for (i
= 0; i
< firm
->prefil_scen
; i
++) {
1786 if (prefil
[i
].magic
!= FIRMWARE_MAGIC
) {
1787 dev_dbg(dev
, "%d. wrong prefil magic: %x\n",
1788 i
, prefil
[i
].magic
);
1791 dev_dbg(dev
, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i
,
1792 prefil
[i
].insr
, prefil
[i
].outsr
,
1793 prefil
[i
].st1_taps
, prefil
[i
].st2_taps
);
1796 dev_dbg(dev
, "end of firmware dump\n");
1800 static int fsl_easrc_get_firmware(struct fsl_asrc
*easrc
)
1802 struct fsl_easrc_priv
*easrc_priv
;
1803 const struct firmware
**fw_p
;
1804 u32 pnum
, inum
, offset
;
1811 easrc_priv
= easrc
->private;
1812 fw_p
= &easrc_priv
->fw
;
1814 ret
= request_firmware(fw_p
, easrc_priv
->fw_name
, &easrc
->pdev
->dev
);
1818 data
= easrc_priv
->fw
->data
;
1820 easrc_priv
->firmware_hdr
= (struct asrc_firmware_hdr
*)data
;
1821 pnum
= easrc_priv
->firmware_hdr
->prefil_scen
;
1822 inum
= easrc_priv
->firmware_hdr
->interp_scen
;
1825 offset
= sizeof(struct asrc_firmware_hdr
);
1826 easrc_priv
->interp
= (struct interp_params
*)(data
+ offset
);
1830 offset
= sizeof(struct asrc_firmware_hdr
) +
1831 inum
* sizeof(struct interp_params
);
1832 easrc_priv
->prefil
= (struct prefil_params
*)(data
+ offset
);
1836 fsl_easrc_dump_firmware(easrc
);
1842 static irqreturn_t
fsl_easrc_isr(int irq
, void *dev_id
)
1844 struct fsl_asrc
*easrc
= (struct fsl_asrc
*)dev_id
;
1845 struct device
*dev
= &easrc
->pdev
->dev
;
1848 regmap_read(easrc
->regmap
, REG_EASRC_IRQF
, &val
);
1850 if (val
& EASRC_IRQF_OER_MASK
)
1851 dev_dbg(dev
, "output FIFO underflow\n");
1853 if (val
& EASRC_IRQF_IFO_MASK
)
1854 dev_dbg(dev
, "input FIFO overflow\n");
1859 static int fsl_easrc_get_fifo_addr(u8 dir
, enum asrc_pair_index index
)
1861 return REG_EASRC_FIFO(dir
, index
);
1864 static const struct of_device_id fsl_easrc_dt_ids
[] = {
1865 { .compatible
= "fsl,imx8mn-easrc",},
1868 MODULE_DEVICE_TABLE(of
, fsl_easrc_dt_ids
);
1870 static int fsl_easrc_probe(struct platform_device
*pdev
)
1872 struct fsl_easrc_priv
*easrc_priv
;
1873 struct device
*dev
= &pdev
->dev
;
1874 struct fsl_asrc
*easrc
;
1875 struct resource
*res
;
1876 struct device_node
*np
;
1881 easrc
= devm_kzalloc(dev
, sizeof(*easrc
), GFP_KERNEL
);
1885 easrc_priv
= devm_kzalloc(dev
, sizeof(*easrc_priv
), GFP_KERNEL
);
1890 easrc
->private = easrc_priv
;
1893 regs
= devm_platform_get_and_ioremap_resource(pdev
, 0, &res
);
1895 return PTR_ERR(regs
);
1897 easrc
->paddr
= res
->start
;
1899 easrc
->regmap
= devm_regmap_init_mmio(dev
, regs
, &fsl_easrc_regmap_config
);
1900 if (IS_ERR(easrc
->regmap
)) {
1901 dev_err(dev
, "failed to init regmap");
1902 return PTR_ERR(easrc
->regmap
);
1905 irq
= platform_get_irq(pdev
, 0);
1909 ret
= devm_request_irq(&pdev
->dev
, irq
, fsl_easrc_isr
, 0,
1910 dev_name(dev
), easrc
);
1912 dev_err(dev
, "failed to claim irq %u: %d\n", irq
, ret
);
1916 easrc
->mem_clk
= devm_clk_get(dev
, "mem");
1917 if (IS_ERR(easrc
->mem_clk
)) {
1918 dev_err(dev
, "failed to get mem clock\n");
1919 return PTR_ERR(easrc
->mem_clk
);
1922 /* Set default value */
1923 easrc
->channel_avail
= 32;
1924 easrc
->get_dma_channel
= fsl_easrc_get_dma_channel
;
1925 easrc
->request_pair
= fsl_easrc_request_context
;
1926 easrc
->release_pair
= fsl_easrc_release_context
;
1927 easrc
->get_fifo_addr
= fsl_easrc_get_fifo_addr
;
1928 easrc
->pair_priv_size
= sizeof(struct fsl_easrc_ctx_priv
);
1930 easrc_priv
->rs_num_taps
= EASRC_RS_32_TAPS
;
1931 easrc_priv
->const_coeff
= 0x3FF0000000000000;
1933 ret
= of_property_read_u32(np
, "fsl,asrc-rate", &easrc
->asrc_rate
);
1935 dev_err(dev
, "failed to asrc rate\n");
1939 ret
= of_property_read_u32(np
, "fsl,asrc-format", &asrc_fmt
);
1940 easrc
->asrc_format
= (__force snd_pcm_format_t
)asrc_fmt
;
1942 dev_err(dev
, "failed to asrc format\n");
1946 if (!(FSL_EASRC_FORMATS
& (pcm_format_to_bits(easrc
->asrc_format
)))) {
1947 dev_warn(dev
, "unsupported format, switching to S24_LE\n");
1948 easrc
->asrc_format
= SNDRV_PCM_FORMAT_S24_LE
;
1951 ret
= of_property_read_string(np
, "firmware-name",
1952 &easrc_priv
->fw_name
);
1954 dev_err(dev
, "failed to get firmware name\n");
1958 platform_set_drvdata(pdev
, easrc
);
1959 pm_runtime_enable(dev
);
1961 spin_lock_init(&easrc
->lock
);
1963 regcache_cache_only(easrc
->regmap
, true);
1965 ret
= devm_snd_soc_register_component(dev
, &fsl_easrc_component
,
1968 dev_err(dev
, "failed to register ASoC DAI\n");
1969 goto err_pm_disable
;
1972 ret
= devm_snd_soc_register_component(dev
, &fsl_asrc_component
,
1975 dev_err(&pdev
->dev
, "failed to register ASoC platform\n");
1976 goto err_pm_disable
;
1982 pm_runtime_disable(&pdev
->dev
);
1986 static void fsl_easrc_remove(struct platform_device
*pdev
)
1988 pm_runtime_disable(&pdev
->dev
);
1991 static int fsl_easrc_runtime_suspend(struct device
*dev
)
1993 struct fsl_asrc
*easrc
= dev_get_drvdata(dev
);
1994 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
1995 unsigned long lock_flags
;
1997 regcache_cache_only(easrc
->regmap
, true);
1999 clk_disable_unprepare(easrc
->mem_clk
);
2001 spin_lock_irqsave(&easrc
->lock
, lock_flags
);
2002 easrc_priv
->firmware_loaded
= 0;
2003 spin_unlock_irqrestore(&easrc
->lock
, lock_flags
);
2008 static int fsl_easrc_runtime_resume(struct device
*dev
)
2010 struct fsl_asrc
*easrc
= dev_get_drvdata(dev
);
2011 struct fsl_easrc_priv
*easrc_priv
= easrc
->private;
2012 struct fsl_easrc_ctx_priv
*ctx_priv
;
2013 struct fsl_asrc_pair
*ctx
;
2014 unsigned long lock_flags
;
2018 ret
= clk_prepare_enable(easrc
->mem_clk
);
2022 regcache_cache_only(easrc
->regmap
, false);
2023 regcache_mark_dirty(easrc
->regmap
);
2024 regcache_sync(easrc
->regmap
);
2026 spin_lock_irqsave(&easrc
->lock
, lock_flags
);
2027 if (easrc_priv
->firmware_loaded
) {
2028 spin_unlock_irqrestore(&easrc
->lock
, lock_flags
);
2031 easrc_priv
->firmware_loaded
= 1;
2032 spin_unlock_irqrestore(&easrc
->lock
, lock_flags
);
2034 ret
= fsl_easrc_get_firmware(easrc
);
2036 dev_err(dev
, "failed to get firmware\n");
2037 goto disable_mem_clk
;
2041 * Write Resampling Coefficients
2042 * The coefficient RAM must be configured prior to beginning of
2043 * any context processing within the ASRC
2045 ret
= fsl_easrc_resampler_config(easrc
);
2047 dev_err(dev
, "resampler config failed\n");
2048 goto disable_mem_clk
;
2051 for (i
= ASRC_PAIR_A
; i
< EASRC_CTX_MAX_NUM
; i
++) {
2052 ctx
= easrc
->pair
[i
];
2056 ctx_priv
= ctx
->private;
2057 fsl_easrc_set_rs_ratio(ctx
);
2058 ctx_priv
->out_missed_sample
= ctx_priv
->in_filled_sample
*
2059 ctx_priv
->out_params
.sample_rate
/
2060 ctx_priv
->in_params
.sample_rate
;
2061 if (ctx_priv
->in_filled_sample
* ctx_priv
->out_params
.sample_rate
2062 % ctx_priv
->in_params
.sample_rate
!= 0)
2063 ctx_priv
->out_missed_sample
+= 1;
2065 ret
= fsl_easrc_write_pf_coeff_mem(easrc
, i
,
2066 ctx_priv
->st1_coeff
,
2067 ctx_priv
->st1_num_taps
,
2068 ctx_priv
->st1_addexp
);
2070 goto disable_mem_clk
;
2072 ret
= fsl_easrc_write_pf_coeff_mem(easrc
, i
,
2073 ctx_priv
->st2_coeff
,
2074 ctx_priv
->st2_num_taps
,
2075 ctx_priv
->st2_addexp
);
2077 goto disable_mem_clk
;
2084 clk_disable_unprepare(easrc
->mem_clk
);
2088 static const struct dev_pm_ops fsl_easrc_pm_ops
= {
2089 RUNTIME_PM_OPS(fsl_easrc_runtime_suspend
, fsl_easrc_runtime_resume
, NULL
)
2090 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend
,
2091 pm_runtime_force_resume
)
2094 static struct platform_driver fsl_easrc_driver
= {
2095 .probe
= fsl_easrc_probe
,
2096 .remove
= fsl_easrc_remove
,
2098 .name
= "fsl-easrc",
2099 .pm
= pm_ptr(&fsl_easrc_pm_ops
),
2100 .of_match_table
= fsl_easrc_dt_ids
,
2103 module_platform_driver(fsl_easrc_driver
);
2105 MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
2106 MODULE_LICENSE("GPL v2");