Merge tag 'sched_ext-for-6.13-rc5-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / sound / soc / fsl / fsl_easrc.c
blobd22f0621c465f59ed8753766cb8eab7e287768a2
1 // SPDX-License-Identifier: GPL-2.0
2 // Copyright 2019 NXP
4 #include <linux/atomic.h>
5 #include <linux/clk.h>
6 #include <linux/device.h>
7 #include <linux/dma-mapping.h>
8 #include <linux/firmware.h>
9 #include <linux/interrupt.h>
10 #include <linux/kobject.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/miscdevice.h>
14 #include <linux/of.h>
15 #include <linux/of_address.h>
16 #include <linux/of_irq.h>
17 #include <linux/of_platform.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sysfs.h>
22 #include <linux/types.h>
23 #include <linux/gcd.h>
24 #include <sound/dmaengine_pcm.h>
25 #include <sound/pcm.h>
26 #include <sound/pcm_params.h>
27 #include <sound/soc.h>
28 #include <sound/tlv.h>
29 #include <sound/core.h>
31 #include "fsl_easrc.h"
32 #include "imx-pcm.h"
34 #define FSL_EASRC_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | \
35 SNDRV_PCM_FMTBIT_U16_LE | \
36 SNDRV_PCM_FMTBIT_S24_LE | \
37 SNDRV_PCM_FMTBIT_S24_3LE | \
38 SNDRV_PCM_FMTBIT_U24_LE | \
39 SNDRV_PCM_FMTBIT_U24_3LE | \
40 SNDRV_PCM_FMTBIT_S32_LE | \
41 SNDRV_PCM_FMTBIT_U32_LE | \
42 SNDRV_PCM_FMTBIT_S20_3LE | \
43 SNDRV_PCM_FMTBIT_U20_3LE | \
44 SNDRV_PCM_FMTBIT_FLOAT_LE)
46 static int fsl_easrc_iec958_put_bits(struct snd_kcontrol *kcontrol,
47 struct snd_ctl_elem_value *ucontrol)
49 struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
50 struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
51 struct fsl_easrc_priv *easrc_priv = easrc->private;
52 struct soc_mreg_control *mc =
53 (struct soc_mreg_control *)kcontrol->private_value;
54 unsigned int regval = ucontrol->value.integer.value[0];
56 easrc_priv->bps_iec958[mc->regbase] = regval;
58 return 0;
61 static int fsl_easrc_iec958_get_bits(struct snd_kcontrol *kcontrol,
62 struct snd_ctl_elem_value *ucontrol)
64 struct snd_soc_component *comp = snd_kcontrol_chip(kcontrol);
65 struct fsl_asrc *easrc = snd_soc_component_get_drvdata(comp);
66 struct fsl_easrc_priv *easrc_priv = easrc->private;
67 struct soc_mreg_control *mc =
68 (struct soc_mreg_control *)kcontrol->private_value;
70 ucontrol->value.enumerated.item[0] = easrc_priv->bps_iec958[mc->regbase];
72 return 0;
75 static int fsl_easrc_get_reg(struct snd_kcontrol *kcontrol,
76 struct snd_ctl_elem_value *ucontrol)
78 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
79 struct soc_mreg_control *mc =
80 (struct soc_mreg_control *)kcontrol->private_value;
81 unsigned int regval;
83 regval = snd_soc_component_read(component, mc->regbase);
85 ucontrol->value.integer.value[0] = regval;
87 return 0;
90 static int fsl_easrc_set_reg(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_mreg_control *mc =
95 (struct soc_mreg_control *)kcontrol->private_value;
96 unsigned int regval = ucontrol->value.integer.value[0];
97 int ret;
99 ret = snd_soc_component_write(component, mc->regbase, regval);
100 if (ret < 0)
101 return ret;
103 return 0;
106 #define SOC_SINGLE_REG_RW(xname, xreg) \
107 { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
108 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
109 .info = snd_soc_info_xr_sx, .get = fsl_easrc_get_reg, \
110 .put = fsl_easrc_set_reg, \
111 .private_value = (unsigned long)&(struct soc_mreg_control) \
112 { .regbase = xreg, .regcount = 1, .nbits = 32, \
113 .invert = 0, .min = 0, .max = 0xffffffff, } }
115 #define SOC_SINGLE_VAL_RW(xname, xreg) \
116 { .iface = SNDRV_CTL_ELEM_IFACE_PCM, .name = (xname), \
117 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
118 .info = snd_soc_info_xr_sx, .get = fsl_easrc_iec958_get_bits, \
119 .put = fsl_easrc_iec958_put_bits, \
120 .private_value = (unsigned long)&(struct soc_mreg_control) \
121 { .regbase = xreg, .regcount = 1, .nbits = 32, \
122 .invert = 0, .min = 0, .max = 2, } }
124 static const struct snd_kcontrol_new fsl_easrc_snd_controls[] = {
125 SOC_SINGLE("Context 0 Dither Switch", REG_EASRC_COC(0), 0, 1, 0),
126 SOC_SINGLE("Context 1 Dither Switch", REG_EASRC_COC(1), 0, 1, 0),
127 SOC_SINGLE("Context 2 Dither Switch", REG_EASRC_COC(2), 0, 1, 0),
128 SOC_SINGLE("Context 3 Dither Switch", REG_EASRC_COC(3), 0, 1, 0),
130 SOC_SINGLE("Context 0 IEC958 Validity", REG_EASRC_COC(0), 2, 1, 0),
131 SOC_SINGLE("Context 1 IEC958 Validity", REG_EASRC_COC(1), 2, 1, 0),
132 SOC_SINGLE("Context 2 IEC958 Validity", REG_EASRC_COC(2), 2, 1, 0),
133 SOC_SINGLE("Context 3 IEC958 Validity", REG_EASRC_COC(3), 2, 1, 0),
135 SOC_SINGLE_VAL_RW("Context 0 IEC958 Bits Per Sample", 0),
136 SOC_SINGLE_VAL_RW("Context 1 IEC958 Bits Per Sample", 1),
137 SOC_SINGLE_VAL_RW("Context 2 IEC958 Bits Per Sample", 2),
138 SOC_SINGLE_VAL_RW("Context 3 IEC958 Bits Per Sample", 3),
140 SOC_SINGLE_REG_RW("Context 0 IEC958 CS0", REG_EASRC_CS0(0)),
141 SOC_SINGLE_REG_RW("Context 1 IEC958 CS0", REG_EASRC_CS0(1)),
142 SOC_SINGLE_REG_RW("Context 2 IEC958 CS0", REG_EASRC_CS0(2)),
143 SOC_SINGLE_REG_RW("Context 3 IEC958 CS0", REG_EASRC_CS0(3)),
144 SOC_SINGLE_REG_RW("Context 0 IEC958 CS1", REG_EASRC_CS1(0)),
145 SOC_SINGLE_REG_RW("Context 1 IEC958 CS1", REG_EASRC_CS1(1)),
146 SOC_SINGLE_REG_RW("Context 2 IEC958 CS1", REG_EASRC_CS1(2)),
147 SOC_SINGLE_REG_RW("Context 3 IEC958 CS1", REG_EASRC_CS1(3)),
148 SOC_SINGLE_REG_RW("Context 0 IEC958 CS2", REG_EASRC_CS2(0)),
149 SOC_SINGLE_REG_RW("Context 1 IEC958 CS2", REG_EASRC_CS2(1)),
150 SOC_SINGLE_REG_RW("Context 2 IEC958 CS2", REG_EASRC_CS2(2)),
151 SOC_SINGLE_REG_RW("Context 3 IEC958 CS2", REG_EASRC_CS2(3)),
152 SOC_SINGLE_REG_RW("Context 0 IEC958 CS3", REG_EASRC_CS3(0)),
153 SOC_SINGLE_REG_RW("Context 1 IEC958 CS3", REG_EASRC_CS3(1)),
154 SOC_SINGLE_REG_RW("Context 2 IEC958 CS3", REG_EASRC_CS3(2)),
155 SOC_SINGLE_REG_RW("Context 3 IEC958 CS3", REG_EASRC_CS3(3)),
156 SOC_SINGLE_REG_RW("Context 0 IEC958 CS4", REG_EASRC_CS4(0)),
157 SOC_SINGLE_REG_RW("Context 1 IEC958 CS4", REG_EASRC_CS4(1)),
158 SOC_SINGLE_REG_RW("Context 2 IEC958 CS4", REG_EASRC_CS4(2)),
159 SOC_SINGLE_REG_RW("Context 3 IEC958 CS4", REG_EASRC_CS4(3)),
160 SOC_SINGLE_REG_RW("Context 0 IEC958 CS5", REG_EASRC_CS5(0)),
161 SOC_SINGLE_REG_RW("Context 1 IEC958 CS5", REG_EASRC_CS5(1)),
162 SOC_SINGLE_REG_RW("Context 2 IEC958 CS5", REG_EASRC_CS5(2)),
163 SOC_SINGLE_REG_RW("Context 3 IEC958 CS5", REG_EASRC_CS5(3)),
167 * fsl_easrc_set_rs_ratio
169 * According to the resample taps, calculate the resample ratio
170 * ratio = in_rate / out_rate
172 static int fsl_easrc_set_rs_ratio(struct fsl_asrc_pair *ctx)
174 struct fsl_asrc *easrc = ctx->asrc;
175 struct fsl_easrc_priv *easrc_priv = easrc->private;
176 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
177 unsigned int in_rate = ctx_priv->in_params.norm_rate;
178 unsigned int out_rate = ctx_priv->out_params.norm_rate;
179 unsigned int frac_bits;
180 u64 val;
181 u32 *r;
183 switch (easrc_priv->rs_num_taps) {
184 case EASRC_RS_32_TAPS:
185 /* integer bits = 5; */
186 frac_bits = 39;
187 break;
188 case EASRC_RS_64_TAPS:
189 /* integer bits = 6; */
190 frac_bits = 38;
191 break;
192 case EASRC_RS_128_TAPS:
193 /* integer bits = 7; */
194 frac_bits = 37;
195 break;
196 default:
197 return -EINVAL;
200 val = (u64)in_rate << frac_bits;
201 do_div(val, out_rate);
202 r = (uint32_t *)&val;
204 if (r[1] & 0xFFFFF000) {
205 dev_err(&easrc->pdev->dev, "ratio exceed range\n");
206 return -EINVAL;
209 regmap_write(easrc->regmap, REG_EASRC_RRL(ctx->index),
210 EASRC_RRL_RS_RL(r[0]));
211 regmap_write(easrc->regmap, REG_EASRC_RRH(ctx->index),
212 EASRC_RRH_RS_RH(r[1]));
214 return 0;
217 /* Normalize input and output sample rates */
218 static void fsl_easrc_normalize_rates(struct fsl_asrc_pair *ctx)
220 struct fsl_easrc_ctx_priv *ctx_priv;
221 int a, b;
223 if (!ctx)
224 return;
226 ctx_priv = ctx->private;
228 a = ctx_priv->in_params.sample_rate;
229 b = ctx_priv->out_params.sample_rate;
231 a = gcd(a, b);
233 /* Divide by gcd to normalize the rate */
234 ctx_priv->in_params.norm_rate = ctx_priv->in_params.sample_rate / a;
235 ctx_priv->out_params.norm_rate = ctx_priv->out_params.sample_rate / a;
238 /* Resets the pointer of the coeff memory pointers */
239 static int fsl_easrc_coeff_mem_ptr_reset(struct fsl_asrc *easrc,
240 unsigned int ctx_id, int mem_type)
242 struct device *dev;
243 u32 reg, mask, val;
245 if (!easrc)
246 return -ENODEV;
248 dev = &easrc->pdev->dev;
250 switch (mem_type) {
251 case EASRC_PF_COEFF_MEM:
252 /* This resets the prefilter memory pointer addr */
253 if (ctx_id >= EASRC_CTX_MAX_NUM) {
254 dev_err(dev, "Invalid context id[%d]\n", ctx_id);
255 return -EINVAL;
258 reg = REG_EASRC_CCE1(ctx_id);
259 mask = EASRC_CCE1_COEF_MEM_RST_MASK;
260 val = EASRC_CCE1_COEF_MEM_RST;
261 break;
262 case EASRC_RS_COEFF_MEM:
263 /* This resets the resampling memory pointer addr */
264 reg = REG_EASRC_CRCC;
265 mask = EASRC_CRCC_RS_CPR_MASK;
266 val = EASRC_CRCC_RS_CPR;
267 break;
268 default:
269 dev_err(dev, "Unknown memory type\n");
270 return -EINVAL;
274 * To reset the write pointer back to zero, the register field
275 * ASRC_CTX_CTRL_EXT1x[PF_COEFF_MEM_RST] can be toggled from
276 * 0x0 to 0x1 to 0x0.
278 regmap_update_bits(easrc->regmap, reg, mask, 0);
279 regmap_update_bits(easrc->regmap, reg, mask, val);
280 regmap_update_bits(easrc->regmap, reg, mask, 0);
282 return 0;
285 static inline uint32_t bits_taps_to_val(unsigned int t)
287 switch (t) {
288 case EASRC_RS_32_TAPS:
289 return 32;
290 case EASRC_RS_64_TAPS:
291 return 64;
292 case EASRC_RS_128_TAPS:
293 return 128;
296 return 0;
299 static int fsl_easrc_resampler_config(struct fsl_asrc *easrc)
301 struct device *dev = &easrc->pdev->dev;
302 struct fsl_easrc_priv *easrc_priv = easrc->private;
303 struct asrc_firmware_hdr *hdr = easrc_priv->firmware_hdr;
304 struct interp_params *interp = easrc_priv->interp;
305 struct interp_params *selected_interp = NULL;
306 unsigned int num_coeff;
307 unsigned int i;
308 u64 *coef;
309 u32 *r;
310 int ret;
312 if (!hdr) {
313 dev_err(dev, "firmware not loaded!\n");
314 return -ENODEV;
317 for (i = 0; i < hdr->interp_scen; i++) {
318 if ((interp[i].num_taps - 1) !=
319 bits_taps_to_val(easrc_priv->rs_num_taps))
320 continue;
322 coef = interp[i].coeff;
323 selected_interp = &interp[i];
324 dev_dbg(dev, "Selected interp_filter: %u taps - %u phases\n",
325 selected_interp->num_taps,
326 selected_interp->num_phases);
327 break;
330 if (!selected_interp) {
331 dev_err(dev, "failed to get interpreter configuration\n");
332 return -EINVAL;
336 * RS_LOW - first half of center tap of the sinc function
337 * RS_HIGH - second half of center tap of the sinc function
338 * This is due to the fact the resampling function must be
339 * symetrical - i.e. odd number of taps
341 r = (uint32_t *)&selected_interp->center_tap;
342 regmap_write(easrc->regmap, REG_EASRC_RCTCL, EASRC_RCTCL_RS_CL(r[0]));
343 regmap_write(easrc->regmap, REG_EASRC_RCTCH, EASRC_RCTCH_RS_CH(r[1]));
346 * Write Number of Resampling Coefficient Taps
347 * 00b - 32-Tap Resampling Filter
348 * 01b - 64-Tap Resampling Filter
349 * 10b - 128-Tap Resampling Filter
350 * 11b - N/A
352 regmap_update_bits(easrc->regmap, REG_EASRC_CRCC,
353 EASRC_CRCC_RS_TAPS_MASK,
354 EASRC_CRCC_RS_TAPS(easrc_priv->rs_num_taps));
356 /* Reset prefilter coefficient pointer back to 0 */
357 ret = fsl_easrc_coeff_mem_ptr_reset(easrc, 0, EASRC_RS_COEFF_MEM);
358 if (ret)
359 return ret;
362 * When the filter is programmed to run in:
363 * 32-tap mode, 16-taps, 128-phases 4-coefficients per phase
364 * 64-tap mode, 32-taps, 64-phases 4-coefficients per phase
365 * 128-tap mode, 64-taps, 32-phases 4-coefficients per phase
366 * This means the number of writes is constant no matter
367 * the mode we are using
369 num_coeff = 16 * 128 * 4;
371 for (i = 0; i < num_coeff; i++) {
372 r = (uint32_t *)&coef[i];
373 regmap_write(easrc->regmap, REG_EASRC_CRCM,
374 EASRC_CRCM_RS_CWD(r[0]));
375 regmap_write(easrc->regmap, REG_EASRC_CRCM,
376 EASRC_CRCM_RS_CWD(r[1]));
379 return 0;
383 * fsl_easrc_normalize_filter - Scale filter coefficients (64 bits float)
384 * For input float32 normalized range (1.0,-1.0) -> output int[16,24,32]:
385 * scale it by multiplying filter coefficients by 2^31
386 * For input int[16, 24, 32] -> output float32
387 * scale it by multiplying filter coefficients by 2^-15, 2^-23, 2^-31
388 * input:
389 * @easrc: Structure pointer of fsl_asrc
390 * @infilter : Pointer to non-scaled input filter
391 * @shift: The multiply factor
392 * output:
393 * @outfilter: scaled filter
395 static int fsl_easrc_normalize_filter(struct fsl_asrc *easrc,
396 u64 *infilter,
397 u64 *outfilter,
398 int shift)
400 struct device *dev = &easrc->pdev->dev;
401 u64 coef = *infilter;
402 s64 exp = (coef & 0x7ff0000000000000ll) >> 52;
403 u64 outcoef;
406 * If exponent is zero (value == 0), or 7ff (value == NaNs)
407 * dont touch the content
409 if (exp == 0 || exp == 0x7ff) {
410 *outfilter = coef;
411 return 0;
414 /* coef * 2^shift ==> exp + shift */
415 exp += shift;
417 if ((shift > 0 && exp >= 0x7ff) || (shift < 0 && exp <= 0)) {
418 dev_err(dev, "coef out of range\n");
419 return -EINVAL;
422 outcoef = (u64)(coef & 0x800FFFFFFFFFFFFFll) + ((u64)exp << 52);
423 *outfilter = outcoef;
425 return 0;
428 static int fsl_easrc_write_pf_coeff_mem(struct fsl_asrc *easrc, int ctx_id,
429 u64 *coef, int n_taps, int shift)
431 struct device *dev = &easrc->pdev->dev;
432 int ret = 0;
433 int i;
434 u32 *r;
435 u64 tmp;
437 /* If STx_NUM_TAPS is set to 0x0 then return */
438 if (!n_taps)
439 return 0;
441 if (!coef) {
442 dev_err(dev, "coef table is NULL\n");
443 return -EINVAL;
447 * When switching between stages, the address pointer
448 * should be reset back to 0x0 before performing a write
450 ret = fsl_easrc_coeff_mem_ptr_reset(easrc, ctx_id, EASRC_PF_COEFF_MEM);
451 if (ret)
452 return ret;
454 for (i = 0; i < (n_taps + 1) / 2; i++) {
455 ret = fsl_easrc_normalize_filter(easrc, &coef[i], &tmp, shift);
456 if (ret)
457 return ret;
459 r = (uint32_t *)&tmp;
460 regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
461 EASRC_PCF_CD(r[0]));
462 regmap_write(easrc->regmap, REG_EASRC_PCF(ctx_id),
463 EASRC_PCF_CD(r[1]));
466 return 0;
469 static int fsl_easrc_prefilter_config(struct fsl_asrc *easrc,
470 unsigned int ctx_id)
472 struct prefil_params *prefil, *selected_prefil = NULL;
473 struct fsl_easrc_ctx_priv *ctx_priv;
474 struct fsl_easrc_priv *easrc_priv;
475 struct asrc_firmware_hdr *hdr;
476 struct fsl_asrc_pair *ctx;
477 struct device *dev;
478 u32 inrate, outrate, offset = 0;
479 u32 in_s_rate, out_s_rate;
480 snd_pcm_format_t in_s_fmt, out_s_fmt;
481 int ret, i;
483 if (!easrc)
484 return -ENODEV;
486 dev = &easrc->pdev->dev;
488 if (ctx_id >= EASRC_CTX_MAX_NUM) {
489 dev_err(dev, "Invalid context id[%d]\n", ctx_id);
490 return -EINVAL;
493 easrc_priv = easrc->private;
495 ctx = easrc->pair[ctx_id];
496 ctx_priv = ctx->private;
498 in_s_rate = ctx_priv->in_params.sample_rate;
499 out_s_rate = ctx_priv->out_params.sample_rate;
500 in_s_fmt = ctx_priv->in_params.sample_format;
501 out_s_fmt = ctx_priv->out_params.sample_format;
503 ctx_priv->in_filled_sample = bits_taps_to_val(easrc_priv->rs_num_taps) / 2;
504 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
506 ctx_priv->st1_num_taps = 0;
507 ctx_priv->st2_num_taps = 0;
509 regmap_write(easrc->regmap, REG_EASRC_CCE1(ctx_id), 0);
510 regmap_write(easrc->regmap, REG_EASRC_CCE2(ctx_id), 0);
513 * The audio float point data range is (-1, 1), the asrc would output
514 * all zero for float point input and integer output case, that is to
515 * drop the fractional part of the data directly.
517 * In order to support float to int conversion or int to float
518 * conversion we need to do special operation on the coefficient to
519 * enlarge/reduce the data to the expected range.
521 * For float to int case:
522 * Up sampling:
523 * 1. Create a 1 tap filter with center tap (only tap) of 2^31
524 * in 64 bits floating point.
525 * double value = (double)(((uint64_t)1) << 31)
526 * 2. Program 1 tap prefilter with center tap above.
528 * Down sampling,
529 * 1. If the filter is single stage filter, add "shift" to the exponent
530 * of stage 1 coefficients.
531 * 2. If the filter is two stage filter , add "shift" to the exponent
532 * of stage 2 coefficients.
534 * The "shift" is 31, same for int16, int24, int32 case.
536 * For int to float case:
537 * Up sampling:
538 * 1. Create a 1 tap filter with center tap (only tap) of 2^-31
539 * in 64 bits floating point.
540 * 2. Program 1 tap prefilter with center tap above.
542 * Down sampling,
543 * 1. If the filter is single stage filter, subtract "shift" to the
544 * exponent of stage 1 coefficients.
545 * 2. If the filter is two stage filter , subtract "shift" to the
546 * exponent of stage 2 coefficients.
548 * The "shift" is 15,23,31, different for int16, int24, int32 case.
551 if (out_s_rate >= in_s_rate) {
552 if (out_s_rate == in_s_rate)
553 regmap_update_bits(easrc->regmap,
554 REG_EASRC_CCE1(ctx_id),
555 EASRC_CCE1_RS_BYPASS_MASK,
556 EASRC_CCE1_RS_BYPASS);
558 ctx_priv->st1_num_taps = 1;
559 ctx_priv->st1_coeff = &easrc_priv->const_coeff;
560 ctx_priv->st1_num_exp = 1;
561 ctx_priv->st2_num_taps = 0;
563 if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
564 out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE)
565 ctx_priv->st1_addexp = 31;
566 else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
567 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE)
568 ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
569 } else {
570 inrate = ctx_priv->in_params.norm_rate;
571 outrate = ctx_priv->out_params.norm_rate;
573 hdr = easrc_priv->firmware_hdr;
574 prefil = easrc_priv->prefil;
576 for (i = 0; i < hdr->prefil_scen; i++) {
577 if (inrate == prefil[i].insr &&
578 outrate == prefil[i].outsr) {
579 selected_prefil = &prefil[i];
580 dev_dbg(dev, "Selected prefilter: %u insr, %u outsr, %u st1_taps, %u st2_taps\n",
581 selected_prefil->insr,
582 selected_prefil->outsr,
583 selected_prefil->st1_taps,
584 selected_prefil->st2_taps);
585 break;
589 if (!selected_prefil) {
590 dev_err(dev, "Conversion from in ratio %u(%u) to out ratio %u(%u) is not supported\n",
591 in_s_rate, inrate,
592 out_s_rate, outrate);
593 return -EINVAL;
597 * In prefilter coeff array, first st1_num_taps represent the
598 * stage1 prefilter coefficients followed by next st2_num_taps
599 * representing stage 2 coefficients
601 ctx_priv->st1_num_taps = selected_prefil->st1_taps;
602 ctx_priv->st1_coeff = selected_prefil->coeff;
603 ctx_priv->st1_num_exp = selected_prefil->st1_exp;
605 offset = ((selected_prefil->st1_taps + 1) / 2);
606 ctx_priv->st2_num_taps = selected_prefil->st2_taps;
607 ctx_priv->st2_coeff = selected_prefil->coeff + offset;
609 if (in_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE &&
610 out_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE) {
611 /* only change stage2 coefficient for 2 stage case */
612 if (ctx_priv->st2_num_taps > 0)
613 ctx_priv->st2_addexp = 31;
614 else
615 ctx_priv->st1_addexp = 31;
616 } else if (in_s_fmt != SNDRV_PCM_FORMAT_FLOAT_LE &&
617 out_s_fmt == SNDRV_PCM_FORMAT_FLOAT_LE) {
618 if (ctx_priv->st2_num_taps > 0)
619 ctx_priv->st2_addexp -= ctx_priv->in_params.fmt.addexp;
620 else
621 ctx_priv->st1_addexp -= ctx_priv->in_params.fmt.addexp;
625 ctx_priv->in_filled_sample += (ctx_priv->st1_num_taps / 2) * ctx_priv->st1_num_exp +
626 ctx_priv->st2_num_taps / 2;
627 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample * out_s_rate / in_s_rate;
629 if (ctx_priv->in_filled_sample * out_s_rate % in_s_rate != 0)
630 ctx_priv->out_missed_sample += 1;
632 * To modify the value of a prefilter coefficient, the user must
633 * perform a write to the register ASRC_PRE_COEFF_FIFOn[COEFF_DATA]
634 * while the respective context RUN_EN bit is set to 0b0
636 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
637 EASRC_CC_EN_MASK, 0);
639 if (ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
640 dev_err(dev, "ST1 taps [%d] mus be lower than %d\n",
641 ctx_priv->st1_num_taps, EASRC_MAX_PF_TAPS);
642 ret = -EINVAL;
643 goto ctx_error;
646 /* Update ctx ST1_NUM_TAPS in Context Control Extended 2 register */
647 regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
648 EASRC_CCE2_ST1_TAPS_MASK,
649 EASRC_CCE2_ST1_TAPS(ctx_priv->st1_num_taps - 1));
651 /* Prefilter Coefficient Write Select to write in ST1 coeff */
652 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
653 EASRC_CCE1_COEF_WS_MASK,
654 EASRC_PF_ST1_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
656 ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
657 ctx_priv->st1_coeff,
658 ctx_priv->st1_num_taps,
659 ctx_priv->st1_addexp);
660 if (ret)
661 goto ctx_error;
663 if (ctx_priv->st2_num_taps > 0) {
664 if (ctx_priv->st2_num_taps + ctx_priv->st1_num_taps > EASRC_MAX_PF_TAPS) {
665 dev_err(dev, "ST2 taps [%d] mus be lower than %d\n",
666 ctx_priv->st2_num_taps, EASRC_MAX_PF_TAPS);
667 ret = -EINVAL;
668 goto ctx_error;
671 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
672 EASRC_CCE1_PF_TSEN_MASK,
673 EASRC_CCE1_PF_TSEN);
675 * Enable prefilter stage1 writeback floating point
676 * which is used for FLOAT_LE case
678 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
679 EASRC_CCE1_PF_ST1_WBFP_MASK,
680 EASRC_CCE1_PF_ST1_WBFP);
682 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
683 EASRC_CCE1_PF_EXP_MASK,
684 EASRC_CCE1_PF_EXP(ctx_priv->st1_num_exp - 1));
686 /* Update ctx ST2_NUM_TAPS in Context Control Extended 2 reg */
687 regmap_update_bits(easrc->regmap, REG_EASRC_CCE2(ctx_id),
688 EASRC_CCE2_ST2_TAPS_MASK,
689 EASRC_CCE2_ST2_TAPS(ctx_priv->st2_num_taps - 1));
691 /* Prefilter Coefficient Write Select to write in ST2 coeff */
692 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
693 EASRC_CCE1_COEF_WS_MASK,
694 EASRC_PF_ST2_COEFF_WR << EASRC_CCE1_COEF_WS_SHIFT);
696 ret = fsl_easrc_write_pf_coeff_mem(easrc, ctx_id,
697 ctx_priv->st2_coeff,
698 ctx_priv->st2_num_taps,
699 ctx_priv->st2_addexp);
700 if (ret)
701 goto ctx_error;
704 return 0;
706 ctx_error:
707 return ret;
710 static int fsl_easrc_max_ch_for_slot(struct fsl_asrc_pair *ctx,
711 struct fsl_easrc_slot *slot)
713 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
714 int st1_mem_alloc = 0, st2_mem_alloc = 0;
715 int pf_mem_alloc = 0;
716 int max_channels = 8 - slot->num_channel;
717 int channels = 0;
719 if (ctx_priv->st1_num_taps > 0) {
720 if (ctx_priv->st2_num_taps > 0)
721 st1_mem_alloc =
722 (ctx_priv->st1_num_taps - 1) * ctx_priv->st1_num_exp + 1;
723 else
724 st1_mem_alloc = ctx_priv->st1_num_taps;
727 if (ctx_priv->st2_num_taps > 0)
728 st2_mem_alloc = ctx_priv->st2_num_taps;
730 pf_mem_alloc = st1_mem_alloc + st2_mem_alloc;
732 if (pf_mem_alloc != 0)
733 channels = (6144 - slot->pf_mem_used) / pf_mem_alloc;
734 else
735 channels = 8;
737 if (channels < max_channels)
738 max_channels = channels;
740 return max_channels;
743 static int fsl_easrc_config_one_slot(struct fsl_asrc_pair *ctx,
744 struct fsl_easrc_slot *slot,
745 unsigned int slot_ctx_idx,
746 unsigned int *req_channels,
747 unsigned int *start_channel,
748 unsigned int *avail_channel)
750 struct fsl_asrc *easrc = ctx->asrc;
751 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
752 int st1_chanxexp, st1_mem_alloc = 0, st2_mem_alloc;
753 unsigned int reg0, reg1, reg2, reg3;
754 unsigned int addr;
756 if (slot->slot_index == 0) {
757 reg0 = REG_EASRC_DPCS0R0(slot_ctx_idx);
758 reg1 = REG_EASRC_DPCS0R1(slot_ctx_idx);
759 reg2 = REG_EASRC_DPCS0R2(slot_ctx_idx);
760 reg3 = REG_EASRC_DPCS0R3(slot_ctx_idx);
761 } else {
762 reg0 = REG_EASRC_DPCS1R0(slot_ctx_idx);
763 reg1 = REG_EASRC_DPCS1R1(slot_ctx_idx);
764 reg2 = REG_EASRC_DPCS1R2(slot_ctx_idx);
765 reg3 = REG_EASRC_DPCS1R3(slot_ctx_idx);
768 if (*req_channels <= *avail_channel) {
769 slot->num_channel = *req_channels;
770 *req_channels = 0;
771 } else {
772 slot->num_channel = *avail_channel;
773 *req_channels -= *avail_channel;
776 slot->min_channel = *start_channel;
777 slot->max_channel = *start_channel + slot->num_channel - 1;
778 slot->ctx_index = ctx->index;
779 slot->busy = true;
780 *start_channel += slot->num_channel;
782 regmap_update_bits(easrc->regmap, reg0,
783 EASRC_DPCS0R0_MAXCH_MASK,
784 EASRC_DPCS0R0_MAXCH(slot->max_channel));
786 regmap_update_bits(easrc->regmap, reg0,
787 EASRC_DPCS0R0_MINCH_MASK,
788 EASRC_DPCS0R0_MINCH(slot->min_channel));
790 regmap_update_bits(easrc->regmap, reg0,
791 EASRC_DPCS0R0_NUMCH_MASK,
792 EASRC_DPCS0R0_NUMCH(slot->num_channel - 1));
794 regmap_update_bits(easrc->regmap, reg0,
795 EASRC_DPCS0R0_CTXNUM_MASK,
796 EASRC_DPCS0R0_CTXNUM(slot->ctx_index));
798 if (ctx_priv->st1_num_taps > 0) {
799 if (ctx_priv->st2_num_taps > 0)
800 st1_mem_alloc =
801 (ctx_priv->st1_num_taps - 1) * slot->num_channel *
802 ctx_priv->st1_num_exp + slot->num_channel;
803 else
804 st1_mem_alloc = ctx_priv->st1_num_taps * slot->num_channel;
806 slot->pf_mem_used = st1_mem_alloc;
807 regmap_update_bits(easrc->regmap, reg2,
808 EASRC_DPCS0R2_ST1_MA_MASK,
809 EASRC_DPCS0R2_ST1_MA(st1_mem_alloc));
811 if (slot->slot_index == 1)
812 addr = PREFILTER_MEM_LEN - st1_mem_alloc;
813 else
814 addr = 0;
816 regmap_update_bits(easrc->regmap, reg2,
817 EASRC_DPCS0R2_ST1_SA_MASK,
818 EASRC_DPCS0R2_ST1_SA(addr));
821 if (ctx_priv->st2_num_taps > 0) {
822 st1_chanxexp = slot->num_channel * (ctx_priv->st1_num_exp - 1);
824 regmap_update_bits(easrc->regmap, reg1,
825 EASRC_DPCS0R1_ST1_EXP_MASK,
826 EASRC_DPCS0R1_ST1_EXP(st1_chanxexp));
828 st2_mem_alloc = slot->num_channel * ctx_priv->st2_num_taps;
829 slot->pf_mem_used += st2_mem_alloc;
830 regmap_update_bits(easrc->regmap, reg3,
831 EASRC_DPCS0R3_ST2_MA_MASK,
832 EASRC_DPCS0R3_ST2_MA(st2_mem_alloc));
834 if (slot->slot_index == 1)
835 addr = PREFILTER_MEM_LEN - st1_mem_alloc - st2_mem_alloc;
836 else
837 addr = st1_mem_alloc;
839 regmap_update_bits(easrc->regmap, reg3,
840 EASRC_DPCS0R3_ST2_SA_MASK,
841 EASRC_DPCS0R3_ST2_SA(addr));
844 regmap_update_bits(easrc->regmap, reg0,
845 EASRC_DPCS0R0_EN_MASK, EASRC_DPCS0R0_EN);
847 return 0;
851 * fsl_easrc_config_slot
853 * A single context can be split amongst any of the 4 context processing pipes
854 * in the design.
855 * The total number of channels consumed within the context processor must be
856 * less than or equal to 8. if a single context is configured to contain more
857 * than 8 channels then it must be distributed across multiple context
858 * processing pipe slots.
861 static int fsl_easrc_config_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
863 struct fsl_easrc_priv *easrc_priv = easrc->private;
864 struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
865 int req_channels = ctx->channels;
866 int start_channel = 0, avail_channel;
867 struct fsl_easrc_slot *slot0, *slot1;
868 struct fsl_easrc_slot *slota, *slotb;
869 int i, ret;
871 if (req_channels <= 0)
872 return -EINVAL;
874 for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
875 slot0 = &easrc_priv->slot[i][0];
876 slot1 = &easrc_priv->slot[i][1];
878 if (slot0->busy && slot1->busy) {
879 continue;
880 } else if ((slot0->busy && slot0->ctx_index == ctx->index) ||
881 (slot1->busy && slot1->ctx_index == ctx->index)) {
882 continue;
883 } else if (!slot0->busy) {
884 slota = slot0;
885 slotb = slot1;
886 slota->slot_index = 0;
887 } else if (!slot1->busy) {
888 slota = slot1;
889 slotb = slot0;
890 slota->slot_index = 1;
893 if (!slota || !slotb)
894 continue;
896 avail_channel = fsl_easrc_max_ch_for_slot(ctx, slotb);
897 if (avail_channel <= 0)
898 continue;
900 ret = fsl_easrc_config_one_slot(ctx, slota, i, &req_channels,
901 &start_channel, &avail_channel);
902 if (ret)
903 return ret;
905 if (req_channels > 0)
906 continue;
907 else
908 break;
911 if (req_channels > 0) {
912 dev_err(&easrc->pdev->dev, "no avail slot.\n");
913 return -EINVAL;
916 return 0;
920 * fsl_easrc_release_slot
922 * Clear the slot configuration
924 static int fsl_easrc_release_slot(struct fsl_asrc *easrc, unsigned int ctx_id)
926 struct fsl_easrc_priv *easrc_priv = easrc->private;
927 struct fsl_asrc_pair *ctx = easrc->pair[ctx_id];
928 int i;
930 for (i = 0; i < EASRC_CTX_MAX_NUM; i++) {
931 if (easrc_priv->slot[i][0].busy &&
932 easrc_priv->slot[i][0].ctx_index == ctx->index) {
933 easrc_priv->slot[i][0].busy = false;
934 easrc_priv->slot[i][0].num_channel = 0;
935 easrc_priv->slot[i][0].pf_mem_used = 0;
936 /* set registers */
937 regmap_write(easrc->regmap, REG_EASRC_DPCS0R0(i), 0);
938 regmap_write(easrc->regmap, REG_EASRC_DPCS0R1(i), 0);
939 regmap_write(easrc->regmap, REG_EASRC_DPCS0R2(i), 0);
940 regmap_write(easrc->regmap, REG_EASRC_DPCS0R3(i), 0);
943 if (easrc_priv->slot[i][1].busy &&
944 easrc_priv->slot[i][1].ctx_index == ctx->index) {
945 easrc_priv->slot[i][1].busy = false;
946 easrc_priv->slot[i][1].num_channel = 0;
947 easrc_priv->slot[i][1].pf_mem_used = 0;
948 /* set registers */
949 regmap_write(easrc->regmap, REG_EASRC_DPCS1R0(i), 0);
950 regmap_write(easrc->regmap, REG_EASRC_DPCS1R1(i), 0);
951 regmap_write(easrc->regmap, REG_EASRC_DPCS1R2(i), 0);
952 regmap_write(easrc->regmap, REG_EASRC_DPCS1R3(i), 0);
956 return 0;
960 * fsl_easrc_config_context
962 * Configure the register relate with context.
964 static int fsl_easrc_config_context(struct fsl_asrc *easrc, unsigned int ctx_id)
966 struct fsl_easrc_ctx_priv *ctx_priv;
967 struct fsl_asrc_pair *ctx;
968 struct device *dev;
969 unsigned long lock_flags;
970 int ret;
972 if (!easrc)
973 return -ENODEV;
975 dev = &easrc->pdev->dev;
977 if (ctx_id >= EASRC_CTX_MAX_NUM) {
978 dev_err(dev, "Invalid context id[%d]\n", ctx_id);
979 return -EINVAL;
982 ctx = easrc->pair[ctx_id];
984 ctx_priv = ctx->private;
986 fsl_easrc_normalize_rates(ctx);
988 ret = fsl_easrc_set_rs_ratio(ctx);
989 if (ret)
990 return ret;
992 /* Initialize the context coeficients */
993 ret = fsl_easrc_prefilter_config(easrc, ctx->index);
994 if (ret)
995 return ret;
997 spin_lock_irqsave(&easrc->lock, lock_flags);
998 ret = fsl_easrc_config_slot(easrc, ctx->index);
999 spin_unlock_irqrestore(&easrc->lock, lock_flags);
1000 if (ret)
1001 return ret;
1004 * Both prefilter and resampling filters can use following
1005 * initialization modes:
1006 * 2 - zero-fil mode
1007 * 1 - replication mode
1008 * 0 - software control
1010 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1011 EASRC_CCE1_RS_INIT_MASK,
1012 EASRC_CCE1_RS_INIT(ctx_priv->rs_init_mode));
1014 regmap_update_bits(easrc->regmap, REG_EASRC_CCE1(ctx_id),
1015 EASRC_CCE1_PF_INIT_MASK,
1016 EASRC_CCE1_PF_INIT(ctx_priv->pf_init_mode));
1019 * Context Input FIFO Watermark
1020 * DMA request is generated when input FIFO < FIFO_WTMK
1022 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1023 EASRC_CC_FIFO_WTMK_MASK,
1024 EASRC_CC_FIFO_WTMK(ctx_priv->in_params.fifo_wtmk));
1027 * Context Output FIFO Watermark
1028 * DMA request is generated when output FIFO > FIFO_WTMK
1029 * So we set fifo_wtmk -1 to register.
1031 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx_id),
1032 EASRC_COC_FIFO_WTMK_MASK,
1033 EASRC_COC_FIFO_WTMK(ctx_priv->out_params.fifo_wtmk - 1));
1035 /* Number of channels */
1036 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx_id),
1037 EASRC_CC_CHEN_MASK,
1038 EASRC_CC_CHEN(ctx->channels - 1));
1039 return 0;
1042 static int fsl_easrc_process_format(struct fsl_asrc_pair *ctx,
1043 struct fsl_easrc_data_fmt *fmt,
1044 snd_pcm_format_t raw_fmt)
1046 struct fsl_asrc *easrc = ctx->asrc;
1047 struct fsl_easrc_priv *easrc_priv = easrc->private;
1048 int ret;
1050 if (!fmt)
1051 return -EINVAL;
1054 * Context Input Floating Point Format
1055 * 0 - Integer Format
1056 * 1 - Single Precision FP Format
1058 fmt->floating_point = !snd_pcm_format_linear(raw_fmt);
1059 fmt->sample_pos = 0;
1060 fmt->iec958 = 0;
1062 /* Get the data width */
1063 switch (snd_pcm_format_width(raw_fmt)) {
1064 case 16:
1065 fmt->width = EASRC_WIDTH_16_BIT;
1066 fmt->addexp = 15;
1067 break;
1068 case 20:
1069 fmt->width = EASRC_WIDTH_20_BIT;
1070 fmt->addexp = 19;
1071 break;
1072 case 24:
1073 fmt->width = EASRC_WIDTH_24_BIT;
1074 fmt->addexp = 23;
1075 break;
1076 case 32:
1077 fmt->width = EASRC_WIDTH_32_BIT;
1078 fmt->addexp = 31;
1079 break;
1080 default:
1081 return -EINVAL;
1084 switch (raw_fmt) {
1085 case SNDRV_PCM_FORMAT_IEC958_SUBFRAME_LE:
1086 fmt->width = easrc_priv->bps_iec958[ctx->index];
1087 fmt->iec958 = 1;
1088 fmt->floating_point = 0;
1089 if (fmt->width == EASRC_WIDTH_16_BIT) {
1090 fmt->sample_pos = 12;
1091 fmt->addexp = 15;
1092 } else if (fmt->width == EASRC_WIDTH_20_BIT) {
1093 fmt->sample_pos = 8;
1094 fmt->addexp = 19;
1095 } else if (fmt->width == EASRC_WIDTH_24_BIT) {
1096 fmt->sample_pos = 4;
1097 fmt->addexp = 23;
1099 break;
1100 default:
1101 break;
1105 * Data Endianness
1106 * 0 - Little-Endian
1107 * 1 - Big-Endian
1109 ret = snd_pcm_format_big_endian(raw_fmt);
1110 if (ret < 0)
1111 return ret;
1113 fmt->endianness = ret;
1116 * Input Data sign
1117 * 0b - Signed Format
1118 * 1b - Unsigned Format
1120 fmt->unsign = snd_pcm_format_unsigned(raw_fmt) > 0 ? 1 : 0;
1122 return 0;
1125 static int fsl_easrc_set_ctx_format(struct fsl_asrc_pair *ctx,
1126 snd_pcm_format_t *in_raw_format,
1127 snd_pcm_format_t *out_raw_format)
1129 struct fsl_asrc *easrc = ctx->asrc;
1130 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1131 struct fsl_easrc_data_fmt *in_fmt = &ctx_priv->in_params.fmt;
1132 struct fsl_easrc_data_fmt *out_fmt = &ctx_priv->out_params.fmt;
1133 int ret = 0;
1135 /* Get the bitfield values for input data format */
1136 if (in_raw_format && out_raw_format) {
1137 ret = fsl_easrc_process_format(ctx, in_fmt, *in_raw_format);
1138 if (ret)
1139 return ret;
1142 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1143 EASRC_CC_BPS_MASK,
1144 EASRC_CC_BPS(in_fmt->width));
1145 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1146 EASRC_CC_ENDIANNESS_MASK,
1147 in_fmt->endianness << EASRC_CC_ENDIANNESS_SHIFT);
1148 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1149 EASRC_CC_FMT_MASK,
1150 in_fmt->floating_point << EASRC_CC_FMT_SHIFT);
1151 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1152 EASRC_CC_INSIGN_MASK,
1153 in_fmt->unsign << EASRC_CC_INSIGN_SHIFT);
1155 /* In Sample Position */
1156 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1157 EASRC_CC_SAMPLE_POS_MASK,
1158 EASRC_CC_SAMPLE_POS(in_fmt->sample_pos));
1160 /* Get the bitfield values for input data format */
1161 if (in_raw_format && out_raw_format) {
1162 ret = fsl_easrc_process_format(ctx, out_fmt, *out_raw_format);
1163 if (ret)
1164 return ret;
1167 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1168 EASRC_COC_BPS_MASK,
1169 EASRC_COC_BPS(out_fmt->width));
1170 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1171 EASRC_COC_ENDIANNESS_MASK,
1172 out_fmt->endianness << EASRC_COC_ENDIANNESS_SHIFT);
1173 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1174 EASRC_COC_FMT_MASK,
1175 out_fmt->floating_point << EASRC_COC_FMT_SHIFT);
1176 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1177 EASRC_COC_OUTSIGN_MASK,
1178 out_fmt->unsign << EASRC_COC_OUTSIGN_SHIFT);
1180 /* Out Sample Position */
1181 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1182 EASRC_COC_SAMPLE_POS_MASK,
1183 EASRC_COC_SAMPLE_POS(out_fmt->sample_pos));
1185 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1186 EASRC_COC_IEC_EN_MASK,
1187 out_fmt->iec958 << EASRC_COC_IEC_EN_SHIFT);
1189 return ret;
1193 * The ASRC provides interleaving support in hardware to ensure that a
1194 * variety of sample sources can be internally combined
1195 * to conform with this format. Interleaving parameters are accessed
1196 * through the ASRC_CTRL_IN_ACCESSa and ASRC_CTRL_OUT_ACCESSa registers
1198 static int fsl_easrc_set_ctx_organziation(struct fsl_asrc_pair *ctx)
1200 struct fsl_easrc_ctx_priv *ctx_priv;
1201 struct fsl_asrc *easrc;
1203 if (!ctx)
1204 return -ENODEV;
1206 easrc = ctx->asrc;
1207 ctx_priv = ctx->private;
1209 /* input interleaving parameters */
1210 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1211 EASRC_CIA_ITER_MASK,
1212 EASRC_CIA_ITER(ctx_priv->in_params.iterations));
1213 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1214 EASRC_CIA_GRLEN_MASK,
1215 EASRC_CIA_GRLEN(ctx_priv->in_params.group_len));
1216 regmap_update_bits(easrc->regmap, REG_EASRC_CIA(ctx->index),
1217 EASRC_CIA_ACCLEN_MASK,
1218 EASRC_CIA_ACCLEN(ctx_priv->in_params.access_len));
1220 /* output interleaving parameters */
1221 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1222 EASRC_COA_ITER_MASK,
1223 EASRC_COA_ITER(ctx_priv->out_params.iterations));
1224 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1225 EASRC_COA_GRLEN_MASK,
1226 EASRC_COA_GRLEN(ctx_priv->out_params.group_len));
1227 regmap_update_bits(easrc->regmap, REG_EASRC_COA(ctx->index),
1228 EASRC_COA_ACCLEN_MASK,
1229 EASRC_COA_ACCLEN(ctx_priv->out_params.access_len));
1231 return 0;
1235 * Request one of the available contexts
1237 * Returns a negative number on error and >=0 as context id
1238 * on success
1240 static int fsl_easrc_request_context(int channels, struct fsl_asrc_pair *ctx)
1242 enum asrc_pair_index index = ASRC_INVALID_PAIR;
1243 struct fsl_asrc *easrc = ctx->asrc;
1244 struct device *dev;
1245 unsigned long lock_flags;
1246 int ret = 0;
1247 int i;
1249 dev = &easrc->pdev->dev;
1251 spin_lock_irqsave(&easrc->lock, lock_flags);
1253 for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
1254 if (easrc->pair[i])
1255 continue;
1257 index = i;
1258 break;
1261 if (index == ASRC_INVALID_PAIR) {
1262 dev_err(dev, "all contexts are busy\n");
1263 ret = -EBUSY;
1264 } else if (channels > easrc->channel_avail) {
1265 dev_err(dev, "can't give the required channels: %d\n",
1266 channels);
1267 ret = -EINVAL;
1268 } else {
1269 ctx->index = index;
1270 ctx->channels = channels;
1271 easrc->pair[index] = ctx;
1272 easrc->channel_avail -= channels;
1275 spin_unlock_irqrestore(&easrc->lock, lock_flags);
1277 return ret;
1281 * Release the context
1283 * This funciton is mainly doing the revert thing in request context
1285 static void fsl_easrc_release_context(struct fsl_asrc_pair *ctx)
1287 unsigned long lock_flags;
1288 struct fsl_asrc *easrc;
1290 if (!ctx)
1291 return;
1293 easrc = ctx->asrc;
1295 spin_lock_irqsave(&easrc->lock, lock_flags);
1297 fsl_easrc_release_slot(easrc, ctx->index);
1299 easrc->channel_avail += ctx->channels;
1300 easrc->pair[ctx->index] = NULL;
1302 spin_unlock_irqrestore(&easrc->lock, lock_flags);
1306 * Start the context
1308 * Enable the DMA request and context
1310 static int fsl_easrc_start_context(struct fsl_asrc_pair *ctx)
1312 struct fsl_asrc *easrc = ctx->asrc;
1314 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1315 EASRC_CC_FWMDE_MASK, EASRC_CC_FWMDE);
1316 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1317 EASRC_COC_FWMDE_MASK, EASRC_COC_FWMDE);
1318 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1319 EASRC_CC_EN_MASK, EASRC_CC_EN);
1320 return 0;
1324 * Stop the context
1326 * Disable the DMA request and context
1328 static int fsl_easrc_stop_context(struct fsl_asrc_pair *ctx)
1330 struct fsl_asrc *easrc = ctx->asrc;
1331 int val, i;
1332 int size;
1333 int retry = 200;
1335 regmap_read(easrc->regmap, REG_EASRC_CC(ctx->index), &val);
1337 if (val & EASRC_CC_EN_MASK) {
1338 regmap_update_bits(easrc->regmap,
1339 REG_EASRC_CC(ctx->index),
1340 EASRC_CC_STOP_MASK, EASRC_CC_STOP);
1341 do {
1342 regmap_read(easrc->regmap, REG_EASRC_SFS(ctx->index), &val);
1343 val &= EASRC_SFS_NSGO_MASK;
1344 size = val >> EASRC_SFS_NSGO_SHIFT;
1346 /* Read FIFO, drop the data */
1347 for (i = 0; i < size * ctx->channels; i++)
1348 regmap_read(easrc->regmap, REG_EASRC_RDFIFO(ctx->index), &val);
1349 /* Check RUN_STOP_DONE */
1350 regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1351 if (val & EASRC_IRQF_RSD(1 << ctx->index)) {
1352 /*Clear RUN_STOP_DONE*/
1353 regmap_write_bits(easrc->regmap,
1354 REG_EASRC_IRQF,
1355 EASRC_IRQF_RSD(1 << ctx->index),
1356 EASRC_IRQF_RSD(1 << ctx->index));
1357 break;
1359 udelay(100);
1360 } while (--retry);
1362 if (retry == 0)
1363 dev_warn(&easrc->pdev->dev, "RUN STOP fail\n");
1366 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1367 EASRC_CC_EN_MASK | EASRC_CC_STOP_MASK, 0);
1368 regmap_update_bits(easrc->regmap, REG_EASRC_CC(ctx->index),
1369 EASRC_CC_FWMDE_MASK, 0);
1370 regmap_update_bits(easrc->regmap, REG_EASRC_COC(ctx->index),
1371 EASRC_COC_FWMDE_MASK, 0);
1372 return 0;
1375 static struct dma_chan *fsl_easrc_get_dma_channel(struct fsl_asrc_pair *ctx,
1376 bool dir)
1378 struct fsl_asrc *easrc = ctx->asrc;
1379 enum asrc_pair_index index = ctx->index;
1380 char name[8];
1382 /* Example of dma name: ctx0_rx */
1383 sprintf(name, "ctx%c_%cx", index + '0', dir == IN ? 'r' : 't');
1385 return dma_request_slave_channel(&easrc->pdev->dev, name);
1388 static const unsigned int easrc_rates[] = {
1389 8000, 11025, 12000, 16000,
1390 22050, 24000, 32000, 44100,
1391 48000, 64000, 88200, 96000,
1392 128000, 176400, 192000, 256000,
1393 352800, 384000, 705600, 768000,
1396 static const struct snd_pcm_hw_constraint_list easrc_rate_constraints = {
1397 .count = ARRAY_SIZE(easrc_rates),
1398 .list = easrc_rates,
1401 static int fsl_easrc_startup(struct snd_pcm_substream *substream,
1402 struct snd_soc_dai *dai)
1404 return snd_pcm_hw_constraint_list(substream->runtime, 0,
1405 SNDRV_PCM_HW_PARAM_RATE,
1406 &easrc_rate_constraints);
1409 static int fsl_easrc_trigger(struct snd_pcm_substream *substream,
1410 int cmd, struct snd_soc_dai *dai)
1412 struct snd_pcm_runtime *runtime = substream->runtime;
1413 struct fsl_asrc_pair *ctx = runtime->private_data;
1414 int ret;
1416 switch (cmd) {
1417 case SNDRV_PCM_TRIGGER_START:
1418 case SNDRV_PCM_TRIGGER_RESUME:
1419 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1420 ret = fsl_easrc_start_context(ctx);
1421 if (ret)
1422 return ret;
1423 break;
1424 case SNDRV_PCM_TRIGGER_STOP:
1425 case SNDRV_PCM_TRIGGER_SUSPEND:
1426 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1427 ret = fsl_easrc_stop_context(ctx);
1428 if (ret)
1429 return ret;
1430 break;
1431 default:
1432 return -EINVAL;
1435 return 0;
1438 static int fsl_easrc_hw_params(struct snd_pcm_substream *substream,
1439 struct snd_pcm_hw_params *params,
1440 struct snd_soc_dai *dai)
1442 struct fsl_asrc *easrc = snd_soc_dai_get_drvdata(dai);
1443 struct snd_pcm_runtime *runtime = substream->runtime;
1444 struct device *dev = &easrc->pdev->dev;
1445 struct fsl_asrc_pair *ctx = runtime->private_data;
1446 struct fsl_easrc_ctx_priv *ctx_priv = ctx->private;
1447 unsigned int channels = params_channels(params);
1448 unsigned int rate = params_rate(params);
1449 snd_pcm_format_t format = params_format(params);
1450 int ret;
1452 ret = fsl_easrc_request_context(channels, ctx);
1453 if (ret) {
1454 dev_err(dev, "failed to request context\n");
1455 return ret;
1458 ctx_priv->ctx_streams |= BIT(substream->stream);
1461 * Set the input and output ratio so we can compute
1462 * the resampling ratio in RS_LOW/HIGH
1464 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
1465 ctx_priv->in_params.sample_rate = rate;
1466 ctx_priv->in_params.sample_format = format;
1467 ctx_priv->out_params.sample_rate = easrc->asrc_rate;
1468 ctx_priv->out_params.sample_format = easrc->asrc_format;
1469 } else {
1470 ctx_priv->out_params.sample_rate = rate;
1471 ctx_priv->out_params.sample_format = format;
1472 ctx_priv->in_params.sample_rate = easrc->asrc_rate;
1473 ctx_priv->in_params.sample_format = easrc->asrc_format;
1476 ctx->channels = channels;
1477 ctx_priv->in_params.fifo_wtmk = 0x20;
1478 ctx_priv->out_params.fifo_wtmk = 0x20;
1481 * Do only rate conversion and keep the same format for input
1482 * and output data
1484 ret = fsl_easrc_set_ctx_format(ctx,
1485 &ctx_priv->in_params.sample_format,
1486 &ctx_priv->out_params.sample_format);
1487 if (ret) {
1488 dev_err(dev, "failed to set format %d", ret);
1489 return ret;
1492 ret = fsl_easrc_config_context(easrc, ctx->index);
1493 if (ret) {
1494 dev_err(dev, "failed to config context\n");
1495 return ret;
1498 ctx_priv->in_params.iterations = 1;
1499 ctx_priv->in_params.group_len = ctx->channels;
1500 ctx_priv->in_params.access_len = ctx->channels;
1501 ctx_priv->out_params.iterations = 1;
1502 ctx_priv->out_params.group_len = ctx->channels;
1503 ctx_priv->out_params.access_len = ctx->channels;
1505 ret = fsl_easrc_set_ctx_organziation(ctx);
1506 if (ret) {
1507 dev_err(dev, "failed to set fifo organization\n");
1508 return ret;
1511 return 0;
1514 static int fsl_easrc_hw_free(struct snd_pcm_substream *substream,
1515 struct snd_soc_dai *dai)
1517 struct snd_pcm_runtime *runtime = substream->runtime;
1518 struct fsl_asrc_pair *ctx = runtime->private_data;
1519 struct fsl_easrc_ctx_priv *ctx_priv;
1521 if (!ctx)
1522 return -EINVAL;
1524 ctx_priv = ctx->private;
1526 if (ctx_priv->ctx_streams & BIT(substream->stream)) {
1527 ctx_priv->ctx_streams &= ~BIT(substream->stream);
1528 fsl_easrc_release_context(ctx);
1531 return 0;
1534 static int fsl_easrc_dai_probe(struct snd_soc_dai *cpu_dai)
1536 struct fsl_asrc *easrc = dev_get_drvdata(cpu_dai->dev);
1538 snd_soc_dai_init_dma_data(cpu_dai,
1539 &easrc->dma_params_tx,
1540 &easrc->dma_params_rx);
1541 return 0;
1544 static const struct snd_soc_dai_ops fsl_easrc_dai_ops = {
1545 .probe = fsl_easrc_dai_probe,
1546 .startup = fsl_easrc_startup,
1547 .trigger = fsl_easrc_trigger,
1548 .hw_params = fsl_easrc_hw_params,
1549 .hw_free = fsl_easrc_hw_free,
1552 static struct snd_soc_dai_driver fsl_easrc_dai = {
1553 .playback = {
1554 .stream_name = "ASRC-Playback",
1555 .channels_min = 1,
1556 .channels_max = 32,
1557 .rate_min = 8000,
1558 .rate_max = 768000,
1559 .rates = SNDRV_PCM_RATE_KNOT,
1560 .formats = FSL_EASRC_FORMATS,
1562 .capture = {
1563 .stream_name = "ASRC-Capture",
1564 .channels_min = 1,
1565 .channels_max = 32,
1566 .rate_min = 8000,
1567 .rate_max = 768000,
1568 .rates = SNDRV_PCM_RATE_KNOT,
1569 .formats = FSL_EASRC_FORMATS |
1570 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1572 .ops = &fsl_easrc_dai_ops,
1575 static const struct snd_soc_component_driver fsl_easrc_component = {
1576 .name = "fsl-easrc-dai",
1577 .controls = fsl_easrc_snd_controls,
1578 .num_controls = ARRAY_SIZE(fsl_easrc_snd_controls),
1579 .legacy_dai_naming = 1,
1582 static const struct reg_default fsl_easrc_reg_defaults[] = {
1583 {REG_EASRC_WRFIFO(0), 0x00000000},
1584 {REG_EASRC_WRFIFO(1), 0x00000000},
1585 {REG_EASRC_WRFIFO(2), 0x00000000},
1586 {REG_EASRC_WRFIFO(3), 0x00000000},
1587 {REG_EASRC_RDFIFO(0), 0x00000000},
1588 {REG_EASRC_RDFIFO(1), 0x00000000},
1589 {REG_EASRC_RDFIFO(2), 0x00000000},
1590 {REG_EASRC_RDFIFO(3), 0x00000000},
1591 {REG_EASRC_CC(0), 0x00000000},
1592 {REG_EASRC_CC(1), 0x00000000},
1593 {REG_EASRC_CC(2), 0x00000000},
1594 {REG_EASRC_CC(3), 0x00000000},
1595 {REG_EASRC_CCE1(0), 0x00000000},
1596 {REG_EASRC_CCE1(1), 0x00000000},
1597 {REG_EASRC_CCE1(2), 0x00000000},
1598 {REG_EASRC_CCE1(3), 0x00000000},
1599 {REG_EASRC_CCE2(0), 0x00000000},
1600 {REG_EASRC_CCE2(1), 0x00000000},
1601 {REG_EASRC_CCE2(2), 0x00000000},
1602 {REG_EASRC_CCE2(3), 0x00000000},
1603 {REG_EASRC_CIA(0), 0x00000000},
1604 {REG_EASRC_CIA(1), 0x00000000},
1605 {REG_EASRC_CIA(2), 0x00000000},
1606 {REG_EASRC_CIA(3), 0x00000000},
1607 {REG_EASRC_DPCS0R0(0), 0x00000000},
1608 {REG_EASRC_DPCS0R0(1), 0x00000000},
1609 {REG_EASRC_DPCS0R0(2), 0x00000000},
1610 {REG_EASRC_DPCS0R0(3), 0x00000000},
1611 {REG_EASRC_DPCS0R1(0), 0x00000000},
1612 {REG_EASRC_DPCS0R1(1), 0x00000000},
1613 {REG_EASRC_DPCS0R1(2), 0x00000000},
1614 {REG_EASRC_DPCS0R1(3), 0x00000000},
1615 {REG_EASRC_DPCS0R2(0), 0x00000000},
1616 {REG_EASRC_DPCS0R2(1), 0x00000000},
1617 {REG_EASRC_DPCS0R2(2), 0x00000000},
1618 {REG_EASRC_DPCS0R2(3), 0x00000000},
1619 {REG_EASRC_DPCS0R3(0), 0x00000000},
1620 {REG_EASRC_DPCS0R3(1), 0x00000000},
1621 {REG_EASRC_DPCS0R3(2), 0x00000000},
1622 {REG_EASRC_DPCS0R3(3), 0x00000000},
1623 {REG_EASRC_DPCS1R0(0), 0x00000000},
1624 {REG_EASRC_DPCS1R0(1), 0x00000000},
1625 {REG_EASRC_DPCS1R0(2), 0x00000000},
1626 {REG_EASRC_DPCS1R0(3), 0x00000000},
1627 {REG_EASRC_DPCS1R1(0), 0x00000000},
1628 {REG_EASRC_DPCS1R1(1), 0x00000000},
1629 {REG_EASRC_DPCS1R1(2), 0x00000000},
1630 {REG_EASRC_DPCS1R1(3), 0x00000000},
1631 {REG_EASRC_DPCS1R2(0), 0x00000000},
1632 {REG_EASRC_DPCS1R2(1), 0x00000000},
1633 {REG_EASRC_DPCS1R2(2), 0x00000000},
1634 {REG_EASRC_DPCS1R2(3), 0x00000000},
1635 {REG_EASRC_DPCS1R3(0), 0x00000000},
1636 {REG_EASRC_DPCS1R3(1), 0x00000000},
1637 {REG_EASRC_DPCS1R3(2), 0x00000000},
1638 {REG_EASRC_DPCS1R3(3), 0x00000000},
1639 {REG_EASRC_COC(0), 0x00000000},
1640 {REG_EASRC_COC(1), 0x00000000},
1641 {REG_EASRC_COC(2), 0x00000000},
1642 {REG_EASRC_COC(3), 0x00000000},
1643 {REG_EASRC_COA(0), 0x00000000},
1644 {REG_EASRC_COA(1), 0x00000000},
1645 {REG_EASRC_COA(2), 0x00000000},
1646 {REG_EASRC_COA(3), 0x00000000},
1647 {REG_EASRC_SFS(0), 0x00000000},
1648 {REG_EASRC_SFS(1), 0x00000000},
1649 {REG_EASRC_SFS(2), 0x00000000},
1650 {REG_EASRC_SFS(3), 0x00000000},
1651 {REG_EASRC_RRL(0), 0x00000000},
1652 {REG_EASRC_RRL(1), 0x00000000},
1653 {REG_EASRC_RRL(2), 0x00000000},
1654 {REG_EASRC_RRL(3), 0x00000000},
1655 {REG_EASRC_RRH(0), 0x00000000},
1656 {REG_EASRC_RRH(1), 0x00000000},
1657 {REG_EASRC_RRH(2), 0x00000000},
1658 {REG_EASRC_RRH(3), 0x00000000},
1659 {REG_EASRC_RUC(0), 0x00000000},
1660 {REG_EASRC_RUC(1), 0x00000000},
1661 {REG_EASRC_RUC(2), 0x00000000},
1662 {REG_EASRC_RUC(3), 0x00000000},
1663 {REG_EASRC_RUR(0), 0x7FFFFFFF},
1664 {REG_EASRC_RUR(1), 0x7FFFFFFF},
1665 {REG_EASRC_RUR(2), 0x7FFFFFFF},
1666 {REG_EASRC_RUR(3), 0x7FFFFFFF},
1667 {REG_EASRC_RCTCL, 0x00000000},
1668 {REG_EASRC_RCTCH, 0x00000000},
1669 {REG_EASRC_PCF(0), 0x00000000},
1670 {REG_EASRC_PCF(1), 0x00000000},
1671 {REG_EASRC_PCF(2), 0x00000000},
1672 {REG_EASRC_PCF(3), 0x00000000},
1673 {REG_EASRC_CRCM, 0x00000000},
1674 {REG_EASRC_CRCC, 0x00000000},
1675 {REG_EASRC_IRQC, 0x00000FFF},
1676 {REG_EASRC_IRQF, 0x00000000},
1677 {REG_EASRC_CS0(0), 0x00000000},
1678 {REG_EASRC_CS0(1), 0x00000000},
1679 {REG_EASRC_CS0(2), 0x00000000},
1680 {REG_EASRC_CS0(3), 0x00000000},
1681 {REG_EASRC_CS1(0), 0x00000000},
1682 {REG_EASRC_CS1(1), 0x00000000},
1683 {REG_EASRC_CS1(2), 0x00000000},
1684 {REG_EASRC_CS1(3), 0x00000000},
1685 {REG_EASRC_CS2(0), 0x00000000},
1686 {REG_EASRC_CS2(1), 0x00000000},
1687 {REG_EASRC_CS2(2), 0x00000000},
1688 {REG_EASRC_CS2(3), 0x00000000},
1689 {REG_EASRC_CS3(0), 0x00000000},
1690 {REG_EASRC_CS3(1), 0x00000000},
1691 {REG_EASRC_CS3(2), 0x00000000},
1692 {REG_EASRC_CS3(3), 0x00000000},
1693 {REG_EASRC_CS4(0), 0x00000000},
1694 {REG_EASRC_CS4(1), 0x00000000},
1695 {REG_EASRC_CS4(2), 0x00000000},
1696 {REG_EASRC_CS4(3), 0x00000000},
1697 {REG_EASRC_CS5(0), 0x00000000},
1698 {REG_EASRC_CS5(1), 0x00000000},
1699 {REG_EASRC_CS5(2), 0x00000000},
1700 {REG_EASRC_CS5(3), 0x00000000},
1701 {REG_EASRC_DBGC, 0x00000000},
1702 {REG_EASRC_DBGS, 0x00000000},
1705 static const struct regmap_range fsl_easrc_readable_ranges[] = {
1706 regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RCTCH),
1707 regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_PCF(3)),
1708 regmap_reg_range(REG_EASRC_CRCC, REG_EASRC_DBGS),
1711 static const struct regmap_access_table fsl_easrc_readable_table = {
1712 .yes_ranges = fsl_easrc_readable_ranges,
1713 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_readable_ranges),
1716 static const struct regmap_range fsl_easrc_writeable_ranges[] = {
1717 regmap_reg_range(REG_EASRC_WRFIFO(0), REG_EASRC_WRFIFO(3)),
1718 regmap_reg_range(REG_EASRC_CC(0), REG_EASRC_COA(3)),
1719 regmap_reg_range(REG_EASRC_RRL(0), REG_EASRC_RCTCH),
1720 regmap_reg_range(REG_EASRC_PCF(0), REG_EASRC_DBGC),
1723 static const struct regmap_access_table fsl_easrc_writeable_table = {
1724 .yes_ranges = fsl_easrc_writeable_ranges,
1725 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_writeable_ranges),
1728 static const struct regmap_range fsl_easrc_volatileable_ranges[] = {
1729 regmap_reg_range(REG_EASRC_RDFIFO(0), REG_EASRC_RDFIFO(3)),
1730 regmap_reg_range(REG_EASRC_SFS(0), REG_EASRC_SFS(3)),
1731 regmap_reg_range(REG_EASRC_IRQF, REG_EASRC_IRQF),
1732 regmap_reg_range(REG_EASRC_DBGS, REG_EASRC_DBGS),
1735 static const struct regmap_access_table fsl_easrc_volatileable_table = {
1736 .yes_ranges = fsl_easrc_volatileable_ranges,
1737 .n_yes_ranges = ARRAY_SIZE(fsl_easrc_volatileable_ranges),
1740 static const struct regmap_config fsl_easrc_regmap_config = {
1741 .reg_bits = 32,
1742 .reg_stride = 4,
1743 .val_bits = 32,
1745 .max_register = REG_EASRC_DBGS,
1746 .reg_defaults = fsl_easrc_reg_defaults,
1747 .num_reg_defaults = ARRAY_SIZE(fsl_easrc_reg_defaults),
1748 .rd_table = &fsl_easrc_readable_table,
1749 .wr_table = &fsl_easrc_writeable_table,
1750 .volatile_table = &fsl_easrc_volatileable_table,
1751 .cache_type = REGCACHE_MAPLE,
1754 #ifdef DEBUG
1755 static void fsl_easrc_dump_firmware(struct fsl_asrc *easrc)
1757 struct fsl_easrc_priv *easrc_priv = easrc->private;
1758 struct asrc_firmware_hdr *firm = easrc_priv->firmware_hdr;
1759 struct interp_params *interp = easrc_priv->interp;
1760 struct prefil_params *prefil = easrc_priv->prefil;
1761 struct device *dev = &easrc->pdev->dev;
1762 int i;
1764 if (firm->magic != FIRMWARE_MAGIC) {
1765 dev_err(dev, "Wrong magic. Something went wrong!");
1766 return;
1769 dev_dbg(dev, "Firmware v%u dump:\n", firm->firmware_version);
1770 dev_dbg(dev, "Num prefilter scenarios: %u\n", firm->prefil_scen);
1771 dev_dbg(dev, "Num interpolation scenarios: %u\n", firm->interp_scen);
1772 dev_dbg(dev, "\nInterpolation scenarios:\n");
1774 for (i = 0; i < firm->interp_scen; i++) {
1775 if (interp[i].magic != FIRMWARE_MAGIC) {
1776 dev_dbg(dev, "%d. wrong interp magic: %x\n",
1777 i, interp[i].magic);
1778 continue;
1780 dev_dbg(dev, "%d. taps: %u, phases: %u, center: %llu\n", i,
1781 interp[i].num_taps, interp[i].num_phases,
1782 interp[i].center_tap);
1785 for (i = 0; i < firm->prefil_scen; i++) {
1786 if (prefil[i].magic != FIRMWARE_MAGIC) {
1787 dev_dbg(dev, "%d. wrong prefil magic: %x\n",
1788 i, prefil[i].magic);
1789 continue;
1791 dev_dbg(dev, "%d. insr: %u, outsr: %u, st1: %u, st2: %u\n", i,
1792 prefil[i].insr, prefil[i].outsr,
1793 prefil[i].st1_taps, prefil[i].st2_taps);
1796 dev_dbg(dev, "end of firmware dump\n");
1798 #endif
1800 static int fsl_easrc_get_firmware(struct fsl_asrc *easrc)
1802 struct fsl_easrc_priv *easrc_priv;
1803 const struct firmware **fw_p;
1804 u32 pnum, inum, offset;
1805 const u8 *data;
1806 int ret;
1808 if (!easrc)
1809 return -EINVAL;
1811 easrc_priv = easrc->private;
1812 fw_p = &easrc_priv->fw;
1814 ret = request_firmware(fw_p, easrc_priv->fw_name, &easrc->pdev->dev);
1815 if (ret)
1816 return ret;
1818 data = easrc_priv->fw->data;
1820 easrc_priv->firmware_hdr = (struct asrc_firmware_hdr *)data;
1821 pnum = easrc_priv->firmware_hdr->prefil_scen;
1822 inum = easrc_priv->firmware_hdr->interp_scen;
1824 if (inum) {
1825 offset = sizeof(struct asrc_firmware_hdr);
1826 easrc_priv->interp = (struct interp_params *)(data + offset);
1829 if (pnum) {
1830 offset = sizeof(struct asrc_firmware_hdr) +
1831 inum * sizeof(struct interp_params);
1832 easrc_priv->prefil = (struct prefil_params *)(data + offset);
1835 #ifdef DEBUG
1836 fsl_easrc_dump_firmware(easrc);
1837 #endif
1839 return 0;
1842 static irqreturn_t fsl_easrc_isr(int irq, void *dev_id)
1844 struct fsl_asrc *easrc = (struct fsl_asrc *)dev_id;
1845 struct device *dev = &easrc->pdev->dev;
1846 int val;
1848 regmap_read(easrc->regmap, REG_EASRC_IRQF, &val);
1850 if (val & EASRC_IRQF_OER_MASK)
1851 dev_dbg(dev, "output FIFO underflow\n");
1853 if (val & EASRC_IRQF_IFO_MASK)
1854 dev_dbg(dev, "input FIFO overflow\n");
1856 return IRQ_HANDLED;
1859 static int fsl_easrc_get_fifo_addr(u8 dir, enum asrc_pair_index index)
1861 return REG_EASRC_FIFO(dir, index);
1864 static const struct of_device_id fsl_easrc_dt_ids[] = {
1865 { .compatible = "fsl,imx8mn-easrc",},
1868 MODULE_DEVICE_TABLE(of, fsl_easrc_dt_ids);
1870 static int fsl_easrc_probe(struct platform_device *pdev)
1872 struct fsl_easrc_priv *easrc_priv;
1873 struct device *dev = &pdev->dev;
1874 struct fsl_asrc *easrc;
1875 struct resource *res;
1876 struct device_node *np;
1877 void __iomem *regs;
1878 u32 asrc_fmt = 0;
1879 int ret, irq;
1881 easrc = devm_kzalloc(dev, sizeof(*easrc), GFP_KERNEL);
1882 if (!easrc)
1883 return -ENOMEM;
1885 easrc_priv = devm_kzalloc(dev, sizeof(*easrc_priv), GFP_KERNEL);
1886 if (!easrc_priv)
1887 return -ENOMEM;
1889 easrc->pdev = pdev;
1890 easrc->private = easrc_priv;
1891 np = dev->of_node;
1893 regs = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1894 if (IS_ERR(regs))
1895 return PTR_ERR(regs);
1897 easrc->paddr = res->start;
1899 easrc->regmap = devm_regmap_init_mmio(dev, regs, &fsl_easrc_regmap_config);
1900 if (IS_ERR(easrc->regmap)) {
1901 dev_err(dev, "failed to init regmap");
1902 return PTR_ERR(easrc->regmap);
1905 irq = platform_get_irq(pdev, 0);
1906 if (irq < 0)
1907 return irq;
1909 ret = devm_request_irq(&pdev->dev, irq, fsl_easrc_isr, 0,
1910 dev_name(dev), easrc);
1911 if (ret) {
1912 dev_err(dev, "failed to claim irq %u: %d\n", irq, ret);
1913 return ret;
1916 easrc->mem_clk = devm_clk_get(dev, "mem");
1917 if (IS_ERR(easrc->mem_clk)) {
1918 dev_err(dev, "failed to get mem clock\n");
1919 return PTR_ERR(easrc->mem_clk);
1922 /* Set default value */
1923 easrc->channel_avail = 32;
1924 easrc->get_dma_channel = fsl_easrc_get_dma_channel;
1925 easrc->request_pair = fsl_easrc_request_context;
1926 easrc->release_pair = fsl_easrc_release_context;
1927 easrc->get_fifo_addr = fsl_easrc_get_fifo_addr;
1928 easrc->pair_priv_size = sizeof(struct fsl_easrc_ctx_priv);
1930 easrc_priv->rs_num_taps = EASRC_RS_32_TAPS;
1931 easrc_priv->const_coeff = 0x3FF0000000000000;
1933 ret = of_property_read_u32(np, "fsl,asrc-rate", &easrc->asrc_rate);
1934 if (ret) {
1935 dev_err(dev, "failed to asrc rate\n");
1936 return ret;
1939 ret = of_property_read_u32(np, "fsl,asrc-format", &asrc_fmt);
1940 easrc->asrc_format = (__force snd_pcm_format_t)asrc_fmt;
1941 if (ret) {
1942 dev_err(dev, "failed to asrc format\n");
1943 return ret;
1946 if (!(FSL_EASRC_FORMATS & (pcm_format_to_bits(easrc->asrc_format)))) {
1947 dev_warn(dev, "unsupported format, switching to S24_LE\n");
1948 easrc->asrc_format = SNDRV_PCM_FORMAT_S24_LE;
1951 ret = of_property_read_string(np, "firmware-name",
1952 &easrc_priv->fw_name);
1953 if (ret) {
1954 dev_err(dev, "failed to get firmware name\n");
1955 return ret;
1958 platform_set_drvdata(pdev, easrc);
1959 pm_runtime_enable(dev);
1961 spin_lock_init(&easrc->lock);
1963 regcache_cache_only(easrc->regmap, true);
1965 ret = devm_snd_soc_register_component(dev, &fsl_easrc_component,
1966 &fsl_easrc_dai, 1);
1967 if (ret) {
1968 dev_err(dev, "failed to register ASoC DAI\n");
1969 goto err_pm_disable;
1972 ret = devm_snd_soc_register_component(dev, &fsl_asrc_component,
1973 NULL, 0);
1974 if (ret) {
1975 dev_err(&pdev->dev, "failed to register ASoC platform\n");
1976 goto err_pm_disable;
1979 return 0;
1981 err_pm_disable:
1982 pm_runtime_disable(&pdev->dev);
1983 return ret;
1986 static void fsl_easrc_remove(struct platform_device *pdev)
1988 pm_runtime_disable(&pdev->dev);
1991 static int fsl_easrc_runtime_suspend(struct device *dev)
1993 struct fsl_asrc *easrc = dev_get_drvdata(dev);
1994 struct fsl_easrc_priv *easrc_priv = easrc->private;
1995 unsigned long lock_flags;
1997 regcache_cache_only(easrc->regmap, true);
1999 clk_disable_unprepare(easrc->mem_clk);
2001 spin_lock_irqsave(&easrc->lock, lock_flags);
2002 easrc_priv->firmware_loaded = 0;
2003 spin_unlock_irqrestore(&easrc->lock, lock_flags);
2005 return 0;
2008 static int fsl_easrc_runtime_resume(struct device *dev)
2010 struct fsl_asrc *easrc = dev_get_drvdata(dev);
2011 struct fsl_easrc_priv *easrc_priv = easrc->private;
2012 struct fsl_easrc_ctx_priv *ctx_priv;
2013 struct fsl_asrc_pair *ctx;
2014 unsigned long lock_flags;
2015 int ret;
2016 int i;
2018 ret = clk_prepare_enable(easrc->mem_clk);
2019 if (ret)
2020 return ret;
2022 regcache_cache_only(easrc->regmap, false);
2023 regcache_mark_dirty(easrc->regmap);
2024 regcache_sync(easrc->regmap);
2026 spin_lock_irqsave(&easrc->lock, lock_flags);
2027 if (easrc_priv->firmware_loaded) {
2028 spin_unlock_irqrestore(&easrc->lock, lock_flags);
2029 goto skip_load;
2031 easrc_priv->firmware_loaded = 1;
2032 spin_unlock_irqrestore(&easrc->lock, lock_flags);
2034 ret = fsl_easrc_get_firmware(easrc);
2035 if (ret) {
2036 dev_err(dev, "failed to get firmware\n");
2037 goto disable_mem_clk;
2041 * Write Resampling Coefficients
2042 * The coefficient RAM must be configured prior to beginning of
2043 * any context processing within the ASRC
2045 ret = fsl_easrc_resampler_config(easrc);
2046 if (ret) {
2047 dev_err(dev, "resampler config failed\n");
2048 goto disable_mem_clk;
2051 for (i = ASRC_PAIR_A; i < EASRC_CTX_MAX_NUM; i++) {
2052 ctx = easrc->pair[i];
2053 if (!ctx)
2054 continue;
2056 ctx_priv = ctx->private;
2057 fsl_easrc_set_rs_ratio(ctx);
2058 ctx_priv->out_missed_sample = ctx_priv->in_filled_sample *
2059 ctx_priv->out_params.sample_rate /
2060 ctx_priv->in_params.sample_rate;
2061 if (ctx_priv->in_filled_sample * ctx_priv->out_params.sample_rate
2062 % ctx_priv->in_params.sample_rate != 0)
2063 ctx_priv->out_missed_sample += 1;
2065 ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2066 ctx_priv->st1_coeff,
2067 ctx_priv->st1_num_taps,
2068 ctx_priv->st1_addexp);
2069 if (ret)
2070 goto disable_mem_clk;
2072 ret = fsl_easrc_write_pf_coeff_mem(easrc, i,
2073 ctx_priv->st2_coeff,
2074 ctx_priv->st2_num_taps,
2075 ctx_priv->st2_addexp);
2076 if (ret)
2077 goto disable_mem_clk;
2080 skip_load:
2081 return 0;
2083 disable_mem_clk:
2084 clk_disable_unprepare(easrc->mem_clk);
2085 return ret;
2088 static const struct dev_pm_ops fsl_easrc_pm_ops = {
2089 RUNTIME_PM_OPS(fsl_easrc_runtime_suspend, fsl_easrc_runtime_resume, NULL)
2090 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2091 pm_runtime_force_resume)
2094 static struct platform_driver fsl_easrc_driver = {
2095 .probe = fsl_easrc_probe,
2096 .remove = fsl_easrc_remove,
2097 .driver = {
2098 .name = "fsl-easrc",
2099 .pm = pm_ptr(&fsl_easrc_pm_ops),
2100 .of_match_table = fsl_easrc_dt_ids,
2103 module_platform_driver(fsl_easrc_driver);
2105 MODULE_DESCRIPTION("NXP Enhanced Asynchronous Sample Rate (eASRC) driver");
2106 MODULE_LICENSE("GPL v2");