Get rid of 'remove_new' relic from platform driver struct
[linux.git] / drivers / gpu / drm / tegra / dc.c
blob430b2eededb2b5a3aa0c71022240076c027f5d90
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Avionic Design GmbH
4 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
5 */
7 #include <linux/clk.h>
8 #include <linux/debugfs.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/iommu.h>
12 #include <linux/interconnect.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/pm_domain.h>
17 #include <linux/pm_opp.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/reset.h>
21 #include <soc/tegra/common.h>
22 #include <soc/tegra/pmc.h>
24 #include <drm/drm_atomic.h>
25 #include <drm/drm_atomic_helper.h>
26 #include <drm/drm_blend.h>
27 #include <drm/drm_debugfs.h>
28 #include <drm/drm_fourcc.h>
29 #include <drm/drm_framebuffer.h>
30 #include <drm/drm_vblank.h>
32 #include "dc.h"
33 #include "drm.h"
34 #include "gem.h"
35 #include "hub.h"
36 #include "plane.h"
38 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
39 struct drm_crtc_state *state);
41 static void tegra_dc_stats_reset(struct tegra_dc_stats *stats)
43 stats->frames = 0;
44 stats->vblank = 0;
45 stats->underflow = 0;
46 stats->overflow = 0;
49 /* Reads the active copy of a register. */
50 static u32 tegra_dc_readl_active(struct tegra_dc *dc, unsigned long offset)
52 u32 value;
54 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
55 value = tegra_dc_readl(dc, offset);
56 tegra_dc_writel(dc, 0, DC_CMD_STATE_ACCESS);
58 return value;
61 static inline unsigned int tegra_plane_offset(struct tegra_plane *plane,
62 unsigned int offset)
64 if (offset >= 0x500 && offset <= 0x638) {
65 offset = 0x000 + (offset - 0x500);
66 return plane->offset + offset;
69 if (offset >= 0x700 && offset <= 0x719) {
70 offset = 0x180 + (offset - 0x700);
71 return plane->offset + offset;
74 if (offset >= 0x800 && offset <= 0x839) {
75 offset = 0x1c0 + (offset - 0x800);
76 return plane->offset + offset;
79 dev_WARN(plane->dc->dev, "invalid offset: %x\n", offset);
81 return plane->offset + offset;
84 static inline u32 tegra_plane_readl(struct tegra_plane *plane,
85 unsigned int offset)
87 return tegra_dc_readl(plane->dc, tegra_plane_offset(plane, offset));
90 static inline void tegra_plane_writel(struct tegra_plane *plane, u32 value,
91 unsigned int offset)
93 tegra_dc_writel(plane->dc, value, tegra_plane_offset(plane, offset));
96 bool tegra_dc_has_output(struct tegra_dc *dc, struct device *dev)
98 struct device_node *np = dc->dev->of_node;
99 struct of_phandle_iterator it;
100 int err;
102 of_for_each_phandle(&it, err, np, "nvidia,outputs", NULL, 0)
103 if (it.node == dev->of_node)
104 return true;
106 return false;
110 * Double-buffered registers have two copies: ASSEMBLY and ACTIVE. When the
111 * *_ACT_REQ bits are set the ASSEMBLY copy is latched into the ACTIVE copy.
112 * Latching happens mmediately if the display controller is in STOP mode or
113 * on the next frame boundary otherwise.
115 * Triple-buffered registers have three copies: ASSEMBLY, ARM and ACTIVE. The
116 * ASSEMBLY copy is latched into the ARM copy immediately after *_UPDATE bits
117 * are written. When the *_ACT_REQ bits are written, the ARM copy is latched
118 * into the ACTIVE copy, either immediately if the display controller is in
119 * STOP mode, or at the next frame boundary otherwise.
121 void tegra_dc_commit(struct tegra_dc *dc)
123 tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
124 tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
127 static inline u32 compute_dda_inc(unsigned int in, unsigned int out, bool v,
128 unsigned int bpp)
130 fixed20_12 outf = dfixed_init(out);
131 fixed20_12 inf = dfixed_init(in);
132 u32 dda_inc;
133 int max;
135 if (v)
136 max = 15;
137 else {
138 switch (bpp) {
139 case 2:
140 max = 8;
141 break;
143 default:
144 WARN_ON_ONCE(1);
145 fallthrough;
146 case 4:
147 max = 4;
148 break;
152 outf.full = max_t(u32, outf.full - dfixed_const(1), dfixed_const(1));
153 inf.full -= dfixed_const(1);
155 dda_inc = dfixed_div(inf, outf);
156 dda_inc = min_t(u32, dda_inc, dfixed_const(max));
158 return dda_inc;
161 static inline u32 compute_initial_dda(unsigned int in)
163 fixed20_12 inf = dfixed_init(in);
164 return dfixed_frac(inf);
167 static void tegra_plane_setup_blending_legacy(struct tegra_plane *plane)
169 u32 background[3] = {
170 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
171 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
172 BLEND_WEIGHT1(0) | BLEND_WEIGHT0(0) | BLEND_COLOR_KEY_NONE,
174 u32 foreground = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255) |
175 BLEND_COLOR_KEY_NONE;
176 u32 blendnokey = BLEND_WEIGHT1(255) | BLEND_WEIGHT0(255);
177 struct tegra_plane_state *state;
178 u32 blending[2];
179 unsigned int i;
181 /* disable blending for non-overlapping case */
182 tegra_plane_writel(plane, blendnokey, DC_WIN_BLEND_NOKEY);
183 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_1WIN);
185 state = to_tegra_plane_state(plane->base.state);
187 if (state->opaque) {
189 * Since custom fix-weight blending isn't utilized and weight
190 * of top window is set to max, we can enforce dependent
191 * blending which in this case results in transparent bottom
192 * window if top window is opaque and if top window enables
193 * alpha blending, then bottom window is getting alpha value
194 * of 1 minus the sum of alpha components of the overlapping
195 * plane.
197 background[0] |= BLEND_CONTROL_DEPENDENT;
198 background[1] |= BLEND_CONTROL_DEPENDENT;
201 * The region where three windows overlap is the intersection
202 * of the two regions where two windows overlap. It contributes
203 * to the area if all of the windows on top of it have an alpha
204 * component.
206 switch (state->base.normalized_zpos) {
207 case 0:
208 if (state->blending[0].alpha &&
209 state->blending[1].alpha)
210 background[2] |= BLEND_CONTROL_DEPENDENT;
211 break;
213 case 1:
214 background[2] |= BLEND_CONTROL_DEPENDENT;
215 break;
217 } else {
219 * Enable alpha blending if pixel format has an alpha
220 * component.
222 foreground |= BLEND_CONTROL_ALPHA;
225 * If any of the windows on top of this window is opaque, it
226 * will completely conceal this window within that area. If
227 * top window has an alpha component, it is blended over the
228 * bottom window.
230 for (i = 0; i < 2; i++) {
231 if (state->blending[i].alpha &&
232 state->blending[i].top)
233 background[i] |= BLEND_CONTROL_DEPENDENT;
236 switch (state->base.normalized_zpos) {
237 case 0:
238 if (state->blending[0].alpha &&
239 state->blending[1].alpha)
240 background[2] |= BLEND_CONTROL_DEPENDENT;
241 break;
243 case 1:
245 * When both middle and topmost windows have an alpha,
246 * these windows a mixed together and then the result
247 * is blended over the bottom window.
249 if (state->blending[0].alpha &&
250 state->blending[0].top)
251 background[2] |= BLEND_CONTROL_ALPHA;
253 if (state->blending[1].alpha &&
254 state->blending[1].top)
255 background[2] |= BLEND_CONTROL_ALPHA;
256 break;
260 switch (state->base.normalized_zpos) {
261 case 0:
262 tegra_plane_writel(plane, background[0], DC_WIN_BLEND_2WIN_X);
263 tegra_plane_writel(plane, background[1], DC_WIN_BLEND_2WIN_Y);
264 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
265 break;
267 case 1:
269 * If window B / C is topmost, then X / Y registers are
270 * matching the order of blending[...] state indices,
271 * otherwise a swap is required.
273 if (!state->blending[0].top && state->blending[1].top) {
274 blending[0] = foreground;
275 blending[1] = background[1];
276 } else {
277 blending[0] = background[0];
278 blending[1] = foreground;
281 tegra_plane_writel(plane, blending[0], DC_WIN_BLEND_2WIN_X);
282 tegra_plane_writel(plane, blending[1], DC_WIN_BLEND_2WIN_Y);
283 tegra_plane_writel(plane, background[2], DC_WIN_BLEND_3WIN_XY);
284 break;
286 case 2:
287 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_X);
288 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_2WIN_Y);
289 tegra_plane_writel(plane, foreground, DC_WIN_BLEND_3WIN_XY);
290 break;
294 static void tegra_plane_setup_blending(struct tegra_plane *plane,
295 const struct tegra_dc_window *window)
297 u32 value;
299 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
300 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
301 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
302 tegra_plane_writel(plane, value, DC_WIN_BLEND_MATCH_SELECT);
304 value = BLEND_FACTOR_DST_ALPHA_ZERO | BLEND_FACTOR_SRC_ALPHA_K2 |
305 BLEND_FACTOR_DST_COLOR_NEG_K1_TIMES_SRC |
306 BLEND_FACTOR_SRC_COLOR_K1_TIMES_SRC;
307 tegra_plane_writel(plane, value, DC_WIN_BLEND_NOMATCH_SELECT);
309 value = K2(255) | K1(255) | WINDOW_LAYER_DEPTH(255 - window->zpos);
310 tegra_plane_writel(plane, value, DC_WIN_BLEND_LAYER_CONTROL);
313 static bool
314 tegra_plane_use_horizontal_filtering(struct tegra_plane *plane,
315 const struct tegra_dc_window *window)
317 struct tegra_dc *dc = plane->dc;
319 if (window->src.w == window->dst.w)
320 return false;
322 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
323 return false;
325 return true;
328 static bool
329 tegra_plane_use_vertical_filtering(struct tegra_plane *plane,
330 const struct tegra_dc_window *window)
332 struct tegra_dc *dc = plane->dc;
334 if (window->src.h == window->dst.h)
335 return false;
337 if (plane->index == 0 && dc->soc->has_win_a_without_filters)
338 return false;
340 if (plane->index == 2 && dc->soc->has_win_c_without_vert_filter)
341 return false;
343 return true;
346 static void tegra_dc_setup_window(struct tegra_plane *plane,
347 const struct tegra_dc_window *window)
349 unsigned h_offset, v_offset, h_size, v_size, h_dda, v_dda, bpp;
350 struct tegra_dc *dc = plane->dc;
351 unsigned int planes;
352 u32 value;
353 bool yuv;
356 * For YUV planar modes, the number of bytes per pixel takes into
357 * account only the luma component and therefore is 1.
359 yuv = tegra_plane_format_is_yuv(window->format, &planes, NULL);
360 if (!yuv)
361 bpp = window->bits_per_pixel / 8;
362 else
363 bpp = (planes > 1) ? 1 : 2;
365 tegra_plane_writel(plane, window->format, DC_WIN_COLOR_DEPTH);
366 tegra_plane_writel(plane, window->swap, DC_WIN_BYTE_SWAP);
368 value = V_POSITION(window->dst.y) | H_POSITION(window->dst.x);
369 tegra_plane_writel(plane, value, DC_WIN_POSITION);
371 value = V_SIZE(window->dst.h) | H_SIZE(window->dst.w);
372 tegra_plane_writel(plane, value, DC_WIN_SIZE);
374 h_offset = window->src.x * bpp;
375 v_offset = window->src.y;
376 h_size = window->src.w * bpp;
377 v_size = window->src.h;
379 if (window->reflect_x)
380 h_offset += (window->src.w - 1) * bpp;
382 if (window->reflect_y)
383 v_offset += window->src.h - 1;
385 value = V_PRESCALED_SIZE(v_size) | H_PRESCALED_SIZE(h_size);
386 tegra_plane_writel(plane, value, DC_WIN_PRESCALED_SIZE);
389 * For DDA computations the number of bytes per pixel for YUV planar
390 * modes needs to take into account all Y, U and V components.
392 if (yuv && planes > 1)
393 bpp = 2;
395 h_dda = compute_dda_inc(window->src.w, window->dst.w, false, bpp);
396 v_dda = compute_dda_inc(window->src.h, window->dst.h, true, bpp);
398 value = V_DDA_INC(v_dda) | H_DDA_INC(h_dda);
399 tegra_plane_writel(plane, value, DC_WIN_DDA_INC);
401 h_dda = compute_initial_dda(window->src.x);
402 v_dda = compute_initial_dda(window->src.y);
404 tegra_plane_writel(plane, h_dda, DC_WIN_H_INITIAL_DDA);
405 tegra_plane_writel(plane, v_dda, DC_WIN_V_INITIAL_DDA);
407 tegra_plane_writel(plane, 0, DC_WIN_UV_BUF_STRIDE);
408 tegra_plane_writel(plane, 0, DC_WIN_BUF_STRIDE);
410 tegra_plane_writel(plane, window->base[0], DC_WINBUF_START_ADDR);
412 if (yuv && planes > 1) {
413 tegra_plane_writel(plane, window->base[1], DC_WINBUF_START_ADDR_U);
415 if (planes > 2)
416 tegra_plane_writel(plane, window->base[2], DC_WINBUF_START_ADDR_V);
418 value = window->stride[1] << 16 | window->stride[0];
419 tegra_plane_writel(plane, value, DC_WIN_LINE_STRIDE);
420 } else {
421 tegra_plane_writel(plane, window->stride[0], DC_WIN_LINE_STRIDE);
424 tegra_plane_writel(plane, h_offset, DC_WINBUF_ADDR_H_OFFSET);
425 tegra_plane_writel(plane, v_offset, DC_WINBUF_ADDR_V_OFFSET);
427 if (dc->soc->supports_block_linear) {
428 unsigned long height = window->tiling.value;
430 switch (window->tiling.mode) {
431 case TEGRA_BO_TILING_MODE_PITCH:
432 value = DC_WINBUF_SURFACE_KIND_PITCH;
433 break;
435 case TEGRA_BO_TILING_MODE_TILED:
436 value = DC_WINBUF_SURFACE_KIND_TILED;
437 break;
439 case TEGRA_BO_TILING_MODE_BLOCK:
440 value = DC_WINBUF_SURFACE_KIND_BLOCK_HEIGHT(height) |
441 DC_WINBUF_SURFACE_KIND_BLOCK;
442 break;
445 tegra_plane_writel(plane, value, DC_WINBUF_SURFACE_KIND);
446 } else {
447 switch (window->tiling.mode) {
448 case TEGRA_BO_TILING_MODE_PITCH:
449 value = DC_WIN_BUFFER_ADDR_MODE_LINEAR_UV |
450 DC_WIN_BUFFER_ADDR_MODE_LINEAR;
451 break;
453 case TEGRA_BO_TILING_MODE_TILED:
454 value = DC_WIN_BUFFER_ADDR_MODE_TILE_UV |
455 DC_WIN_BUFFER_ADDR_MODE_TILE;
456 break;
458 case TEGRA_BO_TILING_MODE_BLOCK:
460 * No need to handle this here because ->atomic_check
461 * will already have filtered it out.
463 break;
466 tegra_plane_writel(plane, value, DC_WIN_BUFFER_ADDR_MODE);
469 value = WIN_ENABLE;
471 if (yuv) {
472 /* setup default colorspace conversion coefficients */
473 tegra_plane_writel(plane, 0x00f0, DC_WIN_CSC_YOF);
474 tegra_plane_writel(plane, 0x012a, DC_WIN_CSC_KYRGB);
475 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KUR);
476 tegra_plane_writel(plane, 0x0198, DC_WIN_CSC_KVR);
477 tegra_plane_writel(plane, 0x039b, DC_WIN_CSC_KUG);
478 tegra_plane_writel(plane, 0x032f, DC_WIN_CSC_KVG);
479 tegra_plane_writel(plane, 0x0204, DC_WIN_CSC_KUB);
480 tegra_plane_writel(plane, 0x0000, DC_WIN_CSC_KVB);
482 value |= CSC_ENABLE;
483 } else if (window->bits_per_pixel < 24) {
484 value |= COLOR_EXPAND;
487 if (window->reflect_x)
488 value |= H_DIRECTION;
490 if (window->reflect_y)
491 value |= V_DIRECTION;
493 if (tegra_plane_use_horizontal_filtering(plane, window)) {
495 * Enable horizontal 6-tap filter and set filtering
496 * coefficients to the default values defined in TRM.
498 tegra_plane_writel(plane, 0x00008000, DC_WIN_H_FILTER_P(0));
499 tegra_plane_writel(plane, 0x3e087ce1, DC_WIN_H_FILTER_P(1));
500 tegra_plane_writel(plane, 0x3b117ac1, DC_WIN_H_FILTER_P(2));
501 tegra_plane_writel(plane, 0x591b73aa, DC_WIN_H_FILTER_P(3));
502 tegra_plane_writel(plane, 0x57256d9a, DC_WIN_H_FILTER_P(4));
503 tegra_plane_writel(plane, 0x552f668b, DC_WIN_H_FILTER_P(5));
504 tegra_plane_writel(plane, 0x73385e8b, DC_WIN_H_FILTER_P(6));
505 tegra_plane_writel(plane, 0x72435583, DC_WIN_H_FILTER_P(7));
506 tegra_plane_writel(plane, 0x714c4c8b, DC_WIN_H_FILTER_P(8));
507 tegra_plane_writel(plane, 0x70554393, DC_WIN_H_FILTER_P(9));
508 tegra_plane_writel(plane, 0x715e389b, DC_WIN_H_FILTER_P(10));
509 tegra_plane_writel(plane, 0x71662faa, DC_WIN_H_FILTER_P(11));
510 tegra_plane_writel(plane, 0x536d25ba, DC_WIN_H_FILTER_P(12));
511 tegra_plane_writel(plane, 0x55731bca, DC_WIN_H_FILTER_P(13));
512 tegra_plane_writel(plane, 0x387a11d9, DC_WIN_H_FILTER_P(14));
513 tegra_plane_writel(plane, 0x3c7c08f1, DC_WIN_H_FILTER_P(15));
515 value |= H_FILTER;
518 if (tegra_plane_use_vertical_filtering(plane, window)) {
519 unsigned int i, k;
522 * Enable vertical 2-tap filter and set filtering
523 * coefficients to the default values defined in TRM.
525 for (i = 0, k = 128; i < 16; i++, k -= 8)
526 tegra_plane_writel(plane, k, DC_WIN_V_FILTER_P(i));
528 value |= V_FILTER;
531 tegra_plane_writel(plane, value, DC_WIN_WIN_OPTIONS);
533 if (dc->soc->has_legacy_blending)
534 tegra_plane_setup_blending_legacy(plane);
535 else
536 tegra_plane_setup_blending(plane, window);
539 static const u32 tegra20_primary_formats[] = {
540 DRM_FORMAT_ARGB4444,
541 DRM_FORMAT_ARGB1555,
542 DRM_FORMAT_RGB565,
543 DRM_FORMAT_RGBA5551,
544 DRM_FORMAT_ABGR8888,
545 DRM_FORMAT_ARGB8888,
546 /* non-native formats */
547 DRM_FORMAT_XRGB1555,
548 DRM_FORMAT_RGBX5551,
549 DRM_FORMAT_XBGR8888,
550 DRM_FORMAT_XRGB8888,
553 static const u64 tegra20_modifiers[] = {
554 DRM_FORMAT_MOD_LINEAR,
555 DRM_FORMAT_MOD_NVIDIA_TEGRA_TILED,
556 DRM_FORMAT_MOD_INVALID
559 static const u32 tegra114_primary_formats[] = {
560 DRM_FORMAT_ARGB4444,
561 DRM_FORMAT_ARGB1555,
562 DRM_FORMAT_RGB565,
563 DRM_FORMAT_RGBA5551,
564 DRM_FORMAT_ABGR8888,
565 DRM_FORMAT_ARGB8888,
566 /* new on Tegra114 */
567 DRM_FORMAT_ABGR4444,
568 DRM_FORMAT_ABGR1555,
569 DRM_FORMAT_BGRA5551,
570 DRM_FORMAT_XRGB1555,
571 DRM_FORMAT_RGBX5551,
572 DRM_FORMAT_XBGR1555,
573 DRM_FORMAT_BGRX5551,
574 DRM_FORMAT_BGR565,
575 DRM_FORMAT_BGRA8888,
576 DRM_FORMAT_RGBA8888,
577 DRM_FORMAT_XRGB8888,
578 DRM_FORMAT_XBGR8888,
581 static const u32 tegra124_primary_formats[] = {
582 DRM_FORMAT_ARGB4444,
583 DRM_FORMAT_ARGB1555,
584 DRM_FORMAT_RGB565,
585 DRM_FORMAT_RGBA5551,
586 DRM_FORMAT_ABGR8888,
587 DRM_FORMAT_ARGB8888,
588 /* new on Tegra114 */
589 DRM_FORMAT_ABGR4444,
590 DRM_FORMAT_ABGR1555,
591 DRM_FORMAT_BGRA5551,
592 DRM_FORMAT_XRGB1555,
593 DRM_FORMAT_RGBX5551,
594 DRM_FORMAT_XBGR1555,
595 DRM_FORMAT_BGRX5551,
596 DRM_FORMAT_BGR565,
597 DRM_FORMAT_BGRA8888,
598 DRM_FORMAT_RGBA8888,
599 DRM_FORMAT_XRGB8888,
600 DRM_FORMAT_XBGR8888,
601 /* new on Tegra124 */
602 DRM_FORMAT_RGBX8888,
603 DRM_FORMAT_BGRX8888,
606 static const u64 tegra124_modifiers[] = {
607 DRM_FORMAT_MOD_LINEAR,
608 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(0),
609 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(1),
610 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(2),
611 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(3),
612 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(4),
613 DRM_FORMAT_MOD_NVIDIA_16BX2_BLOCK(5),
614 DRM_FORMAT_MOD_INVALID
617 static int tegra_plane_atomic_check(struct drm_plane *plane,
618 struct drm_atomic_state *state)
620 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
621 plane);
622 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
623 unsigned int supported_rotation = DRM_MODE_ROTATE_0 |
624 DRM_MODE_REFLECT_X |
625 DRM_MODE_REFLECT_Y;
626 unsigned int rotation = new_plane_state->rotation;
627 struct tegra_bo_tiling *tiling = &plane_state->tiling;
628 struct tegra_plane *tegra = to_tegra_plane(plane);
629 struct tegra_dc *dc = to_tegra_dc(new_plane_state->crtc);
630 int err;
632 plane_state->peak_memory_bandwidth = 0;
633 plane_state->avg_memory_bandwidth = 0;
635 /* no need for further checks if the plane is being disabled */
636 if (!new_plane_state->crtc) {
637 plane_state->total_peak_memory_bandwidth = 0;
638 return 0;
641 err = tegra_plane_format(new_plane_state->fb->format->format,
642 &plane_state->format,
643 &plane_state->swap);
644 if (err < 0)
645 return err;
648 * Tegra20 and Tegra30 are special cases here because they support
649 * only variants of specific formats with an alpha component, but not
650 * the corresponding opaque formats. However, the opaque formats can
651 * be emulated by disabling alpha blending for the plane.
653 if (dc->soc->has_legacy_blending) {
654 err = tegra_plane_setup_legacy_state(tegra, plane_state);
655 if (err < 0)
656 return err;
659 err = tegra_fb_get_tiling(new_plane_state->fb, tiling);
660 if (err < 0)
661 return err;
663 if (tiling->mode == TEGRA_BO_TILING_MODE_BLOCK &&
664 !dc->soc->supports_block_linear) {
665 DRM_ERROR("hardware doesn't support block linear mode\n");
666 return -EINVAL;
670 * Older userspace used custom BO flag in order to specify the Y
671 * reflection, while modern userspace uses the generic DRM rotation
672 * property in order to achieve the same result. The legacy BO flag
673 * duplicates the DRM rotation property when both are set.
675 if (tegra_fb_is_bottom_up(new_plane_state->fb))
676 rotation |= DRM_MODE_REFLECT_Y;
678 rotation = drm_rotation_simplify(rotation, supported_rotation);
680 if (rotation & DRM_MODE_REFLECT_X)
681 plane_state->reflect_x = true;
682 else
683 plane_state->reflect_x = false;
685 if (rotation & DRM_MODE_REFLECT_Y)
686 plane_state->reflect_y = true;
687 else
688 plane_state->reflect_y = false;
691 * Tegra doesn't support different strides for U and V planes so we
692 * error out if the user tries to display a framebuffer with such a
693 * configuration.
695 if (new_plane_state->fb->format->num_planes > 2) {
696 if (new_plane_state->fb->pitches[2] != new_plane_state->fb->pitches[1]) {
697 DRM_ERROR("unsupported UV-plane configuration\n");
698 return -EINVAL;
702 err = tegra_plane_state_add(tegra, new_plane_state);
703 if (err < 0)
704 return err;
706 return 0;
709 static void tegra_plane_atomic_disable(struct drm_plane *plane,
710 struct drm_atomic_state *state)
712 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
713 plane);
714 struct tegra_plane *p = to_tegra_plane(plane);
715 u32 value;
717 /* rien ne va plus */
718 if (!old_state || !old_state->crtc)
719 return;
721 value = tegra_plane_readl(p, DC_WIN_WIN_OPTIONS);
722 value &= ~WIN_ENABLE;
723 tegra_plane_writel(p, value, DC_WIN_WIN_OPTIONS);
726 static void tegra_plane_atomic_update(struct drm_plane *plane,
727 struct drm_atomic_state *state)
729 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state,
730 plane);
731 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
732 struct drm_framebuffer *fb = new_state->fb;
733 struct tegra_plane *p = to_tegra_plane(plane);
734 struct tegra_dc_window window;
735 unsigned int i;
737 /* rien ne va plus */
738 if (!new_state->crtc || !new_state->fb)
739 return;
741 if (!new_state->visible)
742 return tegra_plane_atomic_disable(plane, state);
744 memset(&window, 0, sizeof(window));
745 window.src.x = new_state->src.x1 >> 16;
746 window.src.y = new_state->src.y1 >> 16;
747 window.src.w = drm_rect_width(&new_state->src) >> 16;
748 window.src.h = drm_rect_height(&new_state->src) >> 16;
749 window.dst.x = new_state->dst.x1;
750 window.dst.y = new_state->dst.y1;
751 window.dst.w = drm_rect_width(&new_state->dst);
752 window.dst.h = drm_rect_height(&new_state->dst);
753 window.bits_per_pixel = fb->format->cpp[0] * 8;
754 window.reflect_x = tegra_plane_state->reflect_x;
755 window.reflect_y = tegra_plane_state->reflect_y;
757 /* copy from state */
758 window.zpos = new_state->normalized_zpos;
759 window.tiling = tegra_plane_state->tiling;
760 window.format = tegra_plane_state->format;
761 window.swap = tegra_plane_state->swap;
763 for (i = 0; i < fb->format->num_planes; i++) {
764 window.base[i] = tegra_plane_state->iova[i] + fb->offsets[i];
767 * Tegra uses a shared stride for UV planes. Framebuffers are
768 * already checked for this in the tegra_plane_atomic_check()
769 * function, so it's safe to ignore the V-plane pitch here.
771 if (i < 2)
772 window.stride[i] = fb->pitches[i];
775 tegra_dc_setup_window(p, &window);
778 static const struct drm_plane_helper_funcs tegra_plane_helper_funcs = {
779 .prepare_fb = tegra_plane_prepare_fb,
780 .cleanup_fb = tegra_plane_cleanup_fb,
781 .atomic_check = tegra_plane_atomic_check,
782 .atomic_disable = tegra_plane_atomic_disable,
783 .atomic_update = tegra_plane_atomic_update,
786 static unsigned long tegra_plane_get_possible_crtcs(struct drm_device *drm)
789 * Ideally this would use drm_crtc_mask(), but that would require the
790 * CRTC to already be in the mode_config's list of CRTCs. However, it
791 * will only be added to that list in the drm_crtc_init_with_planes()
792 * (in tegra_dc_init()), which in turn requires registration of these
793 * planes. So we have ourselves a nice little chicken and egg problem
794 * here.
796 * We work around this by manually creating the mask from the number
797 * of CRTCs that have been registered, and should therefore always be
798 * the same as drm_crtc_index() after registration.
800 return 1 << drm->mode_config.num_crtc;
803 static struct drm_plane *tegra_primary_plane_create(struct drm_device *drm,
804 struct tegra_dc *dc)
806 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
807 enum drm_plane_type type = DRM_PLANE_TYPE_PRIMARY;
808 struct tegra_plane *plane;
809 unsigned int num_formats;
810 const u64 *modifiers;
811 const u32 *formats;
812 int err;
814 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
815 if (!plane)
816 return ERR_PTR(-ENOMEM);
818 /* Always use window A as primary window */
819 plane->offset = 0xa00;
820 plane->index = 0;
821 plane->dc = dc;
823 num_formats = dc->soc->num_primary_formats;
824 formats = dc->soc->primary_formats;
825 modifiers = dc->soc->modifiers;
827 err = tegra_plane_interconnect_init(plane);
828 if (err) {
829 kfree(plane);
830 return ERR_PTR(err);
833 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
834 &tegra_plane_funcs, formats,
835 num_formats, modifiers, type, NULL);
836 if (err < 0) {
837 kfree(plane);
838 return ERR_PTR(err);
841 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
842 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
844 err = drm_plane_create_rotation_property(&plane->base,
845 DRM_MODE_ROTATE_0,
846 DRM_MODE_ROTATE_0 |
847 DRM_MODE_ROTATE_180 |
848 DRM_MODE_REFLECT_X |
849 DRM_MODE_REFLECT_Y);
850 if (err < 0)
851 dev_err(dc->dev, "failed to create rotation property: %d\n",
852 err);
854 return &plane->base;
857 static const u32 tegra_legacy_cursor_plane_formats[] = {
858 DRM_FORMAT_RGBA8888,
861 static const u32 tegra_cursor_plane_formats[] = {
862 DRM_FORMAT_ARGB8888,
865 static int tegra_cursor_atomic_check(struct drm_plane *plane,
866 struct drm_atomic_state *state)
868 struct drm_plane_state *new_plane_state = drm_atomic_get_new_plane_state(state,
869 plane);
870 struct tegra_plane_state *plane_state = to_tegra_plane_state(new_plane_state);
871 struct tegra_plane *tegra = to_tegra_plane(plane);
872 int err;
874 plane_state->peak_memory_bandwidth = 0;
875 plane_state->avg_memory_bandwidth = 0;
877 /* no need for further checks if the plane is being disabled */
878 if (!new_plane_state->crtc) {
879 plane_state->total_peak_memory_bandwidth = 0;
880 return 0;
883 /* scaling not supported for cursor */
884 if ((new_plane_state->src_w >> 16 != new_plane_state->crtc_w) ||
885 (new_plane_state->src_h >> 16 != new_plane_state->crtc_h))
886 return -EINVAL;
888 /* only square cursors supported */
889 if (new_plane_state->src_w != new_plane_state->src_h)
890 return -EINVAL;
892 if (new_plane_state->crtc_w != 32 && new_plane_state->crtc_w != 64 &&
893 new_plane_state->crtc_w != 128 && new_plane_state->crtc_w != 256)
894 return -EINVAL;
896 err = tegra_plane_state_add(tegra, new_plane_state);
897 if (err < 0)
898 return err;
900 return 0;
903 static void __tegra_cursor_atomic_update(struct drm_plane *plane,
904 struct drm_plane_state *new_state)
906 struct tegra_plane_state *tegra_plane_state = to_tegra_plane_state(new_state);
907 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
908 struct tegra_drm *tegra = plane->dev->dev_private;
909 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
910 u64 dma_mask = *dc->dev->dma_mask;
911 #endif
912 unsigned int x, y;
913 u32 value = 0;
915 /* rien ne va plus */
916 if (!new_state->crtc || !new_state->fb)
917 return;
920 * Legacy display supports hardware clipping of the cursor, but
921 * nvdisplay relies on software to clip the cursor to the screen.
923 if (!dc->soc->has_nvdisplay)
924 value |= CURSOR_CLIP_DISPLAY;
926 switch (new_state->crtc_w) {
927 case 32:
928 value |= CURSOR_SIZE_32x32;
929 break;
931 case 64:
932 value |= CURSOR_SIZE_64x64;
933 break;
935 case 128:
936 value |= CURSOR_SIZE_128x128;
937 break;
939 case 256:
940 value |= CURSOR_SIZE_256x256;
941 break;
943 default:
944 WARN(1, "cursor size %ux%u not supported\n",
945 new_state->crtc_w, new_state->crtc_h);
946 return;
949 value |= (tegra_plane_state->iova[0] >> 10) & 0x3fffff;
950 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR);
952 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
953 value = (tegra_plane_state->iova[0] >> 32) & (dma_mask >> 32);
954 tegra_dc_writel(dc, value, DC_DISP_CURSOR_START_ADDR_HI);
955 #endif
957 /* enable cursor and set blend mode */
958 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
959 value |= CURSOR_ENABLE;
960 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
962 value = tegra_dc_readl(dc, DC_DISP_BLEND_CURSOR_CONTROL);
963 value &= ~CURSOR_DST_BLEND_MASK;
964 value &= ~CURSOR_SRC_BLEND_MASK;
966 if (dc->soc->has_nvdisplay)
967 value &= ~CURSOR_COMPOSITION_MODE_XOR;
968 else
969 value |= CURSOR_MODE_NORMAL;
971 value |= CURSOR_DST_BLEND_NEG_K1_TIMES_SRC;
972 value |= CURSOR_SRC_BLEND_K1_TIMES_SRC;
973 value |= CURSOR_ALPHA;
974 tegra_dc_writel(dc, value, DC_DISP_BLEND_CURSOR_CONTROL);
976 /* nvdisplay relies on software for clipping */
977 if (dc->soc->has_nvdisplay) {
978 struct drm_rect src;
980 x = new_state->dst.x1;
981 y = new_state->dst.y1;
983 drm_rect_fp_to_int(&src, &new_state->src);
985 value = (src.y1 & tegra->vmask) << 16 | (src.x1 & tegra->hmask);
986 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_POINT_IN_CURSOR);
988 value = (drm_rect_height(&src) & tegra->vmask) << 16 |
989 (drm_rect_width(&src) & tegra->hmask);
990 tegra_dc_writel(dc, value, DC_DISP_PCALC_HEAD_SET_CROPPED_SIZE_IN_CURSOR);
991 } else {
992 x = new_state->crtc_x;
993 y = new_state->crtc_y;
996 /* position the cursor */
997 value = ((y & tegra->vmask) << 16) | (x & tegra->hmask);
998 tegra_dc_writel(dc, value, DC_DISP_CURSOR_POSITION);
1001 static void tegra_cursor_atomic_update(struct drm_plane *plane,
1002 struct drm_atomic_state *state)
1004 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1006 __tegra_cursor_atomic_update(plane, new_state);
1009 static void tegra_cursor_atomic_disable(struct drm_plane *plane,
1010 struct drm_atomic_state *state)
1012 struct drm_plane_state *old_state = drm_atomic_get_old_plane_state(state,
1013 plane);
1014 struct tegra_dc *dc;
1015 u32 value;
1017 /* rien ne va plus */
1018 if (!old_state || !old_state->crtc)
1019 return;
1021 dc = to_tegra_dc(old_state->crtc);
1023 value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
1024 value &= ~CURSOR_ENABLE;
1025 tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
1028 static int tegra_cursor_atomic_async_check(struct drm_plane *plane, struct drm_atomic_state *state)
1030 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1031 struct drm_crtc_state *crtc_state;
1032 int min_scale, max_scale;
1033 int err;
1035 crtc_state = drm_atomic_get_existing_crtc_state(state, new_state->crtc);
1036 if (WARN_ON(!crtc_state))
1037 return -EINVAL;
1039 if (!crtc_state->active)
1040 return -EINVAL;
1042 if (plane->state->crtc != new_state->crtc ||
1043 plane->state->src_w != new_state->src_w ||
1044 plane->state->src_h != new_state->src_h ||
1045 plane->state->crtc_w != new_state->crtc_w ||
1046 plane->state->crtc_h != new_state->crtc_h ||
1047 plane->state->fb != new_state->fb ||
1048 plane->state->fb == NULL)
1049 return -EINVAL;
1051 min_scale = (1 << 16) / 8;
1052 max_scale = (8 << 16) / 1;
1054 err = drm_atomic_helper_check_plane_state(new_state, crtc_state, min_scale, max_scale,
1055 true, true);
1056 if (err < 0)
1057 return err;
1059 if (new_state->visible != plane->state->visible)
1060 return -EINVAL;
1062 return 0;
1065 static void tegra_cursor_atomic_async_update(struct drm_plane *plane,
1066 struct drm_atomic_state *state)
1068 struct drm_plane_state *new_state = drm_atomic_get_new_plane_state(state, plane);
1069 struct tegra_dc *dc = to_tegra_dc(new_state->crtc);
1071 plane->state->src_x = new_state->src_x;
1072 plane->state->src_y = new_state->src_y;
1073 plane->state->crtc_x = new_state->crtc_x;
1074 plane->state->crtc_y = new_state->crtc_y;
1076 if (new_state->visible) {
1077 struct tegra_plane *p = to_tegra_plane(plane);
1078 u32 value;
1080 __tegra_cursor_atomic_update(plane, new_state);
1082 value = (WIN_A_ACT_REQ << p->index) << 8 | GENERAL_UPDATE;
1083 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1084 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1086 value = (WIN_A_ACT_REQ << p->index) | GENERAL_ACT_REQ;
1087 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
1088 (void)tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
1092 static const struct drm_plane_helper_funcs tegra_cursor_plane_helper_funcs = {
1093 .prepare_fb = tegra_plane_prepare_fb,
1094 .cleanup_fb = tegra_plane_cleanup_fb,
1095 .atomic_check = tegra_cursor_atomic_check,
1096 .atomic_update = tegra_cursor_atomic_update,
1097 .atomic_disable = tegra_cursor_atomic_disable,
1098 .atomic_async_check = tegra_cursor_atomic_async_check,
1099 .atomic_async_update = tegra_cursor_atomic_async_update,
1102 static const uint64_t linear_modifiers[] = {
1103 DRM_FORMAT_MOD_LINEAR,
1104 DRM_FORMAT_MOD_INVALID
1107 static struct drm_plane *tegra_dc_cursor_plane_create(struct drm_device *drm,
1108 struct tegra_dc *dc)
1110 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1111 struct tegra_plane *plane;
1112 unsigned int num_formats;
1113 const u32 *formats;
1114 int err;
1116 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1117 if (!plane)
1118 return ERR_PTR(-ENOMEM);
1121 * This index is kind of fake. The cursor isn't a regular plane, but
1122 * its update and activation request bits in DC_CMD_STATE_CONTROL do
1123 * use the same programming. Setting this fake index here allows the
1124 * code in tegra_add_plane_state() to do the right thing without the
1125 * need to special-casing the cursor plane.
1127 plane->index = 6;
1128 plane->dc = dc;
1130 if (!dc->soc->has_nvdisplay) {
1131 num_formats = ARRAY_SIZE(tegra_legacy_cursor_plane_formats);
1132 formats = tegra_legacy_cursor_plane_formats;
1134 err = tegra_plane_interconnect_init(plane);
1135 if (err) {
1136 kfree(plane);
1137 return ERR_PTR(err);
1139 } else {
1140 num_formats = ARRAY_SIZE(tegra_cursor_plane_formats);
1141 formats = tegra_cursor_plane_formats;
1144 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1145 &tegra_plane_funcs, formats,
1146 num_formats, linear_modifiers,
1147 DRM_PLANE_TYPE_CURSOR, NULL);
1148 if (err < 0) {
1149 kfree(plane);
1150 return ERR_PTR(err);
1153 drm_plane_helper_add(&plane->base, &tegra_cursor_plane_helper_funcs);
1154 drm_plane_create_zpos_immutable_property(&plane->base, 255);
1156 return &plane->base;
1159 static const u32 tegra20_overlay_formats[] = {
1160 DRM_FORMAT_ARGB4444,
1161 DRM_FORMAT_ARGB1555,
1162 DRM_FORMAT_RGB565,
1163 DRM_FORMAT_RGBA5551,
1164 DRM_FORMAT_ABGR8888,
1165 DRM_FORMAT_ARGB8888,
1166 /* non-native formats */
1167 DRM_FORMAT_XRGB1555,
1168 DRM_FORMAT_RGBX5551,
1169 DRM_FORMAT_XBGR8888,
1170 DRM_FORMAT_XRGB8888,
1171 /* planar formats */
1172 DRM_FORMAT_UYVY,
1173 DRM_FORMAT_YUYV,
1174 DRM_FORMAT_YUV420,
1175 DRM_FORMAT_YUV422,
1178 static const u32 tegra114_overlay_formats[] = {
1179 DRM_FORMAT_ARGB4444,
1180 DRM_FORMAT_ARGB1555,
1181 DRM_FORMAT_RGB565,
1182 DRM_FORMAT_RGBA5551,
1183 DRM_FORMAT_ABGR8888,
1184 DRM_FORMAT_ARGB8888,
1185 /* new on Tegra114 */
1186 DRM_FORMAT_ABGR4444,
1187 DRM_FORMAT_ABGR1555,
1188 DRM_FORMAT_BGRA5551,
1189 DRM_FORMAT_XRGB1555,
1190 DRM_FORMAT_RGBX5551,
1191 DRM_FORMAT_XBGR1555,
1192 DRM_FORMAT_BGRX5551,
1193 DRM_FORMAT_BGR565,
1194 DRM_FORMAT_BGRA8888,
1195 DRM_FORMAT_RGBA8888,
1196 DRM_FORMAT_XRGB8888,
1197 DRM_FORMAT_XBGR8888,
1198 /* planar formats */
1199 DRM_FORMAT_UYVY,
1200 DRM_FORMAT_YUYV,
1201 DRM_FORMAT_YUV420,
1202 DRM_FORMAT_YUV422,
1203 /* semi-planar formats */
1204 DRM_FORMAT_NV12,
1205 DRM_FORMAT_NV21,
1206 DRM_FORMAT_NV16,
1207 DRM_FORMAT_NV61,
1208 DRM_FORMAT_NV24,
1209 DRM_FORMAT_NV42,
1212 static const u32 tegra124_overlay_formats[] = {
1213 DRM_FORMAT_ARGB4444,
1214 DRM_FORMAT_ARGB1555,
1215 DRM_FORMAT_RGB565,
1216 DRM_FORMAT_RGBA5551,
1217 DRM_FORMAT_ABGR8888,
1218 DRM_FORMAT_ARGB8888,
1219 /* new on Tegra114 */
1220 DRM_FORMAT_ABGR4444,
1221 DRM_FORMAT_ABGR1555,
1222 DRM_FORMAT_BGRA5551,
1223 DRM_FORMAT_XRGB1555,
1224 DRM_FORMAT_RGBX5551,
1225 DRM_FORMAT_XBGR1555,
1226 DRM_FORMAT_BGRX5551,
1227 DRM_FORMAT_BGR565,
1228 DRM_FORMAT_BGRA8888,
1229 DRM_FORMAT_RGBA8888,
1230 DRM_FORMAT_XRGB8888,
1231 DRM_FORMAT_XBGR8888,
1232 /* new on Tegra124 */
1233 DRM_FORMAT_RGBX8888,
1234 DRM_FORMAT_BGRX8888,
1235 /* planar formats */
1236 DRM_FORMAT_UYVY,
1237 DRM_FORMAT_YUYV,
1238 DRM_FORMAT_YVYU,
1239 DRM_FORMAT_VYUY,
1240 DRM_FORMAT_YUV420, /* YU12 */
1241 DRM_FORMAT_YUV422, /* YU16 */
1242 DRM_FORMAT_YUV444, /* YU24 */
1243 /* semi-planar formats */
1244 DRM_FORMAT_NV12,
1245 DRM_FORMAT_NV21,
1246 DRM_FORMAT_NV16,
1247 DRM_FORMAT_NV61,
1248 DRM_FORMAT_NV24,
1249 DRM_FORMAT_NV42,
1252 static struct drm_plane *tegra_dc_overlay_plane_create(struct drm_device *drm,
1253 struct tegra_dc *dc,
1254 unsigned int index,
1255 bool cursor)
1257 unsigned long possible_crtcs = tegra_plane_get_possible_crtcs(drm);
1258 struct tegra_plane *plane;
1259 unsigned int num_formats;
1260 enum drm_plane_type type;
1261 const u32 *formats;
1262 int err;
1264 plane = kzalloc(sizeof(*plane), GFP_KERNEL);
1265 if (!plane)
1266 return ERR_PTR(-ENOMEM);
1268 plane->offset = 0xa00 + 0x200 * index;
1269 plane->index = index;
1270 plane->dc = dc;
1272 num_formats = dc->soc->num_overlay_formats;
1273 formats = dc->soc->overlay_formats;
1275 err = tegra_plane_interconnect_init(plane);
1276 if (err) {
1277 kfree(plane);
1278 return ERR_PTR(err);
1281 if (!cursor)
1282 type = DRM_PLANE_TYPE_OVERLAY;
1283 else
1284 type = DRM_PLANE_TYPE_CURSOR;
1286 err = drm_universal_plane_init(drm, &plane->base, possible_crtcs,
1287 &tegra_plane_funcs, formats,
1288 num_formats, linear_modifiers,
1289 type, NULL);
1290 if (err < 0) {
1291 kfree(plane);
1292 return ERR_PTR(err);
1295 drm_plane_helper_add(&plane->base, &tegra_plane_helper_funcs);
1296 drm_plane_create_zpos_property(&plane->base, plane->index, 0, 255);
1298 err = drm_plane_create_rotation_property(&plane->base,
1299 DRM_MODE_ROTATE_0,
1300 DRM_MODE_ROTATE_0 |
1301 DRM_MODE_ROTATE_180 |
1302 DRM_MODE_REFLECT_X |
1303 DRM_MODE_REFLECT_Y);
1304 if (err < 0)
1305 dev_err(dc->dev, "failed to create rotation property: %d\n",
1306 err);
1308 return &plane->base;
1311 static struct drm_plane *tegra_dc_add_shared_planes(struct drm_device *drm,
1312 struct tegra_dc *dc)
1314 struct drm_plane *plane, *primary = NULL;
1315 unsigned int i, j;
1317 for (i = 0; i < dc->soc->num_wgrps; i++) {
1318 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
1320 if (wgrp->dc == dc->pipe) {
1321 for (j = 0; j < wgrp->num_windows; j++) {
1322 unsigned int index = wgrp->windows[j];
1324 plane = tegra_shared_plane_create(drm, dc,
1325 wgrp->index,
1326 index);
1327 if (IS_ERR(plane))
1328 return plane;
1331 * Choose the first shared plane owned by this
1332 * head as the primary plane.
1334 if (!primary) {
1335 plane->type = DRM_PLANE_TYPE_PRIMARY;
1336 primary = plane;
1342 return primary;
1345 static struct drm_plane *tegra_dc_add_planes(struct drm_device *drm,
1346 struct tegra_dc *dc)
1348 struct drm_plane *planes[2], *primary;
1349 unsigned int planes_num;
1350 unsigned int i;
1351 int err;
1353 primary = tegra_primary_plane_create(drm, dc);
1354 if (IS_ERR(primary))
1355 return primary;
1357 if (dc->soc->supports_cursor)
1358 planes_num = 2;
1359 else
1360 planes_num = 1;
1362 for (i = 0; i < planes_num; i++) {
1363 planes[i] = tegra_dc_overlay_plane_create(drm, dc, 1 + i,
1364 false);
1365 if (IS_ERR(planes[i])) {
1366 err = PTR_ERR(planes[i]);
1368 while (i--)
1369 planes[i]->funcs->destroy(planes[i]);
1371 primary->funcs->destroy(primary);
1372 return ERR_PTR(err);
1376 return primary;
1379 static void tegra_dc_destroy(struct drm_crtc *crtc)
1381 drm_crtc_cleanup(crtc);
1384 static void tegra_crtc_reset(struct drm_crtc *crtc)
1386 struct tegra_dc_state *state = kzalloc(sizeof(*state), GFP_KERNEL);
1388 if (crtc->state)
1389 tegra_crtc_atomic_destroy_state(crtc, crtc->state);
1391 __drm_atomic_helper_crtc_reset(crtc, &state->base);
1394 static struct drm_crtc_state *
1395 tegra_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
1397 struct tegra_dc_state *state = to_dc_state(crtc->state);
1398 struct tegra_dc_state *copy;
1400 copy = kmalloc(sizeof(*copy), GFP_KERNEL);
1401 if (!copy)
1402 return NULL;
1404 __drm_atomic_helper_crtc_duplicate_state(crtc, &copy->base);
1405 copy->clk = state->clk;
1406 copy->pclk = state->pclk;
1407 copy->div = state->div;
1408 copy->planes = state->planes;
1410 return &copy->base;
1413 static void tegra_crtc_atomic_destroy_state(struct drm_crtc *crtc,
1414 struct drm_crtc_state *state)
1416 __drm_atomic_helper_crtc_destroy_state(state);
1417 kfree(state);
1420 #define DEBUGFS_REG32(_name) { .name = #_name, .offset = _name }
1422 static const struct debugfs_reg32 tegra_dc_regs[] = {
1423 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT),
1424 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_CNTRL),
1425 DEBUGFS_REG32(DC_CMD_GENERAL_INCR_SYNCPT_ERROR),
1426 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT),
1427 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_CNTRL),
1428 DEBUGFS_REG32(DC_CMD_WIN_A_INCR_SYNCPT_ERROR),
1429 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT),
1430 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_CNTRL),
1431 DEBUGFS_REG32(DC_CMD_WIN_B_INCR_SYNCPT_ERROR),
1432 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT),
1433 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_CNTRL),
1434 DEBUGFS_REG32(DC_CMD_WIN_C_INCR_SYNCPT_ERROR),
1435 DEBUGFS_REG32(DC_CMD_CONT_SYNCPT_VSYNC),
1436 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND_OPTION0),
1437 DEBUGFS_REG32(DC_CMD_DISPLAY_COMMAND),
1438 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE),
1439 DEBUGFS_REG32(DC_CMD_DISPLAY_POWER_CONTROL),
1440 DEBUGFS_REG32(DC_CMD_INT_STATUS),
1441 DEBUGFS_REG32(DC_CMD_INT_MASK),
1442 DEBUGFS_REG32(DC_CMD_INT_ENABLE),
1443 DEBUGFS_REG32(DC_CMD_INT_TYPE),
1444 DEBUGFS_REG32(DC_CMD_INT_POLARITY),
1445 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE1),
1446 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE2),
1447 DEBUGFS_REG32(DC_CMD_SIGNAL_RAISE3),
1448 DEBUGFS_REG32(DC_CMD_STATE_ACCESS),
1449 DEBUGFS_REG32(DC_CMD_STATE_CONTROL),
1450 DEBUGFS_REG32(DC_CMD_DISPLAY_WINDOW_HEADER),
1451 DEBUGFS_REG32(DC_CMD_REG_ACT_CONTROL),
1452 DEBUGFS_REG32(DC_COM_CRC_CONTROL),
1453 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM),
1454 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(0)),
1455 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(1)),
1456 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(2)),
1457 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_ENABLE(3)),
1458 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(0)),
1459 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(1)),
1460 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(2)),
1461 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_POLARITY(3)),
1462 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(0)),
1463 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(1)),
1464 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(2)),
1465 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_DATA(3)),
1466 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(0)),
1467 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(1)),
1468 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(2)),
1469 DEBUGFS_REG32(DC_COM_PIN_INPUT_ENABLE(3)),
1470 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(0)),
1471 DEBUGFS_REG32(DC_COM_PIN_INPUT_DATA(1)),
1472 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(0)),
1473 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(1)),
1474 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(2)),
1475 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(3)),
1476 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(4)),
1477 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(5)),
1478 DEBUGFS_REG32(DC_COM_PIN_OUTPUT_SELECT(6)),
1479 DEBUGFS_REG32(DC_COM_PIN_MISC_CONTROL),
1480 DEBUGFS_REG32(DC_COM_PIN_PM0_CONTROL),
1481 DEBUGFS_REG32(DC_COM_PIN_PM0_DUTY_CYCLE),
1482 DEBUGFS_REG32(DC_COM_PIN_PM1_CONTROL),
1483 DEBUGFS_REG32(DC_COM_PIN_PM1_DUTY_CYCLE),
1484 DEBUGFS_REG32(DC_COM_SPI_CONTROL),
1485 DEBUGFS_REG32(DC_COM_SPI_START_BYTE),
1486 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_AB),
1487 DEBUGFS_REG32(DC_COM_HSPI_WRITE_DATA_CD),
1488 DEBUGFS_REG32(DC_COM_HSPI_CS_DC),
1489 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_A),
1490 DEBUGFS_REG32(DC_COM_SCRATCH_REGISTER_B),
1491 DEBUGFS_REG32(DC_COM_GPIO_CTRL),
1492 DEBUGFS_REG32(DC_COM_GPIO_DEBOUNCE_COUNTER),
1493 DEBUGFS_REG32(DC_COM_CRC_CHECKSUM_LATCHED),
1494 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS0),
1495 DEBUGFS_REG32(DC_DISP_DISP_SIGNAL_OPTIONS1),
1496 DEBUGFS_REG32(DC_DISP_DISP_WIN_OPTIONS),
1497 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY),
1498 DEBUGFS_REG32(DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER),
1499 DEBUGFS_REG32(DC_DISP_DISP_TIMING_OPTIONS),
1500 DEBUGFS_REG32(DC_DISP_REF_TO_SYNC),
1501 DEBUGFS_REG32(DC_DISP_SYNC_WIDTH),
1502 DEBUGFS_REG32(DC_DISP_BACK_PORCH),
1503 DEBUGFS_REG32(DC_DISP_ACTIVE),
1504 DEBUGFS_REG32(DC_DISP_FRONT_PORCH),
1505 DEBUGFS_REG32(DC_DISP_H_PULSE0_CONTROL),
1506 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_A),
1507 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_B),
1508 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_C),
1509 DEBUGFS_REG32(DC_DISP_H_PULSE0_POSITION_D),
1510 DEBUGFS_REG32(DC_DISP_H_PULSE1_CONTROL),
1511 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_A),
1512 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_B),
1513 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_C),
1514 DEBUGFS_REG32(DC_DISP_H_PULSE1_POSITION_D),
1515 DEBUGFS_REG32(DC_DISP_H_PULSE2_CONTROL),
1516 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_A),
1517 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_B),
1518 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_C),
1519 DEBUGFS_REG32(DC_DISP_H_PULSE2_POSITION_D),
1520 DEBUGFS_REG32(DC_DISP_V_PULSE0_CONTROL),
1521 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_A),
1522 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_B),
1523 DEBUGFS_REG32(DC_DISP_V_PULSE0_POSITION_C),
1524 DEBUGFS_REG32(DC_DISP_V_PULSE1_CONTROL),
1525 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_A),
1526 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_B),
1527 DEBUGFS_REG32(DC_DISP_V_PULSE1_POSITION_C),
1528 DEBUGFS_REG32(DC_DISP_V_PULSE2_CONTROL),
1529 DEBUGFS_REG32(DC_DISP_V_PULSE2_POSITION_A),
1530 DEBUGFS_REG32(DC_DISP_V_PULSE3_CONTROL),
1531 DEBUGFS_REG32(DC_DISP_V_PULSE3_POSITION_A),
1532 DEBUGFS_REG32(DC_DISP_M0_CONTROL),
1533 DEBUGFS_REG32(DC_DISP_M1_CONTROL),
1534 DEBUGFS_REG32(DC_DISP_DI_CONTROL),
1535 DEBUGFS_REG32(DC_DISP_PP_CONTROL),
1536 DEBUGFS_REG32(DC_DISP_PP_SELECT_A),
1537 DEBUGFS_REG32(DC_DISP_PP_SELECT_B),
1538 DEBUGFS_REG32(DC_DISP_PP_SELECT_C),
1539 DEBUGFS_REG32(DC_DISP_PP_SELECT_D),
1540 DEBUGFS_REG32(DC_DISP_DISP_CLOCK_CONTROL),
1541 DEBUGFS_REG32(DC_DISP_DISP_INTERFACE_CONTROL),
1542 DEBUGFS_REG32(DC_DISP_DISP_COLOR_CONTROL),
1543 DEBUGFS_REG32(DC_DISP_SHIFT_CLOCK_OPTIONS),
1544 DEBUGFS_REG32(DC_DISP_DATA_ENABLE_OPTIONS),
1545 DEBUGFS_REG32(DC_DISP_SERIAL_INTERFACE_OPTIONS),
1546 DEBUGFS_REG32(DC_DISP_LCD_SPI_OPTIONS),
1547 DEBUGFS_REG32(DC_DISP_BORDER_COLOR),
1548 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_LOWER),
1549 DEBUGFS_REG32(DC_DISP_COLOR_KEY0_UPPER),
1550 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_LOWER),
1551 DEBUGFS_REG32(DC_DISP_COLOR_KEY1_UPPER),
1552 DEBUGFS_REG32(DC_DISP_CURSOR_FOREGROUND),
1553 DEBUGFS_REG32(DC_DISP_CURSOR_BACKGROUND),
1554 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR),
1555 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_NS),
1556 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION),
1557 DEBUGFS_REG32(DC_DISP_CURSOR_POSITION_NS),
1558 DEBUGFS_REG32(DC_DISP_INIT_SEQ_CONTROL),
1559 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_A),
1560 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_B),
1561 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_C),
1562 DEBUGFS_REG32(DC_DISP_SPI_INIT_SEQ_DATA_D),
1563 DEBUGFS_REG32(DC_DISP_DC_MCCIF_FIFOCTRL),
1564 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0A_HYST),
1565 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY0B_HYST),
1566 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1A_HYST),
1567 DEBUGFS_REG32(DC_DISP_MCCIF_DISPLAY1B_HYST),
1568 DEBUGFS_REG32(DC_DISP_DAC_CRT_CTRL),
1569 DEBUGFS_REG32(DC_DISP_DISP_MISC_CONTROL),
1570 DEBUGFS_REG32(DC_DISP_SD_CONTROL),
1571 DEBUGFS_REG32(DC_DISP_SD_CSC_COEFF),
1572 DEBUGFS_REG32(DC_DISP_SD_LUT(0)),
1573 DEBUGFS_REG32(DC_DISP_SD_LUT(1)),
1574 DEBUGFS_REG32(DC_DISP_SD_LUT(2)),
1575 DEBUGFS_REG32(DC_DISP_SD_LUT(3)),
1576 DEBUGFS_REG32(DC_DISP_SD_LUT(4)),
1577 DEBUGFS_REG32(DC_DISP_SD_LUT(5)),
1578 DEBUGFS_REG32(DC_DISP_SD_LUT(6)),
1579 DEBUGFS_REG32(DC_DISP_SD_LUT(7)),
1580 DEBUGFS_REG32(DC_DISP_SD_LUT(8)),
1581 DEBUGFS_REG32(DC_DISP_SD_FLICKER_CONTROL),
1582 DEBUGFS_REG32(DC_DISP_DC_PIXEL_COUNT),
1583 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(0)),
1584 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(1)),
1585 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(2)),
1586 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(3)),
1587 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(4)),
1588 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(5)),
1589 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(6)),
1590 DEBUGFS_REG32(DC_DISP_SD_HISTOGRAM(7)),
1591 DEBUGFS_REG32(DC_DISP_SD_BL_TF(0)),
1592 DEBUGFS_REG32(DC_DISP_SD_BL_TF(1)),
1593 DEBUGFS_REG32(DC_DISP_SD_BL_TF(2)),
1594 DEBUGFS_REG32(DC_DISP_SD_BL_TF(3)),
1595 DEBUGFS_REG32(DC_DISP_SD_BL_CONTROL),
1596 DEBUGFS_REG32(DC_DISP_SD_HW_K_VALUES),
1597 DEBUGFS_REG32(DC_DISP_SD_MAN_K_VALUES),
1598 DEBUGFS_REG32(DC_DISP_CURSOR_START_ADDR_HI),
1599 DEBUGFS_REG32(DC_DISP_BLEND_CURSOR_CONTROL),
1600 DEBUGFS_REG32(DC_WIN_WIN_OPTIONS),
1601 DEBUGFS_REG32(DC_WIN_BYTE_SWAP),
1602 DEBUGFS_REG32(DC_WIN_BUFFER_CONTROL),
1603 DEBUGFS_REG32(DC_WIN_COLOR_DEPTH),
1604 DEBUGFS_REG32(DC_WIN_POSITION),
1605 DEBUGFS_REG32(DC_WIN_SIZE),
1606 DEBUGFS_REG32(DC_WIN_PRESCALED_SIZE),
1607 DEBUGFS_REG32(DC_WIN_H_INITIAL_DDA),
1608 DEBUGFS_REG32(DC_WIN_V_INITIAL_DDA),
1609 DEBUGFS_REG32(DC_WIN_DDA_INC),
1610 DEBUGFS_REG32(DC_WIN_LINE_STRIDE),
1611 DEBUGFS_REG32(DC_WIN_BUF_STRIDE),
1612 DEBUGFS_REG32(DC_WIN_UV_BUF_STRIDE),
1613 DEBUGFS_REG32(DC_WIN_BUFFER_ADDR_MODE),
1614 DEBUGFS_REG32(DC_WIN_DV_CONTROL),
1615 DEBUGFS_REG32(DC_WIN_BLEND_NOKEY),
1616 DEBUGFS_REG32(DC_WIN_BLEND_1WIN),
1617 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_X),
1618 DEBUGFS_REG32(DC_WIN_BLEND_2WIN_Y),
1619 DEBUGFS_REG32(DC_WIN_BLEND_3WIN_XY),
1620 DEBUGFS_REG32(DC_WIN_HP_FETCH_CONTROL),
1621 DEBUGFS_REG32(DC_WINBUF_START_ADDR),
1622 DEBUGFS_REG32(DC_WINBUF_START_ADDR_NS),
1623 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U),
1624 DEBUGFS_REG32(DC_WINBUF_START_ADDR_U_NS),
1625 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V),
1626 DEBUGFS_REG32(DC_WINBUF_START_ADDR_V_NS),
1627 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET),
1628 DEBUGFS_REG32(DC_WINBUF_ADDR_H_OFFSET_NS),
1629 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET),
1630 DEBUGFS_REG32(DC_WINBUF_ADDR_V_OFFSET_NS),
1631 DEBUGFS_REG32(DC_WINBUF_UFLOW_STATUS),
1632 DEBUGFS_REG32(DC_WINBUF_AD_UFLOW_STATUS),
1633 DEBUGFS_REG32(DC_WINBUF_BD_UFLOW_STATUS),
1634 DEBUGFS_REG32(DC_WINBUF_CD_UFLOW_STATUS),
1637 static int tegra_dc_show_regs(struct seq_file *s, void *data)
1639 struct drm_info_node *node = s->private;
1640 struct tegra_dc *dc = node->info_ent->data;
1641 unsigned int i;
1642 int err = 0;
1644 drm_modeset_lock(&dc->base.mutex, NULL);
1646 if (!dc->base.state->active) {
1647 err = -EBUSY;
1648 goto unlock;
1651 for (i = 0; i < ARRAY_SIZE(tegra_dc_regs); i++) {
1652 unsigned int offset = tegra_dc_regs[i].offset;
1654 seq_printf(s, "%-40s %#05x %08x\n", tegra_dc_regs[i].name,
1655 offset, tegra_dc_readl(dc, offset));
1658 unlock:
1659 drm_modeset_unlock(&dc->base.mutex);
1660 return err;
1663 static int tegra_dc_show_crc(struct seq_file *s, void *data)
1665 struct drm_info_node *node = s->private;
1666 struct tegra_dc *dc = node->info_ent->data;
1667 int err = 0;
1668 u32 value;
1670 drm_modeset_lock(&dc->base.mutex, NULL);
1672 if (!dc->base.state->active) {
1673 err = -EBUSY;
1674 goto unlock;
1677 value = DC_COM_CRC_CONTROL_ACTIVE_DATA | DC_COM_CRC_CONTROL_ENABLE;
1678 tegra_dc_writel(dc, value, DC_COM_CRC_CONTROL);
1679 tegra_dc_commit(dc);
1681 drm_crtc_wait_one_vblank(&dc->base);
1682 drm_crtc_wait_one_vblank(&dc->base);
1684 value = tegra_dc_readl(dc, DC_COM_CRC_CHECKSUM);
1685 seq_printf(s, "%08x\n", value);
1687 tegra_dc_writel(dc, 0, DC_COM_CRC_CONTROL);
1689 unlock:
1690 drm_modeset_unlock(&dc->base.mutex);
1691 return err;
1694 static int tegra_dc_show_stats(struct seq_file *s, void *data)
1696 struct drm_info_node *node = s->private;
1697 struct tegra_dc *dc = node->info_ent->data;
1699 seq_printf(s, "frames: %lu\n", dc->stats.frames);
1700 seq_printf(s, "vblank: %lu\n", dc->stats.vblank);
1701 seq_printf(s, "underflow: %lu\n", dc->stats.underflow);
1702 seq_printf(s, "overflow: %lu\n", dc->stats.overflow);
1704 seq_printf(s, "frames total: %lu\n", dc->stats.frames_total);
1705 seq_printf(s, "vblank total: %lu\n", dc->stats.vblank_total);
1706 seq_printf(s, "underflow total: %lu\n", dc->stats.underflow_total);
1707 seq_printf(s, "overflow total: %lu\n", dc->stats.overflow_total);
1709 return 0;
1712 static struct drm_info_list debugfs_files[] = {
1713 { "regs", tegra_dc_show_regs, 0, NULL },
1714 { "crc", tegra_dc_show_crc, 0, NULL },
1715 { "stats", tegra_dc_show_stats, 0, NULL },
1718 static int tegra_dc_late_register(struct drm_crtc *crtc)
1720 unsigned int i, count = ARRAY_SIZE(debugfs_files);
1721 struct drm_minor *minor = crtc->dev->primary;
1722 struct dentry *root;
1723 struct tegra_dc *dc = to_tegra_dc(crtc);
1725 #ifdef CONFIG_DEBUG_FS
1726 root = crtc->debugfs_entry;
1727 #else
1728 root = NULL;
1729 #endif
1731 dc->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
1732 GFP_KERNEL);
1733 if (!dc->debugfs_files)
1734 return -ENOMEM;
1736 for (i = 0; i < count; i++)
1737 dc->debugfs_files[i].data = dc;
1739 drm_debugfs_create_files(dc->debugfs_files, count, root, minor);
1741 return 0;
1744 static void tegra_dc_early_unregister(struct drm_crtc *crtc)
1746 unsigned int count = ARRAY_SIZE(debugfs_files);
1747 struct drm_minor *minor = crtc->dev->primary;
1748 struct tegra_dc *dc = to_tegra_dc(crtc);
1749 struct dentry *root;
1751 #ifdef CONFIG_DEBUG_FS
1752 root = crtc->debugfs_entry;
1753 #else
1754 root = NULL;
1755 #endif
1757 drm_debugfs_remove_files(dc->debugfs_files, count, root, minor);
1758 kfree(dc->debugfs_files);
1759 dc->debugfs_files = NULL;
1762 static u32 tegra_dc_get_vblank_counter(struct drm_crtc *crtc)
1764 struct tegra_dc *dc = to_tegra_dc(crtc);
1766 /* XXX vblank syncpoints don't work with nvdisplay yet */
1767 if (dc->syncpt && !dc->soc->has_nvdisplay)
1768 return host1x_syncpt_read(dc->syncpt);
1770 /* fallback to software emulated VBLANK counter */
1771 return (u32)drm_crtc_vblank_count(&dc->base);
1774 static int tegra_dc_enable_vblank(struct drm_crtc *crtc)
1776 struct tegra_dc *dc = to_tegra_dc(crtc);
1777 u32 value;
1779 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1780 value |= VBLANK_INT;
1781 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1783 return 0;
1786 static void tegra_dc_disable_vblank(struct drm_crtc *crtc)
1788 struct tegra_dc *dc = to_tegra_dc(crtc);
1789 u32 value;
1791 value = tegra_dc_readl(dc, DC_CMD_INT_MASK);
1792 value &= ~VBLANK_INT;
1793 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
1796 static const struct drm_crtc_funcs tegra_crtc_funcs = {
1797 .page_flip = drm_atomic_helper_page_flip,
1798 .set_config = drm_atomic_helper_set_config,
1799 .destroy = tegra_dc_destroy,
1800 .reset = tegra_crtc_reset,
1801 .atomic_duplicate_state = tegra_crtc_atomic_duplicate_state,
1802 .atomic_destroy_state = tegra_crtc_atomic_destroy_state,
1803 .late_register = tegra_dc_late_register,
1804 .early_unregister = tegra_dc_early_unregister,
1805 .get_vblank_counter = tegra_dc_get_vblank_counter,
1806 .enable_vblank = tegra_dc_enable_vblank,
1807 .disable_vblank = tegra_dc_disable_vblank,
1810 static int tegra_dc_set_timings(struct tegra_dc *dc,
1811 struct drm_display_mode *mode)
1813 unsigned int h_ref_to_sync = 1;
1814 unsigned int v_ref_to_sync = 1;
1815 unsigned long value;
1817 if (!dc->soc->has_nvdisplay) {
1818 tegra_dc_writel(dc, 0x0, DC_DISP_DISP_TIMING_OPTIONS);
1820 value = (v_ref_to_sync << 16) | h_ref_to_sync;
1821 tegra_dc_writel(dc, value, DC_DISP_REF_TO_SYNC);
1824 value = ((mode->vsync_end - mode->vsync_start) << 16) |
1825 ((mode->hsync_end - mode->hsync_start) << 0);
1826 tegra_dc_writel(dc, value, DC_DISP_SYNC_WIDTH);
1828 value = ((mode->vtotal - mode->vsync_end) << 16) |
1829 ((mode->htotal - mode->hsync_end) << 0);
1830 tegra_dc_writel(dc, value, DC_DISP_BACK_PORCH);
1832 value = ((mode->vsync_start - mode->vdisplay) << 16) |
1833 ((mode->hsync_start - mode->hdisplay) << 0);
1834 tegra_dc_writel(dc, value, DC_DISP_FRONT_PORCH);
1836 value = (mode->vdisplay << 16) | mode->hdisplay;
1837 tegra_dc_writel(dc, value, DC_DISP_ACTIVE);
1839 return 0;
1843 * tegra_dc_state_setup_clock - check clock settings and store them in atomic
1844 * state
1845 * @dc: display controller
1846 * @crtc_state: CRTC atomic state
1847 * @clk: parent clock for display controller
1848 * @pclk: pixel clock
1849 * @div: shift clock divider
1851 * Returns:
1852 * 0 on success or a negative error-code on failure.
1854 int tegra_dc_state_setup_clock(struct tegra_dc *dc,
1855 struct drm_crtc_state *crtc_state,
1856 struct clk *clk, unsigned long pclk,
1857 unsigned int div)
1859 struct tegra_dc_state *state = to_dc_state(crtc_state);
1861 if (!clk_has_parent(dc->clk, clk))
1862 return -EINVAL;
1864 state->clk = clk;
1865 state->pclk = pclk;
1866 state->div = div;
1868 return 0;
1871 static void tegra_dc_update_voltage_state(struct tegra_dc *dc,
1872 struct tegra_dc_state *state)
1874 unsigned long rate, pstate;
1875 struct dev_pm_opp *opp;
1876 int err;
1878 if (!dc->has_opp_table)
1879 return;
1881 /* calculate actual pixel clock rate which depends on internal divider */
1882 rate = DIV_ROUND_UP(clk_get_rate(dc->clk) * 2, state->div + 2);
1884 /* find suitable OPP for the rate */
1885 opp = dev_pm_opp_find_freq_ceil(dc->dev, &rate);
1888 * Very high resolution modes may results in a clock rate that is
1889 * above the characterized maximum. In this case it's okay to fall
1890 * back to the characterized maximum.
1892 if (opp == ERR_PTR(-ERANGE))
1893 opp = dev_pm_opp_find_freq_floor(dc->dev, &rate);
1895 if (IS_ERR(opp)) {
1896 dev_err(dc->dev, "failed to find OPP for %luHz: %pe\n",
1897 rate, opp);
1898 return;
1901 pstate = dev_pm_opp_get_required_pstate(opp, 0);
1902 dev_pm_opp_put(opp);
1905 * The minimum core voltage depends on the pixel clock rate (which
1906 * depends on internal clock divider of the CRTC) and not on the
1907 * rate of the display controller clock. This is why we're not using
1908 * dev_pm_opp_set_rate() API and instead controlling the power domain
1909 * directly.
1911 err = dev_pm_genpd_set_performance_state(dc->dev, pstate);
1912 if (err)
1913 dev_err(dc->dev, "failed to set power domain state to %lu: %d\n",
1914 pstate, err);
1917 static void tegra_dc_set_clock_rate(struct tegra_dc *dc,
1918 struct tegra_dc_state *state)
1920 int err;
1922 err = clk_set_parent(dc->clk, state->clk);
1923 if (err < 0)
1924 dev_err(dc->dev, "failed to set parent clock: %d\n", err);
1927 * Outputs may not want to change the parent clock rate. This is only
1928 * relevant to Tegra20 where only a single display PLL is available.
1929 * Since that PLL would typically be used for HDMI, an internal LVDS
1930 * panel would need to be driven by some other clock such as PLL_P
1931 * which is shared with other peripherals. Changing the clock rate
1932 * should therefore be avoided.
1934 if (state->pclk > 0) {
1935 err = clk_set_rate(state->clk, state->pclk);
1936 if (err < 0)
1937 dev_err(dc->dev,
1938 "failed to set clock rate to %lu Hz\n",
1939 state->pclk);
1941 err = clk_set_rate(dc->clk, state->pclk);
1942 if (err < 0)
1943 dev_err(dc->dev, "failed to set clock %pC to %lu Hz: %d\n",
1944 dc->clk, state->pclk, err);
1947 DRM_DEBUG_KMS("rate: %lu, div: %u\n", clk_get_rate(dc->clk),
1948 state->div);
1949 DRM_DEBUG_KMS("pclk: %lu\n", state->pclk);
1951 tegra_dc_update_voltage_state(dc, state);
1954 static void tegra_dc_stop(struct tegra_dc *dc)
1956 u32 value;
1958 /* stop the display controller */
1959 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
1960 value &= ~DISP_CTRL_MODE_MASK;
1961 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
1963 tegra_dc_commit(dc);
1966 static bool tegra_dc_idle(struct tegra_dc *dc)
1968 u32 value;
1970 value = tegra_dc_readl_active(dc, DC_CMD_DISPLAY_COMMAND);
1972 return (value & DISP_CTRL_MODE_MASK) == 0;
1975 static int tegra_dc_wait_idle(struct tegra_dc *dc, unsigned long timeout)
1977 timeout = jiffies + msecs_to_jiffies(timeout);
1979 while (time_before(jiffies, timeout)) {
1980 if (tegra_dc_idle(dc))
1981 return 0;
1983 usleep_range(1000, 2000);
1986 dev_dbg(dc->dev, "timeout waiting for DC to become idle\n");
1987 return -ETIMEDOUT;
1990 static void
1991 tegra_crtc_update_memory_bandwidth(struct drm_crtc *crtc,
1992 struct drm_atomic_state *state,
1993 bool prepare_bandwidth_transition)
1995 const struct tegra_plane_state *old_tegra_state, *new_tegra_state;
1996 u32 i, new_avg_bw, old_avg_bw, new_peak_bw, old_peak_bw;
1997 const struct drm_plane_state *old_plane_state;
1998 const struct drm_crtc_state *old_crtc_state;
1999 struct tegra_dc_window window, old_window;
2000 struct tegra_dc *dc = to_tegra_dc(crtc);
2001 struct tegra_plane *tegra;
2002 struct drm_plane *plane;
2004 if (dc->soc->has_nvdisplay)
2005 return;
2007 old_crtc_state = drm_atomic_get_old_crtc_state(state, crtc);
2009 if (!crtc->state->active) {
2010 if (!old_crtc_state->active)
2011 return;
2014 * When CRTC is disabled on DPMS, the state of attached planes
2015 * is kept unchanged. Hence we need to enforce removal of the
2016 * bandwidths from the ICC paths.
2018 drm_atomic_crtc_for_each_plane(plane, crtc) {
2019 tegra = to_tegra_plane(plane);
2021 icc_set_bw(tegra->icc_mem, 0, 0);
2022 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2025 return;
2028 for_each_old_plane_in_state(old_crtc_state->state, plane,
2029 old_plane_state, i) {
2030 old_tegra_state = to_const_tegra_plane_state(old_plane_state);
2031 new_tegra_state = to_const_tegra_plane_state(plane->state);
2032 tegra = to_tegra_plane(plane);
2035 * We're iterating over the global atomic state and it contains
2036 * planes from another CRTC, hence we need to filter out the
2037 * planes unrelated to this CRTC.
2039 if (tegra->dc != dc)
2040 continue;
2042 new_avg_bw = new_tegra_state->avg_memory_bandwidth;
2043 old_avg_bw = old_tegra_state->avg_memory_bandwidth;
2045 new_peak_bw = new_tegra_state->total_peak_memory_bandwidth;
2046 old_peak_bw = old_tegra_state->total_peak_memory_bandwidth;
2049 * See the comment related to !crtc->state->active above,
2050 * which explains why bandwidths need to be updated when
2051 * CRTC is turning ON.
2053 if (new_avg_bw == old_avg_bw && new_peak_bw == old_peak_bw &&
2054 old_crtc_state->active)
2055 continue;
2057 window.src.h = drm_rect_height(&plane->state->src) >> 16;
2058 window.dst.h = drm_rect_height(&plane->state->dst);
2060 old_window.src.h = drm_rect_height(&old_plane_state->src) >> 16;
2061 old_window.dst.h = drm_rect_height(&old_plane_state->dst);
2064 * During the preparation phase (atomic_begin), the memory
2065 * freq should go high before the DC changes are committed
2066 * if bandwidth requirement goes up, otherwise memory freq
2067 * should to stay high if BW requirement goes down. The
2068 * opposite applies to the completion phase (post_commit).
2070 if (prepare_bandwidth_transition) {
2071 new_avg_bw = max(old_avg_bw, new_avg_bw);
2072 new_peak_bw = max(old_peak_bw, new_peak_bw);
2074 if (tegra_plane_use_vertical_filtering(tegra, &old_window))
2075 window = old_window;
2078 icc_set_bw(tegra->icc_mem, new_avg_bw, new_peak_bw);
2080 if (tegra_plane_use_vertical_filtering(tegra, &window))
2081 icc_set_bw(tegra->icc_mem_vfilter, new_avg_bw, new_peak_bw);
2082 else
2083 icc_set_bw(tegra->icc_mem_vfilter, 0, 0);
2087 static void tegra_crtc_atomic_disable(struct drm_crtc *crtc,
2088 struct drm_atomic_state *state)
2090 struct tegra_dc *dc = to_tegra_dc(crtc);
2091 u32 value;
2092 int err;
2094 if (!tegra_dc_idle(dc)) {
2095 tegra_dc_stop(dc);
2098 * Ignore the return value, there isn't anything useful to do
2099 * in case this fails.
2101 tegra_dc_wait_idle(dc, 100);
2105 * This should really be part of the RGB encoder driver, but clearing
2106 * these bits has the side-effect of stopping the display controller.
2107 * When that happens no VBLANK interrupts will be raised. At the same
2108 * time the encoder is disabled before the display controller, so the
2109 * above code is always going to timeout waiting for the controller
2110 * to go idle.
2112 * Given the close coupling between the RGB encoder and the display
2113 * controller doing it here is still kind of okay. None of the other
2114 * encoder drivers require these bits to be cleared.
2116 * XXX: Perhaps given that the display controller is switched off at
2117 * this point anyway maybe clearing these bits isn't even useful for
2118 * the RGB encoder?
2120 if (dc->rgb) {
2121 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2122 value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2123 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
2124 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2127 tegra_dc_stats_reset(&dc->stats);
2128 drm_crtc_vblank_off(crtc);
2130 spin_lock_irq(&crtc->dev->event_lock);
2132 if (crtc->state->event) {
2133 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2134 crtc->state->event = NULL;
2137 spin_unlock_irq(&crtc->dev->event_lock);
2139 err = host1x_client_suspend(&dc->client);
2140 if (err < 0)
2141 dev_err(dc->dev, "failed to suspend: %d\n", err);
2143 if (dc->has_opp_table) {
2144 err = dev_pm_genpd_set_performance_state(dc->dev, 0);
2145 if (err)
2146 dev_err(dc->dev,
2147 "failed to clear power domain state: %d\n", err);
2151 static void tegra_crtc_atomic_enable(struct drm_crtc *crtc,
2152 struct drm_atomic_state *state)
2154 struct drm_display_mode *mode = &crtc->state->adjusted_mode;
2155 struct tegra_dc_state *crtc_state = to_dc_state(crtc->state);
2156 struct tegra_dc *dc = to_tegra_dc(crtc);
2157 u32 value;
2158 int err;
2160 /* apply PLL changes */
2161 tegra_dc_set_clock_rate(dc, crtc_state);
2163 err = host1x_client_resume(&dc->client);
2164 if (err < 0) {
2165 dev_err(dc->dev, "failed to resume: %d\n", err);
2166 return;
2169 /* initialize display controller */
2170 if (dc->syncpt) {
2171 u32 syncpt = host1x_syncpt_id(dc->syncpt), enable;
2173 if (dc->soc->has_nvdisplay)
2174 enable = 1 << 31;
2175 else
2176 enable = 1 << 8;
2178 value = SYNCPT_CNTRL_NO_STALL;
2179 tegra_dc_writel(dc, value, DC_CMD_GENERAL_INCR_SYNCPT_CNTRL);
2181 value = enable | syncpt;
2182 tegra_dc_writel(dc, value, DC_CMD_CONT_SYNCPT_VSYNC);
2185 if (dc->soc->has_nvdisplay) {
2186 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2187 DSC_OBUF_UF_INT;
2188 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2190 value = DSC_TO_UF_INT | DSC_BBUF_UF_INT | DSC_RBUF_UF_INT |
2191 DSC_OBUF_UF_INT | SD3_BUCKET_WALK_DONE_INT |
2192 HEAD_UF_INT | MSF_INT | REG_TMOUT_INT |
2193 REGION_CRC_INT | V_PULSE2_INT | V_PULSE3_INT |
2194 VBLANK_INT | FRAME_END_INT;
2195 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2197 value = SD3_BUCKET_WALK_DONE_INT | HEAD_UF_INT | VBLANK_INT |
2198 FRAME_END_INT;
2199 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2201 value = HEAD_UF_INT | REG_TMOUT_INT | FRAME_END_INT;
2202 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2204 tegra_dc_writel(dc, READ_MUX, DC_CMD_STATE_ACCESS);
2205 } else {
2206 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2207 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2208 tegra_dc_writel(dc, value, DC_CMD_INT_TYPE);
2210 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2211 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2212 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
2214 /* initialize timer */
2215 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
2216 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);
2217 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY);
2219 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(1) |
2220 WINDOW_B_THRESHOLD(1) | WINDOW_C_THRESHOLD(1);
2221 tegra_dc_writel(dc, value, DC_DISP_DISP_MEM_HIGH_PRIORITY_TIMER);
2223 value = VBLANK_INT | WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2224 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2225 tegra_dc_writel(dc, value, DC_CMD_INT_ENABLE);
2227 value = WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT |
2228 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
2229 tegra_dc_writel(dc, value, DC_CMD_INT_MASK);
2232 if (dc->soc->supports_background_color)
2233 tegra_dc_writel(dc, 0, DC_DISP_BLEND_BACKGROUND_COLOR);
2234 else
2235 tegra_dc_writel(dc, 0, DC_DISP_BORDER_COLOR);
2237 /* apply pixel clock changes */
2238 if (!dc->soc->has_nvdisplay) {
2239 value = SHIFT_CLK_DIVIDER(crtc_state->div) | PIXEL_CLK_DIVIDER_PCD1;
2240 tegra_dc_writel(dc, value, DC_DISP_DISP_CLOCK_CONTROL);
2243 /* program display mode */
2244 tegra_dc_set_timings(dc, mode);
2246 /* interlacing isn't supported yet, so disable it */
2247 if (dc->soc->supports_interlacing) {
2248 value = tegra_dc_readl(dc, DC_DISP_INTERLACE_CONTROL);
2249 value &= ~INTERLACE_ENABLE;
2250 tegra_dc_writel(dc, value, DC_DISP_INTERLACE_CONTROL);
2253 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
2254 value &= ~DISP_CTRL_MODE_MASK;
2255 value |= DISP_CTRL_MODE_C_DISPLAY;
2256 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
2258 if (!dc->soc->has_nvdisplay) {
2259 value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
2260 value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
2261 PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
2262 tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
2265 /* enable underflow reporting and display red for missing pixels */
2266 if (dc->soc->has_nvdisplay) {
2267 value = UNDERFLOW_MODE_RED | UNDERFLOW_REPORT_ENABLE;
2268 tegra_dc_writel(dc, value, DC_COM_RG_UNDERFLOW);
2271 if (dc->rgb) {
2272 /* XXX: parameterize? */
2273 value = SC0_H_QUALIFIER_NONE | SC1_H_QUALIFIER_NONE;
2274 tegra_dc_writel(dc, value, DC_DISP_SHIFT_CLOCK_OPTIONS);
2277 tegra_dc_commit(dc);
2279 drm_crtc_vblank_on(crtc);
2282 static void tegra_crtc_atomic_begin(struct drm_crtc *crtc,
2283 struct drm_atomic_state *state)
2285 unsigned long flags;
2287 tegra_crtc_update_memory_bandwidth(crtc, state, true);
2289 if (crtc->state->event) {
2290 spin_lock_irqsave(&crtc->dev->event_lock, flags);
2292 if (drm_crtc_vblank_get(crtc) != 0)
2293 drm_crtc_send_vblank_event(crtc, crtc->state->event);
2294 else
2295 drm_crtc_arm_vblank_event(crtc, crtc->state->event);
2297 spin_unlock_irqrestore(&crtc->dev->event_lock, flags);
2299 crtc->state->event = NULL;
2303 static void tegra_crtc_atomic_flush(struct drm_crtc *crtc,
2304 struct drm_atomic_state *state)
2306 struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state,
2307 crtc);
2308 struct tegra_dc_state *dc_state = to_dc_state(crtc_state);
2309 struct tegra_dc *dc = to_tegra_dc(crtc);
2310 u32 value;
2312 value = dc_state->planes << 8 | GENERAL_UPDATE;
2313 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2314 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2316 value = dc_state->planes | GENERAL_ACT_REQ;
2317 tegra_dc_writel(dc, value, DC_CMD_STATE_CONTROL);
2318 value = tegra_dc_readl(dc, DC_CMD_STATE_CONTROL);
2321 static bool tegra_plane_is_cursor(const struct drm_plane_state *state)
2323 const struct tegra_dc_soc_info *soc = to_tegra_dc(state->crtc)->soc;
2324 const struct drm_format_info *fmt = state->fb->format;
2325 unsigned int src_w = drm_rect_width(&state->src) >> 16;
2326 unsigned int dst_w = drm_rect_width(&state->dst);
2328 if (state->plane->type != DRM_PLANE_TYPE_CURSOR)
2329 return false;
2331 if (soc->supports_cursor)
2332 return true;
2334 if (src_w != dst_w || fmt->num_planes != 1 || src_w * fmt->cpp[0] > 256)
2335 return false;
2337 return true;
2340 static unsigned long
2341 tegra_plane_overlap_mask(struct drm_crtc_state *state,
2342 const struct drm_plane_state *plane_state)
2344 const struct drm_plane_state *other_state;
2345 const struct tegra_plane *tegra;
2346 unsigned long overlap_mask = 0;
2347 struct drm_plane *plane;
2348 struct drm_rect rect;
2350 if (!plane_state->visible || !plane_state->fb)
2351 return 0;
2354 * Data-prefetch FIFO will easily help to overcome temporal memory
2355 * pressure if other plane overlaps with the cursor plane.
2357 if (tegra_plane_is_cursor(plane_state))
2358 return 0;
2360 drm_atomic_crtc_state_for_each_plane_state(plane, other_state, state) {
2361 rect = plane_state->dst;
2363 tegra = to_tegra_plane(other_state->plane);
2365 if (!other_state->visible || !other_state->fb)
2366 continue;
2369 * Ignore cursor plane overlaps because it's not practical to
2370 * assume that it contributes to the bandwidth in overlapping
2371 * area if window width is small.
2373 if (tegra_plane_is_cursor(other_state))
2374 continue;
2376 if (drm_rect_intersect(&rect, &other_state->dst))
2377 overlap_mask |= BIT(tegra->index);
2380 return overlap_mask;
2383 static int tegra_crtc_calculate_memory_bandwidth(struct drm_crtc *crtc,
2384 struct drm_atomic_state *state)
2386 ulong overlap_mask[TEGRA_DC_LEGACY_PLANES_NUM] = {}, mask;
2387 u32 plane_peak_bw[TEGRA_DC_LEGACY_PLANES_NUM] = {};
2388 bool all_planes_overlap_simultaneously = true;
2389 const struct tegra_plane_state *tegra_state;
2390 const struct drm_plane_state *plane_state;
2391 struct tegra_dc *dc = to_tegra_dc(crtc);
2392 struct drm_crtc_state *new_state;
2393 struct tegra_plane *tegra;
2394 struct drm_plane *plane;
2397 * The nv-display uses shared planes. The algorithm below assumes
2398 * maximum 3 planes per-CRTC, this assumption isn't applicable to
2399 * the nv-display. Note that T124 support has additional windows,
2400 * but currently they aren't supported by the driver.
2402 if (dc->soc->has_nvdisplay)
2403 return 0;
2405 new_state = drm_atomic_get_new_crtc_state(state, crtc);
2408 * For overlapping planes pixel's data is fetched for each plane at
2409 * the same time, hence bandwidths are accumulated in this case.
2410 * This needs to be taken into account for calculating total bandwidth
2411 * consumed by all planes.
2413 * Here we get the overlapping state of each plane, which is a
2414 * bitmask of plane indices telling with what planes there is an
2415 * overlap. Note that bitmask[plane] includes BIT(plane) in order
2416 * to make further code nicer and simpler.
2418 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2419 tegra_state = to_const_tegra_plane_state(plane_state);
2420 tegra = to_tegra_plane(plane);
2422 if (WARN_ON_ONCE(tegra->index >= TEGRA_DC_LEGACY_PLANES_NUM))
2423 return -EINVAL;
2425 plane_peak_bw[tegra->index] = tegra_state->peak_memory_bandwidth;
2426 mask = tegra_plane_overlap_mask(new_state, plane_state);
2427 overlap_mask[tegra->index] = mask;
2429 if (hweight_long(mask) != 3)
2430 all_planes_overlap_simultaneously = false;
2434 * Then we calculate maximum bandwidth of each plane state.
2435 * The bandwidth includes the plane BW + BW of the "simultaneously"
2436 * overlapping planes, where "simultaneously" means areas where DC
2437 * fetches from the planes simultaneously during of scan-out process.
2439 * For example, if plane A overlaps with planes B and C, but B and C
2440 * don't overlap, then the peak bandwidth will be either in area where
2441 * A-and-B or A-and-C planes overlap.
2443 * The plane_peak_bw[] contains peak memory bandwidth values of
2444 * each plane, this information is needed by interconnect provider
2445 * in order to set up latency allowance based on the peak BW, see
2446 * tegra_crtc_update_memory_bandwidth().
2448 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, new_state) {
2449 u32 i, old_peak_bw, new_peak_bw, overlap_bw = 0;
2452 * Note that plane's atomic check doesn't touch the
2453 * total_peak_memory_bandwidth of enabled plane, hence the
2454 * current state contains the old bandwidth state from the
2455 * previous CRTC commit.
2457 tegra_state = to_const_tegra_plane_state(plane_state);
2458 tegra = to_tegra_plane(plane);
2460 for_each_set_bit(i, &overlap_mask[tegra->index], 3) {
2461 if (i == tegra->index)
2462 continue;
2464 if (all_planes_overlap_simultaneously)
2465 overlap_bw += plane_peak_bw[i];
2466 else
2467 overlap_bw = max(overlap_bw, plane_peak_bw[i]);
2470 new_peak_bw = plane_peak_bw[tegra->index] + overlap_bw;
2471 old_peak_bw = tegra_state->total_peak_memory_bandwidth;
2474 * If plane's peak bandwidth changed (for example plane isn't
2475 * overlapped anymore) and plane isn't in the atomic state,
2476 * then add plane to the state in order to have the bandwidth
2477 * updated.
2479 if (old_peak_bw != new_peak_bw) {
2480 struct tegra_plane_state *new_tegra_state;
2481 struct drm_plane_state *new_plane_state;
2483 new_plane_state = drm_atomic_get_plane_state(state, plane);
2484 if (IS_ERR(new_plane_state))
2485 return PTR_ERR(new_plane_state);
2487 new_tegra_state = to_tegra_plane_state(new_plane_state);
2488 new_tegra_state->total_peak_memory_bandwidth = new_peak_bw;
2492 return 0;
2495 static int tegra_crtc_atomic_check(struct drm_crtc *crtc,
2496 struct drm_atomic_state *state)
2498 int err;
2500 err = tegra_crtc_calculate_memory_bandwidth(crtc, state);
2501 if (err)
2502 return err;
2504 return 0;
2507 void tegra_crtc_atomic_post_commit(struct drm_crtc *crtc,
2508 struct drm_atomic_state *state)
2511 * Display bandwidth is allowed to go down only once hardware state
2512 * is known to be armed, i.e. state was committed and VBLANK event
2513 * received.
2515 tegra_crtc_update_memory_bandwidth(crtc, state, false);
2518 static const struct drm_crtc_helper_funcs tegra_crtc_helper_funcs = {
2519 .atomic_check = tegra_crtc_atomic_check,
2520 .atomic_begin = tegra_crtc_atomic_begin,
2521 .atomic_flush = tegra_crtc_atomic_flush,
2522 .atomic_enable = tegra_crtc_atomic_enable,
2523 .atomic_disable = tegra_crtc_atomic_disable,
2526 static irqreturn_t tegra_dc_irq(int irq, void *data)
2528 struct tegra_dc *dc = data;
2529 unsigned long status;
2531 status = tegra_dc_readl(dc, DC_CMD_INT_STATUS);
2532 tegra_dc_writel(dc, status, DC_CMD_INT_STATUS);
2534 if (status & FRAME_END_INT) {
2536 dev_dbg(dc->dev, "%s(): frame end\n", __func__);
2538 dc->stats.frames_total++;
2539 dc->stats.frames++;
2542 if (status & VBLANK_INT) {
2544 dev_dbg(dc->dev, "%s(): vertical blank\n", __func__);
2546 drm_crtc_handle_vblank(&dc->base);
2547 dc->stats.vblank_total++;
2548 dc->stats.vblank++;
2551 if (status & (WIN_A_UF_INT | WIN_B_UF_INT | WIN_C_UF_INT)) {
2553 dev_dbg(dc->dev, "%s(): underflow\n", __func__);
2555 dc->stats.underflow_total++;
2556 dc->stats.underflow++;
2559 if (status & (WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT)) {
2561 dev_dbg(dc->dev, "%s(): overflow\n", __func__);
2563 dc->stats.overflow_total++;
2564 dc->stats.overflow++;
2567 if (status & HEAD_UF_INT) {
2568 dev_dbg_ratelimited(dc->dev, "%s(): head underflow\n", __func__);
2569 dc->stats.underflow_total++;
2570 dc->stats.underflow++;
2573 return IRQ_HANDLED;
2576 static bool tegra_dc_has_window_groups(struct tegra_dc *dc)
2578 unsigned int i;
2580 if (!dc->soc->wgrps)
2581 return true;
2583 for (i = 0; i < dc->soc->num_wgrps; i++) {
2584 const struct tegra_windowgroup_soc *wgrp = &dc->soc->wgrps[i];
2586 if (wgrp->dc == dc->pipe && wgrp->num_windows > 0)
2587 return true;
2590 return false;
2593 static int tegra_dc_early_init(struct host1x_client *client)
2595 struct drm_device *drm = dev_get_drvdata(client->host);
2596 struct tegra_drm *tegra = drm->dev_private;
2598 tegra->num_crtcs++;
2600 return 0;
2603 static int tegra_dc_init(struct host1x_client *client)
2605 struct drm_device *drm = dev_get_drvdata(client->host);
2606 unsigned long flags = HOST1X_SYNCPT_CLIENT_MANAGED;
2607 struct tegra_dc *dc = host1x_client_to_dc(client);
2608 struct tegra_drm *tegra = drm->dev_private;
2609 struct drm_plane *primary = NULL;
2610 struct drm_plane *cursor = NULL;
2611 int err;
2614 * DC has been reset by now, so VBLANK syncpoint can be released
2615 * for general use.
2617 host1x_syncpt_release_vblank_reservation(client, 26 + dc->pipe);
2620 * XXX do not register DCs with no window groups because we cannot
2621 * assign a primary plane to them, which in turn will cause KMS to
2622 * crash.
2624 if (!tegra_dc_has_window_groups(dc))
2625 return 0;
2628 * Set the display hub as the host1x client parent for the display
2629 * controller. This is needed for the runtime reference counting that
2630 * ensures the display hub is always powered when any of the display
2631 * controllers are.
2633 if (dc->soc->has_nvdisplay)
2634 client->parent = &tegra->hub->client;
2636 dc->syncpt = host1x_syncpt_request(client, flags);
2637 if (!dc->syncpt)
2638 dev_warn(dc->dev, "failed to allocate syncpoint\n");
2640 err = host1x_client_iommu_attach(client);
2641 if (err < 0 && err != -ENODEV) {
2642 dev_err(client->dev, "failed to attach to domain: %d\n", err);
2643 return err;
2646 if (dc->soc->wgrps)
2647 primary = tegra_dc_add_shared_planes(drm, dc);
2648 else
2649 primary = tegra_dc_add_planes(drm, dc);
2651 if (IS_ERR(primary)) {
2652 err = PTR_ERR(primary);
2653 goto cleanup;
2656 if (dc->soc->supports_cursor) {
2657 cursor = tegra_dc_cursor_plane_create(drm, dc);
2658 if (IS_ERR(cursor)) {
2659 err = PTR_ERR(cursor);
2660 goto cleanup;
2662 } else {
2663 /* dedicate one overlay to mouse cursor */
2664 cursor = tegra_dc_overlay_plane_create(drm, dc, 2, true);
2665 if (IS_ERR(cursor)) {
2666 err = PTR_ERR(cursor);
2667 goto cleanup;
2671 err = drm_crtc_init_with_planes(drm, &dc->base, primary, cursor,
2672 &tegra_crtc_funcs, NULL);
2673 if (err < 0)
2674 goto cleanup;
2676 drm_crtc_helper_add(&dc->base, &tegra_crtc_helper_funcs);
2679 * Keep track of the minimum pitch alignment across all display
2680 * controllers.
2682 if (dc->soc->pitch_align > tegra->pitch_align)
2683 tegra->pitch_align = dc->soc->pitch_align;
2685 /* track maximum resolution */
2686 if (dc->soc->has_nvdisplay)
2687 drm->mode_config.max_width = drm->mode_config.max_height = 16384;
2688 else
2689 drm->mode_config.max_width = drm->mode_config.max_height = 4096;
2691 err = tegra_dc_rgb_init(drm, dc);
2692 if (err < 0 && err != -ENODEV) {
2693 dev_err(dc->dev, "failed to initialize RGB output: %d\n", err);
2694 goto cleanup;
2697 err = devm_request_irq(dc->dev, dc->irq, tegra_dc_irq, 0,
2698 dev_name(dc->dev), dc);
2699 if (err < 0) {
2700 dev_err(dc->dev, "failed to request IRQ#%u: %d\n", dc->irq,
2701 err);
2702 goto cleanup;
2706 * Inherit the DMA parameters (such as maximum segment size) from the
2707 * parent host1x device.
2709 client->dev->dma_parms = client->host->dma_parms;
2711 return 0;
2713 cleanup:
2714 if (!IS_ERR_OR_NULL(cursor))
2715 drm_plane_cleanup(cursor);
2717 if (!IS_ERR(primary))
2718 drm_plane_cleanup(primary);
2720 host1x_client_iommu_detach(client);
2721 host1x_syncpt_put(dc->syncpt);
2723 return err;
2726 static int tegra_dc_exit(struct host1x_client *client)
2728 struct tegra_dc *dc = host1x_client_to_dc(client);
2729 int err;
2731 if (!tegra_dc_has_window_groups(dc))
2732 return 0;
2734 /* avoid a dangling pointer just in case this disappears */
2735 client->dev->dma_parms = NULL;
2737 devm_free_irq(dc->dev, dc->irq, dc);
2739 err = tegra_dc_rgb_exit(dc);
2740 if (err) {
2741 dev_err(dc->dev, "failed to shutdown RGB output: %d\n", err);
2742 return err;
2745 host1x_client_iommu_detach(client);
2746 host1x_syncpt_put(dc->syncpt);
2748 return 0;
2751 static int tegra_dc_late_exit(struct host1x_client *client)
2753 struct drm_device *drm = dev_get_drvdata(client->host);
2754 struct tegra_drm *tegra = drm->dev_private;
2756 tegra->num_crtcs--;
2758 return 0;
2761 static int tegra_dc_runtime_suspend(struct host1x_client *client)
2763 struct tegra_dc *dc = host1x_client_to_dc(client);
2764 struct device *dev = client->dev;
2765 int err;
2767 err = reset_control_assert(dc->rst);
2768 if (err < 0) {
2769 dev_err(dev, "failed to assert reset: %d\n", err);
2770 return err;
2773 if (dc->soc->has_powergate)
2774 tegra_powergate_power_off(dc->powergate);
2776 clk_disable_unprepare(dc->clk);
2777 pm_runtime_put_sync(dev);
2779 return 0;
2782 static int tegra_dc_runtime_resume(struct host1x_client *client)
2784 struct tegra_dc *dc = host1x_client_to_dc(client);
2785 struct device *dev = client->dev;
2786 int err;
2788 err = pm_runtime_resume_and_get(dev);
2789 if (err < 0) {
2790 dev_err(dev, "failed to get runtime PM: %d\n", err);
2791 return err;
2794 if (dc->soc->has_powergate) {
2795 err = tegra_powergate_sequence_power_up(dc->powergate, dc->clk,
2796 dc->rst);
2797 if (err < 0) {
2798 dev_err(dev, "failed to power partition: %d\n", err);
2799 goto put_rpm;
2801 } else {
2802 err = clk_prepare_enable(dc->clk);
2803 if (err < 0) {
2804 dev_err(dev, "failed to enable clock: %d\n", err);
2805 goto put_rpm;
2808 err = reset_control_deassert(dc->rst);
2809 if (err < 0) {
2810 dev_err(dev, "failed to deassert reset: %d\n", err);
2811 goto disable_clk;
2815 return 0;
2817 disable_clk:
2818 clk_disable_unprepare(dc->clk);
2819 put_rpm:
2820 pm_runtime_put_sync(dev);
2821 return err;
2824 static const struct host1x_client_ops dc_client_ops = {
2825 .early_init = tegra_dc_early_init,
2826 .init = tegra_dc_init,
2827 .exit = tegra_dc_exit,
2828 .late_exit = tegra_dc_late_exit,
2829 .suspend = tegra_dc_runtime_suspend,
2830 .resume = tegra_dc_runtime_resume,
2833 static const struct tegra_dc_soc_info tegra20_dc_soc_info = {
2834 .supports_background_color = false,
2835 .supports_interlacing = false,
2836 .supports_cursor = false,
2837 .supports_block_linear = false,
2838 .supports_sector_layout = false,
2839 .has_legacy_blending = true,
2840 .pitch_align = 8,
2841 .has_powergate = false,
2842 .coupled_pm = true,
2843 .has_nvdisplay = false,
2844 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2845 .primary_formats = tegra20_primary_formats,
2846 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2847 .overlay_formats = tegra20_overlay_formats,
2848 .modifiers = tegra20_modifiers,
2849 .has_win_a_without_filters = true,
2850 .has_win_b_vfilter_mem_client = true,
2851 .has_win_c_without_vert_filter = true,
2852 .plane_tiled_memory_bandwidth_x2 = false,
2853 .has_pll_d2_out0 = false,
2856 static const struct tegra_dc_soc_info tegra30_dc_soc_info = {
2857 .supports_background_color = false,
2858 .supports_interlacing = false,
2859 .supports_cursor = false,
2860 .supports_block_linear = false,
2861 .supports_sector_layout = false,
2862 .has_legacy_blending = true,
2863 .pitch_align = 8,
2864 .has_powergate = false,
2865 .coupled_pm = false,
2866 .has_nvdisplay = false,
2867 .num_primary_formats = ARRAY_SIZE(tegra20_primary_formats),
2868 .primary_formats = tegra20_primary_formats,
2869 .num_overlay_formats = ARRAY_SIZE(tegra20_overlay_formats),
2870 .overlay_formats = tegra20_overlay_formats,
2871 .modifiers = tegra20_modifiers,
2872 .has_win_a_without_filters = false,
2873 .has_win_b_vfilter_mem_client = true,
2874 .has_win_c_without_vert_filter = false,
2875 .plane_tiled_memory_bandwidth_x2 = true,
2876 .has_pll_d2_out0 = true,
2879 static const struct tegra_dc_soc_info tegra114_dc_soc_info = {
2880 .supports_background_color = false,
2881 .supports_interlacing = false,
2882 .supports_cursor = false,
2883 .supports_block_linear = false,
2884 .supports_sector_layout = false,
2885 .has_legacy_blending = true,
2886 .pitch_align = 64,
2887 .has_powergate = true,
2888 .coupled_pm = false,
2889 .has_nvdisplay = false,
2890 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2891 .primary_formats = tegra114_primary_formats,
2892 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2893 .overlay_formats = tegra114_overlay_formats,
2894 .modifiers = tegra20_modifiers,
2895 .has_win_a_without_filters = false,
2896 .has_win_b_vfilter_mem_client = false,
2897 .has_win_c_without_vert_filter = false,
2898 .plane_tiled_memory_bandwidth_x2 = true,
2899 .has_pll_d2_out0 = true,
2902 static const struct tegra_dc_soc_info tegra124_dc_soc_info = {
2903 .supports_background_color = true,
2904 .supports_interlacing = true,
2905 .supports_cursor = true,
2906 .supports_block_linear = true,
2907 .supports_sector_layout = false,
2908 .has_legacy_blending = false,
2909 .pitch_align = 64,
2910 .has_powergate = true,
2911 .coupled_pm = false,
2912 .has_nvdisplay = false,
2913 .num_primary_formats = ARRAY_SIZE(tegra124_primary_formats),
2914 .primary_formats = tegra124_primary_formats,
2915 .num_overlay_formats = ARRAY_SIZE(tegra124_overlay_formats),
2916 .overlay_formats = tegra124_overlay_formats,
2917 .modifiers = tegra124_modifiers,
2918 .has_win_a_without_filters = false,
2919 .has_win_b_vfilter_mem_client = false,
2920 .has_win_c_without_vert_filter = false,
2921 .plane_tiled_memory_bandwidth_x2 = false,
2922 .has_pll_d2_out0 = true,
2925 static const struct tegra_dc_soc_info tegra210_dc_soc_info = {
2926 .supports_background_color = true,
2927 .supports_interlacing = true,
2928 .supports_cursor = true,
2929 .supports_block_linear = true,
2930 .supports_sector_layout = false,
2931 .has_legacy_blending = false,
2932 .pitch_align = 64,
2933 .has_powergate = true,
2934 .coupled_pm = false,
2935 .has_nvdisplay = false,
2936 .num_primary_formats = ARRAY_SIZE(tegra114_primary_formats),
2937 .primary_formats = tegra114_primary_formats,
2938 .num_overlay_formats = ARRAY_SIZE(tegra114_overlay_formats),
2939 .overlay_formats = tegra114_overlay_formats,
2940 .modifiers = tegra124_modifiers,
2941 .has_win_a_without_filters = false,
2942 .has_win_b_vfilter_mem_client = false,
2943 .has_win_c_without_vert_filter = false,
2944 .plane_tiled_memory_bandwidth_x2 = false,
2945 .has_pll_d2_out0 = true,
2948 static const struct tegra_windowgroup_soc tegra186_dc_wgrps[] = {
2950 .index = 0,
2951 .dc = 0,
2952 .windows = (const unsigned int[]) { 0 },
2953 .num_windows = 1,
2954 }, {
2955 .index = 1,
2956 .dc = 1,
2957 .windows = (const unsigned int[]) { 1 },
2958 .num_windows = 1,
2959 }, {
2960 .index = 2,
2961 .dc = 1,
2962 .windows = (const unsigned int[]) { 2 },
2963 .num_windows = 1,
2964 }, {
2965 .index = 3,
2966 .dc = 2,
2967 .windows = (const unsigned int[]) { 3 },
2968 .num_windows = 1,
2969 }, {
2970 .index = 4,
2971 .dc = 2,
2972 .windows = (const unsigned int[]) { 4 },
2973 .num_windows = 1,
2974 }, {
2975 .index = 5,
2976 .dc = 2,
2977 .windows = (const unsigned int[]) { 5 },
2978 .num_windows = 1,
2982 static const struct tegra_dc_soc_info tegra186_dc_soc_info = {
2983 .supports_background_color = true,
2984 .supports_interlacing = true,
2985 .supports_cursor = true,
2986 .supports_block_linear = true,
2987 .supports_sector_layout = false,
2988 .has_legacy_blending = false,
2989 .pitch_align = 64,
2990 .has_powergate = false,
2991 .coupled_pm = false,
2992 .has_nvdisplay = true,
2993 .wgrps = tegra186_dc_wgrps,
2994 .num_wgrps = ARRAY_SIZE(tegra186_dc_wgrps),
2995 .plane_tiled_memory_bandwidth_x2 = false,
2996 .has_pll_d2_out0 = false,
2999 static const struct tegra_windowgroup_soc tegra194_dc_wgrps[] = {
3001 .index = 0,
3002 .dc = 0,
3003 .windows = (const unsigned int[]) { 0 },
3004 .num_windows = 1,
3005 }, {
3006 .index = 1,
3007 .dc = 1,
3008 .windows = (const unsigned int[]) { 1 },
3009 .num_windows = 1,
3010 }, {
3011 .index = 2,
3012 .dc = 1,
3013 .windows = (const unsigned int[]) { 2 },
3014 .num_windows = 1,
3015 }, {
3016 .index = 3,
3017 .dc = 2,
3018 .windows = (const unsigned int[]) { 3 },
3019 .num_windows = 1,
3020 }, {
3021 .index = 4,
3022 .dc = 2,
3023 .windows = (const unsigned int[]) { 4 },
3024 .num_windows = 1,
3025 }, {
3026 .index = 5,
3027 .dc = 2,
3028 .windows = (const unsigned int[]) { 5 },
3029 .num_windows = 1,
3033 static const struct tegra_dc_soc_info tegra194_dc_soc_info = {
3034 .supports_background_color = true,
3035 .supports_interlacing = true,
3036 .supports_cursor = true,
3037 .supports_block_linear = true,
3038 .supports_sector_layout = true,
3039 .has_legacy_blending = false,
3040 .pitch_align = 64,
3041 .has_powergate = false,
3042 .coupled_pm = false,
3043 .has_nvdisplay = true,
3044 .wgrps = tegra194_dc_wgrps,
3045 .num_wgrps = ARRAY_SIZE(tegra194_dc_wgrps),
3046 .plane_tiled_memory_bandwidth_x2 = false,
3047 .has_pll_d2_out0 = false,
3050 static const struct of_device_id tegra_dc_of_match[] = {
3052 .compatible = "nvidia,tegra194-dc",
3053 .data = &tegra194_dc_soc_info,
3054 }, {
3055 .compatible = "nvidia,tegra186-dc",
3056 .data = &tegra186_dc_soc_info,
3057 }, {
3058 .compatible = "nvidia,tegra210-dc",
3059 .data = &tegra210_dc_soc_info,
3060 }, {
3061 .compatible = "nvidia,tegra124-dc",
3062 .data = &tegra124_dc_soc_info,
3063 }, {
3064 .compatible = "nvidia,tegra114-dc",
3065 .data = &tegra114_dc_soc_info,
3066 }, {
3067 .compatible = "nvidia,tegra30-dc",
3068 .data = &tegra30_dc_soc_info,
3069 }, {
3070 .compatible = "nvidia,tegra20-dc",
3071 .data = &tegra20_dc_soc_info,
3072 }, {
3073 /* sentinel */
3076 MODULE_DEVICE_TABLE(of, tegra_dc_of_match);
3078 static int tegra_dc_parse_dt(struct tegra_dc *dc)
3080 struct device_node *np;
3081 u32 value = 0;
3082 int err;
3084 err = of_property_read_u32(dc->dev->of_node, "nvidia,head", &value);
3085 if (err < 0) {
3086 dev_err(dc->dev, "missing \"nvidia,head\" property\n");
3089 * If the nvidia,head property isn't present, try to find the
3090 * correct head number by looking up the position of this
3091 * display controller's node within the device tree. Assuming
3092 * that the nodes are ordered properly in the DTS file and
3093 * that the translation into a flattened device tree blob
3094 * preserves that ordering this will actually yield the right
3095 * head number.
3097 * If those assumptions don't hold, this will still work for
3098 * cases where only a single display controller is used.
3100 for_each_matching_node(np, tegra_dc_of_match) {
3101 if (np == dc->dev->of_node) {
3102 of_node_put(np);
3103 break;
3106 value++;
3110 dc->pipe = value;
3112 return 0;
3115 static int tegra_dc_match_by_pipe(struct device *dev, const void *data)
3117 struct tegra_dc *dc = dev_get_drvdata(dev);
3118 unsigned int pipe = (unsigned long)(void *)data;
3120 return dc->pipe == pipe;
3123 static int tegra_dc_couple(struct tegra_dc *dc)
3126 * On Tegra20, DC1 requires DC0 to be taken out of reset in order to
3127 * be enabled, otherwise CPU hangs on writing to CMD_DISPLAY_COMMAND /
3128 * POWER_CONTROL registers during CRTC enabling.
3130 if (dc->soc->coupled_pm && dc->pipe == 1) {
3131 struct device *companion;
3132 struct tegra_dc *parent;
3134 companion = driver_find_device(dc->dev->driver, NULL, (const void *)0,
3135 tegra_dc_match_by_pipe);
3136 if (!companion)
3137 return -EPROBE_DEFER;
3139 parent = dev_get_drvdata(companion);
3140 dc->client.parent = &parent->client;
3142 dev_dbg(dc->dev, "coupled to %s\n", dev_name(companion));
3145 return 0;
3148 static int tegra_dc_init_opp_table(struct tegra_dc *dc)
3150 struct tegra_core_opp_params opp_params = {};
3151 int err;
3153 err = devm_tegra_core_dev_init_opp_table(dc->dev, &opp_params);
3154 if (err && err != -ENODEV)
3155 return err;
3157 if (err)
3158 dc->has_opp_table = false;
3159 else
3160 dc->has_opp_table = true;
3162 return 0;
3165 static int tegra_dc_probe(struct platform_device *pdev)
3167 u64 dma_mask = dma_get_mask(pdev->dev.parent);
3168 struct tegra_dc *dc;
3169 int err;
3171 err = dma_coerce_mask_and_coherent(&pdev->dev, dma_mask);
3172 if (err < 0) {
3173 dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err);
3174 return err;
3177 dc = devm_kzalloc(&pdev->dev, sizeof(*dc), GFP_KERNEL);
3178 if (!dc)
3179 return -ENOMEM;
3181 dc->soc = of_device_get_match_data(&pdev->dev);
3183 INIT_LIST_HEAD(&dc->list);
3184 dc->dev = &pdev->dev;
3186 err = tegra_dc_parse_dt(dc);
3187 if (err < 0)
3188 return err;
3190 err = tegra_dc_couple(dc);
3191 if (err < 0)
3192 return err;
3194 dc->clk = devm_clk_get(&pdev->dev, NULL);
3195 if (IS_ERR(dc->clk)) {
3196 dev_err(&pdev->dev, "failed to get clock\n");
3197 return PTR_ERR(dc->clk);
3200 dc->rst = devm_reset_control_get(&pdev->dev, "dc");
3201 if (IS_ERR(dc->rst)) {
3202 dev_err(&pdev->dev, "failed to get reset\n");
3203 return PTR_ERR(dc->rst);
3206 /* assert reset and disable clock */
3207 err = clk_prepare_enable(dc->clk);
3208 if (err < 0)
3209 return err;
3211 usleep_range(2000, 4000);
3213 err = reset_control_assert(dc->rst);
3214 if (err < 0) {
3215 clk_disable_unprepare(dc->clk);
3216 return err;
3219 usleep_range(2000, 4000);
3221 clk_disable_unprepare(dc->clk);
3223 if (dc->soc->has_powergate) {
3224 if (dc->pipe == 0)
3225 dc->powergate = TEGRA_POWERGATE_DIS;
3226 else
3227 dc->powergate = TEGRA_POWERGATE_DISB;
3229 tegra_powergate_power_off(dc->powergate);
3232 err = tegra_dc_init_opp_table(dc);
3233 if (err < 0)
3234 return err;
3236 dc->regs = devm_platform_ioremap_resource(pdev, 0);
3237 if (IS_ERR(dc->regs))
3238 return PTR_ERR(dc->regs);
3240 dc->irq = platform_get_irq(pdev, 0);
3241 if (dc->irq < 0)
3242 return -ENXIO;
3244 err = tegra_dc_rgb_probe(dc);
3245 if (err < 0 && err != -ENODEV)
3246 return dev_err_probe(&pdev->dev, err,
3247 "failed to probe RGB output\n");
3249 platform_set_drvdata(pdev, dc);
3250 pm_runtime_enable(&pdev->dev);
3252 INIT_LIST_HEAD(&dc->client.list);
3253 dc->client.ops = &dc_client_ops;
3254 dc->client.dev = &pdev->dev;
3256 err = host1x_client_register(&dc->client);
3257 if (err < 0) {
3258 dev_err(&pdev->dev, "failed to register host1x client: %d\n",
3259 err);
3260 goto disable_pm;
3263 return 0;
3265 disable_pm:
3266 pm_runtime_disable(&pdev->dev);
3267 tegra_dc_rgb_remove(dc);
3269 return err;
3272 static void tegra_dc_remove(struct platform_device *pdev)
3274 struct tegra_dc *dc = platform_get_drvdata(pdev);
3276 host1x_client_unregister(&dc->client);
3278 tegra_dc_rgb_remove(dc);
3280 pm_runtime_disable(&pdev->dev);
3283 struct platform_driver tegra_dc_driver = {
3284 .driver = {
3285 .name = "tegra-dc",
3286 .of_match_table = tegra_dc_of_match,
3288 .probe = tegra_dc_probe,
3289 .remove = tegra_dc_remove,