1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2016 Broadcom
7 * DOC: VC4 DSI0/DSI1 module
9 * BCM2835 contains two DSI modules, DSI0 and DSI1. DSI0 is a
10 * single-lane DSI controller, while DSI1 is a more modern 4-lane DSI
13 * Most Raspberry Pi boards expose DSI1 as their "DISPLAY" connector,
14 * while the compute module brings both DSI0 and DSI1 out.
16 * This driver has been tested for DSI1 video-mode display only
17 * currently, with most of the information necessary for DSI0
21 #include <linux/clk-provider.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/component.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dmaengine.h>
29 #include <linux/of_address.h>
30 #include <linux/platform_device.h>
31 #include <linux/pm_runtime.h>
33 #include <drm/drm_atomic_helper.h>
34 #include <drm/drm_bridge.h>
35 #include <drm/drm_edid.h>
36 #include <drm/drm_mipi_dsi.h>
37 #include <drm/drm_of.h>
38 #include <drm/drm_panel.h>
39 #include <drm/drm_probe_helper.h>
40 #include <drm/drm_simple_kms_helper.h>
45 #define DSI_CMD_FIFO_DEPTH 16
46 #define DSI_PIX_FIFO_DEPTH 256
47 #define DSI_PIX_FIFO_WIDTH 4
49 #define DSI0_CTRL 0x00
51 /* Command packet control. */
52 #define DSI0_TXPKT1C 0x04 /* AKA PKTC */
53 #define DSI1_TXPKT1C 0x04
54 # define DSI_TXPKT1C_TRIG_CMD_MASK VC4_MASK(31, 24)
55 # define DSI_TXPKT1C_TRIG_CMD_SHIFT 24
56 # define DSI_TXPKT1C_CMD_REPEAT_MASK VC4_MASK(23, 10)
57 # define DSI_TXPKT1C_CMD_REPEAT_SHIFT 10
59 # define DSI_TXPKT1C_DISPLAY_NO_MASK VC4_MASK(9, 8)
60 # define DSI_TXPKT1C_DISPLAY_NO_SHIFT 8
61 /* Short, trigger, BTA, or a long packet that fits all in CMDFIFO. */
62 # define DSI_TXPKT1C_DISPLAY_NO_SHORT 0
63 /* Primary display where cmdfifo provides part of the payload and
64 * pixelvalve the rest.
66 # define DSI_TXPKT1C_DISPLAY_NO_PRIMARY 1
67 /* Secondary display where cmdfifo provides part of the payload and
70 # define DSI_TXPKT1C_DISPLAY_NO_SECONDARY 2
72 # define DSI_TXPKT1C_CMD_TX_TIME_MASK VC4_MASK(7, 6)
73 # define DSI_TXPKT1C_CMD_TX_TIME_SHIFT 6
75 # define DSI_TXPKT1C_CMD_CTRL_MASK VC4_MASK(5, 4)
76 # define DSI_TXPKT1C_CMD_CTRL_SHIFT 4
77 /* Command only. Uses TXPKT1H and DISPLAY_NO */
78 # define DSI_TXPKT1C_CMD_CTRL_TX 0
79 /* Command with BTA for either ack or read data. */
80 # define DSI_TXPKT1C_CMD_CTRL_RX 1
81 /* Trigger according to TRIG_CMD */
82 # define DSI_TXPKT1C_CMD_CTRL_TRIG 2
83 /* BTA alone for getting error status after a command, or a TE trigger
84 * without a previous command.
86 # define DSI_TXPKT1C_CMD_CTRL_BTA 3
88 # define DSI_TXPKT1C_CMD_MODE_LP BIT(3)
89 # define DSI_TXPKT1C_CMD_TYPE_LONG BIT(2)
90 # define DSI_TXPKT1C_CMD_TE_EN BIT(1)
91 # define DSI_TXPKT1C_CMD_EN BIT(0)
93 /* Command packet header. */
94 #define DSI0_TXPKT1H 0x08 /* AKA PKTH */
95 #define DSI1_TXPKT1H 0x08
96 # define DSI_TXPKT1H_BC_CMDFIFO_MASK VC4_MASK(31, 24)
97 # define DSI_TXPKT1H_BC_CMDFIFO_SHIFT 24
98 # define DSI_TXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
99 # define DSI_TXPKT1H_BC_PARAM_SHIFT 8
100 # define DSI_TXPKT1H_BC_DT_MASK VC4_MASK(7, 0)
101 # define DSI_TXPKT1H_BC_DT_SHIFT 0
103 #define DSI0_RXPKT1H 0x0c /* AKA RX1_PKTH */
104 #define DSI1_RXPKT1H 0x14
105 # define DSI_RXPKT1H_CRC_ERR BIT(31)
106 # define DSI_RXPKT1H_DET_ERR BIT(30)
107 # define DSI_RXPKT1H_ECC_ERR BIT(29)
108 # define DSI_RXPKT1H_COR_ERR BIT(28)
109 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
110 # define DSI_RXPKT1H_PKT_TYPE_LONG BIT(24)
111 /* Byte count if DSI_RXPKT1H_PKT_TYPE_LONG */
112 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
113 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
114 /* Short return bytes if !DSI_RXPKT1H_PKT_TYPE_LONG */
115 # define DSI_RXPKT1H_SHORT_1_MASK VC4_MASK(23, 16)
116 # define DSI_RXPKT1H_SHORT_1_SHIFT 16
117 # define DSI_RXPKT1H_SHORT_0_MASK VC4_MASK(15, 8)
118 # define DSI_RXPKT1H_SHORT_0_SHIFT 8
119 # define DSI_RXPKT1H_DT_LP_CMD_MASK VC4_MASK(7, 0)
120 # define DSI_RXPKT1H_DT_LP_CMD_SHIFT 0
122 #define DSI0_RXPKT2H 0x10 /* AKA RX2_PKTH */
123 #define DSI1_RXPKT2H 0x18
124 # define DSI_RXPKT1H_DET_ERR BIT(30)
125 # define DSI_RXPKT1H_ECC_ERR BIT(29)
126 # define DSI_RXPKT1H_COR_ERR BIT(28)
127 # define DSI_RXPKT1H_INCOMP_PKT BIT(25)
128 # define DSI_RXPKT1H_BC_PARAM_MASK VC4_MASK(23, 8)
129 # define DSI_RXPKT1H_BC_PARAM_SHIFT 8
130 # define DSI_RXPKT1H_DT_MASK VC4_MASK(7, 0)
131 # define DSI_RXPKT1H_DT_SHIFT 0
133 #define DSI0_TXPKT_CMD_FIFO 0x14 /* AKA CMD_DATAF */
134 #define DSI1_TXPKT_CMD_FIFO 0x1c
136 #define DSI0_DISP0_CTRL 0x18
137 # define DSI_DISP0_PIX_CLK_DIV_MASK VC4_MASK(21, 13)
138 # define DSI_DISP0_PIX_CLK_DIV_SHIFT 13
139 # define DSI_DISP0_LP_STOP_CTRL_MASK VC4_MASK(12, 11)
140 # define DSI_DISP0_LP_STOP_CTRL_SHIFT 11
141 # define DSI_DISP0_LP_STOP_DISABLE 0
142 # define DSI_DISP0_LP_STOP_PERLINE 1
143 # define DSI_DISP0_LP_STOP_PERFRAME 2
145 /* Transmit RGB pixels and null packets only during HACTIVE, instead
146 * of going to LP-STOP.
148 # define DSI_DISP_HACTIVE_NULL BIT(10)
149 /* Transmit blanking packet only during vblank, instead of allowing LP-STOP. */
150 # define DSI_DISP_VBLP_CTRL BIT(9)
151 /* Transmit blanking packet only during HFP, instead of allowing LP-STOP. */
152 # define DSI_DISP_HFP_CTRL BIT(8)
153 /* Transmit blanking packet only during HBP, instead of allowing LP-STOP. */
154 # define DSI_DISP_HBP_CTRL BIT(7)
155 # define DSI_DISP0_CHANNEL_MASK VC4_MASK(6, 5)
156 # define DSI_DISP0_CHANNEL_SHIFT 5
157 /* Enables end events for HSYNC/VSYNC, not just start events. */
158 # define DSI_DISP0_ST_END BIT(4)
159 # define DSI_DISP0_PFORMAT_MASK VC4_MASK(3, 2)
160 # define DSI_DISP0_PFORMAT_SHIFT 2
161 # define DSI_PFORMAT_RGB565 0
162 # define DSI_PFORMAT_RGB666_PACKED 1
163 # define DSI_PFORMAT_RGB666 2
164 # define DSI_PFORMAT_RGB888 3
165 /* Default is VIDEO mode. */
166 # define DSI_DISP0_COMMAND_MODE BIT(1)
167 # define DSI_DISP0_ENABLE BIT(0)
169 #define DSI0_DISP1_CTRL 0x1c
170 #define DSI1_DISP1_CTRL 0x2c
171 /* Format of the data written to TXPKT_PIX_FIFO. */
172 # define DSI_DISP1_PFORMAT_MASK VC4_MASK(2, 1)
173 # define DSI_DISP1_PFORMAT_SHIFT 1
174 # define DSI_DISP1_PFORMAT_16BIT 0
175 # define DSI_DISP1_PFORMAT_24BIT 1
176 # define DSI_DISP1_PFORMAT_32BIT_LE 2
177 # define DSI_DISP1_PFORMAT_32BIT_BE 3
179 /* DISP1 is always command mode. */
180 # define DSI_DISP1_ENABLE BIT(0)
182 #define DSI0_TXPKT_PIX_FIFO 0x20 /* AKA PIX_FIFO */
184 #define DSI0_INT_STAT 0x24
185 #define DSI0_INT_EN 0x28
186 # define DSI0_INT_FIFO_ERR BIT(25)
187 # define DSI0_INT_CMDC_DONE_MASK VC4_MASK(24, 23)
188 # define DSI0_INT_CMDC_DONE_SHIFT 23
189 # define DSI0_INT_CMDC_DONE_NO_REPEAT 1
190 # define DSI0_INT_CMDC_DONE_REPEAT 3
191 # define DSI0_INT_PHY_DIR_RTF BIT(22)
192 # define DSI0_INT_PHY_D1_ULPS BIT(21)
193 # define DSI0_INT_PHY_D1_STOP BIT(20)
194 # define DSI0_INT_PHY_RXLPDT BIT(19)
195 # define DSI0_INT_PHY_RXTRIG BIT(18)
196 # define DSI0_INT_PHY_D0_ULPS BIT(17)
197 # define DSI0_INT_PHY_D0_LPDT BIT(16)
198 # define DSI0_INT_PHY_D0_FTR BIT(15)
199 # define DSI0_INT_PHY_D0_STOP BIT(14)
200 /* Signaled when the clock lane enters the given state. */
201 # define DSI0_INT_PHY_CLK_ULPS BIT(13)
202 # define DSI0_INT_PHY_CLK_HS BIT(12)
203 # define DSI0_INT_PHY_CLK_FTR BIT(11)
204 /* Signaled on timeouts */
205 # define DSI0_INT_PR_TO BIT(10)
206 # define DSI0_INT_TA_TO BIT(9)
207 # define DSI0_INT_LPRX_TO BIT(8)
208 # define DSI0_INT_HSTX_TO BIT(7)
209 /* Contention on a line when trying to drive the line low */
210 # define DSI0_INT_ERR_CONT_LP1 BIT(6)
211 # define DSI0_INT_ERR_CONT_LP0 BIT(5)
212 /* Control error: incorrect line state sequence on data lane 0. */
213 # define DSI0_INT_ERR_CONTROL BIT(4)
214 # define DSI0_INT_ERR_SYNC_ESC BIT(3)
215 # define DSI0_INT_RX2_PKT BIT(2)
216 # define DSI0_INT_RX1_PKT BIT(1)
217 # define DSI0_INT_CMD_PKT BIT(0)
219 #define DSI0_INTERRUPTS_ALWAYS_ENABLED (DSI0_INT_ERR_SYNC_ESC | \
220 DSI0_INT_ERR_CONTROL | \
221 DSI0_INT_ERR_CONT_LP0 | \
222 DSI0_INT_ERR_CONT_LP1 | \
228 # define DSI1_INT_PHY_D3_ULPS BIT(30)
229 # define DSI1_INT_PHY_D3_STOP BIT(29)
230 # define DSI1_INT_PHY_D2_ULPS BIT(28)
231 # define DSI1_INT_PHY_D2_STOP BIT(27)
232 # define DSI1_INT_PHY_D1_ULPS BIT(26)
233 # define DSI1_INT_PHY_D1_STOP BIT(25)
234 # define DSI1_INT_PHY_D0_ULPS BIT(24)
235 # define DSI1_INT_PHY_D0_STOP BIT(23)
236 # define DSI1_INT_FIFO_ERR BIT(22)
237 # define DSI1_INT_PHY_DIR_RTF BIT(21)
238 # define DSI1_INT_PHY_RXLPDT BIT(20)
239 # define DSI1_INT_PHY_RXTRIG BIT(19)
240 # define DSI1_INT_PHY_D0_LPDT BIT(18)
241 # define DSI1_INT_PHY_DIR_FTR BIT(17)
243 /* Signaled when the clock lane enters the given state. */
244 # define DSI1_INT_PHY_CLOCK_ULPS BIT(16)
245 # define DSI1_INT_PHY_CLOCK_HS BIT(15)
246 # define DSI1_INT_PHY_CLOCK_STOP BIT(14)
248 /* Signaled on timeouts */
249 # define DSI1_INT_PR_TO BIT(13)
250 # define DSI1_INT_TA_TO BIT(12)
251 # define DSI1_INT_LPRX_TO BIT(11)
252 # define DSI1_INT_HSTX_TO BIT(10)
254 /* Contention on a line when trying to drive the line low */
255 # define DSI1_INT_ERR_CONT_LP1 BIT(9)
256 # define DSI1_INT_ERR_CONT_LP0 BIT(8)
258 /* Control error: incorrect line state sequence on data lane 0. */
259 # define DSI1_INT_ERR_CONTROL BIT(7)
260 /* LPDT synchronization error (bits received not a multiple of 8. */
262 # define DSI1_INT_ERR_SYNC_ESC BIT(6)
263 /* Signaled after receiving an error packet from the display in
264 * response to a read.
266 # define DSI1_INT_RXPKT2 BIT(5)
267 /* Signaled after receiving a packet. The header and optional short
268 * response will be in RXPKT1H, and a long response will be in the
271 # define DSI1_INT_RXPKT1 BIT(4)
272 # define DSI1_INT_TXPKT2_DONE BIT(3)
273 # define DSI1_INT_TXPKT2_END BIT(2)
274 /* Signaled after all repeats of TXPKT1 are transferred. */
275 # define DSI1_INT_TXPKT1_DONE BIT(1)
276 /* Signaled after each TXPKT1 repeat is scheduled. */
277 # define DSI1_INT_TXPKT1_END BIT(0)
279 #define DSI1_INTERRUPTS_ALWAYS_ENABLED (DSI1_INT_ERR_SYNC_ESC | \
280 DSI1_INT_ERR_CONTROL | \
281 DSI1_INT_ERR_CONT_LP0 | \
282 DSI1_INT_ERR_CONT_LP1 | \
288 #define DSI0_STAT 0x2c
289 #define DSI0_HSTX_TO_CNT 0x30
290 #define DSI0_LPRX_TO_CNT 0x34
291 #define DSI0_TA_TO_CNT 0x38
292 #define DSI0_PR_TO_CNT 0x3c
293 #define DSI0_PHYC 0x40
294 # define DSI1_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(25, 20)
295 # define DSI1_PHYC_ESC_CLK_LPDT_SHIFT 20
296 # define DSI1_PHYC_HS_CLK_CONTINUOUS BIT(18)
297 # define DSI0_PHYC_ESC_CLK_LPDT_MASK VC4_MASK(17, 12)
298 # define DSI0_PHYC_ESC_CLK_LPDT_SHIFT 12
299 # define DSI1_PHYC_CLANE_ULPS BIT(17)
300 # define DSI1_PHYC_CLANE_ENABLE BIT(16)
301 # define DSI_PHYC_DLANE3_ULPS BIT(13)
302 # define DSI_PHYC_DLANE3_ENABLE BIT(12)
303 # define DSI0_PHYC_HS_CLK_CONTINUOUS BIT(10)
304 # define DSI0_PHYC_CLANE_ULPS BIT(9)
305 # define DSI_PHYC_DLANE2_ULPS BIT(9)
306 # define DSI0_PHYC_CLANE_ENABLE BIT(8)
307 # define DSI_PHYC_DLANE2_ENABLE BIT(8)
308 # define DSI_PHYC_DLANE1_ULPS BIT(5)
309 # define DSI_PHYC_DLANE1_ENABLE BIT(4)
310 # define DSI_PHYC_DLANE0_FORCE_STOP BIT(2)
311 # define DSI_PHYC_DLANE0_ULPS BIT(1)
312 # define DSI_PHYC_DLANE0_ENABLE BIT(0)
314 #define DSI0_HS_CLT0 0x44
315 #define DSI0_HS_CLT1 0x48
316 #define DSI0_HS_CLT2 0x4c
317 #define DSI0_HS_DLT3 0x50
318 #define DSI0_HS_DLT4 0x54
319 #define DSI0_HS_DLT5 0x58
320 #define DSI0_HS_DLT6 0x5c
321 #define DSI0_HS_DLT7 0x60
323 #define DSI0_PHY_AFEC0 0x64
324 # define DSI0_PHY_AFEC0_DDR2CLK_EN BIT(26)
325 # define DSI0_PHY_AFEC0_DDRCLK_EN BIT(25)
326 # define DSI0_PHY_AFEC0_LATCH_ULPS BIT(24)
327 # define DSI1_PHY_AFEC0_IDR_DLANE3_MASK VC4_MASK(31, 29)
328 # define DSI1_PHY_AFEC0_IDR_DLANE3_SHIFT 29
329 # define DSI1_PHY_AFEC0_IDR_DLANE2_MASK VC4_MASK(28, 26)
330 # define DSI1_PHY_AFEC0_IDR_DLANE2_SHIFT 26
331 # define DSI1_PHY_AFEC0_IDR_DLANE1_MASK VC4_MASK(27, 23)
332 # define DSI1_PHY_AFEC0_IDR_DLANE1_SHIFT 23
333 # define DSI1_PHY_AFEC0_IDR_DLANE0_MASK VC4_MASK(22, 20)
334 # define DSI1_PHY_AFEC0_IDR_DLANE0_SHIFT 20
335 # define DSI1_PHY_AFEC0_IDR_CLANE_MASK VC4_MASK(19, 17)
336 # define DSI1_PHY_AFEC0_IDR_CLANE_SHIFT 17
337 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_MASK VC4_MASK(23, 20)
338 # define DSI0_PHY_AFEC0_ACTRL_DLANE1_SHIFT 20
339 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_MASK VC4_MASK(19, 16)
340 # define DSI0_PHY_AFEC0_ACTRL_DLANE0_SHIFT 16
341 # define DSI0_PHY_AFEC0_ACTRL_CLANE_MASK VC4_MASK(15, 12)
342 # define DSI0_PHY_AFEC0_ACTRL_CLANE_SHIFT 12
343 # define DSI1_PHY_AFEC0_DDR2CLK_EN BIT(16)
344 # define DSI1_PHY_AFEC0_DDRCLK_EN BIT(15)
345 # define DSI1_PHY_AFEC0_LATCH_ULPS BIT(14)
346 # define DSI1_PHY_AFEC0_RESET BIT(13)
347 # define DSI1_PHY_AFEC0_PD BIT(12)
348 # define DSI0_PHY_AFEC0_RESET BIT(11)
349 # define DSI1_PHY_AFEC0_PD_BG BIT(11)
350 # define DSI0_PHY_AFEC0_PD BIT(10)
351 # define DSI1_PHY_AFEC0_PD_DLANE1 BIT(10)
352 # define DSI0_PHY_AFEC0_PD_BG BIT(9)
353 # define DSI1_PHY_AFEC0_PD_DLANE2 BIT(9)
354 # define DSI0_PHY_AFEC0_PD_DLANE1 BIT(8)
355 # define DSI1_PHY_AFEC0_PD_DLANE3 BIT(8)
356 # define DSI_PHY_AFEC0_PTATADJ_MASK VC4_MASK(7, 4)
357 # define DSI_PHY_AFEC0_PTATADJ_SHIFT 4
358 # define DSI_PHY_AFEC0_CTATADJ_MASK VC4_MASK(3, 0)
359 # define DSI_PHY_AFEC0_CTATADJ_SHIFT 0
361 #define DSI0_PHY_AFEC1 0x68
362 # define DSI0_PHY_AFEC1_IDR_DLANE1_MASK VC4_MASK(10, 8)
363 # define DSI0_PHY_AFEC1_IDR_DLANE1_SHIFT 8
364 # define DSI0_PHY_AFEC1_IDR_DLANE0_MASK VC4_MASK(6, 4)
365 # define DSI0_PHY_AFEC1_IDR_DLANE0_SHIFT 4
366 # define DSI0_PHY_AFEC1_IDR_CLANE_MASK VC4_MASK(2, 0)
367 # define DSI0_PHY_AFEC1_IDR_CLANE_SHIFT 0
369 #define DSI0_TST_SEL 0x6c
370 #define DSI0_TST_MON 0x70
372 # define DSI_ID_VALUE 0x00647369
374 #define DSI1_CTRL 0x00
375 # define DSI_CTRL_HS_CLKC_MASK VC4_MASK(15, 14)
376 # define DSI_CTRL_HS_CLKC_SHIFT 14
377 # define DSI_CTRL_HS_CLKC_BYTE 0
378 # define DSI_CTRL_HS_CLKC_DDR2 1
379 # define DSI_CTRL_HS_CLKC_DDR 2
381 # define DSI_CTRL_RX_LPDT_EOT_DISABLE BIT(13)
382 # define DSI_CTRL_LPDT_EOT_DISABLE BIT(12)
383 # define DSI_CTRL_HSDT_EOT_DISABLE BIT(11)
384 # define DSI_CTRL_SOFT_RESET_CFG BIT(10)
385 # define DSI_CTRL_CAL_BYTE BIT(9)
386 # define DSI_CTRL_INV_BYTE BIT(8)
387 # define DSI_CTRL_CLR_LDF BIT(7)
388 # define DSI0_CTRL_CLR_PBCF BIT(6)
389 # define DSI1_CTRL_CLR_RXF BIT(6)
390 # define DSI0_CTRL_CLR_CPBCF BIT(5)
391 # define DSI1_CTRL_CLR_PDF BIT(5)
392 # define DSI0_CTRL_CLR_PDF BIT(4)
393 # define DSI1_CTRL_CLR_CDF BIT(4)
394 # define DSI0_CTRL_CLR_CDF BIT(3)
395 # define DSI0_CTRL_CTRL2 BIT(2)
396 # define DSI1_CTRL_DISABLE_DISP_CRCC BIT(2)
397 # define DSI0_CTRL_CTRL1 BIT(1)
398 # define DSI1_CTRL_DISABLE_DISP_ECCC BIT(1)
399 # define DSI0_CTRL_CTRL0 BIT(0)
400 # define DSI1_CTRL_EN BIT(0)
401 # define DSI0_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
402 DSI0_CTRL_CLR_PBCF | \
403 DSI0_CTRL_CLR_CPBCF | \
404 DSI0_CTRL_CLR_PDF | \
406 # define DSI1_CTRL_RESET_FIFOS (DSI_CTRL_CLR_LDF | \
407 DSI1_CTRL_CLR_RXF | \
408 DSI1_CTRL_CLR_PDF | \
411 #define DSI1_TXPKT2C 0x0c
412 #define DSI1_TXPKT2H 0x10
413 #define DSI1_TXPKT_PIX_FIFO 0x20
414 #define DSI1_RXPKT_FIFO 0x24
415 #define DSI1_DISP0_CTRL 0x28
416 #define DSI1_INT_STAT 0x30
417 #define DSI1_INT_EN 0x34
418 /* State reporting bits. These mostly behave like INT_STAT, where
419 * writing a 1 clears the bit.
421 #define DSI1_STAT 0x38
422 # define DSI1_STAT_PHY_D3_ULPS BIT(31)
423 # define DSI1_STAT_PHY_D3_STOP BIT(30)
424 # define DSI1_STAT_PHY_D2_ULPS BIT(29)
425 # define DSI1_STAT_PHY_D2_STOP BIT(28)
426 # define DSI1_STAT_PHY_D1_ULPS BIT(27)
427 # define DSI1_STAT_PHY_D1_STOP BIT(26)
428 # define DSI1_STAT_PHY_D0_ULPS BIT(25)
429 # define DSI1_STAT_PHY_D0_STOP BIT(24)
430 # define DSI1_STAT_FIFO_ERR BIT(23)
431 # define DSI1_STAT_PHY_RXLPDT BIT(22)
432 # define DSI1_STAT_PHY_RXTRIG BIT(21)
433 # define DSI1_STAT_PHY_D0_LPDT BIT(20)
434 /* Set when in forward direction */
435 # define DSI1_STAT_PHY_DIR BIT(19)
436 # define DSI1_STAT_PHY_CLOCK_ULPS BIT(18)
437 # define DSI1_STAT_PHY_CLOCK_HS BIT(17)
438 # define DSI1_STAT_PHY_CLOCK_STOP BIT(16)
439 # define DSI1_STAT_PR_TO BIT(15)
440 # define DSI1_STAT_TA_TO BIT(14)
441 # define DSI1_STAT_LPRX_TO BIT(13)
442 # define DSI1_STAT_HSTX_TO BIT(12)
443 # define DSI1_STAT_ERR_CONT_LP1 BIT(11)
444 # define DSI1_STAT_ERR_CONT_LP0 BIT(10)
445 # define DSI1_STAT_ERR_CONTROL BIT(9)
446 # define DSI1_STAT_ERR_SYNC_ESC BIT(8)
447 # define DSI1_STAT_RXPKT2 BIT(7)
448 # define DSI1_STAT_RXPKT1 BIT(6)
449 # define DSI1_STAT_TXPKT2_BUSY BIT(5)
450 # define DSI1_STAT_TXPKT2_DONE BIT(4)
451 # define DSI1_STAT_TXPKT2_END BIT(3)
452 # define DSI1_STAT_TXPKT1_BUSY BIT(2)
453 # define DSI1_STAT_TXPKT1_DONE BIT(1)
454 # define DSI1_STAT_TXPKT1_END BIT(0)
456 #define DSI1_HSTX_TO_CNT 0x3c
457 #define DSI1_LPRX_TO_CNT 0x40
458 #define DSI1_TA_TO_CNT 0x44
459 #define DSI1_PR_TO_CNT 0x48
460 #define DSI1_PHYC 0x4c
462 #define DSI1_HS_CLT0 0x50
463 # define DSI_HS_CLT0_CZERO_MASK VC4_MASK(26, 18)
464 # define DSI_HS_CLT0_CZERO_SHIFT 18
465 # define DSI_HS_CLT0_CPRE_MASK VC4_MASK(17, 9)
466 # define DSI_HS_CLT0_CPRE_SHIFT 9
467 # define DSI_HS_CLT0_CPREP_MASK VC4_MASK(8, 0)
468 # define DSI_HS_CLT0_CPREP_SHIFT 0
470 #define DSI1_HS_CLT1 0x54
471 # define DSI_HS_CLT1_CTRAIL_MASK VC4_MASK(17, 9)
472 # define DSI_HS_CLT1_CTRAIL_SHIFT 9
473 # define DSI_HS_CLT1_CPOST_MASK VC4_MASK(8, 0)
474 # define DSI_HS_CLT1_CPOST_SHIFT 0
476 #define DSI1_HS_CLT2 0x58
477 # define DSI_HS_CLT2_WUP_MASK VC4_MASK(23, 0)
478 # define DSI_HS_CLT2_WUP_SHIFT 0
480 #define DSI1_HS_DLT3 0x5c
481 # define DSI_HS_DLT3_EXIT_MASK VC4_MASK(26, 18)
482 # define DSI_HS_DLT3_EXIT_SHIFT 18
483 # define DSI_HS_DLT3_ZERO_MASK VC4_MASK(17, 9)
484 # define DSI_HS_DLT3_ZERO_SHIFT 9
485 # define DSI_HS_DLT3_PRE_MASK VC4_MASK(8, 0)
486 # define DSI_HS_DLT3_PRE_SHIFT 0
488 #define DSI1_HS_DLT4 0x60
489 # define DSI_HS_DLT4_ANLAT_MASK VC4_MASK(22, 18)
490 # define DSI_HS_DLT4_ANLAT_SHIFT 18
491 # define DSI_HS_DLT4_TRAIL_MASK VC4_MASK(17, 9)
492 # define DSI_HS_DLT4_TRAIL_SHIFT 9
493 # define DSI_HS_DLT4_LPX_MASK VC4_MASK(8, 0)
494 # define DSI_HS_DLT4_LPX_SHIFT 0
496 #define DSI1_HS_DLT5 0x64
497 # define DSI_HS_DLT5_INIT_MASK VC4_MASK(23, 0)
498 # define DSI_HS_DLT5_INIT_SHIFT 0
500 #define DSI1_HS_DLT6 0x68
501 # define DSI_HS_DLT6_TA_GET_MASK VC4_MASK(31, 24)
502 # define DSI_HS_DLT6_TA_GET_SHIFT 24
503 # define DSI_HS_DLT6_TA_SURE_MASK VC4_MASK(23, 16)
504 # define DSI_HS_DLT6_TA_SURE_SHIFT 16
505 # define DSI_HS_DLT6_TA_GO_MASK VC4_MASK(15, 8)
506 # define DSI_HS_DLT6_TA_GO_SHIFT 8
507 # define DSI_HS_DLT6_LP_LPX_MASK VC4_MASK(7, 0)
508 # define DSI_HS_DLT6_LP_LPX_SHIFT 0
510 #define DSI1_HS_DLT7 0x6c
511 # define DSI_HS_DLT7_LP_WUP_MASK VC4_MASK(23, 0)
512 # define DSI_HS_DLT7_LP_WUP_SHIFT 0
514 #define DSI1_PHY_AFEC0 0x70
516 #define DSI1_PHY_AFEC1 0x74
517 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_MASK VC4_MASK(19, 16)
518 # define DSI1_PHY_AFEC1_ACTRL_DLANE3_SHIFT 16
519 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_MASK VC4_MASK(15, 12)
520 # define DSI1_PHY_AFEC1_ACTRL_DLANE2_SHIFT 12
521 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_MASK VC4_MASK(11, 8)
522 # define DSI1_PHY_AFEC1_ACTRL_DLANE1_SHIFT 8
523 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_MASK VC4_MASK(7, 4)
524 # define DSI1_PHY_AFEC1_ACTRL_DLANE0_SHIFT 4
525 # define DSI1_PHY_AFEC1_ACTRL_CLANE_MASK VC4_MASK(3, 0)
526 # define DSI1_PHY_AFEC1_ACTRL_CLANE_SHIFT 0
528 #define DSI1_TST_SEL 0x78
529 #define DSI1_TST_MON 0x7c
530 #define DSI1_PHY_TST1 0x80
531 #define DSI1_PHY_TST2 0x84
532 #define DSI1_PHY_FIFO_STAT 0x88
533 /* Actually, all registers in the range that aren't otherwise claimed
534 * will return the ID.
538 struct vc4_dsi_variant
{
539 /* Whether we're on bcm2835's DSI0 or DSI1. */
542 bool broken_axi_workaround
;
544 const char *debugfs_name
;
545 const struct debugfs_reg32
*regs
;
550 /* General DSI hardware state. */
552 struct vc4_encoder encoder
;
553 struct mipi_dsi_host dsi_host
;
557 struct platform_device
*pdev
;
559 struct drm_bridge
*out_bridge
;
560 struct drm_bridge bridge
;
564 struct dma_chan
*reg_dma_chan
;
565 dma_addr_t reg_dma_paddr
;
567 dma_addr_t reg_paddr
;
569 const struct vc4_dsi_variant
*variant
;
571 /* DSI channel for the panel we're connected to. */
578 /* Input clock from CPRMAN to the digital PHY, for the DSI
581 struct clk
*escape_clock
;
583 /* Input clock to the analog PHY, used to generate the DSI bit
586 struct clk
*pll_phy_clock
;
588 /* HS Clocks generated within the DSI analog PHY. */
589 struct clk_fixed_factor phy_clocks
[3];
591 struct clk_hw_onecell_data
*clk_onecell
;
593 /* Pixel clock output to the pixelvalve, generated from the HS
596 struct clk
*pixel_clock
;
598 struct completion xfer_completion
;
601 struct debugfs_regset32 regset
;
604 #define host_to_dsi(host) \
605 container_of_const(host, struct vc4_dsi, dsi_host)
607 #define to_vc4_dsi(_encoder) \
608 container_of_const(_encoder, struct vc4_dsi, encoder.base)
610 #define bridge_to_vc4_dsi(_bridge) \
611 container_of_const(_bridge, struct vc4_dsi, bridge)
614 dsi_dma_workaround_write(struct vc4_dsi
*dsi
, u32 offset
, u32 val
)
616 struct drm_device
*drm
= dsi
->bridge
.dev
;
617 struct dma_chan
*chan
= dsi
->reg_dma_chan
;
618 struct dma_async_tx_descriptor
*tx
;
622 kunit_fail_current_test("Accessing a register in a unit test!\n");
624 /* DSI0 should be able to write normally. */
626 writel(val
, dsi
->regs
+ offset
);
630 *dsi
->reg_dma_mem
= val
;
632 tx
= chan
->device
->device_prep_dma_memcpy(chan
,
633 dsi
->reg_paddr
+ offset
,
637 drm_err(drm
, "Failed to set up DMA register write\n");
641 cookie
= tx
->tx_submit(tx
);
642 ret
= dma_submit_error(cookie
);
644 drm_err(drm
, "Failed to submit DMA: %d\n", ret
);
647 ret
= dma_sync_wait(chan
, cookie
);
649 drm_err(drm
, "Failed to wait for DMA: %d\n", ret
);
652 #define DSI_READ(offset) \
654 kunit_fail_current_test("Accessing a register in a unit test!\n"); \
655 readl(dsi->regs + (offset)); \
658 #define DSI_WRITE(offset, val) dsi_dma_workaround_write(dsi, offset, val)
659 #define DSI_PORT_READ(offset) \
660 DSI_READ(dsi->variant->port ? DSI1_##offset : DSI0_##offset)
661 #define DSI_PORT_WRITE(offset, val) \
662 DSI_WRITE(dsi->variant->port ? DSI1_##offset : DSI0_##offset, val)
663 #define DSI_PORT_BIT(bit) (dsi->variant->port ? DSI1_##bit : DSI0_##bit)
665 static const struct debugfs_reg32 dsi0_regs
[] = {
666 VC4_REG32(DSI0_CTRL
),
667 VC4_REG32(DSI0_STAT
),
668 VC4_REG32(DSI0_HSTX_TO_CNT
),
669 VC4_REG32(DSI0_LPRX_TO_CNT
),
670 VC4_REG32(DSI0_TA_TO_CNT
),
671 VC4_REG32(DSI0_PR_TO_CNT
),
672 VC4_REG32(DSI0_DISP0_CTRL
),
673 VC4_REG32(DSI0_DISP1_CTRL
),
674 VC4_REG32(DSI0_INT_STAT
),
675 VC4_REG32(DSI0_INT_EN
),
676 VC4_REG32(DSI0_PHYC
),
677 VC4_REG32(DSI0_HS_CLT0
),
678 VC4_REG32(DSI0_HS_CLT1
),
679 VC4_REG32(DSI0_HS_CLT2
),
680 VC4_REG32(DSI0_HS_DLT3
),
681 VC4_REG32(DSI0_HS_DLT4
),
682 VC4_REG32(DSI0_HS_DLT5
),
683 VC4_REG32(DSI0_HS_DLT6
),
684 VC4_REG32(DSI0_HS_DLT7
),
685 VC4_REG32(DSI0_PHY_AFEC0
),
686 VC4_REG32(DSI0_PHY_AFEC1
),
690 static const struct debugfs_reg32 dsi1_regs
[] = {
691 VC4_REG32(DSI1_CTRL
),
692 VC4_REG32(DSI1_STAT
),
693 VC4_REG32(DSI1_HSTX_TO_CNT
),
694 VC4_REG32(DSI1_LPRX_TO_CNT
),
695 VC4_REG32(DSI1_TA_TO_CNT
),
696 VC4_REG32(DSI1_PR_TO_CNT
),
697 VC4_REG32(DSI1_DISP0_CTRL
),
698 VC4_REG32(DSI1_DISP1_CTRL
),
699 VC4_REG32(DSI1_INT_STAT
),
700 VC4_REG32(DSI1_INT_EN
),
701 VC4_REG32(DSI1_PHYC
),
702 VC4_REG32(DSI1_HS_CLT0
),
703 VC4_REG32(DSI1_HS_CLT1
),
704 VC4_REG32(DSI1_HS_CLT2
),
705 VC4_REG32(DSI1_HS_DLT3
),
706 VC4_REG32(DSI1_HS_DLT4
),
707 VC4_REG32(DSI1_HS_DLT5
),
708 VC4_REG32(DSI1_HS_DLT6
),
709 VC4_REG32(DSI1_HS_DLT7
),
710 VC4_REG32(DSI1_PHY_AFEC0
),
711 VC4_REG32(DSI1_PHY_AFEC1
),
715 static void vc4_dsi_latch_ulps(struct vc4_dsi
*dsi
, bool latch
)
717 u32 afec0
= DSI_PORT_READ(PHY_AFEC0
);
720 afec0
|= DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS
);
722 afec0
&= ~DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS
);
724 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
727 /* Enters or exits Ultra Low Power State. */
728 static void vc4_dsi_ulps(struct vc4_dsi
*dsi
, bool ulps
)
730 bool non_continuous
= dsi
->mode_flags
& MIPI_DSI_CLOCK_NON_CONTINUOUS
;
731 u32 phyc_ulps
= ((non_continuous
? DSI_PORT_BIT(PHYC_CLANE_ULPS
) : 0) |
732 DSI_PHYC_DLANE0_ULPS
|
733 (dsi
->lanes
> 1 ? DSI_PHYC_DLANE1_ULPS
: 0) |
734 (dsi
->lanes
> 2 ? DSI_PHYC_DLANE2_ULPS
: 0) |
735 (dsi
->lanes
> 3 ? DSI_PHYC_DLANE3_ULPS
: 0));
736 u32 stat_ulps
= ((non_continuous
? DSI1_STAT_PHY_CLOCK_ULPS
: 0) |
737 DSI1_STAT_PHY_D0_ULPS
|
738 (dsi
->lanes
> 1 ? DSI1_STAT_PHY_D1_ULPS
: 0) |
739 (dsi
->lanes
> 2 ? DSI1_STAT_PHY_D2_ULPS
: 0) |
740 (dsi
->lanes
> 3 ? DSI1_STAT_PHY_D3_ULPS
: 0));
741 u32 stat_stop
= ((non_continuous
? DSI1_STAT_PHY_CLOCK_STOP
: 0) |
742 DSI1_STAT_PHY_D0_STOP
|
743 (dsi
->lanes
> 1 ? DSI1_STAT_PHY_D1_STOP
: 0) |
744 (dsi
->lanes
> 2 ? DSI1_STAT_PHY_D2_STOP
: 0) |
745 (dsi
->lanes
> 3 ? DSI1_STAT_PHY_D3_STOP
: 0));
747 bool ulps_currently_enabled
= (DSI_PORT_READ(PHY_AFEC0
) &
748 DSI_PORT_BIT(PHY_AFEC0_LATCH_ULPS
));
750 if (ulps
== ulps_currently_enabled
)
753 DSI_PORT_WRITE(STAT
, stat_ulps
);
754 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) | phyc_ulps
);
755 ret
= wait_for((DSI_PORT_READ(STAT
) & stat_ulps
) == stat_ulps
, 200);
757 dev_warn(&dsi
->pdev
->dev
,
758 "Timeout waiting for DSI ULPS entry: STAT 0x%08x",
759 DSI_PORT_READ(STAT
));
760 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
761 vc4_dsi_latch_ulps(dsi
, false);
765 /* The DSI module can't be disabled while the module is
766 * generating ULPS state. So, to be able to disable the
767 * module, we have the AFE latch the ULPS state and continue
768 * on to having the module enter STOP.
770 vc4_dsi_latch_ulps(dsi
, ulps
);
772 DSI_PORT_WRITE(STAT
, stat_stop
);
773 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
774 ret
= wait_for((DSI_PORT_READ(STAT
) & stat_stop
) == stat_stop
, 200);
776 dev_warn(&dsi
->pdev
->dev
,
777 "Timeout waiting for DSI STOP entry: STAT 0x%08x",
778 DSI_PORT_READ(STAT
));
779 DSI_PORT_WRITE(PHYC
, DSI_PORT_READ(PHYC
) & ~phyc_ulps
);
785 dsi_hs_timing(u32 ui_ns
, u32 ns
, u32 ui
)
787 /* The HS timings have to be rounded up to a multiple of 8
788 * because we're using the byte clock.
790 return roundup(ui
+ DIV_ROUND_UP(ns
, ui_ns
), 8);
793 /* ESC always runs at 100Mhz. */
794 #define ESC_TIME_NS 10
797 dsi_esc_timing(u32 ns
)
799 return DIV_ROUND_UP(ns
, ESC_TIME_NS
);
802 static void vc4_dsi_bridge_disable(struct drm_bridge
*bridge
,
803 struct drm_bridge_state
*state
)
805 struct vc4_dsi
*dsi
= bridge_to_vc4_dsi(bridge
);
808 disp0_ctrl
= DSI_PORT_READ(DISP0_CTRL
);
809 disp0_ctrl
&= ~DSI_DISP0_ENABLE
;
810 DSI_PORT_WRITE(DISP0_CTRL
, disp0_ctrl
);
813 static void vc4_dsi_bridge_post_disable(struct drm_bridge
*bridge
,
814 struct drm_bridge_state
*state
)
816 struct vc4_dsi
*dsi
= bridge_to_vc4_dsi(bridge
);
817 struct device
*dev
= &dsi
->pdev
->dev
;
819 clk_disable_unprepare(dsi
->pll_phy_clock
);
820 clk_disable_unprepare(dsi
->escape_clock
);
821 clk_disable_unprepare(dsi
->pixel_clock
);
826 /* Extends the mode's blank intervals to handle BCM2835's integer-only
829 * On 2835, PLLD is set to 2Ghz, and may not be changed by the display
830 * driver since most peripherals are hanging off of the PLLD_PER
831 * divider. PLLD_DSI1, which drives our DSI bit clock (and therefore
832 * the pixel clock), only has an integer divider off of DSI.
834 * To get our panel mode to refresh at the expected 60Hz, we need to
835 * extend the horizontal blank time. This means we drive a
836 * higher-than-expected clock rate to the panel, but that's what the
839 static bool vc4_dsi_bridge_mode_fixup(struct drm_bridge
*bridge
,
840 const struct drm_display_mode
*mode
,
841 struct drm_display_mode
*adjusted_mode
)
843 struct vc4_dsi
*dsi
= bridge_to_vc4_dsi(bridge
);
844 struct clk
*phy_parent
= clk_get_parent(dsi
->pll_phy_clock
);
845 unsigned long parent_rate
= clk_get_rate(phy_parent
);
846 unsigned long pixel_clock_hz
= mode
->clock
* 1000;
847 unsigned long pll_clock
= pixel_clock_hz
* dsi
->divider
;
850 /* Find what divider gets us a faster clock than the requested
853 for (divider
= 1; divider
< 255; divider
++) {
854 if (parent_rate
/ (divider
+ 1) < pll_clock
)
858 /* Now that we've picked a PLL divider, calculate back to its
861 pll_clock
= parent_rate
/ divider
;
862 pixel_clock_hz
= pll_clock
/ dsi
->divider
;
864 adjusted_mode
->clock
= pixel_clock_hz
/ 1000;
866 /* Given the new pixel clock, adjust HFP to keep vrefresh the same. */
867 adjusted_mode
->htotal
= adjusted_mode
->clock
* mode
->htotal
/
869 adjusted_mode
->hsync_end
+= adjusted_mode
->htotal
- mode
->htotal
;
870 adjusted_mode
->hsync_start
+= adjusted_mode
->htotal
- mode
->htotal
;
875 static void vc4_dsi_bridge_pre_enable(struct drm_bridge
*bridge
,
876 struct drm_bridge_state
*old_state
)
878 struct drm_atomic_state
*state
= old_state
->base
.state
;
879 struct vc4_dsi
*dsi
= bridge_to_vc4_dsi(bridge
);
880 const struct drm_crtc_state
*crtc_state
;
881 struct device
*dev
= &dsi
->pdev
->dev
;
882 const struct drm_display_mode
*mode
;
883 struct drm_connector
*connector
;
884 bool debug_dump_regs
= false;
885 unsigned long hs_clock
;
886 struct drm_crtc
*crtc
;
888 /* Minimum LP state duration in escape clock cycles. */
889 u32 lpx
= dsi_esc_timing(60);
890 unsigned long pixel_clock_hz
;
891 unsigned long dsip_clock
;
892 unsigned long phy_clock
;
895 ret
= pm_runtime_resume_and_get(dev
);
897 drm_err(bridge
->dev
, "Failed to runtime PM enable on DSI%d\n", dsi
->variant
->port
);
901 if (debug_dump_regs
) {
902 struct drm_printer p
= drm_info_printer(&dsi
->pdev
->dev
);
903 dev_info(&dsi
->pdev
->dev
, "DSI regs before:\n");
904 drm_print_regset32(&p
, &dsi
->regset
);
908 * Retrieve the CRTC adjusted mode. This requires a little dance to go
909 * from the bridge to the encoder, to the connector and to the CRTC.
911 connector
= drm_atomic_get_new_connector_for_encoder(state
,
913 crtc
= drm_atomic_get_new_connector_state(state
, connector
)->crtc
;
914 crtc_state
= drm_atomic_get_new_crtc_state(state
, crtc
);
915 mode
= &crtc_state
->adjusted_mode
;
917 pixel_clock_hz
= mode
->clock
* 1000;
919 /* Round up the clk_set_rate() request slightly, since
920 * PLLD_DSI1 is an integer divider and its rate selection will
923 phy_clock
= (pixel_clock_hz
+ 1000) * dsi
->divider
;
924 ret
= clk_set_rate(dsi
->pll_phy_clock
, phy_clock
);
926 dev_err(&dsi
->pdev
->dev
,
927 "Failed to set phy clock to %ld: %d\n", phy_clock
, ret
);
930 /* Reset the DSI and all its fifos. */
932 DSI_CTRL_SOFT_RESET_CFG
|
933 DSI_PORT_BIT(CTRL_RESET_FIFOS
));
936 DSI_CTRL_HSDT_EOT_DISABLE
|
937 DSI_CTRL_RX_LPDT_EOT_DISABLE
);
939 /* Clear all stat bits so we see what has happened during enable. */
940 DSI_PORT_WRITE(STAT
, DSI_PORT_READ(STAT
));
942 /* Set AFE CTR00/CTR1 to release powerdown of analog. */
943 if (dsi
->variant
->port
== 0) {
944 u32 afec0
= (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ
) |
945 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ
));
948 afec0
|= DSI0_PHY_AFEC0_PD_DLANE1
;
950 if (!(dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
))
951 afec0
|= DSI0_PHY_AFEC0_RESET
;
953 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
955 /* AFEC reset hold time */
958 DSI_PORT_WRITE(PHY_AFEC1
,
959 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE1
) |
960 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_DLANE0
) |
961 VC4_SET_FIELD(6, DSI0_PHY_AFEC1_IDR_CLANE
));
963 u32 afec0
= (VC4_SET_FIELD(7, DSI_PHY_AFEC0_PTATADJ
) |
964 VC4_SET_FIELD(7, DSI_PHY_AFEC0_CTATADJ
) |
965 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_CLANE
) |
966 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE0
) |
967 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE1
) |
968 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE2
) |
969 VC4_SET_FIELD(6, DSI1_PHY_AFEC0_IDR_DLANE3
));
972 afec0
|= DSI1_PHY_AFEC0_PD_DLANE3
;
974 afec0
|= DSI1_PHY_AFEC0_PD_DLANE2
;
976 afec0
|= DSI1_PHY_AFEC0_PD_DLANE1
;
978 afec0
|= DSI1_PHY_AFEC0_RESET
;
980 DSI_PORT_WRITE(PHY_AFEC0
, afec0
);
982 DSI_PORT_WRITE(PHY_AFEC1
, 0);
984 /* AFEC reset hold time */
988 ret
= clk_prepare_enable(dsi
->escape_clock
);
990 drm_err(bridge
->dev
, "Failed to turn on DSI escape clock: %d\n",
995 ret
= clk_prepare_enable(dsi
->pll_phy_clock
);
997 drm_err(bridge
->dev
, "Failed to turn on DSI PLL: %d\n", ret
);
1001 hs_clock
= clk_get_rate(dsi
->pll_phy_clock
);
1003 /* Yes, we set the DSI0P/DSI1P pixel clock to the byte rate,
1004 * not the pixel clock rate. DSIxP take from the APHY's byte,
1005 * DDR2, or DDR4 clock (we use byte) and feed into the PV at
1006 * that rate. Separately, a value derived from PIX_CLK_DIV
1007 * and HS_CLKC is fed into the PV to divide down to the actual
1008 * pixel clock for pushing pixels into DSI.
1010 dsip_clock
= phy_clock
/ 8;
1011 ret
= clk_set_rate(dsi
->pixel_clock
, dsip_clock
);
1013 dev_err(dev
, "Failed to set pixel clock to %ldHz: %d\n",
1017 ret
= clk_prepare_enable(dsi
->pixel_clock
);
1019 drm_err(bridge
->dev
, "Failed to turn on DSI pixel clock: %d\n", ret
);
1023 /* How many ns one DSI unit interval is. Note that the clock
1024 * is DDR, so there's an extra divide by 2.
1026 ui_ns
= DIV_ROUND_UP(500000000, hs_clock
);
1028 DSI_PORT_WRITE(HS_CLT0
,
1029 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 262, 0),
1030 DSI_HS_CLT0_CZERO
) |
1031 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 0, 8),
1033 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 38, 0),
1034 DSI_HS_CLT0_CPREP
));
1036 DSI_PORT_WRITE(HS_CLT1
,
1037 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 60, 0),
1038 DSI_HS_CLT1_CTRAIL
) |
1039 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 60, 52),
1040 DSI_HS_CLT1_CPOST
));
1042 DSI_PORT_WRITE(HS_CLT2
,
1043 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 1000000, 0),
1046 DSI_PORT_WRITE(HS_DLT3
,
1047 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 100, 0),
1049 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 105, 6),
1051 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, 40, 4),
1054 DSI_PORT_WRITE(HS_DLT4
,
1055 VC4_SET_FIELD(dsi_hs_timing(ui_ns
, lpx
* ESC_TIME_NS
, 0),
1057 VC4_SET_FIELD(max(dsi_hs_timing(ui_ns
, 0, 8),
1058 dsi_hs_timing(ui_ns
, 60, 4)),
1059 DSI_HS_DLT4_TRAIL
) |
1060 VC4_SET_FIELD(0, DSI_HS_DLT4_ANLAT
));
1062 /* T_INIT is how long STOP is driven after power-up to
1063 * indicate to the slave (also coming out of power-up) that
1064 * master init is complete, and should be greater than the
1065 * maximum of two value: T_INIT,MASTER and T_INIT,SLAVE. The
1066 * D-PHY spec gives a minimum 100us for T_INIT,MASTER and
1067 * T_INIT,SLAVE, while allowing protocols on top of it to give
1068 * greater minimums. The vc4 firmware uses an extremely
1069 * conservative 5ms, and we maintain that here.
1071 DSI_PORT_WRITE(HS_DLT5
, VC4_SET_FIELD(dsi_hs_timing(ui_ns
,
1072 5 * 1000 * 1000, 0),
1075 DSI_PORT_WRITE(HS_DLT6
,
1076 VC4_SET_FIELD(lpx
* 5, DSI_HS_DLT6_TA_GET
) |
1077 VC4_SET_FIELD(lpx
, DSI_HS_DLT6_TA_SURE
) |
1078 VC4_SET_FIELD(lpx
* 4, DSI_HS_DLT6_TA_GO
) |
1079 VC4_SET_FIELD(lpx
, DSI_HS_DLT6_LP_LPX
));
1081 DSI_PORT_WRITE(HS_DLT7
,
1082 VC4_SET_FIELD(dsi_esc_timing(1000000),
1083 DSI_HS_DLT7_LP_WUP
));
1085 DSI_PORT_WRITE(PHYC
,
1086 DSI_PHYC_DLANE0_ENABLE
|
1087 (dsi
->lanes
>= 2 ? DSI_PHYC_DLANE1_ENABLE
: 0) |
1088 (dsi
->lanes
>= 3 ? DSI_PHYC_DLANE2_ENABLE
: 0) |
1089 (dsi
->lanes
>= 4 ? DSI_PHYC_DLANE3_ENABLE
: 0) |
1090 DSI_PORT_BIT(PHYC_CLANE_ENABLE
) |
1091 ((dsi
->mode_flags
& MIPI_DSI_CLOCK_NON_CONTINUOUS
) ?
1092 0 : DSI_PORT_BIT(PHYC_HS_CLK_CONTINUOUS
)) |
1093 (dsi
->variant
->port
== 0 ?
1094 VC4_SET_FIELD(lpx
- 1, DSI0_PHYC_ESC_CLK_LPDT
) :
1095 VC4_SET_FIELD(lpx
- 1, DSI1_PHYC_ESC_CLK_LPDT
)));
1097 DSI_PORT_WRITE(CTRL
,
1098 DSI_PORT_READ(CTRL
) |
1101 /* HS timeout in HS clock cycles: disabled. */
1102 DSI_PORT_WRITE(HSTX_TO_CNT
, 0);
1103 /* LP receive timeout in HS clocks. */
1104 DSI_PORT_WRITE(LPRX_TO_CNT
, 0xffffff);
1105 /* Bus turnaround timeout */
1106 DSI_PORT_WRITE(TA_TO_CNT
, 100000);
1107 /* Display reset sequence timeout */
1108 DSI_PORT_WRITE(PR_TO_CNT
, 100000);
1110 /* Set up DISP1 for transferring long command payloads through
1113 DSI_PORT_WRITE(DISP1_CTRL
,
1114 VC4_SET_FIELD(DSI_DISP1_PFORMAT_32BIT_LE
,
1115 DSI_DISP1_PFORMAT
) |
1118 /* Ungate the block. */
1119 if (dsi
->variant
->port
== 0)
1120 DSI_PORT_WRITE(CTRL
, DSI_PORT_READ(CTRL
) | DSI0_CTRL_CTRL0
);
1122 DSI_PORT_WRITE(CTRL
, DSI_PORT_READ(CTRL
) | DSI1_CTRL_EN
);
1124 /* Bring AFE out of reset. */
1125 DSI_PORT_WRITE(PHY_AFEC0
,
1126 DSI_PORT_READ(PHY_AFEC0
) &
1127 ~DSI_PORT_BIT(PHY_AFEC0_RESET
));
1129 vc4_dsi_ulps(dsi
, false);
1131 if (dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
) {
1132 DSI_PORT_WRITE(DISP0_CTRL
,
1133 VC4_SET_FIELD(dsi
->divider
,
1134 DSI_DISP0_PIX_CLK_DIV
) |
1135 VC4_SET_FIELD(dsi
->format
, DSI_DISP0_PFORMAT
) |
1136 VC4_SET_FIELD(DSI_DISP0_LP_STOP_PERFRAME
,
1137 DSI_DISP0_LP_STOP_CTRL
) |
1140 DSI_PORT_WRITE(DISP0_CTRL
,
1141 DSI_DISP0_COMMAND_MODE
);
1145 static void vc4_dsi_bridge_enable(struct drm_bridge
*bridge
,
1146 struct drm_bridge_state
*old_state
)
1148 struct vc4_dsi
*dsi
= bridge_to_vc4_dsi(bridge
);
1149 bool debug_dump_regs
= false;
1152 disp0_ctrl
= DSI_PORT_READ(DISP0_CTRL
);
1153 disp0_ctrl
|= DSI_DISP0_ENABLE
;
1154 DSI_PORT_WRITE(DISP0_CTRL
, disp0_ctrl
);
1156 if (debug_dump_regs
) {
1157 struct drm_printer p
= drm_info_printer(&dsi
->pdev
->dev
);
1158 dev_info(&dsi
->pdev
->dev
, "DSI regs after:\n");
1159 drm_print_regset32(&p
, &dsi
->regset
);
1163 static int vc4_dsi_bridge_attach(struct drm_bridge
*bridge
,
1164 enum drm_bridge_attach_flags flags
)
1166 struct vc4_dsi
*dsi
= bridge_to_vc4_dsi(bridge
);
1168 /* Attach the panel or bridge to the dsi bridge */
1169 return drm_bridge_attach(bridge
->encoder
, dsi
->out_bridge
,
1170 &dsi
->bridge
, flags
);
1173 static ssize_t
vc4_dsi_host_transfer(struct mipi_dsi_host
*host
,
1174 const struct mipi_dsi_msg
*msg
)
1176 struct vc4_dsi
*dsi
= host_to_dsi(host
);
1177 struct drm_device
*drm
= dsi
->bridge
.dev
;
1178 struct mipi_dsi_packet packet
;
1179 u32 pkth
= 0, pktc
= 0;
1181 bool is_long
= mipi_dsi_packet_format_is_long(msg
->type
);
1182 u32 cmd_fifo_len
= 0, pix_fifo_len
= 0;
1184 mipi_dsi_create_packet(&packet
, msg
);
1186 pkth
|= VC4_SET_FIELD(packet
.header
[0], DSI_TXPKT1H_BC_DT
);
1187 pkth
|= VC4_SET_FIELD(packet
.header
[1] |
1188 (packet
.header
[2] << 8),
1189 DSI_TXPKT1H_BC_PARAM
);
1191 /* Divide data across the various FIFOs we have available.
1192 * The command FIFO takes byte-oriented data, but is of
1193 * limited size. The pixel FIFO (never actually used for
1194 * pixel data in reality) is word oriented, and substantially
1195 * larger. So, we use the pixel FIFO for most of the data,
1196 * sending the residual bytes in the command FIFO at the start.
1198 * With this arrangement, the command FIFO will never get full.
1200 if (packet
.payload_length
<= 16) {
1201 cmd_fifo_len
= packet
.payload_length
;
1204 cmd_fifo_len
= (packet
.payload_length
%
1205 DSI_PIX_FIFO_WIDTH
);
1206 pix_fifo_len
= ((packet
.payload_length
- cmd_fifo_len
) /
1207 DSI_PIX_FIFO_WIDTH
);
1210 WARN_ON_ONCE(pix_fifo_len
>= DSI_PIX_FIFO_DEPTH
);
1212 pkth
|= VC4_SET_FIELD(cmd_fifo_len
, DSI_TXPKT1H_BC_CMDFIFO
);
1216 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_RX
,
1217 DSI_TXPKT1C_CMD_CTRL
);
1219 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_CMD_CTRL_TX
,
1220 DSI_TXPKT1C_CMD_CTRL
);
1223 for (i
= 0; i
< cmd_fifo_len
; i
++)
1224 DSI_PORT_WRITE(TXPKT_CMD_FIFO
, packet
.payload
[i
]);
1225 for (i
= 0; i
< pix_fifo_len
; i
++) {
1226 const u8
*pix
= packet
.payload
+ cmd_fifo_len
+ i
* 4;
1228 DSI_PORT_WRITE(TXPKT_PIX_FIFO
,
1235 if (msg
->flags
& MIPI_DSI_MSG_USE_LPM
)
1236 pktc
|= DSI_TXPKT1C_CMD_MODE_LP
;
1238 pktc
|= DSI_TXPKT1C_CMD_TYPE_LONG
;
1240 /* Send one copy of the packet. Larger repeats are used for pixel
1241 * data in command mode.
1243 pktc
|= VC4_SET_FIELD(1, DSI_TXPKT1C_CMD_REPEAT
);
1245 pktc
|= DSI_TXPKT1C_CMD_EN
;
1247 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SECONDARY
,
1248 DSI_TXPKT1C_DISPLAY_NO
);
1250 pktc
|= VC4_SET_FIELD(DSI_TXPKT1C_DISPLAY_NO_SHORT
,
1251 DSI_TXPKT1C_DISPLAY_NO
);
1254 /* Enable the appropriate interrupt for the transfer completion. */
1255 dsi
->xfer_result
= 0;
1256 reinit_completion(&dsi
->xfer_completion
);
1257 if (dsi
->variant
->port
== 0) {
1258 DSI_PORT_WRITE(INT_STAT
,
1259 DSI0_INT_CMDC_DONE_MASK
| DSI1_INT_PHY_DIR_RTF
);
1261 DSI_PORT_WRITE(INT_EN
, (DSI0_INTERRUPTS_ALWAYS_ENABLED
|
1262 DSI0_INT_PHY_DIR_RTF
));
1264 DSI_PORT_WRITE(INT_EN
,
1265 (DSI0_INTERRUPTS_ALWAYS_ENABLED
|
1266 VC4_SET_FIELD(DSI0_INT_CMDC_DONE_NO_REPEAT
,
1267 DSI0_INT_CMDC_DONE
)));
1270 DSI_PORT_WRITE(INT_STAT
,
1271 DSI1_INT_TXPKT1_DONE
| DSI1_INT_PHY_DIR_RTF
);
1273 DSI_PORT_WRITE(INT_EN
, (DSI1_INTERRUPTS_ALWAYS_ENABLED
|
1274 DSI1_INT_PHY_DIR_RTF
));
1276 DSI_PORT_WRITE(INT_EN
, (DSI1_INTERRUPTS_ALWAYS_ENABLED
|
1277 DSI1_INT_TXPKT1_DONE
));
1281 /* Send the packet. */
1282 DSI_PORT_WRITE(TXPKT1H
, pkth
);
1283 DSI_PORT_WRITE(TXPKT1C
, pktc
);
1285 if (!wait_for_completion_timeout(&dsi
->xfer_completion
,
1286 msecs_to_jiffies(1000))) {
1287 dev_err(&dsi
->pdev
->dev
, "transfer interrupt wait timeout");
1288 dev_err(&dsi
->pdev
->dev
, "instat: 0x%08x\n",
1289 DSI_PORT_READ(INT_STAT
));
1292 ret
= dsi
->xfer_result
;
1295 DSI_PORT_WRITE(INT_EN
, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED
));
1298 goto reset_fifo_and_return
;
1300 if (ret
== 0 && msg
->rx_len
) {
1301 u32 rxpkt1h
= DSI_PORT_READ(RXPKT1H
);
1302 u8
*msg_rx
= msg
->rx_buf
;
1304 if (rxpkt1h
& DSI_RXPKT1H_PKT_TYPE_LONG
) {
1305 u32 rxlen
= VC4_GET_FIELD(rxpkt1h
,
1306 DSI_RXPKT1H_BC_PARAM
);
1308 if (rxlen
!= msg
->rx_len
) {
1309 drm_err(drm
, "DSI returned %db, expecting %db\n",
1310 rxlen
, (int)msg
->rx_len
);
1312 goto reset_fifo_and_return
;
1315 for (i
= 0; i
< msg
->rx_len
; i
++)
1316 msg_rx
[i
] = DSI_READ(DSI1_RXPKT_FIFO
);
1318 /* FINISHME: Handle AWER */
1320 msg_rx
[0] = VC4_GET_FIELD(rxpkt1h
,
1321 DSI_RXPKT1H_SHORT_0
);
1322 if (msg
->rx_len
> 1) {
1323 msg_rx
[1] = VC4_GET_FIELD(rxpkt1h
,
1324 DSI_RXPKT1H_SHORT_1
);
1331 reset_fifo_and_return
:
1332 drm_err(drm
, "DSI transfer failed, resetting: %d\n", ret
);
1334 DSI_PORT_WRITE(TXPKT1C
, DSI_PORT_READ(TXPKT1C
) & ~DSI_TXPKT1C_CMD_EN
);
1336 DSI_PORT_WRITE(CTRL
,
1337 DSI_PORT_READ(CTRL
) |
1338 DSI_PORT_BIT(CTRL_RESET_FIFOS
));
1340 DSI_PORT_WRITE(TXPKT1C
, 0);
1341 DSI_PORT_WRITE(INT_EN
, DSI_PORT_BIT(INTERRUPTS_ALWAYS_ENABLED
));
1345 static const struct component_ops vc4_dsi_ops
;
1346 static int vc4_dsi_host_attach(struct mipi_dsi_host
*host
,
1347 struct mipi_dsi_device
*device
)
1349 struct vc4_dsi
*dsi
= host_to_dsi(host
);
1352 dsi
->lanes
= device
->lanes
;
1353 dsi
->channel
= device
->channel
;
1354 dsi
->mode_flags
= device
->mode_flags
;
1356 switch (device
->format
) {
1357 case MIPI_DSI_FMT_RGB888
:
1358 dsi
->format
= DSI_PFORMAT_RGB888
;
1359 dsi
->divider
= 24 / dsi
->lanes
;
1361 case MIPI_DSI_FMT_RGB666
:
1362 dsi
->format
= DSI_PFORMAT_RGB666
;
1363 dsi
->divider
= 24 / dsi
->lanes
;
1365 case MIPI_DSI_FMT_RGB666_PACKED
:
1366 dsi
->format
= DSI_PFORMAT_RGB666_PACKED
;
1367 dsi
->divider
= 18 / dsi
->lanes
;
1369 case MIPI_DSI_FMT_RGB565
:
1370 dsi
->format
= DSI_PFORMAT_RGB565
;
1371 dsi
->divider
= 16 / dsi
->lanes
;
1374 dev_err(&dsi
->pdev
->dev
, "Unknown DSI format: %d.\n",
1379 if (!(dsi
->mode_flags
& MIPI_DSI_MODE_VIDEO
)) {
1380 dev_err(&dsi
->pdev
->dev
,
1381 "Only VIDEO mode panels supported currently.\n");
1385 drm_bridge_add(&dsi
->bridge
);
1387 ret
= component_add(&dsi
->pdev
->dev
, &vc4_dsi_ops
);
1389 drm_bridge_remove(&dsi
->bridge
);
1396 static int vc4_dsi_host_detach(struct mipi_dsi_host
*host
,
1397 struct mipi_dsi_device
*device
)
1399 struct vc4_dsi
*dsi
= host_to_dsi(host
);
1401 component_del(&dsi
->pdev
->dev
, &vc4_dsi_ops
);
1402 drm_bridge_remove(&dsi
->bridge
);
1406 static const struct mipi_dsi_host_ops vc4_dsi_host_ops
= {
1407 .attach
= vc4_dsi_host_attach
,
1408 .detach
= vc4_dsi_host_detach
,
1409 .transfer
= vc4_dsi_host_transfer
,
1412 static const struct drm_bridge_funcs vc4_dsi_bridge_funcs
= {
1413 .atomic_duplicate_state
= drm_atomic_helper_bridge_duplicate_state
,
1414 .atomic_destroy_state
= drm_atomic_helper_bridge_destroy_state
,
1415 .atomic_reset
= drm_atomic_helper_bridge_reset
,
1416 .atomic_pre_enable
= vc4_dsi_bridge_pre_enable
,
1417 .atomic_enable
= vc4_dsi_bridge_enable
,
1418 .atomic_disable
= vc4_dsi_bridge_disable
,
1419 .atomic_post_disable
= vc4_dsi_bridge_post_disable
,
1420 .attach
= vc4_dsi_bridge_attach
,
1421 .mode_fixup
= vc4_dsi_bridge_mode_fixup
,
1424 static int vc4_dsi_late_register(struct drm_encoder
*encoder
)
1426 struct drm_device
*drm
= encoder
->dev
;
1427 struct vc4_dsi
*dsi
= to_vc4_dsi(encoder
);
1429 vc4_debugfs_add_regset32(drm
, dsi
->variant
->debugfs_name
, &dsi
->regset
);
1434 static const struct drm_encoder_funcs vc4_dsi_encoder_funcs
= {
1435 .late_register
= vc4_dsi_late_register
,
1438 static const struct vc4_dsi_variant bcm2711_dsi1_variant
= {
1440 .debugfs_name
= "dsi1_regs",
1442 .nregs
= ARRAY_SIZE(dsi1_regs
),
1445 static const struct vc4_dsi_variant bcm2835_dsi0_variant
= {
1447 .debugfs_name
= "dsi0_regs",
1449 .nregs
= ARRAY_SIZE(dsi0_regs
),
1452 static const struct vc4_dsi_variant bcm2835_dsi1_variant
= {
1454 .broken_axi_workaround
= true,
1455 .debugfs_name
= "dsi1_regs",
1457 .nregs
= ARRAY_SIZE(dsi1_regs
),
1460 static const struct of_device_id vc4_dsi_dt_match
[] = {
1461 { .compatible
= "brcm,bcm2711-dsi1", &bcm2711_dsi1_variant
},
1462 { .compatible
= "brcm,bcm2835-dsi0", &bcm2835_dsi0_variant
},
1463 { .compatible
= "brcm,bcm2835-dsi1", &bcm2835_dsi1_variant
},
1467 static void dsi_handle_error(struct vc4_dsi
*dsi
,
1468 irqreturn_t
*ret
, u32 stat
, u32 bit
,
1474 drm_err(dsi
->bridge
.dev
, "DSI%d: %s error\n", dsi
->variant
->port
,
1480 * Initial handler for port 1 where we need the reg_dma workaround.
1481 * The register DMA writes sleep, so we can't do it in the top half.
1482 * Instead we use IRQF_ONESHOT so that the IRQ gets disabled in the
1483 * parent interrupt contrller until our interrupt thread is done.
1485 static irqreturn_t
vc4_dsi_irq_defer_to_thread_handler(int irq
, void *data
)
1487 struct vc4_dsi
*dsi
= data
;
1488 u32 stat
= DSI_PORT_READ(INT_STAT
);
1493 return IRQ_WAKE_THREAD
;
1497 * Normal IRQ handler for port 0, or the threaded IRQ handler for port
1498 * 1 where we need the reg_dma workaround.
1500 static irqreturn_t
vc4_dsi_irq_handler(int irq
, void *data
)
1502 struct vc4_dsi
*dsi
= data
;
1503 u32 stat
= DSI_PORT_READ(INT_STAT
);
1504 irqreturn_t ret
= IRQ_NONE
;
1506 DSI_PORT_WRITE(INT_STAT
, stat
);
1508 dsi_handle_error(dsi
, &ret
, stat
,
1509 DSI_PORT_BIT(INT_ERR_SYNC_ESC
), "LPDT sync");
1510 dsi_handle_error(dsi
, &ret
, stat
,
1511 DSI_PORT_BIT(INT_ERR_CONTROL
), "data lane 0 sequence");
1512 dsi_handle_error(dsi
, &ret
, stat
,
1513 DSI_PORT_BIT(INT_ERR_CONT_LP0
), "LP0 contention");
1514 dsi_handle_error(dsi
, &ret
, stat
,
1515 DSI_PORT_BIT(INT_ERR_CONT_LP1
), "LP1 contention");
1516 dsi_handle_error(dsi
, &ret
, stat
,
1517 DSI_PORT_BIT(INT_HSTX_TO
), "HSTX timeout");
1518 dsi_handle_error(dsi
, &ret
, stat
,
1519 DSI_PORT_BIT(INT_LPRX_TO
), "LPRX timeout");
1520 dsi_handle_error(dsi
, &ret
, stat
,
1521 DSI_PORT_BIT(INT_TA_TO
), "turnaround timeout");
1522 dsi_handle_error(dsi
, &ret
, stat
,
1523 DSI_PORT_BIT(INT_PR_TO
), "peripheral reset timeout");
1525 if (stat
& ((dsi
->variant
->port
? DSI1_INT_TXPKT1_DONE
:
1526 DSI0_INT_CMDC_DONE_MASK
) |
1527 DSI_PORT_BIT(INT_PHY_DIR_RTF
))) {
1528 complete(&dsi
->xfer_completion
);
1530 } else if (stat
& DSI_PORT_BIT(INT_HSTX_TO
)) {
1531 complete(&dsi
->xfer_completion
);
1532 dsi
->xfer_result
= -ETIMEDOUT
;
1540 * vc4_dsi_init_phy_clocks - Exposes clocks generated by the analog
1541 * PHY that are consumed by CPRMAN (clk-bcm2835.c).
1545 vc4_dsi_init_phy_clocks(struct vc4_dsi
*dsi
)
1547 struct device
*dev
= &dsi
->pdev
->dev
;
1548 const char *parent_name
= __clk_get_name(dsi
->pll_phy_clock
);
1549 static const struct {
1559 dsi
->clk_onecell
= devm_kzalloc(dev
,
1560 sizeof(*dsi
->clk_onecell
) +
1561 ARRAY_SIZE(phy_clocks
) *
1562 sizeof(struct clk_hw
*),
1564 if (!dsi
->clk_onecell
)
1566 dsi
->clk_onecell
->num
= ARRAY_SIZE(phy_clocks
);
1568 for (i
= 0; i
< ARRAY_SIZE(phy_clocks
); i
++) {
1569 struct clk_fixed_factor
*fix
= &dsi
->phy_clocks
[i
];
1570 struct clk_init_data init
;
1574 snprintf(clk_name
, sizeof(clk_name
),
1575 "dsi%u_%s", dsi
->variant
->port
, phy_clocks
[i
].name
);
1577 /* We just use core fixed factor clock ops for the PHY
1578 * clocks. The clocks are actually gated by the
1579 * PHY_AFEC0_DDRCLK_EN bits, which we should be
1580 * setting if we use the DDR/DDR2 clocks. However,
1581 * vc4_dsi_encoder_enable() is setting up both AFEC0,
1582 * setting both our parent DSI PLL's rate and this
1583 * clock's rate, so it knows if DDR/DDR2 are going to
1584 * be used and could enable the gates itself.
1587 fix
->div
= phy_clocks
[i
].div
;
1588 fix
->hw
.init
= &init
;
1590 memset(&init
, 0, sizeof(init
));
1591 init
.parent_names
= &parent_name
;
1592 init
.num_parents
= 1;
1593 init
.name
= clk_name
;
1594 init
.ops
= &clk_fixed_factor_ops
;
1596 ret
= devm_clk_hw_register(dev
, &fix
->hw
);
1600 dsi
->clk_onecell
->hws
[i
] = &fix
->hw
;
1603 return of_clk_add_hw_provider(dev
->of_node
,
1604 of_clk_hw_onecell_get
,
1608 static void vc4_dsi_dma_mem_release(void *ptr
)
1610 struct vc4_dsi
*dsi
= ptr
;
1611 struct device
*dev
= &dsi
->pdev
->dev
;
1613 dma_free_coherent(dev
, 4, dsi
->reg_dma_mem
, dsi
->reg_dma_paddr
);
1614 dsi
->reg_dma_mem
= NULL
;
1617 static void vc4_dsi_dma_chan_release(void *ptr
)
1619 struct vc4_dsi
*dsi
= ptr
;
1621 dma_release_channel(dsi
->reg_dma_chan
);
1622 dsi
->reg_dma_chan
= NULL
;
1625 static void vc4_dsi_release(struct kref
*kref
)
1627 struct vc4_dsi
*dsi
=
1628 container_of(kref
, struct vc4_dsi
, kref
);
1633 static void vc4_dsi_get(struct vc4_dsi
*dsi
)
1635 kref_get(&dsi
->kref
);
1638 static void vc4_dsi_put(struct vc4_dsi
*dsi
)
1640 kref_put(&dsi
->kref
, &vc4_dsi_release
);
1643 static void vc4_dsi_release_action(struct drm_device
*drm
, void *ptr
)
1645 struct vc4_dsi
*dsi
= ptr
;
1650 static int vc4_dsi_bind(struct device
*dev
, struct device
*master
, void *data
)
1652 struct platform_device
*pdev
= to_platform_device(dev
);
1653 struct drm_device
*drm
= dev_get_drvdata(master
);
1654 struct vc4_dsi
*dsi
= dev_get_drvdata(dev
);
1655 struct drm_encoder
*encoder
= &dsi
->encoder
.base
;
1660 ret
= drmm_add_action_or_reset(drm
, vc4_dsi_release_action
, dsi
);
1664 dsi
->variant
= of_device_get_match_data(dev
);
1666 dsi
->encoder
.type
= dsi
->variant
->port
?
1667 VC4_ENCODER_TYPE_DSI1
: VC4_ENCODER_TYPE_DSI0
;
1669 dsi
->regs
= vc4_ioremap_regs(pdev
, 0);
1670 if (IS_ERR(dsi
->regs
))
1671 return PTR_ERR(dsi
->regs
);
1673 dsi
->regset
.base
= dsi
->regs
;
1674 dsi
->regset
.regs
= dsi
->variant
->regs
;
1675 dsi
->regset
.nregs
= dsi
->variant
->nregs
;
1677 if (DSI_PORT_READ(ID
) != DSI_ID_VALUE
) {
1678 dev_err(dev
, "Port returned 0x%08x for ID instead of 0x%08x\n",
1679 DSI_PORT_READ(ID
), DSI_ID_VALUE
);
1683 /* DSI1 on BCM2835/6/7 has a broken AXI slave that doesn't respond to
1684 * writes from the ARM. It does handle writes from the DMA engine,
1685 * so set up a channel for talking to it.
1687 if (dsi
->variant
->broken_axi_workaround
) {
1688 dma_cap_mask_t dma_mask
;
1690 dsi
->reg_dma_mem
= dma_alloc_coherent(dev
, 4,
1691 &dsi
->reg_dma_paddr
,
1693 if (!dsi
->reg_dma_mem
) {
1694 drm_err(drm
, "Failed to get DMA memory\n");
1698 ret
= devm_add_action_or_reset(dev
, vc4_dsi_dma_mem_release
, dsi
);
1702 dma_cap_zero(dma_mask
);
1703 dma_cap_set(DMA_MEMCPY
, dma_mask
);
1705 dsi
->reg_dma_chan
= dma_request_chan_by_mask(&dma_mask
);
1706 if (IS_ERR(dsi
->reg_dma_chan
)) {
1707 ret
= PTR_ERR(dsi
->reg_dma_chan
);
1708 if (ret
!= -EPROBE_DEFER
)
1709 drm_err(drm
, "Failed to get DMA channel: %d\n",
1714 ret
= devm_add_action_or_reset(dev
, vc4_dsi_dma_chan_release
, dsi
);
1718 /* Get the physical address of the device's registers. The
1719 * struct resource for the regs gives us the bus address
1722 dsi
->reg_paddr
= be32_to_cpup(of_get_address(dev
->of_node
,
1726 init_completion(&dsi
->xfer_completion
);
1727 /* At startup enable error-reporting interrupts and nothing else. */
1728 DSI_PORT_WRITE(INT_EN
, DSI1_INTERRUPTS_ALWAYS_ENABLED
);
1729 /* Clear any existing interrupt state. */
1730 DSI_PORT_WRITE(INT_STAT
, DSI_PORT_READ(INT_STAT
));
1732 if (dsi
->reg_dma_mem
)
1733 ret
= devm_request_threaded_irq(dev
, platform_get_irq(pdev
, 0),
1734 vc4_dsi_irq_defer_to_thread_handler
,
1735 vc4_dsi_irq_handler
,
1739 ret
= devm_request_irq(dev
, platform_get_irq(pdev
, 0),
1740 vc4_dsi_irq_handler
, 0, "vc4 dsi", dsi
);
1742 if (ret
!= -EPROBE_DEFER
)
1743 dev_err(dev
, "Failed to get interrupt: %d\n", ret
);
1747 dsi
->escape_clock
= devm_clk_get(dev
, "escape");
1748 if (IS_ERR(dsi
->escape_clock
)) {
1749 ret
= PTR_ERR(dsi
->escape_clock
);
1750 if (ret
!= -EPROBE_DEFER
)
1751 dev_err(dev
, "Failed to get escape clock: %d\n", ret
);
1755 dsi
->pll_phy_clock
= devm_clk_get(dev
, "phy");
1756 if (IS_ERR(dsi
->pll_phy_clock
)) {
1757 ret
= PTR_ERR(dsi
->pll_phy_clock
);
1758 if (ret
!= -EPROBE_DEFER
)
1759 dev_err(dev
, "Failed to get phy clock: %d\n", ret
);
1763 dsi
->pixel_clock
= devm_clk_get(dev
, "pixel");
1764 if (IS_ERR(dsi
->pixel_clock
)) {
1765 ret
= PTR_ERR(dsi
->pixel_clock
);
1766 if (ret
!= -EPROBE_DEFER
)
1767 dev_err(dev
, "Failed to get pixel clock: %d\n", ret
);
1771 dsi
->out_bridge
= drmm_of_get_bridge(drm
, dev
->of_node
, 0, 0);
1772 if (IS_ERR(dsi
->out_bridge
))
1773 return PTR_ERR(dsi
->out_bridge
);
1775 /* The esc clock rate is supposed to always be 100Mhz. */
1776 ret
= clk_set_rate(dsi
->escape_clock
, 100 * 1000000);
1778 dev_err(dev
, "Failed to set esc clock: %d\n", ret
);
1782 ret
= vc4_dsi_init_phy_clocks(dsi
);
1786 ret
= drmm_encoder_init(drm
, encoder
,
1787 &vc4_dsi_encoder_funcs
,
1788 DRM_MODE_ENCODER_DSI
,
1793 ret
= devm_pm_runtime_enable(dev
);
1797 ret
= drm_bridge_attach(encoder
, &dsi
->bridge
, NULL
, 0);
1804 static const struct component_ops vc4_dsi_ops
= {
1805 .bind
= vc4_dsi_bind
,
1808 static int vc4_dsi_dev_probe(struct platform_device
*pdev
)
1810 struct device
*dev
= &pdev
->dev
;
1811 struct vc4_dsi
*dsi
;
1813 dsi
= kzalloc(sizeof(*dsi
), GFP_KERNEL
);
1816 dev_set_drvdata(dev
, dsi
);
1818 kref_init(&dsi
->kref
);
1821 dsi
->bridge
.funcs
= &vc4_dsi_bridge_funcs
;
1823 dsi
->bridge
.of_node
= dev
->of_node
;
1825 dsi
->bridge
.type
= DRM_MODE_CONNECTOR_DSI
;
1826 dsi
->dsi_host
.ops
= &vc4_dsi_host_ops
;
1827 dsi
->dsi_host
.dev
= dev
;
1828 mipi_dsi_host_register(&dsi
->dsi_host
);
1833 static void vc4_dsi_dev_remove(struct platform_device
*pdev
)
1835 struct device
*dev
= &pdev
->dev
;
1836 struct vc4_dsi
*dsi
= dev_get_drvdata(dev
);
1838 mipi_dsi_host_unregister(&dsi
->dsi_host
);
1842 struct platform_driver vc4_dsi_driver
= {
1843 .probe
= vc4_dsi_dev_probe
,
1844 .remove
= vc4_dsi_dev_remove
,
1847 .of_match_table
= vc4_dsi_dt_match
,