1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2012 Texas Instruments, Inc.
7 * Aneesh V <aneesh@ti.com>
8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
10 #include <linux/cleanup.h>
11 #include <linux/err.h>
12 #include <linux/kernel.h>
13 #include <linux/reboot.h>
14 #include <linux/platform_data/emif_plat.h>
16 #include <linux/device.h>
17 #include <linux/platform_device.h>
18 #include <linux/interrupt.h>
19 #include <linux/slab.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 #include <linux/module.h>
24 #include <linux/list.h>
25 #include <linux/spinlock.h>
29 #include "jedec_ddr.h"
30 #include "of_memory.h"
33 * struct emif_data - Per device static data for driver's use
34 * @duplicate: Whether the DDR devices attached to this EMIF
35 * instance are exactly same as that on EMIF1. In
36 * this case we can save some memory and processing
37 * @temperature_level: Maximum temperature of LPDDR2 devices attached
38 * to this EMIF - read from MR4 register. If there
39 * are two devices attached to this EMIF, this
40 * value is the maximum of the two temperature
42 * @node: node in the device list
43 * @base: base address of memory-mapped IO registers.
44 * @dev: device pointer.
45 * @regs_cache: An array of 'struct emif_regs' that stores
46 * calculated register values for different
47 * frequencies, to avoid re-calculating them on
48 * each DVFS transition.
49 * @curr_regs: The set of register values used in the last
50 * frequency change (i.e. corresponding to the
51 * frequency in effect at the moment)
52 * @plat_data: Pointer to saved platform data.
53 * @debugfs_root: dentry to the root folder for EMIF in debugfs
54 * @np_ddr: Pointer to ddr device tree node
60 struct list_head node
;
63 struct emif_regs
*regs_cache
[EMIF_MAX_NUM_FREQUENCIES
];
64 struct emif_regs
*curr_regs
;
65 struct emif_platform_data
*plat_data
;
66 struct dentry
*debugfs_root
;
67 struct device_node
*np_ddr
;
70 static struct emif_data
*emif1
;
71 static DEFINE_SPINLOCK(emif_lock
);
72 static LIST_HEAD(device_list
);
74 static void do_emif_regdump_show(struct seq_file
*s
, struct emif_data
*emif
,
75 struct emif_regs
*regs
)
77 u32 type
= emif
->plat_data
->device_info
->type
;
78 u32 ip_rev
= emif
->plat_data
->ip_rev
;
80 seq_printf(s
, "EMIF register cache dump for %dMHz\n",
83 seq_printf(s
, "ref_ctrl_shdw\t: 0x%08x\n", regs
->ref_ctrl_shdw
);
84 seq_printf(s
, "sdram_tim1_shdw\t: 0x%08x\n", regs
->sdram_tim1_shdw
);
85 seq_printf(s
, "sdram_tim2_shdw\t: 0x%08x\n", regs
->sdram_tim2_shdw
);
86 seq_printf(s
, "sdram_tim3_shdw\t: 0x%08x\n", regs
->sdram_tim3_shdw
);
88 if (ip_rev
== EMIF_4D
) {
89 seq_printf(s
, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
90 regs
->read_idle_ctrl_shdw_normal
);
91 seq_printf(s
, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
92 regs
->read_idle_ctrl_shdw_volt_ramp
);
93 } else if (ip_rev
== EMIF_4D5
) {
94 seq_printf(s
, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
95 regs
->dll_calib_ctrl_shdw_normal
);
96 seq_printf(s
, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
97 regs
->dll_calib_ctrl_shdw_volt_ramp
);
100 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
) {
101 seq_printf(s
, "ref_ctrl_shdw_derated\t: 0x%08x\n",
102 regs
->ref_ctrl_shdw_derated
);
103 seq_printf(s
, "sdram_tim1_shdw_derated\t: 0x%08x\n",
104 regs
->sdram_tim1_shdw_derated
);
105 seq_printf(s
, "sdram_tim3_shdw_derated\t: 0x%08x\n",
106 regs
->sdram_tim3_shdw_derated
);
110 static int emif_regdump_show(struct seq_file
*s
, void *unused
)
112 struct emif_data
*emif
= s
->private;
113 struct emif_regs
**regs_cache
;
117 regs_cache
= emif1
->regs_cache
;
119 regs_cache
= emif
->regs_cache
;
121 for (i
= 0; i
< EMIF_MAX_NUM_FREQUENCIES
&& regs_cache
[i
]; i
++) {
122 do_emif_regdump_show(s
, emif
, regs_cache
[i
]);
129 DEFINE_SHOW_ATTRIBUTE(emif_regdump
);
131 static int emif_mr4_show(struct seq_file
*s
, void *unused
)
133 struct emif_data
*emif
= s
->private;
135 seq_printf(s
, "MR4=%d\n", emif
->temperature_level
);
139 DEFINE_SHOW_ATTRIBUTE(emif_mr4
);
141 static void emif_debugfs_init(struct emif_data
*emif
)
143 if (IS_ENABLED(CONFIG_DEBUG_FS
)) {
144 emif
->debugfs_root
= debugfs_create_dir(dev_name(emif
->dev
), NULL
);
145 debugfs_create_file("regcache_dump", S_IRUGO
, emif
->debugfs_root
, emif
,
147 debugfs_create_file("mr4", S_IRUGO
, emif
->debugfs_root
, emif
,
152 static void emif_debugfs_exit(struct emif_data
*emif
)
154 if (IS_ENABLED(CONFIG_DEBUG_FS
)) {
155 debugfs_remove_recursive(emif
->debugfs_root
);
156 emif
->debugfs_root
= NULL
;
161 * Get bus width used by EMIF. Note that this may be different from the
162 * bus width of the DDR devices used. For instance two 16-bit DDR devices
163 * may be connected to a given CS of EMIF. In this case bus width as far
164 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
166 static u32
get_emif_bus_width(struct emif_data
*emif
)
169 void __iomem
*base
= emif
->base
;
171 width
= (readl(base
+ EMIF_SDRAM_CONFIG
) & NARROW_MODE_MASK
)
172 >> NARROW_MODE_SHIFT
;
173 width
= width
== 0 ? 32 : 16;
178 static void set_lpmode(struct emif_data
*emif
, u8 lpmode
)
181 void __iomem
*base
= emif
->base
;
184 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
188 * The EMIF supports power-down state for low power. The EMIF
189 * automatically puts the SDRAM into power-down after the memory is
190 * not accessed for a defined number of cycles and the
191 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
192 * As the EMIF supports automatic output impedance calibration, a ZQ
193 * calibration long command is issued every time it exits active
194 * power-down and precharge power-down modes. The EMIF waits and
195 * blocks any other command during this calibration.
196 * The EMIF does not allow selective disabling of ZQ calibration upon
197 * exit of power-down mode. Due to very short periods of power-down
198 * cycles, ZQ calibration overhead creates bandwidth issues and
199 * increases overall system power consumption. On the other hand,
200 * issuing ZQ calibration long commands when exiting self-refresh is
204 * Because there is no power consumption benefit of the power-down due
205 * to the calibration and there is a performance risk, the guideline
206 * is to not allow power-down state and, therefore, to not have set
207 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
209 if ((emif
->plat_data
->ip_rev
== EMIF_4D
) &&
210 (lpmode
== EMIF_LP_MODE_PWR_DN
)) {
212 "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
213 /* rollback LP_MODE to Self-refresh mode */
214 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
217 temp
= readl(base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
218 temp
&= ~LP_MODE_MASK
;
219 temp
|= (lpmode
<< LP_MODE_SHIFT
);
220 writel(temp
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
223 static void do_freq_update(void)
225 struct emif_data
*emif
;
228 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
231 * The EMIF automatically puts the SDRAM into self-refresh mode
232 * after the EMIF has not performed accesses during
233 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
234 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
235 * to 0x2. If during a small window the following three events
237 * - The SR_TIMING counter expires
238 * - And frequency change is requested
239 * - And OCP access is requested
240 * Then it causes instable clock on the DDR interface.
243 * To avoid the occurrence of the three events, the workaround
244 * is to disable the self-refresh when requesting a frequency
245 * change. Before requesting a frequency change the software must
246 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
247 * frequency change has been done, the software can reprogram
248 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
250 list_for_each_entry(emif
, &device_list
, node
) {
251 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
252 set_lpmode(emif
, EMIF_LP_MODE_DISABLE
);
256 * TODO: Do FREQ_UPDATE here when an API
257 * is available for this as part of the new
261 list_for_each_entry(emif
, &device_list
, node
) {
262 if (emif
->lpmode
== EMIF_LP_MODE_SELF_REFRESH
)
263 set_lpmode(emif
, EMIF_LP_MODE_SELF_REFRESH
);
267 /* Find addressing table entry based on the device's type and density */
268 static const struct lpddr2_addressing
*get_addressing_table(
269 const struct ddr_device_info
*device_info
)
271 u32 index
, type
, density
;
273 type
= device_info
->type
;
274 density
= device_info
->density
;
277 case DDR_TYPE_LPDDR2_S4
:
280 case DDR_TYPE_LPDDR2_S2
:
282 case DDR_DENSITY_1Gb
:
283 case DDR_DENSITY_2Gb
:
294 return &lpddr2_jedec_addressing_table
[index
];
297 static u32
get_zq_config_reg(const struct lpddr2_addressing
*addressing
,
298 bool cs1_used
, bool cal_resistors_per_cs
)
302 val
= EMIF_ZQCS_INTERVAL_US
* 1000 / addressing
->tREFI_ns
;
303 zq
|= val
<< ZQ_REFINTERVAL_SHIFT
;
305 val
= DIV_ROUND_UP(T_ZQCL_DEFAULT_NS
, T_ZQCS_DEFAULT_NS
) - 1;
306 zq
|= val
<< ZQ_ZQCL_MULT_SHIFT
;
308 val
= DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS
, T_ZQCL_DEFAULT_NS
) - 1;
309 zq
|= val
<< ZQ_ZQINIT_MULT_SHIFT
;
311 zq
|= ZQ_SFEXITEN_ENABLE
<< ZQ_SFEXITEN_SHIFT
;
313 if (cal_resistors_per_cs
)
314 zq
|= ZQ_DUALCALEN_ENABLE
<< ZQ_DUALCALEN_SHIFT
;
316 zq
|= ZQ_DUALCALEN_DISABLE
<< ZQ_DUALCALEN_SHIFT
;
318 zq
|= ZQ_CS0EN_MASK
; /* CS0 is used for sure */
320 val
= cs1_used
? 1 : 0;
321 zq
|= val
<< ZQ_CS1EN_SHIFT
;
326 static u32
get_temp_alert_config(const struct lpddr2_addressing
*addressing
,
327 const struct emif_custom_configs
*custom_configs
, bool cs1_used
,
328 u32 sdram_io_width
, u32 emif_bus_width
)
330 u32 alert
= 0, interval
, devcnt
;
332 if (custom_configs
&& (custom_configs
->mask
&
333 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
))
334 interval
= custom_configs
->temp_alert_poll_interval_ms
;
336 interval
= TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS
;
338 interval
*= 1000000; /* Convert to ns */
339 interval
/= addressing
->tREFI_ns
; /* Convert to refresh cycles */
340 alert
|= (interval
<< TA_REFINTERVAL_SHIFT
);
343 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
344 * also to this form and subtract to get TA_DEVCNT, which is
347 emif_bus_width
= __fls(emif_bus_width
) - 1;
348 devcnt
= emif_bus_width
- sdram_io_width
;
349 alert
|= devcnt
<< TA_DEVCNT_SHIFT
;
351 /* DEVWDT is in 'log2(x) - 3' form */
352 alert
|= (sdram_io_width
- 2) << TA_DEVWDT_SHIFT
;
354 alert
|= 1 << TA_SFEXITEN_SHIFT
;
355 alert
|= 1 << TA_CS0EN_SHIFT
;
356 alert
|= (cs1_used
? 1 : 0) << TA_CS1EN_SHIFT
;
361 static u32
get_pwr_mgmt_ctrl(u32 freq
, struct emif_data
*emif
, u32 ip_rev
)
363 u32 pwr_mgmt_ctrl
= 0, timeout
;
364 u32 lpmode
= EMIF_LP_MODE_SELF_REFRESH
;
365 u32 timeout_perf
= EMIF_LP_MODE_TIMEOUT_PERFORMANCE
;
366 u32 timeout_pwr
= EMIF_LP_MODE_TIMEOUT_POWER
;
367 u32 freq_threshold
= EMIF_LP_MODE_FREQ_THRESHOLD
;
371 struct emif_custom_configs
*cust_cfgs
= emif
->plat_data
->custom_configs
;
373 if (cust_cfgs
&& (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
)) {
374 lpmode
= cust_cfgs
->lpmode
;
375 timeout_perf
= cust_cfgs
->lpmode_timeout_performance
;
376 timeout_pwr
= cust_cfgs
->lpmode_timeout_power
;
377 freq_threshold
= cust_cfgs
->lpmode_freq_threshold
;
380 /* Timeout based on DDR frequency */
381 timeout
= freq
>= freq_threshold
? timeout_perf
: timeout_pwr
;
384 * The value to be set in register is "log2(timeout) - 3"
385 * if timeout < 16 load 0 in register
386 * if timeout is not a power of 2, round to next highest power of 2
391 if (timeout
& (timeout
- 1))
393 timeout
= __fls(timeout
) - 3;
397 case EMIF_LP_MODE_CLOCK_STOP
:
398 shift
= CS_TIM_SHIFT
;
401 case EMIF_LP_MODE_SELF_REFRESH
:
402 /* Workaround for errata i735 */
406 shift
= SR_TIM_SHIFT
;
409 case EMIF_LP_MODE_PWR_DN
:
410 shift
= PD_TIM_SHIFT
;
413 case EMIF_LP_MODE_DISABLE
:
419 /* Round to maximum in case of overflow, BUT warn! */
420 if (lpmode
!= EMIF_LP_MODE_DISABLE
&& timeout
> mask
>> shift
) {
421 pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
426 WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
427 timeout
, mask
>> shift
);
428 timeout
= mask
>> shift
;
431 /* Setup required timing */
432 pwr_mgmt_ctrl
= (timeout
<< shift
) & mask
;
433 /* setup a default mask for rest of the modes */
434 pwr_mgmt_ctrl
|= (SR_TIM_MASK
| CS_TIM_MASK
| PD_TIM_MASK
) &
437 /* No CS_TIM in EMIF_4D5 */
438 if (ip_rev
== EMIF_4D5
)
439 pwr_mgmt_ctrl
&= ~CS_TIM_MASK
;
441 pwr_mgmt_ctrl
|= lpmode
<< LP_MODE_SHIFT
;
443 return pwr_mgmt_ctrl
;
447 * Get the temperature level of the EMIF instance:
448 * Reads the MR4 register of attached SDRAM parts to find out the temperature
449 * level. If there are two parts attached(one on each CS), then the temperature
450 * level for the EMIF instance is the higher of the two temperatures.
452 static void get_temperature_level(struct emif_data
*emif
)
454 u32 temp
, temperature_level
;
459 /* Read mode register 4 */
460 writel(DDR_MR4
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
461 temperature_level
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
462 temperature_level
= (temperature_level
& MR4_SDRAM_REF_RATE_MASK
) >>
463 MR4_SDRAM_REF_RATE_SHIFT
;
465 if (emif
->plat_data
->device_info
->cs1_used
) {
466 writel(DDR_MR4
| CS_MASK
, base
+ EMIF_LPDDR2_MODE_REG_CONFIG
);
467 temp
= readl(base
+ EMIF_LPDDR2_MODE_REG_DATA
);
468 temp
= (temp
& MR4_SDRAM_REF_RATE_MASK
)
469 >> MR4_SDRAM_REF_RATE_SHIFT
;
470 temperature_level
= max(temp
, temperature_level
);
473 /* treat everything less than nominal(3) in MR4 as nominal */
474 if (unlikely(temperature_level
< SDRAM_TEMP_NOMINAL
))
475 temperature_level
= SDRAM_TEMP_NOMINAL
;
477 /* if we get reserved value in MR4 persist with the existing value */
478 if (likely(temperature_level
!= SDRAM_TEMP_RESERVED_4
))
479 emif
->temperature_level
= temperature_level
;
483 * setup_temperature_sensitive_regs() - set the timings for temperature
484 * sensitive registers. This happens once at initialisation time based
485 * on the temperature at boot time and subsequently based on the temperature
486 * alert interrupt. Temperature alert can happen when the temperature
487 * increases or drops. So this function can have the effect of either
488 * derating the timings or going back to nominal values.
490 static void setup_temperature_sensitive_regs(struct emif_data
*emif
,
491 struct emif_regs
*regs
)
493 u32 tim1
, tim3
, ref_ctrl
, type
;
494 void __iomem
*base
= emif
->base
;
497 type
= emif
->plat_data
->device_info
->type
;
499 tim1
= regs
->sdram_tim1_shdw
;
500 tim3
= regs
->sdram_tim3_shdw
;
501 ref_ctrl
= regs
->ref_ctrl_shdw
;
503 /* No de-rating for non-lpddr2 devices */
504 if (type
!= DDR_TYPE_LPDDR2_S2
&& type
!= DDR_TYPE_LPDDR2_S4
)
507 temperature
= emif
->temperature_level
;
508 if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
509 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
510 } else if (temperature
== SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS
) {
511 tim1
= regs
->sdram_tim1_shdw_derated
;
512 tim3
= regs
->sdram_tim3_shdw_derated
;
513 ref_ctrl
= regs
->ref_ctrl_shdw_derated
;
517 writel(tim1
, base
+ EMIF_SDRAM_TIMING_1_SHDW
);
518 writel(tim3
, base
+ EMIF_SDRAM_TIMING_3_SHDW
);
519 writel(ref_ctrl
, base
+ EMIF_SDRAM_REFRESH_CTRL_SHDW
);
522 static irqreturn_t
handle_temp_alert(void __iomem
*base
, struct emif_data
*emif
)
526 struct emif_custom_configs
*custom_configs
;
528 guard(spinlock_irqsave
)(&emif_lock
);
529 old_temp_level
= emif
->temperature_level
;
530 get_temperature_level(emif
);
532 if (unlikely(emif
->temperature_level
== old_temp_level
)) {
534 } else if (!emif
->curr_regs
) {
535 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
539 custom_configs
= emif
->plat_data
->custom_configs
;
542 * IF we detect higher than "nominal rating" from DDR sensor
543 * on an unsupported DDR part, shutdown system
545 if (custom_configs
&& !(custom_configs
->mask
&
546 EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART
)) {
547 if (emif
->temperature_level
>= SDRAM_TEMP_HIGH_DERATE_REFRESH
) {
549 "%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
550 __func__
, emif
->temperature_level
);
552 * Temperature far too high - do kernel_power_off()
553 * from thread context
555 emif
->temperature_level
= SDRAM_TEMP_VERY_HIGH_SHUTDOWN
;
556 return IRQ_WAKE_THREAD
;
560 if (emif
->temperature_level
< old_temp_level
||
561 emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
563 * Temperature coming down - defer handling to thread OR
564 * Temperature far too high - do kernel_power_off() from
567 ret
= IRQ_WAKE_THREAD
;
569 /* Temperature is going up - handle immediately */
570 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
578 static irqreturn_t
emif_interrupt_handler(int irq
, void *dev_id
)
581 struct emif_data
*emif
= dev_id
;
582 void __iomem
*base
= emif
->base
;
583 struct device
*dev
= emif
->dev
;
584 irqreturn_t ret
= IRQ_HANDLED
;
586 /* Save the status and clear it */
587 interrupts
= readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
588 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
591 * Handle temperature alert
592 * Temperature alert should be same for all ports
593 * So, it's enough to process it only for one of the ports
595 if (interrupts
& TA_SYS_MASK
)
596 ret
= handle_temp_alert(base
, emif
);
598 if (interrupts
& ERR_SYS_MASK
)
599 dev_err(dev
, "Access error from SYS port - %x\n", interrupts
);
601 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
602 /* Save the status and clear it */
603 interrupts
= readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
604 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
606 if (interrupts
& ERR_LL_MASK
)
607 dev_err(dev
, "Access error from LL port - %x\n",
614 static irqreturn_t
emif_threaded_isr(int irq
, void *dev_id
)
616 struct emif_data
*emif
= dev_id
;
617 unsigned long irq_state
;
619 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
) {
620 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
622 /* If we have Power OFF ability, use it, else try restarting */
623 if (kernel_can_power_off()) {
626 WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
627 kernel_restart("SDRAM Over-temp Emergency restart");
632 spin_lock_irqsave(&emif_lock
, irq_state
);
634 if (emif
->curr_regs
) {
635 setup_temperature_sensitive_regs(emif
, emif
->curr_regs
);
638 dev_err(emif
->dev
, "temperature alert before registers are calculated, not de-rating timings\n");
641 spin_unlock_irqrestore(&emif_lock
, irq_state
);
646 static void clear_all_interrupts(struct emif_data
*emif
)
648 void __iomem
*base
= emif
->base
;
650 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
),
651 base
+ EMIF_SYSTEM_OCP_INTERRUPT_STATUS
);
652 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
653 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_STATUS
),
654 base
+ EMIF_LL_OCP_INTERRUPT_STATUS
);
657 static void disable_and_clear_all_interrupts(struct emif_data
*emif
)
659 void __iomem
*base
= emif
->base
;
661 /* Disable all interrupts */
662 writel(readl(base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
),
663 base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR
);
664 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
)
665 writel(readl(base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
),
666 base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR
);
668 /* Clear all interrupts */
669 clear_all_interrupts(emif
);
672 static int setup_interrupts(struct emif_data
*emif
, u32 irq
)
674 u32 interrupts
, type
;
675 void __iomem
*base
= emif
->base
;
677 type
= emif
->plat_data
->device_info
->type
;
679 clear_all_interrupts(emif
);
681 /* Enable interrupts for SYS interface */
682 interrupts
= EN_ERR_SYS_MASK
;
683 if (type
== DDR_TYPE_LPDDR2_S2
|| type
== DDR_TYPE_LPDDR2_S4
)
684 interrupts
|= EN_TA_SYS_MASK
;
685 writel(interrupts
, base
+ EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET
);
687 /* Enable interrupts for LL interface */
688 if (emif
->plat_data
->hw_caps
& EMIF_HW_CAPS_LL_INTERFACE
) {
689 /* TA need not be enabled for LL */
690 interrupts
= EN_ERR_LL_MASK
;
691 writel(interrupts
, base
+ EMIF_LL_OCP_INTERRUPT_ENABLE_SET
);
694 /* setup IRQ handlers */
695 return devm_request_threaded_irq(emif
->dev
, irq
,
696 emif_interrupt_handler
,
698 0, dev_name(emif
->dev
),
703 static void emif_onetime_settings(struct emif_data
*emif
)
705 u32 pwr_mgmt_ctrl
, zq
, temp_alert_cfg
;
706 void __iomem
*base
= emif
->base
;
707 const struct lpddr2_addressing
*addressing
;
708 const struct ddr_device_info
*device_info
;
710 device_info
= emif
->plat_data
->device_info
;
711 addressing
= get_addressing_table(device_info
);
714 * Init power management settings
715 * We don't know the frequency yet. Use a high frequency
716 * value for a conservative timeout setting
718 pwr_mgmt_ctrl
= get_pwr_mgmt_ctrl(1000000000, emif
,
719 emif
->plat_data
->ip_rev
);
720 emif
->lpmode
= (pwr_mgmt_ctrl
& LP_MODE_MASK
) >> LP_MODE_SHIFT
;
721 writel(pwr_mgmt_ctrl
, base
+ EMIF_POWER_MANAGEMENT_CONTROL
);
723 /* Init ZQ calibration settings */
724 zq
= get_zq_config_reg(addressing
, device_info
->cs1_used
,
725 device_info
->cal_resistors_per_cs
);
726 writel(zq
, base
+ EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG
);
728 /* Check temperature level temperature level*/
729 get_temperature_level(emif
);
730 if (emif
->temperature_level
== SDRAM_TEMP_VERY_HIGH_SHUTDOWN
)
731 dev_emerg(emif
->dev
, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
733 /* Init temperature polling */
734 temp_alert_cfg
= get_temp_alert_config(addressing
,
735 emif
->plat_data
->custom_configs
, device_info
->cs1_used
,
736 device_info
->io_width
, get_emif_bus_width(emif
));
737 writel(temp_alert_cfg
, base
+ EMIF_TEMPERATURE_ALERT_CONFIG
);
740 * Program external PHY control registers that are not frequency
743 if (emif
->plat_data
->phy_type
!= EMIF_PHY_TYPE_INTELLIPHY
)
745 writel(EMIF_EXT_PHY_CTRL_1_VAL
, base
+ EMIF_EXT_PHY_CTRL_1_SHDW
);
746 writel(EMIF_EXT_PHY_CTRL_5_VAL
, base
+ EMIF_EXT_PHY_CTRL_5_SHDW
);
747 writel(EMIF_EXT_PHY_CTRL_6_VAL
, base
+ EMIF_EXT_PHY_CTRL_6_SHDW
);
748 writel(EMIF_EXT_PHY_CTRL_7_VAL
, base
+ EMIF_EXT_PHY_CTRL_7_SHDW
);
749 writel(EMIF_EXT_PHY_CTRL_8_VAL
, base
+ EMIF_EXT_PHY_CTRL_8_SHDW
);
750 writel(EMIF_EXT_PHY_CTRL_9_VAL
, base
+ EMIF_EXT_PHY_CTRL_9_SHDW
);
751 writel(EMIF_EXT_PHY_CTRL_10_VAL
, base
+ EMIF_EXT_PHY_CTRL_10_SHDW
);
752 writel(EMIF_EXT_PHY_CTRL_11_VAL
, base
+ EMIF_EXT_PHY_CTRL_11_SHDW
);
753 writel(EMIF_EXT_PHY_CTRL_12_VAL
, base
+ EMIF_EXT_PHY_CTRL_12_SHDW
);
754 writel(EMIF_EXT_PHY_CTRL_13_VAL
, base
+ EMIF_EXT_PHY_CTRL_13_SHDW
);
755 writel(EMIF_EXT_PHY_CTRL_14_VAL
, base
+ EMIF_EXT_PHY_CTRL_14_SHDW
);
756 writel(EMIF_EXT_PHY_CTRL_15_VAL
, base
+ EMIF_EXT_PHY_CTRL_15_SHDW
);
757 writel(EMIF_EXT_PHY_CTRL_16_VAL
, base
+ EMIF_EXT_PHY_CTRL_16_SHDW
);
758 writel(EMIF_EXT_PHY_CTRL_17_VAL
, base
+ EMIF_EXT_PHY_CTRL_17_SHDW
);
759 writel(EMIF_EXT_PHY_CTRL_18_VAL
, base
+ EMIF_EXT_PHY_CTRL_18_SHDW
);
760 writel(EMIF_EXT_PHY_CTRL_19_VAL
, base
+ EMIF_EXT_PHY_CTRL_19_SHDW
);
761 writel(EMIF_EXT_PHY_CTRL_20_VAL
, base
+ EMIF_EXT_PHY_CTRL_20_SHDW
);
762 writel(EMIF_EXT_PHY_CTRL_21_VAL
, base
+ EMIF_EXT_PHY_CTRL_21_SHDW
);
763 writel(EMIF_EXT_PHY_CTRL_22_VAL
, base
+ EMIF_EXT_PHY_CTRL_22_SHDW
);
764 writel(EMIF_EXT_PHY_CTRL_23_VAL
, base
+ EMIF_EXT_PHY_CTRL_23_SHDW
);
765 writel(EMIF_EXT_PHY_CTRL_24_VAL
, base
+ EMIF_EXT_PHY_CTRL_24_SHDW
);
768 static void get_default_timings(struct emif_data
*emif
)
770 struct emif_platform_data
*pd
= emif
->plat_data
;
772 pd
->timings
= lpddr2_jedec_timings
;
773 pd
->timings_arr_size
= ARRAY_SIZE(lpddr2_jedec_timings
);
775 dev_warn(emif
->dev
, "%s: using default timings\n", __func__
);
778 static int is_dev_data_valid(u32 type
, u32 density
, u32 io_width
, u32 phy_type
,
779 u32 ip_rev
, struct device
*dev
)
783 valid
= (type
== DDR_TYPE_LPDDR2_S4
||
784 type
== DDR_TYPE_LPDDR2_S2
)
785 && (density
>= DDR_DENSITY_64Mb
786 && density
<= DDR_DENSITY_8Gb
)
787 && (io_width
>= DDR_IO_WIDTH_8
788 && io_width
<= DDR_IO_WIDTH_32
);
790 /* Combinations of EMIF and PHY revisions that we support today */
793 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_ATTILAPHY
);
796 valid
= valid
&& (phy_type
== EMIF_PHY_TYPE_INTELLIPHY
);
803 dev_err(dev
, "%s: invalid DDR details\n", __func__
);
807 static int is_custom_config_valid(struct emif_custom_configs
*cust_cfgs
,
812 if ((cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_LPMODE
) &&
813 (cust_cfgs
->lpmode
!= EMIF_LP_MODE_DISABLE
))
814 valid
= cust_cfgs
->lpmode_freq_threshold
&&
815 cust_cfgs
->lpmode_timeout_performance
&&
816 cust_cfgs
->lpmode_timeout_power
;
818 if (cust_cfgs
->mask
& EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
)
819 valid
= valid
&& cust_cfgs
->temp_alert_poll_interval_ms
;
822 dev_warn(dev
, "%s: invalid custom configs\n", __func__
);
827 static void of_get_custom_configs(struct device_node
*np_emif
,
828 struct emif_data
*emif
)
830 struct emif_custom_configs
*cust_cfgs
= NULL
;
832 const __be32
*lpmode
, *poll_intvl
;
834 lpmode
= of_get_property(np_emif
, "low-power-mode", &len
);
835 poll_intvl
= of_get_property(np_emif
, "temp-alert-poll-interval", &len
);
837 if (lpmode
|| poll_intvl
)
838 cust_cfgs
= devm_kzalloc(emif
->dev
, sizeof(*cust_cfgs
),
845 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_LPMODE
;
846 cust_cfgs
->lpmode
= be32_to_cpup(lpmode
);
847 of_property_read_u32(np_emif
,
848 "low-power-mode-timeout-performance",
849 &cust_cfgs
->lpmode_timeout_performance
);
850 of_property_read_u32(np_emif
,
851 "low-power-mode-timeout-power",
852 &cust_cfgs
->lpmode_timeout_power
);
853 of_property_read_u32(np_emif
,
854 "low-power-mode-freq-threshold",
855 &cust_cfgs
->lpmode_freq_threshold
);
860 EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL
;
861 cust_cfgs
->temp_alert_poll_interval_ms
=
862 be32_to_cpup(poll_intvl
);
865 if (of_property_read_bool(np_emif
, "extended-temp-part"))
866 cust_cfgs
->mask
|= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART
;
868 if (!is_custom_config_valid(cust_cfgs
, emif
->dev
)) {
869 devm_kfree(emif
->dev
, cust_cfgs
);
873 emif
->plat_data
->custom_configs
= cust_cfgs
;
876 static void of_get_ddr_info(struct device_node
*np_emif
,
877 struct device_node
*np_ddr
,
878 struct ddr_device_info
*dev_info
)
880 u32 density
= 0, io_width
= 0;
882 dev_info
->cs1_used
= of_property_read_bool(np_emif
, "cs1-used");
883 dev_info
->cal_resistors_per_cs
= of_property_read_bool(np_emif
, "cal-resistor-per-cs");
885 if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s4"))
886 dev_info
->type
= DDR_TYPE_LPDDR2_S4
;
887 else if (of_device_is_compatible(np_ddr
, "jedec,lpddr2-s2"))
888 dev_info
->type
= DDR_TYPE_LPDDR2_S2
;
890 of_property_read_u32(np_ddr
, "density", &density
);
891 of_property_read_u32(np_ddr
, "io-width", &io_width
);
893 /* Convert from density in Mb to the density encoding in jedc_ddr.h */
894 if (density
& (density
- 1))
895 dev_info
->density
= 0;
897 dev_info
->density
= __fls(density
) - 5;
899 /* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
900 if (io_width
& (io_width
- 1))
901 dev_info
->io_width
= 0;
903 dev_info
->io_width
= __fls(io_width
) - 1;
906 static struct emif_data
*of_get_memory_device_details(
907 struct device_node
*np_emif
, struct device
*dev
)
909 struct emif_data
*emif
= NULL
;
910 struct ddr_device_info
*dev_info
= NULL
;
911 struct emif_platform_data
*pd
= NULL
;
912 struct device_node
*np_ddr
;
914 np_ddr
= of_parse_phandle(np_emif
, "device-handle", 0);
917 emif
= devm_kzalloc(dev
, sizeof(struct emif_data
), GFP_KERNEL
);
918 pd
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
919 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
921 if (!emif
|| !pd
|| !dev_info
) {
922 dev_err(dev
, "%s: Out of memory!!\n",
927 emif
->plat_data
= pd
;
928 pd
->device_info
= dev_info
;
930 emif
->np_ddr
= np_ddr
;
931 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
933 if (of_device_is_compatible(np_emif
, "ti,emif-4d"))
934 emif
->plat_data
->ip_rev
= EMIF_4D
;
935 else if (of_device_is_compatible(np_emif
, "ti,emif-4d5"))
936 emif
->plat_data
->ip_rev
= EMIF_4D5
;
938 of_property_read_u32(np_emif
, "phy-type", &pd
->phy_type
);
940 if (of_property_read_bool(np_emif
, "hw-caps-ll-interface"))
941 pd
->hw_caps
|= EMIF_HW_CAPS_LL_INTERFACE
;
943 of_get_ddr_info(np_emif
, np_ddr
, dev_info
);
944 if (!is_dev_data_valid(pd
->device_info
->type
, pd
->device_info
->density
,
945 pd
->device_info
->io_width
, pd
->phy_type
, pd
->ip_rev
,
947 dev_err(dev
, "%s: invalid device data!!\n", __func__
);
951 * For EMIF instances other than EMIF1 see if the devices connected
952 * are exactly same as on EMIF1(which is typically the case). If so,
953 * mark it as a duplicate of EMIF1. This will save some memory and
956 if (emif1
&& emif1
->np_ddr
== np_ddr
) {
957 emif
->duplicate
= true;
960 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
964 of_get_custom_configs(np_emif
, emif
);
965 emif
->plat_data
->timings
= of_get_ddr_timings(np_ddr
, emif
->dev
,
966 emif
->plat_data
->device_info
->type
,
967 &emif
->plat_data
->timings_arr_size
);
969 emif
->plat_data
->min_tck
= of_get_min_tck(np_ddr
, emif
->dev
);
978 static struct emif_data
*get_device_details(
979 struct platform_device
*pdev
)
982 struct emif_data
*emif
= NULL
;
983 struct ddr_device_info
*dev_info
;
984 struct emif_custom_configs
*cust_cfgs
;
985 struct emif_platform_data
*pd
;
989 pd
= pdev
->dev
.platform_data
;
992 if (!(pd
&& pd
->device_info
&& is_dev_data_valid(pd
->device_info
->type
,
993 pd
->device_info
->density
, pd
->device_info
->io_width
,
994 pd
->phy_type
, pd
->ip_rev
, dev
))) {
995 dev_err(dev
, "%s: invalid device data\n", __func__
);
999 emif
= devm_kzalloc(dev
, sizeof(*emif
), GFP_KERNEL
);
1000 temp
= devm_kzalloc(dev
, sizeof(*pd
), GFP_KERNEL
);
1001 dev_info
= devm_kzalloc(dev
, sizeof(*dev_info
), GFP_KERNEL
);
1003 if (!emif
|| !temp
|| !dev_info
)
1006 memcpy(temp
, pd
, sizeof(*pd
));
1008 memcpy(dev_info
, pd
->device_info
, sizeof(*dev_info
));
1010 pd
->device_info
= dev_info
;
1011 emif
->plat_data
= pd
;
1013 emif
->temperature_level
= SDRAM_TEMP_NOMINAL
;
1016 * For EMIF instances other than EMIF1 see if the devices connected
1017 * are exactly same as on EMIF1(which is typically the case). If so,
1018 * mark it as a duplicate of EMIF1 and skip copying timings data.
1019 * This will save some memory and some computation later.
1021 emif
->duplicate
= emif1
&& (memcmp(dev_info
,
1022 emif1
->plat_data
->device_info
,
1023 sizeof(struct ddr_device_info
)) == 0);
1025 if (emif
->duplicate
) {
1030 dev_warn(emif
->dev
, "%s: Non-symmetric DDR geometry\n",
1035 * Copy custom configs - ignore allocation error, if any, as
1036 * custom_configs is not very critical
1038 cust_cfgs
= pd
->custom_configs
;
1039 if (cust_cfgs
&& is_custom_config_valid(cust_cfgs
, dev
)) {
1040 temp
= devm_kzalloc(dev
, sizeof(*cust_cfgs
), GFP_KERNEL
);
1042 memcpy(temp
, cust_cfgs
, sizeof(*cust_cfgs
));
1043 pd
->custom_configs
= temp
;
1047 * Copy timings and min-tck values from platform data. If it is not
1048 * available or if memory allocation fails, use JEDEC defaults
1050 size
= sizeof(struct lpddr2_timings
) * pd
->timings_arr_size
;
1052 temp
= devm_kzalloc(dev
, size
, GFP_KERNEL
);
1054 memcpy(temp
, pd
->timings
, size
);
1057 get_default_timings(emif
);
1060 get_default_timings(emif
);
1064 temp
= devm_kzalloc(dev
, sizeof(*pd
->min_tck
), GFP_KERNEL
);
1066 memcpy(temp
, pd
->min_tck
, sizeof(*pd
->min_tck
));
1069 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1072 pd
->min_tck
= &lpddr2_jedec_min_tck
;
1082 static int emif_probe(struct platform_device
*pdev
)
1084 struct emif_data
*emif
;
1087 if (pdev
->dev
.of_node
)
1088 emif
= of_get_memory_device_details(pdev
->dev
.of_node
, &pdev
->dev
);
1090 emif
= get_device_details(pdev
);
1093 pr_err("%s: error getting device data\n", __func__
);
1097 list_add(&emif
->node
, &device_list
);
1099 /* Save pointers to each other in emif and device structures */
1100 emif
->dev
= &pdev
->dev
;
1101 platform_set_drvdata(pdev
, emif
);
1103 emif
->base
= devm_platform_ioremap_resource(pdev
, 0);
1104 if (IS_ERR(emif
->base
))
1107 irq
= platform_get_irq(pdev
, 0);
1111 emif_onetime_settings(emif
);
1112 emif_debugfs_init(emif
);
1113 disable_and_clear_all_interrupts(emif
);
1114 ret
= setup_interrupts(emif
, irq
);
1118 /* One-time actions taken on probing the first device */
1123 * TODO: register notifiers for frequency and voltage
1124 * change here once the respective frameworks are
1129 dev_info(&pdev
->dev
, "%s: device configured with addr = %p and IRQ%d\n",
1130 __func__
, emif
->base
, irq
);
1137 static void emif_remove(struct platform_device
*pdev
)
1139 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1141 emif_debugfs_exit(emif
);
1144 static void emif_shutdown(struct platform_device
*pdev
)
1146 struct emif_data
*emif
= platform_get_drvdata(pdev
);
1148 disable_and_clear_all_interrupts(emif
);
1151 #if defined(CONFIG_OF)
1152 static const struct of_device_id emif_of_match
[] = {
1153 { .compatible
= "ti,emif-4d" },
1154 { .compatible
= "ti,emif-4d5" },
1157 MODULE_DEVICE_TABLE(of
, emif_of_match
);
1160 static struct platform_driver emif_driver
= {
1161 .probe
= emif_probe
,
1162 .remove
= emif_remove
,
1163 .shutdown
= emif_shutdown
,
1166 .of_match_table
= of_match_ptr(emif_of_match
),
1170 module_platform_driver(emif_driver
);
1172 MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1173 MODULE_LICENSE("GPL");
1174 MODULE_ALIAS("platform:emif");
1175 MODULE_AUTHOR("Texas Instruments Inc");