1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) 2019 Samsung Electronics Co., Ltd.
4 * Author: Lukasz Luba <l.luba@partner.samsung.com>
7 #include <linux/cleanup.h>
9 #include <linux/devfreq.h>
10 #include <linux/devfreq-event.h>
11 #include <linux/device.h>
12 #include <linux/interrupt.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
18 #include <linux/pm_opp.h>
19 #include <linux/platform_device.h>
20 #include <linux/regmap.h>
21 #include <linux/regulator/consumer.h>
22 #include <linux/slab.h>
23 #include "../jedec_ddr.h"
24 #include "../of_memory.h"
27 module_param(irqmode
, int, 0644);
28 MODULE_PARM_DESC(irqmode
, "Enable IRQ mode (0=off [default], 1=on)");
30 #define EXYNOS5_DREXI_TIMINGAREF (0x0030)
31 #define EXYNOS5_DREXI_TIMINGROW0 (0x0034)
32 #define EXYNOS5_DREXI_TIMINGDATA0 (0x0038)
33 #define EXYNOS5_DREXI_TIMINGPOWER0 (0x003C)
34 #define EXYNOS5_DREXI_TIMINGROW1 (0x00E4)
35 #define EXYNOS5_DREXI_TIMINGDATA1 (0x00E8)
36 #define EXYNOS5_DREXI_TIMINGPOWER1 (0x00EC)
37 #define CDREX_PAUSE (0x2091c)
38 #define CDREX_LPDDR3PHY_CON3 (0x20a20)
39 #define CDREX_LPDDR3PHY_CLKM_SRC (0x20700)
40 #define EXYNOS5_TIMING_SET_SWI BIT(28)
41 #define USE_MX_MSPLL_TIMINGS (1)
42 #define USE_BPLL_TIMINGS (0)
43 #define EXYNOS5_AREF_NORMAL (0x2e)
45 #define DREX_PPCCLKCON (0x0130)
46 #define DREX_PEREV2CONFIG (0x013c)
47 #define DREX_PMNC_PPC (0xE000)
48 #define DREX_CNTENS_PPC (0xE010)
49 #define DREX_CNTENC_PPC (0xE020)
50 #define DREX_INTENS_PPC (0xE030)
51 #define DREX_INTENC_PPC (0xE040)
52 #define DREX_FLAG_PPC (0xE050)
53 #define DREX_PMCNT2_PPC (0xE130)
56 * A value for register DREX_PMNC_PPC which should be written to reset
57 * the cycle counter CCNT (a reference wall clock). It sets zero to the
60 #define CC_RESET BIT(2)
63 * A value for register DREX_PMNC_PPC which does the reset of all performance
66 #define PPC_COUNTER_RESET BIT(1)
69 * Enables all configured counters (including cycle counter). The value should
70 * be written to the register DREX_PMNC_PPC.
72 #define PPC_ENABLE BIT(0)
74 /* A value for register DREX_PPCCLKCON which enables performance events clock.
75 * Must be written before first access to the performance counters register
76 * set, otherwise it could crash.
78 #define PEREV_CLK_EN BIT(0)
81 * Values which are used to enable counters, interrupts or configure flags of
82 * the performance counters. They configure counter 2 and cycle counter.
84 #define PERF_CNT2 BIT(2)
85 #define PERF_CCNT BIT(31)
88 * Performance event types which are used for setting the preferred event
89 * to track in the counters.
90 * There is a set of different types, the values are from range 0 to 0x6f.
91 * These settings should be written to the configuration register which manages
92 * the type of the event (register DREX_PEREV2CONFIG).
94 #define READ_TRANSFER_CH0 (0x6d)
95 #define READ_TRANSFER_CH1 (0x6f)
97 #define PERF_COUNTER_START_VALUE 0xff000000
98 #define PERF_EVENT_UP_DOWN_THRESHOLD 900000000ULL
101 * struct dmc_opp_table - Operating level desciption
102 * @freq_hz: target frequency in Hz
103 * @volt_uv: target voltage in uV
105 * Covers frequency and voltage settings of the DMC operating mode.
107 struct dmc_opp_table
{
113 * struct exynos5_dmc - main structure describing DMC device
115 * @df: devfreq device structure returned by devfreq framework
116 * @gov_data: configuration of devfreq governor
117 * @base_drexi0: DREX0 registers mapping
118 * @base_drexi1: DREX1 registers mapping
119 * @clk_regmap: regmap for clock controller registers
120 * @lock: protects curr_rate and frequency/voltage setting section
121 * @curr_rate: current frequency
122 * @curr_volt: current voltage
124 * @opp_count: number of 'opp' elements
125 * @timings_arr_size: number of 'timings' elements
126 * @timing_row: values for timing row register, for each OPP
127 * @timing_data: values for timing data register, for each OPP
128 * @timing_power: balues for timing power register, for each OPP
129 * @timings: DDR memory timings, from device tree
130 * @min_tck: DDR memory minimum timing values, from device tree
131 * @bypass_timing_row: value for timing row register for bypass timings
132 * @bypass_timing_data: value for timing data register for bypass timings
133 * @bypass_timing_power: value for timing power register for bypass
135 * @vdd_mif: Memory interface regulator
136 * @fout_spll: clock: SPLL
137 * @fout_bpll: clock: BPLL
138 * @mout_spll: clock: mux SPLL
139 * @mout_bpll: clock: mux BPLL
140 * @mout_mclk_cdrex: clock: mux mclk_cdrex
141 * @mout_mx_mspll_ccore: clock: mux mx_mspll_ccore
142 * @counter: devfreq events
143 * @num_counters: number of 'counter' elements
144 * @last_overflow_ts: time (in ns) of last overflow of each DREX
145 * @load: utilization in percents
146 * @total: total time between devfreq events
147 * @in_irq_mode: whether running in interrupt mode (true)
150 * The main structure for the Dynamic Memory Controller which covers clocks,
151 * memory regions, HW information, parameters and current operating mode.
156 struct devfreq_simple_ondemand_data gov_data
;
157 void __iomem
*base_drexi0
;
158 void __iomem
*base_drexi1
;
159 struct regmap
*clk_regmap
;
160 /* Protects curr_rate and frequency/voltage setting section */
162 unsigned long curr_rate
;
163 unsigned long curr_volt
;
164 struct dmc_opp_table
*opp
;
166 u32 timings_arr_size
;
170 const struct lpddr3_timings
*timings
;
171 const struct lpddr3_min_tck
*min_tck
;
172 u32 bypass_timing_row
;
173 u32 bypass_timing_data
;
174 u32 bypass_timing_power
;
175 struct regulator
*vdd_mif
;
176 struct clk
*fout_spll
;
177 struct clk
*fout_bpll
;
178 struct clk
*mout_spll
;
179 struct clk
*mout_bpll
;
180 struct clk
*mout_mclk_cdrex
;
181 struct clk
*mout_mx_mspll_ccore
;
182 struct devfreq_event_dev
**counter
;
184 u64 last_overflow_ts
[2];
190 #define TIMING_FIELD(t_name, t_bit_beg, t_bit_end) \
191 { .name = t_name, .bit_beg = t_bit_beg, .bit_end = t_bit_end }
193 #define TIMING_VAL2REG(timing, t_val) \
196 __val = (t_val) << (timing)->bit_beg; \
207 static const struct timing_reg timing_row_reg_fields
[] = {
208 TIMING_FIELD("tRFC", 24, 31),
209 TIMING_FIELD("tRRD", 20, 23),
210 TIMING_FIELD("tRP", 16, 19),
211 TIMING_FIELD("tRCD", 12, 15),
212 TIMING_FIELD("tRC", 6, 11),
213 TIMING_FIELD("tRAS", 0, 5),
216 static const struct timing_reg timing_data_reg_fields
[] = {
217 TIMING_FIELD("tWTR", 28, 31),
218 TIMING_FIELD("tWR", 24, 27),
219 TIMING_FIELD("tRTP", 20, 23),
220 TIMING_FIELD("tW2W-C2C", 14, 14),
221 TIMING_FIELD("tR2R-C2C", 12, 12),
222 TIMING_FIELD("WL", 8, 11),
223 TIMING_FIELD("tDQSCK", 4, 7),
224 TIMING_FIELD("RL", 0, 3),
227 static const struct timing_reg timing_power_reg_fields
[] = {
228 TIMING_FIELD("tFAW", 26, 31),
229 TIMING_FIELD("tXSR", 16, 25),
230 TIMING_FIELD("tXP", 8, 15),
231 TIMING_FIELD("tCKE", 4, 7),
232 TIMING_FIELD("tMRD", 0, 3),
235 #define TIMING_COUNT (ARRAY_SIZE(timing_row_reg_fields) + \
236 ARRAY_SIZE(timing_data_reg_fields) + \
237 ARRAY_SIZE(timing_power_reg_fields))
239 static int exynos5_counters_set_event(struct exynos5_dmc
*dmc
)
243 for (i
= 0; i
< dmc
->num_counters
; i
++) {
244 if (!dmc
->counter
[i
])
246 ret
= devfreq_event_set_event(dmc
->counter
[i
]);
253 static int exynos5_counters_enable_edev(struct exynos5_dmc
*dmc
)
257 for (i
= 0; i
< dmc
->num_counters
; i
++) {
258 if (!dmc
->counter
[i
])
260 ret
= devfreq_event_enable_edev(dmc
->counter
[i
]);
267 static int exynos5_counters_disable_edev(struct exynos5_dmc
*dmc
)
271 for (i
= 0; i
< dmc
->num_counters
; i
++) {
272 if (!dmc
->counter
[i
])
274 ret
= devfreq_event_disable_edev(dmc
->counter
[i
]);
282 * find_target_freq_idx() - Finds requested frequency in local DMC configuration
283 * @dmc: device for which the information is checked
284 * @target_rate: requested frequency in KHz
286 * Seeks in the local DMC driver structure for the requested frequency value
287 * and returns index or error value.
289 static int find_target_freq_idx(struct exynos5_dmc
*dmc
,
290 unsigned long target_rate
)
294 for (i
= dmc
->opp_count
- 1; i
>= 0; i
--)
295 if (dmc
->opp
[i
].freq_hz
<= target_rate
)
302 * exynos5_switch_timing_regs() - Changes bank register set for DRAM timings
303 * @dmc: device for which the new settings is going to be applied
304 * @set: boolean variable passing set value
306 * Changes the register set, which holds timing parameters.
307 * There is two register sets: 0 and 1. The register set 0
308 * is used in normal operation when the clock is provided from main PLL.
309 * The bank register set 1 is used when the main PLL frequency is going to be
310 * changed and the clock is taken from alternative, stable source.
311 * This function switches between these banks according to the
312 * currently used clock source.
314 static int exynos5_switch_timing_regs(struct exynos5_dmc
*dmc
, bool set
)
319 ret
= regmap_read(dmc
->clk_regmap
, CDREX_LPDDR3PHY_CON3
, ®
);
324 reg
|= EXYNOS5_TIMING_SET_SWI
;
326 reg
&= ~EXYNOS5_TIMING_SET_SWI
;
328 regmap_write(dmc
->clk_regmap
, CDREX_LPDDR3PHY_CON3
, reg
);
334 * exynos5_init_freq_table() - Initialized PM OPP framework
335 * @dmc: DMC device for which the frequencies are used for OPP init
336 * @profile: devfreq device's profile
338 * Populate the devfreq device's OPP table based on current frequency, voltage.
340 static int exynos5_init_freq_table(struct exynos5_dmc
*dmc
,
341 struct devfreq_dev_profile
*profile
)
343 struct device
*dev
= dmc
->dev
;
348 ret
= devm_pm_opp_of_add_table(dev
);
350 dev_err(dev
, "Failed to get OPP table\n");
354 dmc
->opp_count
= dev_pm_opp_get_opp_count(dev
);
356 dmc
->opp
= devm_kmalloc_array(dev
, dmc
->opp_count
,
357 sizeof(struct dmc_opp_table
), GFP_KERNEL
);
361 idx
= dmc
->opp_count
- 1;
362 for (i
= 0, freq
= ULONG_MAX
; i
< dmc
->opp_count
; i
++, freq
--) {
363 struct dev_pm_opp
*opp
;
365 opp
= dev_pm_opp_find_freq_floor(dev
, &freq
);
369 dmc
->opp
[idx
- i
].freq_hz
= freq
;
370 dmc
->opp
[idx
- i
].volt_uv
= dev_pm_opp_get_voltage(opp
);
379 * exynos5_set_bypass_dram_timings() - Low-level changes of the DRAM timings
380 * @dmc: device for which the new settings is going to be applied
382 * Low-level function for changing timings for DRAM memory clocking from
383 * 'bypass' clock source (fixed frequency @400MHz).
384 * It uses timing bank registers set 1.
386 static void exynos5_set_bypass_dram_timings(struct exynos5_dmc
*dmc
)
388 writel(EXYNOS5_AREF_NORMAL
,
389 dmc
->base_drexi0
+ EXYNOS5_DREXI_TIMINGAREF
);
391 writel(dmc
->bypass_timing_row
,
392 dmc
->base_drexi0
+ EXYNOS5_DREXI_TIMINGROW1
);
393 writel(dmc
->bypass_timing_row
,
394 dmc
->base_drexi1
+ EXYNOS5_DREXI_TIMINGROW1
);
395 writel(dmc
->bypass_timing_data
,
396 dmc
->base_drexi0
+ EXYNOS5_DREXI_TIMINGDATA1
);
397 writel(dmc
->bypass_timing_data
,
398 dmc
->base_drexi1
+ EXYNOS5_DREXI_TIMINGDATA1
);
399 writel(dmc
->bypass_timing_power
,
400 dmc
->base_drexi0
+ EXYNOS5_DREXI_TIMINGPOWER1
);
401 writel(dmc
->bypass_timing_power
,
402 dmc
->base_drexi1
+ EXYNOS5_DREXI_TIMINGPOWER1
);
406 * exynos5_dram_change_timings() - Low-level changes of the DRAM final timings
407 * @dmc: device for which the new settings is going to be applied
408 * @target_rate: target frequency of the DMC
410 * Low-level function for changing timings for DRAM memory operating from main
411 * clock source (BPLL), which can have different frequencies. Thus, each
412 * frequency must have corresponding timings register values in order to keep
414 * It uses timing bank registers set 0.
416 static int exynos5_dram_change_timings(struct exynos5_dmc
*dmc
,
417 unsigned long target_rate
)
421 for (idx
= dmc
->opp_count
- 1; idx
>= 0; idx
--)
422 if (dmc
->opp
[idx
].freq_hz
<= target_rate
)
428 writel(EXYNOS5_AREF_NORMAL
,
429 dmc
->base_drexi0
+ EXYNOS5_DREXI_TIMINGAREF
);
431 writel(dmc
->timing_row
[idx
],
432 dmc
->base_drexi0
+ EXYNOS5_DREXI_TIMINGROW0
);
433 writel(dmc
->timing_row
[idx
],
434 dmc
->base_drexi1
+ EXYNOS5_DREXI_TIMINGROW0
);
435 writel(dmc
->timing_data
[idx
],
436 dmc
->base_drexi0
+ EXYNOS5_DREXI_TIMINGDATA0
);
437 writel(dmc
->timing_data
[idx
],
438 dmc
->base_drexi1
+ EXYNOS5_DREXI_TIMINGDATA0
);
439 writel(dmc
->timing_power
[idx
],
440 dmc
->base_drexi0
+ EXYNOS5_DREXI_TIMINGPOWER0
);
441 writel(dmc
->timing_power
[idx
],
442 dmc
->base_drexi1
+ EXYNOS5_DREXI_TIMINGPOWER0
);
448 * exynos5_dmc_align_target_voltage() - Sets the final voltage for the DMC
449 * @dmc: device for which it is going to be set
450 * @target_volt: new voltage which is chosen to be final
452 * Function tries to align voltage to the safe level for 'normal' mode.
453 * It checks the need of higher voltage and changes the value. The target
454 * voltage might be lower that currently set and still the system will be
457 static int exynos5_dmc_align_target_voltage(struct exynos5_dmc
*dmc
,
458 unsigned long target_volt
)
462 if (dmc
->curr_volt
<= target_volt
)
465 ret
= regulator_set_voltage(dmc
->vdd_mif
, target_volt
,
468 dmc
->curr_volt
= target_volt
;
474 * exynos5_dmc_align_bypass_voltage() - Sets the voltage for the DMC
475 * @dmc: device for which it is going to be set
476 * @target_volt: new voltage which is chosen to be final
478 * Function tries to align voltage to the safe level for the 'bypass' mode.
479 * It checks the need of higher voltage and changes the value.
480 * The target voltage must not be less than currently needed, because
481 * for current frequency the device might become unstable.
483 static int exynos5_dmc_align_bypass_voltage(struct exynos5_dmc
*dmc
,
484 unsigned long target_volt
)
488 if (dmc
->curr_volt
>= target_volt
)
491 ret
= regulator_set_voltage(dmc
->vdd_mif
, target_volt
,
494 dmc
->curr_volt
= target_volt
;
500 * exynos5_dmc_align_bypass_dram_timings() - Chooses and sets DRAM timings
501 * @dmc: device for which it is going to be set
502 * @target_rate: new frequency which is chosen to be final
504 * Function changes the DRAM timings for the temporary 'bypass' mode.
506 static int exynos5_dmc_align_bypass_dram_timings(struct exynos5_dmc
*dmc
,
507 unsigned long target_rate
)
509 int idx
= find_target_freq_idx(dmc
, target_rate
);
514 exynos5_set_bypass_dram_timings(dmc
);
520 * exynos5_dmc_switch_to_bypass_configuration() - Switching to temporary clock
521 * @dmc: DMC device for which the switching is going to happen
522 * @target_rate: new frequency which is going to be set as a final
523 * @target_volt: new voltage which is going to be set as a final
525 * Function configures DMC and clocks for operating in temporary 'bypass' mode.
526 * This mode is used only temporary but if required, changes voltage and timings
527 * for DRAM chips. It switches the main clock to stable clock source for the
528 * period of the main PLL reconfiguration.
531 exynos5_dmc_switch_to_bypass_configuration(struct exynos5_dmc
*dmc
,
532 unsigned long target_rate
,
533 unsigned long target_volt
)
538 * Having higher voltage for a particular frequency does not harm
539 * the chip. Use it for the temporary frequency change when one
540 * voltage manipulation might be avoided.
542 ret
= exynos5_dmc_align_bypass_voltage(dmc
, target_volt
);
547 * Longer delays for DRAM does not cause crash, the opposite does.
549 ret
= exynos5_dmc_align_bypass_dram_timings(dmc
, target_rate
);
554 * Delays are long enough, so use them for the new coming clock.
556 ret
= exynos5_switch_timing_regs(dmc
, USE_MX_MSPLL_TIMINGS
);
562 * exynos5_dmc_change_freq_and_volt() - Changes voltage and frequency of the DMC
563 * using safe procedure
564 * @dmc: device for which the frequency is going to be changed
565 * @target_rate: requested new frequency
566 * @target_volt: requested voltage which corresponds to the new frequency
568 * The DMC frequency change procedure requires a few steps.
569 * The main requirement is to change the clock source in the clk mux
570 * for the time of main clock PLL locking. The assumption is that the
571 * alternative clock source set as parent is stable.
572 * The second parent's clock frequency is fixed to 400MHz, it is named 'bypass'
573 * clock. This requires alignment in DRAM timing parameters for the new
574 * T-period. There is two bank sets for keeping DRAM
575 * timings: set 0 and set 1. The set 0 is used when main clock source is
576 * chosen. The 2nd set of regs is used for 'bypass' clock. Switching between
577 * the two bank sets is part of the process.
578 * The voltage must also be aligned to the minimum required level. There is
579 * this intermediate step with switching to 'bypass' parent clock source.
580 * if the old voltage is lower, it requires an increase of the voltage level.
581 * The complexity of the voltage manipulation is hidden in low level function.
582 * In this function there is last alignment of the voltage level at the end.
585 exynos5_dmc_change_freq_and_volt(struct exynos5_dmc
*dmc
,
586 unsigned long target_rate
,
587 unsigned long target_volt
)
591 ret
= exynos5_dmc_switch_to_bypass_configuration(dmc
, target_rate
,
597 * Voltage is set at least to a level needed for this frequency,
598 * so switching clock source is safe now.
600 clk_prepare_enable(dmc
->fout_spll
);
601 clk_prepare_enable(dmc
->mout_spll
);
602 clk_prepare_enable(dmc
->mout_mx_mspll_ccore
);
604 ret
= clk_set_parent(dmc
->mout_mclk_cdrex
, dmc
->mout_mx_mspll_ccore
);
609 * We are safe to increase the timings for current bypass frequency.
610 * Thanks to this the settings will be ready for the upcoming clock
613 exynos5_dram_change_timings(dmc
, target_rate
);
615 clk_set_rate(dmc
->fout_bpll
, target_rate
);
617 ret
= exynos5_switch_timing_regs(dmc
, USE_BPLL_TIMINGS
);
621 ret
= clk_set_parent(dmc
->mout_mclk_cdrex
, dmc
->mout_bpll
);
626 * Make sure if the voltage is not from 'bypass' settings and align to
627 * the right level for power efficiency.
629 ret
= exynos5_dmc_align_target_voltage(dmc
, target_volt
);
632 clk_disable_unprepare(dmc
->mout_mx_mspll_ccore
);
633 clk_disable_unprepare(dmc
->mout_spll
);
634 clk_disable_unprepare(dmc
->fout_spll
);
640 * exynos5_dmc_get_volt_freq() - Gets the frequency and voltage from the OPP
642 * @dmc: device for which the frequency is going to be changed
643 * @freq: requested frequency in KHz
644 * @target_rate: returned frequency which is the same or lower than
646 * @target_volt: returned voltage which corresponds to the returned
648 * @flags: devfreq flags provided for this frequency change request
650 * Function gets requested frequency and checks OPP framework for needed
651 * frequency and voltage. It populates the values 'target_rate' and
652 * 'target_volt' or returns error value when OPP framework fails.
654 static int exynos5_dmc_get_volt_freq(struct exynos5_dmc
*dmc
,
656 unsigned long *target_rate
,
657 unsigned long *target_volt
, u32 flags
)
659 struct dev_pm_opp
*opp
;
661 opp
= devfreq_recommended_opp(dmc
->dev
, freq
, flags
);
665 *target_rate
= dev_pm_opp_get_freq(opp
);
666 *target_volt
= dev_pm_opp_get_voltage(opp
);
673 * exynos5_dmc_target() - Function responsible for changing frequency of DMC
674 * @dev: device for which the frequency is going to be changed
675 * @freq: requested frequency in KHz
676 * @flags: flags provided for this frequency change request
678 * An entry function provided to the devfreq framework which provides frequency
679 * change of the DMC. The function gets the possible rate from OPP table based
680 * on requested frequency. It calls the next function responsible for the
681 * frequency and voltage change. In case of failure, does not set 'curr_rate'
682 * and returns error value to the framework.
684 static int exynos5_dmc_target(struct device
*dev
, unsigned long *freq
,
687 struct exynos5_dmc
*dmc
= dev_get_drvdata(dev
);
688 unsigned long target_rate
= 0;
689 unsigned long target_volt
= 0;
692 ret
= exynos5_dmc_get_volt_freq(dmc
, freq
, &target_rate
, &target_volt
,
698 if (target_rate
== dmc
->curr_rate
)
701 mutex_lock(&dmc
->lock
);
703 ret
= exynos5_dmc_change_freq_and_volt(dmc
, target_rate
, target_volt
);
706 mutex_unlock(&dmc
->lock
);
710 dmc
->curr_rate
= target_rate
;
712 mutex_unlock(&dmc
->lock
);
717 * exynos5_counters_get() - Gets the performance counters values.
718 * @dmc: device for which the counters are going to be checked
719 * @load_count: variable which is populated with counter value
720 * @total_count: variable which is used as 'wall clock' reference
722 * Function which provides performance counters values. It sums up counters for
723 * two DMC channels. The 'total_count' is used as a reference and max value.
724 * The ratio 'load_count/total_count' shows the busy percentage [0%, 100%].
726 static int exynos5_counters_get(struct exynos5_dmc
*dmc
,
727 unsigned long *load_count
,
728 unsigned long *total_count
)
730 unsigned long total
= 0;
731 struct devfreq_event_data event
;
736 /* Take into account only read+write counters, but stop all */
737 for (i
= 0; i
< dmc
->num_counters
; i
++) {
738 if (!dmc
->counter
[i
])
741 ret
= devfreq_event_get_event(dmc
->counter
[i
], &event
);
745 *load_count
+= event
.load_count
;
747 if (total
< event
.total_count
)
748 total
= event
.total_count
;
751 *total_count
= total
;
757 * exynos5_dmc_start_perf_events() - Setup and start performance event counters
758 * @dmc: device for which the counters are going to be checked
759 * @beg_value: initial value for the counter
761 * Function which enables needed counters, interrupts and sets initial values
762 * then starts the counters.
764 static void exynos5_dmc_start_perf_events(struct exynos5_dmc
*dmc
,
767 /* Enable interrupts for counter 2 */
768 writel(PERF_CNT2
, dmc
->base_drexi0
+ DREX_INTENS_PPC
);
769 writel(PERF_CNT2
, dmc
->base_drexi1
+ DREX_INTENS_PPC
);
771 /* Enable counter 2 and CCNT */
772 writel(PERF_CNT2
| PERF_CCNT
, dmc
->base_drexi0
+ DREX_CNTENS_PPC
);
773 writel(PERF_CNT2
| PERF_CCNT
, dmc
->base_drexi1
+ DREX_CNTENS_PPC
);
775 /* Clear overflow flag for all counters */
776 writel(PERF_CNT2
| PERF_CCNT
, dmc
->base_drexi0
+ DREX_FLAG_PPC
);
777 writel(PERF_CNT2
| PERF_CCNT
, dmc
->base_drexi1
+ DREX_FLAG_PPC
);
779 /* Reset all counters */
780 writel(CC_RESET
| PPC_COUNTER_RESET
, dmc
->base_drexi0
+ DREX_PMNC_PPC
);
781 writel(CC_RESET
| PPC_COUNTER_RESET
, dmc
->base_drexi1
+ DREX_PMNC_PPC
);
784 * Set start value for the counters, the number of samples that
785 * will be gathered is calculated as: 0xffffffff - beg_value
787 writel(beg_value
, dmc
->base_drexi0
+ DREX_PMCNT2_PPC
);
788 writel(beg_value
, dmc
->base_drexi1
+ DREX_PMCNT2_PPC
);
790 /* Start all counters */
791 writel(PPC_ENABLE
, dmc
->base_drexi0
+ DREX_PMNC_PPC
);
792 writel(PPC_ENABLE
, dmc
->base_drexi1
+ DREX_PMNC_PPC
);
796 * exynos5_dmc_perf_events_calc() - Calculate utilization
797 * @dmc: device for which the counters are going to be checked
798 * @diff_ts: time between last interrupt and current one
800 * Function which calculates needed utilization for the devfreq governor.
801 * It prepares values for 'busy_time' and 'total_time' based on elapsed time
802 * between interrupts, which approximates utilization.
804 static void exynos5_dmc_perf_events_calc(struct exynos5_dmc
*dmc
, u64 diff_ts
)
807 * This is a simple algorithm for managing traffic on DMC.
808 * When there is almost no load the counters overflow every 4s,
809 * no mater the DMC frequency.
810 * The high load might be approximated using linear function.
811 * Knowing that, simple calculation can provide 'busy_time' and
812 * 'total_time' to the devfreq governor which picks up target
814 * We want a fast ramp up and slow decay in frequency change function.
816 if (diff_ts
< PERF_EVENT_UP_DOWN_THRESHOLD
) {
818 * Set higher utilization for the simple_ondemand governor.
819 * The governor should increase the frequency of the DMC.
825 * Set low utilization for the simple_ondemand governor.
826 * The governor should decrease the frequency of the DMC.
832 dev_dbg(dmc
->dev
, "diff_ts=%llu\n", diff_ts
);
836 * exynos5_dmc_perf_events_check() - Checks the status of the counters
837 * @dmc: device for which the counters are going to be checked
839 * Function which is called from threaded IRQ to check the counters state
840 * and to call approximation for the needed utilization.
842 static void exynos5_dmc_perf_events_check(struct exynos5_dmc
*dmc
)
849 /* Stop all counters */
850 writel(0, dmc
->base_drexi0
+ DREX_PMNC_PPC
);
851 writel(0, dmc
->base_drexi1
+ DREX_PMNC_PPC
);
853 /* Check the source in interrupt flag registers (which channel) */
854 val
= readl(dmc
->base_drexi0
+ DREX_FLAG_PPC
);
856 diff_ts
= ts
- dmc
->last_overflow_ts
[0];
857 dmc
->last_overflow_ts
[0] = ts
;
858 dev_dbg(dmc
->dev
, "drex0 0xE050 val= 0x%08x\n", val
);
860 val
= readl(dmc
->base_drexi1
+ DREX_FLAG_PPC
);
861 diff_ts
= ts
- dmc
->last_overflow_ts
[1];
862 dmc
->last_overflow_ts
[1] = ts
;
863 dev_dbg(dmc
->dev
, "drex1 0xE050 val= 0x%08x\n", val
);
866 exynos5_dmc_perf_events_calc(dmc
, diff_ts
);
868 exynos5_dmc_start_perf_events(dmc
, PERF_COUNTER_START_VALUE
);
872 * exynos5_dmc_enable_perf_events() - Enable performance events
873 * @dmc: device for which the counters are going to be checked
875 * Function which is setup needed environment and enables counters.
877 static void exynos5_dmc_enable_perf_events(struct exynos5_dmc
*dmc
)
881 /* Enable Performance Event Clock */
882 writel(PEREV_CLK_EN
, dmc
->base_drexi0
+ DREX_PPCCLKCON
);
883 writel(PEREV_CLK_EN
, dmc
->base_drexi1
+ DREX_PPCCLKCON
);
885 /* Select read transfers as performance event2 */
886 writel(READ_TRANSFER_CH0
, dmc
->base_drexi0
+ DREX_PEREV2CONFIG
);
887 writel(READ_TRANSFER_CH1
, dmc
->base_drexi1
+ DREX_PEREV2CONFIG
);
890 dmc
->last_overflow_ts
[0] = ts
;
891 dmc
->last_overflow_ts
[1] = ts
;
893 /* Devfreq shouldn't be faster than initialization, play safe though. */
899 * exynos5_dmc_disable_perf_events() - Disable performance events
900 * @dmc: device for which the counters are going to be checked
902 * Function which stops, disables performance event counters and interrupts.
904 static void exynos5_dmc_disable_perf_events(struct exynos5_dmc
*dmc
)
906 /* Stop all counters */
907 writel(0, dmc
->base_drexi0
+ DREX_PMNC_PPC
);
908 writel(0, dmc
->base_drexi1
+ DREX_PMNC_PPC
);
910 /* Disable interrupts for counter 2 */
911 writel(PERF_CNT2
, dmc
->base_drexi0
+ DREX_INTENC_PPC
);
912 writel(PERF_CNT2
, dmc
->base_drexi1
+ DREX_INTENC_PPC
);
914 /* Disable counter 2 and CCNT */
915 writel(PERF_CNT2
| PERF_CCNT
, dmc
->base_drexi0
+ DREX_CNTENC_PPC
);
916 writel(PERF_CNT2
| PERF_CCNT
, dmc
->base_drexi1
+ DREX_CNTENC_PPC
);
918 /* Clear overflow flag for all counters */
919 writel(PERF_CNT2
| PERF_CCNT
, dmc
->base_drexi0
+ DREX_FLAG_PPC
);
920 writel(PERF_CNT2
| PERF_CCNT
, dmc
->base_drexi1
+ DREX_FLAG_PPC
);
924 * exynos5_dmc_get_status() - Read current DMC performance statistics.
925 * @dev: device for which the statistics are requested
926 * @stat: structure which has statistic fields
928 * Function reads the DMC performance counters and calculates 'busy_time'
929 * and 'total_time'. To protect from overflow, the values are shifted right
930 * by 10. After read out the counters are setup to count again.
932 static int exynos5_dmc_get_status(struct device
*dev
,
933 struct devfreq_dev_status
*stat
)
935 struct exynos5_dmc
*dmc
= dev_get_drvdata(dev
);
936 unsigned long load
, total
;
939 if (dmc
->in_irq_mode
) {
940 mutex_lock(&dmc
->lock
);
941 stat
->current_frequency
= dmc
->curr_rate
;
942 mutex_unlock(&dmc
->lock
);
944 stat
->busy_time
= dmc
->load
;
945 stat
->total_time
= dmc
->total
;
947 ret
= exynos5_counters_get(dmc
, &load
, &total
);
951 /* To protect from overflow, divide by 1024 */
952 stat
->busy_time
= load
>> 10;
953 stat
->total_time
= total
>> 10;
955 ret
= exynos5_counters_set_event(dmc
);
957 dev_err(dev
, "could not set event counter\n");
966 * exynos5_dmc_get_cur_freq() - Function returns current DMC frequency
967 * @dev: device for which the framework checks operating frequency
968 * @freq: returned frequency value
970 * It returns the currently used frequency of the DMC. The real operating
971 * frequency might be lower when the clock source value could not be divided
972 * to the requested value.
974 static int exynos5_dmc_get_cur_freq(struct device
*dev
, unsigned long *freq
)
976 struct exynos5_dmc
*dmc
= dev_get_drvdata(dev
);
978 mutex_lock(&dmc
->lock
);
979 *freq
= dmc
->curr_rate
;
980 mutex_unlock(&dmc
->lock
);
986 * exynos5_dmc_df_profile - Devfreq governor's profile structure
988 * It provides to the devfreq framework needed functions and polling period.
990 static struct devfreq_dev_profile exynos5_dmc_df_profile
= {
991 .timer
= DEVFREQ_TIMER_DELAYED
,
992 .target
= exynos5_dmc_target
,
993 .get_dev_status
= exynos5_dmc_get_status
,
994 .get_cur_freq
= exynos5_dmc_get_cur_freq
,
998 * exynos5_dmc_align_init_freq() - Align initial frequency value
999 * @dmc: device for which the frequency is going to be set
1000 * @bootloader_init_freq: initial frequency set by the bootloader in KHz
1002 * The initial bootloader frequency, which is present during boot, might be
1003 * different that supported frequency values in the driver. It is possible
1004 * due to different PLL settings or used PLL as a source.
1005 * This function provides the 'initial_freq' for the devfreq framework
1006 * statistics engine which supports only registered values. Thus, some alignment
1009 static unsigned long
1010 exynos5_dmc_align_init_freq(struct exynos5_dmc
*dmc
,
1011 unsigned long bootloader_init_freq
)
1013 unsigned long aligned_freq
;
1016 idx
= find_target_freq_idx(dmc
, bootloader_init_freq
);
1018 aligned_freq
= dmc
->opp
[idx
].freq_hz
;
1020 aligned_freq
= dmc
->opp
[dmc
->opp_count
- 1].freq_hz
;
1022 return aligned_freq
;
1026 * create_timings_aligned() - Create register values and align with standard
1027 * @dmc: device for which the frequency is going to be set
1028 * @reg_timing_row: array to fill with values for timing row register
1029 * @reg_timing_data: array to fill with values for timing data register
1030 * @reg_timing_power: array to fill with values for timing power register
1031 * @clk_period_ps: the period of the clock, known as tCK
1033 * The function calculates timings and creates a register value ready for
1034 * a frequency transition. The register contains a few timings. They are
1035 * shifted by a known offset. The timing value is calculated based on memory
1036 * specyfication: minimal time required and minimal cycles required.
1038 static int create_timings_aligned(struct exynos5_dmc
*dmc
, u32
*reg_timing_row
,
1039 u32
*reg_timing_data
, u32
*reg_timing_power
,
1043 const struct timing_reg
*reg
;
1045 if (clk_period_ps
== 0)
1048 *reg_timing_row
= 0;
1049 *reg_timing_data
= 0;
1050 *reg_timing_power
= 0;
1052 val
= dmc
->timings
->tRFC
/ clk_period_ps
;
1053 val
+= dmc
->timings
->tRFC
% clk_period_ps
? 1 : 0;
1054 val
= max(val
, dmc
->min_tck
->tRFC
);
1055 reg
= &timing_row_reg_fields
[0];
1056 *reg_timing_row
|= TIMING_VAL2REG(reg
, val
);
1058 val
= dmc
->timings
->tRRD
/ clk_period_ps
;
1059 val
+= dmc
->timings
->tRRD
% clk_period_ps
? 1 : 0;
1060 val
= max(val
, dmc
->min_tck
->tRRD
);
1061 reg
= &timing_row_reg_fields
[1];
1062 *reg_timing_row
|= TIMING_VAL2REG(reg
, val
);
1064 val
= dmc
->timings
->tRPab
/ clk_period_ps
;
1065 val
+= dmc
->timings
->tRPab
% clk_period_ps
? 1 : 0;
1066 val
= max(val
, dmc
->min_tck
->tRPab
);
1067 reg
= &timing_row_reg_fields
[2];
1068 *reg_timing_row
|= TIMING_VAL2REG(reg
, val
);
1070 val
= dmc
->timings
->tRCD
/ clk_period_ps
;
1071 val
+= dmc
->timings
->tRCD
% clk_period_ps
? 1 : 0;
1072 val
= max(val
, dmc
->min_tck
->tRCD
);
1073 reg
= &timing_row_reg_fields
[3];
1074 *reg_timing_row
|= TIMING_VAL2REG(reg
, val
);
1076 val
= dmc
->timings
->tRC
/ clk_period_ps
;
1077 val
+= dmc
->timings
->tRC
% clk_period_ps
? 1 : 0;
1078 val
= max(val
, dmc
->min_tck
->tRC
);
1079 reg
= &timing_row_reg_fields
[4];
1080 *reg_timing_row
|= TIMING_VAL2REG(reg
, val
);
1082 val
= dmc
->timings
->tRAS
/ clk_period_ps
;
1083 val
+= dmc
->timings
->tRAS
% clk_period_ps
? 1 : 0;
1084 val
= max(val
, dmc
->min_tck
->tRAS
);
1085 reg
= &timing_row_reg_fields
[5];
1086 *reg_timing_row
|= TIMING_VAL2REG(reg
, val
);
1088 /* data related timings */
1089 val
= dmc
->timings
->tWTR
/ clk_period_ps
;
1090 val
+= dmc
->timings
->tWTR
% clk_period_ps
? 1 : 0;
1091 val
= max(val
, dmc
->min_tck
->tWTR
);
1092 reg
= &timing_data_reg_fields
[0];
1093 *reg_timing_data
|= TIMING_VAL2REG(reg
, val
);
1095 val
= dmc
->timings
->tWR
/ clk_period_ps
;
1096 val
+= dmc
->timings
->tWR
% clk_period_ps
? 1 : 0;
1097 val
= max(val
, dmc
->min_tck
->tWR
);
1098 reg
= &timing_data_reg_fields
[1];
1099 *reg_timing_data
|= TIMING_VAL2REG(reg
, val
);
1101 val
= dmc
->timings
->tRTP
/ clk_period_ps
;
1102 val
+= dmc
->timings
->tRTP
% clk_period_ps
? 1 : 0;
1103 val
= max(val
, dmc
->min_tck
->tRTP
);
1104 reg
= &timing_data_reg_fields
[2];
1105 *reg_timing_data
|= TIMING_VAL2REG(reg
, val
);
1107 val
= dmc
->timings
->tW2W_C2C
/ clk_period_ps
;
1108 val
+= dmc
->timings
->tW2W_C2C
% clk_period_ps
? 1 : 0;
1109 val
= max(val
, dmc
->min_tck
->tW2W_C2C
);
1110 reg
= &timing_data_reg_fields
[3];
1111 *reg_timing_data
|= TIMING_VAL2REG(reg
, val
);
1113 val
= dmc
->timings
->tR2R_C2C
/ clk_period_ps
;
1114 val
+= dmc
->timings
->tR2R_C2C
% clk_period_ps
? 1 : 0;
1115 val
= max(val
, dmc
->min_tck
->tR2R_C2C
);
1116 reg
= &timing_data_reg_fields
[4];
1117 *reg_timing_data
|= TIMING_VAL2REG(reg
, val
);
1119 val
= dmc
->timings
->tWL
/ clk_period_ps
;
1120 val
+= dmc
->timings
->tWL
% clk_period_ps
? 1 : 0;
1121 val
= max(val
, dmc
->min_tck
->tWL
);
1122 reg
= &timing_data_reg_fields
[5];
1123 *reg_timing_data
|= TIMING_VAL2REG(reg
, val
);
1125 val
= dmc
->timings
->tDQSCK
/ clk_period_ps
;
1126 val
+= dmc
->timings
->tDQSCK
% clk_period_ps
? 1 : 0;
1127 val
= max(val
, dmc
->min_tck
->tDQSCK
);
1128 reg
= &timing_data_reg_fields
[6];
1129 *reg_timing_data
|= TIMING_VAL2REG(reg
, val
);
1131 val
= dmc
->timings
->tRL
/ clk_period_ps
;
1132 val
+= dmc
->timings
->tRL
% clk_period_ps
? 1 : 0;
1133 val
= max(val
, dmc
->min_tck
->tRL
);
1134 reg
= &timing_data_reg_fields
[7];
1135 *reg_timing_data
|= TIMING_VAL2REG(reg
, val
);
1137 /* power related timings */
1138 val
= dmc
->timings
->tFAW
/ clk_period_ps
;
1139 val
+= dmc
->timings
->tFAW
% clk_period_ps
? 1 : 0;
1140 val
= max(val
, dmc
->min_tck
->tFAW
);
1141 reg
= &timing_power_reg_fields
[0];
1142 *reg_timing_power
|= TIMING_VAL2REG(reg
, val
);
1144 val
= dmc
->timings
->tXSR
/ clk_period_ps
;
1145 val
+= dmc
->timings
->tXSR
% clk_period_ps
? 1 : 0;
1146 val
= max(val
, dmc
->min_tck
->tXSR
);
1147 reg
= &timing_power_reg_fields
[1];
1148 *reg_timing_power
|= TIMING_VAL2REG(reg
, val
);
1150 val
= dmc
->timings
->tXP
/ clk_period_ps
;
1151 val
+= dmc
->timings
->tXP
% clk_period_ps
? 1 : 0;
1152 val
= max(val
, dmc
->min_tck
->tXP
);
1153 reg
= &timing_power_reg_fields
[2];
1154 *reg_timing_power
|= TIMING_VAL2REG(reg
, val
);
1156 val
= dmc
->timings
->tCKE
/ clk_period_ps
;
1157 val
+= dmc
->timings
->tCKE
% clk_period_ps
? 1 : 0;
1158 val
= max(val
, dmc
->min_tck
->tCKE
);
1159 reg
= &timing_power_reg_fields
[3];
1160 *reg_timing_power
|= TIMING_VAL2REG(reg
, val
);
1162 val
= dmc
->timings
->tMRD
/ clk_period_ps
;
1163 val
+= dmc
->timings
->tMRD
% clk_period_ps
? 1 : 0;
1164 val
= max(val
, dmc
->min_tck
->tMRD
);
1165 reg
= &timing_power_reg_fields
[4];
1166 *reg_timing_power
|= TIMING_VAL2REG(reg
, val
);
1172 * of_get_dram_timings() - helper function for parsing DT settings for DRAM
1173 * @dmc: device for which the frequency is going to be set
1175 * The function parses DT entries with DRAM information.
1177 static int of_get_dram_timings(struct exynos5_dmc
*dmc
)
1180 struct device
*dev
= dmc
->dev
;
1182 u32 freq_mhz
, clk_period_ps
;
1184 struct device_node
*np_ddr
__free(device_node
) =
1185 of_parse_phandle(dev
->of_node
, "device-handle", 0);
1187 dev_warn(dev
, "could not find 'device-handle' in DT\n");
1191 dmc
->timing_row
= devm_kmalloc_array(dev
, TIMING_COUNT
,
1192 sizeof(u32
), GFP_KERNEL
);
1193 if (!dmc
->timing_row
)
1196 dmc
->timing_data
= devm_kmalloc_array(dev
, TIMING_COUNT
,
1197 sizeof(u32
), GFP_KERNEL
);
1198 if (!dmc
->timing_data
)
1201 dmc
->timing_power
= devm_kmalloc_array(dev
, TIMING_COUNT
,
1202 sizeof(u32
), GFP_KERNEL
);
1203 if (!dmc
->timing_power
)
1206 dmc
->timings
= of_lpddr3_get_ddr_timings(np_ddr
, dev
,
1208 &dmc
->timings_arr_size
);
1209 if (!dmc
->timings
) {
1210 dev_warn(dev
, "could not get timings from DT\n");
1214 dmc
->min_tck
= of_lpddr3_get_min_tck(np_ddr
, dev
);
1215 if (!dmc
->min_tck
) {
1216 dev_warn(dev
, "could not get tck from DT\n");
1220 /* Sorted array of OPPs with frequency ascending */
1221 for (idx
= 0; idx
< dmc
->opp_count
; idx
++) {
1222 freq_mhz
= dmc
->opp
[idx
].freq_hz
/ 1000000;
1223 clk_period_ps
= 1000000 / freq_mhz
;
1225 ret
= create_timings_aligned(dmc
, &dmc
->timing_row
[idx
],
1226 &dmc
->timing_data
[idx
],
1227 &dmc
->timing_power
[idx
],
1232 /* Take the highest frequency's timings as 'bypass' */
1233 dmc
->bypass_timing_row
= dmc
->timing_row
[idx
- 1];
1234 dmc
->bypass_timing_data
= dmc
->timing_data
[idx
- 1];
1235 dmc
->bypass_timing_power
= dmc
->timing_power
[idx
- 1];
1241 * exynos5_dmc_init_clks() - Initialize clocks needed for DMC operation.
1242 * @dmc: DMC structure containing needed fields
1244 * Get the needed clocks defined in DT device, enable and set the right parents.
1245 * Read current frequency and initialize the initial rate for governor.
1247 static int exynos5_dmc_init_clks(struct exynos5_dmc
*dmc
)
1250 struct device
*dev
= dmc
->dev
;
1251 unsigned long target_volt
= 0;
1252 unsigned long target_rate
= 0;
1255 dmc
->fout_spll
= devm_clk_get(dev
, "fout_spll");
1256 if (IS_ERR(dmc
->fout_spll
))
1257 return PTR_ERR(dmc
->fout_spll
);
1259 dmc
->fout_bpll
= devm_clk_get(dev
, "fout_bpll");
1260 if (IS_ERR(dmc
->fout_bpll
))
1261 return PTR_ERR(dmc
->fout_bpll
);
1263 dmc
->mout_mclk_cdrex
= devm_clk_get(dev
, "mout_mclk_cdrex");
1264 if (IS_ERR(dmc
->mout_mclk_cdrex
))
1265 return PTR_ERR(dmc
->mout_mclk_cdrex
);
1267 dmc
->mout_bpll
= devm_clk_get(dev
, "mout_bpll");
1268 if (IS_ERR(dmc
->mout_bpll
))
1269 return PTR_ERR(dmc
->mout_bpll
);
1271 dmc
->mout_mx_mspll_ccore
= devm_clk_get(dev
, "mout_mx_mspll_ccore");
1272 if (IS_ERR(dmc
->mout_mx_mspll_ccore
))
1273 return PTR_ERR(dmc
->mout_mx_mspll_ccore
);
1275 dmc
->mout_spll
= devm_clk_get(dev
, "ff_dout_spll2");
1276 if (IS_ERR(dmc
->mout_spll
)) {
1277 dmc
->mout_spll
= devm_clk_get(dev
, "mout_sclk_spll");
1278 if (IS_ERR(dmc
->mout_spll
))
1279 return PTR_ERR(dmc
->mout_spll
);
1283 * Convert frequency to KHz values and set it for the governor.
1285 dmc
->curr_rate
= clk_get_rate(dmc
->mout_mclk_cdrex
);
1286 dmc
->curr_rate
= exynos5_dmc_align_init_freq(dmc
, dmc
->curr_rate
);
1287 exynos5_dmc_df_profile
.initial_freq
= dmc
->curr_rate
;
1289 ret
= exynos5_dmc_get_volt_freq(dmc
, &dmc
->curr_rate
, &target_rate
,
1294 dmc
->curr_volt
= target_volt
;
1296 ret
= clk_set_parent(dmc
->mout_mx_mspll_ccore
, dmc
->mout_spll
);
1300 clk_prepare_enable(dmc
->fout_bpll
);
1301 clk_prepare_enable(dmc
->mout_bpll
);
1304 * Some bootloaders do not set clock routes correctly.
1305 * Stop one path in clocks to PHY.
1307 regmap_read(dmc
->clk_regmap
, CDREX_LPDDR3PHY_CLKM_SRC
, &tmp
);
1308 tmp
&= ~(BIT(1) | BIT(0));
1309 regmap_write(dmc
->clk_regmap
, CDREX_LPDDR3PHY_CLKM_SRC
, tmp
);
1315 * exynos5_performance_counters_init() - Initializes performance DMC's counters
1316 * @dmc: DMC for which it does the setup
1318 * Initialization of performance counters in DMC for estimating usage.
1319 * The counter's values are used for calculation of a memory bandwidth and based
1320 * on that the governor changes the frequency.
1321 * The counters are not used when the governor is GOVERNOR_USERSPACE.
1323 static int exynos5_performance_counters_init(struct exynos5_dmc
*dmc
)
1325 struct device
*dev
= dmc
->dev
;
1328 dmc
->num_counters
= devfreq_event_get_edev_count(dev
, "devfreq-events");
1329 if (dmc
->num_counters
< 0) {
1330 dev_err(dev
, "could not get devfreq-event counters\n");
1331 return dmc
->num_counters
;
1334 dmc
->counter
= devm_kcalloc(dev
, dmc
->num_counters
,
1335 sizeof(*dmc
->counter
), GFP_KERNEL
);
1339 for (i
= 0; i
< dmc
->num_counters
; i
++) {
1341 devfreq_event_get_edev_by_phandle(dev
, "devfreq-events", i
);
1342 if (IS_ERR_OR_NULL(dmc
->counter
[i
]))
1343 return -EPROBE_DEFER
;
1346 ret
= exynos5_counters_enable_edev(dmc
);
1348 dev_err(dev
, "could not enable event counter\n");
1352 ret
= exynos5_counters_set_event(dmc
);
1354 exynos5_counters_disable_edev(dmc
);
1355 dev_err(dev
, "could not set event counter\n");
1363 * exynos5_dmc_set_pause_on_switching() - Controls a pause feature in DMC
1364 * @dmc: device which is used for changing this feature
1366 * There is a need of pausing DREX DMC when divider or MUX in clock tree
1367 * changes its configuration. In such situation access to the memory is blocked
1368 * in DMC automatically. This feature is used when clock frequency change
1369 * request appears and touches clock tree.
1371 static inline int exynos5_dmc_set_pause_on_switching(struct exynos5_dmc
*dmc
)
1376 ret
= regmap_read(dmc
->clk_regmap
, CDREX_PAUSE
, &val
);
1381 regmap_write(dmc
->clk_regmap
, CDREX_PAUSE
, val
);
1386 static irqreturn_t
dmc_irq_thread(int irq
, void *priv
)
1389 struct exynos5_dmc
*dmc
= priv
;
1391 mutex_lock(&dmc
->df
->lock
);
1392 exynos5_dmc_perf_events_check(dmc
);
1393 res
= update_devfreq(dmc
->df
);
1394 mutex_unlock(&dmc
->df
->lock
);
1397 dev_warn(dmc
->dev
, "devfreq failed with %d\n", res
);
1403 * exynos5_dmc_probe() - Probe function for the DMC driver
1404 * @pdev: platform device for which the driver is going to be initialized
1406 * Initialize basic components: clocks, regulators, performance counters, etc.
1407 * Read out product version and based on the information setup
1408 * internal structures for the controller (frequency and voltage) and for DRAM
1409 * memory parameters: timings for each operating frequency.
1410 * Register new devfreq device for controlling DVFS of the DMC.
1412 static int exynos5_dmc_probe(struct platform_device
*pdev
)
1415 struct device
*dev
= &pdev
->dev
;
1416 struct device_node
*np
= dev
->of_node
;
1417 struct exynos5_dmc
*dmc
;
1420 dmc
= devm_kzalloc(dev
, sizeof(*dmc
), GFP_KERNEL
);
1424 mutex_init(&dmc
->lock
);
1427 platform_set_drvdata(pdev
, dmc
);
1429 dmc
->base_drexi0
= devm_platform_ioremap_resource(pdev
, 0);
1430 if (IS_ERR(dmc
->base_drexi0
))
1431 return PTR_ERR(dmc
->base_drexi0
);
1433 dmc
->base_drexi1
= devm_platform_ioremap_resource(pdev
, 1);
1434 if (IS_ERR(dmc
->base_drexi1
))
1435 return PTR_ERR(dmc
->base_drexi1
);
1437 dmc
->clk_regmap
= syscon_regmap_lookup_by_phandle(np
,
1438 "samsung,syscon-clk");
1439 if (IS_ERR(dmc
->clk_regmap
))
1440 return PTR_ERR(dmc
->clk_regmap
);
1442 ret
= exynos5_init_freq_table(dmc
, &exynos5_dmc_df_profile
);
1444 dev_warn(dev
, "couldn't initialize frequency settings\n");
1448 dmc
->vdd_mif
= devm_regulator_get(dev
, "vdd");
1449 if (IS_ERR(dmc
->vdd_mif
)) {
1450 ret
= PTR_ERR(dmc
->vdd_mif
);
1454 ret
= exynos5_dmc_init_clks(dmc
);
1458 ret
= of_get_dram_timings(dmc
);
1460 dev_warn(dev
, "couldn't initialize timings settings\n");
1464 ret
= exynos5_dmc_set_pause_on_switching(dmc
);
1466 dev_warn(dev
, "couldn't get access to PAUSE register\n");
1470 /* There is two modes in which the driver works: polling or IRQ */
1471 irq
[0] = platform_get_irq_byname(pdev
, "drex_0");
1472 irq
[1] = platform_get_irq_byname(pdev
, "drex_1");
1473 if (irq
[0] > 0 && irq
[1] > 0 && irqmode
) {
1474 ret
= devm_request_threaded_irq(dev
, irq
[0], NULL
,
1475 dmc_irq_thread
, IRQF_ONESHOT
,
1476 dev_name(dev
), dmc
);
1478 dev_err(dev
, "couldn't grab IRQ\n");
1482 ret
= devm_request_threaded_irq(dev
, irq
[1], NULL
,
1483 dmc_irq_thread
, IRQF_ONESHOT
,
1484 dev_name(dev
), dmc
);
1486 dev_err(dev
, "couldn't grab IRQ\n");
1491 * Setup default thresholds for the devfreq governor.
1492 * The values are chosen based on experiments.
1494 dmc
->gov_data
.upthreshold
= 55;
1495 dmc
->gov_data
.downdifferential
= 5;
1497 exynos5_dmc_enable_perf_events(dmc
);
1499 dmc
->in_irq_mode
= 1;
1501 ret
= exynos5_performance_counters_init(dmc
);
1503 dev_warn(dev
, "couldn't probe performance counters\n");
1508 * Setup default thresholds for the devfreq governor.
1509 * The values are chosen based on experiments.
1511 dmc
->gov_data
.upthreshold
= 10;
1512 dmc
->gov_data
.downdifferential
= 5;
1514 exynos5_dmc_df_profile
.polling_ms
= 100;
1517 dmc
->df
= devm_devfreq_add_device(dev
, &exynos5_dmc_df_profile
,
1518 DEVFREQ_GOV_SIMPLE_ONDEMAND
,
1521 if (IS_ERR(dmc
->df
)) {
1522 ret
= PTR_ERR(dmc
->df
);
1523 goto err_devfreq_add
;
1526 if (dmc
->in_irq_mode
)
1527 exynos5_dmc_start_perf_events(dmc
, PERF_COUNTER_START_VALUE
);
1529 dev_info(dev
, "DMC initialized, in irq mode: %d\n", dmc
->in_irq_mode
);
1534 if (dmc
->in_irq_mode
)
1535 exynos5_dmc_disable_perf_events(dmc
);
1537 exynos5_counters_disable_edev(dmc
);
1539 clk_disable_unprepare(dmc
->mout_bpll
);
1540 clk_disable_unprepare(dmc
->fout_bpll
);
1546 * exynos5_dmc_remove() - Remove function for the platform device
1547 * @pdev: platform device which is going to be removed
1549 * The function relies on 'devm' framework function which automatically
1550 * clean the device's resources. It just calls explicitly disable function for
1551 * the performance counters.
1553 static void exynos5_dmc_remove(struct platform_device
*pdev
)
1555 struct exynos5_dmc
*dmc
= dev_get_drvdata(&pdev
->dev
);
1557 if (dmc
->in_irq_mode
)
1558 exynos5_dmc_disable_perf_events(dmc
);
1560 exynos5_counters_disable_edev(dmc
);
1562 clk_disable_unprepare(dmc
->mout_bpll
);
1563 clk_disable_unprepare(dmc
->fout_bpll
);
1566 static const struct of_device_id exynos5_dmc_of_match
[] = {
1567 { .compatible
= "samsung,exynos5422-dmc", },
1570 MODULE_DEVICE_TABLE(of
, exynos5_dmc_of_match
);
1572 static struct platform_driver exynos5_dmc_platdrv
= {
1573 .probe
= exynos5_dmc_probe
,
1574 .remove
= exynos5_dmc_remove
,
1576 .name
= "exynos5-dmc",
1577 .of_match_table
= exynos5_dmc_of_match
,
1580 module_platform_driver(exynos5_dmc_platdrv
);
1581 MODULE_DESCRIPTION("Driver for Exynos5422 Dynamic Memory Controller dynamic frequency and voltage change");
1582 MODULE_LICENSE("GPL v2");
1583 MODULE_AUTHOR("Lukasz Luba");