2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
46 struct page
*empty_zero_page
;
47 EXPORT_SYMBOL(empty_zero_page
);
50 * The pmd table for the upper-most set of pages.
54 #define CPOLICY_UNCACHED 0
55 #define CPOLICY_BUFFERED 1
56 #define CPOLICY_WRITETHROUGH 2
57 #define CPOLICY_WRITEBACK 3
58 #define CPOLICY_WRITEALLOC 4
60 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
61 static unsigned int ecc_mask __initdata
= 0;
63 pgprot_t pgprot_kernel
;
64 pgprot_t pgprot_hyp_device
;
66 pgprot_t pgprot_s2_device
;
68 EXPORT_SYMBOL(pgprot_user
);
69 EXPORT_SYMBOL(pgprot_kernel
);
72 const char policy
[16];
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy) policy
82 #define s2_policy(policy) 0
85 static struct cachepolicy cache_policies
[] __initdata
= {
89 .pmd
= PMD_SECT_UNCACHED
,
90 .pte
= L_PTE_MT_UNCACHED
,
91 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
95 .pmd
= PMD_SECT_BUFFERED
,
96 .pte
= L_PTE_MT_BUFFERABLE
,
97 .pte_s2
= s2_policy(L_PTE_S2_MT_UNCACHED
),
99 .policy
= "writethrough",
102 .pte
= L_PTE_MT_WRITETHROUGH
,
103 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITETHROUGH
),
105 .policy
= "writeback",
108 .pte
= L_PTE_MT_WRITEBACK
,
109 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
111 .policy
= "writealloc",
113 .pmd
= PMD_SECT_WBWA
,
114 .pte
= L_PTE_MT_WRITEALLOC
,
115 .pte_s2
= s2_policy(L_PTE_S2_MT_WRITEBACK
),
119 #ifdef CONFIG_CPU_CP15
121 * These are useful for identifying cache coherency
122 * problems by allowing the cache or the cache and
123 * writebuffer to be turned off. (Note: the write
124 * buffer should not be on and the cache off).
126 static int __init
early_cachepolicy(char *p
)
130 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
131 int len
= strlen(cache_policies
[i
].policy
);
133 if (memcmp(p
, cache_policies
[i
].policy
, len
) == 0) {
135 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
136 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
140 if (i
== ARRAY_SIZE(cache_policies
))
141 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
143 * This restriction is partly to do with the way we boot; it is
144 * unpredictable to have memory mapped using two different sets of
145 * memory attributes (shared, type, and cache attribs). We can not
146 * change these attributes once the initial assembly has setup the
149 if (cpu_architecture() >= CPU_ARCH_ARMv6
) {
150 printk(KERN_WARNING
"Only cachepolicy=writeback supported on ARMv6 and later\n");
151 cachepolicy
= CPOLICY_WRITEBACK
;
154 set_cr(cr_alignment
);
157 early_param("cachepolicy", early_cachepolicy
);
159 static int __init
early_nocache(char *__unused
)
161 char *p
= "buffered";
162 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
163 early_cachepolicy(p
);
166 early_param("nocache", early_nocache
);
168 static int __init
early_nowrite(char *__unused
)
170 char *p
= "uncached";
171 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
172 early_cachepolicy(p
);
175 early_param("nowb", early_nowrite
);
177 #ifndef CONFIG_ARM_LPAE
178 static int __init
early_ecc(char *p
)
180 if (memcmp(p
, "on", 2) == 0)
181 ecc_mask
= PMD_PROTECTION
;
182 else if (memcmp(p
, "off", 3) == 0)
186 early_param("ecc", early_ecc
);
189 static int __init
noalign_setup(char *__unused
)
191 cr_alignment
&= ~CR_A
;
192 cr_no_alignment
&= ~CR_A
;
193 set_cr(cr_alignment
);
196 __setup("noalign", noalign_setup
);
199 void adjust_cr(unsigned long mask
, unsigned long set
)
207 local_irq_save(flags
);
209 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
210 cr_alignment
= (cr_alignment
& ~mask
) | set
;
212 set_cr((get_cr() & ~mask
) | set
);
214 local_irq_restore(flags
);
218 #else /* ifdef CONFIG_CPU_CP15 */
220 static int __init
early_cachepolicy(char *p
)
222 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
224 early_param("cachepolicy", early_cachepolicy
);
226 static int __init
noalign_setup(char *__unused
)
228 pr_warning("noalign kernel parameter not supported without cp15\n");
230 __setup("noalign", noalign_setup
);
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
234 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
236 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
238 static struct mem_type mem_types
[] = {
239 [MT_DEVICE
] = { /* Strongly ordered / ARMv6 shared device */
240 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_SHARED
|
242 .prot_pte_s2
= s2_policy(PROT_PTE_S2_DEVICE
) |
243 s2_policy(L_PTE_S2_MT_DEV_SHARED
) |
245 .prot_l1
= PMD_TYPE_TABLE
,
246 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_S
,
249 [MT_DEVICE_NONSHARED
] = { /* ARMv6 non-shared device */
250 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_NONSHARED
,
251 .prot_l1
= PMD_TYPE_TABLE
,
252 .prot_sect
= PROT_SECT_DEVICE
,
255 [MT_DEVICE_CACHED
] = { /* ioremap_cached */
256 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_CACHED
,
257 .prot_l1
= PMD_TYPE_TABLE
,
258 .prot_sect
= PROT_SECT_DEVICE
| PMD_SECT_WB
,
261 [MT_DEVICE_WC
] = { /* ioremap_wc */
262 .prot_pte
= PROT_PTE_DEVICE
| L_PTE_MT_DEV_WC
,
263 .prot_l1
= PMD_TYPE_TABLE
,
264 .prot_sect
= PROT_SECT_DEVICE
,
268 .prot_pte
= PROT_PTE_DEVICE
,
269 .prot_l1
= PMD_TYPE_TABLE
,
270 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
274 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
275 .domain
= DOMAIN_KERNEL
,
277 #ifndef CONFIG_ARM_LPAE
279 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
| PMD_SECT_MINICACHE
,
280 .domain
= DOMAIN_KERNEL
,
284 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
286 .prot_l1
= PMD_TYPE_TABLE
,
287 .domain
= DOMAIN_USER
,
289 [MT_HIGH_VECTORS
] = {
290 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
291 L_PTE_USER
| L_PTE_RDONLY
,
292 .prot_l1
= PMD_TYPE_TABLE
,
293 .domain
= DOMAIN_USER
,
296 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
297 .prot_l1
= PMD_TYPE_TABLE
,
298 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
299 .domain
= DOMAIN_KERNEL
,
302 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
304 .prot_l1
= PMD_TYPE_TABLE
,
305 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
306 .domain
= DOMAIN_KERNEL
,
309 .prot_sect
= PMD_TYPE_SECT
,
310 .domain
= DOMAIN_KERNEL
,
312 [MT_MEMORY_RWX_NONCACHED
] = {
313 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
315 .prot_l1
= PMD_TYPE_TABLE
,
316 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
,
317 .domain
= DOMAIN_KERNEL
,
319 [MT_MEMORY_RW_DTCM
] = {
320 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
322 .prot_l1
= PMD_TYPE_TABLE
,
323 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_XN
,
324 .domain
= DOMAIN_KERNEL
,
326 [MT_MEMORY_RWX_ITCM
] = {
327 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
,
328 .prot_l1
= PMD_TYPE_TABLE
,
329 .domain
= DOMAIN_KERNEL
,
331 [MT_MEMORY_RW_SO
] = {
332 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
333 L_PTE_MT_UNCACHED
| L_PTE_XN
,
334 .prot_l1
= PMD_TYPE_TABLE
,
335 .prot_sect
= PMD_TYPE_SECT
| PMD_SECT_AP_WRITE
| PMD_SECT_S
|
336 PMD_SECT_UNCACHED
| PMD_SECT_XN
,
337 .domain
= DOMAIN_KERNEL
,
339 [MT_MEMORY_DMA_READY
] = {
340 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
342 .prot_l1
= PMD_TYPE_TABLE
,
343 .domain
= DOMAIN_KERNEL
,
347 const struct mem_type
*get_mem_type(unsigned int type
)
349 return type
< ARRAY_SIZE(mem_types
) ? &mem_types
[type
] : NULL
;
351 EXPORT_SYMBOL(get_mem_type
);
353 #define PTE_SET_FN(_name, pteop) \
354 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
357 pte_t pte = pteop(*ptep); \
359 set_pte_ext(ptep, pte, 0); \
363 #define SET_MEMORY_FN(_name, callback) \
364 int set_memory_##_name(unsigned long addr, int numpages) \
366 unsigned long start = addr; \
367 unsigned long size = PAGE_SIZE*numpages; \
368 unsigned end = start + size; \
370 if (start < MODULES_VADDR || start >= MODULES_END) \
373 if (end < MODULES_VADDR || end >= MODULES_END) \
376 apply_to_page_range(&init_mm, start, size, callback, NULL); \
377 flush_tlb_kernel_range(start, end); \
381 PTE_SET_FN(ro
, pte_wrprotect
)
382 PTE_SET_FN(rw
, pte_mkwrite
)
383 PTE_SET_FN(x
, pte_mkexec
)
384 PTE_SET_FN(nx
, pte_mknexec
)
386 SET_MEMORY_FN(ro
, pte_set_ro
)
387 SET_MEMORY_FN(rw
, pte_set_rw
)
388 SET_MEMORY_FN(x
, pte_set_x
)
389 SET_MEMORY_FN(nx
, pte_set_nx
)
392 * Adjust the PMD section entries according to the CPU in use.
394 static void __init
build_mem_type_table(void)
396 struct cachepolicy
*cp
;
397 unsigned int cr
= get_cr();
398 pteval_t user_pgprot
, kern_pgprot
, vecs_pgprot
;
399 pteval_t hyp_device_pgprot
, s2_pgprot
, s2_device_pgprot
;
400 int cpu_arch
= cpu_architecture();
403 if (cpu_arch
< CPU_ARCH_ARMv6
) {
404 #if defined(CONFIG_CPU_DCACHE_DISABLE)
405 if (cachepolicy
> CPOLICY_BUFFERED
)
406 cachepolicy
= CPOLICY_BUFFERED
;
407 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
408 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
409 cachepolicy
= CPOLICY_WRITETHROUGH
;
412 if (cpu_arch
< CPU_ARCH_ARMv5
) {
413 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
414 cachepolicy
= CPOLICY_WRITEBACK
;
418 cachepolicy
= CPOLICY_WRITEALLOC
;
421 * Strip out features not present on earlier architectures.
422 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
423 * without extended page tables don't have the 'Shared' bit.
425 if (cpu_arch
< CPU_ARCH_ARMv5
)
426 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
427 mem_types
[i
].prot_sect
&= ~PMD_SECT_TEX(7);
428 if ((cpu_arch
< CPU_ARCH_ARMv6
|| !(cr
& CR_XP
)) && !cpu_is_xsc3())
429 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
430 mem_types
[i
].prot_sect
&= ~PMD_SECT_S
;
433 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
434 * "update-able on write" bit on ARM610). However, Xscale and
435 * Xscale3 require this bit to be cleared.
437 if (cpu_is_xscale() || cpu_is_xsc3()) {
438 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
439 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
440 mem_types
[i
].prot_l1
&= ~PMD_BIT4
;
442 } else if (cpu_arch
< CPU_ARCH_ARMv6
) {
443 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
444 if (mem_types
[i
].prot_l1
)
445 mem_types
[i
].prot_l1
|= PMD_BIT4
;
446 if (mem_types
[i
].prot_sect
)
447 mem_types
[i
].prot_sect
|= PMD_BIT4
;
452 * Mark the device areas according to the CPU/architecture.
454 if (cpu_is_xsc3() || (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
))) {
455 if (!cpu_is_xsc3()) {
457 * Mark device regions on ARMv6+ as execute-never
458 * to prevent speculative instruction fetches.
460 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_XN
;
461 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_XN
;
462 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_XN
;
463 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_XN
;
465 /* Also setup NX memory mapping */
466 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_XN
;
468 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
470 * For ARMv7 with TEX remapping,
471 * - shared device is SXCB=1100
472 * - nonshared device is SXCB=0100
473 * - write combine device mem is SXCB=0001
474 * (Uncached Normal memory)
476 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1);
477 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(1);
478 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
479 } else if (cpu_is_xsc3()) {
482 * - shared device is TEXCB=00101
483 * - nonshared device is TEXCB=01000
484 * - write combine device mem is TEXCB=00100
485 * (Inner/Outer Uncacheable in xsc3 parlance)
487 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED
;
488 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
489 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
492 * For ARMv6 and ARMv7 without TEX remapping,
493 * - shared device is TEXCB=00001
494 * - nonshared device is TEXCB=01000
495 * - write combine device mem is TEXCB=00100
496 * (Uncached Normal in ARMv6 parlance).
498 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
499 mem_types
[MT_DEVICE_NONSHARED
].prot_sect
|= PMD_SECT_TEX(2);
500 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_TEX(1);
504 * On others, write combining is "Uncached/Buffered"
506 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_BUFFERABLE
;
510 * Now deal with the memory-type mappings
512 cp
= &cache_policies
[cachepolicy
];
513 vecs_pgprot
= kern_pgprot
= user_pgprot
= cp
->pte
;
514 s2_pgprot
= cp
->pte_s2
;
515 hyp_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte
;
516 s2_device_pgprot
= mem_types
[MT_DEVICE
].prot_pte_s2
;
519 * We don't use domains on ARMv6 (since this causes problems with
520 * v6/v7 kernels), so we must use a separate memory type for user
521 * r/o, kernel r/w to map the vectors page.
523 #ifndef CONFIG_ARM_LPAE
524 if (cpu_arch
== CPU_ARCH_ARMv6
)
525 vecs_pgprot
|= L_PTE_MT_VECTORS
;
529 * ARMv6 and above have extended page tables.
531 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
532 #ifndef CONFIG_ARM_LPAE
534 * Mark cache clean areas and XIP ROM read only
535 * from SVC mode and no access from userspace.
537 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
538 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
539 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
544 * Mark memory with the "shared" attribute
547 user_pgprot
|= L_PTE_SHARED
;
548 kern_pgprot
|= L_PTE_SHARED
;
549 vecs_pgprot
|= L_PTE_SHARED
;
550 s2_pgprot
|= L_PTE_SHARED
;
551 mem_types
[MT_DEVICE_WC
].prot_sect
|= PMD_SECT_S
;
552 mem_types
[MT_DEVICE_WC
].prot_pte
|= L_PTE_SHARED
;
553 mem_types
[MT_DEVICE_CACHED
].prot_sect
|= PMD_SECT_S
;
554 mem_types
[MT_DEVICE_CACHED
].prot_pte
|= L_PTE_SHARED
;
555 mem_types
[MT_MEMORY_RWX
].prot_sect
|= PMD_SECT_S
;
556 mem_types
[MT_MEMORY_RWX
].prot_pte
|= L_PTE_SHARED
;
557 mem_types
[MT_MEMORY_RW
].prot_sect
|= PMD_SECT_S
;
558 mem_types
[MT_MEMORY_RW
].prot_pte
|= L_PTE_SHARED
;
559 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= L_PTE_SHARED
;
560 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_S
;
561 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_pte
|= L_PTE_SHARED
;
566 * Non-cacheable Normal - intended for memory areas that must
567 * not cause dirty cache line writebacks when used
569 if (cpu_arch
>= CPU_ARCH_ARMv6
) {
570 if (cpu_arch
>= CPU_ARCH_ARMv7
&& (cr
& CR_TRE
)) {
571 /* Non-cacheable Normal is XCB = 001 */
572 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
575 /* For both ARMv6 and non-TEX-remapping ARMv7 */
576 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|=
580 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= PMD_SECT_BUFFERABLE
;
583 #ifdef CONFIG_ARM_LPAE
585 * Do not generate access flag faults for the kernel mappings.
587 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
588 mem_types
[i
].prot_pte
|= PTE_EXT_AF
;
589 if (mem_types
[i
].prot_sect
)
590 mem_types
[i
].prot_sect
|= PMD_SECT_AF
;
592 kern_pgprot
|= PTE_EXT_AF
;
593 vecs_pgprot
|= PTE_EXT_AF
;
596 for (i
= 0; i
< 16; i
++) {
597 pteval_t v
= pgprot_val(protection_map
[i
]);
598 protection_map
[i
] = __pgprot(v
| user_pgprot
);
601 mem_types
[MT_LOW_VECTORS
].prot_pte
|= vecs_pgprot
;
602 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= vecs_pgprot
;
604 pgprot_user
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| user_pgprot
);
605 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
606 L_PTE_DIRTY
| kern_pgprot
);
607 pgprot_s2
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
| s2_pgprot
);
608 pgprot_s2_device
= __pgprot(s2_device_pgprot
);
609 pgprot_hyp_device
= __pgprot(hyp_device_pgprot
);
611 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
612 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
613 mem_types
[MT_MEMORY_RWX
].prot_sect
|= ecc_mask
| cp
->pmd
;
614 mem_types
[MT_MEMORY_RWX
].prot_pte
|= kern_pgprot
;
615 mem_types
[MT_MEMORY_RW
].prot_sect
|= ecc_mask
| cp
->pmd
;
616 mem_types
[MT_MEMORY_RW
].prot_pte
|= kern_pgprot
;
617 mem_types
[MT_MEMORY_DMA_READY
].prot_pte
|= kern_pgprot
;
618 mem_types
[MT_MEMORY_RWX_NONCACHED
].prot_sect
|= ecc_mask
;
619 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
623 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
627 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
630 pr_info("Memory policy: %sData cache %s\n",
631 ecc_mask
? "ECC enabled, " : "", cp
->policy
);
633 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++) {
634 struct mem_type
*t
= &mem_types
[i
];
636 t
->prot_l1
|= PMD_DOMAIN(t
->domain
);
638 t
->prot_sect
|= PMD_DOMAIN(t
->domain
);
642 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
643 pgprot_t
phys_mem_access_prot(struct file
*file
, unsigned long pfn
,
644 unsigned long size
, pgprot_t vma_prot
)
647 return pgprot_noncached(vma_prot
);
648 else if (file
->f_flags
& O_SYNC
)
649 return pgprot_writecombine(vma_prot
);
652 EXPORT_SYMBOL(phys_mem_access_prot
);
655 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
657 static void __init
*early_alloc_aligned(unsigned long sz
, unsigned long align
)
659 void *ptr
= __va(memblock_alloc(sz
, align
));
664 static void __init
*early_alloc(unsigned long sz
)
666 return early_alloc_aligned(sz
, sz
);
669 static pte_t
* __init
early_pte_alloc(pmd_t
*pmd
, unsigned long addr
, unsigned long prot
)
671 if (pmd_none(*pmd
)) {
672 pte_t
*pte
= early_alloc(PTE_HWTABLE_OFF
+ PTE_HWTABLE_SIZE
);
673 __pmd_populate(pmd
, __pa(pte
), prot
);
675 BUG_ON(pmd_bad(*pmd
));
676 return pte_offset_kernel(pmd
, addr
);
679 static void __init
alloc_init_pte(pmd_t
*pmd
, unsigned long addr
,
680 unsigned long end
, unsigned long pfn
,
681 const struct mem_type
*type
)
683 pte_t
*pte
= early_pte_alloc(pmd
, addr
, type
->prot_l1
);
685 set_pte_ext(pte
, pfn_pte(pfn
, __pgprot(type
->prot_pte
)), 0);
687 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
690 static void __init
__map_init_section(pmd_t
*pmd
, unsigned long addr
,
691 unsigned long end
, phys_addr_t phys
,
692 const struct mem_type
*type
)
696 #ifndef CONFIG_ARM_LPAE
698 * In classic MMU format, puds and pmds are folded in to
699 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
700 * group of L1 entries making up one logical pointer to
701 * an L2 table (2MB), where as PMDs refer to the individual
702 * L1 entries (1MB). Hence increment to get the correct
703 * offset for odd 1MB sections.
704 * (See arch/arm/include/asm/pgtable-2level.h)
706 if (addr
& SECTION_SIZE
)
710 *pmd
= __pmd(phys
| type
->prot_sect
);
711 phys
+= SECTION_SIZE
;
712 } while (pmd
++, addr
+= SECTION_SIZE
, addr
!= end
);
717 static void __init
alloc_init_pmd(pud_t
*pud
, unsigned long addr
,
718 unsigned long end
, phys_addr_t phys
,
719 const struct mem_type
*type
)
721 pmd_t
*pmd
= pmd_offset(pud
, addr
);
726 * With LPAE, we must loop over to map
727 * all the pmds for the given range.
729 next
= pmd_addr_end(addr
, end
);
732 * Try a section mapping - addr, next and phys must all be
733 * aligned to a section boundary.
735 if (type
->prot_sect
&&
736 ((addr
| next
| phys
) & ~SECTION_MASK
) == 0) {
737 __map_init_section(pmd
, addr
, next
, phys
, type
);
739 alloc_init_pte(pmd
, addr
, next
,
740 __phys_to_pfn(phys
), type
);
745 } while (pmd
++, addr
= next
, addr
!= end
);
748 static void __init
alloc_init_pud(pgd_t
*pgd
, unsigned long addr
,
749 unsigned long end
, phys_addr_t phys
,
750 const struct mem_type
*type
)
752 pud_t
*pud
= pud_offset(pgd
, addr
);
756 next
= pud_addr_end(addr
, end
);
757 alloc_init_pmd(pud
, addr
, next
, phys
, type
);
759 } while (pud
++, addr
= next
, addr
!= end
);
762 #ifndef CONFIG_ARM_LPAE
763 static void __init
create_36bit_mapping(struct map_desc
*md
,
764 const struct mem_type
*type
)
766 unsigned long addr
, length
, end
;
771 phys
= __pfn_to_phys(md
->pfn
);
772 length
= PAGE_ALIGN(md
->length
);
774 if (!(cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())) {
775 printk(KERN_ERR
"MM: CPU does not support supersection "
776 "mapping for 0x%08llx at 0x%08lx\n",
777 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
781 /* N.B. ARMv6 supersections are only defined to work with domain 0.
782 * Since domain assignments can in fact be arbitrary, the
783 * 'domain == 0' check below is required to insure that ARMv6
784 * supersections are only allocated for domain 0 regardless
785 * of the actual domain assignments in use.
788 printk(KERN_ERR
"MM: invalid domain in supersection "
789 "mapping for 0x%08llx at 0x%08lx\n",
790 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
794 if ((addr
| length
| __pfn_to_phys(md
->pfn
)) & ~SUPERSECTION_MASK
) {
795 printk(KERN_ERR
"MM: cannot create mapping for 0x%08llx"
796 " at 0x%08lx invalid alignment\n",
797 (long long)__pfn_to_phys((u64
)md
->pfn
), addr
);
802 * Shift bits [35:32] of address into bits [23:20] of PMD
805 phys
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
807 pgd
= pgd_offset_k(addr
);
810 pud_t
*pud
= pud_offset(pgd
, addr
);
811 pmd_t
*pmd
= pmd_offset(pud
, addr
);
814 for (i
= 0; i
< 16; i
++)
815 *pmd
++ = __pmd(phys
| type
->prot_sect
| PMD_SECT_SUPER
);
817 addr
+= SUPERSECTION_SIZE
;
818 phys
+= SUPERSECTION_SIZE
;
819 pgd
+= SUPERSECTION_SIZE
>> PGDIR_SHIFT
;
820 } while (addr
!= end
);
822 #endif /* !CONFIG_ARM_LPAE */
825 * Create the page directory entries and any necessary
826 * page tables for the mapping specified by `md'. We
827 * are able to cope here with varying sizes and address
828 * offsets, and we take full advantage of sections and
831 static void __init
create_mapping(struct map_desc
*md
)
833 unsigned long addr
, length
, end
;
835 const struct mem_type
*type
;
838 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
839 printk(KERN_WARNING
"BUG: not creating mapping for 0x%08llx"
840 " at 0x%08lx in user region\n",
841 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
845 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
846 md
->virtual >= PAGE_OFFSET
&&
847 (md
->virtual < VMALLOC_START
|| md
->virtual >= VMALLOC_END
)) {
848 printk(KERN_WARNING
"BUG: mapping for 0x%08llx"
849 " at 0x%08lx out of vmalloc space\n",
850 (long long)__pfn_to_phys((u64
)md
->pfn
), md
->virtual);
853 type
= &mem_types
[md
->type
];
855 #ifndef CONFIG_ARM_LPAE
857 * Catch 36-bit addresses
859 if (md
->pfn
>= 0x100000) {
860 create_36bit_mapping(md
, type
);
865 addr
= md
->virtual & PAGE_MASK
;
866 phys
= __pfn_to_phys(md
->pfn
);
867 length
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
869 if (type
->prot_l1
== 0 && ((addr
| phys
| length
) & ~SECTION_MASK
)) {
870 printk(KERN_WARNING
"BUG: map for 0x%08llx at 0x%08lx can not "
871 "be mapped using pages, ignoring.\n",
872 (long long)__pfn_to_phys(md
->pfn
), addr
);
876 pgd
= pgd_offset_k(addr
);
879 unsigned long next
= pgd_addr_end(addr
, end
);
881 alloc_init_pud(pgd
, addr
, next
, phys
, type
);
885 } while (pgd
++, addr
!= end
);
889 * Create the architecture specific mappings
891 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
894 struct vm_struct
*vm
;
895 struct static_vm
*svm
;
900 svm
= early_alloc_aligned(sizeof(*svm
) * nr
, __alignof__(*svm
));
902 for (md
= io_desc
; nr
; md
++, nr
--) {
906 vm
->addr
= (void *)(md
->virtual & PAGE_MASK
);
907 vm
->size
= PAGE_ALIGN(md
->length
+ (md
->virtual & ~PAGE_MASK
));
908 vm
->phys_addr
= __pfn_to_phys(md
->pfn
);
909 vm
->flags
= VM_IOREMAP
| VM_ARM_STATIC_MAPPING
;
910 vm
->flags
|= VM_ARM_MTYPE(md
->type
);
911 vm
->caller
= iotable_init
;
912 add_static_vm_early(svm
++);
916 void __init
vm_reserve_area_early(unsigned long addr
, unsigned long size
,
919 struct vm_struct
*vm
;
920 struct static_vm
*svm
;
922 svm
= early_alloc_aligned(sizeof(*svm
), __alignof__(*svm
));
925 vm
->addr
= (void *)addr
;
927 vm
->flags
= VM_IOREMAP
| VM_ARM_EMPTY_MAPPING
;
929 add_static_vm_early(svm
);
932 #ifndef CONFIG_ARM_LPAE
935 * The Linux PMD is made of two consecutive section entries covering 2MB
936 * (see definition in include/asm/pgtable-2level.h). However a call to
937 * create_mapping() may optimize static mappings by using individual
938 * 1MB section mappings. This leaves the actual PMD potentially half
939 * initialized if the top or bottom section entry isn't used, leaving it
940 * open to problems if a subsequent ioremap() or vmalloc() tries to use
941 * the virtual space left free by that unused section entry.
943 * Let's avoid the issue by inserting dummy vm entries covering the unused
944 * PMD halves once the static mappings are in place.
947 static void __init
pmd_empty_section_gap(unsigned long addr
)
949 vm_reserve_area_early(addr
, SECTION_SIZE
, pmd_empty_section_gap
);
952 static void __init
fill_pmd_gaps(void)
954 struct static_vm
*svm
;
955 struct vm_struct
*vm
;
956 unsigned long addr
, next
= 0;
959 list_for_each_entry(svm
, &static_vmlist
, list
) {
961 addr
= (unsigned long)vm
->addr
;
966 * Check if this vm starts on an odd section boundary.
967 * If so and the first section entry for this PMD is free
968 * then we block the corresponding virtual address.
970 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
971 pmd
= pmd_off_k(addr
);
973 pmd_empty_section_gap(addr
& PMD_MASK
);
977 * Then check if this vm ends on an odd section boundary.
978 * If so and the second section entry for this PMD is empty
979 * then we block the corresponding virtual address.
982 if ((addr
& ~PMD_MASK
) == SECTION_SIZE
) {
983 pmd
= pmd_off_k(addr
) + 1;
985 pmd_empty_section_gap(addr
);
988 /* no need to look at any vm entry until we hit the next PMD */
989 next
= (addr
+ PMD_SIZE
- 1) & PMD_MASK
;
994 #define fill_pmd_gaps() do { } while (0)
997 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
998 static void __init
pci_reserve_io(void)
1000 struct static_vm
*svm
;
1002 svm
= find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE
);
1006 vm_reserve_area_early(PCI_IO_VIRT_BASE
, SZ_2M
, pci_reserve_io
);
1009 #define pci_reserve_io() do { } while (0)
1012 #ifdef CONFIG_DEBUG_LL
1013 void __init
debug_ll_io_init(void)
1015 struct map_desc map
;
1017 debug_ll_addr(&map
.pfn
, &map
.virtual);
1018 if (!map
.pfn
|| !map
.virtual)
1020 map
.pfn
= __phys_to_pfn(map
.pfn
);
1021 map
.virtual &= PAGE_MASK
;
1022 map
.length
= PAGE_SIZE
;
1023 map
.type
= MT_DEVICE
;
1024 iotable_init(&map
, 1);
1028 static void * __initdata vmalloc_min
=
1029 (void *)(VMALLOC_END
- (240 << 20) - VMALLOC_OFFSET
);
1032 * vmalloc=size forces the vmalloc area to be exactly 'size'
1033 * bytes. This can be used to increase (or decrease) the vmalloc
1034 * area - the default is 240m.
1036 static int __init
early_vmalloc(char *arg
)
1038 unsigned long vmalloc_reserve
= memparse(arg
, NULL
);
1040 if (vmalloc_reserve
< SZ_16M
) {
1041 vmalloc_reserve
= SZ_16M
;
1043 "vmalloc area too small, limiting to %luMB\n",
1044 vmalloc_reserve
>> 20);
1047 if (vmalloc_reserve
> VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
)) {
1048 vmalloc_reserve
= VMALLOC_END
- (PAGE_OFFSET
+ SZ_32M
);
1050 "vmalloc area is too big, limiting to %luMB\n",
1051 vmalloc_reserve
>> 20);
1054 vmalloc_min
= (void *)(VMALLOC_END
- vmalloc_reserve
);
1057 early_param("vmalloc", early_vmalloc
);
1059 phys_addr_t arm_lowmem_limit __initdata
= 0;
1061 void __init
sanity_check_meminfo(void)
1063 phys_addr_t memblock_limit
= 0;
1064 int i
, j
, highmem
= 0;
1065 phys_addr_t vmalloc_limit
= __pa(vmalloc_min
- 1) + 1;
1067 for (i
= 0, j
= 0; i
< meminfo
.nr_banks
; i
++) {
1068 struct membank
*bank
= &meminfo
.bank
[j
];
1069 phys_addr_t size_limit
;
1071 *bank
= meminfo
.bank
[i
];
1072 size_limit
= bank
->size
;
1074 if (bank
->start
>= vmalloc_limit
)
1077 size_limit
= vmalloc_limit
- bank
->start
;
1079 bank
->highmem
= highmem
;
1081 #ifdef CONFIG_HIGHMEM
1083 * Split those memory banks which are partially overlapping
1084 * the vmalloc area greatly simplifying things later.
1086 if (!highmem
&& bank
->size
> size_limit
) {
1087 if (meminfo
.nr_banks
>= NR_BANKS
) {
1088 printk(KERN_CRIT
"NR_BANKS too low, "
1089 "ignoring high memory\n");
1091 memmove(bank
+ 1, bank
,
1092 (meminfo
.nr_banks
- i
) * sizeof(*bank
));
1095 bank
[1].size
-= size_limit
;
1096 bank
[1].start
= vmalloc_limit
;
1097 bank
[1].highmem
= highmem
= 1;
1100 bank
->size
= size_limit
;
1104 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1107 printk(KERN_NOTICE
"Ignoring RAM at %.8llx-%.8llx "
1108 "(!CONFIG_HIGHMEM).\n",
1109 (unsigned long long)bank
->start
,
1110 (unsigned long long)bank
->start
+ bank
->size
- 1);
1115 * Check whether this memory bank would partially overlap
1118 if (bank
->size
> size_limit
) {
1119 printk(KERN_NOTICE
"Truncating RAM at %.8llx-%.8llx "
1120 "to -%.8llx (vmalloc region overlap).\n",
1121 (unsigned long long)bank
->start
,
1122 (unsigned long long)bank
->start
+ bank
->size
- 1,
1123 (unsigned long long)bank
->start
+ size_limit
- 1);
1124 bank
->size
= size_limit
;
1127 if (!bank
->highmem
) {
1128 phys_addr_t bank_end
= bank
->start
+ bank
->size
;
1130 if (bank_end
> arm_lowmem_limit
)
1131 arm_lowmem_limit
= bank_end
;
1134 * Find the first non-section-aligned page, and point
1135 * memblock_limit at it. This relies on rounding the
1136 * limit down to be section-aligned, which happens at
1137 * the end of this function.
1139 * With this algorithm, the start or end of almost any
1140 * bank can be non-section-aligned. The only exception
1141 * is that the start of the bank 0 must be section-
1142 * aligned, since otherwise memory would need to be
1143 * allocated when mapping the start of bank 0, which
1144 * occurs before any free memory is mapped.
1146 if (!memblock_limit
) {
1147 if (!IS_ALIGNED(bank
->start
, SECTION_SIZE
))
1148 memblock_limit
= bank
->start
;
1149 else if (!IS_ALIGNED(bank_end
, SECTION_SIZE
))
1150 memblock_limit
= bank_end
;
1155 #ifdef CONFIG_HIGHMEM
1157 const char *reason
= NULL
;
1159 if (cache_is_vipt_aliasing()) {
1161 * Interactions between kmap and other mappings
1162 * make highmem support with aliasing VIPT caches
1165 reason
= "with VIPT aliasing cache";
1168 printk(KERN_CRIT
"HIGHMEM is not supported %s, ignoring high memory\n",
1170 while (j
> 0 && meminfo
.bank
[j
- 1].highmem
)
1175 meminfo
.nr_banks
= j
;
1176 high_memory
= __va(arm_lowmem_limit
- 1) + 1;
1179 * Round the memblock limit down to a section size. This
1180 * helps to ensure that we will allocate memory from the
1181 * last full section, which should be mapped.
1184 memblock_limit
= round_down(memblock_limit
, SECTION_SIZE
);
1185 if (!memblock_limit
)
1186 memblock_limit
= arm_lowmem_limit
;
1188 memblock_set_current_limit(memblock_limit
);
1191 static inline void prepare_page_table(void)
1197 * Clear out all the mappings below the kernel image.
1199 for (addr
= 0; addr
< MODULES_VADDR
; addr
+= PMD_SIZE
)
1200 pmd_clear(pmd_off_k(addr
));
1202 #ifdef CONFIG_XIP_KERNEL
1203 /* The XIP kernel is mapped in the module area -- skip over it */
1204 addr
= ((unsigned long)_etext
+ PMD_SIZE
- 1) & PMD_MASK
;
1206 for ( ; addr
< PAGE_OFFSET
; addr
+= PMD_SIZE
)
1207 pmd_clear(pmd_off_k(addr
));
1210 * Find the end of the first block of lowmem.
1212 end
= memblock
.memory
.regions
[0].base
+ memblock
.memory
.regions
[0].size
;
1213 if (end
>= arm_lowmem_limit
)
1214 end
= arm_lowmem_limit
;
1217 * Clear out all the kernel space mappings, except for the first
1218 * memory bank, up to the vmalloc region.
1220 for (addr
= __phys_to_virt(end
);
1221 addr
< VMALLOC_START
; addr
+= PMD_SIZE
)
1222 pmd_clear(pmd_off_k(addr
));
1225 #ifdef CONFIG_ARM_LPAE
1226 /* the first page is reserved for pgd */
1227 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1228 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1230 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1234 * Reserve the special regions of memory
1236 void __init
arm_mm_memblock_reserve(void)
1239 * Reserve the page tables. These are already in use,
1240 * and can only be in node 0.
1242 memblock_reserve(__pa(swapper_pg_dir
), SWAPPER_PG_DIR_SIZE
);
1244 #ifdef CONFIG_SA1111
1246 * Because of the SA1111 DMA bug, we want to preserve our
1247 * precious DMA-able memory...
1249 memblock_reserve(PHYS_OFFSET
, __pa(swapper_pg_dir
) - PHYS_OFFSET
);
1254 * Set up the device mappings. Since we clear out the page tables for all
1255 * mappings above VMALLOC_START, we will remove any debug device mappings.
1256 * This means you have to be careful how you debug this function, or any
1257 * called function. This means you can't use any function or debugging
1258 * method which may touch any device, otherwise the kernel _will_ crash.
1260 static void __init
devicemaps_init(const struct machine_desc
*mdesc
)
1262 struct map_desc map
;
1267 * Allocate the vector page early.
1269 vectors
= early_alloc(PAGE_SIZE
* 2);
1271 early_trap_init(vectors
);
1273 for (addr
= VMALLOC_START
; addr
; addr
+= PMD_SIZE
)
1274 pmd_clear(pmd_off_k(addr
));
1277 * Map the kernel if it is XIP.
1278 * It is always first in the modulearea.
1280 #ifdef CONFIG_XIP_KERNEL
1281 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
1282 map
.virtual = MODULES_VADDR
;
1283 map
.length
= ((unsigned long)_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
1285 create_mapping(&map
);
1289 * Map the cache flushing regions.
1292 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
1293 map
.virtual = FLUSH_BASE
;
1295 map
.type
= MT_CACHECLEAN
;
1296 create_mapping(&map
);
1298 #ifdef FLUSH_BASE_MINICACHE
1299 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
1300 map
.virtual = FLUSH_BASE_MINICACHE
;
1302 map
.type
= MT_MINICLEAN
;
1303 create_mapping(&map
);
1307 * Create a mapping for the machine vectors at the high-vectors
1308 * location (0xffff0000). If we aren't using high-vectors, also
1309 * create a mapping at the low-vectors virtual address.
1311 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
1312 map
.virtual = 0xffff0000;
1313 map
.length
= PAGE_SIZE
;
1314 #ifdef CONFIG_KUSER_HELPERS
1315 map
.type
= MT_HIGH_VECTORS
;
1317 map
.type
= MT_LOW_VECTORS
;
1319 create_mapping(&map
);
1321 if (!vectors_high()) {
1323 map
.length
= PAGE_SIZE
* 2;
1324 map
.type
= MT_LOW_VECTORS
;
1325 create_mapping(&map
);
1328 /* Now create a kernel read-only mapping */
1330 map
.virtual = 0xffff0000 + PAGE_SIZE
;
1331 map
.length
= PAGE_SIZE
;
1332 map
.type
= MT_LOW_VECTORS
;
1333 create_mapping(&map
);
1336 * Ask the machine support to map in the statically mapped devices.
1344 /* Reserve fixed i/o space in VMALLOC region */
1348 * Finally flush the caches and tlb to ensure that we're in a
1349 * consistent state wrt the writebuffer. This also ensures that
1350 * any write-allocated cache lines in the vector page are written
1351 * back. After this point, we can start to touch devices again.
1353 local_flush_tlb_all();
1357 static void __init
kmap_init(void)
1359 #ifdef CONFIG_HIGHMEM
1360 pkmap_page_table
= early_pte_alloc(pmd_off_k(PKMAP_BASE
),
1361 PKMAP_BASE
, _PAGE_KERNEL_TABLE
);
1365 static void __init
map_lowmem(void)
1367 struct memblock_region
*reg
;
1368 unsigned long kernel_x_start
= round_down(__pa(_stext
), SECTION_SIZE
);
1369 unsigned long kernel_x_end
= round_up(__pa(__init_end
), SECTION_SIZE
);
1371 /* Map all the lowmem memory banks. */
1372 for_each_memblock(memory
, reg
) {
1373 phys_addr_t start
= reg
->base
;
1374 phys_addr_t end
= start
+ reg
->size
;
1375 struct map_desc map
;
1377 if (end
> arm_lowmem_limit
)
1378 end
= arm_lowmem_limit
;
1382 if (end
< kernel_x_start
|| start
>= kernel_x_end
) {
1383 map
.pfn
= __phys_to_pfn(start
);
1384 map
.virtual = __phys_to_virt(start
);
1385 map
.length
= end
- start
;
1386 map
.type
= MT_MEMORY_RWX
;
1388 create_mapping(&map
);
1390 /* This better cover the entire kernel */
1391 if (start
< kernel_x_start
) {
1392 map
.pfn
= __phys_to_pfn(start
);
1393 map
.virtual = __phys_to_virt(start
);
1394 map
.length
= kernel_x_start
- start
;
1395 map
.type
= MT_MEMORY_RW
;
1397 create_mapping(&map
);
1400 map
.pfn
= __phys_to_pfn(kernel_x_start
);
1401 map
.virtual = __phys_to_virt(kernel_x_start
);
1402 map
.length
= kernel_x_end
- kernel_x_start
;
1403 map
.type
= MT_MEMORY_RWX
;
1405 create_mapping(&map
);
1407 if (kernel_x_end
< end
) {
1408 map
.pfn
= __phys_to_pfn(kernel_x_end
);
1409 map
.virtual = __phys_to_virt(kernel_x_end
);
1410 map
.length
= end
- kernel_x_end
;
1411 map
.type
= MT_MEMORY_RW
;
1413 create_mapping(&map
);
1419 #ifdef CONFIG_ARM_LPAE
1421 * early_paging_init() recreates boot time page table setup, allowing machines
1422 * to switch over to a high (>4G) address space on LPAE systems
1424 void __init
early_paging_init(const struct machine_desc
*mdesc
,
1425 struct proc_info_list
*procinfo
)
1427 pmdval_t pmdprot
= procinfo
->__cpu_mm_mmu_flags
;
1428 unsigned long map_start
, map_end
;
1430 pud_t
*pud0
, *pudk
, *pud_start
;
1435 if (!(mdesc
->init_meminfo
))
1438 /* remap kernel code and data */
1439 map_start
= init_mm
.start_code
& PMD_MASK
;
1440 map_end
= ALIGN(init_mm
.brk
, PMD_SIZE
);
1442 /* get a handle on things... */
1443 pgd0
= pgd_offset_k(0);
1444 pud_start
= pud0
= pud_offset(pgd0
, 0);
1445 pmd0
= pmd_offset(pud0
, 0);
1447 pgdk
= pgd_offset_k(map_start
);
1448 pudk
= pud_offset(pgdk
, map_start
);
1449 pmdk
= pmd_offset(pudk
, map_start
);
1451 mdesc
->init_meminfo();
1453 /* Run the patch stub to update the constants */
1454 fixup_pv_table(&__pv_table_begin
,
1455 (&__pv_table_end
- &__pv_table_begin
) << 2);
1458 * Cache cleaning operations for self-modifying code
1459 * We should clean the entries by MVA but running a
1460 * for loop over every pv_table entry pointer would
1461 * just complicate the code.
1463 flush_cache_louis();
1467 /* remap level 1 table */
1468 for (i
= 0; i
< PTRS_PER_PGD
; pud0
++, i
++) {
1470 __pud(__pa(pmd0
) | PMD_TYPE_TABLE
| L_PGD_SWAPPER
));
1471 pmd0
+= PTRS_PER_PMD
;
1474 /* remap pmds for kernel mapping */
1475 phys
= __pa(map_start
);
1477 *pmdk
++ = __pmd(phys
| pmdprot
);
1479 } while (phys
< map_end
);
1482 cpu_switch_mm(pgd0
, &init_mm
);
1483 cpu_set_ttbr(1, __pa(pgd0
) + TTBR1_OFFSET
);
1484 local_flush_bp_all();
1485 local_flush_tlb_all();
1490 void __init
early_paging_init(const struct machine_desc
*mdesc
,
1491 struct proc_info_list
*procinfo
)
1493 if (mdesc
->init_meminfo
)
1494 mdesc
->init_meminfo();
1500 * paging_init() sets up the page tables, initialises the zone memory
1501 * maps, and sets up the zero page, bad page and bad page tables.
1503 void __init
paging_init(const struct machine_desc
*mdesc
)
1507 build_mem_type_table();
1508 prepare_page_table();
1510 dma_contiguous_remap();
1511 devicemaps_init(mdesc
);
1515 top_pmd
= pmd_off_k(0xffff0000);
1517 /* allocate the zero page. */
1518 zero_page
= early_alloc(PAGE_SIZE
);
1522 empty_zero_page
= virt_to_page(zero_page
);
1523 __flush_dcache_page(NULL
, empty_zero_page
);