Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / arch / arm / mm / mmu.c
blobf15c22e8bcd5a4228fbf29010568d54567f4cf1b
1 /*
2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/sections.h>
26 #include <asm/setup.h>
27 #include <asm/smp_plat.h>
28 #include <asm/tlb.h>
29 #include <asm/highmem.h>
30 #include <asm/system_info.h>
31 #include <asm/traps.h>
32 #include <asm/procinfo.h>
33 #include <asm/memory.h>
35 #include <asm/mach/arch.h>
36 #include <asm/mach/map.h>
37 #include <asm/mach/pci.h>
39 #include "mm.h"
40 #include "tcm.h"
43 * empty_zero_page is a special page that is used for
44 * zero-initialized data and COW.
46 struct page *empty_zero_page;
47 EXPORT_SYMBOL(empty_zero_page);
50 * The pmd table for the upper-most set of pages.
52 pmd_t *top_pmd;
54 #define CPOLICY_UNCACHED 0
55 #define CPOLICY_BUFFERED 1
56 #define CPOLICY_WRITETHROUGH 2
57 #define CPOLICY_WRITEBACK 3
58 #define CPOLICY_WRITEALLOC 4
60 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
61 static unsigned int ecc_mask __initdata = 0;
62 pgprot_t pgprot_user;
63 pgprot_t pgprot_kernel;
64 pgprot_t pgprot_hyp_device;
65 pgprot_t pgprot_s2;
66 pgprot_t pgprot_s2_device;
68 EXPORT_SYMBOL(pgprot_user);
69 EXPORT_SYMBOL(pgprot_kernel);
71 struct cachepolicy {
72 const char policy[16];
73 unsigned int cr_mask;
74 pmdval_t pmd;
75 pteval_t pte;
76 pteval_t pte_s2;
79 #ifdef CONFIG_ARM_LPAE
80 #define s2_policy(policy) policy
81 #else
82 #define s2_policy(policy) 0
83 #endif
85 static struct cachepolicy cache_policies[] __initdata = {
87 .policy = "uncached",
88 .cr_mask = CR_W|CR_C,
89 .pmd = PMD_SECT_UNCACHED,
90 .pte = L_PTE_MT_UNCACHED,
91 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
92 }, {
93 .policy = "buffered",
94 .cr_mask = CR_C,
95 .pmd = PMD_SECT_BUFFERED,
96 .pte = L_PTE_MT_BUFFERABLE,
97 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
98 }, {
99 .policy = "writethrough",
100 .cr_mask = 0,
101 .pmd = PMD_SECT_WT,
102 .pte = L_PTE_MT_WRITETHROUGH,
103 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
104 }, {
105 .policy = "writeback",
106 .cr_mask = 0,
107 .pmd = PMD_SECT_WB,
108 .pte = L_PTE_MT_WRITEBACK,
109 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
110 }, {
111 .policy = "writealloc",
112 .cr_mask = 0,
113 .pmd = PMD_SECT_WBWA,
114 .pte = L_PTE_MT_WRITEALLOC,
115 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
119 #ifdef CONFIG_CPU_CP15
121 * These are useful for identifying cache coherency
122 * problems by allowing the cache or the cache and
123 * writebuffer to be turned off. (Note: the write
124 * buffer should not be on and the cache off).
126 static int __init early_cachepolicy(char *p)
128 int i;
130 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
131 int len = strlen(cache_policies[i].policy);
133 if (memcmp(p, cache_policies[i].policy, len) == 0) {
134 cachepolicy = i;
135 cr_alignment &= ~cache_policies[i].cr_mask;
136 cr_no_alignment &= ~cache_policies[i].cr_mask;
137 break;
140 if (i == ARRAY_SIZE(cache_policies))
141 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
143 * This restriction is partly to do with the way we boot; it is
144 * unpredictable to have memory mapped using two different sets of
145 * memory attributes (shared, type, and cache attribs). We can not
146 * change these attributes once the initial assembly has setup the
147 * page tables.
149 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
150 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
151 cachepolicy = CPOLICY_WRITEBACK;
153 flush_cache_all();
154 set_cr(cr_alignment);
155 return 0;
157 early_param("cachepolicy", early_cachepolicy);
159 static int __init early_nocache(char *__unused)
161 char *p = "buffered";
162 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
163 early_cachepolicy(p);
164 return 0;
166 early_param("nocache", early_nocache);
168 static int __init early_nowrite(char *__unused)
170 char *p = "uncached";
171 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
172 early_cachepolicy(p);
173 return 0;
175 early_param("nowb", early_nowrite);
177 #ifndef CONFIG_ARM_LPAE
178 static int __init early_ecc(char *p)
180 if (memcmp(p, "on", 2) == 0)
181 ecc_mask = PMD_PROTECTION;
182 else if (memcmp(p, "off", 3) == 0)
183 ecc_mask = 0;
184 return 0;
186 early_param("ecc", early_ecc);
187 #endif
189 static int __init noalign_setup(char *__unused)
191 cr_alignment &= ~CR_A;
192 cr_no_alignment &= ~CR_A;
193 set_cr(cr_alignment);
194 return 1;
196 __setup("noalign", noalign_setup);
198 #ifndef CONFIG_SMP
199 void adjust_cr(unsigned long mask, unsigned long set)
201 unsigned long flags;
203 mask &= ~CR_A;
205 set &= mask;
207 local_irq_save(flags);
209 cr_no_alignment = (cr_no_alignment & ~mask) | set;
210 cr_alignment = (cr_alignment & ~mask) | set;
212 set_cr((get_cr() & ~mask) | set);
214 local_irq_restore(flags);
216 #endif
218 #else /* ifdef CONFIG_CPU_CP15 */
220 static int __init early_cachepolicy(char *p)
222 pr_warning("cachepolicy kernel parameter not supported without cp15\n");
224 early_param("cachepolicy", early_cachepolicy);
226 static int __init noalign_setup(char *__unused)
228 pr_warning("noalign kernel parameter not supported without cp15\n");
230 __setup("noalign", noalign_setup);
232 #endif /* ifdef CONFIG_CPU_CP15 / else */
234 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
235 #define PROT_PTE_S2_DEVICE PROT_PTE_DEVICE
236 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
238 static struct mem_type mem_types[] = {
239 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
240 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
241 L_PTE_SHARED,
242 .prot_pte_s2 = s2_policy(PROT_PTE_S2_DEVICE) |
243 s2_policy(L_PTE_S2_MT_DEV_SHARED) |
244 L_PTE_SHARED,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
247 .domain = DOMAIN_IO,
249 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
250 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
251 .prot_l1 = PMD_TYPE_TABLE,
252 .prot_sect = PROT_SECT_DEVICE,
253 .domain = DOMAIN_IO,
255 [MT_DEVICE_CACHED] = { /* ioremap_cached */
256 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
257 .prot_l1 = PMD_TYPE_TABLE,
258 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
259 .domain = DOMAIN_IO,
261 [MT_DEVICE_WC] = { /* ioremap_wc */
262 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
263 .prot_l1 = PMD_TYPE_TABLE,
264 .prot_sect = PROT_SECT_DEVICE,
265 .domain = DOMAIN_IO,
267 [MT_UNCACHED] = {
268 .prot_pte = PROT_PTE_DEVICE,
269 .prot_l1 = PMD_TYPE_TABLE,
270 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
271 .domain = DOMAIN_IO,
273 [MT_CACHECLEAN] = {
274 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
275 .domain = DOMAIN_KERNEL,
277 #ifndef CONFIG_ARM_LPAE
278 [MT_MINICLEAN] = {
279 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
280 .domain = DOMAIN_KERNEL,
282 #endif
283 [MT_LOW_VECTORS] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_RDONLY,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .domain = DOMAIN_USER,
289 [MT_HIGH_VECTORS] = {
290 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
291 L_PTE_USER | L_PTE_RDONLY,
292 .prot_l1 = PMD_TYPE_TABLE,
293 .domain = DOMAIN_USER,
295 [MT_MEMORY_RWX] = {
296 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
297 .prot_l1 = PMD_TYPE_TABLE,
298 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
299 .domain = DOMAIN_KERNEL,
301 [MT_MEMORY_RW] = {
302 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
303 L_PTE_XN,
304 .prot_l1 = PMD_TYPE_TABLE,
305 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
306 .domain = DOMAIN_KERNEL,
308 [MT_ROM] = {
309 .prot_sect = PMD_TYPE_SECT,
310 .domain = DOMAIN_KERNEL,
312 [MT_MEMORY_RWX_NONCACHED] = {
313 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
314 L_PTE_MT_BUFFERABLE,
315 .prot_l1 = PMD_TYPE_TABLE,
316 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
317 .domain = DOMAIN_KERNEL,
319 [MT_MEMORY_RW_DTCM] = {
320 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
321 L_PTE_XN,
322 .prot_l1 = PMD_TYPE_TABLE,
323 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
324 .domain = DOMAIN_KERNEL,
326 [MT_MEMORY_RWX_ITCM] = {
327 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
328 .prot_l1 = PMD_TYPE_TABLE,
329 .domain = DOMAIN_KERNEL,
331 [MT_MEMORY_RW_SO] = {
332 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
333 L_PTE_MT_UNCACHED | L_PTE_XN,
334 .prot_l1 = PMD_TYPE_TABLE,
335 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
336 PMD_SECT_UNCACHED | PMD_SECT_XN,
337 .domain = DOMAIN_KERNEL,
339 [MT_MEMORY_DMA_READY] = {
340 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
341 L_PTE_XN,
342 .prot_l1 = PMD_TYPE_TABLE,
343 .domain = DOMAIN_KERNEL,
347 const struct mem_type *get_mem_type(unsigned int type)
349 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
351 EXPORT_SYMBOL(get_mem_type);
353 #define PTE_SET_FN(_name, pteop) \
354 static int pte_set_##_name(pte_t *ptep, pgtable_t token, unsigned long addr, \
355 void *data) \
357 pte_t pte = pteop(*ptep); \
359 set_pte_ext(ptep, pte, 0); \
360 return 0; \
363 #define SET_MEMORY_FN(_name, callback) \
364 int set_memory_##_name(unsigned long addr, int numpages) \
366 unsigned long start = addr; \
367 unsigned long size = PAGE_SIZE*numpages; \
368 unsigned end = start + size; \
370 if (start < MODULES_VADDR || start >= MODULES_END) \
371 return -EINVAL;\
373 if (end < MODULES_VADDR || end >= MODULES_END) \
374 return -EINVAL; \
376 apply_to_page_range(&init_mm, start, size, callback, NULL); \
377 flush_tlb_kernel_range(start, end); \
378 return 0;\
381 PTE_SET_FN(ro, pte_wrprotect)
382 PTE_SET_FN(rw, pte_mkwrite)
383 PTE_SET_FN(x, pte_mkexec)
384 PTE_SET_FN(nx, pte_mknexec)
386 SET_MEMORY_FN(ro, pte_set_ro)
387 SET_MEMORY_FN(rw, pte_set_rw)
388 SET_MEMORY_FN(x, pte_set_x)
389 SET_MEMORY_FN(nx, pte_set_nx)
392 * Adjust the PMD section entries according to the CPU in use.
394 static void __init build_mem_type_table(void)
396 struct cachepolicy *cp;
397 unsigned int cr = get_cr();
398 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
399 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
400 int cpu_arch = cpu_architecture();
401 int i;
403 if (cpu_arch < CPU_ARCH_ARMv6) {
404 #if defined(CONFIG_CPU_DCACHE_DISABLE)
405 if (cachepolicy > CPOLICY_BUFFERED)
406 cachepolicy = CPOLICY_BUFFERED;
407 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
408 if (cachepolicy > CPOLICY_WRITETHROUGH)
409 cachepolicy = CPOLICY_WRITETHROUGH;
410 #endif
412 if (cpu_arch < CPU_ARCH_ARMv5) {
413 if (cachepolicy >= CPOLICY_WRITEALLOC)
414 cachepolicy = CPOLICY_WRITEBACK;
415 ecc_mask = 0;
417 if (is_smp())
418 cachepolicy = CPOLICY_WRITEALLOC;
421 * Strip out features not present on earlier architectures.
422 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
423 * without extended page tables don't have the 'Shared' bit.
425 if (cpu_arch < CPU_ARCH_ARMv5)
426 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
427 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
428 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
429 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
430 mem_types[i].prot_sect &= ~PMD_SECT_S;
433 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
434 * "update-able on write" bit on ARM610). However, Xscale and
435 * Xscale3 require this bit to be cleared.
437 if (cpu_is_xscale() || cpu_is_xsc3()) {
438 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
439 mem_types[i].prot_sect &= ~PMD_BIT4;
440 mem_types[i].prot_l1 &= ~PMD_BIT4;
442 } else if (cpu_arch < CPU_ARCH_ARMv6) {
443 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
444 if (mem_types[i].prot_l1)
445 mem_types[i].prot_l1 |= PMD_BIT4;
446 if (mem_types[i].prot_sect)
447 mem_types[i].prot_sect |= PMD_BIT4;
452 * Mark the device areas according to the CPU/architecture.
454 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
455 if (!cpu_is_xsc3()) {
457 * Mark device regions on ARMv6+ as execute-never
458 * to prevent speculative instruction fetches.
460 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
461 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
462 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
463 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
465 /* Also setup NX memory mapping */
466 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_XN;
468 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
470 * For ARMv7 with TEX remapping,
471 * - shared device is SXCB=1100
472 * - nonshared device is SXCB=0100
473 * - write combine device mem is SXCB=0001
474 * (Uncached Normal memory)
476 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
477 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
478 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
479 } else if (cpu_is_xsc3()) {
481 * For Xscale3,
482 * - shared device is TEXCB=00101
483 * - nonshared device is TEXCB=01000
484 * - write combine device mem is TEXCB=00100
485 * (Inner/Outer Uncacheable in xsc3 parlance)
487 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
488 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
489 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
490 } else {
492 * For ARMv6 and ARMv7 without TEX remapping,
493 * - shared device is TEXCB=00001
494 * - nonshared device is TEXCB=01000
495 * - write combine device mem is TEXCB=00100
496 * (Uncached Normal in ARMv6 parlance).
498 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
499 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
500 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
502 } else {
504 * On others, write combining is "Uncached/Buffered"
506 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
510 * Now deal with the memory-type mappings
512 cp = &cache_policies[cachepolicy];
513 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
514 s2_pgprot = cp->pte_s2;
515 hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
516 s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
519 * We don't use domains on ARMv6 (since this causes problems with
520 * v6/v7 kernels), so we must use a separate memory type for user
521 * r/o, kernel r/w to map the vectors page.
523 #ifndef CONFIG_ARM_LPAE
524 if (cpu_arch == CPU_ARCH_ARMv6)
525 vecs_pgprot |= L_PTE_MT_VECTORS;
526 #endif
529 * ARMv6 and above have extended page tables.
531 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
532 #ifndef CONFIG_ARM_LPAE
534 * Mark cache clean areas and XIP ROM read only
535 * from SVC mode and no access from userspace.
537 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
538 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
539 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
540 #endif
542 if (is_smp()) {
544 * Mark memory with the "shared" attribute
545 * for SMP systems
547 user_pgprot |= L_PTE_SHARED;
548 kern_pgprot |= L_PTE_SHARED;
549 vecs_pgprot |= L_PTE_SHARED;
550 s2_pgprot |= L_PTE_SHARED;
551 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
552 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
553 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
554 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
555 mem_types[MT_MEMORY_RWX].prot_sect |= PMD_SECT_S;
556 mem_types[MT_MEMORY_RWX].prot_pte |= L_PTE_SHARED;
557 mem_types[MT_MEMORY_RW].prot_sect |= PMD_SECT_S;
558 mem_types[MT_MEMORY_RW].prot_pte |= L_PTE_SHARED;
559 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
560 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_S;
561 mem_types[MT_MEMORY_RWX_NONCACHED].prot_pte |= L_PTE_SHARED;
566 * Non-cacheable Normal - intended for memory areas that must
567 * not cause dirty cache line writebacks when used
569 if (cpu_arch >= CPU_ARCH_ARMv6) {
570 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
571 /* Non-cacheable Normal is XCB = 001 */
572 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
573 PMD_SECT_BUFFERED;
574 } else {
575 /* For both ARMv6 and non-TEX-remapping ARMv7 */
576 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |=
577 PMD_SECT_TEX(1);
579 } else {
580 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
583 #ifdef CONFIG_ARM_LPAE
585 * Do not generate access flag faults for the kernel mappings.
587 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
588 mem_types[i].prot_pte |= PTE_EXT_AF;
589 if (mem_types[i].prot_sect)
590 mem_types[i].prot_sect |= PMD_SECT_AF;
592 kern_pgprot |= PTE_EXT_AF;
593 vecs_pgprot |= PTE_EXT_AF;
594 #endif
596 for (i = 0; i < 16; i++) {
597 pteval_t v = pgprot_val(protection_map[i]);
598 protection_map[i] = __pgprot(v | user_pgprot);
601 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
602 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
604 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
605 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
606 L_PTE_DIRTY | kern_pgprot);
607 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
608 pgprot_s2_device = __pgprot(s2_device_pgprot);
609 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
611 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
612 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
613 mem_types[MT_MEMORY_RWX].prot_sect |= ecc_mask | cp->pmd;
614 mem_types[MT_MEMORY_RWX].prot_pte |= kern_pgprot;
615 mem_types[MT_MEMORY_RW].prot_sect |= ecc_mask | cp->pmd;
616 mem_types[MT_MEMORY_RW].prot_pte |= kern_pgprot;
617 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
618 mem_types[MT_MEMORY_RWX_NONCACHED].prot_sect |= ecc_mask;
619 mem_types[MT_ROM].prot_sect |= cp->pmd;
621 switch (cp->pmd) {
622 case PMD_SECT_WT:
623 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
624 break;
625 case PMD_SECT_WB:
626 case PMD_SECT_WBWA:
627 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
628 break;
630 pr_info("Memory policy: %sData cache %s\n",
631 ecc_mask ? "ECC enabled, " : "", cp->policy);
633 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
634 struct mem_type *t = &mem_types[i];
635 if (t->prot_l1)
636 t->prot_l1 |= PMD_DOMAIN(t->domain);
637 if (t->prot_sect)
638 t->prot_sect |= PMD_DOMAIN(t->domain);
642 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
643 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
644 unsigned long size, pgprot_t vma_prot)
646 if (!pfn_valid(pfn))
647 return pgprot_noncached(vma_prot);
648 else if (file->f_flags & O_SYNC)
649 return pgprot_writecombine(vma_prot);
650 return vma_prot;
652 EXPORT_SYMBOL(phys_mem_access_prot);
653 #endif
655 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
657 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
659 void *ptr = __va(memblock_alloc(sz, align));
660 memset(ptr, 0, sz);
661 return ptr;
664 static void __init *early_alloc(unsigned long sz)
666 return early_alloc_aligned(sz, sz);
669 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
671 if (pmd_none(*pmd)) {
672 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
673 __pmd_populate(pmd, __pa(pte), prot);
675 BUG_ON(pmd_bad(*pmd));
676 return pte_offset_kernel(pmd, addr);
679 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
680 unsigned long end, unsigned long pfn,
681 const struct mem_type *type)
683 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
684 do {
685 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
686 pfn++;
687 } while (pte++, addr += PAGE_SIZE, addr != end);
690 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
691 unsigned long end, phys_addr_t phys,
692 const struct mem_type *type)
694 pmd_t *p = pmd;
696 #ifndef CONFIG_ARM_LPAE
698 * In classic MMU format, puds and pmds are folded in to
699 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
700 * group of L1 entries making up one logical pointer to
701 * an L2 table (2MB), where as PMDs refer to the individual
702 * L1 entries (1MB). Hence increment to get the correct
703 * offset for odd 1MB sections.
704 * (See arch/arm/include/asm/pgtable-2level.h)
706 if (addr & SECTION_SIZE)
707 pmd++;
708 #endif
709 do {
710 *pmd = __pmd(phys | type->prot_sect);
711 phys += SECTION_SIZE;
712 } while (pmd++, addr += SECTION_SIZE, addr != end);
714 flush_pmd_entry(p);
717 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
718 unsigned long end, phys_addr_t phys,
719 const struct mem_type *type)
721 pmd_t *pmd = pmd_offset(pud, addr);
722 unsigned long next;
724 do {
726 * With LPAE, we must loop over to map
727 * all the pmds for the given range.
729 next = pmd_addr_end(addr, end);
732 * Try a section mapping - addr, next and phys must all be
733 * aligned to a section boundary.
735 if (type->prot_sect &&
736 ((addr | next | phys) & ~SECTION_MASK) == 0) {
737 __map_init_section(pmd, addr, next, phys, type);
738 } else {
739 alloc_init_pte(pmd, addr, next,
740 __phys_to_pfn(phys), type);
743 phys += next - addr;
745 } while (pmd++, addr = next, addr != end);
748 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
749 unsigned long end, phys_addr_t phys,
750 const struct mem_type *type)
752 pud_t *pud = pud_offset(pgd, addr);
753 unsigned long next;
755 do {
756 next = pud_addr_end(addr, end);
757 alloc_init_pmd(pud, addr, next, phys, type);
758 phys += next - addr;
759 } while (pud++, addr = next, addr != end);
762 #ifndef CONFIG_ARM_LPAE
763 static void __init create_36bit_mapping(struct map_desc *md,
764 const struct mem_type *type)
766 unsigned long addr, length, end;
767 phys_addr_t phys;
768 pgd_t *pgd;
770 addr = md->virtual;
771 phys = __pfn_to_phys(md->pfn);
772 length = PAGE_ALIGN(md->length);
774 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
775 printk(KERN_ERR "MM: CPU does not support supersection "
776 "mapping for 0x%08llx at 0x%08lx\n",
777 (long long)__pfn_to_phys((u64)md->pfn), addr);
778 return;
781 /* N.B. ARMv6 supersections are only defined to work with domain 0.
782 * Since domain assignments can in fact be arbitrary, the
783 * 'domain == 0' check below is required to insure that ARMv6
784 * supersections are only allocated for domain 0 regardless
785 * of the actual domain assignments in use.
787 if (type->domain) {
788 printk(KERN_ERR "MM: invalid domain in supersection "
789 "mapping for 0x%08llx at 0x%08lx\n",
790 (long long)__pfn_to_phys((u64)md->pfn), addr);
791 return;
794 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
795 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
796 " at 0x%08lx invalid alignment\n",
797 (long long)__pfn_to_phys((u64)md->pfn), addr);
798 return;
802 * Shift bits [35:32] of address into bits [23:20] of PMD
803 * (See ARMv6 spec).
805 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
807 pgd = pgd_offset_k(addr);
808 end = addr + length;
809 do {
810 pud_t *pud = pud_offset(pgd, addr);
811 pmd_t *pmd = pmd_offset(pud, addr);
812 int i;
814 for (i = 0; i < 16; i++)
815 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
817 addr += SUPERSECTION_SIZE;
818 phys += SUPERSECTION_SIZE;
819 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
820 } while (addr != end);
822 #endif /* !CONFIG_ARM_LPAE */
825 * Create the page directory entries and any necessary
826 * page tables for the mapping specified by `md'. We
827 * are able to cope here with varying sizes and address
828 * offsets, and we take full advantage of sections and
829 * supersections.
831 static void __init create_mapping(struct map_desc *md)
833 unsigned long addr, length, end;
834 phys_addr_t phys;
835 const struct mem_type *type;
836 pgd_t *pgd;
838 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
839 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
840 " at 0x%08lx in user region\n",
841 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
842 return;
845 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
846 md->virtual >= PAGE_OFFSET &&
847 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
848 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
849 " at 0x%08lx out of vmalloc space\n",
850 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
853 type = &mem_types[md->type];
855 #ifndef CONFIG_ARM_LPAE
857 * Catch 36-bit addresses
859 if (md->pfn >= 0x100000) {
860 create_36bit_mapping(md, type);
861 return;
863 #endif
865 addr = md->virtual & PAGE_MASK;
866 phys = __pfn_to_phys(md->pfn);
867 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
869 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
870 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
871 "be mapped using pages, ignoring.\n",
872 (long long)__pfn_to_phys(md->pfn), addr);
873 return;
876 pgd = pgd_offset_k(addr);
877 end = addr + length;
878 do {
879 unsigned long next = pgd_addr_end(addr, end);
881 alloc_init_pud(pgd, addr, next, phys, type);
883 phys += next - addr;
884 addr = next;
885 } while (pgd++, addr != end);
889 * Create the architecture specific mappings
891 void __init iotable_init(struct map_desc *io_desc, int nr)
893 struct map_desc *md;
894 struct vm_struct *vm;
895 struct static_vm *svm;
897 if (!nr)
898 return;
900 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
902 for (md = io_desc; nr; md++, nr--) {
903 create_mapping(md);
905 vm = &svm->vm;
906 vm->addr = (void *)(md->virtual & PAGE_MASK);
907 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
908 vm->phys_addr = __pfn_to_phys(md->pfn);
909 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
910 vm->flags |= VM_ARM_MTYPE(md->type);
911 vm->caller = iotable_init;
912 add_static_vm_early(svm++);
916 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
917 void *caller)
919 struct vm_struct *vm;
920 struct static_vm *svm;
922 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
924 vm = &svm->vm;
925 vm->addr = (void *)addr;
926 vm->size = size;
927 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
928 vm->caller = caller;
929 add_static_vm_early(svm);
932 #ifndef CONFIG_ARM_LPAE
935 * The Linux PMD is made of two consecutive section entries covering 2MB
936 * (see definition in include/asm/pgtable-2level.h). However a call to
937 * create_mapping() may optimize static mappings by using individual
938 * 1MB section mappings. This leaves the actual PMD potentially half
939 * initialized if the top or bottom section entry isn't used, leaving it
940 * open to problems if a subsequent ioremap() or vmalloc() tries to use
941 * the virtual space left free by that unused section entry.
943 * Let's avoid the issue by inserting dummy vm entries covering the unused
944 * PMD halves once the static mappings are in place.
947 static void __init pmd_empty_section_gap(unsigned long addr)
949 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
952 static void __init fill_pmd_gaps(void)
954 struct static_vm *svm;
955 struct vm_struct *vm;
956 unsigned long addr, next = 0;
957 pmd_t *pmd;
959 list_for_each_entry(svm, &static_vmlist, list) {
960 vm = &svm->vm;
961 addr = (unsigned long)vm->addr;
962 if (addr < next)
963 continue;
966 * Check if this vm starts on an odd section boundary.
967 * If so and the first section entry for this PMD is free
968 * then we block the corresponding virtual address.
970 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
971 pmd = pmd_off_k(addr);
972 if (pmd_none(*pmd))
973 pmd_empty_section_gap(addr & PMD_MASK);
977 * Then check if this vm ends on an odd section boundary.
978 * If so and the second section entry for this PMD is empty
979 * then we block the corresponding virtual address.
981 addr += vm->size;
982 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
983 pmd = pmd_off_k(addr) + 1;
984 if (pmd_none(*pmd))
985 pmd_empty_section_gap(addr);
988 /* no need to look at any vm entry until we hit the next PMD */
989 next = (addr + PMD_SIZE - 1) & PMD_MASK;
993 #else
994 #define fill_pmd_gaps() do { } while (0)
995 #endif
997 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
998 static void __init pci_reserve_io(void)
1000 struct static_vm *svm;
1002 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
1003 if (svm)
1004 return;
1006 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
1008 #else
1009 #define pci_reserve_io() do { } while (0)
1010 #endif
1012 #ifdef CONFIG_DEBUG_LL
1013 void __init debug_ll_io_init(void)
1015 struct map_desc map;
1017 debug_ll_addr(&map.pfn, &map.virtual);
1018 if (!map.pfn || !map.virtual)
1019 return;
1020 map.pfn = __phys_to_pfn(map.pfn);
1021 map.virtual &= PAGE_MASK;
1022 map.length = PAGE_SIZE;
1023 map.type = MT_DEVICE;
1024 iotable_init(&map, 1);
1026 #endif
1028 static void * __initdata vmalloc_min =
1029 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
1032 * vmalloc=size forces the vmalloc area to be exactly 'size'
1033 * bytes. This can be used to increase (or decrease) the vmalloc
1034 * area - the default is 240m.
1036 static int __init early_vmalloc(char *arg)
1038 unsigned long vmalloc_reserve = memparse(arg, NULL);
1040 if (vmalloc_reserve < SZ_16M) {
1041 vmalloc_reserve = SZ_16M;
1042 printk(KERN_WARNING
1043 "vmalloc area too small, limiting to %luMB\n",
1044 vmalloc_reserve >> 20);
1047 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
1048 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
1049 printk(KERN_WARNING
1050 "vmalloc area is too big, limiting to %luMB\n",
1051 vmalloc_reserve >> 20);
1054 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
1055 return 0;
1057 early_param("vmalloc", early_vmalloc);
1059 phys_addr_t arm_lowmem_limit __initdata = 0;
1061 void __init sanity_check_meminfo(void)
1063 phys_addr_t memblock_limit = 0;
1064 int i, j, highmem = 0;
1065 phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1067 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1068 struct membank *bank = &meminfo.bank[j];
1069 phys_addr_t size_limit;
1071 *bank = meminfo.bank[i];
1072 size_limit = bank->size;
1074 if (bank->start >= vmalloc_limit)
1075 highmem = 1;
1076 else
1077 size_limit = vmalloc_limit - bank->start;
1079 bank->highmem = highmem;
1081 #ifdef CONFIG_HIGHMEM
1083 * Split those memory banks which are partially overlapping
1084 * the vmalloc area greatly simplifying things later.
1086 if (!highmem && bank->size > size_limit) {
1087 if (meminfo.nr_banks >= NR_BANKS) {
1088 printk(KERN_CRIT "NR_BANKS too low, "
1089 "ignoring high memory\n");
1090 } else {
1091 memmove(bank + 1, bank,
1092 (meminfo.nr_banks - i) * sizeof(*bank));
1093 meminfo.nr_banks++;
1094 i++;
1095 bank[1].size -= size_limit;
1096 bank[1].start = vmalloc_limit;
1097 bank[1].highmem = highmem = 1;
1098 j++;
1100 bank->size = size_limit;
1102 #else
1104 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1106 if (highmem) {
1107 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1108 "(!CONFIG_HIGHMEM).\n",
1109 (unsigned long long)bank->start,
1110 (unsigned long long)bank->start + bank->size - 1);
1111 continue;
1115 * Check whether this memory bank would partially overlap
1116 * the vmalloc area.
1118 if (bank->size > size_limit) {
1119 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1120 "to -%.8llx (vmalloc region overlap).\n",
1121 (unsigned long long)bank->start,
1122 (unsigned long long)bank->start + bank->size - 1,
1123 (unsigned long long)bank->start + size_limit - 1);
1124 bank->size = size_limit;
1126 #endif
1127 if (!bank->highmem) {
1128 phys_addr_t bank_end = bank->start + bank->size;
1130 if (bank_end > arm_lowmem_limit)
1131 arm_lowmem_limit = bank_end;
1134 * Find the first non-section-aligned page, and point
1135 * memblock_limit at it. This relies on rounding the
1136 * limit down to be section-aligned, which happens at
1137 * the end of this function.
1139 * With this algorithm, the start or end of almost any
1140 * bank can be non-section-aligned. The only exception
1141 * is that the start of the bank 0 must be section-
1142 * aligned, since otherwise memory would need to be
1143 * allocated when mapping the start of bank 0, which
1144 * occurs before any free memory is mapped.
1146 if (!memblock_limit) {
1147 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1148 memblock_limit = bank->start;
1149 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1150 memblock_limit = bank_end;
1153 j++;
1155 #ifdef CONFIG_HIGHMEM
1156 if (highmem) {
1157 const char *reason = NULL;
1159 if (cache_is_vipt_aliasing()) {
1161 * Interactions between kmap and other mappings
1162 * make highmem support with aliasing VIPT caches
1163 * rather difficult.
1165 reason = "with VIPT aliasing cache";
1167 if (reason) {
1168 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1169 reason);
1170 while (j > 0 && meminfo.bank[j - 1].highmem)
1171 j--;
1174 #endif
1175 meminfo.nr_banks = j;
1176 high_memory = __va(arm_lowmem_limit - 1) + 1;
1179 * Round the memblock limit down to a section size. This
1180 * helps to ensure that we will allocate memory from the
1181 * last full section, which should be mapped.
1183 if (memblock_limit)
1184 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1185 if (!memblock_limit)
1186 memblock_limit = arm_lowmem_limit;
1188 memblock_set_current_limit(memblock_limit);
1191 static inline void prepare_page_table(void)
1193 unsigned long addr;
1194 phys_addr_t end;
1197 * Clear out all the mappings below the kernel image.
1199 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1200 pmd_clear(pmd_off_k(addr));
1202 #ifdef CONFIG_XIP_KERNEL
1203 /* The XIP kernel is mapped in the module area -- skip over it */
1204 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1205 #endif
1206 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1207 pmd_clear(pmd_off_k(addr));
1210 * Find the end of the first block of lowmem.
1212 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1213 if (end >= arm_lowmem_limit)
1214 end = arm_lowmem_limit;
1217 * Clear out all the kernel space mappings, except for the first
1218 * memory bank, up to the vmalloc region.
1220 for (addr = __phys_to_virt(end);
1221 addr < VMALLOC_START; addr += PMD_SIZE)
1222 pmd_clear(pmd_off_k(addr));
1225 #ifdef CONFIG_ARM_LPAE
1226 /* the first page is reserved for pgd */
1227 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1228 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1229 #else
1230 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1231 #endif
1234 * Reserve the special regions of memory
1236 void __init arm_mm_memblock_reserve(void)
1239 * Reserve the page tables. These are already in use,
1240 * and can only be in node 0.
1242 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1244 #ifdef CONFIG_SA1111
1246 * Because of the SA1111 DMA bug, we want to preserve our
1247 * precious DMA-able memory...
1249 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1250 #endif
1254 * Set up the device mappings. Since we clear out the page tables for all
1255 * mappings above VMALLOC_START, we will remove any debug device mappings.
1256 * This means you have to be careful how you debug this function, or any
1257 * called function. This means you can't use any function or debugging
1258 * method which may touch any device, otherwise the kernel _will_ crash.
1260 static void __init devicemaps_init(const struct machine_desc *mdesc)
1262 struct map_desc map;
1263 unsigned long addr;
1264 void *vectors;
1267 * Allocate the vector page early.
1269 vectors = early_alloc(PAGE_SIZE * 2);
1271 early_trap_init(vectors);
1273 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1274 pmd_clear(pmd_off_k(addr));
1277 * Map the kernel if it is XIP.
1278 * It is always first in the modulearea.
1280 #ifdef CONFIG_XIP_KERNEL
1281 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1282 map.virtual = MODULES_VADDR;
1283 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1284 map.type = MT_ROM;
1285 create_mapping(&map);
1286 #endif
1289 * Map the cache flushing regions.
1291 #ifdef FLUSH_BASE
1292 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1293 map.virtual = FLUSH_BASE;
1294 map.length = SZ_1M;
1295 map.type = MT_CACHECLEAN;
1296 create_mapping(&map);
1297 #endif
1298 #ifdef FLUSH_BASE_MINICACHE
1299 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1300 map.virtual = FLUSH_BASE_MINICACHE;
1301 map.length = SZ_1M;
1302 map.type = MT_MINICLEAN;
1303 create_mapping(&map);
1304 #endif
1307 * Create a mapping for the machine vectors at the high-vectors
1308 * location (0xffff0000). If we aren't using high-vectors, also
1309 * create a mapping at the low-vectors virtual address.
1311 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1312 map.virtual = 0xffff0000;
1313 map.length = PAGE_SIZE;
1314 #ifdef CONFIG_KUSER_HELPERS
1315 map.type = MT_HIGH_VECTORS;
1316 #else
1317 map.type = MT_LOW_VECTORS;
1318 #endif
1319 create_mapping(&map);
1321 if (!vectors_high()) {
1322 map.virtual = 0;
1323 map.length = PAGE_SIZE * 2;
1324 map.type = MT_LOW_VECTORS;
1325 create_mapping(&map);
1328 /* Now create a kernel read-only mapping */
1329 map.pfn += 1;
1330 map.virtual = 0xffff0000 + PAGE_SIZE;
1331 map.length = PAGE_SIZE;
1332 map.type = MT_LOW_VECTORS;
1333 create_mapping(&map);
1336 * Ask the machine support to map in the statically mapped devices.
1338 if (mdesc->map_io)
1339 mdesc->map_io();
1340 else
1341 debug_ll_io_init();
1342 fill_pmd_gaps();
1344 /* Reserve fixed i/o space in VMALLOC region */
1345 pci_reserve_io();
1348 * Finally flush the caches and tlb to ensure that we're in a
1349 * consistent state wrt the writebuffer. This also ensures that
1350 * any write-allocated cache lines in the vector page are written
1351 * back. After this point, we can start to touch devices again.
1353 local_flush_tlb_all();
1354 flush_cache_all();
1357 static void __init kmap_init(void)
1359 #ifdef CONFIG_HIGHMEM
1360 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1361 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1362 #endif
1365 static void __init map_lowmem(void)
1367 struct memblock_region *reg;
1368 unsigned long kernel_x_start = round_down(__pa(_stext), SECTION_SIZE);
1369 unsigned long kernel_x_end = round_up(__pa(__init_end), SECTION_SIZE);
1371 /* Map all the lowmem memory banks. */
1372 for_each_memblock(memory, reg) {
1373 phys_addr_t start = reg->base;
1374 phys_addr_t end = start + reg->size;
1375 struct map_desc map;
1377 if (end > arm_lowmem_limit)
1378 end = arm_lowmem_limit;
1379 if (start >= end)
1380 break;
1382 if (end < kernel_x_start || start >= kernel_x_end) {
1383 map.pfn = __phys_to_pfn(start);
1384 map.virtual = __phys_to_virt(start);
1385 map.length = end - start;
1386 map.type = MT_MEMORY_RWX;
1388 create_mapping(&map);
1389 } else {
1390 /* This better cover the entire kernel */
1391 if (start < kernel_x_start) {
1392 map.pfn = __phys_to_pfn(start);
1393 map.virtual = __phys_to_virt(start);
1394 map.length = kernel_x_start - start;
1395 map.type = MT_MEMORY_RW;
1397 create_mapping(&map);
1400 map.pfn = __phys_to_pfn(kernel_x_start);
1401 map.virtual = __phys_to_virt(kernel_x_start);
1402 map.length = kernel_x_end - kernel_x_start;
1403 map.type = MT_MEMORY_RWX;
1405 create_mapping(&map);
1407 if (kernel_x_end < end) {
1408 map.pfn = __phys_to_pfn(kernel_x_end);
1409 map.virtual = __phys_to_virt(kernel_x_end);
1410 map.length = end - kernel_x_end;
1411 map.type = MT_MEMORY_RW;
1413 create_mapping(&map);
1419 #ifdef CONFIG_ARM_LPAE
1421 * early_paging_init() recreates boot time page table setup, allowing machines
1422 * to switch over to a high (>4G) address space on LPAE systems
1424 void __init early_paging_init(const struct machine_desc *mdesc,
1425 struct proc_info_list *procinfo)
1427 pmdval_t pmdprot = procinfo->__cpu_mm_mmu_flags;
1428 unsigned long map_start, map_end;
1429 pgd_t *pgd0, *pgdk;
1430 pud_t *pud0, *pudk, *pud_start;
1431 pmd_t *pmd0, *pmdk;
1432 phys_addr_t phys;
1433 int i;
1435 if (!(mdesc->init_meminfo))
1436 return;
1438 /* remap kernel code and data */
1439 map_start = init_mm.start_code & PMD_MASK;
1440 map_end = ALIGN(init_mm.brk, PMD_SIZE);
1442 /* get a handle on things... */
1443 pgd0 = pgd_offset_k(0);
1444 pud_start = pud0 = pud_offset(pgd0, 0);
1445 pmd0 = pmd_offset(pud0, 0);
1447 pgdk = pgd_offset_k(map_start);
1448 pudk = pud_offset(pgdk, map_start);
1449 pmdk = pmd_offset(pudk, map_start);
1451 mdesc->init_meminfo();
1453 /* Run the patch stub to update the constants */
1454 fixup_pv_table(&__pv_table_begin,
1455 (&__pv_table_end - &__pv_table_begin) << 2);
1458 * Cache cleaning operations for self-modifying code
1459 * We should clean the entries by MVA but running a
1460 * for loop over every pv_table entry pointer would
1461 * just complicate the code.
1463 flush_cache_louis();
1464 dsb();
1465 isb();
1467 /* remap level 1 table */
1468 for (i = 0; i < PTRS_PER_PGD; pud0++, i++) {
1469 set_pud(pud0,
1470 __pud(__pa(pmd0) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
1471 pmd0 += PTRS_PER_PMD;
1474 /* remap pmds for kernel mapping */
1475 phys = __pa(map_start);
1476 do {
1477 *pmdk++ = __pmd(phys | pmdprot);
1478 phys += PMD_SIZE;
1479 } while (phys < map_end);
1481 flush_cache_all();
1482 cpu_switch_mm(pgd0, &init_mm);
1483 cpu_set_ttbr(1, __pa(pgd0) + TTBR1_OFFSET);
1484 local_flush_bp_all();
1485 local_flush_tlb_all();
1488 #else
1490 void __init early_paging_init(const struct machine_desc *mdesc,
1491 struct proc_info_list *procinfo)
1493 if (mdesc->init_meminfo)
1494 mdesc->init_meminfo();
1497 #endif
1500 * paging_init() sets up the page tables, initialises the zone memory
1501 * maps, and sets up the zero page, bad page and bad page tables.
1503 void __init paging_init(const struct machine_desc *mdesc)
1505 void *zero_page;
1507 build_mem_type_table();
1508 prepare_page_table();
1509 map_lowmem();
1510 dma_contiguous_remap();
1511 devicemaps_init(mdesc);
1512 kmap_init();
1513 tcm_init();
1515 top_pmd = pmd_off_k(0xffff0000);
1517 /* allocate the zero page. */
1518 zero_page = early_alloc(PAGE_SIZE);
1520 bootmem_init();
1522 empty_zero_page = virt_to_page(zero_page);
1523 __flush_dcache_page(NULL, empty_zero_page);