Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / arch / powerpc / kvm / e500.c
blob2e02ed849f36d1a5724a48557e08d8e3bea69ce0
1 /*
2 * Copyright (C) 2008-2011 Freescale Semiconductor, Inc. All rights reserved.
4 * Author: Yu Liu, <yu.liu@freescale.com>
6 * Description:
7 * This file is derived from arch/powerpc/kvm/44x.c,
8 * by Hollis Blanchard <hollisb@us.ibm.com>.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License, version 2, as
12 * published by the Free Software Foundation.
15 #include <linux/kvm_host.h>
16 #include <linux/slab.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/module.h>
20 #include <linux/miscdevice.h>
22 #include <asm/reg.h>
23 #include <asm/cputable.h>
24 #include <asm/tlbflush.h>
25 #include <asm/kvm_ppc.h>
27 #include "../mm/mmu_decl.h"
28 #include "booke.h"
29 #include "e500.h"
31 struct id {
32 unsigned long val;
33 struct id **pentry;
36 #define NUM_TIDS 256
39 * This table provide mappings from:
40 * (guestAS,guestTID,guestPR) --> ID of physical cpu
41 * guestAS [0..1]
42 * guestTID [0..255]
43 * guestPR [0..1]
44 * ID [1..255]
45 * Each vcpu keeps one vcpu_id_table.
47 struct vcpu_id_table {
48 struct id id[2][NUM_TIDS][2];
52 * This table provide reversed mappings of vcpu_id_table:
53 * ID --> address of vcpu_id_table item.
54 * Each physical core has one pcpu_id_table.
56 struct pcpu_id_table {
57 struct id *entry[NUM_TIDS];
60 static DEFINE_PER_CPU(struct pcpu_id_table, pcpu_sids);
62 /* This variable keeps last used shadow ID on local core.
63 * The valid range of shadow ID is [1..255] */
64 static DEFINE_PER_CPU(unsigned long, pcpu_last_used_sid);
67 * Allocate a free shadow id and setup a valid sid mapping in given entry.
68 * A mapping is only valid when vcpu_id_table and pcpu_id_table are match.
70 * The caller must have preemption disabled, and keep it that way until
71 * it has finished with the returned shadow id (either written into the
72 * TLB or arch.shadow_pid, or discarded).
74 static inline int local_sid_setup_one(struct id *entry)
76 unsigned long sid;
77 int ret = -1;
79 sid = ++(__get_cpu_var(pcpu_last_used_sid));
80 if (sid < NUM_TIDS) {
81 __get_cpu_var(pcpu_sids).entry[sid] = entry;
82 entry->val = sid;
83 entry->pentry = &__get_cpu_var(pcpu_sids).entry[sid];
84 ret = sid;
88 * If sid == NUM_TIDS, we've run out of sids. We return -1, and
89 * the caller will invalidate everything and start over.
91 * sid > NUM_TIDS indicates a race, which we disable preemption to
92 * avoid.
94 WARN_ON(sid > NUM_TIDS);
96 return ret;
100 * Check if given entry contain a valid shadow id mapping.
101 * An ID mapping is considered valid only if
102 * both vcpu and pcpu know this mapping.
104 * The caller must have preemption disabled, and keep it that way until
105 * it has finished with the returned shadow id (either written into the
106 * TLB or arch.shadow_pid, or discarded).
108 static inline int local_sid_lookup(struct id *entry)
110 if (entry && entry->val != 0 &&
111 __get_cpu_var(pcpu_sids).entry[entry->val] == entry &&
112 entry->pentry == &__get_cpu_var(pcpu_sids).entry[entry->val])
113 return entry->val;
114 return -1;
117 /* Invalidate all id mappings on local core -- call with preempt disabled */
118 static inline void local_sid_destroy_all(void)
120 __get_cpu_var(pcpu_last_used_sid) = 0;
121 memset(&__get_cpu_var(pcpu_sids), 0, sizeof(__get_cpu_var(pcpu_sids)));
124 static void *kvmppc_e500_id_table_alloc(struct kvmppc_vcpu_e500 *vcpu_e500)
126 vcpu_e500->idt = kzalloc(sizeof(struct vcpu_id_table), GFP_KERNEL);
127 return vcpu_e500->idt;
130 static void kvmppc_e500_id_table_free(struct kvmppc_vcpu_e500 *vcpu_e500)
132 kfree(vcpu_e500->idt);
133 vcpu_e500->idt = NULL;
136 /* Map guest pid to shadow.
137 * We use PID to keep shadow of current guest non-zero PID,
138 * and use PID1 to keep shadow of guest zero PID.
139 * So that guest tlbe with TID=0 can be accessed at any time */
140 static void kvmppc_e500_recalc_shadow_pid(struct kvmppc_vcpu_e500 *vcpu_e500)
142 preempt_disable();
143 vcpu_e500->vcpu.arch.shadow_pid = kvmppc_e500_get_sid(vcpu_e500,
144 get_cur_as(&vcpu_e500->vcpu),
145 get_cur_pid(&vcpu_e500->vcpu),
146 get_cur_pr(&vcpu_e500->vcpu), 1);
147 vcpu_e500->vcpu.arch.shadow_pid1 = kvmppc_e500_get_sid(vcpu_e500,
148 get_cur_as(&vcpu_e500->vcpu), 0,
149 get_cur_pr(&vcpu_e500->vcpu), 1);
150 preempt_enable();
153 /* Invalidate all mappings on vcpu */
154 static void kvmppc_e500_id_table_reset_all(struct kvmppc_vcpu_e500 *vcpu_e500)
156 memset(vcpu_e500->idt, 0, sizeof(struct vcpu_id_table));
158 /* Update shadow pid when mappings are changed */
159 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
162 /* Invalidate one ID mapping on vcpu */
163 static inline void kvmppc_e500_id_table_reset_one(
164 struct kvmppc_vcpu_e500 *vcpu_e500,
165 int as, int pid, int pr)
167 struct vcpu_id_table *idt = vcpu_e500->idt;
169 BUG_ON(as >= 2);
170 BUG_ON(pid >= NUM_TIDS);
171 BUG_ON(pr >= 2);
173 idt->id[as][pid][pr].val = 0;
174 idt->id[as][pid][pr].pentry = NULL;
176 /* Update shadow pid when mappings are changed */
177 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
181 * Map guest (vcpu,AS,ID,PR) to physical core shadow id.
182 * This function first lookup if a valid mapping exists,
183 * if not, then creates a new one.
185 * The caller must have preemption disabled, and keep it that way until
186 * it has finished with the returned shadow id (either written into the
187 * TLB or arch.shadow_pid, or discarded).
189 unsigned int kvmppc_e500_get_sid(struct kvmppc_vcpu_e500 *vcpu_e500,
190 unsigned int as, unsigned int gid,
191 unsigned int pr, int avoid_recursion)
193 struct vcpu_id_table *idt = vcpu_e500->idt;
194 int sid;
196 BUG_ON(as >= 2);
197 BUG_ON(gid >= NUM_TIDS);
198 BUG_ON(pr >= 2);
200 sid = local_sid_lookup(&idt->id[as][gid][pr]);
202 while (sid <= 0) {
203 /* No mapping yet */
204 sid = local_sid_setup_one(&idt->id[as][gid][pr]);
205 if (sid <= 0) {
206 _tlbil_all();
207 local_sid_destroy_all();
210 /* Update shadow pid when mappings are changed */
211 if (!avoid_recursion)
212 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
215 return sid;
218 unsigned int kvmppc_e500_get_tlb_stid(struct kvm_vcpu *vcpu,
219 struct kvm_book3e_206_tlb_entry *gtlbe)
221 return kvmppc_e500_get_sid(to_e500(vcpu), get_tlb_ts(gtlbe),
222 get_tlb_tid(gtlbe), get_cur_pr(vcpu), 0);
225 void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid)
227 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
229 if (vcpu->arch.pid != pid) {
230 vcpu_e500->pid[0] = vcpu->arch.pid = pid;
231 kvmppc_e500_recalc_shadow_pid(vcpu_e500);
235 /* gtlbe must not be mapped by more than one host tlbe */
236 void kvmppc_e500_tlbil_one(struct kvmppc_vcpu_e500 *vcpu_e500,
237 struct kvm_book3e_206_tlb_entry *gtlbe)
239 struct vcpu_id_table *idt = vcpu_e500->idt;
240 unsigned int pr, tid, ts, pid;
241 u32 val, eaddr;
242 unsigned long flags;
244 ts = get_tlb_ts(gtlbe);
245 tid = get_tlb_tid(gtlbe);
247 preempt_disable();
249 /* One guest ID may be mapped to two shadow IDs */
250 for (pr = 0; pr < 2; pr++) {
252 * The shadow PID can have a valid mapping on at most one
253 * host CPU. In the common case, it will be valid on this
254 * CPU, in which case we do a local invalidation of the
255 * specific address.
257 * If the shadow PID is not valid on the current host CPU,
258 * we invalidate the entire shadow PID.
260 pid = local_sid_lookup(&idt->id[ts][tid][pr]);
261 if (pid <= 0) {
262 kvmppc_e500_id_table_reset_one(vcpu_e500, ts, tid, pr);
263 continue;
267 * The guest is invalidating a 4K entry which is in a PID
268 * that has a valid shadow mapping on this host CPU. We
269 * search host TLB to invalidate it's shadow TLB entry,
270 * similar to __tlbil_va except that we need to look in AS1.
272 val = (pid << MAS6_SPID_SHIFT) | MAS6_SAS;
273 eaddr = get_tlb_eaddr(gtlbe);
275 local_irq_save(flags);
277 mtspr(SPRN_MAS6, val);
278 asm volatile("tlbsx 0, %[eaddr]" : : [eaddr] "r" (eaddr));
279 val = mfspr(SPRN_MAS1);
280 if (val & MAS1_VALID) {
281 mtspr(SPRN_MAS1, val & ~MAS1_VALID);
282 asm volatile("tlbwe");
285 local_irq_restore(flags);
288 preempt_enable();
291 void kvmppc_e500_tlbil_all(struct kvmppc_vcpu_e500 *vcpu_e500)
293 kvmppc_e500_id_table_reset_all(vcpu_e500);
296 void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr)
298 /* Recalc shadow pid since MSR changes */
299 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
302 void kvmppc_core_load_host_debugstate(struct kvm_vcpu *vcpu)
306 void kvmppc_core_load_guest_debugstate(struct kvm_vcpu *vcpu)
310 static void kvmppc_core_vcpu_load_e500(struct kvm_vcpu *vcpu, int cpu)
312 kvmppc_booke_vcpu_load(vcpu, cpu);
314 /* Shadow PID may be expired on local core */
315 kvmppc_e500_recalc_shadow_pid(to_e500(vcpu));
318 static void kvmppc_core_vcpu_put_e500(struct kvm_vcpu *vcpu)
320 #ifdef CONFIG_SPE
321 if (vcpu->arch.shadow_msr & MSR_SPE)
322 kvmppc_vcpu_disable_spe(vcpu);
323 #endif
325 kvmppc_booke_vcpu_put(vcpu);
328 int kvmppc_core_check_processor_compat(void)
330 int r;
332 if (strcmp(cur_cpu_spec->cpu_name, "e500v2") == 0)
333 r = 0;
334 else
335 r = -ENOTSUPP;
337 return r;
340 static void kvmppc_e500_tlb_setup(struct kvmppc_vcpu_e500 *vcpu_e500)
342 struct kvm_book3e_206_tlb_entry *tlbe;
344 /* Insert large initial mapping for guest. */
345 tlbe = get_entry(vcpu_e500, 1, 0);
346 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_256M);
347 tlbe->mas2 = 0;
348 tlbe->mas7_3 = E500_TLB_SUPER_PERM_MASK;
350 /* 4K map for serial output. Used by kernel wrapper. */
351 tlbe = get_entry(vcpu_e500, 1, 1);
352 tlbe->mas1 = MAS1_VALID | MAS1_TSIZE(BOOK3E_PAGESZ_4K);
353 tlbe->mas2 = (0xe0004500 & 0xFFFFF000) | MAS2_I | MAS2_G;
354 tlbe->mas7_3 = (0xe0004500 & 0xFFFFF000) | E500_TLB_SUPER_PERM_MASK;
357 int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
359 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
361 kvmppc_e500_tlb_setup(vcpu_e500);
363 /* Registers init */
364 vcpu->arch.pvr = mfspr(SPRN_PVR);
365 vcpu_e500->svr = mfspr(SPRN_SVR);
367 vcpu->arch.cpu_type = KVM_CPU_E500V2;
369 return 0;
372 static int kvmppc_core_get_sregs_e500(struct kvm_vcpu *vcpu,
373 struct kvm_sregs *sregs)
375 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
377 sregs->u.e.features |= KVM_SREGS_E_ARCH206_MMU | KVM_SREGS_E_SPE |
378 KVM_SREGS_E_PM;
379 sregs->u.e.impl_id = KVM_SREGS_E_IMPL_FSL;
381 sregs->u.e.impl.fsl.features = 0;
382 sregs->u.e.impl.fsl.svr = vcpu_e500->svr;
383 sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
384 sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
386 sregs->u.e.ivor_high[0] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL];
387 sregs->u.e.ivor_high[1] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA];
388 sregs->u.e.ivor_high[2] = vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND];
389 sregs->u.e.ivor_high[3] =
390 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR];
392 kvmppc_get_sregs_ivor(vcpu, sregs);
393 kvmppc_get_sregs_e500_tlb(vcpu, sregs);
394 return 0;
397 static int kvmppc_core_set_sregs_e500(struct kvm_vcpu *vcpu,
398 struct kvm_sregs *sregs)
400 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
401 int ret;
403 if (sregs->u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
404 vcpu_e500->svr = sregs->u.e.impl.fsl.svr;
405 vcpu_e500->hid0 = sregs->u.e.impl.fsl.hid0;
406 vcpu_e500->mcar = sregs->u.e.impl.fsl.mcar;
409 ret = kvmppc_set_sregs_e500_tlb(vcpu, sregs);
410 if (ret < 0)
411 return ret;
413 if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
414 return 0;
416 if (sregs->u.e.features & KVM_SREGS_E_SPE) {
417 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_UNAVAIL] =
418 sregs->u.e.ivor_high[0];
419 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_DATA] =
420 sregs->u.e.ivor_high[1];
421 vcpu->arch.ivor[BOOKE_IRQPRIO_SPE_FP_ROUND] =
422 sregs->u.e.ivor_high[2];
425 if (sregs->u.e.features & KVM_SREGS_E_PM) {
426 vcpu->arch.ivor[BOOKE_IRQPRIO_PERFORMANCE_MONITOR] =
427 sregs->u.e.ivor_high[3];
430 return kvmppc_set_sregs_ivor(vcpu, sregs);
433 static int kvmppc_get_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
434 union kvmppc_one_reg *val)
436 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
437 return r;
440 static int kvmppc_set_one_reg_e500(struct kvm_vcpu *vcpu, u64 id,
441 union kvmppc_one_reg *val)
443 int r = kvmppc_get_one_reg_e500_tlb(vcpu, id, val);
444 return r;
447 static struct kvm_vcpu *kvmppc_core_vcpu_create_e500(struct kvm *kvm,
448 unsigned int id)
450 struct kvmppc_vcpu_e500 *vcpu_e500;
451 struct kvm_vcpu *vcpu;
452 int err;
454 vcpu_e500 = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
455 if (!vcpu_e500) {
456 err = -ENOMEM;
457 goto out;
460 vcpu = &vcpu_e500->vcpu;
461 err = kvm_vcpu_init(vcpu, kvm, id);
462 if (err)
463 goto free_vcpu;
465 if (kvmppc_e500_id_table_alloc(vcpu_e500) == NULL)
466 goto uninit_vcpu;
468 err = kvmppc_e500_tlb_init(vcpu_e500);
469 if (err)
470 goto uninit_id;
472 vcpu->arch.shared = (void*)__get_free_page(GFP_KERNEL|__GFP_ZERO);
473 if (!vcpu->arch.shared)
474 goto uninit_tlb;
476 return vcpu;
478 uninit_tlb:
479 kvmppc_e500_tlb_uninit(vcpu_e500);
480 uninit_id:
481 kvmppc_e500_id_table_free(vcpu_e500);
482 uninit_vcpu:
483 kvm_vcpu_uninit(vcpu);
484 free_vcpu:
485 kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
486 out:
487 return ERR_PTR(err);
490 static void kvmppc_core_vcpu_free_e500(struct kvm_vcpu *vcpu)
492 struct kvmppc_vcpu_e500 *vcpu_e500 = to_e500(vcpu);
494 free_page((unsigned long)vcpu->arch.shared);
495 kvmppc_e500_tlb_uninit(vcpu_e500);
496 kvmppc_e500_id_table_free(vcpu_e500);
497 kvm_vcpu_uninit(vcpu);
498 kmem_cache_free(kvm_vcpu_cache, vcpu_e500);
501 static int kvmppc_core_init_vm_e500(struct kvm *kvm)
503 return 0;
506 static void kvmppc_core_destroy_vm_e500(struct kvm *kvm)
510 static struct kvmppc_ops kvm_ops_e500 = {
511 .get_sregs = kvmppc_core_get_sregs_e500,
512 .set_sregs = kvmppc_core_set_sregs_e500,
513 .get_one_reg = kvmppc_get_one_reg_e500,
514 .set_one_reg = kvmppc_set_one_reg_e500,
515 .vcpu_load = kvmppc_core_vcpu_load_e500,
516 .vcpu_put = kvmppc_core_vcpu_put_e500,
517 .vcpu_create = kvmppc_core_vcpu_create_e500,
518 .vcpu_free = kvmppc_core_vcpu_free_e500,
519 .mmu_destroy = kvmppc_mmu_destroy_e500,
520 .init_vm = kvmppc_core_init_vm_e500,
521 .destroy_vm = kvmppc_core_destroy_vm_e500,
522 .emulate_op = kvmppc_core_emulate_op_e500,
523 .emulate_mtspr = kvmppc_core_emulate_mtspr_e500,
524 .emulate_mfspr = kvmppc_core_emulate_mfspr_e500,
527 static int __init kvmppc_e500_init(void)
529 int r, i;
530 unsigned long ivor[3];
531 /* Process remaining handlers above the generic first 16 */
532 unsigned long *handler = &kvmppc_booke_handler_addr[16];
533 unsigned long handler_len;
534 unsigned long max_ivor = 0;
536 r = kvmppc_core_check_processor_compat();
537 if (r)
538 goto err_out;
540 r = kvmppc_booke_init();
541 if (r)
542 goto err_out;
544 /* copy extra E500 exception handlers */
545 ivor[0] = mfspr(SPRN_IVOR32);
546 ivor[1] = mfspr(SPRN_IVOR33);
547 ivor[2] = mfspr(SPRN_IVOR34);
548 for (i = 0; i < 3; i++) {
549 if (ivor[i] > ivor[max_ivor])
550 max_ivor = i;
552 handler_len = handler[i + 1] - handler[i];
553 memcpy((void *)kvmppc_booke_handlers + ivor[i],
554 (void *)handler[i], handler_len);
556 handler_len = handler[max_ivor + 1] - handler[max_ivor];
557 flush_icache_range(kvmppc_booke_handlers, kvmppc_booke_handlers +
558 ivor[max_ivor] + handler_len);
560 r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_e500), 0, THIS_MODULE);
561 if (r)
562 goto err_out;
563 kvm_ops_e500.owner = THIS_MODULE;
564 kvmppc_pr_ops = &kvm_ops_e500;
566 err_out:
567 return r;
570 static void __exit kvmppc_e500_exit(void)
572 kvmppc_pr_ops = NULL;
573 kvmppc_booke_exit();
576 module_init(kvmppc_e500_init);
577 module_exit(kvmppc_e500_exit);
578 MODULE_ALIAS_MISCDEV(KVM_MINOR);
579 MODULE_ALIAS("devname:kvm");