Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / block / blk-mq.c
blob5fb26f785320c4600da525bbc5c4b0af40aedcdc
1 #include <linux/kernel.h>
2 #include <linux/module.h>
3 #include <linux/backing-dev.h>
4 #include <linux/bio.h>
5 #include <linux/blkdev.h>
6 #include <linux/mm.h>
7 #include <linux/init.h>
8 #include <linux/slab.h>
9 #include <linux/workqueue.h>
10 #include <linux/smp.h>
11 #include <linux/llist.h>
12 #include <linux/list_sort.h>
13 #include <linux/cpu.h>
14 #include <linux/cache.h>
15 #include <linux/sched/sysctl.h>
16 #include <linux/delay.h>
18 #include <trace/events/block.h>
20 #include <linux/blk-mq.h>
21 #include "blk.h"
22 #include "blk-mq.h"
23 #include "blk-mq-tag.h"
25 static DEFINE_MUTEX(all_q_mutex);
26 static LIST_HEAD(all_q_list);
28 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
30 static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
33 struct blk_mq_ctx *ctx;
35 ctx = per_cpu_ptr(q->queue_ctx, cpu);
36 spin_lock(&ctx->cpu_lock);
37 return ctx;
41 * This assumes per-cpu software queueing queues. They could be per-node
42 * as well, for instance. For now this is hardcoded as-is. Note that we don't
43 * care about preemption, since we know the ctx's are persistent. This does
44 * mean that we can't rely on ctx always matching the currently running CPU.
46 static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
48 return __blk_mq_get_ctx(q, get_cpu_light());
51 static void __blk_mq_put_ctx(struct blk_mq_ctx *ctx)
53 spin_unlock(&ctx->cpu_lock);
56 static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
58 __blk_mq_put_ctx(ctx);
59 put_cpu_light();
63 * Check if any of the ctx's have pending work in this hardware queue
65 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
67 unsigned int i;
69 for (i = 0; i < hctx->nr_ctx_map; i++)
70 if (hctx->ctx_map[i])
71 return true;
73 return false;
77 * Mark this ctx as having pending work in this hardware queue
79 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
80 struct blk_mq_ctx *ctx)
82 if (!test_bit(ctx->index_hw, hctx->ctx_map))
83 set_bit(ctx->index_hw, hctx->ctx_map);
86 static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
87 gfp_t gfp, bool reserved)
89 struct request *rq;
90 unsigned int tag;
92 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
93 if (tag != BLK_MQ_TAG_FAIL) {
94 rq = hctx->rqs[tag];
95 rq->tag = tag;
97 return rq;
100 return NULL;
103 static int blk_mq_queue_enter(struct request_queue *q)
105 int ret;
107 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
108 smp_wmb();
109 /* we have problems to freeze the queue if it's initializing */
110 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
111 return 0;
113 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
115 spin_lock_irq(q->queue_lock);
116 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
117 !blk_queue_bypass(q) || blk_queue_dying(q),
118 *q->queue_lock);
119 /* inc usage with lock hold to avoid freeze_queue runs here */
120 if (!ret && !blk_queue_dying(q))
121 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
122 else if (blk_queue_dying(q))
123 ret = -ENODEV;
124 spin_unlock_irq(q->queue_lock);
126 return ret;
129 static void blk_mq_queue_exit(struct request_queue *q)
131 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
134 static void __blk_mq_drain_queue(struct request_queue *q)
136 while (true) {
137 s64 count;
139 spin_lock_irq(q->queue_lock);
140 count = percpu_counter_sum(&q->mq_usage_counter);
141 spin_unlock_irq(q->queue_lock);
143 if (count == 0)
144 break;
145 blk_mq_run_queues(q, false);
146 msleep(10);
151 * Guarantee no request is in use, so we can change any data structure of
152 * the queue afterward.
154 static void blk_mq_freeze_queue(struct request_queue *q)
156 bool drain;
158 spin_lock_irq(q->queue_lock);
159 drain = !q->bypass_depth++;
160 queue_flag_set(QUEUE_FLAG_BYPASS, q);
161 spin_unlock_irq(q->queue_lock);
163 if (drain)
164 __blk_mq_drain_queue(q);
167 void blk_mq_drain_queue(struct request_queue *q)
169 __blk_mq_drain_queue(q);
172 static void blk_mq_unfreeze_queue(struct request_queue *q)
174 bool wake = false;
176 spin_lock_irq(q->queue_lock);
177 if (!--q->bypass_depth) {
178 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
179 wake = true;
181 WARN_ON_ONCE(q->bypass_depth < 0);
182 spin_unlock_irq(q->queue_lock);
183 if (wake)
184 wake_up_all(&q->mq_freeze_wq);
187 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
189 return blk_mq_has_free_tags(hctx->tags);
191 EXPORT_SYMBOL(blk_mq_can_queue);
193 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
194 struct request *rq, unsigned int rw_flags)
196 if (blk_queue_io_stat(q))
197 rw_flags |= REQ_IO_STAT;
199 rq->mq_ctx = ctx;
200 rq->cmd_flags = rw_flags;
201 rq->start_time = jiffies;
202 set_start_time_ns(rq);
203 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
206 static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
207 int rw, gfp_t gfp,
208 bool reserved)
210 struct request *rq;
212 do {
213 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
214 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
216 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
217 if (rq) {
218 blk_mq_rq_ctx_init(q, ctx, rq, rw);
219 break;
222 blk_mq_put_ctx(ctx);
223 if (!(gfp & __GFP_WAIT))
224 break;
226 __blk_mq_run_hw_queue(hctx);
227 blk_mq_wait_for_tags(hctx->tags);
228 } while (1);
230 return rq;
233 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
235 struct request *rq;
237 if (blk_mq_queue_enter(q))
238 return NULL;
240 rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
241 if (rq)
242 blk_mq_put_ctx(rq->mq_ctx);
243 return rq;
246 struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
247 gfp_t gfp)
249 struct request *rq;
251 if (blk_mq_queue_enter(q))
252 return NULL;
254 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
255 if (rq)
256 blk_mq_put_ctx(rq->mq_ctx);
257 return rq;
259 EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
262 * Re-init and set pdu, if we have it
264 void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
266 blk_rq_init(hctx->queue, rq);
268 if (hctx->cmd_size)
269 rq->special = blk_mq_rq_to_pdu(rq);
272 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
273 struct blk_mq_ctx *ctx, struct request *rq)
275 const int tag = rq->tag;
276 struct request_queue *q = rq->q;
278 blk_mq_rq_init(hctx, rq);
279 blk_mq_put_tag(hctx->tags, tag);
281 blk_mq_queue_exit(q);
284 void blk_mq_free_request(struct request *rq)
286 struct blk_mq_ctx *ctx = rq->mq_ctx;
287 struct blk_mq_hw_ctx *hctx;
288 struct request_queue *q = rq->q;
290 ctx->rq_completed[rq_is_sync(rq)]++;
292 hctx = q->mq_ops->map_queue(q, ctx->cpu);
293 __blk_mq_free_request(hctx, ctx, rq);
296 bool blk_mq_end_io_partial(struct request *rq, int error, unsigned int nr_bytes)
298 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
299 return true;
301 blk_account_io_done(rq);
303 if (rq->end_io)
304 rq->end_io(rq, error);
305 else
306 blk_mq_free_request(rq);
307 return false;
309 EXPORT_SYMBOL(blk_mq_end_io_partial);
311 static void __blk_mq_complete_request_remote(void *data)
313 struct request *rq = data;
315 rq->q->softirq_done_fn(rq);
318 void __blk_mq_complete_request(struct request *rq)
320 struct blk_mq_ctx *ctx = rq->mq_ctx;
321 int cpu;
323 if (!ctx->ipi_redirect) {
324 rq->q->softirq_done_fn(rq);
325 return;
328 cpu = get_cpu();
329 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
330 rq->csd.func = __blk_mq_complete_request_remote;
331 rq->csd.info = rq;
332 rq->csd.flags = 0;
333 __smp_call_function_single(ctx->cpu, &rq->csd, 0);
334 } else {
335 rq->q->softirq_done_fn(rq);
337 put_cpu();
341 * blk_mq_complete_request - end I/O on a request
342 * @rq: the request being processed
344 * Description:
345 * Ends all I/O on a request. It does not handle partial completions.
346 * The actual completion happens out-of-order, through a IPI handler.
348 void blk_mq_complete_request(struct request *rq)
350 if (unlikely(blk_should_fake_timeout(rq->q)))
351 return;
352 if (!blk_mark_rq_complete(rq))
353 __blk_mq_complete_request(rq);
355 EXPORT_SYMBOL(blk_mq_complete_request);
357 static void blk_mq_start_request(struct request *rq, bool last)
359 struct request_queue *q = rq->q;
361 trace_block_rq_issue(q, rq);
364 * Just mark start time and set the started bit. Due to memory
365 * ordering, we know we'll see the correct deadline as long as
366 * REQ_ATOMIC_STARTED is seen.
368 rq->deadline = jiffies + q->rq_timeout;
369 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
371 if (q->dma_drain_size && blk_rq_bytes(rq)) {
373 * Make sure space for the drain appears. We know we can do
374 * this because max_hw_segments has been adjusted to be one
375 * fewer than the device can handle.
377 rq->nr_phys_segments++;
381 * Flag the last request in the series so that drivers know when IO
382 * should be kicked off, if they don't do it on a per-request basis.
384 * Note: the flag isn't the only condition drivers should do kick off.
385 * If drive is busy, the last request might not have the bit set.
387 if (last)
388 rq->cmd_flags |= REQ_END;
391 static void blk_mq_requeue_request(struct request *rq)
393 struct request_queue *q = rq->q;
395 trace_block_rq_requeue(q, rq);
396 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
398 rq->cmd_flags &= ~REQ_END;
400 if (q->dma_drain_size && blk_rq_bytes(rq))
401 rq->nr_phys_segments--;
404 struct blk_mq_timeout_data {
405 struct blk_mq_hw_ctx *hctx;
406 unsigned long *next;
407 unsigned int *next_set;
410 static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
412 struct blk_mq_timeout_data *data = __data;
413 struct blk_mq_hw_ctx *hctx = data->hctx;
414 unsigned int tag;
416 /* It may not be in flight yet (this is where
417 * the REQ_ATOMIC_STARTED flag comes in). The requests are
418 * statically allocated, so we know it's always safe to access the
419 * memory associated with a bit offset into ->rqs[].
421 tag = 0;
422 do {
423 struct request *rq;
425 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
426 if (tag >= hctx->queue_depth)
427 break;
429 rq = hctx->rqs[tag++];
431 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
432 continue;
434 blk_rq_check_expired(rq, data->next, data->next_set);
435 } while (1);
438 static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
439 unsigned long *next,
440 unsigned int *next_set)
442 struct blk_mq_timeout_data data = {
443 .hctx = hctx,
444 .next = next,
445 .next_set = next_set,
449 * Ask the tagging code to iterate busy requests, so we can
450 * check them for timeout.
452 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
455 static void blk_mq_rq_timer(unsigned long data)
457 struct request_queue *q = (struct request_queue *) data;
458 struct blk_mq_hw_ctx *hctx;
459 unsigned long next = 0;
460 int i, next_set = 0;
462 queue_for_each_hw_ctx(q, hctx, i)
463 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
465 if (next_set)
466 mod_timer(&q->timeout, round_jiffies_up(next));
470 * Reverse check our software queue for entries that we could potentially
471 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
472 * too much time checking for merges.
474 static bool blk_mq_attempt_merge(struct request_queue *q,
475 struct blk_mq_ctx *ctx, struct bio *bio)
477 struct request *rq;
478 int checked = 8;
480 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
481 int el_ret;
483 if (!checked--)
484 break;
486 if (!blk_rq_merge_ok(rq, bio))
487 continue;
489 el_ret = blk_try_merge(rq, bio);
490 if (el_ret == ELEVATOR_BACK_MERGE) {
491 if (bio_attempt_back_merge(q, rq, bio)) {
492 ctx->rq_merged++;
493 return true;
495 break;
496 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
497 if (bio_attempt_front_merge(q, rq, bio)) {
498 ctx->rq_merged++;
499 return true;
501 break;
505 return false;
508 void blk_mq_add_timer(struct request *rq)
510 __blk_add_timer(rq, NULL);
514 * Run this hardware queue, pulling any software queues mapped to it in.
515 * Note that this function currently has various problems around ordering
516 * of IO. In particular, we'd like FIFO behaviour on handling existing
517 * items on the hctx->dispatch list. Ignore that for now.
519 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
521 struct request_queue *q = hctx->queue;
522 struct blk_mq_ctx *ctx;
523 struct request *rq;
524 LIST_HEAD(rq_list);
525 int bit, queued;
527 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
528 return;
530 hctx->run++;
533 * Touch any software queue that has pending entries.
535 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
536 clear_bit(bit, hctx->ctx_map);
537 ctx = hctx->ctxs[bit];
538 BUG_ON(bit != ctx->index_hw);
540 spin_lock(&ctx->lock);
541 list_splice_tail_init(&ctx->rq_list, &rq_list);
542 spin_unlock(&ctx->lock);
546 * If we have previous entries on our dispatch list, grab them
547 * and stuff them at the front for more fair dispatch.
549 if (!list_empty_careful(&hctx->dispatch)) {
550 spin_lock(&hctx->lock);
551 if (!list_empty(&hctx->dispatch))
552 list_splice_init(&hctx->dispatch, &rq_list);
553 spin_unlock(&hctx->lock);
557 * Delete and return all entries from our dispatch list
559 queued = 0;
562 * Now process all the entries, sending them to the driver.
564 while (!list_empty(&rq_list)) {
565 int ret;
567 rq = list_first_entry(&rq_list, struct request, queuelist);
568 list_del_init(&rq->queuelist);
570 blk_mq_start_request(rq, list_empty(&rq_list));
572 ret = q->mq_ops->queue_rq(hctx, rq);
573 switch (ret) {
574 case BLK_MQ_RQ_QUEUE_OK:
575 queued++;
576 continue;
577 case BLK_MQ_RQ_QUEUE_BUSY:
579 * FIXME: we should have a mechanism to stop the queue
580 * like blk_stop_queue, otherwise we will waste cpu
581 * time
583 list_add(&rq->queuelist, &rq_list);
584 blk_mq_requeue_request(rq);
585 break;
586 default:
587 pr_err("blk-mq: bad return on queue: %d\n", ret);
588 case BLK_MQ_RQ_QUEUE_ERROR:
589 rq->errors = -EIO;
590 blk_mq_end_io(rq, rq->errors);
591 break;
594 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
595 break;
598 if (!queued)
599 hctx->dispatched[0]++;
600 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
601 hctx->dispatched[ilog2(queued) + 1]++;
604 * Any items that need requeuing? Stuff them into hctx->dispatch,
605 * that is where we will continue on next queue run.
607 if (!list_empty(&rq_list)) {
608 spin_lock(&hctx->lock);
609 list_splice(&rq_list, &hctx->dispatch);
610 spin_unlock(&hctx->lock);
614 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
616 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
617 return;
619 if (!async)
620 __blk_mq_run_hw_queue(hctx);
621 else {
622 struct request_queue *q = hctx->queue;
624 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
628 void blk_mq_run_queues(struct request_queue *q, bool async)
630 struct blk_mq_hw_ctx *hctx;
631 int i;
633 queue_for_each_hw_ctx(q, hctx, i) {
634 if ((!blk_mq_hctx_has_pending(hctx) &&
635 list_empty_careful(&hctx->dispatch)) ||
636 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
637 continue;
639 blk_mq_run_hw_queue(hctx, async);
642 EXPORT_SYMBOL(blk_mq_run_queues);
644 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
646 cancel_delayed_work(&hctx->delayed_work);
647 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
649 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
651 void blk_mq_stop_hw_queues(struct request_queue *q)
653 struct blk_mq_hw_ctx *hctx;
654 int i;
656 queue_for_each_hw_ctx(q, hctx, i)
657 blk_mq_stop_hw_queue(hctx);
659 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
661 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
663 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
664 __blk_mq_run_hw_queue(hctx);
666 EXPORT_SYMBOL(blk_mq_start_hw_queue);
668 void blk_mq_start_stopped_hw_queues(struct request_queue *q)
670 struct blk_mq_hw_ctx *hctx;
671 int i;
673 queue_for_each_hw_ctx(q, hctx, i) {
674 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
675 continue;
677 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
678 blk_mq_run_hw_queue(hctx, true);
681 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
683 static void blk_mq_work_fn(struct work_struct *work)
685 struct blk_mq_hw_ctx *hctx;
687 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
688 __blk_mq_run_hw_queue(hctx);
691 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
692 struct request *rq, bool at_head)
694 struct blk_mq_ctx *ctx = rq->mq_ctx;
696 trace_block_rq_insert(hctx->queue, rq);
698 if (at_head)
699 list_add(&rq->queuelist, &ctx->rq_list);
700 else
701 list_add_tail(&rq->queuelist, &ctx->rq_list);
702 blk_mq_hctx_mark_pending(hctx, ctx);
705 * We do this early, to ensure we are on the right CPU.
707 blk_mq_add_timer(rq);
710 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
711 bool async)
713 struct request_queue *q = rq->q;
714 struct blk_mq_hw_ctx *hctx;
715 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
717 current_ctx = blk_mq_get_ctx(q);
718 if (!cpu_online(ctx->cpu))
719 rq->mq_ctx = ctx = current_ctx;
721 hctx = q->mq_ops->map_queue(q, ctx->cpu);
723 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
724 !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
725 blk_insert_flush(rq);
726 } else {
727 spin_lock(&ctx->lock);
728 __blk_mq_insert_request(hctx, rq, at_head);
729 spin_unlock(&ctx->lock);
732 blk_mq_put_ctx(current_ctx);
734 if (run_queue)
735 blk_mq_run_hw_queue(hctx, async);
738 static void blk_mq_insert_requests(struct request_queue *q,
739 struct blk_mq_ctx *ctx,
740 struct list_head *list,
741 int depth,
742 bool from_schedule)
745 struct blk_mq_hw_ctx *hctx;
746 struct blk_mq_ctx *current_ctx;
748 trace_block_unplug(q, depth, !from_schedule);
750 current_ctx = blk_mq_get_ctx(q);
752 if (!cpu_online(ctx->cpu))
753 ctx = current_ctx;
754 hctx = q->mq_ops->map_queue(q, ctx->cpu);
757 * preemption doesn't flush plug list, so it's possible ctx->cpu is
758 * offline now
760 spin_lock(&ctx->lock);
761 while (!list_empty(list)) {
762 struct request *rq;
764 rq = list_first_entry(list, struct request, queuelist);
765 list_del_init(&rq->queuelist);
766 rq->mq_ctx = ctx;
767 __blk_mq_insert_request(hctx, rq, false);
769 spin_unlock(&ctx->lock);
771 blk_mq_put_ctx(current_ctx);
773 blk_mq_run_hw_queue(hctx, from_schedule);
776 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
778 struct request *rqa = container_of(a, struct request, queuelist);
779 struct request *rqb = container_of(b, struct request, queuelist);
781 return !(rqa->mq_ctx < rqb->mq_ctx ||
782 (rqa->mq_ctx == rqb->mq_ctx &&
783 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
786 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
788 struct blk_mq_ctx *this_ctx;
789 struct request_queue *this_q;
790 struct request *rq;
791 LIST_HEAD(list);
792 LIST_HEAD(ctx_list);
793 unsigned int depth;
795 list_splice_init(&plug->mq_list, &list);
797 list_sort(NULL, &list, plug_ctx_cmp);
799 this_q = NULL;
800 this_ctx = NULL;
801 depth = 0;
803 while (!list_empty(&list)) {
804 rq = list_entry_rq(list.next);
805 list_del_init(&rq->queuelist);
806 BUG_ON(!rq->q);
807 if (rq->mq_ctx != this_ctx) {
808 if (this_ctx) {
809 blk_mq_insert_requests(this_q, this_ctx,
810 &ctx_list, depth,
811 from_schedule);
814 this_ctx = rq->mq_ctx;
815 this_q = rq->q;
816 depth = 0;
819 depth++;
820 list_add_tail(&rq->queuelist, &ctx_list);
824 * If 'this_ctx' is set, we know we have entries to complete
825 * on 'ctx_list'. Do those.
827 if (this_ctx) {
828 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
829 from_schedule);
833 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
835 init_request_from_bio(rq, bio);
836 blk_account_io_start(rq, 1);
839 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
841 struct blk_mq_hw_ctx *hctx;
842 struct blk_mq_ctx *ctx;
843 const int is_sync = rw_is_sync(bio->bi_rw);
844 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
845 int rw = bio_data_dir(bio);
846 struct request *rq;
847 unsigned int use_plug, request_count = 0;
850 * If we have multiple hardware queues, just go directly to
851 * one of those for sync IO.
853 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
855 blk_queue_bounce(q, &bio);
857 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
858 bio_endio(bio, -EIO);
859 return;
862 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
863 return;
865 if (blk_mq_queue_enter(q)) {
866 bio_endio(bio, -EIO);
867 return;
870 ctx = blk_mq_get_ctx(q);
871 hctx = q->mq_ops->map_queue(q, ctx->cpu);
873 if (is_sync)
874 rw |= REQ_SYNC;
875 trace_block_getrq(q, bio, rw);
876 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
877 if (likely(rq))
878 blk_mq_rq_ctx_init(q, ctx, rq, rw);
879 else {
880 blk_mq_put_ctx(ctx);
881 trace_block_sleeprq(q, bio, rw);
882 rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
883 false);
884 ctx = rq->mq_ctx;
885 hctx = q->mq_ops->map_queue(q, ctx->cpu);
888 hctx->queued++;
890 if (unlikely(is_flush_fua)) {
891 blk_mq_bio_to_request(rq, bio);
892 blk_mq_put_ctx(ctx);
893 blk_insert_flush(rq);
894 goto run_queue;
898 * A task plug currently exists. Since this is completely lockless,
899 * utilize that to temporarily store requests until the task is
900 * either done or scheduled away.
902 if (use_plug) {
903 struct blk_plug *plug = current->plug;
905 if (plug) {
906 blk_mq_bio_to_request(rq, bio);
907 if (list_empty(&plug->mq_list))
908 trace_block_plug(q);
909 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
910 spin_unlock(&ctx->cpu_lock);
911 blk_flush_plug_list(plug, false);
912 spin_lock(&ctx->cpu_lock);
913 trace_block_plug(q);
915 list_add_tail(&rq->queuelist, &plug->mq_list);
916 blk_mq_put_ctx(ctx);
917 return;
921 spin_lock(&ctx->lock);
923 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
924 blk_mq_attempt_merge(q, ctx, bio))
925 __blk_mq_free_request(hctx, ctx, rq);
926 else {
927 blk_mq_bio_to_request(rq, bio);
928 __blk_mq_insert_request(hctx, rq, false);
931 spin_unlock(&ctx->lock);
932 blk_mq_put_ctx(ctx);
935 * For a SYNC request, send it to the hardware immediately. For an
936 * ASYNC request, just ensure that we run it later on. The latter
937 * allows for merging opportunities and more efficient dispatching.
939 run_queue:
940 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
944 * Default mapping to a software queue, since we use one per CPU.
946 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
948 return q->queue_hw_ctx[q->mq_map[cpu]];
950 EXPORT_SYMBOL(blk_mq_map_queue);
952 struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
953 unsigned int hctx_index)
955 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
956 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
958 EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
960 void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
961 unsigned int hctx_index)
963 kfree(hctx);
965 EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
967 static void blk_mq_hctx_notify(void *data, unsigned long action,
968 unsigned int cpu)
970 struct blk_mq_hw_ctx *hctx = data;
971 struct blk_mq_ctx *ctx;
972 LIST_HEAD(tmp);
974 if (action != CPU_POST_DEAD && action != CPU_POST_DEAD)
975 return;
978 * Move ctx entries to new CPU, if this one is going away.
980 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
982 spin_lock(&ctx->lock);
983 if (!list_empty(&ctx->rq_list)) {
984 list_splice_init(&ctx->rq_list, &tmp);
985 clear_bit(ctx->index_hw, hctx->ctx_map);
987 spin_unlock(&ctx->lock);
988 __blk_mq_put_ctx(ctx);
990 if (list_empty(&tmp))
991 return;
993 ctx = blk_mq_get_ctx(hctx->queue);
994 spin_lock(&ctx->lock);
996 while (!list_empty(&tmp)) {
997 struct request *rq;
999 rq = list_first_entry(&tmp, struct request, queuelist);
1000 rq->mq_ctx = ctx;
1001 list_move_tail(&rq->queuelist, &ctx->rq_list);
1004 blk_mq_hctx_mark_pending(hctx, ctx);
1006 spin_unlock(&ctx->lock);
1007 blk_mq_put_ctx(ctx);
1010 static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1011 void (*init)(void *, struct blk_mq_hw_ctx *,
1012 struct request *, unsigned int),
1013 void *data)
1015 unsigned int i;
1017 for (i = 0; i < hctx->queue_depth; i++) {
1018 struct request *rq = hctx->rqs[i];
1020 init(data, hctx, rq, i);
1024 void blk_mq_init_commands(struct request_queue *q,
1025 void (*init)(void *, struct blk_mq_hw_ctx *,
1026 struct request *, unsigned int),
1027 void *data)
1029 struct blk_mq_hw_ctx *hctx;
1030 unsigned int i;
1032 queue_for_each_hw_ctx(q, hctx, i)
1033 blk_mq_init_hw_commands(hctx, init, data);
1035 EXPORT_SYMBOL(blk_mq_init_commands);
1037 static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1039 struct page *page;
1041 while (!list_empty(&hctx->page_list)) {
1042 page = list_first_entry(&hctx->page_list, struct page, lru);
1043 list_del_init(&page->lru);
1044 __free_pages(page, page->private);
1047 kfree(hctx->rqs);
1049 if (hctx->tags)
1050 blk_mq_free_tags(hctx->tags);
1053 static size_t order_to_size(unsigned int order)
1055 size_t ret = PAGE_SIZE;
1057 while (order--)
1058 ret *= 2;
1060 return ret;
1063 static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1064 unsigned int reserved_tags, int node)
1066 unsigned int i, j, entries_per_page, max_order = 4;
1067 size_t rq_size, left;
1069 INIT_LIST_HEAD(&hctx->page_list);
1071 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1072 GFP_KERNEL, node);
1073 if (!hctx->rqs)
1074 return -ENOMEM;
1077 * rq_size is the size of the request plus driver payload, rounded
1078 * to the cacheline size
1080 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1081 cache_line_size());
1082 left = rq_size * hctx->queue_depth;
1084 for (i = 0; i < hctx->queue_depth;) {
1085 int this_order = max_order;
1086 struct page *page;
1087 int to_do;
1088 void *p;
1090 while (left < order_to_size(this_order - 1) && this_order)
1091 this_order--;
1093 do {
1094 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1095 if (page)
1096 break;
1097 if (!this_order--)
1098 break;
1099 if (order_to_size(this_order) < rq_size)
1100 break;
1101 } while (1);
1103 if (!page)
1104 break;
1106 page->private = this_order;
1107 list_add_tail(&page->lru, &hctx->page_list);
1109 p = page_address(page);
1110 entries_per_page = order_to_size(this_order) / rq_size;
1111 to_do = min(entries_per_page, hctx->queue_depth - i);
1112 left -= to_do * rq_size;
1113 for (j = 0; j < to_do; j++) {
1114 hctx->rqs[i] = p;
1115 blk_mq_rq_init(hctx, hctx->rqs[i]);
1116 p += rq_size;
1117 i++;
1121 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1122 goto err_rq_map;
1123 else if (i != hctx->queue_depth) {
1124 hctx->queue_depth = i;
1125 pr_warn("%s: queue depth set to %u because of low memory\n",
1126 __func__, i);
1129 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1130 if (!hctx->tags) {
1131 err_rq_map:
1132 blk_mq_free_rq_map(hctx);
1133 return -ENOMEM;
1136 return 0;
1139 static int blk_mq_init_hw_queues(struct request_queue *q,
1140 struct blk_mq_reg *reg, void *driver_data)
1142 struct blk_mq_hw_ctx *hctx;
1143 unsigned int i, j;
1146 * Initialize hardware queues
1148 queue_for_each_hw_ctx(q, hctx, i) {
1149 unsigned int num_maps;
1150 int node;
1152 node = hctx->numa_node;
1153 if (node == NUMA_NO_NODE)
1154 node = hctx->numa_node = reg->numa_node;
1156 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1157 spin_lock_init(&hctx->lock);
1158 INIT_LIST_HEAD(&hctx->dispatch);
1159 hctx->queue = q;
1160 hctx->queue_num = i;
1161 hctx->flags = reg->flags;
1162 hctx->queue_depth = reg->queue_depth;
1163 hctx->cmd_size = reg->cmd_size;
1165 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1166 blk_mq_hctx_notify, hctx);
1167 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1169 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1170 break;
1173 * Allocate space for all possible cpus to avoid allocation in
1174 * runtime
1176 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1177 GFP_KERNEL, node);
1178 if (!hctx->ctxs)
1179 break;
1181 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1182 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1183 GFP_KERNEL, node);
1184 if (!hctx->ctx_map)
1185 break;
1187 hctx->nr_ctx_map = num_maps;
1188 hctx->nr_ctx = 0;
1190 if (reg->ops->init_hctx &&
1191 reg->ops->init_hctx(hctx, driver_data, i))
1192 break;
1195 if (i == q->nr_hw_queues)
1196 return 0;
1199 * Init failed
1201 queue_for_each_hw_ctx(q, hctx, j) {
1202 if (i == j)
1203 break;
1205 if (reg->ops->exit_hctx)
1206 reg->ops->exit_hctx(hctx, j);
1208 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1209 blk_mq_free_rq_map(hctx);
1210 kfree(hctx->ctxs);
1213 return 1;
1216 static void blk_mq_init_cpu_queues(struct request_queue *q,
1217 unsigned int nr_hw_queues)
1219 unsigned int i;
1221 for_each_possible_cpu(i) {
1222 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1223 struct blk_mq_hw_ctx *hctx;
1225 memset(__ctx, 0, sizeof(*__ctx));
1226 __ctx->cpu = i;
1227 spin_lock_init(&__ctx->lock);
1228 spin_lock_init(&__ctx->cpu_lock);
1229 INIT_LIST_HEAD(&__ctx->rq_list);
1230 __ctx->queue = q;
1232 /* If the cpu isn't online, the cpu is mapped to first hctx */
1233 hctx = q->mq_ops->map_queue(q, i);
1234 hctx->nr_ctx++;
1236 if (!cpu_online(i))
1237 continue;
1240 * Set local node, IFF we have more than one hw queue. If
1241 * not, we remain on the home node of the device
1243 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1244 hctx->numa_node = cpu_to_node(i);
1248 static void blk_mq_map_swqueue(struct request_queue *q)
1250 unsigned int i;
1251 struct blk_mq_hw_ctx *hctx;
1252 struct blk_mq_ctx *ctx;
1254 queue_for_each_hw_ctx(q, hctx, i) {
1255 hctx->nr_ctx = 0;
1259 * Map software to hardware queues
1261 queue_for_each_ctx(q, ctx, i) {
1262 /* If the cpu isn't online, the cpu is mapped to first hctx */
1263 hctx = q->mq_ops->map_queue(q, i);
1264 ctx->index_hw = hctx->nr_ctx;
1265 hctx->ctxs[hctx->nr_ctx++] = ctx;
1269 struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1270 void *driver_data)
1272 struct blk_mq_hw_ctx **hctxs;
1273 struct blk_mq_ctx *ctx;
1274 struct request_queue *q;
1275 int i;
1277 if (!reg->nr_hw_queues ||
1278 !reg->ops->queue_rq || !reg->ops->map_queue ||
1279 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1280 return ERR_PTR(-EINVAL);
1282 if (!reg->queue_depth)
1283 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1284 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1285 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1286 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1289 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1290 return ERR_PTR(-EINVAL);
1292 ctx = alloc_percpu(struct blk_mq_ctx);
1293 if (!ctx)
1294 return ERR_PTR(-ENOMEM);
1296 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1297 reg->numa_node);
1299 if (!hctxs)
1300 goto err_percpu;
1302 for (i = 0; i < reg->nr_hw_queues; i++) {
1303 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1304 if (!hctxs[i])
1305 goto err_hctxs;
1307 hctxs[i]->numa_node = NUMA_NO_NODE;
1308 hctxs[i]->queue_num = i;
1311 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1312 if (!q)
1313 goto err_hctxs;
1315 q->mq_map = blk_mq_make_queue_map(reg);
1316 if (!q->mq_map)
1317 goto err_map;
1319 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1320 blk_queue_rq_timeout(q, 30000);
1322 q->nr_queues = nr_cpu_ids;
1323 q->nr_hw_queues = reg->nr_hw_queues;
1325 q->queue_ctx = ctx;
1326 q->queue_hw_ctx = hctxs;
1328 q->mq_ops = reg->ops;
1329 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1331 q->sg_reserved_size = INT_MAX;
1333 blk_queue_make_request(q, blk_mq_make_request);
1334 blk_queue_rq_timed_out(q, reg->ops->timeout);
1335 if (reg->timeout)
1336 blk_queue_rq_timeout(q, reg->timeout);
1338 if (reg->ops->complete)
1339 blk_queue_softirq_done(q, reg->ops->complete);
1341 blk_mq_init_flush(q);
1342 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1344 q->flush_rq = kzalloc(round_up(sizeof(struct request) + reg->cmd_size,
1345 cache_line_size()), GFP_KERNEL);
1346 if (!q->flush_rq)
1347 goto err_hw;
1349 if (blk_mq_init_hw_queues(q, reg, driver_data))
1350 goto err_flush_rq;
1352 blk_mq_map_swqueue(q);
1354 mutex_lock(&all_q_mutex);
1355 list_add_tail(&q->all_q_node, &all_q_list);
1356 mutex_unlock(&all_q_mutex);
1358 return q;
1360 err_flush_rq:
1361 kfree(q->flush_rq);
1362 err_hw:
1363 kfree(q->mq_map);
1364 err_map:
1365 blk_cleanup_queue(q);
1366 err_hctxs:
1367 for (i = 0; i < reg->nr_hw_queues; i++) {
1368 if (!hctxs[i])
1369 break;
1370 reg->ops->free_hctx(hctxs[i], i);
1372 kfree(hctxs);
1373 err_percpu:
1374 free_percpu(ctx);
1375 return ERR_PTR(-ENOMEM);
1377 EXPORT_SYMBOL(blk_mq_init_queue);
1379 void blk_mq_free_queue(struct request_queue *q)
1381 struct blk_mq_hw_ctx *hctx;
1382 int i;
1384 queue_for_each_hw_ctx(q, hctx, i) {
1385 kfree(hctx->ctx_map);
1386 kfree(hctx->ctxs);
1387 blk_mq_free_rq_map(hctx);
1388 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1389 if (q->mq_ops->exit_hctx)
1390 q->mq_ops->exit_hctx(hctx, i);
1391 q->mq_ops->free_hctx(hctx, i);
1394 free_percpu(q->queue_ctx);
1395 kfree(q->queue_hw_ctx);
1396 kfree(q->mq_map);
1398 q->queue_ctx = NULL;
1399 q->queue_hw_ctx = NULL;
1400 q->mq_map = NULL;
1402 mutex_lock(&all_q_mutex);
1403 list_del_init(&q->all_q_node);
1404 mutex_unlock(&all_q_mutex);
1407 /* Basically redo blk_mq_init_queue with queue frozen */
1408 static void blk_mq_queue_reinit(struct request_queue *q)
1410 blk_mq_freeze_queue(q);
1412 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1415 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1416 * we should change hctx numa_node according to new topology (this
1417 * involves free and re-allocate memory, worthy doing?)
1420 blk_mq_map_swqueue(q);
1422 blk_mq_unfreeze_queue(q);
1425 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1426 unsigned long action, void *hcpu)
1428 struct request_queue *q;
1431 * Before new mapping is established, hotadded cpu might already start
1432 * handling requests. This doesn't break anything as we map offline
1433 * CPUs to first hardware queue. We will re-init queue below to get
1434 * optimal settings.
1436 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1437 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1438 return NOTIFY_OK;
1440 mutex_lock(&all_q_mutex);
1441 list_for_each_entry(q, &all_q_list, all_q_node)
1442 blk_mq_queue_reinit(q);
1443 mutex_unlock(&all_q_mutex);
1444 return NOTIFY_OK;
1447 static int __init blk_mq_init(void)
1449 blk_mq_cpu_init();
1451 /* Must be called after percpu_counter_hotcpu_callback() */
1452 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1454 return 0;
1456 subsys_initcall(blk_mq_init);