2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/export.h>
13 #include <linux/dmaengine.h>
14 #include <linux/platform_device.h>
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/err.h>
22 #include <linux/of_dma.h>
23 #include <linux/amba/bus.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/platform_data/dma-ste-dma40.h>
27 #include "dmaengine.h"
28 #include "ste_dma40_ll.h"
30 #define D40_NAME "dma40"
32 #define D40_PHY_CHAN -1
34 /* For masking out/in 2 bit channel positions */
35 #define D40_CHAN_POS(chan) (2 * (chan / 2))
36 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
38 /* Maximum iterations taken before giving up suspending a channel */
39 #define D40_SUSPEND_MAX_IT 500
42 #define DMA40_AUTOSUSPEND_DELAY 100
44 /* Hardware requirement on LCLA alignment */
45 #define LCLA_ALIGNMENT 0x40000
47 /* Max number of links per event group */
48 #define D40_LCLA_LINK_PER_EVENT_GRP 128
49 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
51 /* Max number of logical channels per physical channel */
52 #define D40_MAX_LOG_CHAN_PER_PHY 32
54 /* Attempts before giving up to trying to get pages that are aligned */
55 #define MAX_LCLA_ALLOC_ATTEMPTS 256
57 /* Bit markings for allocation map */
58 #define D40_ALLOC_FREE BIT(31)
59 #define D40_ALLOC_PHY BIT(30)
60 #define D40_ALLOC_LOG_FREE 0
62 #define D40_MEMCPY_MAX_CHANS 8
64 /* Reserved event lines for memcpy only. */
65 #define DB8500_DMA_MEMCPY_EV_0 51
66 #define DB8500_DMA_MEMCPY_EV_1 56
67 #define DB8500_DMA_MEMCPY_EV_2 57
68 #define DB8500_DMA_MEMCPY_EV_3 58
69 #define DB8500_DMA_MEMCPY_EV_4 59
70 #define DB8500_DMA_MEMCPY_EV_5 60
72 static int dma40_memcpy_channels
[] = {
73 DB8500_DMA_MEMCPY_EV_0
,
74 DB8500_DMA_MEMCPY_EV_1
,
75 DB8500_DMA_MEMCPY_EV_2
,
76 DB8500_DMA_MEMCPY_EV_3
,
77 DB8500_DMA_MEMCPY_EV_4
,
78 DB8500_DMA_MEMCPY_EV_5
,
81 /* Default configuration for physcial memcpy */
82 static struct stedma40_chan_cfg dma40_memcpy_conf_phy
= {
83 .mode
= STEDMA40_MODE_PHYSICAL
,
84 .dir
= DMA_MEM_TO_MEM
,
86 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
87 .src_info
.psize
= STEDMA40_PSIZE_PHY_1
,
88 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
90 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
91 .dst_info
.psize
= STEDMA40_PSIZE_PHY_1
,
92 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
95 /* Default configuration for logical memcpy */
96 static struct stedma40_chan_cfg dma40_memcpy_conf_log
= {
97 .mode
= STEDMA40_MODE_LOGICAL
,
98 .dir
= DMA_MEM_TO_MEM
,
100 .src_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
101 .src_info
.psize
= STEDMA40_PSIZE_LOG_1
,
102 .src_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
104 .dst_info
.data_width
= DMA_SLAVE_BUSWIDTH_1_BYTE
,
105 .dst_info
.psize
= STEDMA40_PSIZE_LOG_1
,
106 .dst_info
.flow_ctrl
= STEDMA40_NO_FLOW_CTRL
,
110 * enum 40_command - The different commands and/or statuses.
112 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
113 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
114 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
115 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
120 D40_DMA_SUSPEND_REQ
= 2,
121 D40_DMA_SUSPENDED
= 3
125 * enum d40_events - The different Event Enables for the event lines.
127 * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan.
128 * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan.
129 * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line.
130 * @D40_ROUND_EVENTLINE: Status check for event line.
134 D40_DEACTIVATE_EVENTLINE
= 0,
135 D40_ACTIVATE_EVENTLINE
= 1,
136 D40_SUSPEND_REQ_EVENTLINE
= 2,
137 D40_ROUND_EVENTLINE
= 3
141 * These are the registers that has to be saved and later restored
142 * when the DMA hw is powered off.
143 * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works.
145 static u32 d40_backup_regs
[] = {
154 #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs)
157 * since 9540 and 8540 has the same HW revision
158 * use v4a for 9540 or ealier
159 * use v4b for 8540 or later
161 * DB8500ed has revision 0
162 * DB8500v1 has revision 2
163 * DB8500v2 has revision 3
164 * AP9540v1 has revision 4
165 * DB8540v1 has revision 4
166 * TODO: Check if all these registers have to be saved/restored on dma40 v4a
168 static u32 d40_backup_regs_v4a
[] = {
187 #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a)
189 static u32 d40_backup_regs_v4b
[] = {
212 #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b)
214 static u32 d40_backup_regs_chan
[] = {
225 #define BACKUP_REGS_SZ_MAX ((BACKUP_REGS_SZ_V4A > BACKUP_REGS_SZ_V4B) ? \
226 BACKUP_REGS_SZ_V4A : BACKUP_REGS_SZ_V4B)
229 * struct d40_interrupt_lookup - lookup table for interrupt handler
231 * @src: Interrupt mask register.
232 * @clr: Interrupt clear register.
233 * @is_error: true if this is an error interrupt.
234 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
235 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
237 struct d40_interrupt_lookup
{
245 static struct d40_interrupt_lookup il_v4a
[] = {
246 {D40_DREG_LCTIS0
, D40_DREG_LCICR0
, false, 0},
247 {D40_DREG_LCTIS1
, D40_DREG_LCICR1
, false, 32},
248 {D40_DREG_LCTIS2
, D40_DREG_LCICR2
, false, 64},
249 {D40_DREG_LCTIS3
, D40_DREG_LCICR3
, false, 96},
250 {D40_DREG_LCEIS0
, D40_DREG_LCICR0
, true, 0},
251 {D40_DREG_LCEIS1
, D40_DREG_LCICR1
, true, 32},
252 {D40_DREG_LCEIS2
, D40_DREG_LCICR2
, true, 64},
253 {D40_DREG_LCEIS3
, D40_DREG_LCICR3
, true, 96},
254 {D40_DREG_PCTIS
, D40_DREG_PCICR
, false, D40_PHY_CHAN
},
255 {D40_DREG_PCEIS
, D40_DREG_PCICR
, true, D40_PHY_CHAN
},
258 static struct d40_interrupt_lookup il_v4b
[] = {
259 {D40_DREG_CLCTIS1
, D40_DREG_CLCICR1
, false, 0},
260 {D40_DREG_CLCTIS2
, D40_DREG_CLCICR2
, false, 32},
261 {D40_DREG_CLCTIS3
, D40_DREG_CLCICR3
, false, 64},
262 {D40_DREG_CLCTIS4
, D40_DREG_CLCICR4
, false, 96},
263 {D40_DREG_CLCTIS5
, D40_DREG_CLCICR5
, false, 128},
264 {D40_DREG_CLCEIS1
, D40_DREG_CLCICR1
, true, 0},
265 {D40_DREG_CLCEIS2
, D40_DREG_CLCICR2
, true, 32},
266 {D40_DREG_CLCEIS3
, D40_DREG_CLCICR3
, true, 64},
267 {D40_DREG_CLCEIS4
, D40_DREG_CLCICR4
, true, 96},
268 {D40_DREG_CLCEIS5
, D40_DREG_CLCICR5
, true, 128},
269 {D40_DREG_CPCTIS
, D40_DREG_CPCICR
, false, D40_PHY_CHAN
},
270 {D40_DREG_CPCEIS
, D40_DREG_CPCICR
, true, D40_PHY_CHAN
},
274 * struct d40_reg_val - simple lookup struct
276 * @reg: The register.
277 * @val: The value that belongs to the register in reg.
284 static __initdata
struct d40_reg_val dma_init_reg_v4a
[] = {
285 /* Clock every part of the DMA block from start */
286 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
288 /* Interrupts on all logical channels */
289 { .reg
= D40_DREG_LCMIS0
, .val
= 0xFFFFFFFF},
290 { .reg
= D40_DREG_LCMIS1
, .val
= 0xFFFFFFFF},
291 { .reg
= D40_DREG_LCMIS2
, .val
= 0xFFFFFFFF},
292 { .reg
= D40_DREG_LCMIS3
, .val
= 0xFFFFFFFF},
293 { .reg
= D40_DREG_LCICR0
, .val
= 0xFFFFFFFF},
294 { .reg
= D40_DREG_LCICR1
, .val
= 0xFFFFFFFF},
295 { .reg
= D40_DREG_LCICR2
, .val
= 0xFFFFFFFF},
296 { .reg
= D40_DREG_LCICR3
, .val
= 0xFFFFFFFF},
297 { .reg
= D40_DREG_LCTIS0
, .val
= 0xFFFFFFFF},
298 { .reg
= D40_DREG_LCTIS1
, .val
= 0xFFFFFFFF},
299 { .reg
= D40_DREG_LCTIS2
, .val
= 0xFFFFFFFF},
300 { .reg
= D40_DREG_LCTIS3
, .val
= 0xFFFFFFFF}
302 static __initdata
struct d40_reg_val dma_init_reg_v4b
[] = {
303 /* Clock every part of the DMA block from start */
304 { .reg
= D40_DREG_GCC
, .val
= D40_DREG_GCC_ENABLE_ALL
},
306 /* Interrupts on all logical channels */
307 { .reg
= D40_DREG_CLCMIS1
, .val
= 0xFFFFFFFF},
308 { .reg
= D40_DREG_CLCMIS2
, .val
= 0xFFFFFFFF},
309 { .reg
= D40_DREG_CLCMIS3
, .val
= 0xFFFFFFFF},
310 { .reg
= D40_DREG_CLCMIS4
, .val
= 0xFFFFFFFF},
311 { .reg
= D40_DREG_CLCMIS5
, .val
= 0xFFFFFFFF},
312 { .reg
= D40_DREG_CLCICR1
, .val
= 0xFFFFFFFF},
313 { .reg
= D40_DREG_CLCICR2
, .val
= 0xFFFFFFFF},
314 { .reg
= D40_DREG_CLCICR3
, .val
= 0xFFFFFFFF},
315 { .reg
= D40_DREG_CLCICR4
, .val
= 0xFFFFFFFF},
316 { .reg
= D40_DREG_CLCICR5
, .val
= 0xFFFFFFFF},
317 { .reg
= D40_DREG_CLCTIS1
, .val
= 0xFFFFFFFF},
318 { .reg
= D40_DREG_CLCTIS2
, .val
= 0xFFFFFFFF},
319 { .reg
= D40_DREG_CLCTIS3
, .val
= 0xFFFFFFFF},
320 { .reg
= D40_DREG_CLCTIS4
, .val
= 0xFFFFFFFF},
321 { .reg
= D40_DREG_CLCTIS5
, .val
= 0xFFFFFFFF}
325 * struct d40_lli_pool - Structure for keeping LLIs in memory
327 * @base: Pointer to memory area when the pre_alloc_lli's are not large
328 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
329 * pre_alloc_lli is used.
330 * @dma_addr: DMA address, if mapped
331 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
332 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
333 * one buffer to one buffer.
335 struct d40_lli_pool
{
339 /* Space for dst and src, plus an extra for padding */
340 u8 pre_alloc_lli
[3 * sizeof(struct d40_phy_lli
)];
344 * struct d40_desc - A descriptor is one DMA job.
346 * @lli_phy: LLI settings for physical channel. Both src and dst=
347 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
348 * lli_len equals one.
349 * @lli_log: Same as above but for logical channels.
350 * @lli_pool: The pool with two entries pre-allocated.
351 * @lli_len: Number of llis of current descriptor.
352 * @lli_current: Number of transferred llis.
353 * @lcla_alloc: Number of LCLA entries allocated.
354 * @txd: DMA engine struct. Used for among other things for communication
357 * @is_in_client_list: true if the client owns this descriptor.
358 * @cyclic: true if this is a cyclic job
360 * This descriptor is used for both logical and physical transfers.
364 struct d40_phy_lli_bidir lli_phy
;
366 struct d40_log_lli_bidir lli_log
;
368 struct d40_lli_pool lli_pool
;
373 struct dma_async_tx_descriptor txd
;
374 struct list_head node
;
376 bool is_in_client_list
;
381 * struct d40_lcla_pool - LCLA pool settings and data.
383 * @base: The virtual address of LCLA. 18 bit aligned.
384 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
385 * This pointer is only there for clean-up on error.
386 * @pages: The number of pages needed for all physical channels.
387 * Only used later for clean-up on error
388 * @lock: Lock to protect the content in this struct.
389 * @alloc_map: big map over which LCLA entry is own by which job.
391 struct d40_lcla_pool
{
394 void *base_unaligned
;
397 struct d40_desc
**alloc_map
;
401 * struct d40_phy_res - struct for handling eventlines mapped to physical
404 * @lock: A lock protection this entity.
405 * @reserved: True if used by secure world or otherwise.
406 * @num: The physical channel number of this entity.
407 * @allocated_src: Bit mapped to show which src event line's are mapped to
408 * this physical channel. Can also be free or physically allocated.
409 * @allocated_dst: Same as for src but is dst.
410 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
412 * @use_soft_lli: To mark if the linked lists of channel are managed by SW.
426 * struct d40_chan - Struct that describes a channel.
428 * @lock: A spinlock to protect this struct.
429 * @log_num: The logical number, if any of this channel.
430 * @pending_tx: The number of pending transfers. Used between interrupt handler
432 * @busy: Set to true when transfer is ongoing on this channel.
433 * @phy_chan: Pointer to physical channel which this instance runs on. If this
434 * point is NULL, then the channel is not allocated.
435 * @chan: DMA engine handle.
436 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
437 * transfer and call client callback.
438 * @client: Cliented owned descriptor list.
439 * @pending_queue: Submitted jobs, to be issued by issue_pending()
440 * @active: Active descriptor.
441 * @done: Completed jobs
442 * @queue: Queued jobs.
443 * @prepare_queue: Prepared jobs.
444 * @dma_cfg: The client configuration of this dma channel.
445 * @configured: whether the dma_cfg configuration is valid
446 * @base: Pointer to the device instance struct.
447 * @src_def_cfg: Default cfg register setting for src.
448 * @dst_def_cfg: Default cfg register setting for dst.
449 * @log_def: Default logical channel settings.
450 * @lcpa: Pointer to dst and src lcpa settings.
451 * @runtime_addr: runtime configured address.
452 * @runtime_direction: runtime configured direction.
454 * This struct can either "be" a logical or a physical channel.
461 struct d40_phy_res
*phy_chan
;
462 struct dma_chan chan
;
463 struct tasklet_struct tasklet
;
464 struct list_head client
;
465 struct list_head pending_queue
;
466 struct list_head active
;
467 struct list_head done
;
468 struct list_head queue
;
469 struct list_head prepare_queue
;
470 struct stedma40_chan_cfg dma_cfg
;
472 struct d40_base
*base
;
473 /* Default register configurations */
476 struct d40_def_lcsp log_def
;
477 struct d40_log_lli_full
*lcpa
;
478 /* Runtime reconfiguration */
479 dma_addr_t runtime_addr
;
480 enum dma_transfer_direction runtime_direction
;
484 * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA
487 * @backup: the pointer to the registers address array for backup
488 * @backup_size: the size of the registers address array for backup
489 * @realtime_en: the realtime enable register
490 * @realtime_clear: the realtime clear register
491 * @high_prio_en: the high priority enable register
492 * @high_prio_clear: the high priority clear register
493 * @interrupt_en: the interrupt enable register
494 * @interrupt_clear: the interrupt clear register
495 * @il: the pointer to struct d40_interrupt_lookup
496 * @il_size: the size of d40_interrupt_lookup array
497 * @init_reg: the pointer to the struct d40_reg_val
498 * @init_reg_size: the size of d40_reg_val array
500 struct d40_gen_dmac
{
509 struct d40_interrupt_lookup
*il
;
511 struct d40_reg_val
*init_reg
;
516 * struct d40_base - The big global struct, one for each probe'd instance.
518 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
519 * @execmd_lock: Lock for execute command usage since several channels share
520 * the same physical register.
521 * @dev: The device structure.
522 * @virtbase: The virtual base address of the DMA's register.
523 * @rev: silicon revision detected.
524 * @clk: Pointer to the DMA clock structure.
525 * @phy_start: Physical memory start of the DMA registers.
526 * @phy_size: Size of the DMA register map.
527 * @irq: The IRQ number.
528 * @num_memcpy_chans: The number of channels used for memcpy (mem-to-mem
530 * @num_phy_chans: The number of physical channels. Read from HW. This
531 * is the number of available channels for this driver, not counting "Secure
532 * mode" allocated physical channels.
533 * @num_log_chans: The number of logical channels. Calculated from
535 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
536 * @dma_slave: dma_device channels that can do only do slave transfers.
537 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
538 * @phy_chans: Room for all possible physical channels in system.
539 * @log_chans: Room for all possible logical channels in system.
540 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
541 * to log_chans entries.
542 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
543 * to phy_chans entries.
544 * @plat_data: Pointer to provided platform_data which is the driver
546 * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla.
547 * @phy_res: Vector containing all physical channels.
548 * @lcla_pool: lcla pool settings and data.
549 * @lcpa_base: The virtual mapped address of LCPA.
550 * @phy_lcpa: The physical address of the LCPA.
551 * @lcpa_size: The size of the LCPA area.
552 * @desc_slab: cache for descriptors.
553 * @reg_val_backup: Here the values of some hardware registers are stored
554 * before the DMA is powered off. They are restored when the power is back on.
555 * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and
557 * @reg_val_backup_chan: Backup data for standard channel parameter registers.
558 * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off.
559 * @initialized: true if the dma has been initialized
560 * @gen_dmac: the struct for generic registers values to represent u8500/8540
564 spinlock_t interrupt_lock
;
565 spinlock_t execmd_lock
;
567 void __iomem
*virtbase
;
570 phys_addr_t phy_start
;
571 resource_size_t phy_size
;
573 int num_memcpy_chans
;
576 struct device_dma_parameters dma_parms
;
577 struct dma_device dma_both
;
578 struct dma_device dma_slave
;
579 struct dma_device dma_memcpy
;
580 struct d40_chan
*phy_chans
;
581 struct d40_chan
*log_chans
;
582 struct d40_chan
**lookup_log_chans
;
583 struct d40_chan
**lookup_phy_chans
;
584 struct stedma40_platform_data
*plat_data
;
585 struct regulator
*lcpa_regulator
;
586 /* Physical half channels */
587 struct d40_phy_res
*phy_res
;
588 struct d40_lcla_pool lcla_pool
;
591 resource_size_t lcpa_size
;
592 struct kmem_cache
*desc_slab
;
593 u32 reg_val_backup
[BACKUP_REGS_SZ
];
594 u32 reg_val_backup_v4
[BACKUP_REGS_SZ_MAX
];
595 u32
*reg_val_backup_chan
;
596 u16 gcc_pwr_off_mask
;
598 struct d40_gen_dmac gen_dmac
;
601 static struct device
*chan2dev(struct d40_chan
*d40c
)
603 return &d40c
->chan
.dev
->device
;
606 static bool chan_is_physical(struct d40_chan
*chan
)
608 return chan
->log_num
== D40_PHY_CHAN
;
611 static bool chan_is_logical(struct d40_chan
*chan
)
613 return !chan_is_physical(chan
);
616 static void __iomem
*chan_base(struct d40_chan
*chan
)
618 return chan
->base
->virtbase
+ D40_DREG_PCBASE
+
619 chan
->phy_chan
->num
* D40_DREG_PCDELTA
;
622 #define d40_err(dev, format, arg...) \
623 dev_err(dev, "[%s] " format, __func__, ## arg)
625 #define chan_err(d40c, format, arg...) \
626 d40_err(chan2dev(d40c), format, ## arg)
628 static int d40_pool_lli_alloc(struct d40_chan
*d40c
, struct d40_desc
*d40d
,
631 bool is_log
= chan_is_logical(d40c
);
636 align
= sizeof(struct d40_log_lli
);
638 align
= sizeof(struct d40_phy_lli
);
641 base
= d40d
->lli_pool
.pre_alloc_lli
;
642 d40d
->lli_pool
.size
= sizeof(d40d
->lli_pool
.pre_alloc_lli
);
643 d40d
->lli_pool
.base
= NULL
;
645 d40d
->lli_pool
.size
= lli_len
* 2 * align
;
647 base
= kmalloc(d40d
->lli_pool
.size
+ align
, GFP_NOWAIT
);
648 d40d
->lli_pool
.base
= base
;
650 if (d40d
->lli_pool
.base
== NULL
)
655 d40d
->lli_log
.src
= PTR_ALIGN(base
, align
);
656 d40d
->lli_log
.dst
= d40d
->lli_log
.src
+ lli_len
;
658 d40d
->lli_pool
.dma_addr
= 0;
660 d40d
->lli_phy
.src
= PTR_ALIGN(base
, align
);
661 d40d
->lli_phy
.dst
= d40d
->lli_phy
.src
+ lli_len
;
663 d40d
->lli_pool
.dma_addr
= dma_map_single(d40c
->base
->dev
,
668 if (dma_mapping_error(d40c
->base
->dev
,
669 d40d
->lli_pool
.dma_addr
)) {
670 kfree(d40d
->lli_pool
.base
);
671 d40d
->lli_pool
.base
= NULL
;
672 d40d
->lli_pool
.dma_addr
= 0;
680 static void d40_pool_lli_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
682 if (d40d
->lli_pool
.dma_addr
)
683 dma_unmap_single(d40c
->base
->dev
, d40d
->lli_pool
.dma_addr
,
684 d40d
->lli_pool
.size
, DMA_TO_DEVICE
);
686 kfree(d40d
->lli_pool
.base
);
687 d40d
->lli_pool
.base
= NULL
;
688 d40d
->lli_pool
.size
= 0;
689 d40d
->lli_log
.src
= NULL
;
690 d40d
->lli_log
.dst
= NULL
;
691 d40d
->lli_phy
.src
= NULL
;
692 d40d
->lli_phy
.dst
= NULL
;
695 static int d40_lcla_alloc_one(struct d40_chan
*d40c
,
696 struct d40_desc
*d40d
)
702 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
705 * Allocate both src and dst at the same time, therefore the half
706 * start on 1 since 0 can't be used since zero is used as end marker.
708 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
709 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
711 if (!d40c
->base
->lcla_pool
.alloc_map
[idx
]) {
712 d40c
->base
->lcla_pool
.alloc_map
[idx
] = d40d
;
719 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
724 static int d40_lcla_free_all(struct d40_chan
*d40c
,
725 struct d40_desc
*d40d
)
731 if (chan_is_physical(d40c
))
734 spin_lock_irqsave(&d40c
->base
->lcla_pool
.lock
, flags
);
736 for (i
= 1 ; i
< D40_LCLA_LINK_PER_EVENT_GRP
/ 2; i
++) {
737 int idx
= d40c
->phy_chan
->num
* D40_LCLA_LINK_PER_EVENT_GRP
+ i
;
739 if (d40c
->base
->lcla_pool
.alloc_map
[idx
] == d40d
) {
740 d40c
->base
->lcla_pool
.alloc_map
[idx
] = NULL
;
742 if (d40d
->lcla_alloc
== 0) {
749 spin_unlock_irqrestore(&d40c
->base
->lcla_pool
.lock
, flags
);
755 static void d40_desc_remove(struct d40_desc
*d40d
)
757 list_del(&d40d
->node
);
760 static struct d40_desc
*d40_desc_get(struct d40_chan
*d40c
)
762 struct d40_desc
*desc
= NULL
;
764 if (!list_empty(&d40c
->client
)) {
768 list_for_each_entry_safe(d
, _d
, &d40c
->client
, node
) {
769 if (async_tx_test_ack(&d
->txd
)) {
772 memset(desc
, 0, sizeof(*desc
));
779 desc
= kmem_cache_zalloc(d40c
->base
->desc_slab
, GFP_NOWAIT
);
782 INIT_LIST_HEAD(&desc
->node
);
787 static void d40_desc_free(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
790 d40_pool_lli_free(d40c
, d40d
);
791 d40_lcla_free_all(d40c
, d40d
);
792 kmem_cache_free(d40c
->base
->desc_slab
, d40d
);
795 static void d40_desc_submit(struct d40_chan
*d40c
, struct d40_desc
*desc
)
797 list_add_tail(&desc
->node
, &d40c
->active
);
800 static void d40_phy_lli_load(struct d40_chan
*chan
, struct d40_desc
*desc
)
802 struct d40_phy_lli
*lli_dst
= desc
->lli_phy
.dst
;
803 struct d40_phy_lli
*lli_src
= desc
->lli_phy
.src
;
804 void __iomem
*base
= chan_base(chan
);
806 writel(lli_src
->reg_cfg
, base
+ D40_CHAN_REG_SSCFG
);
807 writel(lli_src
->reg_elt
, base
+ D40_CHAN_REG_SSELT
);
808 writel(lli_src
->reg_ptr
, base
+ D40_CHAN_REG_SSPTR
);
809 writel(lli_src
->reg_lnk
, base
+ D40_CHAN_REG_SSLNK
);
811 writel(lli_dst
->reg_cfg
, base
+ D40_CHAN_REG_SDCFG
);
812 writel(lli_dst
->reg_elt
, base
+ D40_CHAN_REG_SDELT
);
813 writel(lli_dst
->reg_ptr
, base
+ D40_CHAN_REG_SDPTR
);
814 writel(lli_dst
->reg_lnk
, base
+ D40_CHAN_REG_SDLNK
);
817 static void d40_desc_done(struct d40_chan
*d40c
, struct d40_desc
*desc
)
819 list_add_tail(&desc
->node
, &d40c
->done
);
822 static void d40_log_lli_to_lcxa(struct d40_chan
*chan
, struct d40_desc
*desc
)
824 struct d40_lcla_pool
*pool
= &chan
->base
->lcla_pool
;
825 struct d40_log_lli_bidir
*lli
= &desc
->lli_log
;
826 int lli_current
= desc
->lli_current
;
827 int lli_len
= desc
->lli_len
;
828 bool cyclic
= desc
->cyclic
;
829 int curr_lcla
= -EINVAL
;
831 bool use_esram_lcla
= chan
->base
->plat_data
->use_esram_lcla
;
835 * We may have partially running cyclic transfers, in case we did't get
836 * enough LCLA entries.
838 linkback
= cyclic
&& lli_current
== 0;
841 * For linkback, we need one LCLA even with only one link, because we
842 * can't link back to the one in LCPA space
844 if (linkback
|| (lli_len
- lli_current
> 1)) {
846 * If the channel is expected to use only soft_lli don't
847 * allocate a lcla. This is to avoid a HW issue that exists
848 * in some controller during a peripheral to memory transfer
849 * that uses linked lists.
851 if (!(chan
->phy_chan
->use_soft_lli
&&
852 chan
->dma_cfg
.dir
== DMA_DEV_TO_MEM
))
853 curr_lcla
= d40_lcla_alloc_one(chan
, desc
);
855 first_lcla
= curr_lcla
;
859 * For linkback, we normally load the LCPA in the loop since we need to
860 * link it to the second LCLA and not the first. However, if we
861 * couldn't even get a first LCLA, then we have to run in LCPA and
864 if (!linkback
|| curr_lcla
== -EINVAL
) {
865 unsigned int flags
= 0;
867 if (curr_lcla
== -EINVAL
)
868 flags
|= LLI_TERM_INT
;
870 d40_log_lli_lcpa_write(chan
->lcpa
,
871 &lli
->dst
[lli_current
],
872 &lli
->src
[lli_current
],
881 for (; lli_current
< lli_len
; lli_current
++) {
882 unsigned int lcla_offset
= chan
->phy_chan
->num
* 1024 +
884 struct d40_log_lli
*lcla
= pool
->base
+ lcla_offset
;
885 unsigned int flags
= 0;
888 if (lli_current
+ 1 < lli_len
)
889 next_lcla
= d40_lcla_alloc_one(chan
, desc
);
891 next_lcla
= linkback
? first_lcla
: -EINVAL
;
893 if (cyclic
|| next_lcla
== -EINVAL
)
894 flags
|= LLI_TERM_INT
;
896 if (linkback
&& curr_lcla
== first_lcla
) {
897 /* First link goes in both LCPA and LCLA */
898 d40_log_lli_lcpa_write(chan
->lcpa
,
899 &lli
->dst
[lli_current
],
900 &lli
->src
[lli_current
],
905 * One unused LCLA in the cyclic case if the very first
908 d40_log_lli_lcla_write(lcla
,
909 &lli
->dst
[lli_current
],
910 &lli
->src
[lli_current
],
914 * Cache maintenance is not needed if lcla is
917 if (!use_esram_lcla
) {
918 dma_sync_single_range_for_device(chan
->base
->dev
,
919 pool
->dma_addr
, lcla_offset
,
920 2 * sizeof(struct d40_log_lli
),
923 curr_lcla
= next_lcla
;
925 if (curr_lcla
== -EINVAL
|| curr_lcla
== first_lcla
) {
932 desc
->lli_current
= lli_current
;
935 static void d40_desc_load(struct d40_chan
*d40c
, struct d40_desc
*d40d
)
937 if (chan_is_physical(d40c
)) {
938 d40_phy_lli_load(d40c
, d40d
);
939 d40d
->lli_current
= d40d
->lli_len
;
941 d40_log_lli_to_lcxa(d40c
, d40d
);
944 static struct d40_desc
*d40_first_active_get(struct d40_chan
*d40c
)
948 if (list_empty(&d40c
->active
))
951 d
= list_first_entry(&d40c
->active
,
957 /* remove desc from current queue and add it to the pending_queue */
958 static void d40_desc_queue(struct d40_chan
*d40c
, struct d40_desc
*desc
)
960 d40_desc_remove(desc
);
961 desc
->is_in_client_list
= false;
962 list_add_tail(&desc
->node
, &d40c
->pending_queue
);
965 static struct d40_desc
*d40_first_pending(struct d40_chan
*d40c
)
969 if (list_empty(&d40c
->pending_queue
))
972 d
= list_first_entry(&d40c
->pending_queue
,
978 static struct d40_desc
*d40_first_queued(struct d40_chan
*d40c
)
982 if (list_empty(&d40c
->queue
))
985 d
= list_first_entry(&d40c
->queue
,
991 static struct d40_desc
*d40_first_done(struct d40_chan
*d40c
)
993 if (list_empty(&d40c
->done
))
996 return list_first_entry(&d40c
->done
, struct d40_desc
, node
);
999 static int d40_psize_2_burst_size(bool is_log
, int psize
)
1002 if (psize
== STEDMA40_PSIZE_LOG_1
)
1005 if (psize
== STEDMA40_PSIZE_PHY_1
)
1013 * The dma only supports transmitting packages up to
1014 * STEDMA40_MAX_SEG_SIZE * data_width, where data_width is stored in Bytes.
1016 * Calculate the total number of dma elements required to send the entire sg list.
1018 static int d40_size_2_dmalen(int size
, u32 data_width1
, u32 data_width2
)
1021 u32 max_w
= max(data_width1
, data_width2
);
1022 u32 min_w
= min(data_width1
, data_width2
);
1023 u32 seg_max
= ALIGN(STEDMA40_MAX_SEG_SIZE
* min_w
, max_w
);
1025 if (seg_max
> STEDMA40_MAX_SEG_SIZE
)
1028 if (!IS_ALIGNED(size
, max_w
))
1031 if (size
<= seg_max
)
1034 dmalen
= size
/ seg_max
;
1035 if (dmalen
* seg_max
< size
)
1041 static int d40_sg_2_dmalen(struct scatterlist
*sgl
, int sg_len
,
1042 u32 data_width1
, u32 data_width2
)
1044 struct scatterlist
*sg
;
1049 for_each_sg(sgl
, sg
, sg_len
, i
) {
1050 ret
= d40_size_2_dmalen(sg_dma_len(sg
),
1051 data_width1
, data_width2
);
1061 static void dma40_backup(void __iomem
*baseaddr
, u32
*backup
,
1062 u32
*regaddr
, int num
, bool save
)
1066 for (i
= 0; i
< num
; i
++) {
1067 void __iomem
*addr
= baseaddr
+ regaddr
[i
];
1070 backup
[i
] = readl_relaxed(addr
);
1072 writel_relaxed(backup
[i
], addr
);
1076 static void d40_save_restore_registers(struct d40_base
*base
, bool save
)
1080 /* Save/Restore channel specific registers */
1081 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
1085 if (base
->phy_res
[i
].reserved
)
1088 addr
= base
->virtbase
+ D40_DREG_PCBASE
+ i
* D40_DREG_PCDELTA
;
1089 idx
= i
* ARRAY_SIZE(d40_backup_regs_chan
);
1091 dma40_backup(addr
, &base
->reg_val_backup_chan
[idx
],
1092 d40_backup_regs_chan
,
1093 ARRAY_SIZE(d40_backup_regs_chan
),
1097 /* Save/Restore global registers */
1098 dma40_backup(base
->virtbase
, base
->reg_val_backup
,
1099 d40_backup_regs
, ARRAY_SIZE(d40_backup_regs
),
1102 /* Save/Restore registers only existing on dma40 v3 and later */
1103 if (base
->gen_dmac
.backup
)
1104 dma40_backup(base
->virtbase
, base
->reg_val_backup_v4
,
1105 base
->gen_dmac
.backup
,
1106 base
->gen_dmac
.backup_size
,
1110 static void d40_save_restore_registers(struct d40_base
*base
, bool save
)
1115 static int __d40_execute_command_phy(struct d40_chan
*d40c
,
1116 enum d40_command command
)
1120 void __iomem
*active_reg
;
1122 unsigned long flags
;
1125 if (command
== D40_DMA_STOP
) {
1126 ret
= __d40_execute_command_phy(d40c
, D40_DMA_SUSPEND_REQ
);
1131 spin_lock_irqsave(&d40c
->base
->execmd_lock
, flags
);
1133 if (d40c
->phy_chan
->num
% 2 == 0)
1134 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1136 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1138 if (command
== D40_DMA_SUSPEND_REQ
) {
1139 status
= (readl(active_reg
) &
1140 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1141 D40_CHAN_POS(d40c
->phy_chan
->num
);
1143 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
1147 wmask
= 0xffffffff & ~(D40_CHAN_POS_MASK(d40c
->phy_chan
->num
));
1148 writel(wmask
| (command
<< D40_CHAN_POS(d40c
->phy_chan
->num
)),
1151 if (command
== D40_DMA_SUSPEND_REQ
) {
1153 for (i
= 0 ; i
< D40_SUSPEND_MAX_IT
; i
++) {
1154 status
= (readl(active_reg
) &
1155 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1156 D40_CHAN_POS(d40c
->phy_chan
->num
);
1160 * Reduce the number of bus accesses while
1161 * waiting for the DMA to suspend.
1165 if (status
== D40_DMA_STOP
||
1166 status
== D40_DMA_SUSPENDED
)
1170 if (i
== D40_SUSPEND_MAX_IT
) {
1172 "unable to suspend the chl %d (log: %d) status %x\n",
1173 d40c
->phy_chan
->num
, d40c
->log_num
,
1181 spin_unlock_irqrestore(&d40c
->base
->execmd_lock
, flags
);
1185 static void d40_term_all(struct d40_chan
*d40c
)
1187 struct d40_desc
*d40d
;
1188 struct d40_desc
*_d
;
1190 /* Release completed descriptors */
1191 while ((d40d
= d40_first_done(d40c
))) {
1192 d40_desc_remove(d40d
);
1193 d40_desc_free(d40c
, d40d
);
1196 /* Release active descriptors */
1197 while ((d40d
= d40_first_active_get(d40c
))) {
1198 d40_desc_remove(d40d
);
1199 d40_desc_free(d40c
, d40d
);
1202 /* Release queued descriptors waiting for transfer */
1203 while ((d40d
= d40_first_queued(d40c
))) {
1204 d40_desc_remove(d40d
);
1205 d40_desc_free(d40c
, d40d
);
1208 /* Release pending descriptors */
1209 while ((d40d
= d40_first_pending(d40c
))) {
1210 d40_desc_remove(d40d
);
1211 d40_desc_free(d40c
, d40d
);
1214 /* Release client owned descriptors */
1215 if (!list_empty(&d40c
->client
))
1216 list_for_each_entry_safe(d40d
, _d
, &d40c
->client
, node
) {
1217 d40_desc_remove(d40d
);
1218 d40_desc_free(d40c
, d40d
);
1221 /* Release descriptors in prepare queue */
1222 if (!list_empty(&d40c
->prepare_queue
))
1223 list_for_each_entry_safe(d40d
, _d
,
1224 &d40c
->prepare_queue
, node
) {
1225 d40_desc_remove(d40d
);
1226 d40_desc_free(d40c
, d40d
);
1229 d40c
->pending_tx
= 0;
1232 static void __d40_config_set_event(struct d40_chan
*d40c
,
1233 enum d40_events event_type
, u32 event
,
1236 void __iomem
*addr
= chan_base(d40c
) + reg
;
1240 switch (event_type
) {
1242 case D40_DEACTIVATE_EVENTLINE
:
1244 writel((D40_DEACTIVATE_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1245 | ~D40_EVENTLINE_MASK(event
), addr
);
1248 case D40_SUSPEND_REQ_EVENTLINE
:
1249 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1250 D40_EVENTLINE_POS(event
);
1252 if (status
== D40_DEACTIVATE_EVENTLINE
||
1253 status
== D40_SUSPEND_REQ_EVENTLINE
)
1256 writel((D40_SUSPEND_REQ_EVENTLINE
<< D40_EVENTLINE_POS(event
))
1257 | ~D40_EVENTLINE_MASK(event
), addr
);
1259 for (tries
= 0 ; tries
< D40_SUSPEND_MAX_IT
; tries
++) {
1261 status
= (readl(addr
) & D40_EVENTLINE_MASK(event
)) >>
1262 D40_EVENTLINE_POS(event
);
1266 * Reduce the number of bus accesses while
1267 * waiting for the DMA to suspend.
1271 if (status
== D40_DEACTIVATE_EVENTLINE
)
1275 if (tries
== D40_SUSPEND_MAX_IT
) {
1277 "unable to stop the event_line chl %d (log: %d)"
1278 "status %x\n", d40c
->phy_chan
->num
,
1279 d40c
->log_num
, status
);
1283 case D40_ACTIVATE_EVENTLINE
:
1285 * The hardware sometimes doesn't register the enable when src and dst
1286 * event lines are active on the same logical channel. Retry to ensure
1287 * it does. Usually only one retry is sufficient.
1291 writel((D40_ACTIVATE_EVENTLINE
<<
1292 D40_EVENTLINE_POS(event
)) |
1293 ~D40_EVENTLINE_MASK(event
), addr
);
1295 if (readl(addr
) & D40_EVENTLINE_MASK(event
))
1300 dev_dbg(chan2dev(d40c
),
1301 "[%s] workaround enable S%cLNK (%d tries)\n",
1302 __func__
, reg
== D40_CHAN_REG_SSLNK
? 'S' : 'D',
1308 case D40_ROUND_EVENTLINE
:
1315 static void d40_config_set_event(struct d40_chan
*d40c
,
1316 enum d40_events event_type
)
1318 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
1320 /* Enable event line connected to device (or memcpy) */
1321 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
1322 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
1323 __d40_config_set_event(d40c
, event_type
, event
,
1324 D40_CHAN_REG_SSLNK
);
1326 if (d40c
->dma_cfg
.dir
!= DMA_DEV_TO_MEM
)
1327 __d40_config_set_event(d40c
, event_type
, event
,
1328 D40_CHAN_REG_SDLNK
);
1331 static u32
d40_chan_has_events(struct d40_chan
*d40c
)
1333 void __iomem
*chanbase
= chan_base(d40c
);
1336 val
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
1337 val
|= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
1343 __d40_execute_command_log(struct d40_chan
*d40c
, enum d40_command command
)
1345 unsigned long flags
;
1348 void __iomem
*active_reg
;
1350 if (d40c
->phy_chan
->num
% 2 == 0)
1351 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
1353 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
1356 spin_lock_irqsave(&d40c
->phy_chan
->lock
, flags
);
1360 case D40_DMA_SUSPEND_REQ
:
1362 active_status
= (readl(active_reg
) &
1363 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
1364 D40_CHAN_POS(d40c
->phy_chan
->num
);
1366 if (active_status
== D40_DMA_RUN
)
1367 d40_config_set_event(d40c
, D40_SUSPEND_REQ_EVENTLINE
);
1369 d40_config_set_event(d40c
, D40_DEACTIVATE_EVENTLINE
);
1371 if (!d40_chan_has_events(d40c
) && (command
== D40_DMA_STOP
))
1372 ret
= __d40_execute_command_phy(d40c
, command
);
1378 d40_config_set_event(d40c
, D40_ACTIVATE_EVENTLINE
);
1379 ret
= __d40_execute_command_phy(d40c
, command
);
1382 case D40_DMA_SUSPENDED
:
1387 spin_unlock_irqrestore(&d40c
->phy_chan
->lock
, flags
);
1391 static int d40_channel_execute_command(struct d40_chan
*d40c
,
1392 enum d40_command command
)
1394 if (chan_is_logical(d40c
))
1395 return __d40_execute_command_log(d40c
, command
);
1397 return __d40_execute_command_phy(d40c
, command
);
1400 static u32
d40_get_prmo(struct d40_chan
*d40c
)
1402 static const unsigned int phy_map
[] = {
1403 [STEDMA40_PCHAN_BASIC_MODE
]
1404 = D40_DREG_PRMO_PCHAN_BASIC
,
1405 [STEDMA40_PCHAN_MODULO_MODE
]
1406 = D40_DREG_PRMO_PCHAN_MODULO
,
1407 [STEDMA40_PCHAN_DOUBLE_DST_MODE
]
1408 = D40_DREG_PRMO_PCHAN_DOUBLE_DST
,
1410 static const unsigned int log_map
[] = {
1411 [STEDMA40_LCHAN_SRC_PHY_DST_LOG
]
1412 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG
,
1413 [STEDMA40_LCHAN_SRC_LOG_DST_PHY
]
1414 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY
,
1415 [STEDMA40_LCHAN_SRC_LOG_DST_LOG
]
1416 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG
,
1419 if (chan_is_physical(d40c
))
1420 return phy_map
[d40c
->dma_cfg
.mode_opt
];
1422 return log_map
[d40c
->dma_cfg
.mode_opt
];
1425 static void d40_config_write(struct d40_chan
*d40c
)
1430 /* Odd addresses are even addresses + 4 */
1431 addr_base
= (d40c
->phy_chan
->num
% 2) * 4;
1432 /* Setup channel mode to logical or physical */
1433 var
= ((u32
)(chan_is_logical(d40c
)) + 1) <<
1434 D40_CHAN_POS(d40c
->phy_chan
->num
);
1435 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMSE
+ addr_base
);
1437 /* Setup operational mode option register */
1438 var
= d40_get_prmo(d40c
) << D40_CHAN_POS(d40c
->phy_chan
->num
);
1440 writel(var
, d40c
->base
->virtbase
+ D40_DREG_PRMOE
+ addr_base
);
1442 if (chan_is_logical(d40c
)) {
1443 int lidx
= (d40c
->phy_chan
->num
<< D40_SREG_ELEM_LOG_LIDX_POS
)
1444 & D40_SREG_ELEM_LOG_LIDX_MASK
;
1445 void __iomem
*chanbase
= chan_base(d40c
);
1447 /* Set default config for CFG reg */
1448 writel(d40c
->src_def_cfg
, chanbase
+ D40_CHAN_REG_SSCFG
);
1449 writel(d40c
->dst_def_cfg
, chanbase
+ D40_CHAN_REG_SDCFG
);
1451 /* Set LIDX for lcla */
1452 writel(lidx
, chanbase
+ D40_CHAN_REG_SSELT
);
1453 writel(lidx
, chanbase
+ D40_CHAN_REG_SDELT
);
1455 /* Clear LNK which will be used by d40_chan_has_events() */
1456 writel(0, chanbase
+ D40_CHAN_REG_SSLNK
);
1457 writel(0, chanbase
+ D40_CHAN_REG_SDLNK
);
1461 static u32
d40_residue(struct d40_chan
*d40c
)
1465 if (chan_is_logical(d40c
))
1466 num_elt
= (readl(&d40c
->lcpa
->lcsp2
) & D40_MEM_LCSP2_ECNT_MASK
)
1467 >> D40_MEM_LCSP2_ECNT_POS
;
1469 u32 val
= readl(chan_base(d40c
) + D40_CHAN_REG_SDELT
);
1470 num_elt
= (val
& D40_SREG_ELEM_PHY_ECNT_MASK
)
1471 >> D40_SREG_ELEM_PHY_ECNT_POS
;
1474 return num_elt
* d40c
->dma_cfg
.dst_info
.data_width
;
1477 static bool d40_tx_is_linked(struct d40_chan
*d40c
)
1481 if (chan_is_logical(d40c
))
1482 is_link
= readl(&d40c
->lcpa
->lcsp3
) & D40_MEM_LCSP3_DLOS_MASK
;
1484 is_link
= readl(chan_base(d40c
) + D40_CHAN_REG_SDLNK
)
1485 & D40_SREG_LNK_PHYS_LNK_MASK
;
1490 static int d40_pause(struct d40_chan
*d40c
)
1493 unsigned long flags
;
1498 pm_runtime_get_sync(d40c
->base
->dev
);
1499 spin_lock_irqsave(&d40c
->lock
, flags
);
1501 res
= d40_channel_execute_command(d40c
, D40_DMA_SUSPEND_REQ
);
1503 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1504 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1505 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1509 static int d40_resume(struct d40_chan
*d40c
)
1512 unsigned long flags
;
1517 spin_lock_irqsave(&d40c
->lock
, flags
);
1518 pm_runtime_get_sync(d40c
->base
->dev
);
1520 /* If bytes left to transfer or linked tx resume job */
1521 if (d40_residue(d40c
) || d40_tx_is_linked(d40c
))
1522 res
= d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1524 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1525 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1526 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1530 static dma_cookie_t
d40_tx_submit(struct dma_async_tx_descriptor
*tx
)
1532 struct d40_chan
*d40c
= container_of(tx
->chan
,
1535 struct d40_desc
*d40d
= container_of(tx
, struct d40_desc
, txd
);
1536 unsigned long flags
;
1537 dma_cookie_t cookie
;
1539 spin_lock_irqsave(&d40c
->lock
, flags
);
1540 cookie
= dma_cookie_assign(tx
);
1541 d40_desc_queue(d40c
, d40d
);
1542 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1547 static int d40_start(struct d40_chan
*d40c
)
1549 return d40_channel_execute_command(d40c
, D40_DMA_RUN
);
1552 static struct d40_desc
*d40_queue_start(struct d40_chan
*d40c
)
1554 struct d40_desc
*d40d
;
1557 /* Start queued jobs, if any */
1558 d40d
= d40_first_queued(d40c
);
1563 pm_runtime_get_sync(d40c
->base
->dev
);
1566 /* Remove from queue */
1567 d40_desc_remove(d40d
);
1569 /* Add to active queue */
1570 d40_desc_submit(d40c
, d40d
);
1572 /* Initiate DMA job */
1573 d40_desc_load(d40c
, d40d
);
1576 err
= d40_start(d40c
);
1585 /* called from interrupt context */
1586 static void dma_tc_handle(struct d40_chan
*d40c
)
1588 struct d40_desc
*d40d
;
1590 /* Get first active entry from list */
1591 d40d
= d40_first_active_get(d40c
);
1598 * If this was a paritially loaded list, we need to reloaded
1599 * it, and only when the list is completed. We need to check
1600 * for done because the interrupt will hit for every link, and
1601 * not just the last one.
1603 if (d40d
->lli_current
< d40d
->lli_len
1604 && !d40_tx_is_linked(d40c
)
1605 && !d40_residue(d40c
)) {
1606 d40_lcla_free_all(d40c
, d40d
);
1607 d40_desc_load(d40c
, d40d
);
1608 (void) d40_start(d40c
);
1610 if (d40d
->lli_current
== d40d
->lli_len
)
1611 d40d
->lli_current
= 0;
1614 d40_lcla_free_all(d40c
, d40d
);
1616 if (d40d
->lli_current
< d40d
->lli_len
) {
1617 d40_desc_load(d40c
, d40d
);
1619 (void) d40_start(d40c
);
1623 if (d40_queue_start(d40c
) == NULL
) {
1626 pm_runtime_mark_last_busy(d40c
->base
->dev
);
1627 pm_runtime_put_autosuspend(d40c
->base
->dev
);
1630 d40_desc_remove(d40d
);
1631 d40_desc_done(d40c
, d40d
);
1635 tasklet_schedule(&d40c
->tasklet
);
1639 static void dma_tasklet(unsigned long data
)
1641 struct d40_chan
*d40c
= (struct d40_chan
*) data
;
1642 struct d40_desc
*d40d
;
1643 unsigned long flags
;
1644 bool callback_active
;
1645 dma_async_tx_callback callback
;
1646 void *callback_param
;
1648 spin_lock_irqsave(&d40c
->lock
, flags
);
1650 /* Get first entry from the done list */
1651 d40d
= d40_first_done(d40c
);
1653 /* Check if we have reached here for cyclic job */
1654 d40d
= d40_first_active_get(d40c
);
1655 if (d40d
== NULL
|| !d40d
->cyclic
)
1660 dma_cookie_complete(&d40d
->txd
);
1663 * If terminating a channel pending_tx is set to zero.
1664 * This prevents any finished active jobs to return to the client.
1666 if (d40c
->pending_tx
== 0) {
1667 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1671 /* Callback to client */
1672 callback_active
= !!(d40d
->txd
.flags
& DMA_PREP_INTERRUPT
);
1673 callback
= d40d
->txd
.callback
;
1674 callback_param
= d40d
->txd
.callback_param
;
1676 if (!d40d
->cyclic
) {
1677 if (async_tx_test_ack(&d40d
->txd
)) {
1678 d40_desc_remove(d40d
);
1679 d40_desc_free(d40c
, d40d
);
1680 } else if (!d40d
->is_in_client_list
) {
1681 d40_desc_remove(d40d
);
1682 d40_lcla_free_all(d40c
, d40d
);
1683 list_add_tail(&d40d
->node
, &d40c
->client
);
1684 d40d
->is_in_client_list
= true;
1690 if (d40c
->pending_tx
)
1691 tasklet_schedule(&d40c
->tasklet
);
1693 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1695 if (callback_active
&& callback
)
1696 callback(callback_param
);
1701 /* Rescue manouver if receiving double interrupts */
1702 if (d40c
->pending_tx
> 0)
1704 spin_unlock_irqrestore(&d40c
->lock
, flags
);
1707 static irqreturn_t
d40_handle_interrupt(int irq
, void *data
)
1713 struct d40_chan
*d40c
;
1714 unsigned long flags
;
1715 struct d40_base
*base
= data
;
1716 u32 regs
[base
->gen_dmac
.il_size
];
1717 struct d40_interrupt_lookup
*il
= base
->gen_dmac
.il
;
1718 u32 il_size
= base
->gen_dmac
.il_size
;
1720 spin_lock_irqsave(&base
->interrupt_lock
, flags
);
1722 /* Read interrupt status of both logical and physical channels */
1723 for (i
= 0; i
< il_size
; i
++)
1724 regs
[i
] = readl(base
->virtbase
+ il
[i
].src
);
1728 chan
= find_next_bit((unsigned long *)regs
,
1729 BITS_PER_LONG
* il_size
, chan
+ 1);
1731 /* No more set bits found? */
1732 if (chan
== BITS_PER_LONG
* il_size
)
1735 row
= chan
/ BITS_PER_LONG
;
1736 idx
= chan
& (BITS_PER_LONG
- 1);
1738 if (il
[row
].offset
== D40_PHY_CHAN
)
1739 d40c
= base
->lookup_phy_chans
[idx
];
1741 d40c
= base
->lookup_log_chans
[il
[row
].offset
+ idx
];
1745 * No error because this can happen if something else
1746 * in the system is using the channel.
1752 writel(BIT(idx
), base
->virtbase
+ il
[row
].clr
);
1754 spin_lock(&d40c
->lock
);
1756 if (!il
[row
].is_error
)
1757 dma_tc_handle(d40c
);
1759 d40_err(base
->dev
, "IRQ chan: %ld offset %d idx %d\n",
1760 chan
, il
[row
].offset
, idx
);
1762 spin_unlock(&d40c
->lock
);
1765 spin_unlock_irqrestore(&base
->interrupt_lock
, flags
);
1770 static int d40_validate_conf(struct d40_chan
*d40c
,
1771 struct stedma40_chan_cfg
*conf
)
1774 bool is_log
= conf
->mode
== STEDMA40_MODE_LOGICAL
;
1777 chan_err(d40c
, "Invalid direction.\n");
1781 if ((is_log
&& conf
->dev_type
> d40c
->base
->num_log_chans
) ||
1782 (!is_log
&& conf
->dev_type
> d40c
->base
->num_phy_chans
) ||
1783 (conf
->dev_type
< 0)) {
1784 chan_err(d40c
, "Invalid device type (%d)\n", conf
->dev_type
);
1788 if (conf
->dir
== DMA_DEV_TO_DEV
) {
1790 * DMAC HW supports it. Will be added to this driver,
1791 * in case any dma client requires it.
1793 chan_err(d40c
, "periph to periph not supported\n");
1797 if (d40_psize_2_burst_size(is_log
, conf
->src_info
.psize
) *
1798 conf
->src_info
.data_width
!=
1799 d40_psize_2_burst_size(is_log
, conf
->dst_info
.psize
) *
1800 conf
->dst_info
.data_width
) {
1802 * The DMAC hardware only supports
1803 * src (burst x width) == dst (burst x width)
1806 chan_err(d40c
, "src (burst x width) != dst (burst x width)\n");
1813 static bool d40_alloc_mask_set(struct d40_phy_res
*phy
,
1814 bool is_src
, int log_event_line
, bool is_log
,
1817 unsigned long flags
;
1818 spin_lock_irqsave(&phy
->lock
, flags
);
1820 *first_user
= ((phy
->allocated_src
| phy
->allocated_dst
)
1824 /* Physical interrupts are masked per physical full channel */
1825 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
1826 phy
->allocated_dst
== D40_ALLOC_FREE
) {
1827 phy
->allocated_dst
= D40_ALLOC_PHY
;
1828 phy
->allocated_src
= D40_ALLOC_PHY
;
1834 /* Logical channel */
1836 if (phy
->allocated_src
== D40_ALLOC_PHY
)
1839 if (phy
->allocated_src
== D40_ALLOC_FREE
)
1840 phy
->allocated_src
= D40_ALLOC_LOG_FREE
;
1842 if (!(phy
->allocated_src
& BIT(log_event_line
))) {
1843 phy
->allocated_src
|= BIT(log_event_line
);
1848 if (phy
->allocated_dst
== D40_ALLOC_PHY
)
1851 if (phy
->allocated_dst
== D40_ALLOC_FREE
)
1852 phy
->allocated_dst
= D40_ALLOC_LOG_FREE
;
1854 if (!(phy
->allocated_dst
& BIT(log_event_line
))) {
1855 phy
->allocated_dst
|= BIT(log_event_line
);
1862 spin_unlock_irqrestore(&phy
->lock
, flags
);
1865 spin_unlock_irqrestore(&phy
->lock
, flags
);
1869 static bool d40_alloc_mask_free(struct d40_phy_res
*phy
, bool is_src
,
1872 unsigned long flags
;
1873 bool is_free
= false;
1875 spin_lock_irqsave(&phy
->lock
, flags
);
1876 if (!log_event_line
) {
1877 phy
->allocated_dst
= D40_ALLOC_FREE
;
1878 phy
->allocated_src
= D40_ALLOC_FREE
;
1883 /* Logical channel */
1885 phy
->allocated_src
&= ~BIT(log_event_line
);
1886 if (phy
->allocated_src
== D40_ALLOC_LOG_FREE
)
1887 phy
->allocated_src
= D40_ALLOC_FREE
;
1889 phy
->allocated_dst
&= ~BIT(log_event_line
);
1890 if (phy
->allocated_dst
== D40_ALLOC_LOG_FREE
)
1891 phy
->allocated_dst
= D40_ALLOC_FREE
;
1894 is_free
= ((phy
->allocated_src
| phy
->allocated_dst
) ==
1898 spin_unlock_irqrestore(&phy
->lock
, flags
);
1903 static int d40_allocate_channel(struct d40_chan
*d40c
, bool *first_phy_user
)
1905 int dev_type
= d40c
->dma_cfg
.dev_type
;
1908 struct d40_phy_res
*phys
;
1914 bool is_log
= d40c
->dma_cfg
.mode
== STEDMA40_MODE_LOGICAL
;
1916 phys
= d40c
->base
->phy_res
;
1917 num_phy_chans
= d40c
->base
->num_phy_chans
;
1919 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
1920 log_num
= 2 * dev_type
;
1922 } else if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
1923 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1924 /* dst event lines are used for logical memcpy */
1925 log_num
= 2 * dev_type
+ 1;
1930 event_group
= D40_TYPE_TO_GROUP(dev_type
);
1931 event_line
= D40_TYPE_TO_EVENT(dev_type
);
1934 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
1935 /* Find physical half channel */
1936 if (d40c
->dma_cfg
.use_fixed_channel
) {
1937 i
= d40c
->dma_cfg
.phy_channel
;
1938 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1943 for (i
= 0; i
< num_phy_chans
; i
++) {
1944 if (d40_alloc_mask_set(&phys
[i
], is_src
,
1951 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1952 int phy_num
= j
+ event_group
* 2;
1953 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
1954 if (d40_alloc_mask_set(&phys
[i
],
1964 d40c
->phy_chan
= &phys
[i
];
1965 d40c
->log_num
= D40_PHY_CHAN
;
1971 /* Find logical channel */
1972 for (j
= 0; j
< d40c
->base
->num_phy_chans
; j
+= 8) {
1973 int phy_num
= j
+ event_group
* 2;
1975 if (d40c
->dma_cfg
.use_fixed_channel
) {
1976 i
= d40c
->dma_cfg
.phy_channel
;
1978 if ((i
!= phy_num
) && (i
!= phy_num
+ 1)) {
1979 dev_err(chan2dev(d40c
),
1980 "invalid fixed phy channel %d\n", i
);
1984 if (d40_alloc_mask_set(&phys
[i
], is_src
, event_line
,
1985 is_log
, first_phy_user
))
1988 dev_err(chan2dev(d40c
),
1989 "could not allocate fixed phy channel %d\n", i
);
1994 * Spread logical channels across all available physical rather
1995 * than pack every logical channel at the first available phy
1999 for (i
= phy_num
; i
< phy_num
+ 2; i
++) {
2000 if (d40_alloc_mask_set(&phys
[i
], is_src
,
2006 for (i
= phy_num
+ 1; i
>= phy_num
; i
--) {
2007 if (d40_alloc_mask_set(&phys
[i
], is_src
,
2017 d40c
->phy_chan
= &phys
[i
];
2018 d40c
->log_num
= log_num
;
2022 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = d40c
;
2024 d40c
->base
->lookup_phy_chans
[d40c
->phy_chan
->num
] = d40c
;
2030 static int d40_config_memcpy(struct d40_chan
*d40c
)
2032 dma_cap_mask_t cap
= d40c
->chan
.device
->cap_mask
;
2034 if (dma_has_cap(DMA_MEMCPY
, cap
) && !dma_has_cap(DMA_SLAVE
, cap
)) {
2035 d40c
->dma_cfg
= dma40_memcpy_conf_log
;
2036 d40c
->dma_cfg
.dev_type
= dma40_memcpy_channels
[d40c
->chan
.chan_id
];
2038 d40_log_cfg(&d40c
->dma_cfg
,
2039 &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2041 } else if (dma_has_cap(DMA_MEMCPY
, cap
) &&
2042 dma_has_cap(DMA_SLAVE
, cap
)) {
2043 d40c
->dma_cfg
= dma40_memcpy_conf_phy
;
2045 /* Generate interrrupt at end of transfer or relink. */
2046 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_TIM_POS
);
2048 /* Generate interrupt on error. */
2049 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
2050 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_EIM_POS
);
2053 chan_err(d40c
, "No memcpy\n");
2060 static int d40_free_dma(struct d40_chan
*d40c
)
2064 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2065 struct d40_phy_res
*phy
= d40c
->phy_chan
;
2068 /* Terminate all queued and active transfers */
2072 chan_err(d40c
, "phy == null\n");
2076 if (phy
->allocated_src
== D40_ALLOC_FREE
&&
2077 phy
->allocated_dst
== D40_ALLOC_FREE
) {
2078 chan_err(d40c
, "channel already free\n");
2082 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2083 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
)
2085 else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2088 chan_err(d40c
, "Unknown direction\n");
2092 pm_runtime_get_sync(d40c
->base
->dev
);
2093 res
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2095 chan_err(d40c
, "stop failed\n");
2099 d40_alloc_mask_free(phy
, is_src
, chan_is_logical(d40c
) ? event
: 0);
2101 if (chan_is_logical(d40c
))
2102 d40c
->base
->lookup_log_chans
[d40c
->log_num
] = NULL
;
2104 d40c
->base
->lookup_phy_chans
[phy
->num
] = NULL
;
2107 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2108 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2112 d40c
->phy_chan
= NULL
;
2113 d40c
->configured
= false;
2116 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2117 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2121 static bool d40_is_paused(struct d40_chan
*d40c
)
2123 void __iomem
*chanbase
= chan_base(d40c
);
2124 bool is_paused
= false;
2125 unsigned long flags
;
2126 void __iomem
*active_reg
;
2128 u32 event
= D40_TYPE_TO_EVENT(d40c
->dma_cfg
.dev_type
);
2130 spin_lock_irqsave(&d40c
->lock
, flags
);
2132 if (chan_is_physical(d40c
)) {
2133 if (d40c
->phy_chan
->num
% 2 == 0)
2134 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVE
;
2136 active_reg
= d40c
->base
->virtbase
+ D40_DREG_ACTIVO
;
2138 status
= (readl(active_reg
) &
2139 D40_CHAN_POS_MASK(d40c
->phy_chan
->num
)) >>
2140 D40_CHAN_POS(d40c
->phy_chan
->num
);
2141 if (status
== D40_DMA_SUSPENDED
|| status
== D40_DMA_STOP
)
2147 if (d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
||
2148 d40c
->dma_cfg
.dir
== DMA_MEM_TO_MEM
) {
2149 status
= readl(chanbase
+ D40_CHAN_REG_SDLNK
);
2150 } else if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) {
2151 status
= readl(chanbase
+ D40_CHAN_REG_SSLNK
);
2153 chan_err(d40c
, "Unknown direction\n");
2157 status
= (status
& D40_EVENTLINE_MASK(event
)) >>
2158 D40_EVENTLINE_POS(event
);
2160 if (status
!= D40_DMA_RUN
)
2163 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2168 static u32
stedma40_residue(struct dma_chan
*chan
)
2170 struct d40_chan
*d40c
=
2171 container_of(chan
, struct d40_chan
, chan
);
2173 unsigned long flags
;
2175 spin_lock_irqsave(&d40c
->lock
, flags
);
2176 bytes_left
= d40_residue(d40c
);
2177 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2183 d40_prep_sg_log(struct d40_chan
*chan
, struct d40_desc
*desc
,
2184 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2185 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2186 dma_addr_t dst_dev_addr
)
2188 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2189 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2190 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2193 ret
= d40_log_sg_to_lli(sg_src
, sg_len
,
2196 chan
->log_def
.lcsp1
,
2197 src_info
->data_width
,
2198 dst_info
->data_width
);
2200 ret
= d40_log_sg_to_lli(sg_dst
, sg_len
,
2203 chan
->log_def
.lcsp3
,
2204 dst_info
->data_width
,
2205 src_info
->data_width
);
2207 return ret
< 0 ? ret
: 0;
2211 d40_prep_sg_phy(struct d40_chan
*chan
, struct d40_desc
*desc
,
2212 struct scatterlist
*sg_src
, struct scatterlist
*sg_dst
,
2213 unsigned int sg_len
, dma_addr_t src_dev_addr
,
2214 dma_addr_t dst_dev_addr
)
2216 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2217 struct stedma40_half_channel_info
*src_info
= &cfg
->src_info
;
2218 struct stedma40_half_channel_info
*dst_info
= &cfg
->dst_info
;
2219 unsigned long flags
= 0;
2223 flags
|= LLI_CYCLIC
| LLI_TERM_INT
;
2225 ret
= d40_phy_sg_to_lli(sg_src
, sg_len
, src_dev_addr
,
2227 virt_to_phys(desc
->lli_phy
.src
),
2229 src_info
, dst_info
, flags
);
2231 ret
= d40_phy_sg_to_lli(sg_dst
, sg_len
, dst_dev_addr
,
2233 virt_to_phys(desc
->lli_phy
.dst
),
2235 dst_info
, src_info
, flags
);
2237 dma_sync_single_for_device(chan
->base
->dev
, desc
->lli_pool
.dma_addr
,
2238 desc
->lli_pool
.size
, DMA_TO_DEVICE
);
2240 return ret
< 0 ? ret
: 0;
2243 static struct d40_desc
*
2244 d40_prep_desc(struct d40_chan
*chan
, struct scatterlist
*sg
,
2245 unsigned int sg_len
, unsigned long dma_flags
)
2247 struct stedma40_chan_cfg
*cfg
= &chan
->dma_cfg
;
2248 struct d40_desc
*desc
;
2251 desc
= d40_desc_get(chan
);
2255 desc
->lli_len
= d40_sg_2_dmalen(sg
, sg_len
, cfg
->src_info
.data_width
,
2256 cfg
->dst_info
.data_width
);
2257 if (desc
->lli_len
< 0) {
2258 chan_err(chan
, "Unaligned size\n");
2262 ret
= d40_pool_lli_alloc(chan
, desc
, desc
->lli_len
);
2264 chan_err(chan
, "Could not allocate lli\n");
2268 desc
->lli_current
= 0;
2269 desc
->txd
.flags
= dma_flags
;
2270 desc
->txd
.tx_submit
= d40_tx_submit
;
2272 dma_async_tx_descriptor_init(&desc
->txd
, &chan
->chan
);
2277 d40_desc_free(chan
, desc
);
2281 static struct dma_async_tx_descriptor
*
2282 d40_prep_sg(struct dma_chan
*dchan
, struct scatterlist
*sg_src
,
2283 struct scatterlist
*sg_dst
, unsigned int sg_len
,
2284 enum dma_transfer_direction direction
, unsigned long dma_flags
)
2286 struct d40_chan
*chan
= container_of(dchan
, struct d40_chan
, chan
);
2287 dma_addr_t src_dev_addr
= 0;
2288 dma_addr_t dst_dev_addr
= 0;
2289 struct d40_desc
*desc
;
2290 unsigned long flags
;
2293 if (!chan
->phy_chan
) {
2294 chan_err(chan
, "Cannot prepare unallocated channel\n");
2298 spin_lock_irqsave(&chan
->lock
, flags
);
2300 desc
= d40_prep_desc(chan
, sg_src
, sg_len
, dma_flags
);
2304 if (sg_next(&sg_src
[sg_len
- 1]) == sg_src
)
2305 desc
->cyclic
= true;
2307 if (direction
== DMA_DEV_TO_MEM
)
2308 src_dev_addr
= chan
->runtime_addr
;
2309 else if (direction
== DMA_MEM_TO_DEV
)
2310 dst_dev_addr
= chan
->runtime_addr
;
2312 if (chan_is_logical(chan
))
2313 ret
= d40_prep_sg_log(chan
, desc
, sg_src
, sg_dst
,
2314 sg_len
, src_dev_addr
, dst_dev_addr
);
2316 ret
= d40_prep_sg_phy(chan
, desc
, sg_src
, sg_dst
,
2317 sg_len
, src_dev_addr
, dst_dev_addr
);
2320 chan_err(chan
, "Failed to prepare %s sg job: %d\n",
2321 chan_is_logical(chan
) ? "log" : "phy", ret
);
2326 * add descriptor to the prepare queue in order to be able
2327 * to free them later in terminate_all
2329 list_add_tail(&desc
->node
, &chan
->prepare_queue
);
2331 spin_unlock_irqrestore(&chan
->lock
, flags
);
2337 d40_desc_free(chan
, desc
);
2338 spin_unlock_irqrestore(&chan
->lock
, flags
);
2342 bool stedma40_filter(struct dma_chan
*chan
, void *data
)
2344 struct stedma40_chan_cfg
*info
= data
;
2345 struct d40_chan
*d40c
=
2346 container_of(chan
, struct d40_chan
, chan
);
2350 err
= d40_validate_conf(d40c
, info
);
2352 d40c
->dma_cfg
= *info
;
2354 err
= d40_config_memcpy(d40c
);
2357 d40c
->configured
= true;
2361 EXPORT_SYMBOL(stedma40_filter
);
2363 static void __d40_set_prio_rt(struct d40_chan
*d40c
, int dev_type
, bool src
)
2365 bool realtime
= d40c
->dma_cfg
.realtime
;
2366 bool highprio
= d40c
->dma_cfg
.high_priority
;
2368 u32 event
= D40_TYPE_TO_EVENT(dev_type
);
2369 u32 group
= D40_TYPE_TO_GROUP(dev_type
);
2370 u32 bit
= BIT(event
);
2372 struct d40_gen_dmac
*dmac
= &d40c
->base
->gen_dmac
;
2374 rtreg
= realtime
? dmac
->realtime_en
: dmac
->realtime_clear
;
2376 * Due to a hardware bug, in some cases a logical channel triggered by
2377 * a high priority destination event line can generate extra packet
2380 * The workaround is to not set the high priority level for the
2381 * destination event lines that trigger logical channels.
2383 if (!src
&& chan_is_logical(d40c
))
2386 prioreg
= highprio
? dmac
->high_prio_en
: dmac
->high_prio_clear
;
2388 /* Destination event lines are stored in the upper halfword */
2392 writel(bit
, d40c
->base
->virtbase
+ prioreg
+ group
* 4);
2393 writel(bit
, d40c
->base
->virtbase
+ rtreg
+ group
* 4);
2396 static void d40_set_prio_realtime(struct d40_chan
*d40c
)
2398 if (d40c
->base
->rev
< 3)
2401 if ((d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
) ||
2402 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2403 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, true);
2405 if ((d40c
->dma_cfg
.dir
== DMA_MEM_TO_DEV
) ||
2406 (d40c
->dma_cfg
.dir
== DMA_DEV_TO_DEV
))
2407 __d40_set_prio_rt(d40c
, d40c
->dma_cfg
.dev_type
, false);
2410 #define D40_DT_FLAGS_MODE(flags) ((flags >> 0) & 0x1)
2411 #define D40_DT_FLAGS_DIR(flags) ((flags >> 1) & 0x1)
2412 #define D40_DT_FLAGS_BIG_ENDIAN(flags) ((flags >> 2) & 0x1)
2413 #define D40_DT_FLAGS_FIXED_CHAN(flags) ((flags >> 3) & 0x1)
2414 #define D40_DT_FLAGS_HIGH_PRIO(flags) ((flags >> 4) & 0x1)
2416 static struct dma_chan
*d40_xlate(struct of_phandle_args
*dma_spec
,
2417 struct of_dma
*ofdma
)
2419 struct stedma40_chan_cfg cfg
;
2423 memset(&cfg
, 0, sizeof(struct stedma40_chan_cfg
));
2426 dma_cap_set(DMA_SLAVE
, cap
);
2428 cfg
.dev_type
= dma_spec
->args
[0];
2429 flags
= dma_spec
->args
[2];
2431 switch (D40_DT_FLAGS_MODE(flags
)) {
2432 case 0: cfg
.mode
= STEDMA40_MODE_LOGICAL
; break;
2433 case 1: cfg
.mode
= STEDMA40_MODE_PHYSICAL
; break;
2436 switch (D40_DT_FLAGS_DIR(flags
)) {
2438 cfg
.dir
= DMA_MEM_TO_DEV
;
2439 cfg
.dst_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2442 cfg
.dir
= DMA_DEV_TO_MEM
;
2443 cfg
.src_info
.big_endian
= D40_DT_FLAGS_BIG_ENDIAN(flags
);
2447 if (D40_DT_FLAGS_FIXED_CHAN(flags
)) {
2448 cfg
.phy_channel
= dma_spec
->args
[1];
2449 cfg
.use_fixed_channel
= true;
2452 if (D40_DT_FLAGS_HIGH_PRIO(flags
))
2453 cfg
.high_priority
= true;
2455 return dma_request_channel(cap
, stedma40_filter
, &cfg
);
2458 /* DMA ENGINE functions */
2459 static int d40_alloc_chan_resources(struct dma_chan
*chan
)
2462 unsigned long flags
;
2463 struct d40_chan
*d40c
=
2464 container_of(chan
, struct d40_chan
, chan
);
2466 spin_lock_irqsave(&d40c
->lock
, flags
);
2468 dma_cookie_init(chan
);
2470 /* If no dma configuration is set use default configuration (memcpy) */
2471 if (!d40c
->configured
) {
2472 err
= d40_config_memcpy(d40c
);
2474 chan_err(d40c
, "Failed to configure memcpy channel\n");
2479 err
= d40_allocate_channel(d40c
, &is_free_phy
);
2481 chan_err(d40c
, "Failed to allocate channel\n");
2482 d40c
->configured
= false;
2486 pm_runtime_get_sync(d40c
->base
->dev
);
2488 d40_set_prio_realtime(d40c
);
2490 if (chan_is_logical(d40c
)) {
2491 if (d40c
->dma_cfg
.dir
== DMA_DEV_TO_MEM
)
2492 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2493 d40c
->dma_cfg
.dev_type
* D40_LCPA_CHAN_SIZE
;
2495 d40c
->lcpa
= d40c
->base
->lcpa_base
+
2496 d40c
->dma_cfg
.dev_type
*
2497 D40_LCPA_CHAN_SIZE
+ D40_LCPA_CHAN_DST_DELTA
;
2499 /* Unmask the Global Interrupt Mask. */
2500 d40c
->src_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2501 d40c
->dst_def_cfg
|= BIT(D40_SREG_CFG_LOG_GIM_POS
);
2504 dev_dbg(chan2dev(d40c
), "allocated %s channel (phy %d%s)\n",
2505 chan_is_logical(d40c
) ? "logical" : "physical",
2506 d40c
->phy_chan
->num
,
2507 d40c
->dma_cfg
.use_fixed_channel
? ", fixed" : "");
2511 * Only write channel configuration to the DMA if the physical
2512 * resource is free. In case of multiple logical channels
2513 * on the same physical resource, only the first write is necessary.
2516 d40_config_write(d40c
);
2518 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2519 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2520 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2524 static void d40_free_chan_resources(struct dma_chan
*chan
)
2526 struct d40_chan
*d40c
=
2527 container_of(chan
, struct d40_chan
, chan
);
2529 unsigned long flags
;
2531 if (d40c
->phy_chan
== NULL
) {
2532 chan_err(d40c
, "Cannot free unallocated channel\n");
2536 spin_lock_irqsave(&d40c
->lock
, flags
);
2538 err
= d40_free_dma(d40c
);
2541 chan_err(d40c
, "Failed to free channel\n");
2542 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2545 static struct dma_async_tx_descriptor
*d40_prep_memcpy(struct dma_chan
*chan
,
2549 unsigned long dma_flags
)
2551 struct scatterlist dst_sg
;
2552 struct scatterlist src_sg
;
2554 sg_init_table(&dst_sg
, 1);
2555 sg_init_table(&src_sg
, 1);
2557 sg_dma_address(&dst_sg
) = dst
;
2558 sg_dma_address(&src_sg
) = src
;
2560 sg_dma_len(&dst_sg
) = size
;
2561 sg_dma_len(&src_sg
) = size
;
2563 return d40_prep_sg(chan
, &src_sg
, &dst_sg
, 1, DMA_NONE
, dma_flags
);
2566 static struct dma_async_tx_descriptor
*
2567 d40_prep_memcpy_sg(struct dma_chan
*chan
,
2568 struct scatterlist
*dst_sg
, unsigned int dst_nents
,
2569 struct scatterlist
*src_sg
, unsigned int src_nents
,
2570 unsigned long dma_flags
)
2572 if (dst_nents
!= src_nents
)
2575 return d40_prep_sg(chan
, src_sg
, dst_sg
, src_nents
, DMA_NONE
, dma_flags
);
2578 static struct dma_async_tx_descriptor
*
2579 d40_prep_slave_sg(struct dma_chan
*chan
, struct scatterlist
*sgl
,
2580 unsigned int sg_len
, enum dma_transfer_direction direction
,
2581 unsigned long dma_flags
, void *context
)
2583 if (!is_slave_direction(direction
))
2586 return d40_prep_sg(chan
, sgl
, sgl
, sg_len
, direction
, dma_flags
);
2589 static struct dma_async_tx_descriptor
*
2590 dma40_prep_dma_cyclic(struct dma_chan
*chan
, dma_addr_t dma_addr
,
2591 size_t buf_len
, size_t period_len
,
2592 enum dma_transfer_direction direction
, unsigned long flags
,
2595 unsigned int periods
= buf_len
/ period_len
;
2596 struct dma_async_tx_descriptor
*txd
;
2597 struct scatterlist
*sg
;
2600 sg
= kcalloc(periods
+ 1, sizeof(struct scatterlist
), GFP_NOWAIT
);
2604 for (i
= 0; i
< periods
; i
++) {
2605 sg_dma_address(&sg
[i
]) = dma_addr
;
2606 sg_dma_len(&sg
[i
]) = period_len
;
2607 dma_addr
+= period_len
;
2610 sg
[periods
].offset
= 0;
2611 sg_dma_len(&sg
[periods
]) = 0;
2612 sg
[periods
].page_link
=
2613 ((unsigned long)sg
| 0x01) & ~0x02;
2615 txd
= d40_prep_sg(chan
, sg
, sg
, periods
, direction
,
2616 DMA_PREP_INTERRUPT
);
2623 static enum dma_status
d40_tx_status(struct dma_chan
*chan
,
2624 dma_cookie_t cookie
,
2625 struct dma_tx_state
*txstate
)
2627 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2628 enum dma_status ret
;
2630 if (d40c
->phy_chan
== NULL
) {
2631 chan_err(d40c
, "Cannot read status of unallocated channel\n");
2635 ret
= dma_cookie_status(chan
, cookie
, txstate
);
2636 if (ret
!= DMA_COMPLETE
)
2637 dma_set_residue(txstate
, stedma40_residue(chan
));
2639 if (d40_is_paused(d40c
))
2645 static void d40_issue_pending(struct dma_chan
*chan
)
2647 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2648 unsigned long flags
;
2650 if (d40c
->phy_chan
== NULL
) {
2651 chan_err(d40c
, "Channel is not allocated!\n");
2655 spin_lock_irqsave(&d40c
->lock
, flags
);
2657 list_splice_tail_init(&d40c
->pending_queue
, &d40c
->queue
);
2659 /* Busy means that queued jobs are already being processed */
2661 (void) d40_queue_start(d40c
);
2663 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2666 static void d40_terminate_all(struct dma_chan
*chan
)
2668 unsigned long flags
;
2669 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2672 spin_lock_irqsave(&d40c
->lock
, flags
);
2674 pm_runtime_get_sync(d40c
->base
->dev
);
2675 ret
= d40_channel_execute_command(d40c
, D40_DMA_STOP
);
2677 chan_err(d40c
, "Failed to stop channel\n");
2680 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2681 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2683 pm_runtime_mark_last_busy(d40c
->base
->dev
);
2684 pm_runtime_put_autosuspend(d40c
->base
->dev
);
2688 spin_unlock_irqrestore(&d40c
->lock
, flags
);
2692 dma40_config_to_halfchannel(struct d40_chan
*d40c
,
2693 struct stedma40_half_channel_info
*info
,
2698 if (chan_is_logical(d40c
)) {
2700 psize
= STEDMA40_PSIZE_LOG_16
;
2701 else if (maxburst
>= 8)
2702 psize
= STEDMA40_PSIZE_LOG_8
;
2703 else if (maxburst
>= 4)
2704 psize
= STEDMA40_PSIZE_LOG_4
;
2706 psize
= STEDMA40_PSIZE_LOG_1
;
2709 psize
= STEDMA40_PSIZE_PHY_16
;
2710 else if (maxburst
>= 8)
2711 psize
= STEDMA40_PSIZE_PHY_8
;
2712 else if (maxburst
>= 4)
2713 psize
= STEDMA40_PSIZE_PHY_4
;
2715 psize
= STEDMA40_PSIZE_PHY_1
;
2718 info
->psize
= psize
;
2719 info
->flow_ctrl
= STEDMA40_NO_FLOW_CTRL
;
2724 /* Runtime reconfiguration extension */
2725 static int d40_set_runtime_config(struct dma_chan
*chan
,
2726 struct dma_slave_config
*config
)
2728 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2729 struct stedma40_chan_cfg
*cfg
= &d40c
->dma_cfg
;
2730 enum dma_slave_buswidth src_addr_width
, dst_addr_width
;
2731 dma_addr_t config_addr
;
2732 u32 src_maxburst
, dst_maxburst
;
2735 src_addr_width
= config
->src_addr_width
;
2736 src_maxburst
= config
->src_maxburst
;
2737 dst_addr_width
= config
->dst_addr_width
;
2738 dst_maxburst
= config
->dst_maxburst
;
2740 if (config
->direction
== DMA_DEV_TO_MEM
) {
2741 config_addr
= config
->src_addr
;
2743 if (cfg
->dir
!= DMA_DEV_TO_MEM
)
2744 dev_dbg(d40c
->base
->dev
,
2745 "channel was not configured for peripheral "
2746 "to memory transfer (%d) overriding\n",
2748 cfg
->dir
= DMA_DEV_TO_MEM
;
2750 /* Configure the memory side */
2751 if (dst_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2752 dst_addr_width
= src_addr_width
;
2753 if (dst_maxburst
== 0)
2754 dst_maxburst
= src_maxburst
;
2756 } else if (config
->direction
== DMA_MEM_TO_DEV
) {
2757 config_addr
= config
->dst_addr
;
2759 if (cfg
->dir
!= DMA_MEM_TO_DEV
)
2760 dev_dbg(d40c
->base
->dev
,
2761 "channel was not configured for memory "
2762 "to peripheral transfer (%d) overriding\n",
2764 cfg
->dir
= DMA_MEM_TO_DEV
;
2766 /* Configure the memory side */
2767 if (src_addr_width
== DMA_SLAVE_BUSWIDTH_UNDEFINED
)
2768 src_addr_width
= dst_addr_width
;
2769 if (src_maxburst
== 0)
2770 src_maxburst
= dst_maxburst
;
2772 dev_err(d40c
->base
->dev
,
2773 "unrecognized channel direction %d\n",
2778 if (config_addr
<= 0) {
2779 dev_err(d40c
->base
->dev
, "no address supplied\n");
2783 if (src_maxburst
* src_addr_width
!= dst_maxburst
* dst_addr_width
) {
2784 dev_err(d40c
->base
->dev
,
2785 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2793 if (src_maxburst
> 16) {
2795 dst_maxburst
= src_maxburst
* src_addr_width
/ dst_addr_width
;
2796 } else if (dst_maxburst
> 16) {
2798 src_maxburst
= dst_maxburst
* dst_addr_width
/ src_addr_width
;
2801 /* Only valid widths are; 1, 2, 4 and 8. */
2802 if (src_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2803 src_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2804 dst_addr_width
<= DMA_SLAVE_BUSWIDTH_UNDEFINED
||
2805 dst_addr_width
> DMA_SLAVE_BUSWIDTH_8_BYTES
||
2806 !is_power_of_2(src_addr_width
) ||
2807 !is_power_of_2(dst_addr_width
))
2810 cfg
->src_info
.data_width
= src_addr_width
;
2811 cfg
->dst_info
.data_width
= dst_addr_width
;
2813 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->src_info
,
2818 ret
= dma40_config_to_halfchannel(d40c
, &cfg
->dst_info
,
2823 /* Fill in register values */
2824 if (chan_is_logical(d40c
))
2825 d40_log_cfg(cfg
, &d40c
->log_def
.lcsp1
, &d40c
->log_def
.lcsp3
);
2827 d40_phy_cfg(cfg
, &d40c
->src_def_cfg
, &d40c
->dst_def_cfg
);
2829 /* These settings will take precedence later */
2830 d40c
->runtime_addr
= config_addr
;
2831 d40c
->runtime_direction
= config
->direction
;
2832 dev_dbg(d40c
->base
->dev
,
2833 "configured channel %s for %s, data width %d/%d, "
2834 "maxburst %d/%d elements, LE, no flow control\n",
2835 dma_chan_name(chan
),
2836 (config
->direction
== DMA_DEV_TO_MEM
) ? "RX" : "TX",
2837 src_addr_width
, dst_addr_width
,
2838 src_maxburst
, dst_maxburst
);
2843 static int d40_control(struct dma_chan
*chan
, enum dma_ctrl_cmd cmd
,
2846 struct d40_chan
*d40c
= container_of(chan
, struct d40_chan
, chan
);
2848 if (d40c
->phy_chan
== NULL
) {
2849 chan_err(d40c
, "Channel is not allocated!\n");
2854 case DMA_TERMINATE_ALL
:
2855 d40_terminate_all(chan
);
2858 return d40_pause(d40c
);
2860 return d40_resume(d40c
);
2861 case DMA_SLAVE_CONFIG
:
2862 return d40_set_runtime_config(chan
,
2863 (struct dma_slave_config
*) arg
);
2868 /* Other commands are unimplemented */
2872 /* Initialization functions */
2874 static void __init
d40_chan_init(struct d40_base
*base
, struct dma_device
*dma
,
2875 struct d40_chan
*chans
, int offset
,
2879 struct d40_chan
*d40c
;
2881 INIT_LIST_HEAD(&dma
->channels
);
2883 for (i
= offset
; i
< offset
+ num_chans
; i
++) {
2886 d40c
->chan
.device
= dma
;
2888 spin_lock_init(&d40c
->lock
);
2890 d40c
->log_num
= D40_PHY_CHAN
;
2892 INIT_LIST_HEAD(&d40c
->done
);
2893 INIT_LIST_HEAD(&d40c
->active
);
2894 INIT_LIST_HEAD(&d40c
->queue
);
2895 INIT_LIST_HEAD(&d40c
->pending_queue
);
2896 INIT_LIST_HEAD(&d40c
->client
);
2897 INIT_LIST_HEAD(&d40c
->prepare_queue
);
2899 tasklet_init(&d40c
->tasklet
, dma_tasklet
,
2900 (unsigned long) d40c
);
2902 list_add_tail(&d40c
->chan
.device_node
,
2907 static void d40_ops_init(struct d40_base
*base
, struct dma_device
*dev
)
2909 if (dma_has_cap(DMA_SLAVE
, dev
->cap_mask
))
2910 dev
->device_prep_slave_sg
= d40_prep_slave_sg
;
2912 if (dma_has_cap(DMA_MEMCPY
, dev
->cap_mask
)) {
2913 dev
->device_prep_dma_memcpy
= d40_prep_memcpy
;
2916 * This controller can only access address at even
2917 * 32bit boundaries, i.e. 2^2
2919 dev
->copy_align
= 2;
2922 if (dma_has_cap(DMA_SG
, dev
->cap_mask
))
2923 dev
->device_prep_dma_sg
= d40_prep_memcpy_sg
;
2925 if (dma_has_cap(DMA_CYCLIC
, dev
->cap_mask
))
2926 dev
->device_prep_dma_cyclic
= dma40_prep_dma_cyclic
;
2928 dev
->device_alloc_chan_resources
= d40_alloc_chan_resources
;
2929 dev
->device_free_chan_resources
= d40_free_chan_resources
;
2930 dev
->device_issue_pending
= d40_issue_pending
;
2931 dev
->device_tx_status
= d40_tx_status
;
2932 dev
->device_control
= d40_control
;
2933 dev
->dev
= base
->dev
;
2936 static int __init
d40_dmaengine_init(struct d40_base
*base
,
2937 int num_reserved_chans
)
2941 d40_chan_init(base
, &base
->dma_slave
, base
->log_chans
,
2942 0, base
->num_log_chans
);
2944 dma_cap_zero(base
->dma_slave
.cap_mask
);
2945 dma_cap_set(DMA_SLAVE
, base
->dma_slave
.cap_mask
);
2946 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2948 d40_ops_init(base
, &base
->dma_slave
);
2950 err
= dma_async_device_register(&base
->dma_slave
);
2953 d40_err(base
->dev
, "Failed to register slave channels\n");
2957 d40_chan_init(base
, &base
->dma_memcpy
, base
->log_chans
,
2958 base
->num_log_chans
, base
->num_memcpy_chans
);
2960 dma_cap_zero(base
->dma_memcpy
.cap_mask
);
2961 dma_cap_set(DMA_MEMCPY
, base
->dma_memcpy
.cap_mask
);
2962 dma_cap_set(DMA_SG
, base
->dma_memcpy
.cap_mask
);
2964 d40_ops_init(base
, &base
->dma_memcpy
);
2966 err
= dma_async_device_register(&base
->dma_memcpy
);
2970 "Failed to regsiter memcpy only channels\n");
2974 d40_chan_init(base
, &base
->dma_both
, base
->phy_chans
,
2975 0, num_reserved_chans
);
2977 dma_cap_zero(base
->dma_both
.cap_mask
);
2978 dma_cap_set(DMA_SLAVE
, base
->dma_both
.cap_mask
);
2979 dma_cap_set(DMA_MEMCPY
, base
->dma_both
.cap_mask
);
2980 dma_cap_set(DMA_SG
, base
->dma_both
.cap_mask
);
2981 dma_cap_set(DMA_CYCLIC
, base
->dma_slave
.cap_mask
);
2983 d40_ops_init(base
, &base
->dma_both
);
2984 err
= dma_async_device_register(&base
->dma_both
);
2988 "Failed to register logical and physical capable channels\n");
2993 dma_async_device_unregister(&base
->dma_memcpy
);
2995 dma_async_device_unregister(&base
->dma_slave
);
3000 /* Suspend resume functionality */
3002 static int dma40_pm_suspend(struct device
*dev
)
3004 struct platform_device
*pdev
= to_platform_device(dev
);
3005 struct d40_base
*base
= platform_get_drvdata(pdev
);
3008 if (base
->lcpa_regulator
)
3009 ret
= regulator_disable(base
->lcpa_regulator
);
3013 static int dma40_runtime_suspend(struct device
*dev
)
3015 struct platform_device
*pdev
= to_platform_device(dev
);
3016 struct d40_base
*base
= platform_get_drvdata(pdev
);
3018 d40_save_restore_registers(base
, true);
3020 /* Don't disable/enable clocks for v1 due to HW bugs */
3022 writel_relaxed(base
->gcc_pwr_off_mask
,
3023 base
->virtbase
+ D40_DREG_GCC
);
3028 static int dma40_runtime_resume(struct device
*dev
)
3030 struct platform_device
*pdev
= to_platform_device(dev
);
3031 struct d40_base
*base
= platform_get_drvdata(pdev
);
3033 if (base
->initialized
)
3034 d40_save_restore_registers(base
, false);
3036 writel_relaxed(D40_DREG_GCC_ENABLE_ALL
,
3037 base
->virtbase
+ D40_DREG_GCC
);
3041 static int dma40_resume(struct device
*dev
)
3043 struct platform_device
*pdev
= to_platform_device(dev
);
3044 struct d40_base
*base
= platform_get_drvdata(pdev
);
3047 if (base
->lcpa_regulator
)
3048 ret
= regulator_enable(base
->lcpa_regulator
);
3053 static const struct dev_pm_ops dma40_pm_ops
= {
3054 .suspend
= dma40_pm_suspend
,
3055 .runtime_suspend
= dma40_runtime_suspend
,
3056 .runtime_resume
= dma40_runtime_resume
,
3057 .resume
= dma40_resume
,
3059 #define DMA40_PM_OPS (&dma40_pm_ops)
3061 #define DMA40_PM_OPS NULL
3064 /* Initialization functions. */
3066 static int __init
d40_phy_res_init(struct d40_base
*base
)
3069 int num_phy_chans_avail
= 0;
3071 int odd_even_bit
= -2;
3072 int gcc
= D40_DREG_GCC_ENA
;
3074 val
[0] = readl(base
->virtbase
+ D40_DREG_PRSME
);
3075 val
[1] = readl(base
->virtbase
+ D40_DREG_PRSMO
);
3077 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3078 base
->phy_res
[i
].num
= i
;
3079 odd_even_bit
+= 2 * ((i
% 2) == 0);
3080 if (((val
[i
% 2] >> odd_even_bit
) & 3) == 1) {
3081 /* Mark security only channels as occupied */
3082 base
->phy_res
[i
].allocated_src
= D40_ALLOC_PHY
;
3083 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_PHY
;
3084 base
->phy_res
[i
].reserved
= true;
3085 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3087 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i
),
3092 base
->phy_res
[i
].allocated_src
= D40_ALLOC_FREE
;
3093 base
->phy_res
[i
].allocated_dst
= D40_ALLOC_FREE
;
3094 base
->phy_res
[i
].reserved
= false;
3095 num_phy_chans_avail
++;
3097 spin_lock_init(&base
->phy_res
[i
].lock
);
3100 /* Mark disabled channels as occupied */
3101 for (i
= 0; base
->plat_data
->disabled_channels
[i
] != -1; i
++) {
3102 int chan
= base
->plat_data
->disabled_channels
[i
];
3104 base
->phy_res
[chan
].allocated_src
= D40_ALLOC_PHY
;
3105 base
->phy_res
[chan
].allocated_dst
= D40_ALLOC_PHY
;
3106 base
->phy_res
[chan
].reserved
= true;
3107 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3109 gcc
|= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan
),
3111 num_phy_chans_avail
--;
3114 /* Mark soft_lli channels */
3115 for (i
= 0; i
< base
->plat_data
->num_of_soft_lli_chans
; i
++) {
3116 int chan
= base
->plat_data
->soft_lli_chans
[i
];
3118 base
->phy_res
[chan
].use_soft_lli
= true;
3121 dev_info(base
->dev
, "%d of %d physical DMA channels available\n",
3122 num_phy_chans_avail
, base
->num_phy_chans
);
3124 /* Verify settings extended vs standard */
3125 val
[0] = readl(base
->virtbase
+ D40_DREG_PRTYP
);
3127 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3129 if (base
->phy_res
[i
].allocated_src
== D40_ALLOC_FREE
&&
3130 (val
[0] & 0x3) != 1)
3132 "[%s] INFO: channel %d is misconfigured (%d)\n",
3133 __func__
, i
, val
[0] & 0x3);
3135 val
[0] = val
[0] >> 2;
3139 * To keep things simple, Enable all clocks initially.
3140 * The clocks will get managed later post channel allocation.
3141 * The clocks for the event lines on which reserved channels exists
3142 * are not managed here.
3144 writel(D40_DREG_GCC_ENABLE_ALL
, base
->virtbase
+ D40_DREG_GCC
);
3145 base
->gcc_pwr_off_mask
= gcc
;
3147 return num_phy_chans_avail
;
3150 static struct d40_base
* __init
d40_hw_detect_init(struct platform_device
*pdev
)
3152 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3153 struct clk
*clk
= NULL
;
3154 void __iomem
*virtbase
= NULL
;
3155 struct resource
*res
= NULL
;
3156 struct d40_base
*base
= NULL
;
3157 int num_log_chans
= 0;
3159 int num_memcpy_chans
;
3160 int clk_ret
= -EINVAL
;
3166 clk
= clk_get(&pdev
->dev
, NULL
);
3168 d40_err(&pdev
->dev
, "No matching clock found\n");
3172 clk_ret
= clk_prepare_enable(clk
);
3174 d40_err(&pdev
->dev
, "Failed to prepare/enable clock\n");
3178 /* Get IO for DMAC base address */
3179 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "base");
3183 if (request_mem_region(res
->start
, resource_size(res
),
3184 D40_NAME
" I/O base") == NULL
)
3187 virtbase
= ioremap(res
->start
, resource_size(res
));
3191 /* This is just a regular AMBA PrimeCell ID actually */
3192 for (pid
= 0, i
= 0; i
< 4; i
++)
3193 pid
|= (readl(virtbase
+ resource_size(res
) - 0x20 + 4 * i
)
3195 for (cid
= 0, i
= 0; i
< 4; i
++)
3196 cid
|= (readl(virtbase
+ resource_size(res
) - 0x10 + 4 * i
)
3199 if (cid
!= AMBA_CID
) {
3200 d40_err(&pdev
->dev
, "Unknown hardware! No PrimeCell ID\n");
3203 if (AMBA_MANF_BITS(pid
) != AMBA_VENDOR_ST
) {
3204 d40_err(&pdev
->dev
, "Unknown designer! Got %x wanted %x\n",
3205 AMBA_MANF_BITS(pid
),
3211 * DB8500ed has revision 0
3213 * DB8500v1 has revision 2
3214 * DB8500v2 has revision 3
3215 * AP9540v1 has revision 4
3216 * DB8540v1 has revision 4
3218 rev
= AMBA_REV_BITS(pid
);
3220 d40_err(&pdev
->dev
, "hardware revision: %d is not supported", rev
);
3224 /* The number of physical channels on this HW */
3225 if (plat_data
->num_of_phy_chans
)
3226 num_phy_chans
= plat_data
->num_of_phy_chans
;
3228 num_phy_chans
= 4 * (readl(virtbase
+ D40_DREG_ICFG
) & 0x7) + 4;
3230 /* The number of channels used for memcpy */
3231 if (plat_data
->num_of_memcpy_chans
)
3232 num_memcpy_chans
= plat_data
->num_of_memcpy_chans
;
3234 num_memcpy_chans
= ARRAY_SIZE(dma40_memcpy_channels
);
3236 num_log_chans
= num_phy_chans
* D40_MAX_LOG_CHAN_PER_PHY
;
3238 dev_info(&pdev
->dev
,
3239 "hardware rev: %d @ %pa with %d physical and %d logical channels\n",
3240 rev
, &res
->start
, num_phy_chans
, num_log_chans
);
3242 base
= kzalloc(ALIGN(sizeof(struct d40_base
), 4) +
3243 (num_phy_chans
+ num_log_chans
+ num_memcpy_chans
) *
3244 sizeof(struct d40_chan
), GFP_KERNEL
);
3247 d40_err(&pdev
->dev
, "Out of memory\n");
3253 base
->num_memcpy_chans
= num_memcpy_chans
;
3254 base
->num_phy_chans
= num_phy_chans
;
3255 base
->num_log_chans
= num_log_chans
;
3256 base
->phy_start
= res
->start
;
3257 base
->phy_size
= resource_size(res
);
3258 base
->virtbase
= virtbase
;
3259 base
->plat_data
= plat_data
;
3260 base
->dev
= &pdev
->dev
;
3261 base
->phy_chans
= ((void *)base
) + ALIGN(sizeof(struct d40_base
), 4);
3262 base
->log_chans
= &base
->phy_chans
[num_phy_chans
];
3264 if (base
->plat_data
->num_of_phy_chans
== 14) {
3265 base
->gen_dmac
.backup
= d40_backup_regs_v4b
;
3266 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4B
;
3267 base
->gen_dmac
.interrupt_en
= D40_DREG_CPCMIS
;
3268 base
->gen_dmac
.interrupt_clear
= D40_DREG_CPCICR
;
3269 base
->gen_dmac
.realtime_en
= D40_DREG_CRSEG1
;
3270 base
->gen_dmac
.realtime_clear
= D40_DREG_CRCEG1
;
3271 base
->gen_dmac
.high_prio_en
= D40_DREG_CPSEG1
;
3272 base
->gen_dmac
.high_prio_clear
= D40_DREG_CPCEG1
;
3273 base
->gen_dmac
.il
= il_v4b
;
3274 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4b
);
3275 base
->gen_dmac
.init_reg
= dma_init_reg_v4b
;
3276 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4b
);
3278 if (base
->rev
>= 3) {
3279 base
->gen_dmac
.backup
= d40_backup_regs_v4a
;
3280 base
->gen_dmac
.backup_size
= BACKUP_REGS_SZ_V4A
;
3282 base
->gen_dmac
.interrupt_en
= D40_DREG_PCMIS
;
3283 base
->gen_dmac
.interrupt_clear
= D40_DREG_PCICR
;
3284 base
->gen_dmac
.realtime_en
= D40_DREG_RSEG1
;
3285 base
->gen_dmac
.realtime_clear
= D40_DREG_RCEG1
;
3286 base
->gen_dmac
.high_prio_en
= D40_DREG_PSEG1
;
3287 base
->gen_dmac
.high_prio_clear
= D40_DREG_PCEG1
;
3288 base
->gen_dmac
.il
= il_v4a
;
3289 base
->gen_dmac
.il_size
= ARRAY_SIZE(il_v4a
);
3290 base
->gen_dmac
.init_reg
= dma_init_reg_v4a
;
3291 base
->gen_dmac
.init_reg_size
= ARRAY_SIZE(dma_init_reg_v4a
);
3294 base
->phy_res
= kzalloc(num_phy_chans
* sizeof(struct d40_phy_res
),
3299 base
->lookup_phy_chans
= kzalloc(num_phy_chans
*
3300 sizeof(struct d40_chan
*),
3302 if (!base
->lookup_phy_chans
)
3305 base
->lookup_log_chans
= kzalloc(num_log_chans
*
3306 sizeof(struct d40_chan
*),
3308 if (!base
->lookup_log_chans
)
3311 base
->reg_val_backup_chan
= kmalloc(base
->num_phy_chans
*
3312 sizeof(d40_backup_regs_chan
),
3314 if (!base
->reg_val_backup_chan
)
3317 base
->lcla_pool
.alloc_map
=
3318 kzalloc(num_phy_chans
* sizeof(struct d40_desc
*)
3319 * D40_LCLA_LINK_PER_EVENT_GRP
, GFP_KERNEL
);
3320 if (!base
->lcla_pool
.alloc_map
)
3323 base
->desc_slab
= kmem_cache_create(D40_NAME
, sizeof(struct d40_desc
),
3324 0, SLAB_HWCACHE_ALIGN
,
3326 if (base
->desc_slab
== NULL
)
3333 clk_disable_unprepare(clk
);
3339 release_mem_region(res
->start
,
3340 resource_size(res
));
3345 kfree(base
->lcla_pool
.alloc_map
);
3346 kfree(base
->reg_val_backup_chan
);
3347 kfree(base
->lookup_log_chans
);
3348 kfree(base
->lookup_phy_chans
);
3349 kfree(base
->phy_res
);
3356 static void __init
d40_hw_init(struct d40_base
*base
)
3360 u32 prmseo
[2] = {0, 0};
3361 u32 activeo
[2] = {0xFFFFFFFF, 0xFFFFFFFF};
3364 struct d40_reg_val
*dma_init_reg
= base
->gen_dmac
.init_reg
;
3365 u32 reg_size
= base
->gen_dmac
.init_reg_size
;
3367 for (i
= 0; i
< reg_size
; i
++)
3368 writel(dma_init_reg
[i
].val
,
3369 base
->virtbase
+ dma_init_reg
[i
].reg
);
3371 /* Configure all our dma channels to default settings */
3372 for (i
= 0; i
< base
->num_phy_chans
; i
++) {
3374 activeo
[i
% 2] = activeo
[i
% 2] << 2;
3376 if (base
->phy_res
[base
->num_phy_chans
- i
- 1].allocated_src
3378 activeo
[i
% 2] |= 3;
3382 /* Enable interrupt # */
3383 pcmis
= (pcmis
<< 1) | 1;
3385 /* Clear interrupt # */
3386 pcicr
= (pcicr
<< 1) | 1;
3388 /* Set channel to physical mode */
3389 prmseo
[i
% 2] = prmseo
[i
% 2] << 2;
3394 writel(prmseo
[1], base
->virtbase
+ D40_DREG_PRMSE
);
3395 writel(prmseo
[0], base
->virtbase
+ D40_DREG_PRMSO
);
3396 writel(activeo
[1], base
->virtbase
+ D40_DREG_ACTIVE
);
3397 writel(activeo
[0], base
->virtbase
+ D40_DREG_ACTIVO
);
3399 /* Write which interrupt to enable */
3400 writel(pcmis
, base
->virtbase
+ base
->gen_dmac
.interrupt_en
);
3402 /* Write which interrupt to clear */
3403 writel(pcicr
, base
->virtbase
+ base
->gen_dmac
.interrupt_clear
);
3405 /* These are __initdata and cannot be accessed after init */
3406 base
->gen_dmac
.init_reg
= NULL
;
3407 base
->gen_dmac
.init_reg_size
= 0;
3410 static int __init
d40_lcla_allocate(struct d40_base
*base
)
3412 struct d40_lcla_pool
*pool
= &base
->lcla_pool
;
3413 unsigned long *page_list
;
3418 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
3419 * To full fill this hardware requirement without wasting 256 kb
3420 * we allocate pages until we get an aligned one.
3422 page_list
= kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS
,
3430 /* Calculating how many pages that are required */
3431 base
->lcla_pool
.pages
= SZ_1K
* base
->num_phy_chans
/ PAGE_SIZE
;
3433 for (i
= 0; i
< MAX_LCLA_ALLOC_ATTEMPTS
; i
++) {
3434 page_list
[i
] = __get_free_pages(GFP_KERNEL
,
3435 base
->lcla_pool
.pages
);
3436 if (!page_list
[i
]) {
3438 d40_err(base
->dev
, "Failed to allocate %d pages.\n",
3439 base
->lcla_pool
.pages
);
3441 for (j
= 0; j
< i
; j
++)
3442 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3446 if ((virt_to_phys((void *)page_list
[i
]) &
3447 (LCLA_ALIGNMENT
- 1)) == 0)
3451 for (j
= 0; j
< i
; j
++)
3452 free_pages(page_list
[j
], base
->lcla_pool
.pages
);
3454 if (i
< MAX_LCLA_ALLOC_ATTEMPTS
) {
3455 base
->lcla_pool
.base
= (void *)page_list
[i
];
3458 * After many attempts and no succees with finding the correct
3459 * alignment, try with allocating a big buffer.
3462 "[%s] Failed to get %d pages @ 18 bit align.\n",
3463 __func__
, base
->lcla_pool
.pages
);
3464 base
->lcla_pool
.base_unaligned
= kmalloc(SZ_1K
*
3465 base
->num_phy_chans
+
3468 if (!base
->lcla_pool
.base_unaligned
) {
3473 base
->lcla_pool
.base
= PTR_ALIGN(base
->lcla_pool
.base_unaligned
,
3477 pool
->dma_addr
= dma_map_single(base
->dev
, pool
->base
,
3478 SZ_1K
* base
->num_phy_chans
,
3480 if (dma_mapping_error(base
->dev
, pool
->dma_addr
)) {
3486 writel(virt_to_phys(base
->lcla_pool
.base
),
3487 base
->virtbase
+ D40_DREG_LCLA
);
3493 static int __init
d40_of_probe(struct platform_device
*pdev
,
3494 struct device_node
*np
)
3496 struct stedma40_platform_data
*pdata
;
3497 int num_phy
= 0, num_memcpy
= 0, num_disabled
= 0;
3500 pdata
= devm_kzalloc(&pdev
->dev
,
3501 sizeof(struct stedma40_platform_data
),
3506 /* If absent this value will be obtained from h/w. */
3507 of_property_read_u32(np
, "dma-channels", &num_phy
);
3509 pdata
->num_of_phy_chans
= num_phy
;
3511 list
= of_get_property(np
, "memcpy-channels", &num_memcpy
);
3512 num_memcpy
/= sizeof(*list
);
3514 if (num_memcpy
> D40_MEMCPY_MAX_CHANS
|| num_memcpy
<= 0) {
3516 "Invalid number of memcpy channels specified (%d)\n",
3520 pdata
->num_of_memcpy_chans
= num_memcpy
;
3522 of_property_read_u32_array(np
, "memcpy-channels",
3523 dma40_memcpy_channels
,
3526 list
= of_get_property(np
, "disabled-channels", &num_disabled
);
3527 num_disabled
/= sizeof(*list
);
3529 if (num_disabled
>= STEDMA40_MAX_PHYS
|| num_disabled
< 0) {
3531 "Invalid number of disabled channels specified (%d)\n",
3536 of_property_read_u32_array(np
, "disabled-channels",
3537 pdata
->disabled_channels
,
3539 pdata
->disabled_channels
[num_disabled
] = -1;
3541 pdev
->dev
.platform_data
= pdata
;
3546 static int __init
d40_probe(struct platform_device
*pdev
)
3548 struct stedma40_platform_data
*plat_data
= dev_get_platdata(&pdev
->dev
);
3549 struct device_node
*np
= pdev
->dev
.of_node
;
3551 struct d40_base
*base
= NULL
;
3552 struct resource
*res
= NULL
;
3553 int num_reserved_chans
;
3558 if(d40_of_probe(pdev
, np
)) {
3563 d40_err(&pdev
->dev
, "No pdata or Device Tree provided\n");
3568 base
= d40_hw_detect_init(pdev
);
3572 num_reserved_chans
= d40_phy_res_init(base
);
3574 platform_set_drvdata(pdev
, base
);
3576 spin_lock_init(&base
->interrupt_lock
);
3577 spin_lock_init(&base
->execmd_lock
);
3579 /* Get IO for logical channel parameter address */
3580 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
, "lcpa");
3583 d40_err(&pdev
->dev
, "No \"lcpa\" memory resource\n");
3586 base
->lcpa_size
= resource_size(res
);
3587 base
->phy_lcpa
= res
->start
;
3589 if (request_mem_region(res
->start
, resource_size(res
),
3590 D40_NAME
" I/O lcpa") == NULL
) {
3592 d40_err(&pdev
->dev
, "Failed to request LCPA region %pR\n", res
);
3596 /* We make use of ESRAM memory for this. */
3597 val
= readl(base
->virtbase
+ D40_DREG_LCPA
);
3598 if (res
->start
!= val
&& val
!= 0) {
3599 dev_warn(&pdev
->dev
,
3600 "[%s] Mismatch LCPA dma 0x%x, def %pa\n",
3601 __func__
, val
, &res
->start
);
3603 writel(res
->start
, base
->virtbase
+ D40_DREG_LCPA
);
3605 base
->lcpa_base
= ioremap(res
->start
, resource_size(res
));
3606 if (!base
->lcpa_base
) {
3608 d40_err(&pdev
->dev
, "Failed to ioremap LCPA region\n");
3611 /* If lcla has to be located in ESRAM we don't need to allocate */
3612 if (base
->plat_data
->use_esram_lcla
) {
3613 res
= platform_get_resource_byname(pdev
, IORESOURCE_MEM
,
3618 "No \"lcla_esram\" memory resource\n");
3621 base
->lcla_pool
.base
= ioremap(res
->start
,
3622 resource_size(res
));
3623 if (!base
->lcla_pool
.base
) {
3625 d40_err(&pdev
->dev
, "Failed to ioremap LCLA region\n");
3628 writel(res
->start
, base
->virtbase
+ D40_DREG_LCLA
);
3631 ret
= d40_lcla_allocate(base
);
3633 d40_err(&pdev
->dev
, "Failed to allocate LCLA area\n");
3638 spin_lock_init(&base
->lcla_pool
.lock
);
3640 base
->irq
= platform_get_irq(pdev
, 0);
3642 ret
= request_irq(base
->irq
, d40_handle_interrupt
, 0, D40_NAME
, base
);
3644 d40_err(&pdev
->dev
, "No IRQ defined\n");
3648 pm_runtime_irq_safe(base
->dev
);
3649 pm_runtime_set_autosuspend_delay(base
->dev
, DMA40_AUTOSUSPEND_DELAY
);
3650 pm_runtime_use_autosuspend(base
->dev
);
3651 pm_runtime_enable(base
->dev
);
3652 pm_runtime_resume(base
->dev
);
3654 if (base
->plat_data
->use_esram_lcla
) {
3656 base
->lcpa_regulator
= regulator_get(base
->dev
, "lcla_esram");
3657 if (IS_ERR(base
->lcpa_regulator
)) {
3658 d40_err(&pdev
->dev
, "Failed to get lcpa_regulator\n");
3659 ret
= PTR_ERR(base
->lcpa_regulator
);
3660 base
->lcpa_regulator
= NULL
;
3664 ret
= regulator_enable(base
->lcpa_regulator
);
3667 "Failed to enable lcpa_regulator\n");
3668 regulator_put(base
->lcpa_regulator
);
3669 base
->lcpa_regulator
= NULL
;
3674 base
->initialized
= true;
3675 ret
= d40_dmaengine_init(base
, num_reserved_chans
);
3679 base
->dev
->dma_parms
= &base
->dma_parms
;
3680 ret
= dma_set_max_seg_size(base
->dev
, STEDMA40_MAX_SEG_SIZE
);
3682 d40_err(&pdev
->dev
, "Failed to set dma max seg size\n");
3689 ret
= of_dma_controller_register(np
, d40_xlate
, NULL
);
3692 "could not register of_dma_controller\n");
3695 dev_info(base
->dev
, "initialized\n");
3700 if (base
->desc_slab
)
3701 kmem_cache_destroy(base
->desc_slab
);
3703 iounmap(base
->virtbase
);
3705 if (base
->lcla_pool
.base
&& base
->plat_data
->use_esram_lcla
) {
3706 iounmap(base
->lcla_pool
.base
);
3707 base
->lcla_pool
.base
= NULL
;
3710 if (base
->lcla_pool
.dma_addr
)
3711 dma_unmap_single(base
->dev
, base
->lcla_pool
.dma_addr
,
3712 SZ_1K
* base
->num_phy_chans
,
3715 if (!base
->lcla_pool
.base_unaligned
&& base
->lcla_pool
.base
)
3716 free_pages((unsigned long)base
->lcla_pool
.base
,
3717 base
->lcla_pool
.pages
);
3719 kfree(base
->lcla_pool
.base_unaligned
);
3722 release_mem_region(base
->phy_lcpa
,
3724 if (base
->phy_start
)
3725 release_mem_region(base
->phy_start
,
3728 clk_disable_unprepare(base
->clk
);
3732 if (base
->lcpa_regulator
) {
3733 regulator_disable(base
->lcpa_regulator
);
3734 regulator_put(base
->lcpa_regulator
);
3737 kfree(base
->lcla_pool
.alloc_map
);
3738 kfree(base
->lookup_log_chans
);
3739 kfree(base
->lookup_phy_chans
);
3740 kfree(base
->phy_res
);
3744 d40_err(&pdev
->dev
, "probe failed\n");
3748 static const struct of_device_id d40_match
[] = {
3749 { .compatible
= "stericsson,dma40", },
3753 static struct platform_driver d40_driver
= {
3755 .owner
= THIS_MODULE
,
3758 .of_match_table
= d40_match
,
3762 static int __init
stedma40_init(void)
3764 return platform_driver_probe(&d40_driver
, d40_probe
);
3766 subsys_initcall(stedma40_init
);