2 * Copyright (c) 2006, Intel Corporation.
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15 * Place - Suite 330, Boston, MA 02111-1307 USA.
17 * Copyright (C) 2006-2008 Intel Corporation
18 * Author: Ashok Raj <ashok.raj@intel.com>
19 * Author: Shaohua Li <shaohua.li@intel.com>
20 * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21 * Author: Fenghua Yu <fenghua.yu@intel.com>
24 #include <linux/init.h>
25 #include <linux/bitmap.h>
26 #include <linux/debugfs.h>
27 #include <linux/export.h>
28 #include <linux/slab.h>
29 #include <linux/irq.h>
30 #include <linux/interrupt.h>
31 #include <linux/spinlock.h>
32 #include <linux/pci.h>
33 #include <linux/dmar.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mempool.h>
36 #include <linux/timer.h>
37 #include <linux/iova.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/syscore_ops.h>
41 #include <linux/tboot.h>
42 #include <linux/dmi.h>
43 #include <linux/pci-ats.h>
44 #include <linux/memblock.h>
45 #include <asm/irq_remapping.h>
46 #include <asm/cacheflush.h>
47 #include <asm/iommu.h>
49 #include "irq_remapping.h"
52 #define ROOT_SIZE VTD_PAGE_SIZE
53 #define CONTEXT_SIZE VTD_PAGE_SIZE
55 #define IS_GFX_DEVICE(pdev) ((pdev->class >> 16) == PCI_BASE_CLASS_DISPLAY)
56 #define IS_ISA_DEVICE(pdev) ((pdev->class >> 8) == PCI_CLASS_BRIDGE_ISA)
57 #define IS_AZALIA(pdev) ((pdev)->vendor == 0x8086 && (pdev)->device == 0x3a3e)
59 #define IOAPIC_RANGE_START (0xfee00000)
60 #define IOAPIC_RANGE_END (0xfeefffff)
61 #define IOVA_START_ADDR (0x1000)
63 #define DEFAULT_DOMAIN_ADDRESS_WIDTH 48
65 #define MAX_AGAW_WIDTH 64
66 #define MAX_AGAW_PFN_WIDTH (MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
68 #define __DOMAIN_MAX_PFN(gaw) ((((uint64_t)1) << (gaw-VTD_PAGE_SHIFT)) - 1)
69 #define __DOMAIN_MAX_ADDR(gaw) ((((uint64_t)1) << gaw) - 1)
71 /* We limit DOMAIN_MAX_PFN to fit in an unsigned long, and DOMAIN_MAX_ADDR
72 to match. That way, we can use 'unsigned long' for PFNs with impunity. */
73 #define DOMAIN_MAX_PFN(gaw) ((unsigned long) min_t(uint64_t, \
74 __DOMAIN_MAX_PFN(gaw), (unsigned long)-1))
75 #define DOMAIN_MAX_ADDR(gaw) (((uint64_t)__DOMAIN_MAX_PFN(gaw)) << VTD_PAGE_SHIFT)
77 #define IOVA_PFN(addr) ((addr) >> PAGE_SHIFT)
78 #define DMA_32BIT_PFN IOVA_PFN(DMA_BIT_MASK(32))
79 #define DMA_64BIT_PFN IOVA_PFN(DMA_BIT_MASK(64))
81 /* page table handling */
82 #define LEVEL_STRIDE (9)
83 #define LEVEL_MASK (((u64)1 << LEVEL_STRIDE) - 1)
86 * This bitmap is used to advertise the page sizes our hardware support
87 * to the IOMMU core, which will then use this information to split
88 * physically contiguous memory regions it is mapping into page sizes
91 * Traditionally the IOMMU core just handed us the mappings directly,
92 * after making sure the size is an order of a 4KiB page and that the
93 * mapping has natural alignment.
95 * To retain this behavior, we currently advertise that we support
96 * all page sizes that are an order of 4KiB.
98 * If at some point we'd like to utilize the IOMMU core's new behavior,
99 * we could change this to advertise the real page sizes we support.
101 #define INTEL_IOMMU_PGSIZES (~0xFFFUL)
103 static inline int agaw_to_level(int agaw
)
108 static inline int agaw_to_width(int agaw
)
110 return min_t(int, 30 + agaw
* LEVEL_STRIDE
, MAX_AGAW_WIDTH
);
113 static inline int width_to_agaw(int width
)
115 return DIV_ROUND_UP(width
- 30, LEVEL_STRIDE
);
118 static inline unsigned int level_to_offset_bits(int level
)
120 return (level
- 1) * LEVEL_STRIDE
;
123 static inline int pfn_level_offset(unsigned long pfn
, int level
)
125 return (pfn
>> level_to_offset_bits(level
)) & LEVEL_MASK
;
128 static inline unsigned long level_mask(int level
)
130 return -1UL << level_to_offset_bits(level
);
133 static inline unsigned long level_size(int level
)
135 return 1UL << level_to_offset_bits(level
);
138 static inline unsigned long align_to_level(unsigned long pfn
, int level
)
140 return (pfn
+ level_size(level
) - 1) & level_mask(level
);
143 static inline unsigned long lvl_to_nr_pages(unsigned int lvl
)
145 return 1 << min_t(int, (lvl
- 1) * LEVEL_STRIDE
, MAX_AGAW_PFN_WIDTH
);
148 /* VT-d pages must always be _smaller_ than MM pages. Otherwise things
149 are never going to work. */
150 static inline unsigned long dma_to_mm_pfn(unsigned long dma_pfn
)
152 return dma_pfn
>> (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
155 static inline unsigned long mm_to_dma_pfn(unsigned long mm_pfn
)
157 return mm_pfn
<< (PAGE_SHIFT
- VTD_PAGE_SHIFT
);
159 static inline unsigned long page_to_dma_pfn(struct page
*pg
)
161 return mm_to_dma_pfn(page_to_pfn(pg
));
163 static inline unsigned long virt_to_dma_pfn(void *p
)
165 return page_to_dma_pfn(virt_to_page(p
));
168 /* global iommu list, set NULL for ignored DMAR units */
169 static struct intel_iommu
**g_iommus
;
171 static void __init
check_tylersburg_isoch(void);
172 static int rwbf_quirk
;
175 * set to 1 to panic kernel if can't successfully enable VT-d
176 * (used when kernel is launched w/ TXT)
178 static int force_on
= 0;
183 * 12-63: Context Ptr (12 - (haw-1))
190 #define ROOT_ENTRY_NR (VTD_PAGE_SIZE/sizeof(struct root_entry))
191 static inline bool root_present(struct root_entry
*root
)
193 return (root
->val
& 1);
195 static inline void set_root_present(struct root_entry
*root
)
199 static inline void set_root_value(struct root_entry
*root
, unsigned long value
)
201 root
->val
|= value
& VTD_PAGE_MASK
;
204 static inline struct context_entry
*
205 get_context_addr_from_root(struct root_entry
*root
)
207 return (struct context_entry
*)
208 (root_present(root
)?phys_to_virt(
209 root
->val
& VTD_PAGE_MASK
) :
216 * 1: fault processing disable
217 * 2-3: translation type
218 * 12-63: address space root
224 struct context_entry
{
229 static inline bool context_present(struct context_entry
*context
)
231 return (context
->lo
& 1);
233 static inline void context_set_present(struct context_entry
*context
)
238 static inline void context_set_fault_enable(struct context_entry
*context
)
240 context
->lo
&= (((u64
)-1) << 2) | 1;
243 static inline void context_set_translation_type(struct context_entry
*context
,
246 context
->lo
&= (((u64
)-1) << 4) | 3;
247 context
->lo
|= (value
& 3) << 2;
250 static inline void context_set_address_root(struct context_entry
*context
,
253 context
->lo
|= value
& VTD_PAGE_MASK
;
256 static inline void context_set_address_width(struct context_entry
*context
,
259 context
->hi
|= value
& 7;
262 static inline void context_set_domain_id(struct context_entry
*context
,
265 context
->hi
|= (value
& ((1 << 16) - 1)) << 8;
268 static inline void context_clear_entry(struct context_entry
*context
)
281 * 12-63: Host physcial address
287 static inline void dma_clear_pte(struct dma_pte
*pte
)
292 static inline u64
dma_pte_addr(struct dma_pte
*pte
)
295 return pte
->val
& VTD_PAGE_MASK
;
297 /* Must have a full atomic 64-bit read */
298 return __cmpxchg64(&pte
->val
, 0ULL, 0ULL) & VTD_PAGE_MASK
;
302 static inline bool dma_pte_present(struct dma_pte
*pte
)
304 return (pte
->val
& 3) != 0;
307 static inline bool dma_pte_superpage(struct dma_pte
*pte
)
309 return (pte
->val
& (1 << 7));
312 static inline int first_pte_in_page(struct dma_pte
*pte
)
314 return !((unsigned long)pte
& ~VTD_PAGE_MASK
);
318 * This domain is a statically identity mapping domain.
319 * 1. This domain creats a static 1:1 mapping to all usable memory.
320 * 2. It maps to each iommu if successful.
321 * 3. Each iommu mapps to this domain if successful.
323 static struct dmar_domain
*si_domain
;
324 static int hw_pass_through
= 1;
326 /* devices under the same p2p bridge are owned in one domain */
327 #define DOMAIN_FLAG_P2P_MULTIPLE_DEVICES (1 << 0)
329 /* domain represents a virtual machine, more than one devices
330 * across iommus may be owned in one domain, e.g. kvm guest.
332 #define DOMAIN_FLAG_VIRTUAL_MACHINE (1 << 1)
334 /* si_domain contains mulitple devices */
335 #define DOMAIN_FLAG_STATIC_IDENTITY (1 << 2)
337 /* define the limit of IOMMUs supported in each domain */
339 # define IOMMU_UNITS_SUPPORTED MAX_IO_APICS
341 # define IOMMU_UNITS_SUPPORTED 64
345 int id
; /* domain id */
346 int nid
; /* node id */
347 DECLARE_BITMAP(iommu_bmp
, IOMMU_UNITS_SUPPORTED
);
348 /* bitmap of iommus this domain uses*/
350 struct list_head devices
; /* all devices' list */
351 struct iova_domain iovad
; /* iova's that belong to this domain */
353 struct dma_pte
*pgd
; /* virtual address */
354 int gaw
; /* max guest address width */
356 /* adjusted guest address width, 0 is level 2 30-bit */
359 int flags
; /* flags to find out type of domain */
361 int iommu_coherency
;/* indicate coherency of iommu access */
362 int iommu_snooping
; /* indicate snooping control feature*/
363 int iommu_count
; /* reference count of iommu */
364 int iommu_superpage
;/* Level of superpages supported:
365 0 == 4KiB (no superpages), 1 == 2MiB,
366 2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
367 spinlock_t iommu_lock
; /* protect iommu set in domain */
368 u64 max_addr
; /* maximum mapped address */
371 /* PCI domain-device relationship */
372 struct device_domain_info
{
373 struct list_head link
; /* link to domain siblings */
374 struct list_head global
; /* link to global list */
375 int segment
; /* PCI domain */
376 u8 bus
; /* PCI bus number */
377 u8 devfn
; /* PCI devfn number */
378 struct pci_dev
*dev
; /* it's NULL for PCIe-to-PCI bridge */
379 struct intel_iommu
*iommu
; /* IOMMU used by this device */
380 struct dmar_domain
*domain
; /* pointer to domain */
383 static void flush_unmaps_timeout(unsigned long data
);
385 static DEFINE_TIMER(unmap_timer
, flush_unmaps_timeout
, 0, 0);
387 #define HIGH_WATER_MARK 250
388 struct deferred_flush_tables
{
390 struct iova
*iova
[HIGH_WATER_MARK
];
391 struct dmar_domain
*domain
[HIGH_WATER_MARK
];
394 static struct deferred_flush_tables
*deferred_flush
;
396 /* bitmap for indexing intel_iommus */
397 static int g_num_of_iommus
;
399 static DEFINE_SPINLOCK(async_umap_flush_lock
);
400 static LIST_HEAD(unmaps_to_do
);
403 static long list_size
;
405 static void domain_remove_dev_info(struct dmar_domain
*domain
);
407 #ifdef CONFIG_INTEL_IOMMU_DEFAULT_ON
408 int dmar_disabled
= 0;
410 int dmar_disabled
= 1;
411 #endif /*CONFIG_INTEL_IOMMU_DEFAULT_ON*/
413 int intel_iommu_enabled
= 0;
414 EXPORT_SYMBOL_GPL(intel_iommu_enabled
);
416 static int dmar_map_gfx
= 1;
417 static int dmar_forcedac
;
418 static int intel_iommu_strict
;
419 static int intel_iommu_superpage
= 1;
421 int intel_iommu_gfx_mapped
;
422 EXPORT_SYMBOL_GPL(intel_iommu_gfx_mapped
);
424 #define DUMMY_DEVICE_DOMAIN_INFO ((struct device_domain_info *)(-1))
425 static DEFINE_SPINLOCK(device_domain_lock
);
426 static LIST_HEAD(device_domain_list
);
428 static struct iommu_ops intel_iommu_ops
;
430 static int __init
intel_iommu_setup(char *str
)
435 if (!strncmp(str
, "on", 2)) {
437 printk(KERN_INFO
"Intel-IOMMU: enabled\n");
438 } else if (!strncmp(str
, "off", 3)) {
440 printk(KERN_INFO
"Intel-IOMMU: disabled\n");
441 } else if (!strncmp(str
, "igfx_off", 8)) {
444 "Intel-IOMMU: disable GFX device mapping\n");
445 } else if (!strncmp(str
, "forcedac", 8)) {
447 "Intel-IOMMU: Forcing DAC for PCI devices\n");
449 } else if (!strncmp(str
, "strict", 6)) {
451 "Intel-IOMMU: disable batched IOTLB flush\n");
452 intel_iommu_strict
= 1;
453 } else if (!strncmp(str
, "sp_off", 6)) {
455 "Intel-IOMMU: disable supported super page\n");
456 intel_iommu_superpage
= 0;
459 str
+= strcspn(str
, ",");
465 __setup("intel_iommu=", intel_iommu_setup
);
467 static struct kmem_cache
*iommu_domain_cache
;
468 static struct kmem_cache
*iommu_devinfo_cache
;
469 static struct kmem_cache
*iommu_iova_cache
;
471 static inline void *alloc_pgtable_page(int node
)
476 page
= alloc_pages_node(node
, GFP_ATOMIC
| __GFP_ZERO
, 0);
478 vaddr
= page_address(page
);
482 static inline void free_pgtable_page(void *vaddr
)
484 free_page((unsigned long)vaddr
);
487 static inline void *alloc_domain_mem(void)
489 return kmem_cache_alloc(iommu_domain_cache
, GFP_ATOMIC
);
492 static void free_domain_mem(void *vaddr
)
494 kmem_cache_free(iommu_domain_cache
, vaddr
);
497 static inline void * alloc_devinfo_mem(void)
499 return kmem_cache_alloc(iommu_devinfo_cache
, GFP_ATOMIC
);
502 static inline void free_devinfo_mem(void *vaddr
)
504 kmem_cache_free(iommu_devinfo_cache
, vaddr
);
507 struct iova
*alloc_iova_mem(void)
509 return kmem_cache_alloc(iommu_iova_cache
, GFP_ATOMIC
);
512 void free_iova_mem(struct iova
*iova
)
514 kmem_cache_free(iommu_iova_cache
, iova
);
518 static int __iommu_calculate_agaw(struct intel_iommu
*iommu
, int max_gaw
)
523 sagaw
= cap_sagaw(iommu
->cap
);
524 for (agaw
= width_to_agaw(max_gaw
);
526 if (test_bit(agaw
, &sagaw
))
534 * Calculate max SAGAW for each iommu.
536 int iommu_calculate_max_sagaw(struct intel_iommu
*iommu
)
538 return __iommu_calculate_agaw(iommu
, MAX_AGAW_WIDTH
);
542 * calculate agaw for each iommu.
543 * "SAGAW" may be different across iommus, use a default agaw, and
544 * get a supported less agaw for iommus that don't support the default agaw.
546 int iommu_calculate_agaw(struct intel_iommu
*iommu
)
548 return __iommu_calculate_agaw(iommu
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
551 /* This functionin only returns single iommu in a domain */
552 static struct intel_iommu
*domain_get_iommu(struct dmar_domain
*domain
)
556 /* si_domain and vm domain should not get here. */
557 BUG_ON(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
);
558 BUG_ON(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
);
560 iommu_id
= find_first_bit(domain
->iommu_bmp
, g_num_of_iommus
);
561 if (iommu_id
< 0 || iommu_id
>= g_num_of_iommus
)
564 return g_iommus
[iommu_id
];
567 static void domain_update_iommu_coherency(struct dmar_domain
*domain
)
571 i
= find_first_bit(domain
->iommu_bmp
, g_num_of_iommus
);
573 domain
->iommu_coherency
= i
< g_num_of_iommus
? 1 : 0;
575 for_each_set_bit(i
, domain
->iommu_bmp
, g_num_of_iommus
) {
576 if (!ecap_coherent(g_iommus
[i
]->ecap
)) {
577 domain
->iommu_coherency
= 0;
583 static void domain_update_iommu_snooping(struct dmar_domain
*domain
)
587 domain
->iommu_snooping
= 1;
589 for_each_set_bit(i
, domain
->iommu_bmp
, g_num_of_iommus
) {
590 if (!ecap_sc_support(g_iommus
[i
]->ecap
)) {
591 domain
->iommu_snooping
= 0;
597 static void domain_update_iommu_superpage(struct dmar_domain
*domain
)
599 struct dmar_drhd_unit
*drhd
;
600 struct intel_iommu
*iommu
= NULL
;
603 if (!intel_iommu_superpage
) {
604 domain
->iommu_superpage
= 0;
608 /* set iommu_superpage to the smallest common denominator */
609 for_each_active_iommu(iommu
, drhd
) {
610 mask
&= cap_super_page_val(iommu
->cap
);
615 domain
->iommu_superpage
= fls(mask
);
618 /* Some capabilities may be different across iommus */
619 static void domain_update_iommu_cap(struct dmar_domain
*domain
)
621 domain_update_iommu_coherency(domain
);
622 domain_update_iommu_snooping(domain
);
623 domain_update_iommu_superpage(domain
);
626 static struct intel_iommu
*device_to_iommu(int segment
, u8 bus
, u8 devfn
)
628 struct dmar_drhd_unit
*drhd
= NULL
;
631 for_each_active_drhd_unit(drhd
) {
632 if (segment
!= drhd
->segment
)
635 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
636 if (drhd
->devices
[i
] &&
637 drhd
->devices
[i
]->bus
->number
== bus
&&
638 drhd
->devices
[i
]->devfn
== devfn
)
640 if (drhd
->devices
[i
] &&
641 drhd
->devices
[i
]->subordinate
&&
642 drhd
->devices
[i
]->subordinate
->number
<= bus
&&
643 drhd
->devices
[i
]->subordinate
->busn_res
.end
>= bus
)
647 if (drhd
->include_all
)
654 static void domain_flush_cache(struct dmar_domain
*domain
,
655 void *addr
, int size
)
657 if (!domain
->iommu_coherency
)
658 clflush_cache_range(addr
, size
);
661 /* Gets context entry for a given bus and devfn */
662 static struct context_entry
* device_to_context_entry(struct intel_iommu
*iommu
,
665 struct root_entry
*root
;
666 struct context_entry
*context
;
667 unsigned long phy_addr
;
670 spin_lock_irqsave(&iommu
->lock
, flags
);
671 root
= &iommu
->root_entry
[bus
];
672 context
= get_context_addr_from_root(root
);
674 context
= (struct context_entry
*)
675 alloc_pgtable_page(iommu
->node
);
677 spin_unlock_irqrestore(&iommu
->lock
, flags
);
680 __iommu_flush_cache(iommu
, (void *)context
, CONTEXT_SIZE
);
681 phy_addr
= virt_to_phys((void *)context
);
682 set_root_value(root
, phy_addr
);
683 set_root_present(root
);
684 __iommu_flush_cache(iommu
, root
, sizeof(*root
));
686 spin_unlock_irqrestore(&iommu
->lock
, flags
);
687 return &context
[devfn
];
690 static int device_context_mapped(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
692 struct root_entry
*root
;
693 struct context_entry
*context
;
697 spin_lock_irqsave(&iommu
->lock
, flags
);
698 root
= &iommu
->root_entry
[bus
];
699 context
= get_context_addr_from_root(root
);
704 ret
= context_present(&context
[devfn
]);
706 spin_unlock_irqrestore(&iommu
->lock
, flags
);
710 static void clear_context_table(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
712 struct root_entry
*root
;
713 struct context_entry
*context
;
716 spin_lock_irqsave(&iommu
->lock
, flags
);
717 root
= &iommu
->root_entry
[bus
];
718 context
= get_context_addr_from_root(root
);
720 context_clear_entry(&context
[devfn
]);
721 __iommu_flush_cache(iommu
, &context
[devfn
], \
724 spin_unlock_irqrestore(&iommu
->lock
, flags
);
727 static void free_context_table(struct intel_iommu
*iommu
)
729 struct root_entry
*root
;
732 struct context_entry
*context
;
734 spin_lock_irqsave(&iommu
->lock
, flags
);
735 if (!iommu
->root_entry
) {
738 for (i
= 0; i
< ROOT_ENTRY_NR
; i
++) {
739 root
= &iommu
->root_entry
[i
];
740 context
= get_context_addr_from_root(root
);
742 free_pgtable_page(context
);
744 free_pgtable_page(iommu
->root_entry
);
745 iommu
->root_entry
= NULL
;
747 spin_unlock_irqrestore(&iommu
->lock
, flags
);
750 static struct dma_pte
*pfn_to_dma_pte(struct dmar_domain
*domain
,
751 unsigned long pfn
, int target_level
)
753 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
754 struct dma_pte
*parent
, *pte
= NULL
;
755 int level
= agaw_to_level(domain
->agaw
);
758 BUG_ON(!domain
->pgd
);
760 if (addr_width
< BITS_PER_LONG
&& pfn
>> addr_width
)
761 /* Address beyond IOMMU's addressing capabilities. */
764 parent
= domain
->pgd
;
769 offset
= pfn_level_offset(pfn
, level
);
770 pte
= &parent
[offset
];
771 if (!target_level
&& (dma_pte_superpage(pte
) || !dma_pte_present(pte
)))
773 if (level
== target_level
)
776 if (!dma_pte_present(pte
)) {
779 tmp_page
= alloc_pgtable_page(domain
->nid
);
784 domain_flush_cache(domain
, tmp_page
, VTD_PAGE_SIZE
);
785 pteval
= ((uint64_t)virt_to_dma_pfn(tmp_page
) << VTD_PAGE_SHIFT
) | DMA_PTE_READ
| DMA_PTE_WRITE
;
786 if (cmpxchg64(&pte
->val
, 0ULL, pteval
)) {
787 /* Someone else set it while we were thinking; use theirs. */
788 free_pgtable_page(tmp_page
);
791 domain_flush_cache(domain
, pte
, sizeof(*pte
));
794 parent
= phys_to_virt(dma_pte_addr(pte
));
802 /* return address's pte at specific level */
803 static struct dma_pte
*dma_pfn_level_pte(struct dmar_domain
*domain
,
805 int level
, int *large_page
)
807 struct dma_pte
*parent
, *pte
= NULL
;
808 int total
= agaw_to_level(domain
->agaw
);
811 parent
= domain
->pgd
;
812 while (level
<= total
) {
813 offset
= pfn_level_offset(pfn
, total
);
814 pte
= &parent
[offset
];
818 if (!dma_pte_present(pte
)) {
823 if (pte
->val
& DMA_PTE_LARGE_PAGE
) {
828 parent
= phys_to_virt(dma_pte_addr(pte
));
834 /* clear last level pte, a tlb flush should be followed */
835 static int dma_pte_clear_range(struct dmar_domain
*domain
,
836 unsigned long start_pfn
,
837 unsigned long last_pfn
)
839 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
840 unsigned int large_page
= 1;
841 struct dma_pte
*first_pte
, *pte
;
843 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
844 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
845 BUG_ON(start_pfn
> last_pfn
);
847 /* we don't need lock here; nobody else touches the iova range */
850 first_pte
= pte
= dma_pfn_level_pte(domain
, start_pfn
, 1, &large_page
);
852 start_pfn
= align_to_level(start_pfn
+ 1, large_page
+ 1);
857 start_pfn
+= lvl_to_nr_pages(large_page
);
859 } while (start_pfn
<= last_pfn
&& !first_pte_in_page(pte
));
861 domain_flush_cache(domain
, first_pte
,
862 (void *)pte
- (void *)first_pte
);
864 } while (start_pfn
&& start_pfn
<= last_pfn
);
866 return min_t(int, (large_page
- 1) * 9, MAX_AGAW_PFN_WIDTH
);
869 static void dma_pte_free_level(struct dmar_domain
*domain
, int level
,
870 struct dma_pte
*pte
, unsigned long pfn
,
871 unsigned long start_pfn
, unsigned long last_pfn
)
873 pfn
= max(start_pfn
, pfn
);
874 pte
= &pte
[pfn_level_offset(pfn
, level
)];
877 unsigned long level_pfn
;
878 struct dma_pte
*level_pte
;
880 if (!dma_pte_present(pte
) || dma_pte_superpage(pte
))
883 level_pfn
= pfn
& level_mask(level
- 1);
884 level_pte
= phys_to_virt(dma_pte_addr(pte
));
887 dma_pte_free_level(domain
, level
- 1, level_pte
,
888 level_pfn
, start_pfn
, last_pfn
);
890 /* If range covers entire pagetable, free it */
891 if (!(start_pfn
> level_pfn
||
892 last_pfn
< level_pfn
+ level_size(level
) - 1)) {
894 domain_flush_cache(domain
, pte
, sizeof(*pte
));
895 free_pgtable_page(level_pte
);
898 pfn
+= level_size(level
);
899 } while (!first_pte_in_page(++pte
) && pfn
<= last_pfn
);
902 /* free page table pages. last level pte should already be cleared */
903 static void dma_pte_free_pagetable(struct dmar_domain
*domain
,
904 unsigned long start_pfn
,
905 unsigned long last_pfn
)
907 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
909 BUG_ON(addr_width
< BITS_PER_LONG
&& start_pfn
>> addr_width
);
910 BUG_ON(addr_width
< BITS_PER_LONG
&& last_pfn
>> addr_width
);
911 BUG_ON(start_pfn
> last_pfn
);
913 /* We don't need lock here; nobody else touches the iova range */
914 dma_pte_free_level(domain
, agaw_to_level(domain
->agaw
),
915 domain
->pgd
, 0, start_pfn
, last_pfn
);
918 if (start_pfn
== 0 && last_pfn
== DOMAIN_MAX_PFN(domain
->gaw
)) {
919 free_pgtable_page(domain
->pgd
);
925 static int iommu_alloc_root_entry(struct intel_iommu
*iommu
)
927 struct root_entry
*root
;
930 root
= (struct root_entry
*)alloc_pgtable_page(iommu
->node
);
934 __iommu_flush_cache(iommu
, root
, ROOT_SIZE
);
936 spin_lock_irqsave(&iommu
->lock
, flags
);
937 iommu
->root_entry
= root
;
938 spin_unlock_irqrestore(&iommu
->lock
, flags
);
943 static void iommu_set_root_entry(struct intel_iommu
*iommu
)
949 addr
= iommu
->root_entry
;
951 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
952 dmar_writeq(iommu
->reg
+ DMAR_RTADDR_REG
, virt_to_phys(addr
));
954 writel(iommu
->gcmd
| DMA_GCMD_SRTP
, iommu
->reg
+ DMAR_GCMD_REG
);
956 /* Make sure hardware complete it */
957 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
958 readl
, (sts
& DMA_GSTS_RTPS
), sts
);
960 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
963 static void iommu_flush_write_buffer(struct intel_iommu
*iommu
)
968 if (!rwbf_quirk
&& !cap_rwbf(iommu
->cap
))
971 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
972 writel(iommu
->gcmd
| DMA_GCMD_WBF
, iommu
->reg
+ DMAR_GCMD_REG
);
974 /* Make sure hardware complete it */
975 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
976 readl
, (!(val
& DMA_GSTS_WBFS
)), val
);
978 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
981 /* return value determine if we need a write buffer flush */
982 static void __iommu_flush_context(struct intel_iommu
*iommu
,
983 u16 did
, u16 source_id
, u8 function_mask
,
990 case DMA_CCMD_GLOBAL_INVL
:
991 val
= DMA_CCMD_GLOBAL_INVL
;
993 case DMA_CCMD_DOMAIN_INVL
:
994 val
= DMA_CCMD_DOMAIN_INVL
|DMA_CCMD_DID(did
);
996 case DMA_CCMD_DEVICE_INVL
:
997 val
= DMA_CCMD_DEVICE_INVL
|DMA_CCMD_DID(did
)
998 | DMA_CCMD_SID(source_id
) | DMA_CCMD_FM(function_mask
);
1003 val
|= DMA_CCMD_ICC
;
1005 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1006 dmar_writeq(iommu
->reg
+ DMAR_CCMD_REG
, val
);
1008 /* Make sure hardware complete it */
1009 IOMMU_WAIT_OP(iommu
, DMAR_CCMD_REG
,
1010 dmar_readq
, (!(val
& DMA_CCMD_ICC
)), val
);
1012 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1015 /* return value determine if we need a write buffer flush */
1016 static void __iommu_flush_iotlb(struct intel_iommu
*iommu
, u16 did
,
1017 u64 addr
, unsigned int size_order
, u64 type
)
1019 int tlb_offset
= ecap_iotlb_offset(iommu
->ecap
);
1020 u64 val
= 0, val_iva
= 0;
1024 case DMA_TLB_GLOBAL_FLUSH
:
1025 /* global flush doesn't need set IVA_REG */
1026 val
= DMA_TLB_GLOBAL_FLUSH
|DMA_TLB_IVT
;
1028 case DMA_TLB_DSI_FLUSH
:
1029 val
= DMA_TLB_DSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
1031 case DMA_TLB_PSI_FLUSH
:
1032 val
= DMA_TLB_PSI_FLUSH
|DMA_TLB_IVT
|DMA_TLB_DID(did
);
1033 /* Note: always flush non-leaf currently */
1034 val_iva
= size_order
| addr
;
1039 /* Note: set drain read/write */
1042 * This is probably to be super secure.. Looks like we can
1043 * ignore it without any impact.
1045 if (cap_read_drain(iommu
->cap
))
1046 val
|= DMA_TLB_READ_DRAIN
;
1048 if (cap_write_drain(iommu
->cap
))
1049 val
|= DMA_TLB_WRITE_DRAIN
;
1051 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1052 /* Note: Only uses first TLB reg currently */
1054 dmar_writeq(iommu
->reg
+ tlb_offset
, val_iva
);
1055 dmar_writeq(iommu
->reg
+ tlb_offset
+ 8, val
);
1057 /* Make sure hardware complete it */
1058 IOMMU_WAIT_OP(iommu
, tlb_offset
+ 8,
1059 dmar_readq
, (!(val
& DMA_TLB_IVT
)), val
);
1061 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1063 /* check IOTLB invalidation granularity */
1064 if (DMA_TLB_IAIG(val
) == 0)
1065 printk(KERN_ERR
"IOMMU: flush IOTLB failed\n");
1066 if (DMA_TLB_IAIG(val
) != DMA_TLB_IIRG(type
))
1067 pr_debug("IOMMU: tlb flush request %Lx, actual %Lx\n",
1068 (unsigned long long)DMA_TLB_IIRG(type
),
1069 (unsigned long long)DMA_TLB_IAIG(val
));
1072 static struct device_domain_info
*iommu_support_dev_iotlb(
1073 struct dmar_domain
*domain
, int segment
, u8 bus
, u8 devfn
)
1076 unsigned long flags
;
1077 struct device_domain_info
*info
;
1078 struct intel_iommu
*iommu
= device_to_iommu(segment
, bus
, devfn
);
1080 if (!ecap_dev_iotlb_support(iommu
->ecap
))
1086 spin_lock_irqsave(&device_domain_lock
, flags
);
1087 list_for_each_entry(info
, &domain
->devices
, link
)
1088 if (info
->bus
== bus
&& info
->devfn
== devfn
) {
1092 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1094 if (!found
|| !info
->dev
)
1097 if (!pci_find_ext_capability(info
->dev
, PCI_EXT_CAP_ID_ATS
))
1100 if (!dmar_find_matched_atsr_unit(info
->dev
))
1103 info
->iommu
= iommu
;
1108 static void iommu_enable_dev_iotlb(struct device_domain_info
*info
)
1113 pci_enable_ats(info
->dev
, VTD_PAGE_SHIFT
);
1116 static void iommu_disable_dev_iotlb(struct device_domain_info
*info
)
1118 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1121 pci_disable_ats(info
->dev
);
1124 static void iommu_flush_dev_iotlb(struct dmar_domain
*domain
,
1125 u64 addr
, unsigned mask
)
1128 unsigned long flags
;
1129 struct device_domain_info
*info
;
1131 spin_lock_irqsave(&device_domain_lock
, flags
);
1132 list_for_each_entry(info
, &domain
->devices
, link
) {
1133 if (!info
->dev
|| !pci_ats_enabled(info
->dev
))
1136 sid
= info
->bus
<< 8 | info
->devfn
;
1137 qdep
= pci_ats_queue_depth(info
->dev
);
1138 qi_flush_dev_iotlb(info
->iommu
, sid
, qdep
, addr
, mask
);
1140 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1143 static void iommu_flush_iotlb_psi(struct intel_iommu
*iommu
, u16 did
,
1144 unsigned long pfn
, unsigned int pages
, int map
)
1146 unsigned int mask
= ilog2(__roundup_pow_of_two(pages
));
1147 uint64_t addr
= (uint64_t)pfn
<< VTD_PAGE_SHIFT
;
1152 * Fallback to domain selective flush if no PSI support or the size is
1154 * PSI requires page size to be 2 ^ x, and the base address is naturally
1155 * aligned to the size
1157 if (!cap_pgsel_inv(iommu
->cap
) || mask
> cap_max_amask_val(iommu
->cap
))
1158 iommu
->flush
.flush_iotlb(iommu
, did
, 0, 0,
1161 iommu
->flush
.flush_iotlb(iommu
, did
, addr
, mask
,
1165 * In caching mode, changes of pages from non-present to present require
1166 * flush. However, device IOTLB doesn't need to be flushed in this case.
1168 if (!cap_caching_mode(iommu
->cap
) || !map
)
1169 iommu_flush_dev_iotlb(iommu
->domains
[did
], addr
, mask
);
1172 static void iommu_disable_protect_mem_regions(struct intel_iommu
*iommu
)
1175 unsigned long flags
;
1177 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
1178 pmen
= readl(iommu
->reg
+ DMAR_PMEN_REG
);
1179 pmen
&= ~DMA_PMEN_EPM
;
1180 writel(pmen
, iommu
->reg
+ DMAR_PMEN_REG
);
1182 /* wait for the protected region status bit to clear */
1183 IOMMU_WAIT_OP(iommu
, DMAR_PMEN_REG
,
1184 readl
, !(pmen
& DMA_PMEN_PRS
), pmen
);
1186 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1189 static int iommu_enable_translation(struct intel_iommu
*iommu
)
1192 unsigned long flags
;
1194 raw_spin_lock_irqsave(&iommu
->register_lock
, flags
);
1195 iommu
->gcmd
|= DMA_GCMD_TE
;
1196 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1198 /* Make sure hardware complete it */
1199 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1200 readl
, (sts
& DMA_GSTS_TES
), sts
);
1202 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flags
);
1206 static int iommu_disable_translation(struct intel_iommu
*iommu
)
1211 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
1212 iommu
->gcmd
&= ~DMA_GCMD_TE
;
1213 writel(iommu
->gcmd
, iommu
->reg
+ DMAR_GCMD_REG
);
1215 /* Make sure hardware complete it */
1216 IOMMU_WAIT_OP(iommu
, DMAR_GSTS_REG
,
1217 readl
, (!(sts
& DMA_GSTS_TES
)), sts
);
1219 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
1224 static int iommu_init_domains(struct intel_iommu
*iommu
)
1226 unsigned long ndomains
;
1227 unsigned long nlongs
;
1229 ndomains
= cap_ndoms(iommu
->cap
);
1230 pr_debug("IOMMU%d: Number of Domains supported <%ld>\n",
1231 iommu
->seq_id
, ndomains
);
1232 nlongs
= BITS_TO_LONGS(ndomains
);
1234 spin_lock_init(&iommu
->lock
);
1236 /* TBD: there might be 64K domains,
1237 * consider other allocation for future chip
1239 iommu
->domain_ids
= kcalloc(nlongs
, sizeof(unsigned long), GFP_KERNEL
);
1240 if (!iommu
->domain_ids
) {
1241 pr_err("IOMMU%d: allocating domain id array failed\n",
1245 iommu
->domains
= kcalloc(ndomains
, sizeof(struct dmar_domain
*),
1247 if (!iommu
->domains
) {
1248 pr_err("IOMMU%d: allocating domain array failed\n",
1250 kfree(iommu
->domain_ids
);
1251 iommu
->domain_ids
= NULL
;
1256 * if Caching mode is set, then invalid translations are tagged
1257 * with domainid 0. Hence we need to pre-allocate it.
1259 if (cap_caching_mode(iommu
->cap
))
1260 set_bit(0, iommu
->domain_ids
);
1265 static void domain_exit(struct dmar_domain
*domain
);
1266 static void vm_domain_exit(struct dmar_domain
*domain
);
1268 static void free_dmar_iommu(struct intel_iommu
*iommu
)
1270 struct dmar_domain
*domain
;
1272 unsigned long flags
;
1274 if ((iommu
->domains
) && (iommu
->domain_ids
)) {
1275 for_each_set_bit(i
, iommu
->domain_ids
, cap_ndoms(iommu
->cap
)) {
1276 domain
= iommu
->domains
[i
];
1277 clear_bit(i
, iommu
->domain_ids
);
1279 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1280 count
= --domain
->iommu_count
;
1281 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1283 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
)
1284 vm_domain_exit(domain
);
1286 domain_exit(domain
);
1291 if (iommu
->gcmd
& DMA_GCMD_TE
)
1292 iommu_disable_translation(iommu
);
1294 kfree(iommu
->domains
);
1295 kfree(iommu
->domain_ids
);
1296 iommu
->domains
= NULL
;
1297 iommu
->domain_ids
= NULL
;
1299 g_iommus
[iommu
->seq_id
] = NULL
;
1301 /* if all iommus are freed, free g_iommus */
1302 for (i
= 0; i
< g_num_of_iommus
; i
++) {
1307 if (i
== g_num_of_iommus
)
1310 /* free context mapping */
1311 free_context_table(iommu
);
1314 static struct dmar_domain
*alloc_domain(void)
1316 struct dmar_domain
*domain
;
1318 domain
= alloc_domain_mem();
1323 memset(domain
->iommu_bmp
, 0, sizeof(domain
->iommu_bmp
));
1329 static int iommu_attach_domain(struct dmar_domain
*domain
,
1330 struct intel_iommu
*iommu
)
1333 unsigned long ndomains
;
1334 unsigned long flags
;
1336 ndomains
= cap_ndoms(iommu
->cap
);
1338 spin_lock_irqsave(&iommu
->lock
, flags
);
1340 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1341 if (num
>= ndomains
) {
1342 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1343 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1348 set_bit(num
, iommu
->domain_ids
);
1349 set_bit(iommu
->seq_id
, domain
->iommu_bmp
);
1350 iommu
->domains
[num
] = domain
;
1351 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1356 static void iommu_detach_domain(struct dmar_domain
*domain
,
1357 struct intel_iommu
*iommu
)
1359 unsigned long flags
;
1363 spin_lock_irqsave(&iommu
->lock
, flags
);
1364 ndomains
= cap_ndoms(iommu
->cap
);
1365 for_each_set_bit(num
, iommu
->domain_ids
, ndomains
) {
1366 if (iommu
->domains
[num
] == domain
) {
1373 clear_bit(num
, iommu
->domain_ids
);
1374 clear_bit(iommu
->seq_id
, domain
->iommu_bmp
);
1375 iommu
->domains
[num
] = NULL
;
1377 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1380 static struct iova_domain reserved_iova_list
;
1381 static struct lock_class_key reserved_rbtree_key
;
1383 static int dmar_init_reserved_ranges(void)
1385 struct pci_dev
*pdev
= NULL
;
1389 init_iova_domain(&reserved_iova_list
, DMA_32BIT_PFN
);
1391 lockdep_set_class(&reserved_iova_list
.iova_rbtree_lock
,
1392 &reserved_rbtree_key
);
1394 /* IOAPIC ranges shouldn't be accessed by DMA */
1395 iova
= reserve_iova(&reserved_iova_list
, IOVA_PFN(IOAPIC_RANGE_START
),
1396 IOVA_PFN(IOAPIC_RANGE_END
));
1398 printk(KERN_ERR
"Reserve IOAPIC range failed\n");
1402 /* Reserve all PCI MMIO to avoid peer-to-peer access */
1403 for_each_pci_dev(pdev
) {
1406 for (i
= 0; i
< PCI_NUM_RESOURCES
; i
++) {
1407 r
= &pdev
->resource
[i
];
1408 if (!r
->flags
|| !(r
->flags
& IORESOURCE_MEM
))
1410 iova
= reserve_iova(&reserved_iova_list
,
1414 printk(KERN_ERR
"Reserve iova failed\n");
1422 static void domain_reserve_special_ranges(struct dmar_domain
*domain
)
1424 copy_reserved_iova(&reserved_iova_list
, &domain
->iovad
);
1427 static inline int guestwidth_to_adjustwidth(int gaw
)
1430 int r
= (gaw
- 12) % 9;
1441 static int domain_init(struct dmar_domain
*domain
, int guest_width
)
1443 struct intel_iommu
*iommu
;
1444 int adjust_width
, agaw
;
1445 unsigned long sagaw
;
1447 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
1448 spin_lock_init(&domain
->iommu_lock
);
1450 domain_reserve_special_ranges(domain
);
1452 /* calculate AGAW */
1453 iommu
= domain_get_iommu(domain
);
1454 if (guest_width
> cap_mgaw(iommu
->cap
))
1455 guest_width
= cap_mgaw(iommu
->cap
);
1456 domain
->gaw
= guest_width
;
1457 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
1458 agaw
= width_to_agaw(adjust_width
);
1459 sagaw
= cap_sagaw(iommu
->cap
);
1460 if (!test_bit(agaw
, &sagaw
)) {
1461 /* hardware doesn't support it, choose a bigger one */
1462 pr_debug("IOMMU: hardware doesn't support agaw %d\n", agaw
);
1463 agaw
= find_next_bit(&sagaw
, 5, agaw
);
1467 domain
->agaw
= agaw
;
1468 INIT_LIST_HEAD(&domain
->devices
);
1470 if (ecap_coherent(iommu
->ecap
))
1471 domain
->iommu_coherency
= 1;
1473 domain
->iommu_coherency
= 0;
1475 if (ecap_sc_support(iommu
->ecap
))
1476 domain
->iommu_snooping
= 1;
1478 domain
->iommu_snooping
= 0;
1480 domain
->iommu_superpage
= fls(cap_super_page_val(iommu
->cap
));
1481 domain
->iommu_count
= 1;
1482 domain
->nid
= iommu
->node
;
1484 /* always allocate the top pgd */
1485 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page(domain
->nid
);
1488 __iommu_flush_cache(iommu
, domain
->pgd
, PAGE_SIZE
);
1492 static void domain_exit(struct dmar_domain
*domain
)
1494 struct dmar_drhd_unit
*drhd
;
1495 struct intel_iommu
*iommu
;
1497 /* Domain 0 is reserved, so dont process it */
1501 /* Flush any lazy unmaps that may reference this domain */
1502 if (!intel_iommu_strict
)
1503 flush_unmaps_timeout(0);
1505 domain_remove_dev_info(domain
);
1507 put_iova_domain(&domain
->iovad
);
1510 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1512 /* free page tables */
1513 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
1515 for_each_active_iommu(iommu
, drhd
)
1516 if (test_bit(iommu
->seq_id
, domain
->iommu_bmp
))
1517 iommu_detach_domain(domain
, iommu
);
1519 free_domain_mem(domain
);
1522 static int domain_context_mapping_one(struct dmar_domain
*domain
, int segment
,
1523 u8 bus
, u8 devfn
, int translation
)
1525 struct context_entry
*context
;
1526 unsigned long flags
;
1527 struct intel_iommu
*iommu
;
1528 struct dma_pte
*pgd
;
1530 unsigned long ndomains
;
1533 struct device_domain_info
*info
= NULL
;
1535 pr_debug("Set context mapping for %02x:%02x.%d\n",
1536 bus
, PCI_SLOT(devfn
), PCI_FUNC(devfn
));
1538 BUG_ON(!domain
->pgd
);
1539 BUG_ON(translation
!= CONTEXT_TT_PASS_THROUGH
&&
1540 translation
!= CONTEXT_TT_MULTI_LEVEL
);
1542 iommu
= device_to_iommu(segment
, bus
, devfn
);
1546 context
= device_to_context_entry(iommu
, bus
, devfn
);
1549 spin_lock_irqsave(&iommu
->lock
, flags
);
1550 if (context_present(context
)) {
1551 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1558 if (domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
1559 domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) {
1562 /* find an available domain id for this device in iommu */
1563 ndomains
= cap_ndoms(iommu
->cap
);
1564 for_each_set_bit(num
, iommu
->domain_ids
, ndomains
) {
1565 if (iommu
->domains
[num
] == domain
) {
1573 num
= find_first_zero_bit(iommu
->domain_ids
, ndomains
);
1574 if (num
>= ndomains
) {
1575 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1576 printk(KERN_ERR
"IOMMU: no free domain ids\n");
1580 set_bit(num
, iommu
->domain_ids
);
1581 iommu
->domains
[num
] = domain
;
1585 /* Skip top levels of page tables for
1586 * iommu which has less agaw than default.
1587 * Unnecessary for PT mode.
1589 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1590 for (agaw
= domain
->agaw
; agaw
!= iommu
->agaw
; agaw
--) {
1591 pgd
= phys_to_virt(dma_pte_addr(pgd
));
1592 if (!dma_pte_present(pgd
)) {
1593 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1600 context_set_domain_id(context
, id
);
1602 if (translation
!= CONTEXT_TT_PASS_THROUGH
) {
1603 info
= iommu_support_dev_iotlb(domain
, segment
, bus
, devfn
);
1604 translation
= info
? CONTEXT_TT_DEV_IOTLB
:
1605 CONTEXT_TT_MULTI_LEVEL
;
1608 * In pass through mode, AW must be programmed to indicate the largest
1609 * AGAW value supported by hardware. And ASR is ignored by hardware.
1611 if (unlikely(translation
== CONTEXT_TT_PASS_THROUGH
))
1612 context_set_address_width(context
, iommu
->msagaw
);
1614 context_set_address_root(context
, virt_to_phys(pgd
));
1615 context_set_address_width(context
, iommu
->agaw
);
1618 context_set_translation_type(context
, translation
);
1619 context_set_fault_enable(context
);
1620 context_set_present(context
);
1621 domain_flush_cache(domain
, context
, sizeof(*context
));
1624 * It's a non-present to present mapping. If hardware doesn't cache
1625 * non-present entry we only need to flush the write-buffer. If the
1626 * _does_ cache non-present entries, then it does so in the special
1627 * domain #0, which we have to flush:
1629 if (cap_caching_mode(iommu
->cap
)) {
1630 iommu
->flush
.flush_context(iommu
, 0,
1631 (((u16
)bus
) << 8) | devfn
,
1632 DMA_CCMD_MASK_NOBIT
,
1633 DMA_CCMD_DEVICE_INVL
);
1634 iommu
->flush
.flush_iotlb(iommu
, domain
->id
, 0, 0, DMA_TLB_DSI_FLUSH
);
1636 iommu_flush_write_buffer(iommu
);
1638 iommu_enable_dev_iotlb(info
);
1639 spin_unlock_irqrestore(&iommu
->lock
, flags
);
1641 spin_lock_irqsave(&domain
->iommu_lock
, flags
);
1642 if (!test_and_set_bit(iommu
->seq_id
, domain
->iommu_bmp
)) {
1643 domain
->iommu_count
++;
1644 if (domain
->iommu_count
== 1)
1645 domain
->nid
= iommu
->node
;
1646 domain_update_iommu_cap(domain
);
1648 spin_unlock_irqrestore(&domain
->iommu_lock
, flags
);
1653 domain_context_mapping(struct dmar_domain
*domain
, struct pci_dev
*pdev
,
1657 struct pci_dev
*tmp
, *parent
;
1659 ret
= domain_context_mapping_one(domain
, pci_domain_nr(pdev
->bus
),
1660 pdev
->bus
->number
, pdev
->devfn
,
1665 /* dependent device mapping */
1666 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1669 /* Secondary interface's bus number and devfn 0 */
1670 parent
= pdev
->bus
->self
;
1671 while (parent
!= tmp
) {
1672 ret
= domain_context_mapping_one(domain
,
1673 pci_domain_nr(parent
->bus
),
1674 parent
->bus
->number
,
1675 parent
->devfn
, translation
);
1678 parent
= parent
->bus
->self
;
1680 if (pci_is_pcie(tmp
)) /* this is a PCIe-to-PCI bridge */
1681 return domain_context_mapping_one(domain
,
1682 pci_domain_nr(tmp
->subordinate
),
1683 tmp
->subordinate
->number
, 0,
1685 else /* this is a legacy PCI bridge */
1686 return domain_context_mapping_one(domain
,
1687 pci_domain_nr(tmp
->bus
),
1693 static int domain_context_mapped(struct pci_dev
*pdev
)
1696 struct pci_dev
*tmp
, *parent
;
1697 struct intel_iommu
*iommu
;
1699 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
1704 ret
= device_context_mapped(iommu
, pdev
->bus
->number
, pdev
->devfn
);
1707 /* dependent device mapping */
1708 tmp
= pci_find_upstream_pcie_bridge(pdev
);
1711 /* Secondary interface's bus number and devfn 0 */
1712 parent
= pdev
->bus
->self
;
1713 while (parent
!= tmp
) {
1714 ret
= device_context_mapped(iommu
, parent
->bus
->number
,
1718 parent
= parent
->bus
->self
;
1720 if (pci_is_pcie(tmp
))
1721 return device_context_mapped(iommu
, tmp
->subordinate
->number
,
1724 return device_context_mapped(iommu
, tmp
->bus
->number
,
1728 /* Returns a number of VTD pages, but aligned to MM page size */
1729 static inline unsigned long aligned_nrpages(unsigned long host_addr
,
1732 host_addr
&= ~PAGE_MASK
;
1733 return PAGE_ALIGN(host_addr
+ size
) >> VTD_PAGE_SHIFT
;
1736 /* Return largest possible superpage level for a given mapping */
1737 static inline int hardware_largepage_caps(struct dmar_domain
*domain
,
1738 unsigned long iov_pfn
,
1739 unsigned long phy_pfn
,
1740 unsigned long pages
)
1742 int support
, level
= 1;
1743 unsigned long pfnmerge
;
1745 support
= domain
->iommu_superpage
;
1747 /* To use a large page, the virtual *and* physical addresses
1748 must be aligned to 2MiB/1GiB/etc. Lower bits set in either
1749 of them will mean we have to use smaller pages. So just
1750 merge them and check both at once. */
1751 pfnmerge
= iov_pfn
| phy_pfn
;
1753 while (support
&& !(pfnmerge
& ~VTD_STRIDE_MASK
)) {
1754 pages
>>= VTD_STRIDE_SHIFT
;
1757 pfnmerge
>>= VTD_STRIDE_SHIFT
;
1764 static int __domain_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1765 struct scatterlist
*sg
, unsigned long phys_pfn
,
1766 unsigned long nr_pages
, int prot
)
1768 struct dma_pte
*first_pte
= NULL
, *pte
= NULL
;
1769 phys_addr_t
uninitialized_var(pteval
);
1770 int addr_width
= agaw_to_width(domain
->agaw
) - VTD_PAGE_SHIFT
;
1771 unsigned long sg_res
= 0;
1772 unsigned int largepage_lvl
= 0;
1773 unsigned long lvl_pages
= 0;
1775 BUG_ON(addr_width
< BITS_PER_LONG
&& (iov_pfn
+ nr_pages
- 1) >> addr_width
);
1777 if ((prot
& (DMA_PTE_READ
|DMA_PTE_WRITE
)) == 0)
1780 prot
&= DMA_PTE_READ
| DMA_PTE_WRITE
| DMA_PTE_SNP
;
1784 pteval
= ((phys_addr_t
)phys_pfn
<< VTD_PAGE_SHIFT
) | prot
;
1787 while (nr_pages
> 0) {
1791 sg_res
= aligned_nrpages(sg
->offset
, sg
->length
);
1792 sg
->dma_address
= ((dma_addr_t
)iov_pfn
<< VTD_PAGE_SHIFT
) + sg
->offset
;
1793 sg
->dma_length
= sg
->length
;
1794 pteval
= page_to_phys(sg_page(sg
)) | prot
;
1795 phys_pfn
= pteval
>> VTD_PAGE_SHIFT
;
1799 largepage_lvl
= hardware_largepage_caps(domain
, iov_pfn
, phys_pfn
, sg_res
);
1801 first_pte
= pte
= pfn_to_dma_pte(domain
, iov_pfn
, largepage_lvl
);
1804 /* It is large page*/
1805 if (largepage_lvl
> 1) {
1806 pteval
|= DMA_PTE_LARGE_PAGE
;
1807 /* Ensure that old small page tables are removed to make room
1808 for superpage, if they exist. */
1809 dma_pte_clear_range(domain
, iov_pfn
,
1810 iov_pfn
+ lvl_to_nr_pages(largepage_lvl
) - 1);
1811 dma_pte_free_pagetable(domain
, iov_pfn
,
1812 iov_pfn
+ lvl_to_nr_pages(largepage_lvl
) - 1);
1814 pteval
&= ~(uint64_t)DMA_PTE_LARGE_PAGE
;
1818 /* We don't need lock here, nobody else
1819 * touches the iova range
1821 tmp
= cmpxchg64_local(&pte
->val
, 0ULL, pteval
);
1823 static int dumps
= 5;
1824 printk(KERN_CRIT
"ERROR: DMA PTE for vPFN 0x%lx already set (to %llx not %llx)\n",
1825 iov_pfn
, tmp
, (unsigned long long)pteval
);
1828 debug_dma_dump_mappings(NULL
);
1833 lvl_pages
= lvl_to_nr_pages(largepage_lvl
);
1835 BUG_ON(nr_pages
< lvl_pages
);
1836 BUG_ON(sg_res
< lvl_pages
);
1838 nr_pages
-= lvl_pages
;
1839 iov_pfn
+= lvl_pages
;
1840 phys_pfn
+= lvl_pages
;
1841 pteval
+= lvl_pages
* VTD_PAGE_SIZE
;
1842 sg_res
-= lvl_pages
;
1844 /* If the next PTE would be the first in a new page, then we
1845 need to flush the cache on the entries we've just written.
1846 And then we'll need to recalculate 'pte', so clear it and
1847 let it get set again in the if (!pte) block above.
1849 If we're done (!nr_pages) we need to flush the cache too.
1851 Also if we've been setting superpages, we may need to
1852 recalculate 'pte' and switch back to smaller pages for the
1853 end of the mapping, if the trailing size is not enough to
1854 use another superpage (i.e. sg_res < lvl_pages). */
1856 if (!nr_pages
|| first_pte_in_page(pte
) ||
1857 (largepage_lvl
> 1 && sg_res
< lvl_pages
)) {
1858 domain_flush_cache(domain
, first_pte
,
1859 (void *)pte
- (void *)first_pte
);
1863 if (!sg_res
&& nr_pages
)
1869 static inline int domain_sg_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1870 struct scatterlist
*sg
, unsigned long nr_pages
,
1873 return __domain_mapping(domain
, iov_pfn
, sg
, 0, nr_pages
, prot
);
1876 static inline int domain_pfn_mapping(struct dmar_domain
*domain
, unsigned long iov_pfn
,
1877 unsigned long phys_pfn
, unsigned long nr_pages
,
1880 return __domain_mapping(domain
, iov_pfn
, NULL
, phys_pfn
, nr_pages
, prot
);
1883 static void iommu_detach_dev(struct intel_iommu
*iommu
, u8 bus
, u8 devfn
)
1888 clear_context_table(iommu
, bus
, devfn
);
1889 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
1890 DMA_CCMD_GLOBAL_INVL
);
1891 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
1894 static inline void unlink_domain_info(struct device_domain_info
*info
)
1896 assert_spin_locked(&device_domain_lock
);
1897 list_del(&info
->link
);
1898 list_del(&info
->global
);
1900 info
->dev
->dev
.archdata
.iommu
= NULL
;
1903 static void domain_remove_dev_info(struct dmar_domain
*domain
)
1905 struct device_domain_info
*info
;
1906 unsigned long flags
;
1907 struct intel_iommu
*iommu
;
1909 spin_lock_irqsave(&device_domain_lock
, flags
);
1910 while (!list_empty(&domain
->devices
)) {
1911 info
= list_entry(domain
->devices
.next
,
1912 struct device_domain_info
, link
);
1913 unlink_domain_info(info
);
1914 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1916 iommu_disable_dev_iotlb(info
);
1917 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
1918 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
1919 free_devinfo_mem(info
);
1921 spin_lock_irqsave(&device_domain_lock
, flags
);
1923 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1928 * Note: we use struct pci_dev->dev.archdata.iommu stores the info
1930 static struct dmar_domain
*
1931 find_domain(struct pci_dev
*pdev
)
1933 struct device_domain_info
*info
;
1935 /* No lock here, assumes no domain exit in normal case */
1936 info
= pdev
->dev
.archdata
.iommu
;
1938 return info
->domain
;
1942 /* domain is initialized */
1943 static struct dmar_domain
*get_domain_for_dev(struct pci_dev
*pdev
, int gaw
)
1945 struct dmar_domain
*domain
, *found
= NULL
;
1946 struct intel_iommu
*iommu
;
1947 struct dmar_drhd_unit
*drhd
;
1948 struct device_domain_info
*info
, *tmp
;
1949 struct pci_dev
*dev_tmp
;
1950 unsigned long flags
;
1951 int bus
= 0, devfn
= 0;
1955 domain
= find_domain(pdev
);
1959 segment
= pci_domain_nr(pdev
->bus
);
1961 dev_tmp
= pci_find_upstream_pcie_bridge(pdev
);
1963 if (pci_is_pcie(dev_tmp
)) {
1964 bus
= dev_tmp
->subordinate
->number
;
1967 bus
= dev_tmp
->bus
->number
;
1968 devfn
= dev_tmp
->devfn
;
1970 spin_lock_irqsave(&device_domain_lock
, flags
);
1971 list_for_each_entry(info
, &device_domain_list
, global
) {
1972 if (info
->segment
== segment
&&
1973 info
->bus
== bus
&& info
->devfn
== devfn
) {
1974 found
= info
->domain
;
1978 spin_unlock_irqrestore(&device_domain_lock
, flags
);
1979 /* pcie-pci bridge already has a domain, uses it */
1986 domain
= alloc_domain();
1990 /* Allocate new domain for the device */
1991 drhd
= dmar_find_matched_drhd_unit(pdev
);
1993 printk(KERN_ERR
"IOMMU: can't find DMAR for device %s\n",
1995 free_domain_mem(domain
);
1998 iommu
= drhd
->iommu
;
2000 ret
= iommu_attach_domain(domain
, iommu
);
2002 free_domain_mem(domain
);
2006 if (domain_init(domain
, gaw
)) {
2007 domain_exit(domain
);
2011 /* register pcie-to-pci device */
2013 info
= alloc_devinfo_mem();
2015 domain_exit(domain
);
2018 info
->segment
= segment
;
2020 info
->devfn
= devfn
;
2022 info
->domain
= domain
;
2023 /* This domain is shared by devices under p2p bridge */
2024 domain
->flags
|= DOMAIN_FLAG_P2P_MULTIPLE_DEVICES
;
2026 /* pcie-to-pci bridge already has a domain, uses it */
2028 spin_lock_irqsave(&device_domain_lock
, flags
);
2029 list_for_each_entry(tmp
, &device_domain_list
, global
) {
2030 if (tmp
->segment
== segment
&&
2031 tmp
->bus
== bus
&& tmp
->devfn
== devfn
) {
2032 found
= tmp
->domain
;
2037 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2038 free_devinfo_mem(info
);
2039 domain_exit(domain
);
2042 list_add(&info
->link
, &domain
->devices
);
2043 list_add(&info
->global
, &device_domain_list
);
2044 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2049 info
= alloc_devinfo_mem();
2052 info
->segment
= segment
;
2053 info
->bus
= pdev
->bus
->number
;
2054 info
->devfn
= pdev
->devfn
;
2056 info
->domain
= domain
;
2057 spin_lock_irqsave(&device_domain_lock
, flags
);
2058 /* somebody is fast */
2059 found
= find_domain(pdev
);
2060 if (found
!= NULL
) {
2061 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2062 if (found
!= domain
) {
2063 domain_exit(domain
);
2066 free_devinfo_mem(info
);
2069 list_add(&info
->link
, &domain
->devices
);
2070 list_add(&info
->global
, &device_domain_list
);
2071 pdev
->dev
.archdata
.iommu
= info
;
2072 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2075 /* recheck it here, maybe others set it */
2076 return find_domain(pdev
);
2079 static int iommu_identity_mapping
;
2080 #define IDENTMAP_ALL 1
2081 #define IDENTMAP_GFX 2
2082 #define IDENTMAP_AZALIA 4
2084 static int iommu_domain_identity_map(struct dmar_domain
*domain
,
2085 unsigned long long start
,
2086 unsigned long long end
)
2088 unsigned long first_vpfn
= start
>> VTD_PAGE_SHIFT
;
2089 unsigned long last_vpfn
= end
>> VTD_PAGE_SHIFT
;
2091 if (!reserve_iova(&domain
->iovad
, dma_to_mm_pfn(first_vpfn
),
2092 dma_to_mm_pfn(last_vpfn
))) {
2093 printk(KERN_ERR
"IOMMU: reserve iova failed\n");
2097 pr_debug("Mapping reserved region %llx-%llx for domain %d\n",
2098 start
, end
, domain
->id
);
2100 * RMRR range might have overlap with physical memory range,
2103 dma_pte_clear_range(domain
, first_vpfn
, last_vpfn
);
2105 return domain_pfn_mapping(domain
, first_vpfn
, first_vpfn
,
2106 last_vpfn
- first_vpfn
+ 1,
2107 DMA_PTE_READ
|DMA_PTE_WRITE
);
2110 static int iommu_prepare_identity_map(struct pci_dev
*pdev
,
2111 unsigned long long start
,
2112 unsigned long long end
)
2114 struct dmar_domain
*domain
;
2117 domain
= get_domain_for_dev(pdev
, DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2121 /* For _hardware_ passthrough, don't bother. But for software
2122 passthrough, we do it anyway -- it may indicate a memory
2123 range which is reserved in E820, so which didn't get set
2124 up to start with in si_domain */
2125 if (domain
== si_domain
&& hw_pass_through
) {
2126 printk("Ignoring identity map for HW passthrough device %s [0x%Lx - 0x%Lx]\n",
2127 pci_name(pdev
), start
, end
);
2132 "IOMMU: Setting identity map for device %s [0x%Lx - 0x%Lx]\n",
2133 pci_name(pdev
), start
, end
);
2136 WARN(1, "Your BIOS is broken; RMRR ends before it starts!\n"
2137 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2138 dmi_get_system_info(DMI_BIOS_VENDOR
),
2139 dmi_get_system_info(DMI_BIOS_VERSION
),
2140 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2145 if (end
>> agaw_to_width(domain
->agaw
)) {
2146 WARN(1, "Your BIOS is broken; RMRR exceeds permitted address width (%d bits)\n"
2147 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
2148 agaw_to_width(domain
->agaw
),
2149 dmi_get_system_info(DMI_BIOS_VENDOR
),
2150 dmi_get_system_info(DMI_BIOS_VERSION
),
2151 dmi_get_system_info(DMI_PRODUCT_VERSION
));
2156 ret
= iommu_domain_identity_map(domain
, start
, end
);
2160 /* context entry init */
2161 ret
= domain_context_mapping(domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
2168 domain_exit(domain
);
2172 static inline int iommu_prepare_rmrr_dev(struct dmar_rmrr_unit
*rmrr
,
2173 struct pci_dev
*pdev
)
2175 if (pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
)
2177 return iommu_prepare_identity_map(pdev
, rmrr
->base_address
,
2181 #ifdef CONFIG_INTEL_IOMMU_FLOPPY_WA
2182 static inline void iommu_prepare_isa(void)
2184 struct pci_dev
*pdev
;
2187 pdev
= pci_get_class(PCI_CLASS_BRIDGE_ISA
<< 8, NULL
);
2191 printk(KERN_INFO
"IOMMU: Prepare 0-16MiB unity mapping for LPC\n");
2192 ret
= iommu_prepare_identity_map(pdev
, 0, 16*1024*1024 - 1);
2195 printk(KERN_ERR
"IOMMU: Failed to create 0-16MiB identity map; "
2196 "floppy might not work\n");
2200 static inline void iommu_prepare_isa(void)
2204 #endif /* !CONFIG_INTEL_IOMMU_FLPY_WA */
2206 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
);
2208 static int __init
si_domain_init(int hw
)
2210 struct dmar_drhd_unit
*drhd
;
2211 struct intel_iommu
*iommu
;
2214 si_domain
= alloc_domain();
2218 for_each_active_iommu(iommu
, drhd
) {
2219 ret
= iommu_attach_domain(si_domain
, iommu
);
2221 domain_exit(si_domain
);
2226 if (md_domain_init(si_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
2227 domain_exit(si_domain
);
2231 si_domain
->flags
= DOMAIN_FLAG_STATIC_IDENTITY
;
2232 pr_debug("IOMMU: identity mapping domain is domain %d\n",
2238 for_each_online_node(nid
) {
2239 unsigned long start_pfn
, end_pfn
;
2242 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
2243 ret
= iommu_domain_identity_map(si_domain
,
2244 PFN_PHYS(start_pfn
), PFN_PHYS(end_pfn
));
2253 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
2254 struct pci_dev
*pdev
);
2255 static int identity_mapping(struct pci_dev
*pdev
)
2257 struct device_domain_info
*info
;
2259 if (likely(!iommu_identity_mapping
))
2262 info
= pdev
->dev
.archdata
.iommu
;
2263 if (info
&& info
!= DUMMY_DEVICE_DOMAIN_INFO
)
2264 return (info
->domain
== si_domain
);
2269 static int domain_add_dev_info(struct dmar_domain
*domain
,
2270 struct pci_dev
*pdev
,
2273 struct device_domain_info
*info
;
2274 unsigned long flags
;
2277 info
= alloc_devinfo_mem();
2281 info
->segment
= pci_domain_nr(pdev
->bus
);
2282 info
->bus
= pdev
->bus
->number
;
2283 info
->devfn
= pdev
->devfn
;
2285 info
->domain
= domain
;
2287 spin_lock_irqsave(&device_domain_lock
, flags
);
2288 list_add(&info
->link
, &domain
->devices
);
2289 list_add(&info
->global
, &device_domain_list
);
2290 pdev
->dev
.archdata
.iommu
= info
;
2291 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2293 ret
= domain_context_mapping(domain
, pdev
, translation
);
2295 spin_lock_irqsave(&device_domain_lock
, flags
);
2296 unlink_domain_info(info
);
2297 spin_unlock_irqrestore(&device_domain_lock
, flags
);
2298 free_devinfo_mem(info
);
2305 static bool device_has_rmrr(struct pci_dev
*dev
)
2307 struct dmar_rmrr_unit
*rmrr
;
2310 for_each_rmrr_units(rmrr
) {
2311 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2313 * Return TRUE if this RMRR contains the device that
2316 if (rmrr
->devices
[i
] == dev
)
2323 static int iommu_should_identity_map(struct pci_dev
*pdev
, int startup
)
2327 * We want to prevent any device associated with an RMRR from
2328 * getting placed into the SI Domain. This is done because
2329 * problems exist when devices are moved in and out of domains
2330 * and their respective RMRR info is lost. We exempt USB devices
2331 * from this process due to their usage of RMRRs that are known
2332 * to not be needed after BIOS hand-off to OS.
2334 if (device_has_rmrr(pdev
) &&
2335 (pdev
->class >> 8) != PCI_CLASS_SERIAL_USB
)
2338 if ((iommu_identity_mapping
& IDENTMAP_AZALIA
) && IS_AZALIA(pdev
))
2341 if ((iommu_identity_mapping
& IDENTMAP_GFX
) && IS_GFX_DEVICE(pdev
))
2344 if (!(iommu_identity_mapping
& IDENTMAP_ALL
))
2348 * We want to start off with all devices in the 1:1 domain, and
2349 * take them out later if we find they can't access all of memory.
2351 * However, we can't do this for PCI devices behind bridges,
2352 * because all PCI devices behind the same bridge will end up
2353 * with the same source-id on their transactions.
2355 * Practically speaking, we can't change things around for these
2356 * devices at run-time, because we can't be sure there'll be no
2357 * DMA transactions in flight for any of their siblings.
2359 * So PCI devices (unless they're on the root bus) as well as
2360 * their parent PCI-PCI or PCIe-PCI bridges must be left _out_ of
2361 * the 1:1 domain, just in _case_ one of their siblings turns out
2362 * not to be able to map all of memory.
2364 if (!pci_is_pcie(pdev
)) {
2365 if (!pci_is_root_bus(pdev
->bus
))
2367 if (pdev
->class >> 8 == PCI_CLASS_BRIDGE_PCI
)
2369 } else if (pci_pcie_type(pdev
) == PCI_EXP_TYPE_PCI_BRIDGE
)
2373 * At boot time, we don't yet know if devices will be 64-bit capable.
2374 * Assume that they will -- if they turn out not to be, then we can
2375 * take them out of the 1:1 domain later.
2379 * If the device's dma_mask is less than the system's memory
2380 * size then this is not a candidate for identity mapping.
2382 u64 dma_mask
= pdev
->dma_mask
;
2384 if (pdev
->dev
.coherent_dma_mask
&&
2385 pdev
->dev
.coherent_dma_mask
< dma_mask
)
2386 dma_mask
= pdev
->dev
.coherent_dma_mask
;
2388 return dma_mask
>= dma_get_required_mask(&pdev
->dev
);
2394 static int __init
iommu_prepare_static_identity_mapping(int hw
)
2396 struct pci_dev
*pdev
= NULL
;
2399 ret
= si_domain_init(hw
);
2403 for_each_pci_dev(pdev
) {
2404 if (iommu_should_identity_map(pdev
, 1)) {
2405 ret
= domain_add_dev_info(si_domain
, pdev
,
2406 hw
? CONTEXT_TT_PASS_THROUGH
:
2407 CONTEXT_TT_MULTI_LEVEL
);
2409 /* device not associated with an iommu */
2414 pr_info("IOMMU: %s identity mapping for device %s\n",
2415 hw
? "hardware" : "software", pci_name(pdev
));
2422 static int __init
init_dmars(void)
2424 struct dmar_drhd_unit
*drhd
;
2425 struct dmar_rmrr_unit
*rmrr
;
2426 struct pci_dev
*pdev
;
2427 struct intel_iommu
*iommu
;
2433 * initialize and program root entry to not present
2436 for_each_drhd_unit(drhd
) {
2438 * lock not needed as this is only incremented in the single
2439 * threaded kernel __init code path all other access are read
2442 if (g_num_of_iommus
< IOMMU_UNITS_SUPPORTED
) {
2446 printk_once(KERN_ERR
"intel-iommu: exceeded %d IOMMUs\n",
2447 IOMMU_UNITS_SUPPORTED
);
2450 g_iommus
= kcalloc(g_num_of_iommus
, sizeof(struct intel_iommu
*),
2453 printk(KERN_ERR
"Allocating global iommu array failed\n");
2458 deferred_flush
= kzalloc(g_num_of_iommus
*
2459 sizeof(struct deferred_flush_tables
), GFP_KERNEL
);
2460 if (!deferred_flush
) {
2465 for_each_active_iommu(iommu
, drhd
) {
2466 g_iommus
[iommu
->seq_id
] = iommu
;
2468 ret
= iommu_init_domains(iommu
);
2474 * we could share the same root & context tables
2475 * among all IOMMU's. Need to Split it later.
2477 ret
= iommu_alloc_root_entry(iommu
);
2479 printk(KERN_ERR
"IOMMU: allocate root entry failed\n");
2482 if (!ecap_pass_through(iommu
->ecap
))
2483 hw_pass_through
= 0;
2487 * Start from the sane iommu hardware state.
2489 for_each_active_iommu(iommu
, drhd
) {
2491 * If the queued invalidation is already initialized by us
2492 * (for example, while enabling interrupt-remapping) then
2493 * we got the things already rolling from a sane state.
2499 * Clear any previous faults.
2501 dmar_fault(-1, iommu
);
2503 * Disable queued invalidation if supported and already enabled
2504 * before OS handover.
2506 dmar_disable_qi(iommu
);
2509 for_each_active_iommu(iommu
, drhd
) {
2510 if (dmar_enable_qi(iommu
)) {
2512 * Queued Invalidate not enabled, use Register Based
2515 iommu
->flush
.flush_context
= __iommu_flush_context
;
2516 iommu
->flush
.flush_iotlb
= __iommu_flush_iotlb
;
2517 printk(KERN_INFO
"IOMMU %d 0x%Lx: using Register based "
2520 (unsigned long long)drhd
->reg_base_addr
);
2522 iommu
->flush
.flush_context
= qi_flush_context
;
2523 iommu
->flush
.flush_iotlb
= qi_flush_iotlb
;
2524 printk(KERN_INFO
"IOMMU %d 0x%Lx: using Queued "
2527 (unsigned long long)drhd
->reg_base_addr
);
2531 if (iommu_pass_through
)
2532 iommu_identity_mapping
|= IDENTMAP_ALL
;
2534 #ifdef CONFIG_INTEL_IOMMU_BROKEN_GFX_WA
2535 iommu_identity_mapping
|= IDENTMAP_GFX
;
2538 check_tylersburg_isoch();
2541 * If pass through is not set or not enabled, setup context entries for
2542 * identity mappings for rmrr, gfx, and isa and may fall back to static
2543 * identity mapping if iommu_identity_mapping is set.
2545 if (iommu_identity_mapping
) {
2546 ret
= iommu_prepare_static_identity_mapping(hw_pass_through
);
2548 printk(KERN_CRIT
"Failed to setup IOMMU pass-through\n");
2554 * for each dev attached to rmrr
2556 * locate drhd for dev, alloc domain for dev
2557 * allocate free domain
2558 * allocate page table entries for rmrr
2559 * if context not allocated for bus
2560 * allocate and init context
2561 * set present in root table for this bus
2562 * init context with domain, translation etc
2566 printk(KERN_INFO
"IOMMU: Setting RMRR:\n");
2567 for_each_rmrr_units(rmrr
) {
2568 for (i
= 0; i
< rmrr
->devices_cnt
; i
++) {
2569 pdev
= rmrr
->devices
[i
];
2571 * some BIOS lists non-exist devices in DMAR
2576 ret
= iommu_prepare_rmrr_dev(rmrr
, pdev
);
2579 "IOMMU: mapping reserved region failed\n");
2583 iommu_prepare_isa();
2588 * global invalidate context cache
2589 * global invalidate iotlb
2590 * enable translation
2592 for_each_iommu(iommu
, drhd
) {
2593 if (drhd
->ignored
) {
2595 * we always have to disable PMRs or DMA may fail on
2599 iommu_disable_protect_mem_regions(iommu
);
2603 iommu_flush_write_buffer(iommu
);
2605 ret
= dmar_set_interrupt(iommu
);
2609 iommu_set_root_entry(iommu
);
2611 iommu
->flush
.flush_context(iommu
, 0, 0, 0, DMA_CCMD_GLOBAL_INVL
);
2612 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0, DMA_TLB_GLOBAL_FLUSH
);
2614 ret
= iommu_enable_translation(iommu
);
2618 iommu_disable_protect_mem_regions(iommu
);
2623 for_each_active_iommu(iommu
, drhd
)
2624 free_dmar_iommu(iommu
);
2625 kfree(deferred_flush
);
2630 /* This takes a number of _MM_ pages, not VTD pages */
2631 static struct iova
*intel_alloc_iova(struct device
*dev
,
2632 struct dmar_domain
*domain
,
2633 unsigned long nrpages
, uint64_t dma_mask
)
2635 struct pci_dev
*pdev
= to_pci_dev(dev
);
2636 struct iova
*iova
= NULL
;
2638 /* Restrict dma_mask to the width that the iommu can handle */
2639 dma_mask
= min_t(uint64_t, DOMAIN_MAX_ADDR(domain
->gaw
), dma_mask
);
2641 if (!dmar_forcedac
&& dma_mask
> DMA_BIT_MASK(32)) {
2643 * First try to allocate an io virtual address in
2644 * DMA_BIT_MASK(32) and if that fails then try allocating
2647 iova
= alloc_iova(&domain
->iovad
, nrpages
,
2648 IOVA_PFN(DMA_BIT_MASK(32)), 1);
2652 iova
= alloc_iova(&domain
->iovad
, nrpages
, IOVA_PFN(dma_mask
), 1);
2653 if (unlikely(!iova
)) {
2654 printk(KERN_ERR
"Allocating %ld-page iova for %s failed",
2655 nrpages
, pci_name(pdev
));
2662 static struct dmar_domain
*__get_valid_domain_for_dev(struct pci_dev
*pdev
)
2664 struct dmar_domain
*domain
;
2667 domain
= get_domain_for_dev(pdev
,
2668 DEFAULT_DOMAIN_ADDRESS_WIDTH
);
2671 "Allocating domain for %s failed", pci_name(pdev
));
2675 /* make sure context mapping is ok */
2676 if (unlikely(!domain_context_mapped(pdev
))) {
2677 ret
= domain_context_mapping(domain
, pdev
,
2678 CONTEXT_TT_MULTI_LEVEL
);
2681 "Domain context map for %s failed",
2690 static inline struct dmar_domain
*get_valid_domain_for_dev(struct pci_dev
*dev
)
2692 struct device_domain_info
*info
;
2694 /* No lock here, assumes no domain exit in normal case */
2695 info
= dev
->dev
.archdata
.iommu
;
2697 return info
->domain
;
2699 return __get_valid_domain_for_dev(dev
);
2702 static int iommu_dummy(struct pci_dev
*pdev
)
2704 return pdev
->dev
.archdata
.iommu
== DUMMY_DEVICE_DOMAIN_INFO
;
2707 /* Check if the pdev needs to go through non-identity map and unmap process.*/
2708 static int iommu_no_mapping(struct device
*dev
)
2710 struct pci_dev
*pdev
;
2713 if (unlikely(!dev_is_pci(dev
)))
2716 pdev
= to_pci_dev(dev
);
2717 if (iommu_dummy(pdev
))
2720 if (!iommu_identity_mapping
)
2723 found
= identity_mapping(pdev
);
2725 if (iommu_should_identity_map(pdev
, 0))
2729 * 32 bit DMA is removed from si_domain and fall back
2730 * to non-identity mapping.
2732 domain_remove_one_dev_info(si_domain
, pdev
);
2733 printk(KERN_INFO
"32bit %s uses non-identity mapping\n",
2739 * In case of a detached 64 bit DMA device from vm, the device
2740 * is put into si_domain for identity mapping.
2742 if (iommu_should_identity_map(pdev
, 0)) {
2744 ret
= domain_add_dev_info(si_domain
, pdev
,
2746 CONTEXT_TT_PASS_THROUGH
:
2747 CONTEXT_TT_MULTI_LEVEL
);
2749 printk(KERN_INFO
"64bit %s uses identity mapping\n",
2759 static dma_addr_t
__intel_map_single(struct device
*hwdev
, phys_addr_t paddr
,
2760 size_t size
, int dir
, u64 dma_mask
)
2762 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
2763 struct dmar_domain
*domain
;
2764 phys_addr_t start_paddr
;
2768 struct intel_iommu
*iommu
;
2769 unsigned long paddr_pfn
= paddr
>> PAGE_SHIFT
;
2771 BUG_ON(dir
== DMA_NONE
);
2773 if (iommu_no_mapping(hwdev
))
2776 domain
= get_valid_domain_for_dev(pdev
);
2780 iommu
= domain_get_iommu(domain
);
2781 size
= aligned_nrpages(paddr
, size
);
2783 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
), dma_mask
);
2788 * Check if DMAR supports zero-length reads on write only
2791 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
2792 !cap_zlr(iommu
->cap
))
2793 prot
|= DMA_PTE_READ
;
2794 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
2795 prot
|= DMA_PTE_WRITE
;
2797 * paddr - (paddr + size) might be partial page, we should map the whole
2798 * page. Note: if two part of one page are separately mapped, we
2799 * might have two guest_addr mapping to the same host paddr, but this
2800 * is not a big problem
2802 ret
= domain_pfn_mapping(domain
, mm_to_dma_pfn(iova
->pfn_lo
),
2803 mm_to_dma_pfn(paddr_pfn
), size
, prot
);
2807 /* it's a non-present to present mapping. Only flush if caching mode */
2808 if (cap_caching_mode(iommu
->cap
))
2809 iommu_flush_iotlb_psi(iommu
, domain
->id
, mm_to_dma_pfn(iova
->pfn_lo
), size
, 1);
2811 iommu_flush_write_buffer(iommu
);
2813 start_paddr
= (phys_addr_t
)iova
->pfn_lo
<< PAGE_SHIFT
;
2814 start_paddr
+= paddr
& ~PAGE_MASK
;
2819 __free_iova(&domain
->iovad
, iova
);
2820 printk(KERN_ERR
"Device %s request: %zx@%llx dir %d --- failed\n",
2821 pci_name(pdev
), size
, (unsigned long long)paddr
, dir
);
2825 static dma_addr_t
intel_map_page(struct device
*dev
, struct page
*page
,
2826 unsigned long offset
, size_t size
,
2827 enum dma_data_direction dir
,
2828 struct dma_attrs
*attrs
)
2830 return __intel_map_single(dev
, page_to_phys(page
) + offset
, size
,
2831 dir
, to_pci_dev(dev
)->dma_mask
);
2834 static void flush_unmaps(void)
2840 /* just flush them all */
2841 for (i
= 0; i
< g_num_of_iommus
; i
++) {
2842 struct intel_iommu
*iommu
= g_iommus
[i
];
2846 if (!deferred_flush
[i
].next
)
2849 /* In caching mode, global flushes turn emulation expensive */
2850 if (!cap_caching_mode(iommu
->cap
))
2851 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
2852 DMA_TLB_GLOBAL_FLUSH
);
2853 for (j
= 0; j
< deferred_flush
[i
].next
; j
++) {
2855 struct iova
*iova
= deferred_flush
[i
].iova
[j
];
2856 struct dmar_domain
*domain
= deferred_flush
[i
].domain
[j
];
2858 /* On real hardware multiple invalidations are expensive */
2859 if (cap_caching_mode(iommu
->cap
))
2860 iommu_flush_iotlb_psi(iommu
, domain
->id
,
2861 iova
->pfn_lo
, iova
->pfn_hi
- iova
->pfn_lo
+ 1, 0);
2863 mask
= ilog2(mm_to_dma_pfn(iova
->pfn_hi
- iova
->pfn_lo
+ 1));
2864 iommu_flush_dev_iotlb(deferred_flush
[i
].domain
[j
],
2865 (uint64_t)iova
->pfn_lo
<< PAGE_SHIFT
, mask
);
2867 __free_iova(&deferred_flush
[i
].domain
[j
]->iovad
, iova
);
2869 deferred_flush
[i
].next
= 0;
2875 static void flush_unmaps_timeout(unsigned long data
)
2877 unsigned long flags
;
2879 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2881 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2884 static void add_unmap(struct dmar_domain
*dom
, struct iova
*iova
)
2886 unsigned long flags
;
2888 struct intel_iommu
*iommu
;
2890 spin_lock_irqsave(&async_umap_flush_lock
, flags
);
2891 if (list_size
== HIGH_WATER_MARK
)
2894 iommu
= domain_get_iommu(dom
);
2895 iommu_id
= iommu
->seq_id
;
2897 next
= deferred_flush
[iommu_id
].next
;
2898 deferred_flush
[iommu_id
].domain
[next
] = dom
;
2899 deferred_flush
[iommu_id
].iova
[next
] = iova
;
2900 deferred_flush
[iommu_id
].next
++;
2903 mod_timer(&unmap_timer
, jiffies
+ msecs_to_jiffies(10));
2907 spin_unlock_irqrestore(&async_umap_flush_lock
, flags
);
2910 static void intel_unmap_page(struct device
*dev
, dma_addr_t dev_addr
,
2911 size_t size
, enum dma_data_direction dir
,
2912 struct dma_attrs
*attrs
)
2914 struct pci_dev
*pdev
= to_pci_dev(dev
);
2915 struct dmar_domain
*domain
;
2916 unsigned long start_pfn
, last_pfn
;
2918 struct intel_iommu
*iommu
;
2920 if (iommu_no_mapping(dev
))
2923 domain
= find_domain(pdev
);
2926 iommu
= domain_get_iommu(domain
);
2928 iova
= find_iova(&domain
->iovad
, IOVA_PFN(dev_addr
));
2929 if (WARN_ONCE(!iova
, "Driver unmaps unmatched page at PFN %llx\n",
2930 (unsigned long long)dev_addr
))
2933 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
2934 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
2936 pr_debug("Device %s unmapping: pfn %lx-%lx\n",
2937 pci_name(pdev
), start_pfn
, last_pfn
);
2939 /* clear the whole page */
2940 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
2942 /* free page tables */
2943 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
2945 if (intel_iommu_strict
) {
2946 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
2947 last_pfn
- start_pfn
+ 1, 0);
2949 __free_iova(&domain
->iovad
, iova
);
2951 add_unmap(domain
, iova
);
2953 * queue up the release of the unmap to save the 1/6th of the
2954 * cpu used up by the iotlb flush operation...
2959 static void *intel_alloc_coherent(struct device
*hwdev
, size_t size
,
2960 dma_addr_t
*dma_handle
, gfp_t flags
,
2961 struct dma_attrs
*attrs
)
2966 size
= PAGE_ALIGN(size
);
2967 order
= get_order(size
);
2969 if (!iommu_no_mapping(hwdev
))
2970 flags
&= ~(GFP_DMA
| GFP_DMA32
);
2971 else if (hwdev
->coherent_dma_mask
< dma_get_required_mask(hwdev
)) {
2972 if (hwdev
->coherent_dma_mask
< DMA_BIT_MASK(32))
2978 vaddr
= (void *)__get_free_pages(flags
, order
);
2981 memset(vaddr
, 0, size
);
2983 *dma_handle
= __intel_map_single(hwdev
, virt_to_bus(vaddr
), size
,
2985 hwdev
->coherent_dma_mask
);
2988 free_pages((unsigned long)vaddr
, order
);
2992 static void intel_free_coherent(struct device
*hwdev
, size_t size
, void *vaddr
,
2993 dma_addr_t dma_handle
, struct dma_attrs
*attrs
)
2997 size
= PAGE_ALIGN(size
);
2998 order
= get_order(size
);
3000 intel_unmap_page(hwdev
, dma_handle
, size
, DMA_BIDIRECTIONAL
, NULL
);
3001 free_pages((unsigned long)vaddr
, order
);
3004 static void intel_unmap_sg(struct device
*hwdev
, struct scatterlist
*sglist
,
3005 int nelems
, enum dma_data_direction dir
,
3006 struct dma_attrs
*attrs
)
3008 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
3009 struct dmar_domain
*domain
;
3010 unsigned long start_pfn
, last_pfn
;
3012 struct intel_iommu
*iommu
;
3014 if (iommu_no_mapping(hwdev
))
3017 domain
= find_domain(pdev
);
3020 iommu
= domain_get_iommu(domain
);
3022 iova
= find_iova(&domain
->iovad
, IOVA_PFN(sglist
[0].dma_address
));
3023 if (WARN_ONCE(!iova
, "Driver unmaps unmatched sglist at PFN %llx\n",
3024 (unsigned long long)sglist
[0].dma_address
))
3027 start_pfn
= mm_to_dma_pfn(iova
->pfn_lo
);
3028 last_pfn
= mm_to_dma_pfn(iova
->pfn_hi
+ 1) - 1;
3030 /* clear the whole page */
3031 dma_pte_clear_range(domain
, start_pfn
, last_pfn
);
3033 /* free page tables */
3034 dma_pte_free_pagetable(domain
, start_pfn
, last_pfn
);
3036 if (intel_iommu_strict
) {
3037 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_pfn
,
3038 last_pfn
- start_pfn
+ 1, 0);
3040 __free_iova(&domain
->iovad
, iova
);
3042 add_unmap(domain
, iova
);
3044 * queue up the release of the unmap to save the 1/6th of the
3045 * cpu used up by the iotlb flush operation...
3050 static int intel_nontranslate_map_sg(struct device
*hddev
,
3051 struct scatterlist
*sglist
, int nelems
, int dir
)
3054 struct scatterlist
*sg
;
3056 for_each_sg(sglist
, sg
, nelems
, i
) {
3057 BUG_ON(!sg_page(sg
));
3058 sg
->dma_address
= page_to_phys(sg_page(sg
)) + sg
->offset
;
3059 sg
->dma_length
= sg
->length
;
3064 static int intel_map_sg(struct device
*hwdev
, struct scatterlist
*sglist
, int nelems
,
3065 enum dma_data_direction dir
, struct dma_attrs
*attrs
)
3068 struct pci_dev
*pdev
= to_pci_dev(hwdev
);
3069 struct dmar_domain
*domain
;
3072 struct iova
*iova
= NULL
;
3074 struct scatterlist
*sg
;
3075 unsigned long start_vpfn
;
3076 struct intel_iommu
*iommu
;
3078 BUG_ON(dir
== DMA_NONE
);
3079 if (iommu_no_mapping(hwdev
))
3080 return intel_nontranslate_map_sg(hwdev
, sglist
, nelems
, dir
);
3082 domain
= get_valid_domain_for_dev(pdev
);
3086 iommu
= domain_get_iommu(domain
);
3088 for_each_sg(sglist
, sg
, nelems
, i
)
3089 size
+= aligned_nrpages(sg
->offset
, sg
->length
);
3091 iova
= intel_alloc_iova(hwdev
, domain
, dma_to_mm_pfn(size
),
3094 sglist
->dma_length
= 0;
3099 * Check if DMAR supports zero-length reads on write only
3102 if (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
|| \
3103 !cap_zlr(iommu
->cap
))
3104 prot
|= DMA_PTE_READ
;
3105 if (dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
)
3106 prot
|= DMA_PTE_WRITE
;
3108 start_vpfn
= mm_to_dma_pfn(iova
->pfn_lo
);
3110 ret
= domain_sg_mapping(domain
, start_vpfn
, sglist
, size
, prot
);
3111 if (unlikely(ret
)) {
3112 /* clear the page */
3113 dma_pte_clear_range(domain
, start_vpfn
,
3114 start_vpfn
+ size
- 1);
3115 /* free page tables */
3116 dma_pte_free_pagetable(domain
, start_vpfn
,
3117 start_vpfn
+ size
- 1);
3119 __free_iova(&domain
->iovad
, iova
);
3123 /* it's a non-present to present mapping. Only flush if caching mode */
3124 if (cap_caching_mode(iommu
->cap
))
3125 iommu_flush_iotlb_psi(iommu
, domain
->id
, start_vpfn
, size
, 1);
3127 iommu_flush_write_buffer(iommu
);
3132 static int intel_mapping_error(struct device
*dev
, dma_addr_t dma_addr
)
3137 struct dma_map_ops intel_dma_ops
= {
3138 .alloc
= intel_alloc_coherent
,
3139 .free
= intel_free_coherent
,
3140 .map_sg
= intel_map_sg
,
3141 .unmap_sg
= intel_unmap_sg
,
3142 .map_page
= intel_map_page
,
3143 .unmap_page
= intel_unmap_page
,
3144 .mapping_error
= intel_mapping_error
,
3147 static inline int iommu_domain_cache_init(void)
3151 iommu_domain_cache
= kmem_cache_create("iommu_domain",
3152 sizeof(struct dmar_domain
),
3157 if (!iommu_domain_cache
) {
3158 printk(KERN_ERR
"Couldn't create iommu_domain cache\n");
3165 static inline int iommu_devinfo_cache_init(void)
3169 iommu_devinfo_cache
= kmem_cache_create("iommu_devinfo",
3170 sizeof(struct device_domain_info
),
3174 if (!iommu_devinfo_cache
) {
3175 printk(KERN_ERR
"Couldn't create devinfo cache\n");
3182 static inline int iommu_iova_cache_init(void)
3186 iommu_iova_cache
= kmem_cache_create("iommu_iova",
3187 sizeof(struct iova
),
3191 if (!iommu_iova_cache
) {
3192 printk(KERN_ERR
"Couldn't create iova cache\n");
3199 static int __init
iommu_init_mempool(void)
3202 ret
= iommu_iova_cache_init();
3206 ret
= iommu_domain_cache_init();
3210 ret
= iommu_devinfo_cache_init();
3214 kmem_cache_destroy(iommu_domain_cache
);
3216 kmem_cache_destroy(iommu_iova_cache
);
3221 static void __init
iommu_exit_mempool(void)
3223 kmem_cache_destroy(iommu_devinfo_cache
);
3224 kmem_cache_destroy(iommu_domain_cache
);
3225 kmem_cache_destroy(iommu_iova_cache
);
3229 static void quirk_ioat_snb_local_iommu(struct pci_dev
*pdev
)
3231 struct dmar_drhd_unit
*drhd
;
3235 /* We know that this device on this chipset has its own IOMMU.
3236 * If we find it under a different IOMMU, then the BIOS is lying
3237 * to us. Hope that the IOMMU for this device is actually
3238 * disabled, and it needs no translation...
3240 rc
= pci_bus_read_config_dword(pdev
->bus
, PCI_DEVFN(0, 0), 0xb0, &vtbar
);
3242 /* "can't" happen */
3243 dev_info(&pdev
->dev
, "failed to run vt-d quirk\n");
3246 vtbar
&= 0xffff0000;
3248 /* we know that the this iommu should be at offset 0xa000 from vtbar */
3249 drhd
= dmar_find_matched_drhd_unit(pdev
);
3250 if (WARN_TAINT_ONCE(!drhd
|| drhd
->reg_base_addr
- vtbar
!= 0xa000,
3251 TAINT_FIRMWARE_WORKAROUND
,
3252 "BIOS assigned incorrect VT-d unit for Intel(R) QuickData Technology device\n"))
3253 pdev
->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3255 DECLARE_PCI_FIXUP_ENABLE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IOAT_SNB
, quirk_ioat_snb_local_iommu
);
3257 static void __init
init_no_remapping_devices(void)
3259 struct dmar_drhd_unit
*drhd
;
3261 for_each_drhd_unit(drhd
) {
3262 if (!drhd
->include_all
) {
3264 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3265 if (drhd
->devices
[i
] != NULL
)
3267 /* ignore DMAR unit if no pci devices exist */
3268 if (i
== drhd
->devices_cnt
)
3273 for_each_active_drhd_unit(drhd
) {
3275 if (drhd
->include_all
)
3278 for (i
= 0; i
< drhd
->devices_cnt
; i
++)
3279 if (drhd
->devices
[i
] &&
3280 !IS_GFX_DEVICE(drhd
->devices
[i
]))
3283 if (i
< drhd
->devices_cnt
)
3286 /* This IOMMU has *only* gfx devices. Either bypass it or
3287 set the gfx_mapped flag, as appropriate */
3289 intel_iommu_gfx_mapped
= 1;
3292 for (i
= 0; i
< drhd
->devices_cnt
; i
++) {
3293 if (!drhd
->devices
[i
])
3295 drhd
->devices
[i
]->dev
.archdata
.iommu
= DUMMY_DEVICE_DOMAIN_INFO
;
3301 #ifdef CONFIG_SUSPEND
3302 static int init_iommu_hw(void)
3304 struct dmar_drhd_unit
*drhd
;
3305 struct intel_iommu
*iommu
= NULL
;
3307 for_each_active_iommu(iommu
, drhd
)
3309 dmar_reenable_qi(iommu
);
3311 for_each_iommu(iommu
, drhd
) {
3312 if (drhd
->ignored
) {
3314 * we always have to disable PMRs or DMA may fail on
3318 iommu_disable_protect_mem_regions(iommu
);
3322 iommu_flush_write_buffer(iommu
);
3324 iommu_set_root_entry(iommu
);
3326 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3327 DMA_CCMD_GLOBAL_INVL
);
3328 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3329 DMA_TLB_GLOBAL_FLUSH
);
3330 if (iommu_enable_translation(iommu
))
3332 iommu_disable_protect_mem_regions(iommu
);
3338 static void iommu_flush_all(void)
3340 struct dmar_drhd_unit
*drhd
;
3341 struct intel_iommu
*iommu
;
3343 for_each_active_iommu(iommu
, drhd
) {
3344 iommu
->flush
.flush_context(iommu
, 0, 0, 0,
3345 DMA_CCMD_GLOBAL_INVL
);
3346 iommu
->flush
.flush_iotlb(iommu
, 0, 0, 0,
3347 DMA_TLB_GLOBAL_FLUSH
);
3351 static int iommu_suspend(void)
3353 struct dmar_drhd_unit
*drhd
;
3354 struct intel_iommu
*iommu
= NULL
;
3357 for_each_active_iommu(iommu
, drhd
) {
3358 iommu
->iommu_state
= kzalloc(sizeof(u32
) * MAX_SR_DMAR_REGS
,
3360 if (!iommu
->iommu_state
)
3366 for_each_active_iommu(iommu
, drhd
) {
3367 iommu_disable_translation(iommu
);
3369 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
3371 iommu
->iommu_state
[SR_DMAR_FECTL_REG
] =
3372 readl(iommu
->reg
+ DMAR_FECTL_REG
);
3373 iommu
->iommu_state
[SR_DMAR_FEDATA_REG
] =
3374 readl(iommu
->reg
+ DMAR_FEDATA_REG
);
3375 iommu
->iommu_state
[SR_DMAR_FEADDR_REG
] =
3376 readl(iommu
->reg
+ DMAR_FEADDR_REG
);
3377 iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
] =
3378 readl(iommu
->reg
+ DMAR_FEUADDR_REG
);
3380 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3385 for_each_active_iommu(iommu
, drhd
)
3386 kfree(iommu
->iommu_state
);
3391 static void iommu_resume(void)
3393 struct dmar_drhd_unit
*drhd
;
3394 struct intel_iommu
*iommu
= NULL
;
3397 if (init_iommu_hw()) {
3399 panic("tboot: IOMMU setup failed, DMAR can not resume!\n");
3401 WARN(1, "IOMMU setup failed, DMAR can not resume!\n");
3405 for_each_active_iommu(iommu
, drhd
) {
3407 raw_spin_lock_irqsave(&iommu
->register_lock
, flag
);
3409 writel(iommu
->iommu_state
[SR_DMAR_FECTL_REG
],
3410 iommu
->reg
+ DMAR_FECTL_REG
);
3411 writel(iommu
->iommu_state
[SR_DMAR_FEDATA_REG
],
3412 iommu
->reg
+ DMAR_FEDATA_REG
);
3413 writel(iommu
->iommu_state
[SR_DMAR_FEADDR_REG
],
3414 iommu
->reg
+ DMAR_FEADDR_REG
);
3415 writel(iommu
->iommu_state
[SR_DMAR_FEUADDR_REG
],
3416 iommu
->reg
+ DMAR_FEUADDR_REG
);
3418 raw_spin_unlock_irqrestore(&iommu
->register_lock
, flag
);
3421 for_each_active_iommu(iommu
, drhd
)
3422 kfree(iommu
->iommu_state
);
3425 static struct syscore_ops iommu_syscore_ops
= {
3426 .resume
= iommu_resume
,
3427 .suspend
= iommu_suspend
,
3430 static void __init
init_iommu_pm_ops(void)
3432 register_syscore_ops(&iommu_syscore_ops
);
3436 static inline void init_iommu_pm_ops(void) {}
3437 #endif /* CONFIG_PM */
3439 LIST_HEAD(dmar_rmrr_units
);
3441 static void __init
dmar_register_rmrr_unit(struct dmar_rmrr_unit
*rmrr
)
3443 list_add(&rmrr
->list
, &dmar_rmrr_units
);
3447 int __init
dmar_parse_one_rmrr(struct acpi_dmar_header
*header
)
3449 struct acpi_dmar_reserved_memory
*rmrr
;
3450 struct dmar_rmrr_unit
*rmrru
;
3452 rmrru
= kzalloc(sizeof(*rmrru
), GFP_KERNEL
);
3456 rmrru
->hdr
= header
;
3457 rmrr
= (struct acpi_dmar_reserved_memory
*)header
;
3458 rmrru
->base_address
= rmrr
->base_address
;
3459 rmrru
->end_address
= rmrr
->end_address
;
3461 dmar_register_rmrr_unit(rmrru
);
3466 rmrr_parse_dev(struct dmar_rmrr_unit
*rmrru
)
3468 struct acpi_dmar_reserved_memory
*rmrr
;
3470 rmrr
= (struct acpi_dmar_reserved_memory
*) rmrru
->hdr
;
3471 return dmar_parse_dev_scope((void *)(rmrr
+ 1),
3472 ((void *)rmrr
) + rmrr
->header
.length
,
3473 &rmrru
->devices_cnt
, &rmrru
->devices
,
3477 static LIST_HEAD(dmar_atsr_units
);
3479 int __init
dmar_parse_one_atsr(struct acpi_dmar_header
*hdr
)
3481 struct acpi_dmar_atsr
*atsr
;
3482 struct dmar_atsr_unit
*atsru
;
3484 atsr
= container_of(hdr
, struct acpi_dmar_atsr
, header
);
3485 atsru
= kzalloc(sizeof(*atsru
), GFP_KERNEL
);
3490 atsru
->include_all
= atsr
->flags
& 0x1;
3492 list_add(&atsru
->list
, &dmar_atsr_units
);
3497 static int __init
atsr_parse_dev(struct dmar_atsr_unit
*atsru
)
3499 struct acpi_dmar_atsr
*atsr
;
3501 if (atsru
->include_all
)
3504 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
3505 return dmar_parse_dev_scope((void *)(atsr
+ 1),
3506 (void *)atsr
+ atsr
->header
.length
,
3507 &atsru
->devices_cnt
, &atsru
->devices
,
3511 static void intel_iommu_free_atsr(struct dmar_atsr_unit
*atsru
)
3513 dmar_free_dev_scope(&atsru
->devices
, &atsru
->devices_cnt
);
3517 static void intel_iommu_free_dmars(void)
3519 struct dmar_rmrr_unit
*rmrru
, *rmrr_n
;
3520 struct dmar_atsr_unit
*atsru
, *atsr_n
;
3522 list_for_each_entry_safe(rmrru
, rmrr_n
, &dmar_rmrr_units
, list
) {
3523 list_del(&rmrru
->list
);
3524 dmar_free_dev_scope(&rmrru
->devices
, &rmrru
->devices_cnt
);
3528 list_for_each_entry_safe(atsru
, atsr_n
, &dmar_atsr_units
, list
) {
3529 list_del(&atsru
->list
);
3530 intel_iommu_free_atsr(atsru
);
3534 int dmar_find_matched_atsr_unit(struct pci_dev
*dev
)
3537 struct pci_bus
*bus
;
3538 struct acpi_dmar_atsr
*atsr
;
3539 struct dmar_atsr_unit
*atsru
;
3541 dev
= pci_physfn(dev
);
3543 list_for_each_entry(atsru
, &dmar_atsr_units
, list
) {
3544 atsr
= container_of(atsru
->hdr
, struct acpi_dmar_atsr
, header
);
3545 if (atsr
->segment
== pci_domain_nr(dev
->bus
))
3552 for (bus
= dev
->bus
; bus
; bus
= bus
->parent
) {
3553 struct pci_dev
*bridge
= bus
->self
;
3555 if (!bridge
|| !pci_is_pcie(bridge
) ||
3556 pci_pcie_type(bridge
) == PCI_EXP_TYPE_PCI_BRIDGE
)
3559 if (pci_pcie_type(bridge
) == PCI_EXP_TYPE_ROOT_PORT
) {
3560 for (i
= 0; i
< atsru
->devices_cnt
; i
++)
3561 if (atsru
->devices
[i
] == bridge
)
3567 if (atsru
->include_all
)
3573 int __init
dmar_parse_rmrr_atsr_dev(void)
3575 struct dmar_rmrr_unit
*rmrr
;
3576 struct dmar_atsr_unit
*atsr
;
3579 list_for_each_entry(rmrr
, &dmar_rmrr_units
, list
) {
3580 ret
= rmrr_parse_dev(rmrr
);
3585 list_for_each_entry(atsr
, &dmar_atsr_units
, list
) {
3586 ret
= atsr_parse_dev(atsr
);
3595 * Here we only respond to action of unbound device from driver.
3597 * Added device is not attached to its DMAR domain here yet. That will happen
3598 * when mapping the device to iova.
3600 static int device_notifier(struct notifier_block
*nb
,
3601 unsigned long action
, void *data
)
3603 struct device
*dev
= data
;
3604 struct pci_dev
*pdev
= to_pci_dev(dev
);
3605 struct dmar_domain
*domain
;
3607 if (iommu_no_mapping(dev
))
3610 domain
= find_domain(pdev
);
3614 if (action
== BUS_NOTIFY_UNBOUND_DRIVER
&& !iommu_pass_through
) {
3615 domain_remove_one_dev_info(domain
, pdev
);
3617 if (!(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
) &&
3618 !(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
) &&
3619 list_empty(&domain
->devices
))
3620 domain_exit(domain
);
3626 static struct notifier_block device_nb
= {
3627 .notifier_call
= device_notifier
,
3630 int __init
intel_iommu_init(void)
3633 struct dmar_drhd_unit
*drhd
;
3634 struct intel_iommu
*iommu
;
3636 /* VT-d is required for a TXT/tboot launch, so enforce that */
3637 force_on
= tboot_force_iommu();
3639 if (dmar_table_init()) {
3641 panic("tboot: Failed to initialize DMAR table\n");
3646 * Disable translation if already enabled prior to OS handover.
3648 for_each_active_iommu(iommu
, drhd
)
3649 if (iommu
->gcmd
& DMA_GCMD_TE
)
3650 iommu_disable_translation(iommu
);
3652 if (dmar_dev_scope_init() < 0) {
3654 panic("tboot: Failed to initialize DMAR device scope\n");
3658 if (no_iommu
|| dmar_disabled
)
3661 if (iommu_init_mempool()) {
3663 panic("tboot: Failed to initialize iommu memory\n");
3667 if (list_empty(&dmar_rmrr_units
))
3668 printk(KERN_INFO
"DMAR: No RMRR found\n");
3670 if (list_empty(&dmar_atsr_units
))
3671 printk(KERN_INFO
"DMAR: No ATSR found\n");
3673 if (dmar_init_reserved_ranges()) {
3675 panic("tboot: Failed to reserve iommu ranges\n");
3676 goto out_free_mempool
;
3679 init_no_remapping_devices();
3684 panic("tboot: Failed to initialize DMARs\n");
3685 printk(KERN_ERR
"IOMMU: dmar init failed\n");
3686 goto out_free_reserved_range
;
3689 "PCI-DMA: Intel(R) Virtualization Technology for Directed I/O\n");
3691 init_timer(&unmap_timer
);
3692 #ifdef CONFIG_SWIOTLB
3695 dma_ops
= &intel_dma_ops
;
3697 init_iommu_pm_ops();
3699 bus_set_iommu(&pci_bus_type
, &intel_iommu_ops
);
3701 bus_register_notifier(&pci_bus_type
, &device_nb
);
3703 intel_iommu_enabled
= 1;
3707 out_free_reserved_range
:
3708 put_iova_domain(&reserved_iova_list
);
3710 iommu_exit_mempool();
3712 intel_iommu_free_dmars();
3716 static void iommu_detach_dependent_devices(struct intel_iommu
*iommu
,
3717 struct pci_dev
*pdev
)
3719 struct pci_dev
*tmp
, *parent
;
3721 if (!iommu
|| !pdev
)
3724 /* dependent device detach */
3725 tmp
= pci_find_upstream_pcie_bridge(pdev
);
3726 /* Secondary interface's bus number and devfn 0 */
3728 parent
= pdev
->bus
->self
;
3729 while (parent
!= tmp
) {
3730 iommu_detach_dev(iommu
, parent
->bus
->number
,
3732 parent
= parent
->bus
->self
;
3734 if (pci_is_pcie(tmp
)) /* this is a PCIe-to-PCI bridge */
3735 iommu_detach_dev(iommu
,
3736 tmp
->subordinate
->number
, 0);
3737 else /* this is a legacy PCI bridge */
3738 iommu_detach_dev(iommu
, tmp
->bus
->number
,
3743 static void domain_remove_one_dev_info(struct dmar_domain
*domain
,
3744 struct pci_dev
*pdev
)
3746 struct device_domain_info
*info
, *tmp
;
3747 struct intel_iommu
*iommu
;
3748 unsigned long flags
;
3751 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3756 spin_lock_irqsave(&device_domain_lock
, flags
);
3757 list_for_each_entry_safe(info
, tmp
, &domain
->devices
, link
) {
3758 if (info
->segment
== pci_domain_nr(pdev
->bus
) &&
3759 info
->bus
== pdev
->bus
->number
&&
3760 info
->devfn
== pdev
->devfn
) {
3761 unlink_domain_info(info
);
3762 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3764 iommu_disable_dev_iotlb(info
);
3765 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3766 iommu_detach_dependent_devices(iommu
, pdev
);
3767 free_devinfo_mem(info
);
3769 spin_lock_irqsave(&device_domain_lock
, flags
);
3777 /* if there is no other devices under the same iommu
3778 * owned by this domain, clear this iommu in iommu_bmp
3779 * update iommu count and coherency
3781 if (iommu
== device_to_iommu(info
->segment
, info
->bus
,
3786 spin_unlock_irqrestore(&device_domain_lock
, flags
);
3789 unsigned long tmp_flags
;
3790 spin_lock_irqsave(&domain
->iommu_lock
, tmp_flags
);
3791 clear_bit(iommu
->seq_id
, domain
->iommu_bmp
);
3792 domain
->iommu_count
--;
3793 domain_update_iommu_cap(domain
);
3794 spin_unlock_irqrestore(&domain
->iommu_lock
, tmp_flags
);
3796 if (!(domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
) &&
3797 !(domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)) {
3798 spin_lock_irqsave(&iommu
->lock
, tmp_flags
);
3799 clear_bit(domain
->id
, iommu
->domain_ids
);
3800 iommu
->domains
[domain
->id
] = NULL
;
3801 spin_unlock_irqrestore(&iommu
->lock
, tmp_flags
);
3806 static void vm_domain_remove_all_dev_info(struct dmar_domain
*domain
)
3808 struct device_domain_info
*info
;
3809 struct intel_iommu
*iommu
;
3810 unsigned long flags1
, flags2
;
3812 spin_lock_irqsave(&device_domain_lock
, flags1
);
3813 while (!list_empty(&domain
->devices
)) {
3814 info
= list_entry(domain
->devices
.next
,
3815 struct device_domain_info
, link
);
3816 unlink_domain_info(info
);
3817 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3819 iommu_disable_dev_iotlb(info
);
3820 iommu
= device_to_iommu(info
->segment
, info
->bus
, info
->devfn
);
3821 iommu_detach_dev(iommu
, info
->bus
, info
->devfn
);
3822 iommu_detach_dependent_devices(iommu
, info
->dev
);
3824 /* clear this iommu in iommu_bmp, update iommu count
3827 spin_lock_irqsave(&domain
->iommu_lock
, flags2
);
3828 if (test_and_clear_bit(iommu
->seq_id
,
3829 domain
->iommu_bmp
)) {
3830 domain
->iommu_count
--;
3831 domain_update_iommu_cap(domain
);
3833 spin_unlock_irqrestore(&domain
->iommu_lock
, flags2
);
3835 free_devinfo_mem(info
);
3836 spin_lock_irqsave(&device_domain_lock
, flags1
);
3838 spin_unlock_irqrestore(&device_domain_lock
, flags1
);
3841 /* domain id for virtual machine, it won't be set in context */
3842 static atomic_t vm_domid
= ATOMIC_INIT(0);
3844 static struct dmar_domain
*iommu_alloc_vm_domain(void)
3846 struct dmar_domain
*domain
;
3848 domain
= alloc_domain_mem();
3852 domain
->id
= atomic_inc_return(&vm_domid
);
3854 memset(domain
->iommu_bmp
, 0, sizeof(domain
->iommu_bmp
));
3855 domain
->flags
= DOMAIN_FLAG_VIRTUAL_MACHINE
;
3860 static int md_domain_init(struct dmar_domain
*domain
, int guest_width
)
3864 init_iova_domain(&domain
->iovad
, DMA_32BIT_PFN
);
3865 spin_lock_init(&domain
->iommu_lock
);
3867 domain_reserve_special_ranges(domain
);
3869 /* calculate AGAW */
3870 domain
->gaw
= guest_width
;
3871 adjust_width
= guestwidth_to_adjustwidth(guest_width
);
3872 domain
->agaw
= width_to_agaw(adjust_width
);
3874 INIT_LIST_HEAD(&domain
->devices
);
3876 domain
->iommu_count
= 0;
3877 domain
->iommu_coherency
= 0;
3878 domain
->iommu_snooping
= 0;
3879 domain
->iommu_superpage
= 0;
3880 domain
->max_addr
= 0;
3883 /* always allocate the top pgd */
3884 domain
->pgd
= (struct dma_pte
*)alloc_pgtable_page(domain
->nid
);
3887 domain_flush_cache(domain
, domain
->pgd
, PAGE_SIZE
);
3891 static void iommu_free_vm_domain(struct dmar_domain
*domain
)
3893 unsigned long flags
;
3894 struct dmar_drhd_unit
*drhd
;
3895 struct intel_iommu
*iommu
;
3897 unsigned long ndomains
;
3899 for_each_active_iommu(iommu
, drhd
) {
3900 ndomains
= cap_ndoms(iommu
->cap
);
3901 for_each_set_bit(i
, iommu
->domain_ids
, ndomains
) {
3902 if (iommu
->domains
[i
] == domain
) {
3903 spin_lock_irqsave(&iommu
->lock
, flags
);
3904 clear_bit(i
, iommu
->domain_ids
);
3905 iommu
->domains
[i
] = NULL
;
3906 spin_unlock_irqrestore(&iommu
->lock
, flags
);
3913 static void vm_domain_exit(struct dmar_domain
*domain
)
3915 /* Domain 0 is reserved, so dont process it */
3919 vm_domain_remove_all_dev_info(domain
);
3921 put_iova_domain(&domain
->iovad
);
3924 dma_pte_clear_range(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3926 /* free page tables */
3927 dma_pte_free_pagetable(domain
, 0, DOMAIN_MAX_PFN(domain
->gaw
));
3929 iommu_free_vm_domain(domain
);
3930 free_domain_mem(domain
);
3933 static int intel_iommu_domain_init(struct iommu_domain
*domain
)
3935 struct dmar_domain
*dmar_domain
;
3937 dmar_domain
= iommu_alloc_vm_domain();
3940 "intel_iommu_domain_init: dmar_domain == NULL\n");
3943 if (md_domain_init(dmar_domain
, DEFAULT_DOMAIN_ADDRESS_WIDTH
)) {
3945 "intel_iommu_domain_init() failed\n");
3946 vm_domain_exit(dmar_domain
);
3949 domain_update_iommu_cap(dmar_domain
);
3950 domain
->priv
= dmar_domain
;
3952 domain
->geometry
.aperture_start
= 0;
3953 domain
->geometry
.aperture_end
= __DOMAIN_MAX_ADDR(dmar_domain
->gaw
);
3954 domain
->geometry
.force_aperture
= true;
3959 static void intel_iommu_domain_destroy(struct iommu_domain
*domain
)
3961 struct dmar_domain
*dmar_domain
= domain
->priv
;
3963 domain
->priv
= NULL
;
3964 vm_domain_exit(dmar_domain
);
3967 static int intel_iommu_attach_device(struct iommu_domain
*domain
,
3970 struct dmar_domain
*dmar_domain
= domain
->priv
;
3971 struct pci_dev
*pdev
= to_pci_dev(dev
);
3972 struct intel_iommu
*iommu
;
3975 /* normally pdev is not mapped */
3976 if (unlikely(domain_context_mapped(pdev
))) {
3977 struct dmar_domain
*old_domain
;
3979 old_domain
= find_domain(pdev
);
3981 if (dmar_domain
->flags
& DOMAIN_FLAG_VIRTUAL_MACHINE
||
3982 dmar_domain
->flags
& DOMAIN_FLAG_STATIC_IDENTITY
)
3983 domain_remove_one_dev_info(old_domain
, pdev
);
3985 domain_remove_dev_info(old_domain
);
3989 iommu
= device_to_iommu(pci_domain_nr(pdev
->bus
), pdev
->bus
->number
,
3994 /* check if this iommu agaw is sufficient for max mapped address */
3995 addr_width
= agaw_to_width(iommu
->agaw
);
3996 if (addr_width
> cap_mgaw(iommu
->cap
))
3997 addr_width
= cap_mgaw(iommu
->cap
);
3999 if (dmar_domain
->max_addr
> (1LL << addr_width
)) {
4000 printk(KERN_ERR
"%s: iommu width (%d) is not "
4001 "sufficient for the mapped address (%llx)\n",
4002 __func__
, addr_width
, dmar_domain
->max_addr
);
4005 dmar_domain
->gaw
= addr_width
;
4008 * Knock out extra levels of page tables if necessary
4010 while (iommu
->agaw
< dmar_domain
->agaw
) {
4011 struct dma_pte
*pte
;
4013 pte
= dmar_domain
->pgd
;
4014 if (dma_pte_present(pte
)) {
4015 dmar_domain
->pgd
= (struct dma_pte
*)
4016 phys_to_virt(dma_pte_addr(pte
));
4017 free_pgtable_page(pte
);
4019 dmar_domain
->agaw
--;
4022 return domain_add_dev_info(dmar_domain
, pdev
, CONTEXT_TT_MULTI_LEVEL
);
4025 static void intel_iommu_detach_device(struct iommu_domain
*domain
,
4028 struct dmar_domain
*dmar_domain
= domain
->priv
;
4029 struct pci_dev
*pdev
= to_pci_dev(dev
);
4031 domain_remove_one_dev_info(dmar_domain
, pdev
);
4034 static int intel_iommu_map(struct iommu_domain
*domain
,
4035 unsigned long iova
, phys_addr_t hpa
,
4036 size_t size
, int iommu_prot
)
4038 struct dmar_domain
*dmar_domain
= domain
->priv
;
4043 if (iommu_prot
& IOMMU_READ
)
4044 prot
|= DMA_PTE_READ
;
4045 if (iommu_prot
& IOMMU_WRITE
)
4046 prot
|= DMA_PTE_WRITE
;
4047 if ((iommu_prot
& IOMMU_CACHE
) && dmar_domain
->iommu_snooping
)
4048 prot
|= DMA_PTE_SNP
;
4050 max_addr
= iova
+ size
;
4051 if (dmar_domain
->max_addr
< max_addr
) {
4054 /* check if minimum agaw is sufficient for mapped address */
4055 end
= __DOMAIN_MAX_ADDR(dmar_domain
->gaw
) + 1;
4056 if (end
< max_addr
) {
4057 printk(KERN_ERR
"%s: iommu width (%d) is not "
4058 "sufficient for the mapped address (%llx)\n",
4059 __func__
, dmar_domain
->gaw
, max_addr
);
4062 dmar_domain
->max_addr
= max_addr
;
4064 /* Round up size to next multiple of PAGE_SIZE, if it and
4065 the low bits of hpa would take us onto the next page */
4066 size
= aligned_nrpages(hpa
, size
);
4067 ret
= domain_pfn_mapping(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
4068 hpa
>> VTD_PAGE_SHIFT
, size
, prot
);
4072 static size_t intel_iommu_unmap(struct iommu_domain
*domain
,
4073 unsigned long iova
, size_t size
)
4075 struct dmar_domain
*dmar_domain
= domain
->priv
;
4076 int order
, iommu_id
;
4078 order
= dma_pte_clear_range(dmar_domain
, iova
>> VTD_PAGE_SHIFT
,
4079 (iova
+ size
- 1) >> VTD_PAGE_SHIFT
);
4081 if (dmar_domain
->max_addr
== iova
+ size
)
4082 dmar_domain
->max_addr
= iova
;
4084 for_each_set_bit(iommu_id
, dmar_domain
->iommu_bmp
, g_num_of_iommus
) {
4085 struct intel_iommu
*iommu
= g_iommus
[iommu_id
];
4089 * find bit position of dmar_domain
4091 ndomains
= cap_ndoms(iommu
->cap
);
4092 for_each_set_bit(num
, iommu
->domain_ids
, ndomains
) {
4093 if (iommu
->domains
[num
] == dmar_domain
)
4094 iommu_flush_iotlb_psi(iommu
, num
,
4095 iova
>> VTD_PAGE_SHIFT
,
4100 return PAGE_SIZE
<< order
;
4103 static phys_addr_t
intel_iommu_iova_to_phys(struct iommu_domain
*domain
,
4106 struct dmar_domain
*dmar_domain
= domain
->priv
;
4107 struct dma_pte
*pte
;
4110 pte
= pfn_to_dma_pte(dmar_domain
, iova
>> VTD_PAGE_SHIFT
, 0);
4112 phys
= dma_pte_addr(pte
);
4117 static int intel_iommu_domain_has_cap(struct iommu_domain
*domain
,
4120 struct dmar_domain
*dmar_domain
= domain
->priv
;
4122 if (cap
== IOMMU_CAP_CACHE_COHERENCY
)
4123 return dmar_domain
->iommu_snooping
;
4124 if (cap
== IOMMU_CAP_INTR_REMAP
)
4125 return irq_remapping_enabled
;
4130 #define REQ_ACS_FLAGS (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
4132 static int intel_iommu_add_device(struct device
*dev
)
4134 struct pci_dev
*pdev
= to_pci_dev(dev
);
4135 struct pci_dev
*bridge
, *dma_pdev
= NULL
;
4136 struct iommu_group
*group
;
4139 if (!device_to_iommu(pci_domain_nr(pdev
->bus
),
4140 pdev
->bus
->number
, pdev
->devfn
))
4143 bridge
= pci_find_upstream_pcie_bridge(pdev
);
4145 if (pci_is_pcie(bridge
))
4146 dma_pdev
= pci_get_domain_bus_and_slot(
4147 pci_domain_nr(pdev
->bus
),
4148 bridge
->subordinate
->number
, 0);
4150 dma_pdev
= pci_dev_get(bridge
);
4152 dma_pdev
= pci_dev_get(pdev
);
4154 /* Account for quirked devices */
4155 swap_pci_ref(&dma_pdev
, pci_get_dma_source(dma_pdev
));
4158 * If it's a multifunction device that does not support our
4159 * required ACS flags, add to the same group as lowest numbered
4160 * function that also does not suport the required ACS flags.
4162 if (dma_pdev
->multifunction
&&
4163 !pci_acs_enabled(dma_pdev
, REQ_ACS_FLAGS
)) {
4164 u8 i
, slot
= PCI_SLOT(dma_pdev
->devfn
);
4166 for (i
= 0; i
< 8; i
++) {
4167 struct pci_dev
*tmp
;
4169 tmp
= pci_get_slot(dma_pdev
->bus
, PCI_DEVFN(slot
, i
));
4173 if (!pci_acs_enabled(tmp
, REQ_ACS_FLAGS
)) {
4174 swap_pci_ref(&dma_pdev
, tmp
);
4182 * Devices on the root bus go through the iommu. If that's not us,
4183 * find the next upstream device and test ACS up to the root bus.
4184 * Finding the next device may require skipping virtual buses.
4186 while (!pci_is_root_bus(dma_pdev
->bus
)) {
4187 struct pci_bus
*bus
= dma_pdev
->bus
;
4189 while (!bus
->self
) {
4190 if (!pci_is_root_bus(bus
))
4196 if (pci_acs_path_enabled(bus
->self
, NULL
, REQ_ACS_FLAGS
))
4199 swap_pci_ref(&dma_pdev
, pci_dev_get(bus
->self
));
4203 group
= iommu_group_get(&dma_pdev
->dev
);
4204 pci_dev_put(dma_pdev
);
4206 group
= iommu_group_alloc();
4208 return PTR_ERR(group
);
4211 ret
= iommu_group_add_device(group
, dev
);
4213 iommu_group_put(group
);
4217 static void intel_iommu_remove_device(struct device
*dev
)
4219 iommu_group_remove_device(dev
);
4222 static struct iommu_ops intel_iommu_ops
= {
4223 .domain_init
= intel_iommu_domain_init
,
4224 .domain_destroy
= intel_iommu_domain_destroy
,
4225 .attach_dev
= intel_iommu_attach_device
,
4226 .detach_dev
= intel_iommu_detach_device
,
4227 .map
= intel_iommu_map
,
4228 .unmap
= intel_iommu_unmap
,
4229 .iova_to_phys
= intel_iommu_iova_to_phys
,
4230 .domain_has_cap
= intel_iommu_domain_has_cap
,
4231 .add_device
= intel_iommu_add_device
,
4232 .remove_device
= intel_iommu_remove_device
,
4233 .pgsize_bitmap
= INTEL_IOMMU_PGSIZES
,
4236 static void quirk_iommu_g4x_gfx(struct pci_dev
*dev
)
4238 /* G4x/GM45 integrated gfx dmar support is totally busted. */
4239 printk(KERN_INFO
"DMAR: Disabling IOMMU for graphics on this chipset\n");
4243 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_g4x_gfx
);
4244 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e00, quirk_iommu_g4x_gfx
);
4245 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e10, quirk_iommu_g4x_gfx
);
4246 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e20, quirk_iommu_g4x_gfx
);
4247 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e30, quirk_iommu_g4x_gfx
);
4248 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e40, quirk_iommu_g4x_gfx
);
4249 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e90, quirk_iommu_g4x_gfx
);
4251 static void quirk_iommu_rwbf(struct pci_dev
*dev
)
4254 * Mobile 4 Series Chipset neglects to set RWBF capability,
4255 * but needs it. Same seems to hold for the desktop versions.
4257 printk(KERN_INFO
"DMAR: Forcing write-buffer flush capability\n");
4261 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2a40, quirk_iommu_rwbf
);
4262 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e00, quirk_iommu_rwbf
);
4263 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e10, quirk_iommu_rwbf
);
4264 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e20, quirk_iommu_rwbf
);
4265 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e30, quirk_iommu_rwbf
);
4266 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e40, quirk_iommu_rwbf
);
4267 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x2e90, quirk_iommu_rwbf
);
4270 #define GGC_MEMORY_SIZE_MASK (0xf << 8)
4271 #define GGC_MEMORY_SIZE_NONE (0x0 << 8)
4272 #define GGC_MEMORY_SIZE_1M (0x1 << 8)
4273 #define GGC_MEMORY_SIZE_2M (0x3 << 8)
4274 #define GGC_MEMORY_VT_ENABLED (0x8 << 8)
4275 #define GGC_MEMORY_SIZE_2M_VT (0x9 << 8)
4276 #define GGC_MEMORY_SIZE_3M_VT (0xa << 8)
4277 #define GGC_MEMORY_SIZE_4M_VT (0xb << 8)
4279 static void quirk_calpella_no_shadow_gtt(struct pci_dev
*dev
)
4283 if (pci_read_config_word(dev
, GGC
, &ggc
))
4286 if (!(ggc
& GGC_MEMORY_VT_ENABLED
)) {
4287 printk(KERN_INFO
"DMAR: BIOS has allocated no shadow GTT; disabling IOMMU for graphics\n");
4289 } else if (dmar_map_gfx
) {
4290 /* we have to ensure the gfx device is idle before we flush */
4291 printk(KERN_INFO
"DMAR: Disabling batched IOTLB flush on Ironlake\n");
4292 intel_iommu_strict
= 1;
4295 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0040, quirk_calpella_no_shadow_gtt
);
4296 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0044, quirk_calpella_no_shadow_gtt
);
4297 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x0062, quirk_calpella_no_shadow_gtt
);
4298 DECLARE_PCI_FIXUP_HEADER(PCI_VENDOR_ID_INTEL
, 0x006a, quirk_calpella_no_shadow_gtt
);
4300 /* On Tylersburg chipsets, some BIOSes have been known to enable the
4301 ISOCH DMAR unit for the Azalia sound device, but not give it any
4302 TLB entries, which causes it to deadlock. Check for that. We do
4303 this in a function called from init_dmars(), instead of in a PCI
4304 quirk, because we don't want to print the obnoxious "BIOS broken"
4305 message if VT-d is actually disabled.
4307 static void __init
check_tylersburg_isoch(void)
4309 struct pci_dev
*pdev
;
4310 uint32_t vtisochctrl
;
4312 /* If there's no Azalia in the system anyway, forget it. */
4313 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x3a3e, NULL
);
4318 /* System Management Registers. Might be hidden, in which case
4319 we can't do the sanity check. But that's OK, because the
4320 known-broken BIOSes _don't_ actually hide it, so far. */
4321 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, 0x342e, NULL
);
4325 if (pci_read_config_dword(pdev
, 0x188, &vtisochctrl
)) {
4332 /* If Azalia DMA is routed to the non-isoch DMAR unit, fine. */
4333 if (vtisochctrl
& 1)
4336 /* Drop all bits other than the number of TLB entries */
4337 vtisochctrl
&= 0x1c;
4339 /* If we have the recommended number of TLB entries (16), fine. */
4340 if (vtisochctrl
== 0x10)
4343 /* Zero TLB entries? You get to ride the short bus to school. */
4345 WARN(1, "Your BIOS is broken; DMA routed to ISOCH DMAR unit but no TLB space.\n"
4346 "BIOS vendor: %s; Ver: %s; Product Version: %s\n",
4347 dmi_get_system_info(DMI_BIOS_VENDOR
),
4348 dmi_get_system_info(DMI_BIOS_VERSION
),
4349 dmi_get_system_info(DMI_PRODUCT_VERSION
));
4350 iommu_identity_mapping
|= IDENTMAP_AZALIA
;
4354 printk(KERN_WARNING
"DMAR: Recommended TLB entries for ISOCH unit is 16; your BIOS set %d\n",