Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / drivers / rtc / interface.c
blob9dc8a2d727d3b80293f1cf9436d50f2db38d86a9
1 /*
2 * RTC subsystem, interface functions
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
7 * based on arch/arm/common/rtctime.c
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
20 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
23 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
25 int err;
26 if (!rtc->ops)
27 err = -ENODEV;
28 else if (!rtc->ops->read_time)
29 err = -EINVAL;
30 else {
31 memset(tm, 0, sizeof(struct rtc_time));
32 err = rtc->ops->read_time(rtc->dev.parent, tm);
34 return err;
37 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
39 int err;
41 err = mutex_lock_interruptible(&rtc->ops_lock);
42 if (err)
43 return err;
45 err = __rtc_read_time(rtc, tm);
46 mutex_unlock(&rtc->ops_lock);
47 return err;
49 EXPORT_SYMBOL_GPL(rtc_read_time);
51 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
53 int err;
55 err = rtc_valid_tm(tm);
56 if (err != 0)
57 return err;
59 err = mutex_lock_interruptible(&rtc->ops_lock);
60 if (err)
61 return err;
63 if (!rtc->ops)
64 err = -ENODEV;
65 else if (rtc->ops->set_time)
66 err = rtc->ops->set_time(rtc->dev.parent, tm);
67 else if (rtc->ops->set_mmss) {
68 unsigned long secs;
69 err = rtc_tm_to_time(tm, &secs);
70 if (err == 0)
71 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
72 } else
73 err = -EINVAL;
75 pm_stay_awake(rtc->dev.parent);
76 mutex_unlock(&rtc->ops_lock);
77 /* A timer might have just expired */
78 schedule_work(&rtc->irqwork);
79 return err;
81 EXPORT_SYMBOL_GPL(rtc_set_time);
83 int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
85 int err;
87 err = mutex_lock_interruptible(&rtc->ops_lock);
88 if (err)
89 return err;
91 if (!rtc->ops)
92 err = -ENODEV;
93 else if (rtc->ops->set_mmss)
94 err = rtc->ops->set_mmss(rtc->dev.parent, secs);
95 else if (rtc->ops->read_time && rtc->ops->set_time) {
96 struct rtc_time new, old;
98 err = rtc->ops->read_time(rtc->dev.parent, &old);
99 if (err == 0) {
100 rtc_time_to_tm(secs, &new);
103 * avoid writing when we're going to change the day of
104 * the month. We will retry in the next minute. This
105 * basically means that if the RTC must not drift
106 * by more than 1 minute in 11 minutes.
108 if (!((old.tm_hour == 23 && old.tm_min == 59) ||
109 (new.tm_hour == 23 && new.tm_min == 59)))
110 err = rtc->ops->set_time(rtc->dev.parent,
111 &new);
113 } else {
114 err = -EINVAL;
117 pm_stay_awake(rtc->dev.parent);
118 mutex_unlock(&rtc->ops_lock);
119 /* A timer might have just expired */
120 schedule_work(&rtc->irqwork);
122 return err;
124 EXPORT_SYMBOL_GPL(rtc_set_mmss);
126 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
128 int err;
130 err = mutex_lock_interruptible(&rtc->ops_lock);
131 if (err)
132 return err;
134 if (rtc->ops == NULL)
135 err = -ENODEV;
136 else if (!rtc->ops->read_alarm)
137 err = -EINVAL;
138 else {
139 memset(alarm, 0, sizeof(struct rtc_wkalrm));
140 err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
143 mutex_unlock(&rtc->ops_lock);
144 return err;
147 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
149 int err;
150 struct rtc_time before, now;
151 int first_time = 1;
152 unsigned long t_now, t_alm;
153 enum { none, day, month, year } missing = none;
154 unsigned days;
156 /* The lower level RTC driver may return -1 in some fields,
157 * creating invalid alarm->time values, for reasons like:
159 * - The hardware may not be capable of filling them in;
160 * many alarms match only on time-of-day fields, not
161 * day/month/year calendar data.
163 * - Some hardware uses illegal values as "wildcard" match
164 * values, which non-Linux firmware (like a BIOS) may try
165 * to set up as e.g. "alarm 15 minutes after each hour".
166 * Linux uses only oneshot alarms.
168 * When we see that here, we deal with it by using values from
169 * a current RTC timestamp for any missing (-1) values. The
170 * RTC driver prevents "periodic alarm" modes.
172 * But this can be racey, because some fields of the RTC timestamp
173 * may have wrapped in the interval since we read the RTC alarm,
174 * which would lead to us inserting inconsistent values in place
175 * of the -1 fields.
177 * Reading the alarm and timestamp in the reverse sequence
178 * would have the same race condition, and not solve the issue.
180 * So, we must first read the RTC timestamp,
181 * then read the RTC alarm value,
182 * and then read a second RTC timestamp.
184 * If any fields of the second timestamp have changed
185 * when compared with the first timestamp, then we know
186 * our timestamp may be inconsistent with that used by
187 * the low-level rtc_read_alarm_internal() function.
189 * So, when the two timestamps disagree, we just loop and do
190 * the process again to get a fully consistent set of values.
192 * This could all instead be done in the lower level driver,
193 * but since more than one lower level RTC implementation needs it,
194 * then it's probably best best to do it here instead of there..
197 /* Get the "before" timestamp */
198 err = rtc_read_time(rtc, &before);
199 if (err < 0)
200 return err;
201 do {
202 if (!first_time)
203 memcpy(&before, &now, sizeof(struct rtc_time));
204 first_time = 0;
206 /* get the RTC alarm values, which may be incomplete */
207 err = rtc_read_alarm_internal(rtc, alarm);
208 if (err)
209 return err;
211 /* full-function RTCs won't have such missing fields */
212 if (rtc_valid_tm(&alarm->time) == 0)
213 return 0;
215 /* get the "after" timestamp, to detect wrapped fields */
216 err = rtc_read_time(rtc, &now);
217 if (err < 0)
218 return err;
220 /* note that tm_sec is a "don't care" value here: */
221 } while ( before.tm_min != now.tm_min
222 || before.tm_hour != now.tm_hour
223 || before.tm_mon != now.tm_mon
224 || before.tm_year != now.tm_year);
226 /* Fill in the missing alarm fields using the timestamp; we
227 * know there's at least one since alarm->time is invalid.
229 if (alarm->time.tm_sec == -1)
230 alarm->time.tm_sec = now.tm_sec;
231 if (alarm->time.tm_min == -1)
232 alarm->time.tm_min = now.tm_min;
233 if (alarm->time.tm_hour == -1)
234 alarm->time.tm_hour = now.tm_hour;
236 /* For simplicity, only support date rollover for now */
237 if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
238 alarm->time.tm_mday = now.tm_mday;
239 missing = day;
241 if ((unsigned)alarm->time.tm_mon >= 12) {
242 alarm->time.tm_mon = now.tm_mon;
243 if (missing == none)
244 missing = month;
246 if (alarm->time.tm_year == -1) {
247 alarm->time.tm_year = now.tm_year;
248 if (missing == none)
249 missing = year;
252 /* with luck, no rollover is needed */
253 rtc_tm_to_time(&now, &t_now);
254 rtc_tm_to_time(&alarm->time, &t_alm);
255 if (t_now < t_alm)
256 goto done;
258 switch (missing) {
260 /* 24 hour rollover ... if it's now 10am Monday, an alarm that
261 * that will trigger at 5am will do so at 5am Tuesday, which
262 * could also be in the next month or year. This is a common
263 * case, especially for PCs.
265 case day:
266 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
267 t_alm += 24 * 60 * 60;
268 rtc_time_to_tm(t_alm, &alarm->time);
269 break;
271 /* Month rollover ... if it's the 31th, an alarm on the 3rd will
272 * be next month. An alarm matching on the 30th, 29th, or 28th
273 * may end up in the month after that! Many newer PCs support
274 * this type of alarm.
276 case month:
277 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
278 do {
279 if (alarm->time.tm_mon < 11)
280 alarm->time.tm_mon++;
281 else {
282 alarm->time.tm_mon = 0;
283 alarm->time.tm_year++;
285 days = rtc_month_days(alarm->time.tm_mon,
286 alarm->time.tm_year);
287 } while (days < alarm->time.tm_mday);
288 break;
290 /* Year rollover ... easy except for leap years! */
291 case year:
292 dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
293 do {
294 alarm->time.tm_year++;
295 } while (rtc_valid_tm(&alarm->time) != 0);
296 break;
298 default:
299 dev_warn(&rtc->dev, "alarm rollover not handled\n");
302 done:
303 return 0;
306 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
308 int err;
310 err = mutex_lock_interruptible(&rtc->ops_lock);
311 if (err)
312 return err;
313 if (rtc->ops == NULL)
314 err = -ENODEV;
315 else if (!rtc->ops->read_alarm)
316 err = -EINVAL;
317 else {
318 memset(alarm, 0, sizeof(struct rtc_wkalrm));
319 alarm->enabled = rtc->aie_timer.enabled;
320 alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
322 mutex_unlock(&rtc->ops_lock);
324 return err;
326 EXPORT_SYMBOL_GPL(rtc_read_alarm);
328 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
330 struct rtc_time tm;
331 long now, scheduled;
332 int err;
334 err = rtc_valid_tm(&alarm->time);
335 if (err)
336 return err;
337 rtc_tm_to_time(&alarm->time, &scheduled);
339 /* Make sure we're not setting alarms in the past */
340 err = __rtc_read_time(rtc, &tm);
341 rtc_tm_to_time(&tm, &now);
342 if (scheduled <= now)
343 return -ETIME;
345 * XXX - We just checked to make sure the alarm time is not
346 * in the past, but there is still a race window where if
347 * the is alarm set for the next second and the second ticks
348 * over right here, before we set the alarm.
351 if (!rtc->ops)
352 err = -ENODEV;
353 else if (!rtc->ops->set_alarm)
354 err = -EINVAL;
355 else
356 err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
358 return err;
361 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
363 int err;
365 err = rtc_valid_tm(&alarm->time);
366 if (err != 0)
367 return err;
369 err = mutex_lock_interruptible(&rtc->ops_lock);
370 if (err)
371 return err;
372 if (rtc->aie_timer.enabled)
373 rtc_timer_remove(rtc, &rtc->aie_timer);
375 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
376 rtc->aie_timer.period = ktime_set(0, 0);
377 if (alarm->enabled)
378 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
380 mutex_unlock(&rtc->ops_lock);
381 return err;
383 EXPORT_SYMBOL_GPL(rtc_set_alarm);
385 /* Called once per device from rtc_device_register */
386 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
388 int err;
389 struct rtc_time now;
391 err = rtc_valid_tm(&alarm->time);
392 if (err != 0)
393 return err;
395 err = rtc_read_time(rtc, &now);
396 if (err)
397 return err;
399 err = mutex_lock_interruptible(&rtc->ops_lock);
400 if (err)
401 return err;
403 rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
404 rtc->aie_timer.period = ktime_set(0, 0);
406 /* Alarm has to be enabled & in the futrure for us to enqueue it */
407 if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
408 rtc->aie_timer.node.expires.tv64)) {
410 rtc->aie_timer.enabled = 1;
411 timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
413 mutex_unlock(&rtc->ops_lock);
414 return err;
416 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
420 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
422 int err;
424 #if defined(CONFIG_E2K) && defined(CONFIG_L_WDT)
425 if (IS_MACHINE_E3M) {
426 pr_debug("rtc_alarm_irq_enable: irq8 is busy for NMI watchdog timer\n");
427 return -EINVAL;
429 #endif
431 err = mutex_lock_interruptible(&rtc->ops_lock);
432 if (err)
433 return err;
435 if (rtc->aie_timer.enabled != enabled) {
436 if (enabled)
437 err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
438 else
439 rtc_timer_remove(rtc, &rtc->aie_timer);
442 if (err)
443 /* nothing */;
444 else if (!rtc->ops)
445 err = -ENODEV;
446 else if (!rtc->ops->alarm_irq_enable)
447 err = -EINVAL;
448 else
449 err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
451 mutex_unlock(&rtc->ops_lock);
452 return err;
454 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
456 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
458 int err;
460 #if defined(CONFIG_E2K) && defined(CONFIG_L_WDT)
461 if (IS_MACHINE_E3M) {
462 pr_debug("rtc_update_irq_enable: irq8 is busy for NMI watchdog timer\n");
463 return -EINVAL;
465 #endif
467 err = mutex_lock_interruptible(&rtc->ops_lock);
468 if (err)
469 return err;
471 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
472 if (enabled == 0 && rtc->uie_irq_active) {
473 mutex_unlock(&rtc->ops_lock);
474 return rtc_dev_update_irq_enable_emul(rtc, 0);
476 #endif
477 /* make sure we're changing state */
478 if (rtc->uie_rtctimer.enabled == enabled)
479 goto out;
481 if (rtc->uie_unsupported) {
482 err = -EINVAL;
483 goto out;
486 if (enabled) {
487 struct rtc_time tm;
488 ktime_t now, onesec;
490 __rtc_read_time(rtc, &tm);
491 onesec = ktime_set(1, 0);
492 now = rtc_tm_to_ktime(tm);
493 rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
494 rtc->uie_rtctimer.period = ktime_set(1, 0);
495 err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
496 } else
497 rtc_timer_remove(rtc, &rtc->uie_rtctimer);
499 out:
500 mutex_unlock(&rtc->ops_lock);
501 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
503 * Enable emulation if the driver did not provide
504 * the update_irq_enable function pointer or if returned
505 * -EINVAL to signal that it has been configured without
506 * interrupts or that are not available at the moment.
508 if (err == -EINVAL)
509 err = rtc_dev_update_irq_enable_emul(rtc, enabled);
510 #endif
511 return err;
514 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
518 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
519 * @rtc: pointer to the rtc device
521 * This function is called when an AIE, UIE or PIE mode interrupt
522 * has occurred (or been emulated).
524 * Triggers the registered irq_task function callback.
526 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
528 unsigned long flags;
530 /* mark one irq of the appropriate mode */
531 spin_lock_irqsave(&rtc->irq_lock, flags);
532 rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
533 spin_unlock_irqrestore(&rtc->irq_lock, flags);
535 /* call the task func */
536 spin_lock_irqsave(&rtc->irq_task_lock, flags);
537 if (rtc->irq_task)
538 rtc->irq_task->func(rtc->irq_task->private_data);
539 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
541 wake_up_interruptible(&rtc->irq_queue);
542 kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
547 * rtc_aie_update_irq - AIE mode rtctimer hook
548 * @private: pointer to the rtc_device
550 * This functions is called when the aie_timer expires.
552 void rtc_aie_update_irq(void *private)
554 struct rtc_device *rtc = (struct rtc_device *)private;
555 rtc_handle_legacy_irq(rtc, 1, RTC_AF);
560 * rtc_uie_update_irq - UIE mode rtctimer hook
561 * @private: pointer to the rtc_device
563 * This functions is called when the uie_timer expires.
565 void rtc_uie_update_irq(void *private)
567 struct rtc_device *rtc = (struct rtc_device *)private;
568 rtc_handle_legacy_irq(rtc, 1, RTC_UF);
573 * rtc_pie_update_irq - PIE mode hrtimer hook
574 * @timer: pointer to the pie mode hrtimer
576 * This function is used to emulate PIE mode interrupts
577 * using an hrtimer. This function is called when the periodic
578 * hrtimer expires.
580 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
582 struct rtc_device *rtc;
583 ktime_t period;
584 int count;
585 rtc = container_of(timer, struct rtc_device, pie_timer);
587 period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
588 count = hrtimer_forward_now(timer, period);
590 rtc_handle_legacy_irq(rtc, count, RTC_PF);
592 return HRTIMER_RESTART;
596 * rtc_update_irq - Triggered when a RTC interrupt occurs.
597 * @rtc: the rtc device
598 * @num: how many irqs are being reported (usually one)
599 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
600 * Context: any
602 void rtc_update_irq(struct rtc_device *rtc,
603 unsigned long num, unsigned long events)
605 pm_stay_awake(rtc->dev.parent);
606 schedule_work(&rtc->irqwork);
608 EXPORT_SYMBOL_GPL(rtc_update_irq);
610 static int __rtc_match(struct device *dev, const void *data)
612 const char *name = data;
614 if (strcmp(dev_name(dev), name) == 0)
615 return 1;
616 return 0;
619 struct rtc_device *rtc_class_open(const char *name)
621 struct device *dev;
622 struct rtc_device *rtc = NULL;
624 dev = class_find_device(rtc_class, NULL, name, __rtc_match);
625 if (dev)
626 rtc = to_rtc_device(dev);
628 if (rtc) {
629 if (!try_module_get(rtc->owner)) {
630 put_device(dev);
631 rtc = NULL;
635 return rtc;
637 EXPORT_SYMBOL_GPL(rtc_class_open);
639 void rtc_class_close(struct rtc_device *rtc)
641 module_put(rtc->owner);
642 put_device(&rtc->dev);
644 EXPORT_SYMBOL_GPL(rtc_class_close);
646 int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
648 int retval = -EBUSY;
650 if (task == NULL || task->func == NULL)
651 return -EINVAL;
653 /* Cannot register while the char dev is in use */
654 if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
655 return -EBUSY;
657 spin_lock_irq(&rtc->irq_task_lock);
658 if (rtc->irq_task == NULL) {
659 rtc->irq_task = task;
660 retval = 0;
662 spin_unlock_irq(&rtc->irq_task_lock);
664 clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
666 return retval;
668 EXPORT_SYMBOL_GPL(rtc_irq_register);
670 void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
672 spin_lock_irq(&rtc->irq_task_lock);
673 if (rtc->irq_task == task)
674 rtc->irq_task = NULL;
675 spin_unlock_irq(&rtc->irq_task_lock);
677 EXPORT_SYMBOL_GPL(rtc_irq_unregister);
679 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
682 * We always cancel the timer here first, because otherwise
683 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
684 * when we manage to start the timer before the callback
685 * returns HRTIMER_RESTART.
687 * We cannot use hrtimer_cancel() here as a running callback
688 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
689 * would spin forever.
691 if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
692 return -1;
694 if (enabled) {
695 ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
697 hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
699 return 0;
703 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
704 * @rtc: the rtc device
705 * @task: currently registered with rtc_irq_register()
706 * @enabled: true to enable periodic IRQs
707 * Context: any
709 * Note that rtc_irq_set_freq() should previously have been used to
710 * specify the desired frequency of periodic IRQ task->func() callbacks.
712 int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
714 int err = 0;
715 unsigned long flags;
717 retry:
718 spin_lock_irqsave(&rtc->irq_task_lock, flags);
719 if (rtc->irq_task != NULL && task == NULL)
720 err = -EBUSY;
721 else if (rtc->irq_task != task)
722 err = -EACCES;
723 else {
724 if (rtc_update_hrtimer(rtc, enabled) < 0) {
725 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
726 cpu_relax();
727 goto retry;
729 rtc->pie_enabled = enabled;
731 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
732 return err;
734 EXPORT_SYMBOL_GPL(rtc_irq_set_state);
737 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
738 * @rtc: the rtc device
739 * @task: currently registered with rtc_irq_register()
740 * @freq: positive frequency with which task->func() will be called
741 * Context: any
743 * Note that rtc_irq_set_state() is used to enable or disable the
744 * periodic IRQs.
746 int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
748 int err = 0;
749 unsigned long flags;
751 if (freq <= 0 || freq > RTC_MAX_FREQ)
752 return -EINVAL;
753 retry:
754 spin_lock_irqsave(&rtc->irq_task_lock, flags);
755 if (rtc->irq_task != NULL && task == NULL)
756 err = -EBUSY;
757 else if (rtc->irq_task != task)
758 err = -EACCES;
759 else {
760 rtc->irq_freq = freq;
761 if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
762 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
763 cpu_relax();
764 goto retry;
767 spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
768 return err;
770 EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
773 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
774 * @rtc rtc device
775 * @timer timer being added.
777 * Enqueues a timer onto the rtc devices timerqueue and sets
778 * the next alarm event appropriately.
780 * Sets the enabled bit on the added timer.
782 * Must hold ops_lock for proper serialization of timerqueue
784 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
786 timer->enabled = 1;
787 timerqueue_add(&rtc->timerqueue, &timer->node);
788 if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
789 struct rtc_wkalrm alarm;
790 int err;
791 alarm.time = rtc_ktime_to_tm(timer->node.expires);
792 alarm.enabled = 1;
793 err = __rtc_set_alarm(rtc, &alarm);
794 if (err == -ETIME) {
795 pm_stay_awake(rtc->dev.parent);
796 schedule_work(&rtc->irqwork);
797 } else if (err) {
798 timerqueue_del(&rtc->timerqueue, &timer->node);
799 timer->enabled = 0;
800 return err;
803 return 0;
806 static void rtc_alarm_disable(struct rtc_device *rtc)
808 if (!rtc->ops || !rtc->ops->alarm_irq_enable)
809 return;
811 rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
815 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
816 * @rtc rtc device
817 * @timer timer being removed.
819 * Removes a timer onto the rtc devices timerqueue and sets
820 * the next alarm event appropriately.
822 * Clears the enabled bit on the removed timer.
824 * Must hold ops_lock for proper serialization of timerqueue
826 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
828 struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
829 timerqueue_del(&rtc->timerqueue, &timer->node);
830 timer->enabled = 0;
831 if (next == &timer->node) {
832 struct rtc_wkalrm alarm;
833 int err;
834 next = timerqueue_getnext(&rtc->timerqueue);
835 if (!next) {
836 rtc_alarm_disable(rtc);
837 return;
839 alarm.time = rtc_ktime_to_tm(next->expires);
840 alarm.enabled = 1;
841 err = __rtc_set_alarm(rtc, &alarm);
842 if (err == -ETIME) {
843 pm_stay_awake(rtc->dev.parent);
844 schedule_work(&rtc->irqwork);
850 * rtc_timer_do_work - Expires rtc timers
851 * @rtc rtc device
852 * @timer timer being removed.
854 * Expires rtc timers. Reprograms next alarm event if needed.
855 * Called via worktask.
857 * Serializes access to timerqueue via ops_lock mutex
859 void rtc_timer_do_work(struct work_struct *work)
861 struct rtc_timer *timer;
862 struct timerqueue_node *next;
863 ktime_t now;
864 struct rtc_time tm;
866 struct rtc_device *rtc =
867 container_of(work, struct rtc_device, irqwork);
869 mutex_lock(&rtc->ops_lock);
870 again:
871 __rtc_read_time(rtc, &tm);
872 now = rtc_tm_to_ktime(tm);
873 while ((next = timerqueue_getnext(&rtc->timerqueue))) {
874 if (next->expires.tv64 > now.tv64)
875 break;
877 /* expire timer */
878 timer = container_of(next, struct rtc_timer, node);
879 timerqueue_del(&rtc->timerqueue, &timer->node);
880 timer->enabled = 0;
881 if (timer->task.func)
882 timer->task.func(timer->task.private_data);
884 /* Re-add/fwd periodic timers */
885 if (ktime_to_ns(timer->period)) {
886 timer->node.expires = ktime_add(timer->node.expires,
887 timer->period);
888 timer->enabled = 1;
889 timerqueue_add(&rtc->timerqueue, &timer->node);
893 /* Set next alarm */
894 if (next) {
895 struct rtc_wkalrm alarm;
896 int err;
897 alarm.time = rtc_ktime_to_tm(next->expires);
898 alarm.enabled = 1;
899 err = __rtc_set_alarm(rtc, &alarm);
900 if (err == -ETIME)
901 goto again;
902 } else
903 rtc_alarm_disable(rtc);
905 pm_relax(rtc->dev.parent);
906 mutex_unlock(&rtc->ops_lock);
910 /* rtc_timer_init - Initializes an rtc_timer
911 * @timer: timer to be intiialized
912 * @f: function pointer to be called when timer fires
913 * @data: private data passed to function pointer
915 * Kernel interface to initializing an rtc_timer.
917 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
919 timerqueue_init(&timer->node);
920 timer->enabled = 0;
921 timer->task.func = f;
922 timer->task.private_data = data;
925 /* rtc_timer_start - Sets an rtc_timer to fire in the future
926 * @ rtc: rtc device to be used
927 * @ timer: timer being set
928 * @ expires: time at which to expire the timer
929 * @ period: period that the timer will recur
931 * Kernel interface to set an rtc_timer
933 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
934 ktime_t expires, ktime_t period)
936 int ret = 0;
937 mutex_lock(&rtc->ops_lock);
938 if (timer->enabled)
939 rtc_timer_remove(rtc, timer);
941 timer->node.expires = expires;
942 timer->period = period;
944 ret = rtc_timer_enqueue(rtc, timer);
946 mutex_unlock(&rtc->ops_lock);
947 return ret;
950 /* rtc_timer_cancel - Stops an rtc_timer
951 * @ rtc: rtc device to be used
952 * @ timer: timer being set
954 * Kernel interface to cancel an rtc_timer
956 int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
958 int ret = 0;
959 mutex_lock(&rtc->ops_lock);
960 if (timer->enabled)
961 rtc_timer_remove(rtc, timer);
962 mutex_unlock(&rtc->ops_lock);
963 return ret;