Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / drivers / target / target_core_transport.c
blob6fc38903046c7ef42fa6cefc0bdbb24a1ac564d5
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
38 #include <net/sock.h>
39 #include <net/tcp.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
57 static struct workqueue_struct *target_completion_wq;
58 static struct kmem_cache *se_sess_cache;
59 struct kmem_cache *se_ua_cache;
60 struct kmem_cache *t10_pr_reg_cache;
61 struct kmem_cache *t10_alua_lu_gp_cache;
62 struct kmem_cache *t10_alua_lu_gp_mem_cache;
63 struct kmem_cache *t10_alua_tg_pt_gp_cache;
64 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
65 struct kmem_cache *t10_alua_lba_map_cache;
66 struct kmem_cache *t10_alua_lba_map_mem_cache;
68 static void transport_complete_task_attr(struct se_cmd *cmd);
69 static void transport_handle_queue_full(struct se_cmd *cmd,
70 struct se_device *dev);
71 static int transport_put_cmd(struct se_cmd *cmd);
72 static void target_complete_ok_work(struct work_struct *work);
74 int init_se_kmem_caches(void)
76 se_sess_cache = kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session), __alignof__(struct se_session),
78 0, NULL);
79 if (!se_sess_cache) {
80 pr_err("kmem_cache_create() for struct se_session"
81 " failed\n");
82 goto out;
84 se_ua_cache = kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua), __alignof__(struct se_ua),
86 0, NULL);
87 if (!se_ua_cache) {
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache;
91 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration),
93 __alignof__(struct t10_pr_registration), 0, NULL);
94 if (!t10_pr_reg_cache) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
96 " failed\n");
97 goto out_free_ua_cache;
99 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
101 0, NULL);
102 if (!t10_alua_lu_gp_cache) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
104 " failed\n");
105 goto out_free_pr_reg_cache;
107 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member),
109 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
110 if (!t10_alua_lu_gp_mem_cache) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
112 "cache failed\n");
113 goto out_free_lu_gp_cache;
115 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp),
117 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
118 if (!t10_alua_tg_pt_gp_cache) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
120 "cache failed\n");
121 goto out_free_lu_gp_mem_cache;
123 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member),
126 __alignof__(struct t10_alua_tg_pt_gp_member),
127 0, NULL);
128 if (!t10_alua_tg_pt_gp_mem_cache) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
130 "mem_t failed\n");
131 goto out_free_tg_pt_gp_cache;
133 t10_alua_lba_map_cache = kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map),
136 __alignof__(struct t10_alua_lba_map), 0, NULL);
137 if (!t10_alua_lba_map_cache) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
139 "cache failed\n");
140 goto out_free_tg_pt_gp_mem_cache;
142 t10_alua_lba_map_mem_cache = kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member),
145 __alignof__(struct t10_alua_lba_map_member), 0, NULL);
146 if (!t10_alua_lba_map_mem_cache) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
148 "cache failed\n");
149 goto out_free_lba_map_cache;
152 target_completion_wq = alloc_workqueue("target_completion",
153 WQ_MEM_RECLAIM, 0);
154 if (!target_completion_wq)
155 goto out_free_lba_map_mem_cache;
157 return 0;
159 out_free_lba_map_mem_cache:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
161 out_free_lba_map_cache:
162 kmem_cache_destroy(t10_alua_lba_map_cache);
163 out_free_tg_pt_gp_mem_cache:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
165 out_free_tg_pt_gp_cache:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
167 out_free_lu_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
169 out_free_lu_gp_cache:
170 kmem_cache_destroy(t10_alua_lu_gp_cache);
171 out_free_pr_reg_cache:
172 kmem_cache_destroy(t10_pr_reg_cache);
173 out_free_ua_cache:
174 kmem_cache_destroy(se_ua_cache);
175 out_free_sess_cache:
176 kmem_cache_destroy(se_sess_cache);
177 out:
178 return -ENOMEM;
181 void release_se_kmem_caches(void)
183 destroy_workqueue(target_completion_wq);
184 kmem_cache_destroy(se_sess_cache);
185 kmem_cache_destroy(se_ua_cache);
186 kmem_cache_destroy(t10_pr_reg_cache);
187 kmem_cache_destroy(t10_alua_lu_gp_cache);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
191 kmem_cache_destroy(t10_alua_lba_map_cache);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache);
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock);
197 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
200 * Allocate a new row index for the entry type specified
202 u32 scsi_get_new_index(scsi_index_t type)
204 u32 new_index;
206 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
208 spin_lock(&scsi_mib_index_lock);
209 new_index = ++scsi_mib_index[type];
210 spin_unlock(&scsi_mib_index_lock);
212 return new_index;
215 void transport_subsystem_check_init(void)
217 int ret;
218 static int sub_api_initialized;
220 if (sub_api_initialized)
221 return;
223 ret = request_module("target_core_iblock");
224 if (ret != 0)
225 pr_err("Unable to load target_core_iblock\n");
227 ret = request_module("target_core_file");
228 if (ret != 0)
229 pr_err("Unable to load target_core_file\n");
231 ret = request_module("target_core_pscsi");
232 if (ret != 0)
233 pr_err("Unable to load target_core_pscsi\n");
235 sub_api_initialized = 1;
238 struct se_session *transport_init_session(void)
240 struct se_session *se_sess;
242 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
243 if (!se_sess) {
244 pr_err("Unable to allocate struct se_session from"
245 " se_sess_cache\n");
246 return ERR_PTR(-ENOMEM);
248 INIT_LIST_HEAD(&se_sess->sess_list);
249 INIT_LIST_HEAD(&se_sess->sess_acl_list);
250 INIT_LIST_HEAD(&se_sess->sess_cmd_list);
251 INIT_LIST_HEAD(&se_sess->sess_wait_list);
252 spin_lock_init(&se_sess->sess_cmd_lock);
253 kref_init(&se_sess->sess_kref);
255 return se_sess;
257 EXPORT_SYMBOL(transport_init_session);
259 int transport_alloc_session_tags(struct se_session *se_sess,
260 unsigned int tag_num, unsigned int tag_size)
262 int rc;
264 se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
265 GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
266 if (!se_sess->sess_cmd_map) {
267 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
268 if (!se_sess->sess_cmd_map) {
269 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
270 return -ENOMEM;
274 rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
275 if (rc < 0) {
276 pr_err("Unable to init se_sess->sess_tag_pool,"
277 " tag_num: %u\n", tag_num);
278 if (is_vmalloc_addr(se_sess->sess_cmd_map))
279 vfree(se_sess->sess_cmd_map);
280 else
281 kfree(se_sess->sess_cmd_map);
282 se_sess->sess_cmd_map = NULL;
283 return -ENOMEM;
286 return 0;
288 EXPORT_SYMBOL(transport_alloc_session_tags);
290 struct se_session *transport_init_session_tags(unsigned int tag_num,
291 unsigned int tag_size)
293 struct se_session *se_sess;
294 int rc;
296 se_sess = transport_init_session();
297 if (IS_ERR(se_sess))
298 return se_sess;
300 rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
301 if (rc < 0) {
302 transport_free_session(se_sess);
303 return ERR_PTR(-ENOMEM);
306 return se_sess;
308 EXPORT_SYMBOL(transport_init_session_tags);
311 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
313 void __transport_register_session(
314 struct se_portal_group *se_tpg,
315 struct se_node_acl *se_nacl,
316 struct se_session *se_sess,
317 void *fabric_sess_ptr)
319 unsigned char buf[PR_REG_ISID_LEN];
321 se_sess->se_tpg = se_tpg;
322 se_sess->fabric_sess_ptr = fabric_sess_ptr;
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
329 if (se_nacl) {
331 * If the fabric module supports an ISID based TransportID,
332 * save this value in binary from the fabric I_T Nexus now.
334 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
335 memset(&buf[0], 0, PR_REG_ISID_LEN);
336 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
337 &buf[0], PR_REG_ISID_LEN);
338 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
340 kref_get(&se_nacl->acl_kref);
342 spin_lock_irq(&se_nacl->nacl_sess_lock);
344 * The se_nacl->nacl_sess pointer will be set to the
345 * last active I_T Nexus for each struct se_node_acl.
347 se_nacl->nacl_sess = se_sess;
349 list_add_tail(&se_sess->sess_acl_list,
350 &se_nacl->acl_sess_list);
351 spin_unlock_irq(&se_nacl->nacl_sess_lock);
353 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
355 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
356 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
358 EXPORT_SYMBOL(__transport_register_session);
360 void transport_register_session(
361 struct se_portal_group *se_tpg,
362 struct se_node_acl *se_nacl,
363 struct se_session *se_sess,
364 void *fabric_sess_ptr)
366 unsigned long flags;
368 spin_lock_irqsave(&se_tpg->session_lock, flags);
369 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
370 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
372 EXPORT_SYMBOL(transport_register_session);
374 static void target_release_session(struct kref *kref)
376 struct se_session *se_sess = container_of(kref,
377 struct se_session, sess_kref);
378 struct se_portal_group *se_tpg = se_sess->se_tpg;
380 se_tpg->se_tpg_tfo->close_session(se_sess);
383 void target_get_session(struct se_session *se_sess)
385 kref_get(&se_sess->sess_kref);
387 EXPORT_SYMBOL(target_get_session);
389 void target_put_session(struct se_session *se_sess)
391 struct se_portal_group *tpg = se_sess->se_tpg;
393 if (tpg->se_tpg_tfo->put_session != NULL) {
394 tpg->se_tpg_tfo->put_session(se_sess);
395 return;
397 kref_put(&se_sess->sess_kref, target_release_session);
399 EXPORT_SYMBOL(target_put_session);
401 static void target_complete_nacl(struct kref *kref)
403 struct se_node_acl *nacl = container_of(kref,
404 struct se_node_acl, acl_kref);
406 complete(&nacl->acl_free_comp);
409 void target_put_nacl(struct se_node_acl *nacl)
411 kref_put(&nacl->acl_kref, target_complete_nacl);
414 void transport_deregister_session_configfs(struct se_session *se_sess)
416 struct se_node_acl *se_nacl;
417 unsigned long flags;
419 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
421 se_nacl = se_sess->se_node_acl;
422 if (se_nacl) {
423 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
424 if (se_nacl->acl_stop == 0)
425 list_del(&se_sess->sess_acl_list);
427 * If the session list is empty, then clear the pointer.
428 * Otherwise, set the struct se_session pointer from the tail
429 * element of the per struct se_node_acl active session list.
431 if (list_empty(&se_nacl->acl_sess_list))
432 se_nacl->nacl_sess = NULL;
433 else {
434 se_nacl->nacl_sess = container_of(
435 se_nacl->acl_sess_list.prev,
436 struct se_session, sess_acl_list);
438 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
441 EXPORT_SYMBOL(transport_deregister_session_configfs);
443 void transport_free_session(struct se_session *se_sess)
445 if (se_sess->sess_cmd_map) {
446 percpu_ida_destroy(&se_sess->sess_tag_pool);
447 if (is_vmalloc_addr(se_sess->sess_cmd_map))
448 vfree(se_sess->sess_cmd_map);
449 else
450 kfree(se_sess->sess_cmd_map);
452 kmem_cache_free(se_sess_cache, se_sess);
454 EXPORT_SYMBOL(transport_free_session);
456 void transport_deregister_session(struct se_session *se_sess)
458 struct se_portal_group *se_tpg = se_sess->se_tpg;
459 struct target_core_fabric_ops *se_tfo;
460 struct se_node_acl *se_nacl;
461 unsigned long flags;
462 bool comp_nacl = true;
464 if (!se_tpg) {
465 transport_free_session(se_sess);
466 return;
468 se_tfo = se_tpg->se_tpg_tfo;
470 spin_lock_irqsave(&se_tpg->session_lock, flags);
471 list_del(&se_sess->sess_list);
472 se_sess->se_tpg = NULL;
473 se_sess->fabric_sess_ptr = NULL;
474 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
477 * Determine if we need to do extra work for this initiator node's
478 * struct se_node_acl if it had been previously dynamically generated.
480 se_nacl = se_sess->se_node_acl;
482 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
483 if (se_nacl && se_nacl->dynamic_node_acl) {
484 if (!se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
485 list_del(&se_nacl->acl_list);
486 se_tpg->num_node_acls--;
487 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
488 core_tpg_wait_for_nacl_pr_ref(se_nacl);
489 core_free_device_list_for_node(se_nacl, se_tpg);
490 se_tfo->tpg_release_fabric_acl(se_tpg, se_nacl);
492 comp_nacl = false;
493 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
496 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
498 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
499 se_tpg->se_tpg_tfo->get_fabric_name());
501 * If last kref is dropping now for an explicit NodeACL, awake sleeping
502 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
503 * removal context.
505 if (se_nacl && comp_nacl == true)
506 target_put_nacl(se_nacl);
508 transport_free_session(se_sess);
510 EXPORT_SYMBOL(transport_deregister_session);
513 * Called with cmd->t_state_lock held.
515 static void target_remove_from_state_list(struct se_cmd *cmd)
517 struct se_device *dev = cmd->se_dev;
518 unsigned long flags;
520 if (!dev)
521 return;
523 if (cmd->transport_state & CMD_T_BUSY)
524 return;
526 spin_lock_irqsave(&dev->execute_task_lock, flags);
527 if (cmd->state_active) {
528 list_del(&cmd->state_list);
529 cmd->state_active = false;
531 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
534 static int transport_cmd_check_stop(struct se_cmd *cmd, bool remove_from_lists,
535 bool write_pending)
537 unsigned long flags;
539 spin_lock_irqsave(&cmd->t_state_lock, flags);
540 if (write_pending)
541 cmd->t_state = TRANSPORT_WRITE_PENDING;
543 if (remove_from_lists) {
544 target_remove_from_state_list(cmd);
547 * Clear struct se_cmd->se_lun before the handoff to FE.
549 cmd->se_lun = NULL;
553 * Determine if frontend context caller is requesting the stopping of
554 * this command for frontend exceptions.
556 if (cmd->transport_state & CMD_T_STOP) {
557 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
558 __func__, __LINE__,
559 cmd->se_tfo->get_task_tag(cmd));
561 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
563 complete_all(&cmd->t_transport_stop_comp);
564 return 1;
567 cmd->transport_state &= ~CMD_T_ACTIVE;
568 if (remove_from_lists) {
570 * Some fabric modules like tcm_loop can release
571 * their internally allocated I/O reference now and
572 * struct se_cmd now.
574 * Fabric modules are expected to return '1' here if the
575 * se_cmd being passed is released at this point,
576 * or zero if not being released.
578 if (cmd->se_tfo->check_stop_free != NULL) {
579 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
580 return cmd->se_tfo->check_stop_free(cmd);
584 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
585 return 0;
588 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
590 return transport_cmd_check_stop(cmd, true, false);
593 static void transport_lun_remove_cmd(struct se_cmd *cmd)
595 struct se_lun *lun = cmd->se_lun;
597 if (!lun)
598 return;
600 if (cmpxchg(&cmd->lun_ref_active, true, false))
601 percpu_ref_put(&lun->lun_ref);
604 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
606 if (transport_cmd_check_stop_to_fabric(cmd))
607 return;
608 if (remove)
609 transport_put_cmd(cmd);
612 static void target_complete_failure_work(struct work_struct *work)
614 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
616 transport_generic_request_failure(cmd,
617 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
621 * Used when asking transport to copy Sense Data from the underlying
622 * Linux/SCSI struct scsi_cmnd
624 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
626 struct se_device *dev = cmd->se_dev;
628 WARN_ON(!cmd->se_lun);
630 if (!dev)
631 return NULL;
633 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
634 return NULL;
636 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
638 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
639 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
640 return cmd->sense_buffer;
643 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
645 struct se_device *dev = cmd->se_dev;
646 int success = scsi_status == GOOD;
647 unsigned long flags;
649 cmd->scsi_status = scsi_status;
652 spin_lock_irqsave(&cmd->t_state_lock, flags);
653 cmd->transport_state &= ~CMD_T_BUSY;
655 if (dev && dev->transport->transport_complete) {
656 dev->transport->transport_complete(cmd,
657 cmd->t_data_sg,
658 transport_get_sense_buffer(cmd));
659 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
660 success = 1;
664 * See if we are waiting to complete for an exception condition.
666 if (cmd->transport_state & CMD_T_REQUEST_STOP) {
667 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
668 complete(&cmd->task_stop_comp);
669 return;
673 * Check for case where an explicit ABORT_TASK has been received
674 * and transport_wait_for_tasks() will be waiting for completion..
676 if (cmd->transport_state & CMD_T_ABORTED &&
677 cmd->transport_state & CMD_T_STOP) {
678 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
679 complete_all(&cmd->t_transport_stop_comp);
680 return;
681 } else if (!success) {
682 INIT_WORK(&cmd->work, target_complete_failure_work);
683 } else {
684 INIT_WORK(&cmd->work, target_complete_ok_work);
687 cmd->t_state = TRANSPORT_COMPLETE;
688 cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
689 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
691 queue_work(target_completion_wq, &cmd->work);
693 EXPORT_SYMBOL(target_complete_cmd);
695 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
697 if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
698 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
699 cmd->residual_count += cmd->data_length - length;
700 } else {
701 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
702 cmd->residual_count = cmd->data_length - length;
705 cmd->data_length = length;
708 target_complete_cmd(cmd, scsi_status);
710 EXPORT_SYMBOL(target_complete_cmd_with_length);
712 static void target_add_to_state_list(struct se_cmd *cmd)
714 struct se_device *dev = cmd->se_dev;
715 unsigned long flags;
717 spin_lock_irqsave(&dev->execute_task_lock, flags);
718 if (!cmd->state_active) {
719 list_add_tail(&cmd->state_list, &dev->state_list);
720 cmd->state_active = true;
722 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
726 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
728 static void transport_write_pending_qf(struct se_cmd *cmd);
729 static void transport_complete_qf(struct se_cmd *cmd);
731 void target_qf_do_work(struct work_struct *work)
733 struct se_device *dev = container_of(work, struct se_device,
734 qf_work_queue);
735 LIST_HEAD(qf_cmd_list);
736 struct se_cmd *cmd, *cmd_tmp;
738 spin_lock_irq(&dev->qf_cmd_lock);
739 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
740 spin_unlock_irq(&dev->qf_cmd_lock);
742 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
743 list_del(&cmd->se_qf_node);
744 atomic_dec(&dev->dev_qf_count);
745 smp_mb__after_atomic_dec();
747 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
748 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
749 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
750 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
751 : "UNKNOWN");
753 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
754 transport_write_pending_qf(cmd);
755 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK)
756 transport_complete_qf(cmd);
760 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
762 switch (cmd->data_direction) {
763 case DMA_NONE:
764 return "NONE";
765 case DMA_FROM_DEVICE:
766 return "READ";
767 case DMA_TO_DEVICE:
768 return "WRITE";
769 case DMA_BIDIRECTIONAL:
770 return "BIDI";
771 default:
772 break;
775 return "UNKNOWN";
778 void transport_dump_dev_state(
779 struct se_device *dev,
780 char *b,
781 int *bl)
783 *bl += sprintf(b + *bl, "Status: ");
784 if (dev->export_count)
785 *bl += sprintf(b + *bl, "ACTIVATED");
786 else
787 *bl += sprintf(b + *bl, "DEACTIVATED");
789 *bl += sprintf(b + *bl, " Max Queue Depth: %d", dev->queue_depth);
790 *bl += sprintf(b + *bl, " SectorSize: %u HwMaxSectors: %u\n",
791 dev->dev_attrib.block_size,
792 dev->dev_attrib.hw_max_sectors);
793 *bl += sprintf(b + *bl, " ");
796 void transport_dump_vpd_proto_id(
797 struct t10_vpd *vpd,
798 unsigned char *p_buf,
799 int p_buf_len)
801 unsigned char buf[VPD_TMP_BUF_SIZE];
802 int len;
804 memset(buf, 0, VPD_TMP_BUF_SIZE);
805 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
807 switch (vpd->protocol_identifier) {
808 case 0x00:
809 sprintf(buf+len, "Fibre Channel\n");
810 break;
811 case 0x10:
812 sprintf(buf+len, "Parallel SCSI\n");
813 break;
814 case 0x20:
815 sprintf(buf+len, "SSA\n");
816 break;
817 case 0x30:
818 sprintf(buf+len, "IEEE 1394\n");
819 break;
820 case 0x40:
821 sprintf(buf+len, "SCSI Remote Direct Memory Access"
822 " Protocol\n");
823 break;
824 case 0x50:
825 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
826 break;
827 case 0x60:
828 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
829 break;
830 case 0x70:
831 sprintf(buf+len, "Automation/Drive Interface Transport"
832 " Protocol\n");
833 break;
834 case 0x80:
835 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
836 break;
837 default:
838 sprintf(buf+len, "Unknown 0x%02x\n",
839 vpd->protocol_identifier);
840 break;
843 if (p_buf)
844 strncpy(p_buf, buf, p_buf_len);
845 else
846 pr_debug("%s", buf);
849 void
850 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
853 * Check if the Protocol Identifier Valid (PIV) bit is set..
855 * from spc3r23.pdf section 7.5.1
857 if (page_83[1] & 0x80) {
858 vpd->protocol_identifier = (page_83[0] & 0xf0);
859 vpd->protocol_identifier_set = 1;
860 transport_dump_vpd_proto_id(vpd, NULL, 0);
863 EXPORT_SYMBOL(transport_set_vpd_proto_id);
865 int transport_dump_vpd_assoc(
866 struct t10_vpd *vpd,
867 unsigned char *p_buf,
868 int p_buf_len)
870 unsigned char buf[VPD_TMP_BUF_SIZE];
871 int ret = 0;
872 int len;
874 memset(buf, 0, VPD_TMP_BUF_SIZE);
875 len = sprintf(buf, "T10 VPD Identifier Association: ");
877 switch (vpd->association) {
878 case 0x00:
879 sprintf(buf+len, "addressed logical unit\n");
880 break;
881 case 0x10:
882 sprintf(buf+len, "target port\n");
883 break;
884 case 0x20:
885 sprintf(buf+len, "SCSI target device\n");
886 break;
887 default:
888 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
889 ret = -EINVAL;
890 break;
893 if (p_buf)
894 strncpy(p_buf, buf, p_buf_len);
895 else
896 pr_debug("%s", buf);
898 return ret;
901 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
904 * The VPD identification association..
906 * from spc3r23.pdf Section 7.6.3.1 Table 297
908 vpd->association = (page_83[1] & 0x30);
909 return transport_dump_vpd_assoc(vpd, NULL, 0);
911 EXPORT_SYMBOL(transport_set_vpd_assoc);
913 int transport_dump_vpd_ident_type(
914 struct t10_vpd *vpd,
915 unsigned char *p_buf,
916 int p_buf_len)
918 unsigned char buf[VPD_TMP_BUF_SIZE];
919 int ret = 0;
920 int len;
922 memset(buf, 0, VPD_TMP_BUF_SIZE);
923 len = sprintf(buf, "T10 VPD Identifier Type: ");
925 switch (vpd->device_identifier_type) {
926 case 0x00:
927 sprintf(buf+len, "Vendor specific\n");
928 break;
929 case 0x01:
930 sprintf(buf+len, "T10 Vendor ID based\n");
931 break;
932 case 0x02:
933 sprintf(buf+len, "EUI-64 based\n");
934 break;
935 case 0x03:
936 sprintf(buf+len, "NAA\n");
937 break;
938 case 0x04:
939 sprintf(buf+len, "Relative target port identifier\n");
940 break;
941 case 0x08:
942 sprintf(buf+len, "SCSI name string\n");
943 break;
944 default:
945 sprintf(buf+len, "Unsupported: 0x%02x\n",
946 vpd->device_identifier_type);
947 ret = -EINVAL;
948 break;
951 if (p_buf) {
952 if (p_buf_len < strlen(buf)+1)
953 return -EINVAL;
954 strncpy(p_buf, buf, p_buf_len);
955 } else {
956 pr_debug("%s", buf);
959 return ret;
962 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
965 * The VPD identifier type..
967 * from spc3r23.pdf Section 7.6.3.1 Table 298
969 vpd->device_identifier_type = (page_83[1] & 0x0f);
970 return transport_dump_vpd_ident_type(vpd, NULL, 0);
972 EXPORT_SYMBOL(transport_set_vpd_ident_type);
974 int transport_dump_vpd_ident(
975 struct t10_vpd *vpd,
976 unsigned char *p_buf,
977 int p_buf_len)
979 unsigned char buf[VPD_TMP_BUF_SIZE];
980 int ret = 0;
982 memset(buf, 0, VPD_TMP_BUF_SIZE);
984 switch (vpd->device_identifier_code_set) {
985 case 0x01: /* Binary */
986 snprintf(buf, sizeof(buf),
987 "T10 VPD Binary Device Identifier: %s\n",
988 &vpd->device_identifier[0]);
989 break;
990 case 0x02: /* ASCII */
991 snprintf(buf, sizeof(buf),
992 "T10 VPD ASCII Device Identifier: %s\n",
993 &vpd->device_identifier[0]);
994 break;
995 case 0x03: /* UTF-8 */
996 snprintf(buf, sizeof(buf),
997 "T10 VPD UTF-8 Device Identifier: %s\n",
998 &vpd->device_identifier[0]);
999 break;
1000 default:
1001 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1002 " 0x%02x", vpd->device_identifier_code_set);
1003 ret = -EINVAL;
1004 break;
1007 if (p_buf)
1008 strncpy(p_buf, buf, p_buf_len);
1009 else
1010 pr_debug("%s", buf);
1012 return ret;
1016 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1018 static const char hex_str[] = "0123456789abcdef";
1019 int j = 0, i = 4; /* offset to start of the identifier */
1022 * The VPD Code Set (encoding)
1024 * from spc3r23.pdf Section 7.6.3.1 Table 296
1026 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1027 switch (vpd->device_identifier_code_set) {
1028 case 0x01: /* Binary */
1029 vpd->device_identifier[j++] =
1030 hex_str[vpd->device_identifier_type];
1031 while (i < (4 + page_83[3])) {
1032 vpd->device_identifier[j++] =
1033 hex_str[(page_83[i] & 0xf0) >> 4];
1034 vpd->device_identifier[j++] =
1035 hex_str[page_83[i] & 0x0f];
1036 i++;
1038 break;
1039 case 0x02: /* ASCII */
1040 case 0x03: /* UTF-8 */
1041 while (i < (4 + page_83[3]))
1042 vpd->device_identifier[j++] = page_83[i++];
1043 break;
1044 default:
1045 break;
1048 return transport_dump_vpd_ident(vpd, NULL, 0);
1050 EXPORT_SYMBOL(transport_set_vpd_ident);
1052 sense_reason_t
1053 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1055 struct se_device *dev = cmd->se_dev;
1057 if (cmd->unknown_data_length) {
1058 cmd->data_length = size;
1059 } else if (size != cmd->data_length) {
1060 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1061 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1062 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1063 cmd->data_length, size, cmd->t_task_cdb[0]);
1065 if (cmd->data_direction == DMA_TO_DEVICE) {
1066 pr_err("Rejecting underflow/overflow"
1067 " WRITE data\n");
1068 return TCM_INVALID_CDB_FIELD;
1071 * Reject READ_* or WRITE_* with overflow/underflow for
1072 * type SCF_SCSI_DATA_CDB.
1074 if (dev->dev_attrib.block_size != 512) {
1075 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1076 " CDB on non 512-byte sector setup subsystem"
1077 " plugin: %s\n", dev->transport->name);
1078 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1079 return TCM_INVALID_CDB_FIELD;
1082 * For the overflow case keep the existing fabric provided
1083 * ->data_length. Otherwise for the underflow case, reset
1084 * ->data_length to the smaller SCSI expected data transfer
1085 * length.
1087 if (size > cmd->data_length) {
1088 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1089 cmd->residual_count = (size - cmd->data_length);
1090 } else {
1091 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1092 cmd->residual_count = (cmd->data_length - size);
1093 cmd->data_length = size;
1097 return 0;
1102 * Used by fabric modules containing a local struct se_cmd within their
1103 * fabric dependent per I/O descriptor.
1105 void transport_init_se_cmd(
1106 struct se_cmd *cmd,
1107 struct target_core_fabric_ops *tfo,
1108 struct se_session *se_sess,
1109 u32 data_length,
1110 int data_direction,
1111 int task_attr,
1112 unsigned char *sense_buffer)
1114 INIT_LIST_HEAD(&cmd->se_delayed_node);
1115 INIT_LIST_HEAD(&cmd->se_qf_node);
1116 INIT_LIST_HEAD(&cmd->se_cmd_list);
1117 INIT_LIST_HEAD(&cmd->state_list);
1118 init_completion(&cmd->t_transport_stop_comp);
1119 init_completion(&cmd->cmd_wait_comp);
1120 init_completion(&cmd->task_stop_comp);
1121 spin_lock_init(&cmd->t_state_lock);
1122 kref_init(&cmd->cmd_kref);
1123 cmd->transport_state = CMD_T_DEV_ACTIVE;
1125 cmd->se_tfo = tfo;
1126 cmd->se_sess = se_sess;
1127 cmd->data_length = data_length;
1128 cmd->data_direction = data_direction;
1129 cmd->sam_task_attr = task_attr;
1130 cmd->sense_buffer = sense_buffer;
1132 cmd->state_active = false;
1134 EXPORT_SYMBOL(transport_init_se_cmd);
1136 static sense_reason_t
1137 transport_check_alloc_task_attr(struct se_cmd *cmd)
1139 struct se_device *dev = cmd->se_dev;
1142 * Check if SAM Task Attribute emulation is enabled for this
1143 * struct se_device storage object
1145 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1146 return 0;
1148 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1149 pr_debug("SAM Task Attribute ACA"
1150 " emulation is not supported\n");
1151 return TCM_INVALID_CDB_FIELD;
1154 * Used to determine when ORDERED commands should go from
1155 * Dormant to Active status.
1157 cmd->se_ordered_id = atomic_inc_return(&dev->dev_ordered_id);
1158 smp_mb__after_atomic_inc();
1159 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1160 cmd->se_ordered_id, cmd->sam_task_attr,
1161 dev->transport->name);
1162 return 0;
1165 sense_reason_t
1166 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1168 struct se_device *dev = cmd->se_dev;
1169 sense_reason_t ret;
1172 * Ensure that the received CDB is less than the max (252 + 8) bytes
1173 * for VARIABLE_LENGTH_CMD
1175 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1176 pr_err("Received SCSI CDB with command_size: %d that"
1177 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1178 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1179 return TCM_INVALID_CDB_FIELD;
1182 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1183 * allocate the additional extended CDB buffer now.. Otherwise
1184 * setup the pointer from __t_task_cdb to t_task_cdb.
1186 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1187 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1188 GFP_KERNEL);
1189 if (!cmd->t_task_cdb) {
1190 pr_err("Unable to allocate cmd->t_task_cdb"
1191 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1192 scsi_command_size(cdb),
1193 (unsigned long)sizeof(cmd->__t_task_cdb));
1194 return TCM_OUT_OF_RESOURCES;
1196 } else
1197 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1199 * Copy the original CDB into cmd->
1201 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1203 trace_target_sequencer_start(cmd);
1206 * Check for an existing UNIT ATTENTION condition
1208 ret = target_scsi3_ua_check(cmd);
1209 if (ret)
1210 return ret;
1212 ret = target_alua_state_check(cmd);
1213 if (ret)
1214 return ret;
1216 ret = target_check_reservation(cmd);
1217 if (ret) {
1218 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1219 return ret;
1222 ret = dev->transport->parse_cdb(cmd);
1223 if (ret)
1224 return ret;
1226 ret = transport_check_alloc_task_attr(cmd);
1227 if (ret)
1228 return ret;
1230 cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1232 spin_lock(&cmd->se_lun->lun_sep_lock);
1233 if (cmd->se_lun->lun_sep)
1234 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1235 spin_unlock(&cmd->se_lun->lun_sep_lock);
1236 return 0;
1238 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1241 * Used by fabric module frontends to queue tasks directly.
1242 * Many only be used from process context only
1244 int transport_handle_cdb_direct(
1245 struct se_cmd *cmd)
1247 sense_reason_t ret;
1249 if (!cmd->se_lun) {
1250 dump_stack();
1251 pr_err("cmd->se_lun is NULL\n");
1252 return -EINVAL;
1254 if (in_interrupt()) {
1255 dump_stack();
1256 pr_err("transport_generic_handle_cdb cannot be called"
1257 " from interrupt context\n");
1258 return -EINVAL;
1261 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1262 * outstanding descriptors are handled correctly during shutdown via
1263 * transport_wait_for_tasks()
1265 * Also, we don't take cmd->t_state_lock here as we only expect
1266 * this to be called for initial descriptor submission.
1268 cmd->t_state = TRANSPORT_NEW_CMD;
1269 cmd->transport_state |= CMD_T_ACTIVE;
1272 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1273 * so follow TRANSPORT_NEW_CMD processing thread context usage
1274 * and call transport_generic_request_failure() if necessary..
1276 ret = transport_generic_new_cmd(cmd);
1277 if (ret)
1278 transport_generic_request_failure(cmd, ret);
1279 return 0;
1281 EXPORT_SYMBOL(transport_handle_cdb_direct);
1283 sense_reason_t
1284 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1285 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1287 if (!sgl || !sgl_count)
1288 return 0;
1291 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1292 * scatterlists already have been set to follow what the fabric
1293 * passes for the original expected data transfer length.
1295 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1296 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1297 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1298 return TCM_INVALID_CDB_FIELD;
1301 cmd->t_data_sg = sgl;
1302 cmd->t_data_nents = sgl_count;
1304 if (sgl_bidi && sgl_bidi_count) {
1305 cmd->t_bidi_data_sg = sgl_bidi;
1306 cmd->t_bidi_data_nents = sgl_bidi_count;
1308 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1309 return 0;
1313 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1314 * se_cmd + use pre-allocated SGL memory.
1316 * @se_cmd: command descriptor to submit
1317 * @se_sess: associated se_sess for endpoint
1318 * @cdb: pointer to SCSI CDB
1319 * @sense: pointer to SCSI sense buffer
1320 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1321 * @data_length: fabric expected data transfer length
1322 * @task_addr: SAM task attribute
1323 * @data_dir: DMA data direction
1324 * @flags: flags for command submission from target_sc_flags_tables
1325 * @sgl: struct scatterlist memory for unidirectional mapping
1326 * @sgl_count: scatterlist count for unidirectional mapping
1327 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1328 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1329 * @sgl_prot: struct scatterlist memory protection information
1330 * @sgl_prot_count: scatterlist count for protection information
1332 * Returns non zero to signal active I/O shutdown failure. All other
1333 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1334 * but still return zero here.
1336 * This may only be called from process context, and also currently
1337 * assumes internal allocation of fabric payload buffer by target-core.
1339 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1340 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1341 u32 data_length, int task_attr, int data_dir, int flags,
1342 struct scatterlist *sgl, u32 sgl_count,
1343 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1344 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1346 struct se_portal_group *se_tpg;
1347 sense_reason_t rc;
1348 int ret;
1350 se_tpg = se_sess->se_tpg;
1351 BUG_ON(!se_tpg);
1352 BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1353 BUG_ON(in_interrupt());
1355 * Initialize se_cmd for target operation. From this point
1356 * exceptions are handled by sending exception status via
1357 * target_core_fabric_ops->queue_status() callback
1359 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1360 data_length, data_dir, task_attr, sense);
1361 if (flags & TARGET_SCF_UNKNOWN_SIZE)
1362 se_cmd->unknown_data_length = 1;
1364 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1365 * se_sess->sess_cmd_list. A second kref_get here is necessary
1366 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1367 * kref_put() to happen during fabric packet acknowledgement.
1369 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1370 if (ret)
1371 return ret;
1373 * Signal bidirectional data payloads to target-core
1375 if (flags & TARGET_SCF_BIDI_OP)
1376 se_cmd->se_cmd_flags |= SCF_BIDI;
1378 * Locate se_lun pointer and attach it to struct se_cmd
1380 rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1381 if (rc) {
1382 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1383 target_put_sess_cmd(se_sess, se_cmd);
1384 return 0;
1387 * Save pointers for SGLs containing protection information,
1388 * if present.
1390 if (sgl_prot_count) {
1391 se_cmd->t_prot_sg = sgl_prot;
1392 se_cmd->t_prot_nents = sgl_prot_count;
1395 rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1396 if (rc != 0) {
1397 transport_generic_request_failure(se_cmd, rc);
1398 return 0;
1401 * When a non zero sgl_count has been passed perform SGL passthrough
1402 * mapping for pre-allocated fabric memory instead of having target
1403 * core perform an internal SGL allocation..
1405 if (sgl_count != 0) {
1406 BUG_ON(!sgl);
1409 * A work-around for tcm_loop as some userspace code via
1410 * scsi-generic do not memset their associated read buffers,
1411 * so go ahead and do that here for type non-data CDBs. Also
1412 * note that this is currently guaranteed to be a single SGL
1413 * for this case by target core in target_setup_cmd_from_cdb()
1414 * -> transport_generic_cmd_sequencer().
1416 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1417 se_cmd->data_direction == DMA_FROM_DEVICE) {
1418 unsigned char *buf = NULL;
1420 if (sgl)
1421 buf = kmap(sg_page(sgl)) + sgl->offset;
1423 if (buf) {
1424 memset(buf, 0, sgl->length);
1425 kunmap(sg_page(sgl));
1429 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1430 sgl_bidi, sgl_bidi_count);
1431 if (rc != 0) {
1432 transport_generic_request_failure(se_cmd, rc);
1433 return 0;
1438 * Check if we need to delay processing because of ALUA
1439 * Active/NonOptimized primary access state..
1441 core_alua_check_nonop_delay(se_cmd);
1443 transport_handle_cdb_direct(se_cmd);
1444 return 0;
1446 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1449 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1451 * @se_cmd: command descriptor to submit
1452 * @se_sess: associated se_sess for endpoint
1453 * @cdb: pointer to SCSI CDB
1454 * @sense: pointer to SCSI sense buffer
1455 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1456 * @data_length: fabric expected data transfer length
1457 * @task_addr: SAM task attribute
1458 * @data_dir: DMA data direction
1459 * @flags: flags for command submission from target_sc_flags_tables
1461 * Returns non zero to signal active I/O shutdown failure. All other
1462 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1463 * but still return zero here.
1465 * This may only be called from process context, and also currently
1466 * assumes internal allocation of fabric payload buffer by target-core.
1468 * It also assumes interal target core SGL memory allocation.
1470 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1471 unsigned char *cdb, unsigned char *sense, u32 unpacked_lun,
1472 u32 data_length, int task_attr, int data_dir, int flags)
1474 return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1475 unpacked_lun, data_length, task_attr, data_dir,
1476 flags, NULL, 0, NULL, 0, NULL, 0);
1478 EXPORT_SYMBOL(target_submit_cmd);
1480 static void target_complete_tmr_failure(struct work_struct *work)
1482 struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1484 se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1485 se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1487 transport_cmd_check_stop_to_fabric(se_cmd);
1491 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1492 * for TMR CDBs
1494 * @se_cmd: command descriptor to submit
1495 * @se_sess: associated se_sess for endpoint
1496 * @sense: pointer to SCSI sense buffer
1497 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1498 * @fabric_context: fabric context for TMR req
1499 * @tm_type: Type of TM request
1500 * @gfp: gfp type for caller
1501 * @tag: referenced task tag for TMR_ABORT_TASK
1502 * @flags: submit cmd flags
1504 * Callable from all contexts.
1507 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1508 unsigned char *sense, u32 unpacked_lun,
1509 void *fabric_tmr_ptr, unsigned char tm_type,
1510 gfp_t gfp, unsigned int tag, int flags)
1512 struct se_portal_group *se_tpg;
1513 int ret;
1515 se_tpg = se_sess->se_tpg;
1516 BUG_ON(!se_tpg);
1518 transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1519 0, DMA_NONE, MSG_SIMPLE_TAG, sense);
1521 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1522 * allocation failure.
1524 ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1525 if (ret < 0)
1526 return -ENOMEM;
1528 if (tm_type == TMR_ABORT_TASK)
1529 se_cmd->se_tmr_req->ref_task_tag = tag;
1531 /* See target_submit_cmd for commentary */
1532 ret = target_get_sess_cmd(se_sess, se_cmd, (flags & TARGET_SCF_ACK_KREF));
1533 if (ret) {
1534 core_tmr_release_req(se_cmd->se_tmr_req);
1535 return ret;
1538 ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1539 if (ret) {
1541 * For callback during failure handling, push this work off
1542 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1544 INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1545 schedule_work(&se_cmd->work);
1546 return 0;
1548 transport_generic_handle_tmr(se_cmd);
1549 return 0;
1551 EXPORT_SYMBOL(target_submit_tmr);
1554 * If the cmd is active, request it to be stopped and sleep until it
1555 * has completed.
1557 bool target_stop_cmd(struct se_cmd *cmd, unsigned long *flags)
1559 bool was_active = false;
1561 if (cmd->transport_state & CMD_T_BUSY) {
1562 cmd->transport_state |= CMD_T_REQUEST_STOP;
1563 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1565 pr_debug("cmd %p waiting to complete\n", cmd);
1566 wait_for_completion(&cmd->task_stop_comp);
1567 pr_debug("cmd %p stopped successfully\n", cmd);
1569 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1570 cmd->transport_state &= ~CMD_T_REQUEST_STOP;
1571 cmd->transport_state &= ~CMD_T_BUSY;
1572 was_active = true;
1575 return was_active;
1579 * Handle SAM-esque emulation for generic transport request failures.
1581 void transport_generic_request_failure(struct se_cmd *cmd,
1582 sense_reason_t sense_reason)
1584 int ret = 0;
1586 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1587 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1588 cmd->t_task_cdb[0]);
1589 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1590 cmd->se_tfo->get_cmd_state(cmd),
1591 cmd->t_state, sense_reason);
1592 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1593 (cmd->transport_state & CMD_T_ACTIVE) != 0,
1594 (cmd->transport_state & CMD_T_STOP) != 0,
1595 (cmd->transport_state & CMD_T_SENT) != 0);
1598 * For SAM Task Attribute emulation for failed struct se_cmd
1600 transport_complete_task_attr(cmd);
1602 * Handle special case for COMPARE_AND_WRITE failure, where the
1603 * callback is expected to drop the per device ->caw_sem.
1605 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1606 cmd->transport_complete_callback)
1607 cmd->transport_complete_callback(cmd, false);
1609 switch (sense_reason) {
1610 case TCM_NON_EXISTENT_LUN:
1611 case TCM_UNSUPPORTED_SCSI_OPCODE:
1612 case TCM_INVALID_CDB_FIELD:
1613 case TCM_INVALID_PARAMETER_LIST:
1614 case TCM_PARAMETER_LIST_LENGTH_ERROR:
1615 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1616 case TCM_UNKNOWN_MODE_PAGE:
1617 case TCM_WRITE_PROTECTED:
1618 case TCM_ADDRESS_OUT_OF_RANGE:
1619 case TCM_CHECK_CONDITION_ABORT_CMD:
1620 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1621 case TCM_CHECK_CONDITION_NOT_READY:
1622 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1623 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1624 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1625 break;
1626 case TCM_OUT_OF_RESOURCES:
1627 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1628 break;
1629 case TCM_RESERVATION_CONFLICT:
1631 * No SENSE Data payload for this case, set SCSI Status
1632 * and queue the response to $FABRIC_MOD.
1634 * Uses linux/include/scsi/scsi.h SAM status codes defs
1636 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1638 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1639 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1640 * CONFLICT STATUS.
1642 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1644 if (cmd->se_sess &&
1645 cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2)
1646 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1647 cmd->orig_fe_lun, 0x2C,
1648 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1650 trace_target_cmd_complete(cmd);
1651 ret = cmd->se_tfo-> queue_status(cmd);
1652 if (ret == -EAGAIN || ret == -ENOMEM)
1653 goto queue_full;
1654 goto check_stop;
1655 default:
1656 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1657 cmd->t_task_cdb[0], sense_reason);
1658 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1659 break;
1662 ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1663 if (ret == -EAGAIN || ret == -ENOMEM)
1664 goto queue_full;
1666 check_stop:
1667 transport_lun_remove_cmd(cmd);
1668 if (!transport_cmd_check_stop_to_fabric(cmd))
1670 return;
1672 queue_full:
1673 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1674 transport_handle_queue_full(cmd, cmd->se_dev);
1676 EXPORT_SYMBOL(transport_generic_request_failure);
1678 void __target_execute_cmd(struct se_cmd *cmd)
1680 sense_reason_t ret;
1682 if (cmd->execute_cmd) {
1683 ret = cmd->execute_cmd(cmd);
1684 if (ret) {
1685 spin_lock_irq(&cmd->t_state_lock);
1686 cmd->transport_state &= ~(CMD_T_BUSY|CMD_T_SENT);
1687 spin_unlock_irq(&cmd->t_state_lock);
1689 transport_generic_request_failure(cmd, ret);
1694 static bool target_handle_task_attr(struct se_cmd *cmd)
1696 struct se_device *dev = cmd->se_dev;
1698 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1699 return false;
1702 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1703 * to allow the passed struct se_cmd list of tasks to the front of the list.
1705 switch (cmd->sam_task_attr) {
1706 case MSG_HEAD_TAG:
1707 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1708 "se_ordered_id: %u\n",
1709 cmd->t_task_cdb[0], cmd->se_ordered_id);
1710 return false;
1711 case MSG_ORDERED_TAG:
1712 atomic_inc(&dev->dev_ordered_sync);
1713 smp_mb__after_atomic_inc();
1715 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1716 " se_ordered_id: %u\n",
1717 cmd->t_task_cdb[0], cmd->se_ordered_id);
1720 * Execute an ORDERED command if no other older commands
1721 * exist that need to be completed first.
1723 if (!atomic_read(&dev->simple_cmds))
1724 return false;
1725 break;
1726 default:
1728 * For SIMPLE and UNTAGGED Task Attribute commands
1730 atomic_inc(&dev->simple_cmds);
1731 smp_mb__after_atomic_inc();
1732 break;
1735 if (atomic_read(&dev->dev_ordered_sync) == 0)
1736 return false;
1738 spin_lock(&dev->delayed_cmd_lock);
1739 list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1740 spin_unlock(&dev->delayed_cmd_lock);
1742 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1743 " delayed CMD list, se_ordered_id: %u\n",
1744 cmd->t_task_cdb[0], cmd->sam_task_attr,
1745 cmd->se_ordered_id);
1746 return true;
1749 void target_execute_cmd(struct se_cmd *cmd)
1752 * If the received CDB has aleady been aborted stop processing it here.
1754 if (transport_check_aborted_status(cmd, 1))
1755 return;
1758 * Determine if frontend context caller is requesting the stopping of
1759 * this command for frontend exceptions.
1761 spin_lock_irq(&cmd->t_state_lock);
1762 if (cmd->transport_state & CMD_T_STOP) {
1763 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1764 __func__, __LINE__,
1765 cmd->se_tfo->get_task_tag(cmd));
1767 spin_unlock_irq(&cmd->t_state_lock);
1768 complete_all(&cmd->t_transport_stop_comp);
1769 return;
1772 cmd->t_state = TRANSPORT_PROCESSING;
1773 cmd->transport_state |= CMD_T_ACTIVE|CMD_T_BUSY|CMD_T_SENT;
1774 spin_unlock_irq(&cmd->t_state_lock);
1776 if (target_handle_task_attr(cmd)) {
1777 spin_lock_irq(&cmd->t_state_lock);
1778 cmd->transport_state &= ~CMD_T_BUSY|CMD_T_SENT;
1779 spin_unlock_irq(&cmd->t_state_lock);
1780 return;
1783 __target_execute_cmd(cmd);
1785 EXPORT_SYMBOL(target_execute_cmd);
1788 * Process all commands up to the last received ORDERED task attribute which
1789 * requires another blocking boundary
1791 static void target_restart_delayed_cmds(struct se_device *dev)
1793 for (;;) {
1794 struct se_cmd *cmd;
1796 spin_lock(&dev->delayed_cmd_lock);
1797 if (list_empty(&dev->delayed_cmd_list)) {
1798 spin_unlock(&dev->delayed_cmd_lock);
1799 break;
1802 cmd = list_entry(dev->delayed_cmd_list.next,
1803 struct se_cmd, se_delayed_node);
1804 list_del(&cmd->se_delayed_node);
1805 spin_unlock(&dev->delayed_cmd_lock);
1807 __target_execute_cmd(cmd);
1809 if (cmd->sam_task_attr == MSG_ORDERED_TAG)
1810 break;
1815 * Called from I/O completion to determine which dormant/delayed
1816 * and ordered cmds need to have their tasks added to the execution queue.
1818 static void transport_complete_task_attr(struct se_cmd *cmd)
1820 struct se_device *dev = cmd->se_dev;
1822 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
1823 return;
1825 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
1826 atomic_dec(&dev->simple_cmds);
1827 smp_mb__after_atomic_dec();
1828 dev->dev_cur_ordered_id++;
1829 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1830 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
1831 cmd->se_ordered_id);
1832 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
1833 dev->dev_cur_ordered_id++;
1834 pr_debug("Incremented dev_cur_ordered_id: %u for"
1835 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
1836 cmd->se_ordered_id);
1837 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
1838 atomic_dec(&dev->dev_ordered_sync);
1839 smp_mb__after_atomic_dec();
1841 dev->dev_cur_ordered_id++;
1842 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1843 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
1846 target_restart_delayed_cmds(dev);
1849 static void transport_complete_qf(struct se_cmd *cmd)
1851 int ret = 0;
1853 transport_complete_task_attr(cmd);
1855 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1856 trace_target_cmd_complete(cmd);
1857 ret = cmd->se_tfo->queue_status(cmd);
1858 goto out;
1861 switch (cmd->data_direction) {
1862 case DMA_FROM_DEVICE:
1863 trace_target_cmd_complete(cmd);
1864 ret = cmd->se_tfo->queue_data_in(cmd);
1865 break;
1866 case DMA_TO_DEVICE:
1867 if (cmd->se_cmd_flags & SCF_BIDI) {
1868 ret = cmd->se_tfo->queue_data_in(cmd);
1869 if (ret < 0)
1870 break;
1872 /* Fall through for DMA_TO_DEVICE */
1873 case DMA_NONE:
1874 trace_target_cmd_complete(cmd);
1875 ret = cmd->se_tfo->queue_status(cmd);
1876 break;
1877 default:
1878 break;
1881 out:
1882 if (ret < 0) {
1883 transport_handle_queue_full(cmd, cmd->se_dev);
1884 return;
1886 transport_lun_remove_cmd(cmd);
1887 transport_cmd_check_stop_to_fabric(cmd);
1890 static void transport_handle_queue_full(
1891 struct se_cmd *cmd,
1892 struct se_device *dev)
1894 spin_lock_irq(&dev->qf_cmd_lock);
1895 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
1896 atomic_inc(&dev->dev_qf_count);
1897 smp_mb__after_atomic_inc();
1898 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
1900 schedule_work(&cmd->se_dev->qf_work_queue);
1903 static void target_complete_ok_work(struct work_struct *work)
1905 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
1906 int ret;
1909 * Check if we need to move delayed/dormant tasks from cmds on the
1910 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1911 * Attribute.
1913 transport_complete_task_attr(cmd);
1916 * Check to schedule QUEUE_FULL work, or execute an existing
1917 * cmd->transport_qf_callback()
1919 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
1920 schedule_work(&cmd->se_dev->qf_work_queue);
1923 * Check if we need to send a sense buffer from
1924 * the struct se_cmd in question.
1926 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
1927 WARN_ON(!cmd->scsi_status);
1928 ret = transport_send_check_condition_and_sense(
1929 cmd, 0, 1);
1930 if (ret == -EAGAIN || ret == -ENOMEM)
1931 goto queue_full;
1933 transport_lun_remove_cmd(cmd);
1934 transport_cmd_check_stop_to_fabric(cmd);
1935 return;
1938 * Check for a callback, used by amongst other things
1939 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1941 if (cmd->transport_complete_callback) {
1942 sense_reason_t rc;
1944 rc = cmd->transport_complete_callback(cmd, true);
1945 if (!rc && !(cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE_POST)) {
1946 if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1947 !cmd->data_length)
1948 goto queue_rsp;
1950 return;
1951 } else if (rc) {
1952 ret = transport_send_check_condition_and_sense(cmd,
1953 rc, 0);
1954 if (ret == -EAGAIN || ret == -ENOMEM)
1955 goto queue_full;
1957 transport_lun_remove_cmd(cmd);
1958 transport_cmd_check_stop_to_fabric(cmd);
1959 return;
1963 queue_rsp:
1964 switch (cmd->data_direction) {
1965 case DMA_FROM_DEVICE:
1966 spin_lock(&cmd->se_lun->lun_sep_lock);
1967 if (cmd->se_lun->lun_sep) {
1968 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1969 cmd->data_length;
1971 spin_unlock(&cmd->se_lun->lun_sep_lock);
1973 trace_target_cmd_complete(cmd);
1974 ret = cmd->se_tfo->queue_data_in(cmd);
1975 if (ret == -EAGAIN || ret == -ENOMEM)
1976 goto queue_full;
1977 break;
1978 case DMA_TO_DEVICE:
1979 spin_lock(&cmd->se_lun->lun_sep_lock);
1980 if (cmd->se_lun->lun_sep) {
1981 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
1982 cmd->data_length;
1984 spin_unlock(&cmd->se_lun->lun_sep_lock);
1986 * Check if we need to send READ payload for BIDI-COMMAND
1988 if (cmd->se_cmd_flags & SCF_BIDI) {
1989 spin_lock(&cmd->se_lun->lun_sep_lock);
1990 if (cmd->se_lun->lun_sep) {
1991 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
1992 cmd->data_length;
1994 spin_unlock(&cmd->se_lun->lun_sep_lock);
1995 ret = cmd->se_tfo->queue_data_in(cmd);
1996 if (ret == -EAGAIN || ret == -ENOMEM)
1997 goto queue_full;
1998 break;
2000 /* Fall through for DMA_TO_DEVICE */
2001 case DMA_NONE:
2002 trace_target_cmd_complete(cmd);
2003 ret = cmd->se_tfo->queue_status(cmd);
2004 if (ret == -EAGAIN || ret == -ENOMEM)
2005 goto queue_full;
2006 break;
2007 default:
2008 break;
2011 transport_lun_remove_cmd(cmd);
2012 transport_cmd_check_stop_to_fabric(cmd);
2013 return;
2015 queue_full:
2016 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2017 " data_direction: %d\n", cmd, cmd->data_direction);
2018 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
2019 transport_handle_queue_full(cmd, cmd->se_dev);
2022 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
2024 struct scatterlist *sg;
2025 int count;
2027 for_each_sg(sgl, sg, nents, count)
2028 __free_page(sg_page(sg));
2030 kfree(sgl);
2033 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2036 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2037 * emulation, and free + reset pointers if necessary..
2039 if (!cmd->t_data_sg_orig)
2040 return;
2042 kfree(cmd->t_data_sg);
2043 cmd->t_data_sg = cmd->t_data_sg_orig;
2044 cmd->t_data_sg_orig = NULL;
2045 cmd->t_data_nents = cmd->t_data_nents_orig;
2046 cmd->t_data_nents_orig = 0;
2049 static inline void transport_free_pages(struct se_cmd *cmd)
2051 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2053 * Release special case READ buffer payload required for
2054 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2056 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2057 transport_free_sgl(cmd->t_bidi_data_sg,
2058 cmd->t_bidi_data_nents);
2059 cmd->t_bidi_data_sg = NULL;
2060 cmd->t_bidi_data_nents = 0;
2062 transport_reset_sgl_orig(cmd);
2063 return;
2065 transport_reset_sgl_orig(cmd);
2067 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2068 cmd->t_data_sg = NULL;
2069 cmd->t_data_nents = 0;
2071 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2072 cmd->t_bidi_data_sg = NULL;
2073 cmd->t_bidi_data_nents = 0;
2077 * transport_release_cmd - free a command
2078 * @cmd: command to free
2080 * This routine unconditionally frees a command, and reference counting
2081 * or list removal must be done in the caller.
2083 static int transport_release_cmd(struct se_cmd *cmd)
2085 BUG_ON(!cmd->se_tfo);
2087 if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2088 core_tmr_release_req(cmd->se_tmr_req);
2089 if (cmd->t_task_cdb != cmd->__t_task_cdb)
2090 kfree(cmd->t_task_cdb);
2092 * If this cmd has been setup with target_get_sess_cmd(), drop
2093 * the kref and call ->release_cmd() in kref callback.
2095 return target_put_sess_cmd(cmd->se_sess, cmd);
2099 * transport_put_cmd - release a reference to a command
2100 * @cmd: command to release
2102 * This routine releases our reference to the command and frees it if possible.
2104 static int transport_put_cmd(struct se_cmd *cmd)
2106 transport_free_pages(cmd);
2107 return transport_release_cmd(cmd);
2110 void *transport_kmap_data_sg(struct se_cmd *cmd)
2112 struct scatterlist *sg = cmd->t_data_sg;
2113 struct page **pages;
2114 int i;
2117 * We need to take into account a possible offset here for fabrics like
2118 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2119 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2121 if (!cmd->t_data_nents)
2122 return NULL;
2124 BUG_ON(!sg);
2125 if (cmd->t_data_nents == 1)
2126 return kmap(sg_page(sg)) + sg->offset;
2128 /* >1 page. use vmap */
2129 pages = kmalloc(sizeof(*pages) * cmd->t_data_nents, GFP_KERNEL);
2130 if (!pages)
2131 return NULL;
2133 /* convert sg[] to pages[] */
2134 for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2135 pages[i] = sg_page(sg);
2138 cmd->t_data_vmap = vmap(pages, cmd->t_data_nents, VM_MAP, PAGE_KERNEL);
2139 kfree(pages);
2140 if (!cmd->t_data_vmap)
2141 return NULL;
2143 return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2145 EXPORT_SYMBOL(transport_kmap_data_sg);
2147 void transport_kunmap_data_sg(struct se_cmd *cmd)
2149 if (!cmd->t_data_nents) {
2150 return;
2151 } else if (cmd->t_data_nents == 1) {
2152 kunmap(sg_page(cmd->t_data_sg));
2153 return;
2156 vunmap(cmd->t_data_vmap);
2157 cmd->t_data_vmap = NULL;
2159 EXPORT_SYMBOL(transport_kunmap_data_sg);
2162 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2163 bool zero_page)
2165 struct scatterlist *sg;
2166 struct page *page;
2167 gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2168 unsigned int nent;
2169 int i = 0;
2171 nent = DIV_ROUND_UP(length, PAGE_SIZE);
2172 sg = kmalloc(sizeof(struct scatterlist) * nent, GFP_KERNEL);
2173 if (!sg)
2174 return -ENOMEM;
2176 sg_init_table(sg, nent);
2178 while (length) {
2179 u32 page_len = min_t(u32, length, PAGE_SIZE);
2180 page = alloc_page(GFP_KERNEL | zero_flag);
2181 if (!page)
2182 goto out;
2184 sg_set_page(&sg[i], page, page_len, 0);
2185 length -= page_len;
2186 i++;
2188 *sgl = sg;
2189 *nents = nent;
2190 return 0;
2192 out:
2193 while (i > 0) {
2194 i--;
2195 __free_page(sg_page(&sg[i]));
2197 kfree(sg);
2198 return -ENOMEM;
2202 * Allocate any required resources to execute the command. For writes we
2203 * might not have the payload yet, so notify the fabric via a call to
2204 * ->write_pending instead. Otherwise place it on the execution queue.
2206 sense_reason_t
2207 transport_generic_new_cmd(struct se_cmd *cmd)
2209 int ret = 0;
2210 bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2213 * Determine is the TCM fabric module has already allocated physical
2214 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2215 * beforehand.
2217 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2218 cmd->data_length) {
2220 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2221 (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2222 u32 bidi_length;
2224 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2225 bidi_length = cmd->t_task_nolb *
2226 cmd->se_dev->dev_attrib.block_size;
2227 else
2228 bidi_length = cmd->data_length;
2230 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2231 &cmd->t_bidi_data_nents,
2232 bidi_length, zero_flag);
2233 if (ret < 0)
2234 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2237 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2238 cmd->data_length, zero_flag);
2239 if (ret < 0)
2240 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2241 } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2242 cmd->data_length) {
2244 * Special case for COMPARE_AND_WRITE with fabrics
2245 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2247 u32 caw_length = cmd->t_task_nolb *
2248 cmd->se_dev->dev_attrib.block_size;
2250 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2251 &cmd->t_bidi_data_nents,
2252 caw_length, zero_flag);
2253 if (ret < 0)
2254 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2257 * If this command is not a write we can execute it right here,
2258 * for write buffers we need to notify the fabric driver first
2259 * and let it call back once the write buffers are ready.
2261 target_add_to_state_list(cmd);
2262 if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2263 target_execute_cmd(cmd);
2264 return 0;
2266 transport_cmd_check_stop(cmd, false, true);
2268 ret = cmd->se_tfo->write_pending(cmd);
2269 if (ret == -EAGAIN || ret == -ENOMEM)
2270 goto queue_full;
2272 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2273 WARN_ON(ret);
2275 return (!ret) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2277 queue_full:
2278 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2279 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
2280 transport_handle_queue_full(cmd, cmd->se_dev);
2281 return 0;
2283 EXPORT_SYMBOL(transport_generic_new_cmd);
2285 static void transport_write_pending_qf(struct se_cmd *cmd)
2287 int ret;
2289 ret = cmd->se_tfo->write_pending(cmd);
2290 if (ret == -EAGAIN || ret == -ENOMEM) {
2291 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2292 cmd);
2293 transport_handle_queue_full(cmd, cmd->se_dev);
2297 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2299 unsigned long flags;
2300 int ret = 0;
2302 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2303 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2304 transport_wait_for_tasks(cmd);
2306 ret = transport_release_cmd(cmd);
2307 } else {
2308 if (wait_for_tasks)
2309 transport_wait_for_tasks(cmd);
2311 * Handle WRITE failure case where transport_generic_new_cmd()
2312 * has already added se_cmd to state_list, but fabric has
2313 * failed command before I/O submission.
2315 if (cmd->state_active) {
2316 spin_lock_irqsave(&cmd->t_state_lock, flags);
2317 target_remove_from_state_list(cmd);
2318 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2321 if (cmd->se_lun)
2322 transport_lun_remove_cmd(cmd);
2324 ret = transport_put_cmd(cmd);
2326 return ret;
2328 EXPORT_SYMBOL(transport_generic_free_cmd);
2330 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2331 * @se_sess: session to reference
2332 * @se_cmd: command descriptor to add
2333 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2335 int target_get_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd,
2336 bool ack_kref)
2338 unsigned long flags;
2339 int ret = 0;
2342 * Add a second kref if the fabric caller is expecting to handle
2343 * fabric acknowledgement that requires two target_put_sess_cmd()
2344 * invocations before se_cmd descriptor release.
2346 if (ack_kref == true) {
2347 kref_get(&se_cmd->cmd_kref);
2348 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2351 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2352 if (se_sess->sess_tearing_down) {
2353 ret = -ESHUTDOWN;
2354 goto out;
2356 list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2357 out:
2358 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2360 if (ret && ack_kref)
2361 target_put_sess_cmd(se_sess, se_cmd);
2363 return ret;
2365 EXPORT_SYMBOL(target_get_sess_cmd);
2367 static void target_release_cmd_kref(struct kref *kref)
2369 struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2370 struct se_session *se_sess = se_cmd->se_sess;
2372 if (list_empty(&se_cmd->se_cmd_list)) {
2373 spin_unlock(&se_sess->sess_cmd_lock);
2374 se_cmd->se_tfo->release_cmd(se_cmd);
2375 return;
2377 if (se_sess->sess_tearing_down && se_cmd->cmd_wait_set) {
2378 spin_unlock(&se_sess->sess_cmd_lock);
2379 complete(&se_cmd->cmd_wait_comp);
2380 return;
2382 list_del(&se_cmd->se_cmd_list);
2383 spin_unlock(&se_sess->sess_cmd_lock);
2385 se_cmd->se_tfo->release_cmd(se_cmd);
2388 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2389 * @se_sess: session to reference
2390 * @se_cmd: command descriptor to drop
2392 int target_put_sess_cmd(struct se_session *se_sess, struct se_cmd *se_cmd)
2394 if (!se_sess) {
2395 se_cmd->se_tfo->release_cmd(se_cmd);
2396 return 1;
2398 return kref_put_spinlock_irqsave(&se_cmd->cmd_kref, target_release_cmd_kref,
2399 &se_sess->sess_cmd_lock);
2401 EXPORT_SYMBOL(target_put_sess_cmd);
2403 /* target_sess_cmd_list_set_waiting - Flag all commands in
2404 * sess_cmd_list to complete cmd_wait_comp. Set
2405 * sess_tearing_down so no more commands are queued.
2406 * @se_sess: session to flag
2408 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2410 struct se_cmd *se_cmd;
2411 unsigned long flags;
2413 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2414 if (se_sess->sess_tearing_down) {
2415 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2416 return;
2418 se_sess->sess_tearing_down = 1;
2419 list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2421 list_for_each_entry(se_cmd, &se_sess->sess_wait_list, se_cmd_list)
2422 se_cmd->cmd_wait_set = 1;
2424 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2426 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2428 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2429 * @se_sess: session to wait for active I/O
2431 void target_wait_for_sess_cmds(struct se_session *se_sess)
2433 struct se_cmd *se_cmd, *tmp_cmd;
2434 unsigned long flags;
2436 list_for_each_entry_safe(se_cmd, tmp_cmd,
2437 &se_sess->sess_wait_list, se_cmd_list) {
2438 list_del(&se_cmd->se_cmd_list);
2440 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2441 " %d\n", se_cmd, se_cmd->t_state,
2442 se_cmd->se_tfo->get_cmd_state(se_cmd));
2444 wait_for_completion(&se_cmd->cmd_wait_comp);
2445 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2446 " fabric state: %d\n", se_cmd, se_cmd->t_state,
2447 se_cmd->se_tfo->get_cmd_state(se_cmd));
2449 se_cmd->se_tfo->release_cmd(se_cmd);
2452 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2453 WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2454 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2457 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2459 static int transport_clear_lun_ref_thread(void *p)
2461 struct se_lun *lun = p;
2463 percpu_ref_kill(&lun->lun_ref);
2465 wait_for_completion(&lun->lun_ref_comp);
2466 complete(&lun->lun_shutdown_comp);
2468 return 0;
2471 int transport_clear_lun_ref(struct se_lun *lun)
2473 struct task_struct *kt;
2475 kt = kthread_run(transport_clear_lun_ref_thread, lun,
2476 "tcm_cl_%u", lun->unpacked_lun);
2477 if (IS_ERR(kt)) {
2478 pr_err("Unable to start clear_lun thread\n");
2479 return PTR_ERR(kt);
2481 wait_for_completion(&lun->lun_shutdown_comp);
2483 return 0;
2487 * transport_wait_for_tasks - wait for completion to occur
2488 * @cmd: command to wait
2490 * Called from frontend fabric context to wait for storage engine
2491 * to pause and/or release frontend generated struct se_cmd.
2493 bool transport_wait_for_tasks(struct se_cmd *cmd)
2495 unsigned long flags;
2497 spin_lock_irqsave(&cmd->t_state_lock, flags);
2498 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
2499 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2500 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2501 return false;
2504 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
2505 !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2506 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2507 return false;
2510 if (!(cmd->transport_state & CMD_T_ACTIVE)) {
2511 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2512 return false;
2515 cmd->transport_state |= CMD_T_STOP;
2517 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2518 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2519 cmd, cmd->se_tfo->get_task_tag(cmd),
2520 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
2522 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2524 wait_for_completion(&cmd->t_transport_stop_comp);
2526 spin_lock_irqsave(&cmd->t_state_lock, flags);
2527 cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
2529 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2530 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2531 cmd->se_tfo->get_task_tag(cmd));
2533 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2535 return true;
2537 EXPORT_SYMBOL(transport_wait_for_tasks);
2539 static int transport_get_sense_codes(
2540 struct se_cmd *cmd,
2541 u8 *asc,
2542 u8 *ascq)
2544 *asc = cmd->scsi_asc;
2545 *ascq = cmd->scsi_ascq;
2547 return 0;
2550 static
2551 void transport_err_sector_info(unsigned char *buffer, sector_t bad_sector)
2553 /* Place failed LBA in sense data information descriptor 0. */
2554 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 0xc;
2555 buffer[SPC_DESC_TYPE_OFFSET] = 0; /* Information */
2556 buffer[SPC_ADDITIONAL_DESC_LEN_OFFSET] = 0xa;
2557 buffer[SPC_VALIDITY_OFFSET] = 0x80;
2559 /* Descriptor Information: failing sector */
2560 put_unaligned_be64(bad_sector, &buffer[12]);
2564 transport_send_check_condition_and_sense(struct se_cmd *cmd,
2565 sense_reason_t reason, int from_transport)
2567 unsigned char *buffer = cmd->sense_buffer;
2568 unsigned long flags;
2569 u8 asc = 0, ascq = 0;
2571 spin_lock_irqsave(&cmd->t_state_lock, flags);
2572 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2573 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2574 return 0;
2576 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
2577 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2579 if (!reason && from_transport)
2580 goto after_reason;
2582 if (!from_transport)
2583 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2586 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2587 * SENSE KEY values from include/scsi/scsi.h
2589 switch (reason) {
2590 case TCM_NO_SENSE:
2591 /* CURRENT ERROR */
2592 buffer[0] = 0x70;
2593 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2594 /* Not Ready */
2595 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2596 /* NO ADDITIONAL SENSE INFORMATION */
2597 buffer[SPC_ASC_KEY_OFFSET] = 0;
2598 buffer[SPC_ASCQ_KEY_OFFSET] = 0;
2599 break;
2600 case TCM_NON_EXISTENT_LUN:
2601 /* CURRENT ERROR */
2602 buffer[0] = 0x70;
2603 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2604 /* ILLEGAL REQUEST */
2605 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2606 /* LOGICAL UNIT NOT SUPPORTED */
2607 buffer[SPC_ASC_KEY_OFFSET] = 0x25;
2608 break;
2609 case TCM_UNSUPPORTED_SCSI_OPCODE:
2610 case TCM_SECTOR_COUNT_TOO_MANY:
2611 /* CURRENT ERROR */
2612 buffer[0] = 0x70;
2613 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2614 /* ILLEGAL REQUEST */
2615 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2616 /* INVALID COMMAND OPERATION CODE */
2617 buffer[SPC_ASC_KEY_OFFSET] = 0x20;
2618 break;
2619 case TCM_UNKNOWN_MODE_PAGE:
2620 /* CURRENT ERROR */
2621 buffer[0] = 0x70;
2622 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2623 /* ILLEGAL REQUEST */
2624 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2625 /* INVALID FIELD IN CDB */
2626 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2627 break;
2628 case TCM_CHECK_CONDITION_ABORT_CMD:
2629 /* CURRENT ERROR */
2630 buffer[0] = 0x70;
2631 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2632 /* ABORTED COMMAND */
2633 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2634 /* BUS DEVICE RESET FUNCTION OCCURRED */
2635 buffer[SPC_ASC_KEY_OFFSET] = 0x29;
2636 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2637 break;
2638 case TCM_INCORRECT_AMOUNT_OF_DATA:
2639 /* CURRENT ERROR */
2640 buffer[0] = 0x70;
2641 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2642 /* ABORTED COMMAND */
2643 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2644 /* WRITE ERROR */
2645 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2646 /* NOT ENOUGH UNSOLICITED DATA */
2647 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0d;
2648 break;
2649 case TCM_INVALID_CDB_FIELD:
2650 /* CURRENT ERROR */
2651 buffer[0] = 0x70;
2652 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2653 /* ILLEGAL REQUEST */
2654 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2655 /* INVALID FIELD IN CDB */
2656 buffer[SPC_ASC_KEY_OFFSET] = 0x24;
2657 break;
2658 case TCM_INVALID_PARAMETER_LIST:
2659 /* CURRENT ERROR */
2660 buffer[0] = 0x70;
2661 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2662 /* ILLEGAL REQUEST */
2663 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2664 /* INVALID FIELD IN PARAMETER LIST */
2665 buffer[SPC_ASC_KEY_OFFSET] = 0x26;
2666 break;
2667 case TCM_PARAMETER_LIST_LENGTH_ERROR:
2668 /* CURRENT ERROR */
2669 buffer[0] = 0x70;
2670 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2671 /* ILLEGAL REQUEST */
2672 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2673 /* PARAMETER LIST LENGTH ERROR */
2674 buffer[SPC_ASC_KEY_OFFSET] = 0x1a;
2675 break;
2676 case TCM_UNEXPECTED_UNSOLICITED_DATA:
2677 /* CURRENT ERROR */
2678 buffer[0] = 0x70;
2679 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2680 /* ABORTED COMMAND */
2681 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2682 /* WRITE ERROR */
2683 buffer[SPC_ASC_KEY_OFFSET] = 0x0c;
2684 /* UNEXPECTED_UNSOLICITED_DATA */
2685 buffer[SPC_ASCQ_KEY_OFFSET] = 0x0c;
2686 break;
2687 case TCM_SERVICE_CRC_ERROR:
2688 /* CURRENT ERROR */
2689 buffer[0] = 0x70;
2690 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2691 /* ABORTED COMMAND */
2692 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2693 /* PROTOCOL SERVICE CRC ERROR */
2694 buffer[SPC_ASC_KEY_OFFSET] = 0x47;
2695 /* N/A */
2696 buffer[SPC_ASCQ_KEY_OFFSET] = 0x05;
2697 break;
2698 case TCM_SNACK_REJECTED:
2699 /* CURRENT ERROR */
2700 buffer[0] = 0x70;
2701 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2702 /* ABORTED COMMAND */
2703 buffer[SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
2704 /* READ ERROR */
2705 buffer[SPC_ASC_KEY_OFFSET] = 0x11;
2706 /* FAILED RETRANSMISSION REQUEST */
2707 buffer[SPC_ASCQ_KEY_OFFSET] = 0x13;
2708 break;
2709 case TCM_WRITE_PROTECTED:
2710 /* CURRENT ERROR */
2711 buffer[0] = 0x70;
2712 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2713 /* DATA PROTECT */
2714 buffer[SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
2715 /* WRITE PROTECTED */
2716 buffer[SPC_ASC_KEY_OFFSET] = 0x27;
2717 break;
2718 case TCM_ADDRESS_OUT_OF_RANGE:
2719 /* CURRENT ERROR */
2720 buffer[0] = 0x70;
2721 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2722 /* ILLEGAL REQUEST */
2723 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2724 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2725 buffer[SPC_ASC_KEY_OFFSET] = 0x21;
2726 break;
2727 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
2728 /* CURRENT ERROR */
2729 buffer[0] = 0x70;
2730 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2731 /* UNIT ATTENTION */
2732 buffer[SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
2733 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
2734 buffer[SPC_ASC_KEY_OFFSET] = asc;
2735 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2736 break;
2737 case TCM_CHECK_CONDITION_NOT_READY:
2738 /* CURRENT ERROR */
2739 buffer[0] = 0x70;
2740 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2741 /* Not Ready */
2742 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2743 transport_get_sense_codes(cmd, &asc, &ascq);
2744 buffer[SPC_ASC_KEY_OFFSET] = asc;
2745 buffer[SPC_ASCQ_KEY_OFFSET] = ascq;
2746 break;
2747 case TCM_MISCOMPARE_VERIFY:
2748 /* CURRENT ERROR */
2749 buffer[0] = 0x70;
2750 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2751 buffer[SPC_SENSE_KEY_OFFSET] = MISCOMPARE;
2752 /* MISCOMPARE DURING VERIFY OPERATION */
2753 buffer[SPC_ASC_KEY_OFFSET] = 0x1d;
2754 buffer[SPC_ASCQ_KEY_OFFSET] = 0x00;
2755 break;
2756 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
2757 /* CURRENT ERROR */
2758 buffer[0] = 0x70;
2759 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2760 /* ILLEGAL REQUEST */
2761 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2762 /* LOGICAL BLOCK GUARD CHECK FAILED */
2763 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2764 buffer[SPC_ASCQ_KEY_OFFSET] = 0x01;
2765 transport_err_sector_info(buffer, cmd->bad_sector);
2766 break;
2767 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
2768 /* CURRENT ERROR */
2769 buffer[0] = 0x70;
2770 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2771 /* ILLEGAL REQUEST */
2772 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2773 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2774 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2775 buffer[SPC_ASCQ_KEY_OFFSET] = 0x02;
2776 transport_err_sector_info(buffer, cmd->bad_sector);
2777 break;
2778 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
2779 /* CURRENT ERROR */
2780 buffer[0] = 0x70;
2781 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2782 /* ILLEGAL REQUEST */
2783 buffer[SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
2784 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2785 buffer[SPC_ASC_KEY_OFFSET] = 0x10;
2786 buffer[SPC_ASCQ_KEY_OFFSET] = 0x03;
2787 transport_err_sector_info(buffer, cmd->bad_sector);
2788 break;
2789 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
2790 default:
2791 /* CURRENT ERROR */
2792 buffer[0] = 0x70;
2793 buffer[SPC_ADD_SENSE_LEN_OFFSET] = 10;
2795 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2796 * Solaris initiators. Returning NOT READY instead means the
2797 * operations will be retried a finite number of times and we
2798 * can survive intermittent errors.
2800 buffer[SPC_SENSE_KEY_OFFSET] = NOT_READY;
2801 /* LOGICAL UNIT COMMUNICATION FAILURE */
2802 buffer[SPC_ASC_KEY_OFFSET] = 0x08;
2803 break;
2806 * This code uses linux/include/scsi/scsi.h SAM status codes!
2808 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2810 * Automatically padded, this value is encoded in the fabric's
2811 * data_length response PDU containing the SCSI defined sense data.
2813 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
2815 after_reason:
2816 trace_target_cmd_complete(cmd);
2817 return cmd->se_tfo->queue_status(cmd);
2819 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
2821 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
2823 if (!(cmd->transport_state & CMD_T_ABORTED))
2824 return 0;
2826 if (!send_status || (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
2827 return 1;
2829 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2830 cmd->t_task_cdb[0], cmd->se_tfo->get_task_tag(cmd));
2832 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
2833 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2834 trace_target_cmd_complete(cmd);
2835 cmd->se_tfo->queue_status(cmd);
2837 return 1;
2839 EXPORT_SYMBOL(transport_check_aborted_status);
2841 void transport_send_task_abort(struct se_cmd *cmd)
2843 unsigned long flags;
2845 spin_lock_irqsave(&cmd->t_state_lock, flags);
2846 if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION | SCF_SENT_DELAYED_TAS)) {
2847 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2848 return;
2850 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2853 * If there are still expected incoming fabric WRITEs, we wait
2854 * until until they have completed before sending a TASK_ABORTED
2855 * response. This response with TASK_ABORTED status will be
2856 * queued back to fabric module by transport_check_aborted_status().
2858 if (cmd->data_direction == DMA_TO_DEVICE) {
2859 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
2860 cmd->transport_state |= CMD_T_ABORTED;
2861 smp_mb__after_atomic_inc();
2862 return;
2865 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
2867 transport_lun_remove_cmd(cmd);
2869 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2870 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
2871 cmd->se_tfo->get_task_tag(cmd));
2873 trace_target_cmd_complete(cmd);
2874 cmd->se_tfo->queue_status(cmd);
2877 static void target_tmr_work(struct work_struct *work)
2879 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2880 struct se_device *dev = cmd->se_dev;
2881 struct se_tmr_req *tmr = cmd->se_tmr_req;
2882 int ret;
2884 switch (tmr->function) {
2885 case TMR_ABORT_TASK:
2886 core_tmr_abort_task(dev, tmr, cmd->se_sess);
2887 break;
2888 case TMR_ABORT_TASK_SET:
2889 case TMR_CLEAR_ACA:
2890 case TMR_CLEAR_TASK_SET:
2891 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
2892 break;
2893 case TMR_LUN_RESET:
2894 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
2895 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
2896 TMR_FUNCTION_REJECTED;
2897 break;
2898 case TMR_TARGET_WARM_RESET:
2899 tmr->response = TMR_FUNCTION_REJECTED;
2900 break;
2901 case TMR_TARGET_COLD_RESET:
2902 tmr->response = TMR_FUNCTION_REJECTED;
2903 break;
2904 default:
2905 pr_err("Uknown TMR function: 0x%02x.\n",
2906 tmr->function);
2907 tmr->response = TMR_FUNCTION_REJECTED;
2908 break;
2911 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
2912 cmd->se_tfo->queue_tm_rsp(cmd);
2914 transport_cmd_check_stop_to_fabric(cmd);
2917 int transport_generic_handle_tmr(
2918 struct se_cmd *cmd)
2920 unsigned long flags;
2922 spin_lock_irqsave(&cmd->t_state_lock, flags);
2923 cmd->transport_state |= CMD_T_ACTIVE;
2924 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2926 INIT_WORK(&cmd->work, target_tmr_work);
2927 queue_work(cmd->se_dev->tmr_wq, &cmd->work);
2928 return 0;
2930 EXPORT_SYMBOL(transport_generic_handle_tmr);