1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * (c) Copyright 2002-2013 Datera, Inc.
8 * Nicholas A. Bellinger <nab@kernel.org>
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
24 ******************************************************************************/
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <asm/unaligned.h>
40 #include <scsi/scsi.h>
41 #include <scsi/scsi_cmnd.h>
42 #include <scsi/scsi_tcq.h>
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47 #include <target/target_core_configfs.h>
49 #include "target_core_internal.h"
50 #include "target_core_alua.h"
51 #include "target_core_pr.h"
52 #include "target_core_ua.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/target.h>
57 static struct workqueue_struct
*target_completion_wq
;
58 static struct kmem_cache
*se_sess_cache
;
59 struct kmem_cache
*se_ua_cache
;
60 struct kmem_cache
*t10_pr_reg_cache
;
61 struct kmem_cache
*t10_alua_lu_gp_cache
;
62 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
63 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
64 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
65 struct kmem_cache
*t10_alua_lba_map_cache
;
66 struct kmem_cache
*t10_alua_lba_map_mem_cache
;
68 static void transport_complete_task_attr(struct se_cmd
*cmd
);
69 static void transport_handle_queue_full(struct se_cmd
*cmd
,
70 struct se_device
*dev
);
71 static int transport_put_cmd(struct se_cmd
*cmd
);
72 static void target_complete_ok_work(struct work_struct
*work
);
74 int init_se_kmem_caches(void)
76 se_sess_cache
= kmem_cache_create("se_sess_cache",
77 sizeof(struct se_session
), __alignof__(struct se_session
),
80 pr_err("kmem_cache_create() for struct se_session"
84 se_ua_cache
= kmem_cache_create("se_ua_cache",
85 sizeof(struct se_ua
), __alignof__(struct se_ua
),
88 pr_err("kmem_cache_create() for struct se_ua failed\n");
89 goto out_free_sess_cache
;
91 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
92 sizeof(struct t10_pr_registration
),
93 __alignof__(struct t10_pr_registration
), 0, NULL
);
94 if (!t10_pr_reg_cache
) {
95 pr_err("kmem_cache_create() for struct t10_pr_registration"
97 goto out_free_ua_cache
;
99 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
100 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
102 if (!t10_alua_lu_gp_cache
) {
103 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
105 goto out_free_pr_reg_cache
;
107 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
108 sizeof(struct t10_alua_lu_gp_member
),
109 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
110 if (!t10_alua_lu_gp_mem_cache
) {
111 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
113 goto out_free_lu_gp_cache
;
115 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
116 sizeof(struct t10_alua_tg_pt_gp
),
117 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
118 if (!t10_alua_tg_pt_gp_cache
) {
119 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
121 goto out_free_lu_gp_mem_cache
;
123 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
124 "t10_alua_tg_pt_gp_mem_cache",
125 sizeof(struct t10_alua_tg_pt_gp_member
),
126 __alignof__(struct t10_alua_tg_pt_gp_member
),
128 if (!t10_alua_tg_pt_gp_mem_cache
) {
129 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
131 goto out_free_tg_pt_gp_cache
;
133 t10_alua_lba_map_cache
= kmem_cache_create(
134 "t10_alua_lba_map_cache",
135 sizeof(struct t10_alua_lba_map
),
136 __alignof__(struct t10_alua_lba_map
), 0, NULL
);
137 if (!t10_alua_lba_map_cache
) {
138 pr_err("kmem_cache_create() for t10_alua_lba_map_"
140 goto out_free_tg_pt_gp_mem_cache
;
142 t10_alua_lba_map_mem_cache
= kmem_cache_create(
143 "t10_alua_lba_map_mem_cache",
144 sizeof(struct t10_alua_lba_map_member
),
145 __alignof__(struct t10_alua_lba_map_member
), 0, NULL
);
146 if (!t10_alua_lba_map_mem_cache
) {
147 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
149 goto out_free_lba_map_cache
;
152 target_completion_wq
= alloc_workqueue("target_completion",
154 if (!target_completion_wq
)
155 goto out_free_lba_map_mem_cache
;
159 out_free_lba_map_mem_cache
:
160 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
161 out_free_lba_map_cache
:
162 kmem_cache_destroy(t10_alua_lba_map_cache
);
163 out_free_tg_pt_gp_mem_cache
:
164 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
165 out_free_tg_pt_gp_cache
:
166 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
167 out_free_lu_gp_mem_cache
:
168 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
169 out_free_lu_gp_cache
:
170 kmem_cache_destroy(t10_alua_lu_gp_cache
);
171 out_free_pr_reg_cache
:
172 kmem_cache_destroy(t10_pr_reg_cache
);
174 kmem_cache_destroy(se_ua_cache
);
176 kmem_cache_destroy(se_sess_cache
);
181 void release_se_kmem_caches(void)
183 destroy_workqueue(target_completion_wq
);
184 kmem_cache_destroy(se_sess_cache
);
185 kmem_cache_destroy(se_ua_cache
);
186 kmem_cache_destroy(t10_pr_reg_cache
);
187 kmem_cache_destroy(t10_alua_lu_gp_cache
);
188 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
189 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
190 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
191 kmem_cache_destroy(t10_alua_lba_map_cache
);
192 kmem_cache_destroy(t10_alua_lba_map_mem_cache
);
195 /* This code ensures unique mib indexes are handed out. */
196 static DEFINE_SPINLOCK(scsi_mib_index_lock
);
197 static u32 scsi_mib_index
[SCSI_INDEX_TYPE_MAX
];
200 * Allocate a new row index for the entry type specified
202 u32
scsi_get_new_index(scsi_index_t type
)
206 BUG_ON((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
));
208 spin_lock(&scsi_mib_index_lock
);
209 new_index
= ++scsi_mib_index
[type
];
210 spin_unlock(&scsi_mib_index_lock
);
215 void transport_subsystem_check_init(void)
218 static int sub_api_initialized
;
220 if (sub_api_initialized
)
223 ret
= request_module("target_core_iblock");
225 pr_err("Unable to load target_core_iblock\n");
227 ret
= request_module("target_core_file");
229 pr_err("Unable to load target_core_file\n");
231 ret
= request_module("target_core_pscsi");
233 pr_err("Unable to load target_core_pscsi\n");
235 sub_api_initialized
= 1;
238 struct se_session
*transport_init_session(void)
240 struct se_session
*se_sess
;
242 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
244 pr_err("Unable to allocate struct se_session from"
246 return ERR_PTR(-ENOMEM
);
248 INIT_LIST_HEAD(&se_sess
->sess_list
);
249 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
250 INIT_LIST_HEAD(&se_sess
->sess_cmd_list
);
251 INIT_LIST_HEAD(&se_sess
->sess_wait_list
);
252 spin_lock_init(&se_sess
->sess_cmd_lock
);
253 kref_init(&se_sess
->sess_kref
);
257 EXPORT_SYMBOL(transport_init_session
);
259 int transport_alloc_session_tags(struct se_session
*se_sess
,
260 unsigned int tag_num
, unsigned int tag_size
)
264 se_sess
->sess_cmd_map
= kzalloc(tag_num
* tag_size
,
265 GFP_KERNEL
| __GFP_NOWARN
| __GFP_REPEAT
);
266 if (!se_sess
->sess_cmd_map
) {
267 se_sess
->sess_cmd_map
= vzalloc(tag_num
* tag_size
);
268 if (!se_sess
->sess_cmd_map
) {
269 pr_err("Unable to allocate se_sess->sess_cmd_map\n");
274 rc
= percpu_ida_init(&se_sess
->sess_tag_pool
, tag_num
);
276 pr_err("Unable to init se_sess->sess_tag_pool,"
277 " tag_num: %u\n", tag_num
);
278 if (is_vmalloc_addr(se_sess
->sess_cmd_map
))
279 vfree(se_sess
->sess_cmd_map
);
281 kfree(se_sess
->sess_cmd_map
);
282 se_sess
->sess_cmd_map
= NULL
;
288 EXPORT_SYMBOL(transport_alloc_session_tags
);
290 struct se_session
*transport_init_session_tags(unsigned int tag_num
,
291 unsigned int tag_size
)
293 struct se_session
*se_sess
;
296 se_sess
= transport_init_session();
300 rc
= transport_alloc_session_tags(se_sess
, tag_num
, tag_size
);
302 transport_free_session(se_sess
);
303 return ERR_PTR(-ENOMEM
);
308 EXPORT_SYMBOL(transport_init_session_tags
);
311 * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
313 void __transport_register_session(
314 struct se_portal_group
*se_tpg
,
315 struct se_node_acl
*se_nacl
,
316 struct se_session
*se_sess
,
317 void *fabric_sess_ptr
)
319 unsigned char buf
[PR_REG_ISID_LEN
];
321 se_sess
->se_tpg
= se_tpg
;
322 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
324 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326 * Only set for struct se_session's that will actually be moving I/O.
327 * eg: *NOT* discovery sessions.
331 * If the fabric module supports an ISID based TransportID,
332 * save this value in binary from the fabric I_T Nexus now.
334 if (se_tpg
->se_tpg_tfo
->sess_get_initiator_sid
!= NULL
) {
335 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
336 se_tpg
->se_tpg_tfo
->sess_get_initiator_sid(se_sess
,
337 &buf
[0], PR_REG_ISID_LEN
);
338 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
340 kref_get(&se_nacl
->acl_kref
);
342 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
344 * The se_nacl->nacl_sess pointer will be set to the
345 * last active I_T Nexus for each struct se_node_acl.
347 se_nacl
->nacl_sess
= se_sess
;
349 list_add_tail(&se_sess
->sess_acl_list
,
350 &se_nacl
->acl_sess_list
);
351 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
353 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
355 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
356 se_tpg
->se_tpg_tfo
->get_fabric_name(), se_sess
->fabric_sess_ptr
);
358 EXPORT_SYMBOL(__transport_register_session
);
360 void transport_register_session(
361 struct se_portal_group
*se_tpg
,
362 struct se_node_acl
*se_nacl
,
363 struct se_session
*se_sess
,
364 void *fabric_sess_ptr
)
368 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
369 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
370 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
372 EXPORT_SYMBOL(transport_register_session
);
374 static void target_release_session(struct kref
*kref
)
376 struct se_session
*se_sess
= container_of(kref
,
377 struct se_session
, sess_kref
);
378 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
380 se_tpg
->se_tpg_tfo
->close_session(se_sess
);
383 void target_get_session(struct se_session
*se_sess
)
385 kref_get(&se_sess
->sess_kref
);
387 EXPORT_SYMBOL(target_get_session
);
389 void target_put_session(struct se_session
*se_sess
)
391 struct se_portal_group
*tpg
= se_sess
->se_tpg
;
393 if (tpg
->se_tpg_tfo
->put_session
!= NULL
) {
394 tpg
->se_tpg_tfo
->put_session(se_sess
);
397 kref_put(&se_sess
->sess_kref
, target_release_session
);
399 EXPORT_SYMBOL(target_put_session
);
401 static void target_complete_nacl(struct kref
*kref
)
403 struct se_node_acl
*nacl
= container_of(kref
,
404 struct se_node_acl
, acl_kref
);
406 complete(&nacl
->acl_free_comp
);
409 void target_put_nacl(struct se_node_acl
*nacl
)
411 kref_put(&nacl
->acl_kref
, target_complete_nacl
);
414 void transport_deregister_session_configfs(struct se_session
*se_sess
)
416 struct se_node_acl
*se_nacl
;
419 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
421 se_nacl
= se_sess
->se_node_acl
;
423 spin_lock_irqsave(&se_nacl
->nacl_sess_lock
, flags
);
424 if (se_nacl
->acl_stop
== 0)
425 list_del(&se_sess
->sess_acl_list
);
427 * If the session list is empty, then clear the pointer.
428 * Otherwise, set the struct se_session pointer from the tail
429 * element of the per struct se_node_acl active session list.
431 if (list_empty(&se_nacl
->acl_sess_list
))
432 se_nacl
->nacl_sess
= NULL
;
434 se_nacl
->nacl_sess
= container_of(
435 se_nacl
->acl_sess_list
.prev
,
436 struct se_session
, sess_acl_list
);
438 spin_unlock_irqrestore(&se_nacl
->nacl_sess_lock
, flags
);
441 EXPORT_SYMBOL(transport_deregister_session_configfs
);
443 void transport_free_session(struct se_session
*se_sess
)
445 if (se_sess
->sess_cmd_map
) {
446 percpu_ida_destroy(&se_sess
->sess_tag_pool
);
447 if (is_vmalloc_addr(se_sess
->sess_cmd_map
))
448 vfree(se_sess
->sess_cmd_map
);
450 kfree(se_sess
->sess_cmd_map
);
452 kmem_cache_free(se_sess_cache
, se_sess
);
454 EXPORT_SYMBOL(transport_free_session
);
456 void transport_deregister_session(struct se_session
*se_sess
)
458 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
459 struct target_core_fabric_ops
*se_tfo
;
460 struct se_node_acl
*se_nacl
;
462 bool comp_nacl
= true;
465 transport_free_session(se_sess
);
468 se_tfo
= se_tpg
->se_tpg_tfo
;
470 spin_lock_irqsave(&se_tpg
->session_lock
, flags
);
471 list_del(&se_sess
->sess_list
);
472 se_sess
->se_tpg
= NULL
;
473 se_sess
->fabric_sess_ptr
= NULL
;
474 spin_unlock_irqrestore(&se_tpg
->session_lock
, flags
);
477 * Determine if we need to do extra work for this initiator node's
478 * struct se_node_acl if it had been previously dynamically generated.
480 se_nacl
= se_sess
->se_node_acl
;
482 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
483 if (se_nacl
&& se_nacl
->dynamic_node_acl
) {
484 if (!se_tfo
->tpg_check_demo_mode_cache(se_tpg
)) {
485 list_del(&se_nacl
->acl_list
);
486 se_tpg
->num_node_acls
--;
487 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
488 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
489 core_free_device_list_for_node(se_nacl
, se_tpg
);
490 se_tfo
->tpg_release_fabric_acl(se_tpg
, se_nacl
);
493 spin_lock_irqsave(&se_tpg
->acl_node_lock
, flags
);
496 spin_unlock_irqrestore(&se_tpg
->acl_node_lock
, flags
);
498 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
499 se_tpg
->se_tpg_tfo
->get_fabric_name());
501 * If last kref is dropping now for an explicit NodeACL, awake sleeping
502 * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
505 if (se_nacl
&& comp_nacl
== true)
506 target_put_nacl(se_nacl
);
508 transport_free_session(se_sess
);
510 EXPORT_SYMBOL(transport_deregister_session
);
513 * Called with cmd->t_state_lock held.
515 static void target_remove_from_state_list(struct se_cmd
*cmd
)
517 struct se_device
*dev
= cmd
->se_dev
;
523 if (cmd
->transport_state
& CMD_T_BUSY
)
526 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
527 if (cmd
->state_active
) {
528 list_del(&cmd
->state_list
);
529 cmd
->state_active
= false;
531 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
534 static int transport_cmd_check_stop(struct se_cmd
*cmd
, bool remove_from_lists
,
539 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
541 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
543 if (remove_from_lists
) {
544 target_remove_from_state_list(cmd
);
547 * Clear struct se_cmd->se_lun before the handoff to FE.
553 * Determine if frontend context caller is requesting the stopping of
554 * this command for frontend exceptions.
556 if (cmd
->transport_state
& CMD_T_STOP
) {
557 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
559 cmd
->se_tfo
->get_task_tag(cmd
));
561 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
563 complete_all(&cmd
->t_transport_stop_comp
);
567 cmd
->transport_state
&= ~CMD_T_ACTIVE
;
568 if (remove_from_lists
) {
570 * Some fabric modules like tcm_loop can release
571 * their internally allocated I/O reference now and
574 * Fabric modules are expected to return '1' here if the
575 * se_cmd being passed is released at this point,
576 * or zero if not being released.
578 if (cmd
->se_tfo
->check_stop_free
!= NULL
) {
579 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
580 return cmd
->se_tfo
->check_stop_free(cmd
);
584 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
588 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
590 return transport_cmd_check_stop(cmd
, true, false);
593 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
595 struct se_lun
*lun
= cmd
->se_lun
;
600 if (cmpxchg(&cmd
->lun_ref_active
, true, false))
601 percpu_ref_put(&lun
->lun_ref
);
604 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
606 if (transport_cmd_check_stop_to_fabric(cmd
))
609 transport_put_cmd(cmd
);
612 static void target_complete_failure_work(struct work_struct
*work
)
614 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
616 transport_generic_request_failure(cmd
,
617 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
);
621 * Used when asking transport to copy Sense Data from the underlying
622 * Linux/SCSI struct scsi_cmnd
624 static unsigned char *transport_get_sense_buffer(struct se_cmd
*cmd
)
626 struct se_device
*dev
= cmd
->se_dev
;
628 WARN_ON(!cmd
->se_lun
);
633 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
)
636 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
638 pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
639 dev
->se_hba
->hba_id
, dev
->transport
->name
, cmd
->scsi_status
);
640 return cmd
->sense_buffer
;
643 void target_complete_cmd(struct se_cmd
*cmd
, u8 scsi_status
)
645 struct se_device
*dev
= cmd
->se_dev
;
646 int success
= scsi_status
== GOOD
;
649 cmd
->scsi_status
= scsi_status
;
652 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
653 cmd
->transport_state
&= ~CMD_T_BUSY
;
655 if (dev
&& dev
->transport
->transport_complete
) {
656 dev
->transport
->transport_complete(cmd
,
658 transport_get_sense_buffer(cmd
));
659 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
)
664 * See if we are waiting to complete for an exception condition.
666 if (cmd
->transport_state
& CMD_T_REQUEST_STOP
) {
667 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
668 complete(&cmd
->task_stop_comp
);
673 * Check for case where an explicit ABORT_TASK has been received
674 * and transport_wait_for_tasks() will be waiting for completion..
676 if (cmd
->transport_state
& CMD_T_ABORTED
&&
677 cmd
->transport_state
& CMD_T_STOP
) {
678 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
679 complete_all(&cmd
->t_transport_stop_comp
);
681 } else if (!success
) {
682 INIT_WORK(&cmd
->work
, target_complete_failure_work
);
684 INIT_WORK(&cmd
->work
, target_complete_ok_work
);
687 cmd
->t_state
= TRANSPORT_COMPLETE
;
688 cmd
->transport_state
|= (CMD_T_COMPLETE
| CMD_T_ACTIVE
);
689 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
691 queue_work(target_completion_wq
, &cmd
->work
);
693 EXPORT_SYMBOL(target_complete_cmd
);
695 void target_complete_cmd_with_length(struct se_cmd
*cmd
, u8 scsi_status
, int length
)
697 if (scsi_status
== SAM_STAT_GOOD
&& length
< cmd
->data_length
) {
698 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
699 cmd
->residual_count
+= cmd
->data_length
- length
;
701 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
702 cmd
->residual_count
= cmd
->data_length
- length
;
705 cmd
->data_length
= length
;
708 target_complete_cmd(cmd
, scsi_status
);
710 EXPORT_SYMBOL(target_complete_cmd_with_length
);
712 static void target_add_to_state_list(struct se_cmd
*cmd
)
714 struct se_device
*dev
= cmd
->se_dev
;
717 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
718 if (!cmd
->state_active
) {
719 list_add_tail(&cmd
->state_list
, &dev
->state_list
);
720 cmd
->state_active
= true;
722 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
726 * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
728 static void transport_write_pending_qf(struct se_cmd
*cmd
);
729 static void transport_complete_qf(struct se_cmd
*cmd
);
731 void target_qf_do_work(struct work_struct
*work
)
733 struct se_device
*dev
= container_of(work
, struct se_device
,
735 LIST_HEAD(qf_cmd_list
);
736 struct se_cmd
*cmd
, *cmd_tmp
;
738 spin_lock_irq(&dev
->qf_cmd_lock
);
739 list_splice_init(&dev
->qf_cmd_list
, &qf_cmd_list
);
740 spin_unlock_irq(&dev
->qf_cmd_lock
);
742 list_for_each_entry_safe(cmd
, cmd_tmp
, &qf_cmd_list
, se_qf_node
) {
743 list_del(&cmd
->se_qf_node
);
744 atomic_dec(&dev
->dev_qf_count
);
745 smp_mb__after_atomic_dec();
747 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
748 " context: %s\n", cmd
->se_tfo
->get_fabric_name(), cmd
,
749 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
) ? "COMPLETE_OK" :
750 (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
) ? "WRITE_PENDING"
753 if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_WP
)
754 transport_write_pending_qf(cmd
);
755 else if (cmd
->t_state
== TRANSPORT_COMPLETE_QF_OK
)
756 transport_complete_qf(cmd
);
760 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
762 switch (cmd
->data_direction
) {
765 case DMA_FROM_DEVICE
:
769 case DMA_BIDIRECTIONAL
:
778 void transport_dump_dev_state(
779 struct se_device
*dev
,
783 *bl
+= sprintf(b
+ *bl
, "Status: ");
784 if (dev
->export_count
)
785 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
787 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
789 *bl
+= sprintf(b
+ *bl
, " Max Queue Depth: %d", dev
->queue_depth
);
790 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u HwMaxSectors: %u\n",
791 dev
->dev_attrib
.block_size
,
792 dev
->dev_attrib
.hw_max_sectors
);
793 *bl
+= sprintf(b
+ *bl
, " ");
796 void transport_dump_vpd_proto_id(
798 unsigned char *p_buf
,
801 unsigned char buf
[VPD_TMP_BUF_SIZE
];
804 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
805 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
807 switch (vpd
->protocol_identifier
) {
809 sprintf(buf
+len
, "Fibre Channel\n");
812 sprintf(buf
+len
, "Parallel SCSI\n");
815 sprintf(buf
+len
, "SSA\n");
818 sprintf(buf
+len
, "IEEE 1394\n");
821 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
825 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
828 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
831 sprintf(buf
+len
, "Automation/Drive Interface Transport"
835 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
838 sprintf(buf
+len
, "Unknown 0x%02x\n",
839 vpd
->protocol_identifier
);
844 strncpy(p_buf
, buf
, p_buf_len
);
850 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
853 * Check if the Protocol Identifier Valid (PIV) bit is set..
855 * from spc3r23.pdf section 7.5.1
857 if (page_83
[1] & 0x80) {
858 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
859 vpd
->protocol_identifier_set
= 1;
860 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
863 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
865 int transport_dump_vpd_assoc(
867 unsigned char *p_buf
,
870 unsigned char buf
[VPD_TMP_BUF_SIZE
];
874 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
875 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
877 switch (vpd
->association
) {
879 sprintf(buf
+len
, "addressed logical unit\n");
882 sprintf(buf
+len
, "target port\n");
885 sprintf(buf
+len
, "SCSI target device\n");
888 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
894 strncpy(p_buf
, buf
, p_buf_len
);
901 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
904 * The VPD identification association..
906 * from spc3r23.pdf Section 7.6.3.1 Table 297
908 vpd
->association
= (page_83
[1] & 0x30);
909 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
911 EXPORT_SYMBOL(transport_set_vpd_assoc
);
913 int transport_dump_vpd_ident_type(
915 unsigned char *p_buf
,
918 unsigned char buf
[VPD_TMP_BUF_SIZE
];
922 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
923 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
925 switch (vpd
->device_identifier_type
) {
927 sprintf(buf
+len
, "Vendor specific\n");
930 sprintf(buf
+len
, "T10 Vendor ID based\n");
933 sprintf(buf
+len
, "EUI-64 based\n");
936 sprintf(buf
+len
, "NAA\n");
939 sprintf(buf
+len
, "Relative target port identifier\n");
942 sprintf(buf
+len
, "SCSI name string\n");
945 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
946 vpd
->device_identifier_type
);
952 if (p_buf_len
< strlen(buf
)+1)
954 strncpy(p_buf
, buf
, p_buf_len
);
962 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
965 * The VPD identifier type..
967 * from spc3r23.pdf Section 7.6.3.1 Table 298
969 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
970 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
972 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
974 int transport_dump_vpd_ident(
976 unsigned char *p_buf
,
979 unsigned char buf
[VPD_TMP_BUF_SIZE
];
982 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
984 switch (vpd
->device_identifier_code_set
) {
985 case 0x01: /* Binary */
986 snprintf(buf
, sizeof(buf
),
987 "T10 VPD Binary Device Identifier: %s\n",
988 &vpd
->device_identifier
[0]);
990 case 0x02: /* ASCII */
991 snprintf(buf
, sizeof(buf
),
992 "T10 VPD ASCII Device Identifier: %s\n",
993 &vpd
->device_identifier
[0]);
995 case 0x03: /* UTF-8 */
996 snprintf(buf
, sizeof(buf
),
997 "T10 VPD UTF-8 Device Identifier: %s\n",
998 &vpd
->device_identifier
[0]);
1001 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1002 " 0x%02x", vpd
->device_identifier_code_set
);
1008 strncpy(p_buf
, buf
, p_buf_len
);
1010 pr_debug("%s", buf
);
1016 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1018 static const char hex_str
[] = "0123456789abcdef";
1019 int j
= 0, i
= 4; /* offset to start of the identifier */
1022 * The VPD Code Set (encoding)
1024 * from spc3r23.pdf Section 7.6.3.1 Table 296
1026 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1027 switch (vpd
->device_identifier_code_set
) {
1028 case 0x01: /* Binary */
1029 vpd
->device_identifier
[j
++] =
1030 hex_str
[vpd
->device_identifier_type
];
1031 while (i
< (4 + page_83
[3])) {
1032 vpd
->device_identifier
[j
++] =
1033 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1034 vpd
->device_identifier
[j
++] =
1035 hex_str
[page_83
[i
] & 0x0f];
1039 case 0x02: /* ASCII */
1040 case 0x03: /* UTF-8 */
1041 while (i
< (4 + page_83
[3]))
1042 vpd
->device_identifier
[j
++] = page_83
[i
++];
1048 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1050 EXPORT_SYMBOL(transport_set_vpd_ident
);
1053 target_cmd_size_check(struct se_cmd
*cmd
, unsigned int size
)
1055 struct se_device
*dev
= cmd
->se_dev
;
1057 if (cmd
->unknown_data_length
) {
1058 cmd
->data_length
= size
;
1059 } else if (size
!= cmd
->data_length
) {
1060 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
1061 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1062 " 0x%02x\n", cmd
->se_tfo
->get_fabric_name(),
1063 cmd
->data_length
, size
, cmd
->t_task_cdb
[0]);
1065 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
1066 pr_err("Rejecting underflow/overflow"
1068 return TCM_INVALID_CDB_FIELD
;
1071 * Reject READ_* or WRITE_* with overflow/underflow for
1072 * type SCF_SCSI_DATA_CDB.
1074 if (dev
->dev_attrib
.block_size
!= 512) {
1075 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1076 " CDB on non 512-byte sector setup subsystem"
1077 " plugin: %s\n", dev
->transport
->name
);
1078 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1079 return TCM_INVALID_CDB_FIELD
;
1082 * For the overflow case keep the existing fabric provided
1083 * ->data_length. Otherwise for the underflow case, reset
1084 * ->data_length to the smaller SCSI expected data transfer
1087 if (size
> cmd
->data_length
) {
1088 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
1089 cmd
->residual_count
= (size
- cmd
->data_length
);
1091 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
1092 cmd
->residual_count
= (cmd
->data_length
- size
);
1093 cmd
->data_length
= size
;
1102 * Used by fabric modules containing a local struct se_cmd within their
1103 * fabric dependent per I/O descriptor.
1105 void transport_init_se_cmd(
1107 struct target_core_fabric_ops
*tfo
,
1108 struct se_session
*se_sess
,
1112 unsigned char *sense_buffer
)
1114 INIT_LIST_HEAD(&cmd
->se_delayed_node
);
1115 INIT_LIST_HEAD(&cmd
->se_qf_node
);
1116 INIT_LIST_HEAD(&cmd
->se_cmd_list
);
1117 INIT_LIST_HEAD(&cmd
->state_list
);
1118 init_completion(&cmd
->t_transport_stop_comp
);
1119 init_completion(&cmd
->cmd_wait_comp
);
1120 init_completion(&cmd
->task_stop_comp
);
1121 spin_lock_init(&cmd
->t_state_lock
);
1122 kref_init(&cmd
->cmd_kref
);
1123 cmd
->transport_state
= CMD_T_DEV_ACTIVE
;
1126 cmd
->se_sess
= se_sess
;
1127 cmd
->data_length
= data_length
;
1128 cmd
->data_direction
= data_direction
;
1129 cmd
->sam_task_attr
= task_attr
;
1130 cmd
->sense_buffer
= sense_buffer
;
1132 cmd
->state_active
= false;
1134 EXPORT_SYMBOL(transport_init_se_cmd
);
1136 static sense_reason_t
1137 transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1139 struct se_device
*dev
= cmd
->se_dev
;
1142 * Check if SAM Task Attribute emulation is enabled for this
1143 * struct se_device storage object
1145 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1148 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1149 pr_debug("SAM Task Attribute ACA"
1150 " emulation is not supported\n");
1151 return TCM_INVALID_CDB_FIELD
;
1154 * Used to determine when ORDERED commands should go from
1155 * Dormant to Active status.
1157 cmd
->se_ordered_id
= atomic_inc_return(&dev
->dev_ordered_id
);
1158 smp_mb__after_atomic_inc();
1159 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1160 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1161 dev
->transport
->name
);
1166 target_setup_cmd_from_cdb(struct se_cmd
*cmd
, unsigned char *cdb
)
1168 struct se_device
*dev
= cmd
->se_dev
;
1172 * Ensure that the received CDB is less than the max (252 + 8) bytes
1173 * for VARIABLE_LENGTH_CMD
1175 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1176 pr_err("Received SCSI CDB with command_size: %d that"
1177 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1178 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1179 return TCM_INVALID_CDB_FIELD
;
1182 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1183 * allocate the additional extended CDB buffer now.. Otherwise
1184 * setup the pointer from __t_task_cdb to t_task_cdb.
1186 if (scsi_command_size(cdb
) > sizeof(cmd
->__t_task_cdb
)) {
1187 cmd
->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1189 if (!cmd
->t_task_cdb
) {
1190 pr_err("Unable to allocate cmd->t_task_cdb"
1191 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1192 scsi_command_size(cdb
),
1193 (unsigned long)sizeof(cmd
->__t_task_cdb
));
1194 return TCM_OUT_OF_RESOURCES
;
1197 cmd
->t_task_cdb
= &cmd
->__t_task_cdb
[0];
1199 * Copy the original CDB into cmd->
1201 memcpy(cmd
->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1203 trace_target_sequencer_start(cmd
);
1206 * Check for an existing UNIT ATTENTION condition
1208 ret
= target_scsi3_ua_check(cmd
);
1212 ret
= target_alua_state_check(cmd
);
1216 ret
= target_check_reservation(cmd
);
1218 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1222 ret
= dev
->transport
->parse_cdb(cmd
);
1226 ret
= transport_check_alloc_task_attr(cmd
);
1230 cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
1232 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1233 if (cmd
->se_lun
->lun_sep
)
1234 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1235 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1238 EXPORT_SYMBOL(target_setup_cmd_from_cdb
);
1241 * Used by fabric module frontends to queue tasks directly.
1242 * Many only be used from process context only
1244 int transport_handle_cdb_direct(
1251 pr_err("cmd->se_lun is NULL\n");
1254 if (in_interrupt()) {
1256 pr_err("transport_generic_handle_cdb cannot be called"
1257 " from interrupt context\n");
1261 * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1262 * outstanding descriptors are handled correctly during shutdown via
1263 * transport_wait_for_tasks()
1265 * Also, we don't take cmd->t_state_lock here as we only expect
1266 * this to be called for initial descriptor submission.
1268 cmd
->t_state
= TRANSPORT_NEW_CMD
;
1269 cmd
->transport_state
|= CMD_T_ACTIVE
;
1272 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1273 * so follow TRANSPORT_NEW_CMD processing thread context usage
1274 * and call transport_generic_request_failure() if necessary..
1276 ret
= transport_generic_new_cmd(cmd
);
1278 transport_generic_request_failure(cmd
, ret
);
1281 EXPORT_SYMBOL(transport_handle_cdb_direct
);
1284 transport_generic_map_mem_to_cmd(struct se_cmd
*cmd
, struct scatterlist
*sgl
,
1285 u32 sgl_count
, struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
)
1287 if (!sgl
|| !sgl_count
)
1291 * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1292 * scatterlists already have been set to follow what the fabric
1293 * passes for the original expected data transfer length.
1295 if (cmd
->se_cmd_flags
& SCF_OVERFLOW_BIT
) {
1296 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1297 " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1298 return TCM_INVALID_CDB_FIELD
;
1301 cmd
->t_data_sg
= sgl
;
1302 cmd
->t_data_nents
= sgl_count
;
1304 if (sgl_bidi
&& sgl_bidi_count
) {
1305 cmd
->t_bidi_data_sg
= sgl_bidi
;
1306 cmd
->t_bidi_data_nents
= sgl_bidi_count
;
1308 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
1313 * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1314 * se_cmd + use pre-allocated SGL memory.
1316 * @se_cmd: command descriptor to submit
1317 * @se_sess: associated se_sess for endpoint
1318 * @cdb: pointer to SCSI CDB
1319 * @sense: pointer to SCSI sense buffer
1320 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1321 * @data_length: fabric expected data transfer length
1322 * @task_addr: SAM task attribute
1323 * @data_dir: DMA data direction
1324 * @flags: flags for command submission from target_sc_flags_tables
1325 * @sgl: struct scatterlist memory for unidirectional mapping
1326 * @sgl_count: scatterlist count for unidirectional mapping
1327 * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1328 * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1329 * @sgl_prot: struct scatterlist memory protection information
1330 * @sgl_prot_count: scatterlist count for protection information
1332 * Returns non zero to signal active I/O shutdown failure. All other
1333 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1334 * but still return zero here.
1336 * This may only be called from process context, and also currently
1337 * assumes internal allocation of fabric payload buffer by target-core.
1339 int target_submit_cmd_map_sgls(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1340 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1341 u32 data_length
, int task_attr
, int data_dir
, int flags
,
1342 struct scatterlist
*sgl
, u32 sgl_count
,
1343 struct scatterlist
*sgl_bidi
, u32 sgl_bidi_count
,
1344 struct scatterlist
*sgl_prot
, u32 sgl_prot_count
)
1346 struct se_portal_group
*se_tpg
;
1350 se_tpg
= se_sess
->se_tpg
;
1352 BUG_ON(se_cmd
->se_tfo
|| se_cmd
->se_sess
);
1353 BUG_ON(in_interrupt());
1355 * Initialize se_cmd for target operation. From this point
1356 * exceptions are handled by sending exception status via
1357 * target_core_fabric_ops->queue_status() callback
1359 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1360 data_length
, data_dir
, task_attr
, sense
);
1361 if (flags
& TARGET_SCF_UNKNOWN_SIZE
)
1362 se_cmd
->unknown_data_length
= 1;
1364 * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1365 * se_sess->sess_cmd_list. A second kref_get here is necessary
1366 * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1367 * kref_put() to happen during fabric packet acknowledgement.
1369 ret
= target_get_sess_cmd(se_sess
, se_cmd
, (flags
& TARGET_SCF_ACK_KREF
));
1373 * Signal bidirectional data payloads to target-core
1375 if (flags
& TARGET_SCF_BIDI_OP
)
1376 se_cmd
->se_cmd_flags
|= SCF_BIDI
;
1378 * Locate se_lun pointer and attach it to struct se_cmd
1380 rc
= transport_lookup_cmd_lun(se_cmd
, unpacked_lun
);
1382 transport_send_check_condition_and_sense(se_cmd
, rc
, 0);
1383 target_put_sess_cmd(se_sess
, se_cmd
);
1387 * Save pointers for SGLs containing protection information,
1390 if (sgl_prot_count
) {
1391 se_cmd
->t_prot_sg
= sgl_prot
;
1392 se_cmd
->t_prot_nents
= sgl_prot_count
;
1395 rc
= target_setup_cmd_from_cdb(se_cmd
, cdb
);
1397 transport_generic_request_failure(se_cmd
, rc
);
1401 * When a non zero sgl_count has been passed perform SGL passthrough
1402 * mapping for pre-allocated fabric memory instead of having target
1403 * core perform an internal SGL allocation..
1405 if (sgl_count
!= 0) {
1409 * A work-around for tcm_loop as some userspace code via
1410 * scsi-generic do not memset their associated read buffers,
1411 * so go ahead and do that here for type non-data CDBs. Also
1412 * note that this is currently guaranteed to be a single SGL
1413 * for this case by target core in target_setup_cmd_from_cdb()
1414 * -> transport_generic_cmd_sequencer().
1416 if (!(se_cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
) &&
1417 se_cmd
->data_direction
== DMA_FROM_DEVICE
) {
1418 unsigned char *buf
= NULL
;
1421 buf
= kmap(sg_page(sgl
)) + sgl
->offset
;
1424 memset(buf
, 0, sgl
->length
);
1425 kunmap(sg_page(sgl
));
1429 rc
= transport_generic_map_mem_to_cmd(se_cmd
, sgl
, sgl_count
,
1430 sgl_bidi
, sgl_bidi_count
);
1432 transport_generic_request_failure(se_cmd
, rc
);
1438 * Check if we need to delay processing because of ALUA
1439 * Active/NonOptimized primary access state..
1441 core_alua_check_nonop_delay(se_cmd
);
1443 transport_handle_cdb_direct(se_cmd
);
1446 EXPORT_SYMBOL(target_submit_cmd_map_sgls
);
1449 * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1451 * @se_cmd: command descriptor to submit
1452 * @se_sess: associated se_sess for endpoint
1453 * @cdb: pointer to SCSI CDB
1454 * @sense: pointer to SCSI sense buffer
1455 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1456 * @data_length: fabric expected data transfer length
1457 * @task_addr: SAM task attribute
1458 * @data_dir: DMA data direction
1459 * @flags: flags for command submission from target_sc_flags_tables
1461 * Returns non zero to signal active I/O shutdown failure. All other
1462 * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1463 * but still return zero here.
1465 * This may only be called from process context, and also currently
1466 * assumes internal allocation of fabric payload buffer by target-core.
1468 * It also assumes interal target core SGL memory allocation.
1470 int target_submit_cmd(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1471 unsigned char *cdb
, unsigned char *sense
, u32 unpacked_lun
,
1472 u32 data_length
, int task_attr
, int data_dir
, int flags
)
1474 return target_submit_cmd_map_sgls(se_cmd
, se_sess
, cdb
, sense
,
1475 unpacked_lun
, data_length
, task_attr
, data_dir
,
1476 flags
, NULL
, 0, NULL
, 0, NULL
, 0);
1478 EXPORT_SYMBOL(target_submit_cmd
);
1480 static void target_complete_tmr_failure(struct work_struct
*work
)
1482 struct se_cmd
*se_cmd
= container_of(work
, struct se_cmd
, work
);
1484 se_cmd
->se_tmr_req
->response
= TMR_LUN_DOES_NOT_EXIST
;
1485 se_cmd
->se_tfo
->queue_tm_rsp(se_cmd
);
1487 transport_cmd_check_stop_to_fabric(se_cmd
);
1491 * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1494 * @se_cmd: command descriptor to submit
1495 * @se_sess: associated se_sess for endpoint
1496 * @sense: pointer to SCSI sense buffer
1497 * @unpacked_lun: unpacked LUN to reference for struct se_lun
1498 * @fabric_context: fabric context for TMR req
1499 * @tm_type: Type of TM request
1500 * @gfp: gfp type for caller
1501 * @tag: referenced task tag for TMR_ABORT_TASK
1502 * @flags: submit cmd flags
1504 * Callable from all contexts.
1507 int target_submit_tmr(struct se_cmd
*se_cmd
, struct se_session
*se_sess
,
1508 unsigned char *sense
, u32 unpacked_lun
,
1509 void *fabric_tmr_ptr
, unsigned char tm_type
,
1510 gfp_t gfp
, unsigned int tag
, int flags
)
1512 struct se_portal_group
*se_tpg
;
1515 se_tpg
= se_sess
->se_tpg
;
1518 transport_init_se_cmd(se_cmd
, se_tpg
->se_tpg_tfo
, se_sess
,
1519 0, DMA_NONE
, MSG_SIMPLE_TAG
, sense
);
1521 * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1522 * allocation failure.
1524 ret
= core_tmr_alloc_req(se_cmd
, fabric_tmr_ptr
, tm_type
, gfp
);
1528 if (tm_type
== TMR_ABORT_TASK
)
1529 se_cmd
->se_tmr_req
->ref_task_tag
= tag
;
1531 /* See target_submit_cmd for commentary */
1532 ret
= target_get_sess_cmd(se_sess
, se_cmd
, (flags
& TARGET_SCF_ACK_KREF
));
1534 core_tmr_release_req(se_cmd
->se_tmr_req
);
1538 ret
= transport_lookup_tmr_lun(se_cmd
, unpacked_lun
);
1541 * For callback during failure handling, push this work off
1542 * to process context with TMR_LUN_DOES_NOT_EXIST status.
1544 INIT_WORK(&se_cmd
->work
, target_complete_tmr_failure
);
1545 schedule_work(&se_cmd
->work
);
1548 transport_generic_handle_tmr(se_cmd
);
1551 EXPORT_SYMBOL(target_submit_tmr
);
1554 * If the cmd is active, request it to be stopped and sleep until it
1557 bool target_stop_cmd(struct se_cmd
*cmd
, unsigned long *flags
)
1559 bool was_active
= false;
1561 if (cmd
->transport_state
& CMD_T_BUSY
) {
1562 cmd
->transport_state
|= CMD_T_REQUEST_STOP
;
1563 spin_unlock_irqrestore(&cmd
->t_state_lock
, *flags
);
1565 pr_debug("cmd %p waiting to complete\n", cmd
);
1566 wait_for_completion(&cmd
->task_stop_comp
);
1567 pr_debug("cmd %p stopped successfully\n", cmd
);
1569 spin_lock_irqsave(&cmd
->t_state_lock
, *flags
);
1570 cmd
->transport_state
&= ~CMD_T_REQUEST_STOP
;
1571 cmd
->transport_state
&= ~CMD_T_BUSY
;
1579 * Handle SAM-esque emulation for generic transport request failures.
1581 void transport_generic_request_failure(struct se_cmd
*cmd
,
1582 sense_reason_t sense_reason
)
1586 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1587 " CDB: 0x%02x\n", cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
1588 cmd
->t_task_cdb
[0]);
1589 pr_debug("-----[ i_state: %d t_state: %d sense_reason: %d\n",
1590 cmd
->se_tfo
->get_cmd_state(cmd
),
1591 cmd
->t_state
, sense_reason
);
1592 pr_debug("-----[ CMD_T_ACTIVE: %d CMD_T_STOP: %d CMD_T_SENT: %d\n",
1593 (cmd
->transport_state
& CMD_T_ACTIVE
) != 0,
1594 (cmd
->transport_state
& CMD_T_STOP
) != 0,
1595 (cmd
->transport_state
& CMD_T_SENT
) != 0);
1598 * For SAM Task Attribute emulation for failed struct se_cmd
1600 transport_complete_task_attr(cmd
);
1602 * Handle special case for COMPARE_AND_WRITE failure, where the
1603 * callback is expected to drop the per device ->caw_sem.
1605 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1606 cmd
->transport_complete_callback
)
1607 cmd
->transport_complete_callback(cmd
, false);
1609 switch (sense_reason
) {
1610 case TCM_NON_EXISTENT_LUN
:
1611 case TCM_UNSUPPORTED_SCSI_OPCODE
:
1612 case TCM_INVALID_CDB_FIELD
:
1613 case TCM_INVALID_PARAMETER_LIST
:
1614 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
1615 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
1616 case TCM_UNKNOWN_MODE_PAGE
:
1617 case TCM_WRITE_PROTECTED
:
1618 case TCM_ADDRESS_OUT_OF_RANGE
:
1619 case TCM_CHECK_CONDITION_ABORT_CMD
:
1620 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
1621 case TCM_CHECK_CONDITION_NOT_READY
:
1622 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
1623 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
1624 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
1626 case TCM_OUT_OF_RESOURCES
:
1627 sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
1629 case TCM_RESERVATION_CONFLICT
:
1631 * No SENSE Data payload for this case, set SCSI Status
1632 * and queue the response to $FABRIC_MOD.
1634 * Uses linux/include/scsi/scsi.h SAM status codes defs
1636 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
1638 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1639 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1642 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1645 cmd
->se_dev
->dev_attrib
.emulate_ua_intlck_ctrl
== 2)
1646 core_scsi3_ua_allocate(cmd
->se_sess
->se_node_acl
,
1647 cmd
->orig_fe_lun
, 0x2C,
1648 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
1650 trace_target_cmd_complete(cmd
);
1651 ret
= cmd
->se_tfo
-> queue_status(cmd
);
1652 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1656 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1657 cmd
->t_task_cdb
[0], sense_reason
);
1658 sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
1662 ret
= transport_send_check_condition_and_sense(cmd
, sense_reason
, 0);
1663 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1667 transport_lun_remove_cmd(cmd
);
1668 if (!transport_cmd_check_stop_to_fabric(cmd
))
1673 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
1674 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1676 EXPORT_SYMBOL(transport_generic_request_failure
);
1678 void __target_execute_cmd(struct se_cmd
*cmd
)
1682 if (cmd
->execute_cmd
) {
1683 ret
= cmd
->execute_cmd(cmd
);
1685 spin_lock_irq(&cmd
->t_state_lock
);
1686 cmd
->transport_state
&= ~(CMD_T_BUSY
|CMD_T_SENT
);
1687 spin_unlock_irq(&cmd
->t_state_lock
);
1689 transport_generic_request_failure(cmd
, ret
);
1694 static bool target_handle_task_attr(struct se_cmd
*cmd
)
1696 struct se_device
*dev
= cmd
->se_dev
;
1698 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1702 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1703 * to allow the passed struct se_cmd list of tasks to the front of the list.
1705 switch (cmd
->sam_task_attr
) {
1707 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x, "
1708 "se_ordered_id: %u\n",
1709 cmd
->t_task_cdb
[0], cmd
->se_ordered_id
);
1711 case MSG_ORDERED_TAG
:
1712 atomic_inc(&dev
->dev_ordered_sync
);
1713 smp_mb__after_atomic_inc();
1715 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list, "
1716 " se_ordered_id: %u\n",
1717 cmd
->t_task_cdb
[0], cmd
->se_ordered_id
);
1720 * Execute an ORDERED command if no other older commands
1721 * exist that need to be completed first.
1723 if (!atomic_read(&dev
->simple_cmds
))
1728 * For SIMPLE and UNTAGGED Task Attribute commands
1730 atomic_inc(&dev
->simple_cmds
);
1731 smp_mb__after_atomic_inc();
1735 if (atomic_read(&dev
->dev_ordered_sync
) == 0)
1738 spin_lock(&dev
->delayed_cmd_lock
);
1739 list_add_tail(&cmd
->se_delayed_node
, &dev
->delayed_cmd_list
);
1740 spin_unlock(&dev
->delayed_cmd_lock
);
1742 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
1743 " delayed CMD list, se_ordered_id: %u\n",
1744 cmd
->t_task_cdb
[0], cmd
->sam_task_attr
,
1745 cmd
->se_ordered_id
);
1749 void target_execute_cmd(struct se_cmd
*cmd
)
1752 * If the received CDB has aleady been aborted stop processing it here.
1754 if (transport_check_aborted_status(cmd
, 1))
1758 * Determine if frontend context caller is requesting the stopping of
1759 * this command for frontend exceptions.
1761 spin_lock_irq(&cmd
->t_state_lock
);
1762 if (cmd
->transport_state
& CMD_T_STOP
) {
1763 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08x\n",
1765 cmd
->se_tfo
->get_task_tag(cmd
));
1767 spin_unlock_irq(&cmd
->t_state_lock
);
1768 complete_all(&cmd
->t_transport_stop_comp
);
1772 cmd
->t_state
= TRANSPORT_PROCESSING
;
1773 cmd
->transport_state
|= CMD_T_ACTIVE
|CMD_T_BUSY
|CMD_T_SENT
;
1774 spin_unlock_irq(&cmd
->t_state_lock
);
1776 if (target_handle_task_attr(cmd
)) {
1777 spin_lock_irq(&cmd
->t_state_lock
);
1778 cmd
->transport_state
&= ~CMD_T_BUSY
|CMD_T_SENT
;
1779 spin_unlock_irq(&cmd
->t_state_lock
);
1783 __target_execute_cmd(cmd
);
1785 EXPORT_SYMBOL(target_execute_cmd
);
1788 * Process all commands up to the last received ORDERED task attribute which
1789 * requires another blocking boundary
1791 static void target_restart_delayed_cmds(struct se_device
*dev
)
1796 spin_lock(&dev
->delayed_cmd_lock
);
1797 if (list_empty(&dev
->delayed_cmd_list
)) {
1798 spin_unlock(&dev
->delayed_cmd_lock
);
1802 cmd
= list_entry(dev
->delayed_cmd_list
.next
,
1803 struct se_cmd
, se_delayed_node
);
1804 list_del(&cmd
->se_delayed_node
);
1805 spin_unlock(&dev
->delayed_cmd_lock
);
1807 __target_execute_cmd(cmd
);
1809 if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
)
1815 * Called from I/O completion to determine which dormant/delayed
1816 * and ordered cmds need to have their tasks added to the execution queue.
1818 static void transport_complete_task_attr(struct se_cmd
*cmd
)
1820 struct se_device
*dev
= cmd
->se_dev
;
1822 if (dev
->transport
->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
1825 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
1826 atomic_dec(&dev
->simple_cmds
);
1827 smp_mb__after_atomic_dec();
1828 dev
->dev_cur_ordered_id
++;
1829 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
1830 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
1831 cmd
->se_ordered_id
);
1832 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
1833 dev
->dev_cur_ordered_id
++;
1834 pr_debug("Incremented dev_cur_ordered_id: %u for"
1835 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
1836 cmd
->se_ordered_id
);
1837 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
1838 atomic_dec(&dev
->dev_ordered_sync
);
1839 smp_mb__after_atomic_dec();
1841 dev
->dev_cur_ordered_id
++;
1842 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
1843 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
1846 target_restart_delayed_cmds(dev
);
1849 static void transport_complete_qf(struct se_cmd
*cmd
)
1853 transport_complete_task_attr(cmd
);
1855 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1856 trace_target_cmd_complete(cmd
);
1857 ret
= cmd
->se_tfo
->queue_status(cmd
);
1861 switch (cmd
->data_direction
) {
1862 case DMA_FROM_DEVICE
:
1863 trace_target_cmd_complete(cmd
);
1864 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1867 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1868 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1872 /* Fall through for DMA_TO_DEVICE */
1874 trace_target_cmd_complete(cmd
);
1875 ret
= cmd
->se_tfo
->queue_status(cmd
);
1883 transport_handle_queue_full(cmd
, cmd
->se_dev
);
1886 transport_lun_remove_cmd(cmd
);
1887 transport_cmd_check_stop_to_fabric(cmd
);
1890 static void transport_handle_queue_full(
1892 struct se_device
*dev
)
1894 spin_lock_irq(&dev
->qf_cmd_lock
);
1895 list_add_tail(&cmd
->se_qf_node
, &cmd
->se_dev
->qf_cmd_list
);
1896 atomic_inc(&dev
->dev_qf_count
);
1897 smp_mb__after_atomic_inc();
1898 spin_unlock_irq(&cmd
->se_dev
->qf_cmd_lock
);
1900 schedule_work(&cmd
->se_dev
->qf_work_queue
);
1903 static void target_complete_ok_work(struct work_struct
*work
)
1905 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
1909 * Check if we need to move delayed/dormant tasks from cmds on the
1910 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
1913 transport_complete_task_attr(cmd
);
1916 * Check to schedule QUEUE_FULL work, or execute an existing
1917 * cmd->transport_qf_callback()
1919 if (atomic_read(&cmd
->se_dev
->dev_qf_count
) != 0)
1920 schedule_work(&cmd
->se_dev
->qf_work_queue
);
1923 * Check if we need to send a sense buffer from
1924 * the struct se_cmd in question.
1926 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
1927 WARN_ON(!cmd
->scsi_status
);
1928 ret
= transport_send_check_condition_and_sense(
1930 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1933 transport_lun_remove_cmd(cmd
);
1934 transport_cmd_check_stop_to_fabric(cmd
);
1938 * Check for a callback, used by amongst other things
1939 * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
1941 if (cmd
->transport_complete_callback
) {
1944 rc
= cmd
->transport_complete_callback(cmd
, true);
1945 if (!rc
&& !(cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE_POST
)) {
1946 if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
1952 ret
= transport_send_check_condition_and_sense(cmd
,
1954 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1957 transport_lun_remove_cmd(cmd
);
1958 transport_cmd_check_stop_to_fabric(cmd
);
1964 switch (cmd
->data_direction
) {
1965 case DMA_FROM_DEVICE
:
1966 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1967 if (cmd
->se_lun
->lun_sep
) {
1968 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
1971 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1973 trace_target_cmd_complete(cmd
);
1974 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1975 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
1979 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1980 if (cmd
->se_lun
->lun_sep
) {
1981 cmd
->se_lun
->lun_sep
->sep_stats
.rx_data_octets
+=
1984 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1986 * Check if we need to send READ payload for BIDI-COMMAND
1988 if (cmd
->se_cmd_flags
& SCF_BIDI
) {
1989 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1990 if (cmd
->se_lun
->lun_sep
) {
1991 cmd
->se_lun
->lun_sep
->sep_stats
.tx_data_octets
+=
1994 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1995 ret
= cmd
->se_tfo
->queue_data_in(cmd
);
1996 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2000 /* Fall through for DMA_TO_DEVICE */
2002 trace_target_cmd_complete(cmd
);
2003 ret
= cmd
->se_tfo
->queue_status(cmd
);
2004 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2011 transport_lun_remove_cmd(cmd
);
2012 transport_cmd_check_stop_to_fabric(cmd
);
2016 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2017 " data_direction: %d\n", cmd
, cmd
->data_direction
);
2018 cmd
->t_state
= TRANSPORT_COMPLETE_QF_OK
;
2019 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2022 static inline void transport_free_sgl(struct scatterlist
*sgl
, int nents
)
2024 struct scatterlist
*sg
;
2027 for_each_sg(sgl
, sg
, nents
, count
)
2028 __free_page(sg_page(sg
));
2033 static inline void transport_reset_sgl_orig(struct se_cmd
*cmd
)
2036 * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2037 * emulation, and free + reset pointers if necessary..
2039 if (!cmd
->t_data_sg_orig
)
2042 kfree(cmd
->t_data_sg
);
2043 cmd
->t_data_sg
= cmd
->t_data_sg_orig
;
2044 cmd
->t_data_sg_orig
= NULL
;
2045 cmd
->t_data_nents
= cmd
->t_data_nents_orig
;
2046 cmd
->t_data_nents_orig
= 0;
2049 static inline void transport_free_pages(struct se_cmd
*cmd
)
2051 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) {
2053 * Release special case READ buffer payload required for
2054 * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2056 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) {
2057 transport_free_sgl(cmd
->t_bidi_data_sg
,
2058 cmd
->t_bidi_data_nents
);
2059 cmd
->t_bidi_data_sg
= NULL
;
2060 cmd
->t_bidi_data_nents
= 0;
2062 transport_reset_sgl_orig(cmd
);
2065 transport_reset_sgl_orig(cmd
);
2067 transport_free_sgl(cmd
->t_data_sg
, cmd
->t_data_nents
);
2068 cmd
->t_data_sg
= NULL
;
2069 cmd
->t_data_nents
= 0;
2071 transport_free_sgl(cmd
->t_bidi_data_sg
, cmd
->t_bidi_data_nents
);
2072 cmd
->t_bidi_data_sg
= NULL
;
2073 cmd
->t_bidi_data_nents
= 0;
2077 * transport_release_cmd - free a command
2078 * @cmd: command to free
2080 * This routine unconditionally frees a command, and reference counting
2081 * or list removal must be done in the caller.
2083 static int transport_release_cmd(struct se_cmd
*cmd
)
2085 BUG_ON(!cmd
->se_tfo
);
2087 if (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)
2088 core_tmr_release_req(cmd
->se_tmr_req
);
2089 if (cmd
->t_task_cdb
!= cmd
->__t_task_cdb
)
2090 kfree(cmd
->t_task_cdb
);
2092 * If this cmd has been setup with target_get_sess_cmd(), drop
2093 * the kref and call ->release_cmd() in kref callback.
2095 return target_put_sess_cmd(cmd
->se_sess
, cmd
);
2099 * transport_put_cmd - release a reference to a command
2100 * @cmd: command to release
2102 * This routine releases our reference to the command and frees it if possible.
2104 static int transport_put_cmd(struct se_cmd
*cmd
)
2106 transport_free_pages(cmd
);
2107 return transport_release_cmd(cmd
);
2110 void *transport_kmap_data_sg(struct se_cmd
*cmd
)
2112 struct scatterlist
*sg
= cmd
->t_data_sg
;
2113 struct page
**pages
;
2117 * We need to take into account a possible offset here for fabrics like
2118 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2119 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2121 if (!cmd
->t_data_nents
)
2125 if (cmd
->t_data_nents
== 1)
2126 return kmap(sg_page(sg
)) + sg
->offset
;
2128 /* >1 page. use vmap */
2129 pages
= kmalloc(sizeof(*pages
) * cmd
->t_data_nents
, GFP_KERNEL
);
2133 /* convert sg[] to pages[] */
2134 for_each_sg(cmd
->t_data_sg
, sg
, cmd
->t_data_nents
, i
) {
2135 pages
[i
] = sg_page(sg
);
2138 cmd
->t_data_vmap
= vmap(pages
, cmd
->t_data_nents
, VM_MAP
, PAGE_KERNEL
);
2140 if (!cmd
->t_data_vmap
)
2143 return cmd
->t_data_vmap
+ cmd
->t_data_sg
[0].offset
;
2145 EXPORT_SYMBOL(transport_kmap_data_sg
);
2147 void transport_kunmap_data_sg(struct se_cmd
*cmd
)
2149 if (!cmd
->t_data_nents
) {
2151 } else if (cmd
->t_data_nents
== 1) {
2152 kunmap(sg_page(cmd
->t_data_sg
));
2156 vunmap(cmd
->t_data_vmap
);
2157 cmd
->t_data_vmap
= NULL
;
2159 EXPORT_SYMBOL(transport_kunmap_data_sg
);
2162 target_alloc_sgl(struct scatterlist
**sgl
, unsigned int *nents
, u32 length
,
2165 struct scatterlist
*sg
;
2167 gfp_t zero_flag
= (zero_page
) ? __GFP_ZERO
: 0;
2171 nent
= DIV_ROUND_UP(length
, PAGE_SIZE
);
2172 sg
= kmalloc(sizeof(struct scatterlist
) * nent
, GFP_KERNEL
);
2176 sg_init_table(sg
, nent
);
2179 u32 page_len
= min_t(u32
, length
, PAGE_SIZE
);
2180 page
= alloc_page(GFP_KERNEL
| zero_flag
);
2184 sg_set_page(&sg
[i
], page
, page_len
, 0);
2195 __free_page(sg_page(&sg
[i
]));
2202 * Allocate any required resources to execute the command. For writes we
2203 * might not have the payload yet, so notify the fabric via a call to
2204 * ->write_pending instead. Otherwise place it on the execution queue.
2207 transport_generic_new_cmd(struct se_cmd
*cmd
)
2210 bool zero_flag
= !(cmd
->se_cmd_flags
& SCF_SCSI_DATA_CDB
);
2213 * Determine is the TCM fabric module has already allocated physical
2214 * memory, and is directly calling transport_generic_map_mem_to_cmd()
2217 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
) &&
2220 if ((cmd
->se_cmd_flags
& SCF_BIDI
) ||
2221 (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)) {
2224 if (cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
)
2225 bidi_length
= cmd
->t_task_nolb
*
2226 cmd
->se_dev
->dev_attrib
.block_size
;
2228 bidi_length
= cmd
->data_length
;
2230 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2231 &cmd
->t_bidi_data_nents
,
2232 bidi_length
, zero_flag
);
2234 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2237 ret
= target_alloc_sgl(&cmd
->t_data_sg
, &cmd
->t_data_nents
,
2238 cmd
->data_length
, zero_flag
);
2240 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2241 } else if ((cmd
->se_cmd_flags
& SCF_COMPARE_AND_WRITE
) &&
2244 * Special case for COMPARE_AND_WRITE with fabrics
2245 * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2247 u32 caw_length
= cmd
->t_task_nolb
*
2248 cmd
->se_dev
->dev_attrib
.block_size
;
2250 ret
= target_alloc_sgl(&cmd
->t_bidi_data_sg
,
2251 &cmd
->t_bidi_data_nents
,
2252 caw_length
, zero_flag
);
2254 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2257 * If this command is not a write we can execute it right here,
2258 * for write buffers we need to notify the fabric driver first
2259 * and let it call back once the write buffers are ready.
2261 target_add_to_state_list(cmd
);
2262 if (cmd
->data_direction
!= DMA_TO_DEVICE
|| cmd
->data_length
== 0) {
2263 target_execute_cmd(cmd
);
2266 transport_cmd_check_stop(cmd
, false, true);
2268 ret
= cmd
->se_tfo
->write_pending(cmd
);
2269 if (ret
== -EAGAIN
|| ret
== -ENOMEM
)
2272 /* fabric drivers should only return -EAGAIN or -ENOMEM as error */
2275 return (!ret
) ? 0 : TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2278 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd
);
2279 cmd
->t_state
= TRANSPORT_COMPLETE_QF_WP
;
2280 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2283 EXPORT_SYMBOL(transport_generic_new_cmd
);
2285 static void transport_write_pending_qf(struct se_cmd
*cmd
)
2289 ret
= cmd
->se_tfo
->write_pending(cmd
);
2290 if (ret
== -EAGAIN
|| ret
== -ENOMEM
) {
2291 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2293 transport_handle_queue_full(cmd
, cmd
->se_dev
);
2297 int transport_generic_free_cmd(struct se_cmd
*cmd
, int wait_for_tasks
)
2299 unsigned long flags
;
2302 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
)) {
2303 if (wait_for_tasks
&& (cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
))
2304 transport_wait_for_tasks(cmd
);
2306 ret
= transport_release_cmd(cmd
);
2309 transport_wait_for_tasks(cmd
);
2311 * Handle WRITE failure case where transport_generic_new_cmd()
2312 * has already added se_cmd to state_list, but fabric has
2313 * failed command before I/O submission.
2315 if (cmd
->state_active
) {
2316 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2317 target_remove_from_state_list(cmd
);
2318 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2322 transport_lun_remove_cmd(cmd
);
2324 ret
= transport_put_cmd(cmd
);
2328 EXPORT_SYMBOL(transport_generic_free_cmd
);
2330 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2331 * @se_sess: session to reference
2332 * @se_cmd: command descriptor to add
2333 * @ack_kref: Signal that fabric will perform an ack target_put_sess_cmd()
2335 int target_get_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
,
2338 unsigned long flags
;
2342 * Add a second kref if the fabric caller is expecting to handle
2343 * fabric acknowledgement that requires two target_put_sess_cmd()
2344 * invocations before se_cmd descriptor release.
2346 if (ack_kref
== true) {
2347 kref_get(&se_cmd
->cmd_kref
);
2348 se_cmd
->se_cmd_flags
|= SCF_ACK_KREF
;
2351 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2352 if (se_sess
->sess_tearing_down
) {
2356 list_add_tail(&se_cmd
->se_cmd_list
, &se_sess
->sess_cmd_list
);
2358 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2360 if (ret
&& ack_kref
)
2361 target_put_sess_cmd(se_sess
, se_cmd
);
2365 EXPORT_SYMBOL(target_get_sess_cmd
);
2367 static void target_release_cmd_kref(struct kref
*kref
)
2369 struct se_cmd
*se_cmd
= container_of(kref
, struct se_cmd
, cmd_kref
);
2370 struct se_session
*se_sess
= se_cmd
->se_sess
;
2372 if (list_empty(&se_cmd
->se_cmd_list
)) {
2373 spin_unlock(&se_sess
->sess_cmd_lock
);
2374 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2377 if (se_sess
->sess_tearing_down
&& se_cmd
->cmd_wait_set
) {
2378 spin_unlock(&se_sess
->sess_cmd_lock
);
2379 complete(&se_cmd
->cmd_wait_comp
);
2382 list_del(&se_cmd
->se_cmd_list
);
2383 spin_unlock(&se_sess
->sess_cmd_lock
);
2385 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2388 /* target_put_sess_cmd - Check for active I/O shutdown via kref_put
2389 * @se_sess: session to reference
2390 * @se_cmd: command descriptor to drop
2392 int target_put_sess_cmd(struct se_session
*se_sess
, struct se_cmd
*se_cmd
)
2395 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2398 return kref_put_spinlock_irqsave(&se_cmd
->cmd_kref
, target_release_cmd_kref
,
2399 &se_sess
->sess_cmd_lock
);
2401 EXPORT_SYMBOL(target_put_sess_cmd
);
2403 /* target_sess_cmd_list_set_waiting - Flag all commands in
2404 * sess_cmd_list to complete cmd_wait_comp. Set
2405 * sess_tearing_down so no more commands are queued.
2406 * @se_sess: session to flag
2408 void target_sess_cmd_list_set_waiting(struct se_session
*se_sess
)
2410 struct se_cmd
*se_cmd
;
2411 unsigned long flags
;
2413 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2414 if (se_sess
->sess_tearing_down
) {
2415 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2418 se_sess
->sess_tearing_down
= 1;
2419 list_splice_init(&se_sess
->sess_cmd_list
, &se_sess
->sess_wait_list
);
2421 list_for_each_entry(se_cmd
, &se_sess
->sess_wait_list
, se_cmd_list
)
2422 se_cmd
->cmd_wait_set
= 1;
2424 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2426 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting
);
2428 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2429 * @se_sess: session to wait for active I/O
2431 void target_wait_for_sess_cmds(struct se_session
*se_sess
)
2433 struct se_cmd
*se_cmd
, *tmp_cmd
;
2434 unsigned long flags
;
2436 list_for_each_entry_safe(se_cmd
, tmp_cmd
,
2437 &se_sess
->sess_wait_list
, se_cmd_list
) {
2438 list_del(&se_cmd
->se_cmd_list
);
2440 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2441 " %d\n", se_cmd
, se_cmd
->t_state
,
2442 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2444 wait_for_completion(&se_cmd
->cmd_wait_comp
);
2445 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2446 " fabric state: %d\n", se_cmd
, se_cmd
->t_state
,
2447 se_cmd
->se_tfo
->get_cmd_state(se_cmd
));
2449 se_cmd
->se_tfo
->release_cmd(se_cmd
);
2452 spin_lock_irqsave(&se_sess
->sess_cmd_lock
, flags
);
2453 WARN_ON(!list_empty(&se_sess
->sess_cmd_list
));
2454 spin_unlock_irqrestore(&se_sess
->sess_cmd_lock
, flags
);
2457 EXPORT_SYMBOL(target_wait_for_sess_cmds
);
2459 static int transport_clear_lun_ref_thread(void *p
)
2461 struct se_lun
*lun
= p
;
2463 percpu_ref_kill(&lun
->lun_ref
);
2465 wait_for_completion(&lun
->lun_ref_comp
);
2466 complete(&lun
->lun_shutdown_comp
);
2471 int transport_clear_lun_ref(struct se_lun
*lun
)
2473 struct task_struct
*kt
;
2475 kt
= kthread_run(transport_clear_lun_ref_thread
, lun
,
2476 "tcm_cl_%u", lun
->unpacked_lun
);
2478 pr_err("Unable to start clear_lun thread\n");
2481 wait_for_completion(&lun
->lun_shutdown_comp
);
2487 * transport_wait_for_tasks - wait for completion to occur
2488 * @cmd: command to wait
2490 * Called from frontend fabric context to wait for storage engine
2491 * to pause and/or release frontend generated struct se_cmd.
2493 bool transport_wait_for_tasks(struct se_cmd
*cmd
)
2495 unsigned long flags
;
2497 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2498 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) &&
2499 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2500 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2504 if (!(cmd
->se_cmd_flags
& SCF_SUPPORTED_SAM_OPCODE
) &&
2505 !(cmd
->se_cmd_flags
& SCF_SCSI_TMR_CDB
)) {
2506 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2510 if (!(cmd
->transport_state
& CMD_T_ACTIVE
)) {
2511 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2515 cmd
->transport_state
|= CMD_T_STOP
;
2517 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
2518 " i_state: %d, t_state: %d, CMD_T_STOP\n",
2519 cmd
, cmd
->se_tfo
->get_task_tag(cmd
),
2520 cmd
->se_tfo
->get_cmd_state(cmd
), cmd
->t_state
);
2522 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2524 wait_for_completion(&cmd
->t_transport_stop_comp
);
2526 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2527 cmd
->transport_state
&= ~(CMD_T_ACTIVE
| CMD_T_STOP
);
2529 pr_debug("wait_for_tasks: Stopped wait_for_completion("
2530 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
2531 cmd
->se_tfo
->get_task_tag(cmd
));
2533 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2537 EXPORT_SYMBOL(transport_wait_for_tasks
);
2539 static int transport_get_sense_codes(
2544 *asc
= cmd
->scsi_asc
;
2545 *ascq
= cmd
->scsi_ascq
;
2551 void transport_err_sector_info(unsigned char *buffer
, sector_t bad_sector
)
2553 /* Place failed LBA in sense data information descriptor 0. */
2554 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 0xc;
2555 buffer
[SPC_DESC_TYPE_OFFSET
] = 0; /* Information */
2556 buffer
[SPC_ADDITIONAL_DESC_LEN_OFFSET
] = 0xa;
2557 buffer
[SPC_VALIDITY_OFFSET
] = 0x80;
2559 /* Descriptor Information: failing sector */
2560 put_unaligned_be64(bad_sector
, &buffer
[12]);
2564 transport_send_check_condition_and_sense(struct se_cmd
*cmd
,
2565 sense_reason_t reason
, int from_transport
)
2567 unsigned char *buffer
= cmd
->sense_buffer
;
2568 unsigned long flags
;
2569 u8 asc
= 0, ascq
= 0;
2571 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2572 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
2573 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2576 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
2577 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2579 if (!reason
&& from_transport
)
2582 if (!from_transport
)
2583 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
2586 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
2587 * SENSE KEY values from include/scsi/scsi.h
2593 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2595 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2596 /* NO ADDITIONAL SENSE INFORMATION */
2597 buffer
[SPC_ASC_KEY_OFFSET
] = 0;
2598 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0;
2600 case TCM_NON_EXISTENT_LUN
:
2603 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2604 /* ILLEGAL REQUEST */
2605 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2606 /* LOGICAL UNIT NOT SUPPORTED */
2607 buffer
[SPC_ASC_KEY_OFFSET
] = 0x25;
2609 case TCM_UNSUPPORTED_SCSI_OPCODE
:
2610 case TCM_SECTOR_COUNT_TOO_MANY
:
2613 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2614 /* ILLEGAL REQUEST */
2615 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2616 /* INVALID COMMAND OPERATION CODE */
2617 buffer
[SPC_ASC_KEY_OFFSET
] = 0x20;
2619 case TCM_UNKNOWN_MODE_PAGE
:
2622 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2623 /* ILLEGAL REQUEST */
2624 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2625 /* INVALID FIELD IN CDB */
2626 buffer
[SPC_ASC_KEY_OFFSET
] = 0x24;
2628 case TCM_CHECK_CONDITION_ABORT_CMD
:
2631 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2632 /* ABORTED COMMAND */
2633 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2634 /* BUS DEVICE RESET FUNCTION OCCURRED */
2635 buffer
[SPC_ASC_KEY_OFFSET
] = 0x29;
2636 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x03;
2638 case TCM_INCORRECT_AMOUNT_OF_DATA
:
2641 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2642 /* ABORTED COMMAND */
2643 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2645 buffer
[SPC_ASC_KEY_OFFSET
] = 0x0c;
2646 /* NOT ENOUGH UNSOLICITED DATA */
2647 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x0d;
2649 case TCM_INVALID_CDB_FIELD
:
2652 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2653 /* ILLEGAL REQUEST */
2654 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2655 /* INVALID FIELD IN CDB */
2656 buffer
[SPC_ASC_KEY_OFFSET
] = 0x24;
2658 case TCM_INVALID_PARAMETER_LIST
:
2661 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2662 /* ILLEGAL REQUEST */
2663 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2664 /* INVALID FIELD IN PARAMETER LIST */
2665 buffer
[SPC_ASC_KEY_OFFSET
] = 0x26;
2667 case TCM_PARAMETER_LIST_LENGTH_ERROR
:
2670 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2671 /* ILLEGAL REQUEST */
2672 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2673 /* PARAMETER LIST LENGTH ERROR */
2674 buffer
[SPC_ASC_KEY_OFFSET
] = 0x1a;
2676 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
2679 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2680 /* ABORTED COMMAND */
2681 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2683 buffer
[SPC_ASC_KEY_OFFSET
] = 0x0c;
2684 /* UNEXPECTED_UNSOLICITED_DATA */
2685 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x0c;
2687 case TCM_SERVICE_CRC_ERROR
:
2690 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2691 /* ABORTED COMMAND */
2692 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2693 /* PROTOCOL SERVICE CRC ERROR */
2694 buffer
[SPC_ASC_KEY_OFFSET
] = 0x47;
2696 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x05;
2698 case TCM_SNACK_REJECTED
:
2701 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2702 /* ABORTED COMMAND */
2703 buffer
[SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
2705 buffer
[SPC_ASC_KEY_OFFSET
] = 0x11;
2706 /* FAILED RETRANSMISSION REQUEST */
2707 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x13;
2709 case TCM_WRITE_PROTECTED
:
2712 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2714 buffer
[SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
2715 /* WRITE PROTECTED */
2716 buffer
[SPC_ASC_KEY_OFFSET
] = 0x27;
2718 case TCM_ADDRESS_OUT_OF_RANGE
:
2721 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2722 /* ILLEGAL REQUEST */
2723 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2724 /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
2725 buffer
[SPC_ASC_KEY_OFFSET
] = 0x21;
2727 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
2730 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2731 /* UNIT ATTENTION */
2732 buffer
[SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
2733 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
2734 buffer
[SPC_ASC_KEY_OFFSET
] = asc
;
2735 buffer
[SPC_ASCQ_KEY_OFFSET
] = ascq
;
2737 case TCM_CHECK_CONDITION_NOT_READY
:
2740 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2742 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2743 transport_get_sense_codes(cmd
, &asc
, &ascq
);
2744 buffer
[SPC_ASC_KEY_OFFSET
] = asc
;
2745 buffer
[SPC_ASCQ_KEY_OFFSET
] = ascq
;
2747 case TCM_MISCOMPARE_VERIFY
:
2750 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2751 buffer
[SPC_SENSE_KEY_OFFSET
] = MISCOMPARE
;
2752 /* MISCOMPARE DURING VERIFY OPERATION */
2753 buffer
[SPC_ASC_KEY_OFFSET
] = 0x1d;
2754 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x00;
2756 case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED
:
2759 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2760 /* ILLEGAL REQUEST */
2761 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2762 /* LOGICAL BLOCK GUARD CHECK FAILED */
2763 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2764 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x01;
2765 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2767 case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED
:
2770 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2771 /* ILLEGAL REQUEST */
2772 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2773 /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
2774 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2775 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x02;
2776 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2778 case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED
:
2781 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2782 /* ILLEGAL REQUEST */
2783 buffer
[SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
2784 /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
2785 buffer
[SPC_ASC_KEY_OFFSET
] = 0x10;
2786 buffer
[SPC_ASCQ_KEY_OFFSET
] = 0x03;
2787 transport_err_sector_info(buffer
, cmd
->bad_sector
);
2789 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
2793 buffer
[SPC_ADD_SENSE_LEN_OFFSET
] = 10;
2795 * Returning ILLEGAL REQUEST would cause immediate IO errors on
2796 * Solaris initiators. Returning NOT READY instead means the
2797 * operations will be retried a finite number of times and we
2798 * can survive intermittent errors.
2800 buffer
[SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
2801 /* LOGICAL UNIT COMMUNICATION FAILURE */
2802 buffer
[SPC_ASC_KEY_OFFSET
] = 0x08;
2806 * This code uses linux/include/scsi/scsi.h SAM status codes!
2808 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
2810 * Automatically padded, this value is encoded in the fabric's
2811 * data_length response PDU containing the SCSI defined sense data.
2813 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
;
2816 trace_target_cmd_complete(cmd
);
2817 return cmd
->se_tfo
->queue_status(cmd
);
2819 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
2821 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
2823 if (!(cmd
->transport_state
& CMD_T_ABORTED
))
2826 if (!send_status
|| (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
2829 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB: 0x%02x ITT: 0x%08x\n",
2830 cmd
->t_task_cdb
[0], cmd
->se_tfo
->get_task_tag(cmd
));
2832 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
2833 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2834 trace_target_cmd_complete(cmd
);
2835 cmd
->se_tfo
->queue_status(cmd
);
2839 EXPORT_SYMBOL(transport_check_aborted_status
);
2841 void transport_send_task_abort(struct se_cmd
*cmd
)
2843 unsigned long flags
;
2845 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2846 if (cmd
->se_cmd_flags
& (SCF_SENT_CHECK_CONDITION
| SCF_SENT_DELAYED_TAS
)) {
2847 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2850 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2853 * If there are still expected incoming fabric WRITEs, we wait
2854 * until until they have completed before sending a TASK_ABORTED
2855 * response. This response with TASK_ABORTED status will be
2856 * queued back to fabric module by transport_check_aborted_status().
2858 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
2859 if (cmd
->se_tfo
->write_pending_status(cmd
) != 0) {
2860 cmd
->transport_state
|= CMD_T_ABORTED
;
2861 smp_mb__after_atomic_inc();
2865 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
2867 transport_lun_remove_cmd(cmd
);
2869 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
2870 " ITT: 0x%08x\n", cmd
->t_task_cdb
[0],
2871 cmd
->se_tfo
->get_task_tag(cmd
));
2873 trace_target_cmd_complete(cmd
);
2874 cmd
->se_tfo
->queue_status(cmd
);
2877 static void target_tmr_work(struct work_struct
*work
)
2879 struct se_cmd
*cmd
= container_of(work
, struct se_cmd
, work
);
2880 struct se_device
*dev
= cmd
->se_dev
;
2881 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
2884 switch (tmr
->function
) {
2885 case TMR_ABORT_TASK
:
2886 core_tmr_abort_task(dev
, tmr
, cmd
->se_sess
);
2888 case TMR_ABORT_TASK_SET
:
2890 case TMR_CLEAR_TASK_SET
:
2891 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
2894 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
2895 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
2896 TMR_FUNCTION_REJECTED
;
2898 case TMR_TARGET_WARM_RESET
:
2899 tmr
->response
= TMR_FUNCTION_REJECTED
;
2901 case TMR_TARGET_COLD_RESET
:
2902 tmr
->response
= TMR_FUNCTION_REJECTED
;
2905 pr_err("Uknown TMR function: 0x%02x.\n",
2907 tmr
->response
= TMR_FUNCTION_REJECTED
;
2911 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
2912 cmd
->se_tfo
->queue_tm_rsp(cmd
);
2914 transport_cmd_check_stop_to_fabric(cmd
);
2917 int transport_generic_handle_tmr(
2920 unsigned long flags
;
2922 spin_lock_irqsave(&cmd
->t_state_lock
, flags
);
2923 cmd
->transport_state
|= CMD_T_ACTIVE
;
2924 spin_unlock_irqrestore(&cmd
->t_state_lock
, flags
);
2926 INIT_WORK(&cmd
->work
, target_tmr_work
);
2927 queue_work(cmd
->se_dev
->tmr_wq
, &cmd
->work
);
2930 EXPORT_SYMBOL(transport_generic_handle_tmr
);