Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / ipc / sem.c
blobe5e3716d572ea1c435119dbac380add4b2b6c902
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
91 #include "util.h"
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
102 time_t sem_otime; /* candidate for sem_otime */
103 } ____cacheline_aligned_in_smp;
105 /* One queue for each sleeping process in the system. */
106 struct sem_queue {
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
117 /* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
120 struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
133 /* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
136 struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
143 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
145 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
147 static int newary(struct ipc_namespace *, struct ipc_params *);
148 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
149 #ifdef CONFIG_PROC_FS
150 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
151 #endif
153 #define SEMMSL_FAST 256 /* 512 bytes on stack */
154 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
157 * Locking:
158 * sem_undo.id_next,
159 * sem_array.complex_count,
160 * sem_array.pending{_alter,_cont},
161 * sem_array.sem_undo: global sem_lock() for read/write
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
168 #define sc_semmsl sem_ctls[0]
169 #define sc_semmns sem_ctls[1]
170 #define sc_semopm sem_ctls[2]
171 #define sc_semmni sem_ctls[3]
173 void sem_init_ns(struct ipc_namespace *ns)
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
183 #ifdef CONFIG_IPC_NS
184 void sem_exit_ns(struct ipc_namespace *ns)
186 free_ipcs(ns, &sem_ids(ns), freeary);
187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
189 #endif
191 void __init sem_init(void)
193 sem_init_ns(&init_ipc_ns);
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
196 IPC_SEM_IDS, sysvipc_sem_proc_show);
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
206 static void unmerge_queues(struct sem_array *sma)
208 struct sem_queue *q, *tq;
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
222 list_add_tail(&q->list, &curr->pending_alter);
224 INIT_LIST_HEAD(&sma->pending_alter);
228 * merge_queues - merge single semop queues into global queue
229 * @sma: semaphore array
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
236 static void merge_queues(struct sem_array *sma)
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
246 static void sem_rcu_free(struct rcu_head *head)
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
251 security_sem_free(sma);
252 ipc_rcu_free(head);
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
260 * that a) sem_perm.lock is free and b) complex_count is 0.
262 static void sem_wait_array(struct sem_array *sma)
264 int i;
265 struct sem *sem;
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
271 return;
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
287 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
290 struct sem *sem;
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
299 sem_wait_array(sma);
300 return -1;
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
318 sem = sma->sem_base + sops->sem_num;
320 if (sma->complex_count == 0) {
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
325 spin_lock(&sem->lock);
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
341 spin_unlock(&sem->lock);
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
355 } else {
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
359 sem_wait_array(sma);
360 return -1;
364 static inline void sem_unlock(struct sem_array *sma, int locknum)
366 if (locknum == -1) {
367 unmerge_queues(sma);
368 ipc_unlock_object(&sma->sem_perm);
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
376 * sem_lock_(check_) routines are called in the paths where the rwsem
377 * is not held.
379 * The caller holds the RCU read lock.
381 static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
397 if (ipc_valid_object(ipcp))
398 return container_of(ipcp, struct sem_array, sem_perm);
400 sem_unlock(sma, *locknum);
401 return ERR_PTR(-EINVAL);
404 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
411 return container_of(ipcp, struct sem_array, sem_perm);
414 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
422 return container_of(ipcp, struct sem_array, sem_perm);
425 static inline void sem_lock_and_putref(struct sem_array *sma)
427 sem_lock(sma, NULL, -1);
428 ipc_rcu_putref(sma, ipc_rcu_free);
431 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
441 * * unlinking the queue entry from the pending list
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
451 * performing any operation on the sem array.
452 * * otherwise it must acquire the spinlock and check what's up.
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
468 #define IN_WAKEUP 1
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
475 * Called with sem_ids.rwsem held (as a writer)
477 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
479 int id;
480 int retval;
481 struct sem_array *sma;
482 int size;
483 key_t key = params->key;
484 int nsems = params->u.nsems;
485 int semflg = params->flg;
486 int i;
488 if (!nsems)
489 return -EINVAL;
490 if (ns->used_sems + nsems > ns->sc_semmns)
491 return -ENOSPC;
493 size = sizeof(*sma) + nsems * sizeof(struct sem);
494 sma = ipc_rcu_alloc(size);
495 if (!sma)
496 return -ENOMEM;
498 memset(sma, 0, size);
500 sma->sem_perm.mode = (semflg & S_IRWXUGO);
501 sma->sem_perm.key = key;
503 sma->sem_perm.security = NULL;
504 retval = security_sem_alloc(sma);
505 if (retval) {
506 ipc_rcu_putref(sma, ipc_rcu_free);
507 return retval;
510 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
511 if (id < 0) {
512 ipc_rcu_putref(sma, sem_rcu_free);
513 return id;
515 ns->used_sems += nsems;
517 sma->sem_base = (struct sem *) &sma[1];
519 for (i = 0; i < nsems; i++) {
520 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
521 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
522 spin_lock_init(&sma->sem_base[i].lock);
525 sma->complex_count = 0;
526 INIT_LIST_HEAD(&sma->pending_alter);
527 INIT_LIST_HEAD(&sma->pending_const);
528 INIT_LIST_HEAD(&sma->list_id);
529 sma->sem_nsems = nsems;
530 sma->sem_ctime = get_seconds();
531 sem_unlock(sma, -1);
532 rcu_read_unlock();
534 return sma->sem_perm.id;
539 * Called with sem_ids.rwsem and ipcp locked.
541 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
543 struct sem_array *sma;
545 sma = container_of(ipcp, struct sem_array, sem_perm);
546 return security_sem_associate(sma, semflg);
550 * Called with sem_ids.rwsem and ipcp locked.
552 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
553 struct ipc_params *params)
555 struct sem_array *sma;
557 sma = container_of(ipcp, struct sem_array, sem_perm);
558 if (params->u.nsems > sma->sem_nsems)
559 return -EINVAL;
561 return 0;
564 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
566 struct ipc_namespace *ns;
567 struct ipc_ops sem_ops;
568 struct ipc_params sem_params;
570 ns = current->nsproxy->ipc_ns;
572 if (nsems < 0 || nsems > ns->sc_semmsl)
573 return -EINVAL;
575 sem_ops.getnew = newary;
576 sem_ops.associate = sem_security;
577 sem_ops.more_checks = sem_more_checks;
579 sem_params.key = key;
580 sem_params.flg = semflg;
581 sem_params.u.nsems = nsems;
583 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
587 * perform_atomic_semop - Perform (if possible) a semaphore operation
588 * @sma: semaphore array
589 * @sops: array with operations that should be checked
590 * @nsops: number of operations
591 * @un: undo array
592 * @pid: pid that did the change
594 * Returns 0 if the operation was possible.
595 * Returns 1 if the operation is impossible, the caller must sleep.
596 * Negative values are error codes.
598 static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
599 int nsops, struct sem_undo *un, int pid)
601 int result, sem_op;
602 struct sembuf *sop;
603 struct sem *curr;
605 for (sop = sops; sop < sops + nsops; sop++) {
606 curr = sma->sem_base + sop->sem_num;
607 sem_op = sop->sem_op;
608 result = curr->semval;
610 if (!sem_op && result)
611 goto would_block;
613 result += sem_op;
614 if (result < 0)
615 goto would_block;
616 if (result > SEMVMX)
617 goto out_of_range;
619 if (sop->sem_flg & SEM_UNDO) {
620 int undo = un->semadj[sop->sem_num] - sem_op;
621 /* Exceeding the undo range is an error. */
622 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
623 goto out_of_range;
624 un->semadj[sop->sem_num] = undo;
627 curr->semval = result;
630 sop--;
631 while (sop >= sops) {
632 sma->sem_base[sop->sem_num].sempid = pid;
633 sop--;
636 return 0;
638 out_of_range:
639 result = -ERANGE;
640 goto undo;
642 would_block:
643 if (sop->sem_flg & IPC_NOWAIT)
644 result = -EAGAIN;
645 else
646 result = 1;
648 undo:
649 sop--;
650 while (sop >= sops) {
651 sem_op = sop->sem_op;
652 sma->sem_base[sop->sem_num].semval -= sem_op;
653 if (sop->sem_flg & SEM_UNDO)
654 un->semadj[sop->sem_num] += sem_op;
655 sop--;
658 return result;
661 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
662 * @q: queue entry that must be signaled
663 * @error: Error value for the signal
665 * Prepare the wake-up of the queue entry q.
667 static void wake_up_sem_queue_prepare(struct list_head *pt,
668 struct sem_queue *q, int error)
670 #ifdef CONFIG_PREEMPT_RT_BASE
671 struct task_struct *p = q->sleeper;
672 get_task_struct(p);
673 q->status = error;
674 wake_up_process(p);
675 put_task_struct(p);
676 #else
677 if (list_empty(pt)) {
679 * Hold preempt off so that we don't get preempted and have the
680 * wakee busy-wait until we're scheduled back on.
682 preempt_disable();
684 q->status = IN_WAKEUP;
685 q->pid = error;
687 list_add_tail(&q->list, pt);
688 #endif
692 * wake_up_sem_queue_do - do the actual wake-up
693 * @pt: list of tasks to be woken up
695 * Do the actual wake-up.
696 * The function is called without any locks held, thus the semaphore array
697 * could be destroyed already and the tasks can disappear as soon as the
698 * status is set to the actual return code.
700 static void wake_up_sem_queue_do(struct list_head *pt)
702 #ifndef CONFIG_PREEMPT_RT_BASE
703 struct sem_queue *q, *t;
704 int did_something;
706 did_something = !list_empty(pt);
707 list_for_each_entry_safe(q, t, pt, list) {
708 wake_up_process(q->sleeper);
709 /* q can disappear immediately after writing q->status. */
710 smp_wmb();
711 q->status = q->pid;
713 if (did_something)
714 preempt_enable();
715 #endif
718 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
720 list_del(&q->list);
721 if (q->nsops > 1)
722 sma->complex_count--;
725 /** check_restart(sma, q)
726 * @sma: semaphore array
727 * @q: the operation that just completed
729 * update_queue is O(N^2) when it restarts scanning the whole queue of
730 * waiting operations. Therefore this function checks if the restart is
731 * really necessary. It is called after a previously waiting operation
732 * modified the array.
733 * Note that wait-for-zero operations are handled without restart.
735 static int check_restart(struct sem_array *sma, struct sem_queue *q)
737 /* pending complex alter operations are too difficult to analyse */
738 if (!list_empty(&sma->pending_alter))
739 return 1;
741 /* we were a sleeping complex operation. Too difficult */
742 if (q->nsops > 1)
743 return 1;
745 /* It is impossible that someone waits for the new value:
746 * - complex operations always restart.
747 * - wait-for-zero are handled seperately.
748 * - q is a previously sleeping simple operation that
749 * altered the array. It must be a decrement, because
750 * simple increments never sleep.
751 * - If there are older (higher priority) decrements
752 * in the queue, then they have observed the original
753 * semval value and couldn't proceed. The operation
754 * decremented to value - thus they won't proceed either.
756 return 0;
760 * wake_const_ops - wake up non-alter tasks
761 * @sma: semaphore array.
762 * @semnum: semaphore that was modified.
763 * @pt: list head for the tasks that must be woken up.
765 * wake_const_ops must be called after a semaphore in a semaphore array
766 * was set to 0. If complex const operations are pending, wake_const_ops must
767 * be called with semnum = -1, as well as with the number of each modified
768 * semaphore.
769 * The tasks that must be woken up are added to @pt. The return code
770 * is stored in q->pid.
771 * The function returns 1 if at least one operation was completed successfully.
773 static int wake_const_ops(struct sem_array *sma, int semnum,
774 struct list_head *pt)
776 struct sem_queue *q;
777 struct list_head *walk;
778 struct list_head *pending_list;
779 int semop_completed = 0;
781 if (semnum == -1)
782 pending_list = &sma->pending_const;
783 else
784 pending_list = &sma->sem_base[semnum].pending_const;
786 walk = pending_list->next;
787 while (walk != pending_list) {
788 int error;
790 q = container_of(walk, struct sem_queue, list);
791 walk = walk->next;
793 error = perform_atomic_semop(sma, q->sops, q->nsops,
794 q->undo, q->pid);
796 if (error <= 0) {
797 /* operation completed, remove from queue & wakeup */
799 unlink_queue(sma, q);
801 wake_up_sem_queue_prepare(pt, q, error);
802 if (error == 0)
803 semop_completed = 1;
806 return semop_completed;
810 * do_smart_wakeup_zero - wakeup all wait for zero tasks
811 * @sma: semaphore array
812 * @sops: operations that were performed
813 * @nsops: number of operations
814 * @pt: list head of the tasks that must be woken up.
816 * Checks all required queue for wait-for-zero operations, based
817 * on the actual changes that were performed on the semaphore array.
818 * The function returns 1 if at least one operation was completed successfully.
820 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
821 int nsops, struct list_head *pt)
823 int i;
824 int semop_completed = 0;
825 int got_zero = 0;
827 /* first: the per-semaphore queues, if known */
828 if (sops) {
829 for (i = 0; i < nsops; i++) {
830 int num = sops[i].sem_num;
832 if (sma->sem_base[num].semval == 0) {
833 got_zero = 1;
834 semop_completed |= wake_const_ops(sma, num, pt);
837 } else {
839 * No sops means modified semaphores not known.
840 * Assume all were changed.
842 for (i = 0; i < sma->sem_nsems; i++) {
843 if (sma->sem_base[i].semval == 0) {
844 got_zero = 1;
845 semop_completed |= wake_const_ops(sma, i, pt);
850 * If one of the modified semaphores got 0,
851 * then check the global queue, too.
853 if (got_zero)
854 semop_completed |= wake_const_ops(sma, -1, pt);
856 return semop_completed;
861 * update_queue - look for tasks that can be completed.
862 * @sma: semaphore array.
863 * @semnum: semaphore that was modified.
864 * @pt: list head for the tasks that must be woken up.
866 * update_queue must be called after a semaphore in a semaphore array
867 * was modified. If multiple semaphores were modified, update_queue must
868 * be called with semnum = -1, as well as with the number of each modified
869 * semaphore.
870 * The tasks that must be woken up are added to @pt. The return code
871 * is stored in q->pid.
872 * The function internally checks if const operations can now succeed.
874 * The function return 1 if at least one semop was completed successfully.
876 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
878 struct sem_queue *q;
879 struct list_head *walk;
880 struct list_head *pending_list;
881 int semop_completed = 0;
883 if (semnum == -1)
884 pending_list = &sma->pending_alter;
885 else
886 pending_list = &sma->sem_base[semnum].pending_alter;
888 again:
889 walk = pending_list->next;
890 while (walk != pending_list) {
891 int error, restart;
893 q = container_of(walk, struct sem_queue, list);
894 walk = walk->next;
896 /* If we are scanning the single sop, per-semaphore list of
897 * one semaphore and that semaphore is 0, then it is not
898 * necessary to scan further: simple increments
899 * that affect only one entry succeed immediately and cannot
900 * be in the per semaphore pending queue, and decrements
901 * cannot be successful if the value is already 0.
903 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
904 break;
906 error = perform_atomic_semop(sma, q->sops, q->nsops,
907 q->undo, q->pid);
909 /* Does q->sleeper still need to sleep? */
910 if (error > 0)
911 continue;
913 unlink_queue(sma, q);
915 if (error) {
916 restart = 0;
917 } else {
918 semop_completed = 1;
919 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
920 restart = check_restart(sma, q);
923 wake_up_sem_queue_prepare(pt, q, error);
924 if (restart)
925 goto again;
927 return semop_completed;
931 * set_semotime - set sem_otime
932 * @sma: semaphore array
933 * @sops: operations that modified the array, may be NULL
935 * sem_otime is replicated to avoid cache line trashing.
936 * This function sets one instance to the current time.
938 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
940 if (sops == NULL) {
941 sma->sem_base[0].sem_otime = get_seconds();
942 } else {
943 sma->sem_base[sops[0].sem_num].sem_otime =
944 get_seconds();
949 * do_smart_update - optimized update_queue
950 * @sma: semaphore array
951 * @sops: operations that were performed
952 * @nsops: number of operations
953 * @otime: force setting otime
954 * @pt: list head of the tasks that must be woken up.
956 * do_smart_update() does the required calls to update_queue and wakeup_zero,
957 * based on the actual changes that were performed on the semaphore array.
958 * Note that the function does not do the actual wake-up: the caller is
959 * responsible for calling wake_up_sem_queue_do(@pt).
960 * It is safe to perform this call after dropping all locks.
962 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
963 int otime, struct list_head *pt)
965 int i;
967 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
969 if (!list_empty(&sma->pending_alter)) {
970 /* semaphore array uses the global queue - just process it. */
971 otime |= update_queue(sma, -1, pt);
972 } else {
973 if (!sops) {
975 * No sops, thus the modified semaphores are not
976 * known. Check all.
978 for (i = 0; i < sma->sem_nsems; i++)
979 otime |= update_queue(sma, i, pt);
980 } else {
982 * Check the semaphores that were increased:
983 * - No complex ops, thus all sleeping ops are
984 * decrease.
985 * - if we decreased the value, then any sleeping
986 * semaphore ops wont be able to run: If the
987 * previous value was too small, then the new
988 * value will be too small, too.
990 for (i = 0; i < nsops; i++) {
991 if (sops[i].sem_op > 0) {
992 otime |= update_queue(sma,
993 sops[i].sem_num, pt);
998 if (otime)
999 set_semotime(sma, sops);
1002 /* The following counts are associated to each semaphore:
1003 * semncnt number of tasks waiting on semval being nonzero
1004 * semzcnt number of tasks waiting on semval being zero
1005 * This model assumes that a task waits on exactly one semaphore.
1006 * Since semaphore operations are to be performed atomically, tasks actually
1007 * wait on a whole sequence of semaphores simultaneously.
1008 * The counts we return here are a rough approximation, but still
1009 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
1011 static int count_semncnt(struct sem_array *sma, ushort semnum)
1013 int semncnt;
1014 struct sem_queue *q;
1016 semncnt = 0;
1017 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
1018 struct sembuf *sops = q->sops;
1019 BUG_ON(sops->sem_num != semnum);
1020 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
1021 semncnt++;
1024 list_for_each_entry(q, &sma->pending_alter, list) {
1025 struct sembuf *sops = q->sops;
1026 int nsops = q->nsops;
1027 int i;
1028 for (i = 0; i < nsops; i++)
1029 if (sops[i].sem_num == semnum
1030 && (sops[i].sem_op < 0)
1031 && !(sops[i].sem_flg & IPC_NOWAIT))
1032 semncnt++;
1034 return semncnt;
1037 static int count_semzcnt(struct sem_array *sma, ushort semnum)
1039 int semzcnt;
1040 struct sem_queue *q;
1042 semzcnt = 0;
1043 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
1044 struct sembuf *sops = q->sops;
1045 BUG_ON(sops->sem_num != semnum);
1046 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1047 semzcnt++;
1050 list_for_each_entry(q, &sma->pending_const, list) {
1051 struct sembuf *sops = q->sops;
1052 int nsops = q->nsops;
1053 int i;
1054 for (i = 0; i < nsops; i++)
1055 if (sops[i].sem_num == semnum
1056 && (sops[i].sem_op == 0)
1057 && !(sops[i].sem_flg & IPC_NOWAIT))
1058 semzcnt++;
1060 return semzcnt;
1063 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1064 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1065 * remains locked on exit.
1067 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1069 struct sem_undo *un, *tu;
1070 struct sem_queue *q, *tq;
1071 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1072 struct list_head tasks;
1073 int i;
1075 /* Free the existing undo structures for this semaphore set. */
1076 ipc_assert_locked_object(&sma->sem_perm);
1077 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1078 list_del(&un->list_id);
1079 spin_lock(&un->ulp->lock);
1080 un->semid = -1;
1081 list_del_rcu(&un->list_proc);
1082 spin_unlock(&un->ulp->lock);
1083 kfree_rcu(un, rcu);
1086 /* Wake up all pending processes and let them fail with EIDRM. */
1087 INIT_LIST_HEAD(&tasks);
1088 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1089 unlink_queue(sma, q);
1090 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1093 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1094 unlink_queue(sma, q);
1095 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1097 for (i = 0; i < sma->sem_nsems; i++) {
1098 struct sem *sem = sma->sem_base + i;
1099 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1100 unlink_queue(sma, q);
1101 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1103 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1104 unlink_queue(sma, q);
1105 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1109 /* Remove the semaphore set from the IDR */
1110 sem_rmid(ns, sma);
1111 sem_unlock(sma, -1);
1112 rcu_read_unlock();
1114 wake_up_sem_queue_do(&tasks);
1115 ns->used_sems -= sma->sem_nsems;
1116 ipc_rcu_putref(sma, sem_rcu_free);
1119 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1121 switch (version) {
1122 case IPC_64:
1123 return copy_to_user(buf, in, sizeof(*in));
1124 case IPC_OLD:
1126 struct semid_ds out;
1128 memset(&out, 0, sizeof(out));
1130 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1132 out.sem_otime = in->sem_otime;
1133 out.sem_ctime = in->sem_ctime;
1134 out.sem_nsems = in->sem_nsems;
1136 return copy_to_user(buf, &out, sizeof(out));
1138 default:
1139 return -EINVAL;
1143 static time_t get_semotime(struct sem_array *sma)
1145 int i;
1146 time_t res;
1148 res = sma->sem_base[0].sem_otime;
1149 for (i = 1; i < sma->sem_nsems; i++) {
1150 time_t to = sma->sem_base[i].sem_otime;
1152 if (to > res)
1153 res = to;
1155 return res;
1158 static int semctl_nolock(struct ipc_namespace *ns, int semid,
1159 int cmd, int version, void __user *p)
1161 int err;
1162 struct sem_array *sma;
1164 switch (cmd) {
1165 case IPC_INFO:
1166 case SEM_INFO:
1168 struct seminfo seminfo;
1169 int max_id;
1171 err = security_sem_semctl(NULL, cmd);
1172 if (err)
1173 return err;
1175 memset(&seminfo, 0, sizeof(seminfo));
1176 seminfo.semmni = ns->sc_semmni;
1177 seminfo.semmns = ns->sc_semmns;
1178 seminfo.semmsl = ns->sc_semmsl;
1179 seminfo.semopm = ns->sc_semopm;
1180 seminfo.semvmx = SEMVMX;
1181 seminfo.semmnu = SEMMNU;
1182 seminfo.semmap = SEMMAP;
1183 seminfo.semume = SEMUME;
1184 down_read(&sem_ids(ns).rwsem);
1185 if (cmd == SEM_INFO) {
1186 seminfo.semusz = sem_ids(ns).in_use;
1187 seminfo.semaem = ns->used_sems;
1188 } else {
1189 seminfo.semusz = SEMUSZ;
1190 seminfo.semaem = SEMAEM;
1192 max_id = ipc_get_maxid(&sem_ids(ns));
1193 up_read(&sem_ids(ns).rwsem);
1194 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1195 return -EFAULT;
1196 return (max_id < 0) ? 0 : max_id;
1198 case IPC_STAT:
1199 case SEM_STAT:
1201 struct semid64_ds tbuf;
1202 int id = 0;
1204 memset(&tbuf, 0, sizeof(tbuf));
1206 rcu_read_lock();
1207 if (cmd == SEM_STAT) {
1208 sma = sem_obtain_object(ns, semid);
1209 if (IS_ERR(sma)) {
1210 err = PTR_ERR(sma);
1211 goto out_unlock;
1213 id = sma->sem_perm.id;
1214 } else {
1215 sma = sem_obtain_object_check(ns, semid);
1216 if (IS_ERR(sma)) {
1217 err = PTR_ERR(sma);
1218 goto out_unlock;
1222 err = -EACCES;
1223 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1224 goto out_unlock;
1226 err = security_sem_semctl(sma, cmd);
1227 if (err)
1228 goto out_unlock;
1230 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1231 tbuf.sem_otime = get_semotime(sma);
1232 tbuf.sem_ctime = sma->sem_ctime;
1233 tbuf.sem_nsems = sma->sem_nsems;
1234 rcu_read_unlock();
1235 if (copy_semid_to_user(p, &tbuf, version))
1236 return -EFAULT;
1237 return id;
1239 default:
1240 return -EINVAL;
1242 out_unlock:
1243 rcu_read_unlock();
1244 return err;
1247 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1248 unsigned long arg)
1250 struct sem_undo *un;
1251 struct sem_array *sma;
1252 struct sem *curr;
1253 int err;
1254 struct list_head tasks;
1255 int val;
1256 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1257 /* big-endian 64bit */
1258 val = arg >> 32;
1259 #else
1260 /* 32bit or little-endian 64bit */
1261 val = arg;
1262 #endif
1264 if (val > SEMVMX || val < 0)
1265 return -ERANGE;
1267 INIT_LIST_HEAD(&tasks);
1269 rcu_read_lock();
1270 sma = sem_obtain_object_check(ns, semid);
1271 if (IS_ERR(sma)) {
1272 rcu_read_unlock();
1273 return PTR_ERR(sma);
1276 if (semnum < 0 || semnum >= sma->sem_nsems) {
1277 rcu_read_unlock();
1278 return -EINVAL;
1282 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1283 rcu_read_unlock();
1284 return -EACCES;
1287 err = security_sem_semctl(sma, SETVAL);
1288 if (err) {
1289 rcu_read_unlock();
1290 return -EACCES;
1293 sem_lock(sma, NULL, -1);
1295 if (!ipc_valid_object(&sma->sem_perm)) {
1296 sem_unlock(sma, -1);
1297 rcu_read_unlock();
1298 return -EIDRM;
1301 curr = &sma->sem_base[semnum];
1303 ipc_assert_locked_object(&sma->sem_perm);
1304 list_for_each_entry(un, &sma->list_id, list_id)
1305 un->semadj[semnum] = 0;
1307 curr->semval = val;
1308 curr->sempid = task_tgid_vnr(current);
1309 sma->sem_ctime = get_seconds();
1310 /* maybe some queued-up processes were waiting for this */
1311 do_smart_update(sma, NULL, 0, 0, &tasks);
1312 sem_unlock(sma, -1);
1313 rcu_read_unlock();
1314 wake_up_sem_queue_do(&tasks);
1315 return 0;
1318 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1319 int cmd, void __user *p)
1321 struct sem_array *sma;
1322 struct sem *curr;
1323 int err, nsems;
1324 ushort fast_sem_io[SEMMSL_FAST];
1325 ushort *sem_io = fast_sem_io;
1326 struct list_head tasks;
1328 INIT_LIST_HEAD(&tasks);
1330 rcu_read_lock();
1331 sma = sem_obtain_object_check(ns, semid);
1332 if (IS_ERR(sma)) {
1333 rcu_read_unlock();
1334 return PTR_ERR(sma);
1337 nsems = sma->sem_nsems;
1339 err = -EACCES;
1340 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1341 goto out_rcu_wakeup;
1343 err = security_sem_semctl(sma, cmd);
1344 if (err)
1345 goto out_rcu_wakeup;
1347 err = -EACCES;
1348 switch (cmd) {
1349 case GETALL:
1351 ushort __user *array = p;
1352 int i;
1354 sem_lock(sma, NULL, -1);
1355 if (!ipc_valid_object(&sma->sem_perm)) {
1356 err = -EIDRM;
1357 goto out_unlock;
1359 if (nsems > SEMMSL_FAST) {
1360 if (!ipc_rcu_getref(sma)) {
1361 err = -EIDRM;
1362 goto out_unlock;
1364 sem_unlock(sma, -1);
1365 rcu_read_unlock();
1366 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1367 if (sem_io == NULL) {
1368 ipc_rcu_putref(sma, ipc_rcu_free);
1369 return -ENOMEM;
1372 rcu_read_lock();
1373 sem_lock_and_putref(sma);
1374 if (!ipc_valid_object(&sma->sem_perm)) {
1375 err = -EIDRM;
1376 goto out_unlock;
1379 for (i = 0; i < sma->sem_nsems; i++)
1380 sem_io[i] = sma->sem_base[i].semval;
1381 sem_unlock(sma, -1);
1382 rcu_read_unlock();
1383 err = 0;
1384 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1385 err = -EFAULT;
1386 goto out_free;
1388 case SETALL:
1390 int i;
1391 struct sem_undo *un;
1393 if (!ipc_rcu_getref(sma)) {
1394 err = -EIDRM;
1395 goto out_rcu_wakeup;
1397 rcu_read_unlock();
1399 if (nsems > SEMMSL_FAST) {
1400 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1401 if (sem_io == NULL) {
1402 ipc_rcu_putref(sma, ipc_rcu_free);
1403 return -ENOMEM;
1407 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1408 ipc_rcu_putref(sma, ipc_rcu_free);
1409 err = -EFAULT;
1410 goto out_free;
1413 for (i = 0; i < nsems; i++) {
1414 if (sem_io[i] > SEMVMX) {
1415 ipc_rcu_putref(sma, ipc_rcu_free);
1416 err = -ERANGE;
1417 goto out_free;
1420 rcu_read_lock();
1421 sem_lock_and_putref(sma);
1422 if (!ipc_valid_object(&sma->sem_perm)) {
1423 err = -EIDRM;
1424 goto out_unlock;
1427 for (i = 0; i < nsems; i++)
1428 sma->sem_base[i].semval = sem_io[i];
1430 ipc_assert_locked_object(&sma->sem_perm);
1431 list_for_each_entry(un, &sma->list_id, list_id) {
1432 for (i = 0; i < nsems; i++)
1433 un->semadj[i] = 0;
1435 sma->sem_ctime = get_seconds();
1436 /* maybe some queued-up processes were waiting for this */
1437 do_smart_update(sma, NULL, 0, 0, &tasks);
1438 err = 0;
1439 goto out_unlock;
1441 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1443 err = -EINVAL;
1444 if (semnum < 0 || semnum >= nsems)
1445 goto out_rcu_wakeup;
1447 sem_lock(sma, NULL, -1);
1448 if (!ipc_valid_object(&sma->sem_perm)) {
1449 err = -EIDRM;
1450 goto out_unlock;
1452 curr = &sma->sem_base[semnum];
1454 switch (cmd) {
1455 case GETVAL:
1456 err = curr->semval;
1457 goto out_unlock;
1458 case GETPID:
1459 err = curr->sempid;
1460 goto out_unlock;
1461 case GETNCNT:
1462 err = count_semncnt(sma, semnum);
1463 goto out_unlock;
1464 case GETZCNT:
1465 err = count_semzcnt(sma, semnum);
1466 goto out_unlock;
1469 out_unlock:
1470 sem_unlock(sma, -1);
1471 out_rcu_wakeup:
1472 rcu_read_unlock();
1473 wake_up_sem_queue_do(&tasks);
1474 out_free:
1475 if (sem_io != fast_sem_io)
1476 ipc_free(sem_io, sizeof(ushort)*nsems);
1477 return err;
1480 static inline unsigned long
1481 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1483 switch (version) {
1484 case IPC_64:
1485 if (copy_from_user(out, buf, sizeof(*out)))
1486 return -EFAULT;
1487 return 0;
1488 case IPC_OLD:
1490 struct semid_ds tbuf_old;
1492 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1493 return -EFAULT;
1495 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1496 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1497 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1499 return 0;
1501 default:
1502 return -EINVAL;
1507 * This function handles some semctl commands which require the rwsem
1508 * to be held in write mode.
1509 * NOTE: no locks must be held, the rwsem is taken inside this function.
1511 static int semctl_down(struct ipc_namespace *ns, int semid,
1512 int cmd, int version, void __user *p)
1514 struct sem_array *sma;
1515 int err;
1516 struct semid64_ds semid64;
1517 struct kern_ipc_perm *ipcp;
1519 if (cmd == IPC_SET) {
1520 if (copy_semid_from_user(&semid64, p, version))
1521 return -EFAULT;
1524 down_write(&sem_ids(ns).rwsem);
1525 rcu_read_lock();
1527 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1528 &semid64.sem_perm, 0);
1529 if (IS_ERR(ipcp)) {
1530 err = PTR_ERR(ipcp);
1531 goto out_unlock1;
1534 sma = container_of(ipcp, struct sem_array, sem_perm);
1536 err = security_sem_semctl(sma, cmd);
1537 if (err)
1538 goto out_unlock1;
1540 switch (cmd) {
1541 case IPC_RMID:
1542 sem_lock(sma, NULL, -1);
1543 /* freeary unlocks the ipc object and rcu */
1544 freeary(ns, ipcp);
1545 goto out_up;
1546 case IPC_SET:
1547 sem_lock(sma, NULL, -1);
1548 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1549 if (err)
1550 goto out_unlock0;
1551 sma->sem_ctime = get_seconds();
1552 break;
1553 default:
1554 err = -EINVAL;
1555 goto out_unlock1;
1558 out_unlock0:
1559 sem_unlock(sma, -1);
1560 out_unlock1:
1561 rcu_read_unlock();
1562 out_up:
1563 up_write(&sem_ids(ns).rwsem);
1564 return err;
1567 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1569 int version;
1570 struct ipc_namespace *ns;
1571 void __user *p = (void __user *)arg;
1573 if (semid < 0)
1574 return -EINVAL;
1576 version = ipc_parse_version(&cmd);
1577 ns = current->nsproxy->ipc_ns;
1579 switch (cmd) {
1580 case IPC_INFO:
1581 case SEM_INFO:
1582 case IPC_STAT:
1583 case SEM_STAT:
1584 return semctl_nolock(ns, semid, cmd, version, p);
1585 case GETALL:
1586 case GETVAL:
1587 case GETPID:
1588 case GETNCNT:
1589 case GETZCNT:
1590 case SETALL:
1591 return semctl_main(ns, semid, semnum, cmd, p);
1592 case SETVAL:
1593 return semctl_setval(ns, semid, semnum, arg);
1594 case IPC_RMID:
1595 case IPC_SET:
1596 return semctl_down(ns, semid, cmd, version, p);
1597 default:
1598 return -EINVAL;
1602 /* If the task doesn't already have a undo_list, then allocate one
1603 * here. We guarantee there is only one thread using this undo list,
1604 * and current is THE ONE
1606 * If this allocation and assignment succeeds, but later
1607 * portions of this code fail, there is no need to free the sem_undo_list.
1608 * Just let it stay associated with the task, and it'll be freed later
1609 * at exit time.
1611 * This can block, so callers must hold no locks.
1613 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1615 struct sem_undo_list *undo_list;
1617 undo_list = current->sysvsem.undo_list;
1618 if (!undo_list) {
1619 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1620 if (undo_list == NULL)
1621 return -ENOMEM;
1622 spin_lock_init(&undo_list->lock);
1623 atomic_set(&undo_list->refcnt, 1);
1624 INIT_LIST_HEAD(&undo_list->list_proc);
1626 current->sysvsem.undo_list = undo_list;
1628 *undo_listp = undo_list;
1629 return 0;
1632 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1634 struct sem_undo *un;
1636 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1637 if (un->semid == semid)
1638 return un;
1640 return NULL;
1643 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1645 struct sem_undo *un;
1647 assert_spin_locked(&ulp->lock);
1649 un = __lookup_undo(ulp, semid);
1650 if (un) {
1651 list_del_rcu(&un->list_proc);
1652 list_add_rcu(&un->list_proc, &ulp->list_proc);
1654 return un;
1658 * find_alloc_undo - lookup (and if not present create) undo array
1659 * @ns: namespace
1660 * @semid: semaphore array id
1662 * The function looks up (and if not present creates) the undo structure.
1663 * The size of the undo structure depends on the size of the semaphore
1664 * array, thus the alloc path is not that straightforward.
1665 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1666 * performs a rcu_read_lock().
1668 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1670 struct sem_array *sma;
1671 struct sem_undo_list *ulp;
1672 struct sem_undo *un, *new;
1673 int nsems, error;
1675 error = get_undo_list(&ulp);
1676 if (error)
1677 return ERR_PTR(error);
1679 rcu_read_lock();
1680 spin_lock(&ulp->lock);
1681 un = lookup_undo(ulp, semid);
1682 spin_unlock(&ulp->lock);
1683 if (likely(un != NULL))
1684 goto out;
1686 /* no undo structure around - allocate one. */
1687 /* step 1: figure out the size of the semaphore array */
1688 sma = sem_obtain_object_check(ns, semid);
1689 if (IS_ERR(sma)) {
1690 rcu_read_unlock();
1691 return ERR_CAST(sma);
1694 nsems = sma->sem_nsems;
1695 if (!ipc_rcu_getref(sma)) {
1696 rcu_read_unlock();
1697 un = ERR_PTR(-EIDRM);
1698 goto out;
1700 rcu_read_unlock();
1702 /* step 2: allocate new undo structure */
1703 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1704 if (!new) {
1705 ipc_rcu_putref(sma, ipc_rcu_free);
1706 return ERR_PTR(-ENOMEM);
1709 /* step 3: Acquire the lock on semaphore array */
1710 rcu_read_lock();
1711 sem_lock_and_putref(sma);
1712 if (!ipc_valid_object(&sma->sem_perm)) {
1713 sem_unlock(sma, -1);
1714 rcu_read_unlock();
1715 kfree(new);
1716 un = ERR_PTR(-EIDRM);
1717 goto out;
1719 spin_lock(&ulp->lock);
1722 * step 4: check for races: did someone else allocate the undo struct?
1724 un = lookup_undo(ulp, semid);
1725 if (un) {
1726 kfree(new);
1727 goto success;
1729 /* step 5: initialize & link new undo structure */
1730 new->semadj = (short *) &new[1];
1731 new->ulp = ulp;
1732 new->semid = semid;
1733 assert_spin_locked(&ulp->lock);
1734 list_add_rcu(&new->list_proc, &ulp->list_proc);
1735 ipc_assert_locked_object(&sma->sem_perm);
1736 list_add(&new->list_id, &sma->list_id);
1737 un = new;
1739 success:
1740 spin_unlock(&ulp->lock);
1741 sem_unlock(sma, -1);
1742 out:
1743 return un;
1748 * get_queue_result - retrieve the result code from sem_queue
1749 * @q: Pointer to queue structure
1751 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1752 * q->status, then we must loop until the value is replaced with the final
1753 * value: This may happen if a task is woken up by an unrelated event (e.g.
1754 * signal) and in parallel the task is woken up by another task because it got
1755 * the requested semaphores.
1757 * The function can be called with or without holding the semaphore spinlock.
1759 static int get_queue_result(struct sem_queue *q)
1761 int error;
1763 error = q->status;
1764 while (unlikely(error == IN_WAKEUP)) {
1765 cpu_relax();
1766 error = q->status;
1769 return error;
1772 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1773 unsigned, nsops, const struct timespec __user *, timeout)
1775 int error = -EINVAL;
1776 struct sem_array *sma;
1777 struct sembuf fast_sops[SEMOPM_FAST];
1778 struct sembuf *sops = fast_sops, *sop;
1779 struct sem_undo *un;
1780 int undos = 0, alter = 0, max, locknum;
1781 struct sem_queue queue;
1782 unsigned long jiffies_left = 0;
1783 struct ipc_namespace *ns;
1784 struct list_head tasks;
1786 ns = current->nsproxy->ipc_ns;
1788 if (nsops < 1 || semid < 0)
1789 return -EINVAL;
1790 if (nsops > ns->sc_semopm)
1791 return -E2BIG;
1792 if (nsops > SEMOPM_FAST) {
1793 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1794 if (sops == NULL)
1795 return -ENOMEM;
1797 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1798 error = -EFAULT;
1799 goto out_free;
1801 if (timeout) {
1802 struct timespec _timeout;
1803 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1804 error = -EFAULT;
1805 goto out_free;
1807 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1808 _timeout.tv_nsec >= 1000000000L) {
1809 error = -EINVAL;
1810 goto out_free;
1812 jiffies_left = timespec_to_jiffies(&_timeout);
1814 max = 0;
1815 for (sop = sops; sop < sops + nsops; sop++) {
1816 if (sop->sem_num >= max)
1817 max = sop->sem_num;
1818 if (sop->sem_flg & SEM_UNDO)
1819 undos = 1;
1820 if (sop->sem_op != 0)
1821 alter = 1;
1824 INIT_LIST_HEAD(&tasks);
1826 if (undos) {
1827 /* On success, find_alloc_undo takes the rcu_read_lock */
1828 un = find_alloc_undo(ns, semid);
1829 if (IS_ERR(un)) {
1830 error = PTR_ERR(un);
1831 goto out_free;
1833 } else {
1834 un = NULL;
1835 rcu_read_lock();
1838 sma = sem_obtain_object_check(ns, semid);
1839 if (IS_ERR(sma)) {
1840 rcu_read_unlock();
1841 error = PTR_ERR(sma);
1842 goto out_free;
1845 error = -EFBIG;
1846 if (max >= sma->sem_nsems)
1847 goto out_rcu_wakeup;
1849 error = -EACCES;
1850 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1851 goto out_rcu_wakeup;
1853 error = security_sem_semop(sma, sops, nsops, alter);
1854 if (error)
1855 goto out_rcu_wakeup;
1857 error = -EIDRM;
1858 locknum = sem_lock(sma, sops, nsops);
1860 * We eventually might perform the following check in a lockless
1861 * fashion, considering ipc_valid_object() locking constraints.
1862 * If nsops == 1 and there is no contention for sem_perm.lock, then
1863 * only a per-semaphore lock is held and it's OK to proceed with the
1864 * check below. More details on the fine grained locking scheme
1865 * entangled here and why it's RMID race safe on comments at sem_lock()
1867 if (!ipc_valid_object(&sma->sem_perm))
1868 goto out_unlock_free;
1870 * semid identifiers are not unique - find_alloc_undo may have
1871 * allocated an undo structure, it was invalidated by an RMID
1872 * and now a new array with received the same id. Check and fail.
1873 * This case can be detected checking un->semid. The existence of
1874 * "un" itself is guaranteed by rcu.
1876 if (un && un->semid == -1)
1877 goto out_unlock_free;
1879 error = perform_atomic_semop(sma, sops, nsops, un,
1880 task_tgid_vnr(current));
1881 if (error == 0) {
1882 /* If the operation was successful, then do
1883 * the required updates.
1885 if (alter)
1886 do_smart_update(sma, sops, nsops, 1, &tasks);
1887 else
1888 set_semotime(sma, sops);
1890 if (error <= 0)
1891 goto out_unlock_free;
1893 /* We need to sleep on this operation, so we put the current
1894 * task into the pending queue and go to sleep.
1897 queue.sops = sops;
1898 queue.nsops = nsops;
1899 queue.undo = un;
1900 queue.pid = task_tgid_vnr(current);
1901 queue.alter = alter;
1903 if (nsops == 1) {
1904 struct sem *curr;
1905 curr = &sma->sem_base[sops->sem_num];
1907 if (alter) {
1908 if (sma->complex_count) {
1909 list_add_tail(&queue.list,
1910 &sma->pending_alter);
1911 } else {
1913 list_add_tail(&queue.list,
1914 &curr->pending_alter);
1916 } else {
1917 list_add_tail(&queue.list, &curr->pending_const);
1919 } else {
1920 if (!sma->complex_count)
1921 merge_queues(sma);
1923 if (alter)
1924 list_add_tail(&queue.list, &sma->pending_alter);
1925 else
1926 list_add_tail(&queue.list, &sma->pending_const);
1928 sma->complex_count++;
1931 queue.status = -EINTR;
1932 queue.sleeper = current;
1934 sleep_again:
1935 current->state = TASK_INTERRUPTIBLE;
1936 sem_unlock(sma, locknum);
1937 rcu_read_unlock();
1939 if (timeout)
1940 jiffies_left = schedule_timeout(jiffies_left);
1941 else
1942 schedule();
1944 error = get_queue_result(&queue);
1946 if (error != -EINTR) {
1947 /* fast path: update_queue already obtained all requested
1948 * resources.
1949 * Perform a smp_mb(): User space could assume that semop()
1950 * is a memory barrier: Without the mb(), the cpu could
1951 * speculatively read in user space stale data that was
1952 * overwritten by the previous owner of the semaphore.
1954 smp_mb();
1956 goto out_free;
1959 rcu_read_lock();
1960 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
1963 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1965 error = get_queue_result(&queue);
1968 * Array removed? If yes, leave without sem_unlock().
1970 if (IS_ERR(sma)) {
1971 rcu_read_unlock();
1972 goto out_free;
1977 * If queue.status != -EINTR we are woken up by another process.
1978 * Leave without unlink_queue(), but with sem_unlock().
1980 if (error != -EINTR)
1981 goto out_unlock_free;
1984 * If an interrupt occurred we have to clean up the queue
1986 if (timeout && jiffies_left == 0)
1987 error = -EAGAIN;
1990 * If the wakeup was spurious, just retry
1992 if (error == -EINTR && !signal_pending(current))
1993 goto sleep_again;
1995 unlink_queue(sma, &queue);
1997 out_unlock_free:
1998 sem_unlock(sma, locknum);
1999 out_rcu_wakeup:
2000 rcu_read_unlock();
2001 wake_up_sem_queue_do(&tasks);
2002 out_free:
2003 if (sops != fast_sops)
2004 kfree(sops);
2005 return error;
2008 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2009 unsigned, nsops)
2011 return sys_semtimedop(semid, tsops, nsops, NULL);
2014 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2015 * parent and child tasks.
2018 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2020 struct sem_undo_list *undo_list;
2021 int error;
2023 if (clone_flags & CLONE_SYSVSEM) {
2024 error = get_undo_list(&undo_list);
2025 if (error)
2026 return error;
2027 atomic_inc(&undo_list->refcnt);
2028 tsk->sysvsem.undo_list = undo_list;
2029 } else
2030 tsk->sysvsem.undo_list = NULL;
2032 return 0;
2036 * add semadj values to semaphores, free undo structures.
2037 * undo structures are not freed when semaphore arrays are destroyed
2038 * so some of them may be out of date.
2039 * IMPLEMENTATION NOTE: There is some confusion over whether the
2040 * set of adjustments that needs to be done should be done in an atomic
2041 * manner or not. That is, if we are attempting to decrement the semval
2042 * should we queue up and wait until we can do so legally?
2043 * The original implementation attempted to do this (queue and wait).
2044 * The current implementation does not do so. The POSIX standard
2045 * and SVID should be consulted to determine what behavior is mandated.
2047 void exit_sem(struct task_struct *tsk)
2049 struct sem_undo_list *ulp;
2051 ulp = tsk->sysvsem.undo_list;
2052 if (!ulp)
2053 return;
2054 tsk->sysvsem.undo_list = NULL;
2056 if (!atomic_dec_and_test(&ulp->refcnt))
2057 return;
2059 for (;;) {
2060 struct sem_array *sma;
2061 struct sem_undo *un;
2062 struct list_head tasks;
2063 int semid, i;
2065 rcu_read_lock();
2066 un = list_entry_rcu(ulp->list_proc.next,
2067 struct sem_undo, list_proc);
2068 if (&un->list_proc == &ulp->list_proc)
2069 semid = -1;
2070 else
2071 semid = un->semid;
2073 if (semid == -1) {
2074 rcu_read_unlock();
2075 break;
2078 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
2079 /* exit_sem raced with IPC_RMID, nothing to do */
2080 if (IS_ERR(sma)) {
2081 rcu_read_unlock();
2082 continue;
2085 sem_lock(sma, NULL, -1);
2086 /* exit_sem raced with IPC_RMID, nothing to do */
2087 if (!ipc_valid_object(&sma->sem_perm)) {
2088 sem_unlock(sma, -1);
2089 rcu_read_unlock();
2090 continue;
2092 un = __lookup_undo(ulp, semid);
2093 if (un == NULL) {
2094 /* exit_sem raced with IPC_RMID+semget() that created
2095 * exactly the same semid. Nothing to do.
2097 sem_unlock(sma, -1);
2098 rcu_read_unlock();
2099 continue;
2102 /* remove un from the linked lists */
2103 ipc_assert_locked_object(&sma->sem_perm);
2104 list_del(&un->list_id);
2106 spin_lock(&ulp->lock);
2107 list_del_rcu(&un->list_proc);
2108 spin_unlock(&ulp->lock);
2110 /* perform adjustments registered in un */
2111 for (i = 0; i < sma->sem_nsems; i++) {
2112 struct sem *semaphore = &sma->sem_base[i];
2113 if (un->semadj[i]) {
2114 semaphore->semval += un->semadj[i];
2116 * Range checks of the new semaphore value,
2117 * not defined by sus:
2118 * - Some unices ignore the undo entirely
2119 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2120 * - some cap the value (e.g. FreeBSD caps
2121 * at 0, but doesn't enforce SEMVMX)
2123 * Linux caps the semaphore value, both at 0
2124 * and at SEMVMX.
2126 * Manfred <manfred@colorfullife.com>
2128 if (semaphore->semval < 0)
2129 semaphore->semval = 0;
2130 if (semaphore->semval > SEMVMX)
2131 semaphore->semval = SEMVMX;
2132 semaphore->sempid = task_tgid_vnr(current);
2135 /* maybe some queued-up processes were waiting for this */
2136 INIT_LIST_HEAD(&tasks);
2137 do_smart_update(sma, NULL, 0, 1, &tasks);
2138 sem_unlock(sma, -1);
2139 rcu_read_unlock();
2140 wake_up_sem_queue_do(&tasks);
2142 kfree_rcu(un, rcu);
2144 kfree(ulp);
2147 #ifdef CONFIG_PROC_FS
2148 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2150 struct user_namespace *user_ns = seq_user_ns(s);
2151 struct sem_array *sma = it;
2152 time_t sem_otime;
2155 * The proc interface isn't aware of sem_lock(), it calls
2156 * ipc_lock_object() directly (in sysvipc_find_ipc).
2157 * In order to stay compatible with sem_lock(), we must wait until
2158 * all simple semop() calls have left their critical regions.
2160 sem_wait_array(sma);
2162 sem_otime = get_semotime(sma);
2164 return seq_printf(s,
2165 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2166 sma->sem_perm.key,
2167 sma->sem_perm.id,
2168 sma->sem_perm.mode,
2169 sma->sem_nsems,
2170 from_kuid_munged(user_ns, sma->sem_perm.uid),
2171 from_kgid_munged(user_ns, sma->sem_perm.gid),
2172 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2173 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2174 sem_otime,
2175 sma->sem_ctime);
2177 #endif