Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / kernel / auditsc.c
blob619b58d3fcdf8786f7a5ab786016fa92881dc9a8
1 /* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
45 #include <linux/init.h>
46 #include <asm/types.h>
47 #include <linux/atomic.h>
48 #include <linux/fs.h>
49 #include <linux/namei.h>
50 #include <linux/mm.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/mount.h>
54 #include <linux/socket.h>
55 #include <linux/mqueue.h>
56 #include <linux/audit.h>
57 #include <linux/personality.h>
58 #include <linux/time.h>
59 #include <linux/netlink.h>
60 #include <linux/compiler.h>
61 #include <asm/unistd.h>
62 #include <linux/security.h>
63 #include <linux/list.h>
64 #include <linux/tty.h>
65 #include <linux/binfmts.h>
66 #include <linux/highmem.h>
67 #include <linux/syscalls.h>
68 #include <linux/capability.h>
69 #include <linux/fs_struct.h>
70 #include <linux/compat.h>
72 #include "audit.h"
74 /* flags stating the success for a syscall */
75 #define AUDITSC_INVALID 0
76 #define AUDITSC_SUCCESS 1
77 #define AUDITSC_FAILURE 2
79 /* no execve audit message should be longer than this (userspace limits) */
80 #define MAX_EXECVE_AUDIT_LEN 7500
82 /* number of audit rules */
83 int audit_n_rules;
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
88 struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
93 #define AUDIT_AUX_IPCPERM 0
95 /* Number of target pids per aux struct. */
96 #define AUDIT_AUX_PIDS 16
98 struct audit_aux_data_pids {
99 struct audit_aux_data d;
100 pid_t target_pid[AUDIT_AUX_PIDS];
101 kuid_t target_auid[AUDIT_AUX_PIDS];
102 kuid_t target_uid[AUDIT_AUX_PIDS];
103 unsigned int target_sessionid[AUDIT_AUX_PIDS];
104 u32 target_sid[AUDIT_AUX_PIDS];
105 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
106 int pid_count;
109 struct audit_aux_data_bprm_fcaps {
110 struct audit_aux_data d;
111 struct audit_cap_data fcap;
112 unsigned int fcap_ver;
113 struct audit_cap_data old_pcap;
114 struct audit_cap_data new_pcap;
117 struct audit_tree_refs {
118 struct audit_tree_refs *next;
119 struct audit_chunk *c[31];
122 static inline int open_arg(int flags, int mask)
124 int n = ACC_MODE(flags);
125 if (flags & (O_TRUNC | O_CREAT))
126 n |= AUDIT_PERM_WRITE;
127 return n & mask;
130 static int audit_match_perm(struct audit_context *ctx, int mask)
132 unsigned n;
133 if (unlikely(!ctx))
134 return 0;
135 n = ctx->major;
137 switch (audit_classify_syscall(ctx->arch, n)) {
138 case 0: /* native */
139 if ((mask & AUDIT_PERM_WRITE) &&
140 audit_match_class(AUDIT_CLASS_WRITE, n))
141 return 1;
142 if ((mask & AUDIT_PERM_READ) &&
143 audit_match_class(AUDIT_CLASS_READ, n))
144 return 1;
145 if ((mask & AUDIT_PERM_ATTR) &&
146 audit_match_class(AUDIT_CLASS_CHATTR, n))
147 return 1;
148 return 0;
149 case 1: /* 32bit on biarch */
150 if ((mask & AUDIT_PERM_WRITE) &&
151 audit_match_class(AUDIT_CLASS_WRITE_32, n))
152 return 1;
153 if ((mask & AUDIT_PERM_READ) &&
154 audit_match_class(AUDIT_CLASS_READ_32, n))
155 return 1;
156 if ((mask & AUDIT_PERM_ATTR) &&
157 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
158 return 1;
159 return 0;
160 case 2: /* open */
161 return mask & ACC_MODE(ctx->argv[1]);
162 case 3: /* openat */
163 return mask & ACC_MODE(ctx->argv[2]);
164 case 4: /* socketcall */
165 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
166 case 5: /* execve */
167 return mask & AUDIT_PERM_EXEC;
168 default:
169 return 0;
173 static int audit_match_filetype(struct audit_context *ctx, int val)
175 struct audit_names *n;
176 umode_t mode = (umode_t)val;
178 if (unlikely(!ctx))
179 return 0;
181 list_for_each_entry(n, &ctx->names_list, list) {
182 if ((n->ino != -1) &&
183 ((n->mode & S_IFMT) == mode))
184 return 1;
187 return 0;
191 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
192 * ->first_trees points to its beginning, ->trees - to the current end of data.
193 * ->tree_count is the number of free entries in array pointed to by ->trees.
194 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
195 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
196 * it's going to remain 1-element for almost any setup) until we free context itself.
197 * References in it _are_ dropped - at the same time we free/drop aux stuff.
200 #ifdef CONFIG_AUDIT_TREE
201 static void audit_set_auditable(struct audit_context *ctx)
203 if (!ctx->prio) {
204 ctx->prio = 1;
205 ctx->current_state = AUDIT_RECORD_CONTEXT;
209 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
211 struct audit_tree_refs *p = ctx->trees;
212 int left = ctx->tree_count;
213 if (likely(left)) {
214 p->c[--left] = chunk;
215 ctx->tree_count = left;
216 return 1;
218 if (!p)
219 return 0;
220 p = p->next;
221 if (p) {
222 p->c[30] = chunk;
223 ctx->trees = p;
224 ctx->tree_count = 30;
225 return 1;
227 return 0;
230 static int grow_tree_refs(struct audit_context *ctx)
232 struct audit_tree_refs *p = ctx->trees;
233 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
234 if (!ctx->trees) {
235 ctx->trees = p;
236 return 0;
238 if (p)
239 p->next = ctx->trees;
240 else
241 ctx->first_trees = ctx->trees;
242 ctx->tree_count = 31;
243 return 1;
245 #endif
247 static void unroll_tree_refs(struct audit_context *ctx,
248 struct audit_tree_refs *p, int count)
250 #ifdef CONFIG_AUDIT_TREE
251 struct audit_tree_refs *q;
252 int n;
253 if (!p) {
254 /* we started with empty chain */
255 p = ctx->first_trees;
256 count = 31;
257 /* if the very first allocation has failed, nothing to do */
258 if (!p)
259 return;
261 n = count;
262 for (q = p; q != ctx->trees; q = q->next, n = 31) {
263 while (n--) {
264 audit_put_chunk(q->c[n]);
265 q->c[n] = NULL;
268 while (n-- > ctx->tree_count) {
269 audit_put_chunk(q->c[n]);
270 q->c[n] = NULL;
272 ctx->trees = p;
273 ctx->tree_count = count;
274 #endif
277 static void free_tree_refs(struct audit_context *ctx)
279 struct audit_tree_refs *p, *q;
280 for (p = ctx->first_trees; p; p = q) {
281 q = p->next;
282 kfree(p);
286 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
288 #ifdef CONFIG_AUDIT_TREE
289 struct audit_tree_refs *p;
290 int n;
291 if (!tree)
292 return 0;
293 /* full ones */
294 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
295 for (n = 0; n < 31; n++)
296 if (audit_tree_match(p->c[n], tree))
297 return 1;
299 /* partial */
300 if (p) {
301 for (n = ctx->tree_count; n < 31; n++)
302 if (audit_tree_match(p->c[n], tree))
303 return 1;
305 #endif
306 return 0;
309 static int audit_compare_uid(kuid_t uid,
310 struct audit_names *name,
311 struct audit_field *f,
312 struct audit_context *ctx)
314 struct audit_names *n;
315 int rc;
317 if (name) {
318 rc = audit_uid_comparator(uid, f->op, name->uid);
319 if (rc)
320 return rc;
323 if (ctx) {
324 list_for_each_entry(n, &ctx->names_list, list) {
325 rc = audit_uid_comparator(uid, f->op, n->uid);
326 if (rc)
327 return rc;
330 return 0;
333 static int audit_compare_gid(kgid_t gid,
334 struct audit_names *name,
335 struct audit_field *f,
336 struct audit_context *ctx)
338 struct audit_names *n;
339 int rc;
341 if (name) {
342 rc = audit_gid_comparator(gid, f->op, name->gid);
343 if (rc)
344 return rc;
347 if (ctx) {
348 list_for_each_entry(n, &ctx->names_list, list) {
349 rc = audit_gid_comparator(gid, f->op, n->gid);
350 if (rc)
351 return rc;
354 return 0;
357 static int audit_field_compare(struct task_struct *tsk,
358 const struct cred *cred,
359 struct audit_field *f,
360 struct audit_context *ctx,
361 struct audit_names *name)
363 switch (f->val) {
364 /* process to file object comparisons */
365 case AUDIT_COMPARE_UID_TO_OBJ_UID:
366 return audit_compare_uid(cred->uid, name, f, ctx);
367 case AUDIT_COMPARE_GID_TO_OBJ_GID:
368 return audit_compare_gid(cred->gid, name, f, ctx);
369 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
370 return audit_compare_uid(cred->euid, name, f, ctx);
371 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
372 return audit_compare_gid(cred->egid, name, f, ctx);
373 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
374 return audit_compare_uid(tsk->loginuid, name, f, ctx);
375 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
376 return audit_compare_uid(cred->suid, name, f, ctx);
377 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
378 return audit_compare_gid(cred->sgid, name, f, ctx);
379 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
380 return audit_compare_uid(cred->fsuid, name, f, ctx);
381 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
382 return audit_compare_gid(cred->fsgid, name, f, ctx);
383 /* uid comparisons */
384 case AUDIT_COMPARE_UID_TO_AUID:
385 return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
386 case AUDIT_COMPARE_UID_TO_EUID:
387 return audit_uid_comparator(cred->uid, f->op, cred->euid);
388 case AUDIT_COMPARE_UID_TO_SUID:
389 return audit_uid_comparator(cred->uid, f->op, cred->suid);
390 case AUDIT_COMPARE_UID_TO_FSUID:
391 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
392 /* auid comparisons */
393 case AUDIT_COMPARE_AUID_TO_EUID:
394 return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
395 case AUDIT_COMPARE_AUID_TO_SUID:
396 return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
397 case AUDIT_COMPARE_AUID_TO_FSUID:
398 return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
399 /* euid comparisons */
400 case AUDIT_COMPARE_EUID_TO_SUID:
401 return audit_uid_comparator(cred->euid, f->op, cred->suid);
402 case AUDIT_COMPARE_EUID_TO_FSUID:
403 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
404 /* suid comparisons */
405 case AUDIT_COMPARE_SUID_TO_FSUID:
406 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
407 /* gid comparisons */
408 case AUDIT_COMPARE_GID_TO_EGID:
409 return audit_gid_comparator(cred->gid, f->op, cred->egid);
410 case AUDIT_COMPARE_GID_TO_SGID:
411 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
412 case AUDIT_COMPARE_GID_TO_FSGID:
413 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
414 /* egid comparisons */
415 case AUDIT_COMPARE_EGID_TO_SGID:
416 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
417 case AUDIT_COMPARE_EGID_TO_FSGID:
418 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
419 /* sgid comparison */
420 case AUDIT_COMPARE_SGID_TO_FSGID:
421 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
422 default:
423 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
424 return 0;
426 return 0;
429 /* Determine if any context name data matches a rule's watch data */
430 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
431 * otherwise.
433 * If task_creation is true, this is an explicit indication that we are
434 * filtering a task rule at task creation time. This and tsk == current are
435 * the only situations where tsk->cred may be accessed without an rcu read lock.
437 static int audit_filter_rules(struct task_struct *tsk,
438 struct audit_krule *rule,
439 struct audit_context *ctx,
440 struct audit_names *name,
441 enum audit_state *state,
442 bool task_creation)
444 const struct cred *cred;
445 int i, need_sid = 1;
446 u32 sid;
448 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
450 for (i = 0; i < rule->field_count; i++) {
451 struct audit_field *f = &rule->fields[i];
452 struct audit_names *n;
453 int result = 0;
455 switch (f->type) {
456 case AUDIT_PID:
457 result = audit_comparator(tsk->pid, f->op, f->val);
458 break;
459 case AUDIT_PPID:
460 if (ctx) {
461 if (!ctx->ppid)
462 ctx->ppid = task_ppid_nr(tsk);
463 result = audit_comparator(ctx->ppid, f->op, f->val);
465 break;
466 case AUDIT_UID:
467 result = audit_uid_comparator(cred->uid, f->op, f->uid);
468 break;
469 case AUDIT_EUID:
470 result = audit_uid_comparator(cred->euid, f->op, f->uid);
471 break;
472 case AUDIT_SUID:
473 result = audit_uid_comparator(cred->suid, f->op, f->uid);
474 break;
475 case AUDIT_FSUID:
476 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
477 break;
478 case AUDIT_GID:
479 result = audit_gid_comparator(cred->gid, f->op, f->gid);
480 if (f->op == Audit_equal) {
481 if (!result)
482 result = in_group_p(f->gid);
483 } else if (f->op == Audit_not_equal) {
484 if (result)
485 result = !in_group_p(f->gid);
487 break;
488 case AUDIT_EGID:
489 result = audit_gid_comparator(cred->egid, f->op, f->gid);
490 if (f->op == Audit_equal) {
491 if (!result)
492 result = in_egroup_p(f->gid);
493 } else if (f->op == Audit_not_equal) {
494 if (result)
495 result = !in_egroup_p(f->gid);
497 break;
498 case AUDIT_SGID:
499 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
500 break;
501 case AUDIT_FSGID:
502 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
503 break;
504 case AUDIT_PERS:
505 result = audit_comparator(tsk->personality, f->op, f->val);
506 break;
507 case AUDIT_ARCH:
508 if (ctx)
509 result = audit_comparator(ctx->arch, f->op, f->val);
510 break;
512 case AUDIT_EXIT:
513 if (ctx && ctx->return_valid)
514 result = audit_comparator(ctx->return_code, f->op, f->val);
515 break;
516 case AUDIT_SUCCESS:
517 if (ctx && ctx->return_valid) {
518 if (f->val)
519 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
520 else
521 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
523 break;
524 case AUDIT_DEVMAJOR:
525 if (name) {
526 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
527 audit_comparator(MAJOR(name->rdev), f->op, f->val))
528 ++result;
529 } else if (ctx) {
530 list_for_each_entry(n, &ctx->names_list, list) {
531 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
532 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
533 ++result;
534 break;
538 break;
539 case AUDIT_DEVMINOR:
540 if (name) {
541 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
542 audit_comparator(MINOR(name->rdev), f->op, f->val))
543 ++result;
544 } else if (ctx) {
545 list_for_each_entry(n, &ctx->names_list, list) {
546 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
547 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
548 ++result;
549 break;
553 break;
554 case AUDIT_INODE:
555 if (name)
556 result = audit_comparator(name->ino, f->op, f->val);
557 else if (ctx) {
558 list_for_each_entry(n, &ctx->names_list, list) {
559 if (audit_comparator(n->ino, f->op, f->val)) {
560 ++result;
561 break;
565 break;
566 case AUDIT_OBJ_UID:
567 if (name) {
568 result = audit_uid_comparator(name->uid, f->op, f->uid);
569 } else if (ctx) {
570 list_for_each_entry(n, &ctx->names_list, list) {
571 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
572 ++result;
573 break;
577 break;
578 case AUDIT_OBJ_GID:
579 if (name) {
580 result = audit_gid_comparator(name->gid, f->op, f->gid);
581 } else if (ctx) {
582 list_for_each_entry(n, &ctx->names_list, list) {
583 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
584 ++result;
585 break;
589 break;
590 case AUDIT_WATCH:
591 if (name)
592 result = audit_watch_compare(rule->watch, name->ino, name->dev);
593 break;
594 case AUDIT_DIR:
595 if (ctx)
596 result = match_tree_refs(ctx, rule->tree);
597 break;
598 case AUDIT_LOGINUID:
599 result = 0;
600 if (ctx)
601 result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
602 break;
603 case AUDIT_LOGINUID_SET:
604 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
605 break;
606 case AUDIT_SUBJ_USER:
607 case AUDIT_SUBJ_ROLE:
608 case AUDIT_SUBJ_TYPE:
609 case AUDIT_SUBJ_SEN:
610 case AUDIT_SUBJ_CLR:
611 /* NOTE: this may return negative values indicating
612 a temporary error. We simply treat this as a
613 match for now to avoid losing information that
614 may be wanted. An error message will also be
615 logged upon error */
616 if (f->lsm_rule) {
617 if (need_sid) {
618 security_task_getsecid(tsk, &sid);
619 need_sid = 0;
621 result = security_audit_rule_match(sid, f->type,
622 f->op,
623 f->lsm_rule,
624 ctx);
626 break;
627 case AUDIT_OBJ_USER:
628 case AUDIT_OBJ_ROLE:
629 case AUDIT_OBJ_TYPE:
630 case AUDIT_OBJ_LEV_LOW:
631 case AUDIT_OBJ_LEV_HIGH:
632 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
633 also applies here */
634 if (f->lsm_rule) {
635 /* Find files that match */
636 if (name) {
637 result = security_audit_rule_match(
638 name->osid, f->type, f->op,
639 f->lsm_rule, ctx);
640 } else if (ctx) {
641 list_for_each_entry(n, &ctx->names_list, list) {
642 if (security_audit_rule_match(n->osid, f->type,
643 f->op, f->lsm_rule,
644 ctx)) {
645 ++result;
646 break;
650 /* Find ipc objects that match */
651 if (!ctx || ctx->type != AUDIT_IPC)
652 break;
653 if (security_audit_rule_match(ctx->ipc.osid,
654 f->type, f->op,
655 f->lsm_rule, ctx))
656 ++result;
658 break;
659 case AUDIT_ARG0:
660 case AUDIT_ARG1:
661 case AUDIT_ARG2:
662 case AUDIT_ARG3:
663 if (ctx)
664 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
665 break;
666 case AUDIT_FILTERKEY:
667 /* ignore this field for filtering */
668 result = 1;
669 break;
670 case AUDIT_PERM:
671 result = audit_match_perm(ctx, f->val);
672 break;
673 case AUDIT_FILETYPE:
674 result = audit_match_filetype(ctx, f->val);
675 break;
676 case AUDIT_FIELD_COMPARE:
677 result = audit_field_compare(tsk, cred, f, ctx, name);
678 break;
680 if (!result)
681 return 0;
684 if (ctx) {
685 if (rule->prio <= ctx->prio)
686 return 0;
687 if (rule->filterkey) {
688 kfree(ctx->filterkey);
689 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
691 ctx->prio = rule->prio;
693 switch (rule->action) {
694 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
695 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
697 return 1;
700 /* At process creation time, we can determine if system-call auditing is
701 * completely disabled for this task. Since we only have the task
702 * structure at this point, we can only check uid and gid.
704 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
706 struct audit_entry *e;
707 enum audit_state state;
709 rcu_read_lock();
710 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
711 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
712 &state, true)) {
713 if (state == AUDIT_RECORD_CONTEXT)
714 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
715 rcu_read_unlock();
716 return state;
719 rcu_read_unlock();
720 return AUDIT_BUILD_CONTEXT;
723 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
725 int word, bit;
727 if (val > 0xffffffff)
728 return false;
730 word = AUDIT_WORD(val);
731 if (word >= AUDIT_BITMASK_SIZE)
732 return false;
734 bit = AUDIT_BIT(val);
736 return rule->mask[word] & bit;
739 /* At syscall entry and exit time, this filter is called if the
740 * audit_state is not low enough that auditing cannot take place, but is
741 * also not high enough that we already know we have to write an audit
742 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
744 static enum audit_state audit_filter_syscall(struct task_struct *tsk,
745 struct audit_context *ctx,
746 struct list_head *list)
748 struct audit_entry *e;
749 enum audit_state state;
751 if (audit_pid && tsk->tgid == audit_pid)
752 return AUDIT_DISABLED;
754 rcu_read_lock();
755 if (!list_empty(list)) {
756 list_for_each_entry_rcu(e, list, list) {
757 if (audit_in_mask(&e->rule, ctx->major) &&
758 audit_filter_rules(tsk, &e->rule, ctx, NULL,
759 &state, false)) {
760 rcu_read_unlock();
761 ctx->current_state = state;
762 return state;
766 rcu_read_unlock();
767 return AUDIT_BUILD_CONTEXT;
771 * Given an audit_name check the inode hash table to see if they match.
772 * Called holding the rcu read lock to protect the use of audit_inode_hash
774 static int audit_filter_inode_name(struct task_struct *tsk,
775 struct audit_names *n,
776 struct audit_context *ctx) {
777 int h = audit_hash_ino((u32)n->ino);
778 struct list_head *list = &audit_inode_hash[h];
779 struct audit_entry *e;
780 enum audit_state state;
782 if (list_empty(list))
783 return 0;
785 list_for_each_entry_rcu(e, list, list) {
786 if (audit_in_mask(&e->rule, ctx->major) &&
787 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
788 ctx->current_state = state;
789 return 1;
793 return 0;
796 /* At syscall exit time, this filter is called if any audit_names have been
797 * collected during syscall processing. We only check rules in sublists at hash
798 * buckets applicable to the inode numbers in audit_names.
799 * Regarding audit_state, same rules apply as for audit_filter_syscall().
801 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
803 struct audit_names *n;
805 if (audit_pid && tsk->tgid == audit_pid)
806 return;
808 rcu_read_lock();
810 list_for_each_entry(n, &ctx->names_list, list) {
811 if (audit_filter_inode_name(tsk, n, ctx))
812 break;
814 rcu_read_unlock();
817 static inline struct audit_context *audit_get_context(struct task_struct *tsk,
818 int return_valid,
819 long return_code)
821 struct audit_context *context = tsk->audit_context;
823 if (!context)
824 return NULL;
825 context->return_valid = return_valid;
828 * we need to fix up the return code in the audit logs if the actual
829 * return codes are later going to be fixed up by the arch specific
830 * signal handlers
832 * This is actually a test for:
833 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
834 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
836 * but is faster than a bunch of ||
838 if (unlikely(return_code <= -ERESTARTSYS) &&
839 (return_code >= -ERESTART_RESTARTBLOCK) &&
840 (return_code != -ENOIOCTLCMD))
841 context->return_code = -EINTR;
842 else
843 context->return_code = return_code;
845 if (context->in_syscall && !context->dummy) {
846 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
847 audit_filter_inodes(tsk, context);
850 tsk->audit_context = NULL;
851 return context;
854 static inline void audit_free_names(struct audit_context *context)
856 struct audit_names *n, *next;
858 #if AUDIT_DEBUG == 2
859 if (context->put_count + context->ino_count != context->name_count) {
860 int i = 0;
862 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
863 " name_count=%d put_count=%d"
864 " ino_count=%d [NOT freeing]\n",
865 __FILE__, __LINE__,
866 context->serial, context->major, context->in_syscall,
867 context->name_count, context->put_count,
868 context->ino_count);
869 list_for_each_entry(n, &context->names_list, list) {
870 printk(KERN_ERR "names[%d] = %p = %s\n", i++,
871 n->name, n->name->name ?: "(null)");
873 dump_stack();
874 return;
876 #endif
877 #if AUDIT_DEBUG
878 context->put_count = 0;
879 context->ino_count = 0;
880 #endif
882 list_for_each_entry_safe(n, next, &context->names_list, list) {
883 list_del(&n->list);
884 if (n->name && n->name_put)
885 final_putname(n->name);
886 if (n->should_free)
887 kfree(n);
889 context->name_count = 0;
890 path_put(&context->pwd);
891 context->pwd.dentry = NULL;
892 context->pwd.mnt = NULL;
895 static inline void audit_free_aux(struct audit_context *context)
897 struct audit_aux_data *aux;
899 while ((aux = context->aux)) {
900 context->aux = aux->next;
901 kfree(aux);
903 while ((aux = context->aux_pids)) {
904 context->aux_pids = aux->next;
905 kfree(aux);
909 static inline struct audit_context *audit_alloc_context(enum audit_state state)
911 struct audit_context *context;
913 context = kzalloc(sizeof(*context), GFP_KERNEL);
914 if (!context)
915 return NULL;
916 context->state = state;
917 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
918 INIT_LIST_HEAD(&context->killed_trees);
919 INIT_LIST_HEAD(&context->names_list);
920 return context;
924 * audit_alloc - allocate an audit context block for a task
925 * @tsk: task
927 * Filter on the task information and allocate a per-task audit context
928 * if necessary. Doing so turns on system call auditing for the
929 * specified task. This is called from copy_process, so no lock is
930 * needed.
932 int audit_alloc(struct task_struct *tsk)
934 struct audit_context *context;
935 enum audit_state state;
936 char *key = NULL;
938 if (likely(!audit_ever_enabled))
939 return 0; /* Return if not auditing. */
941 state = audit_filter_task(tsk, &key);
942 if (state == AUDIT_DISABLED) {
943 clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
944 return 0;
947 if (!(context = audit_alloc_context(state))) {
948 kfree(key);
949 audit_log_lost("out of memory in audit_alloc");
950 return -ENOMEM;
952 context->filterkey = key;
954 tsk->audit_context = context;
955 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
956 return 0;
959 static inline void audit_free_context(struct audit_context *context)
961 audit_free_names(context);
962 unroll_tree_refs(context, NULL, 0);
963 free_tree_refs(context);
964 audit_free_aux(context);
965 kfree(context->filterkey);
966 kfree(context->sockaddr);
967 kfree(context);
970 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
971 kuid_t auid, kuid_t uid, unsigned int sessionid,
972 u32 sid, char *comm)
974 struct audit_buffer *ab;
975 char *ctx = NULL;
976 u32 len;
977 int rc = 0;
979 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
980 if (!ab)
981 return rc;
983 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
984 from_kuid(&init_user_ns, auid),
985 from_kuid(&init_user_ns, uid), sessionid);
986 if (sid) {
987 if (security_secid_to_secctx(sid, &ctx, &len)) {
988 audit_log_format(ab, " obj=(none)");
989 rc = 1;
990 } else {
991 audit_log_format(ab, " obj=%s", ctx);
992 security_release_secctx(ctx, len);
995 audit_log_format(ab, " ocomm=");
996 audit_log_untrustedstring(ab, comm);
997 audit_log_end(ab);
999 return rc;
1003 * to_send and len_sent accounting are very loose estimates. We aren't
1004 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1005 * within about 500 bytes (next page boundary)
1007 * why snprintf? an int is up to 12 digits long. if we just assumed when
1008 * logging that a[%d]= was going to be 16 characters long we would be wasting
1009 * space in every audit message. In one 7500 byte message we can log up to
1010 * about 1000 min size arguments. That comes down to about 50% waste of space
1011 * if we didn't do the snprintf to find out how long arg_num_len was.
1013 static int audit_log_single_execve_arg(struct audit_context *context,
1014 struct audit_buffer **ab,
1015 int arg_num,
1016 size_t *len_sent,
1017 const char __user *p,
1018 char *buf)
1020 char arg_num_len_buf[12];
1021 const char __user *tmp_p = p;
1022 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1023 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1024 size_t len, len_left, to_send;
1025 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1026 unsigned int i, has_cntl = 0, too_long = 0;
1027 int ret;
1029 /* strnlen_user includes the null we don't want to send */
1030 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1033 * We just created this mm, if we can't find the strings
1034 * we just copied into it something is _very_ wrong. Similar
1035 * for strings that are too long, we should not have created
1036 * any.
1038 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1039 WARN_ON(1);
1040 send_sig(SIGKILL, current, 0);
1041 return -1;
1044 /* walk the whole argument looking for non-ascii chars */
1045 do {
1046 if (len_left > MAX_EXECVE_AUDIT_LEN)
1047 to_send = MAX_EXECVE_AUDIT_LEN;
1048 else
1049 to_send = len_left;
1050 ret = copy_from_user(buf, tmp_p, to_send);
1052 * There is no reason for this copy to be short. We just
1053 * copied them here, and the mm hasn't been exposed to user-
1054 * space yet.
1056 if (ret) {
1057 WARN_ON(1);
1058 send_sig(SIGKILL, current, 0);
1059 return -1;
1061 buf[to_send] = '\0';
1062 has_cntl = audit_string_contains_control(buf, to_send);
1063 if (has_cntl) {
1065 * hex messages get logged as 2 bytes, so we can only
1066 * send half as much in each message
1068 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1069 break;
1071 len_left -= to_send;
1072 tmp_p += to_send;
1073 } while (len_left > 0);
1075 len_left = len;
1077 if (len > max_execve_audit_len)
1078 too_long = 1;
1080 /* rewalk the argument actually logging the message */
1081 for (i = 0; len_left > 0; i++) {
1082 int room_left;
1084 if (len_left > max_execve_audit_len)
1085 to_send = max_execve_audit_len;
1086 else
1087 to_send = len_left;
1089 /* do we have space left to send this argument in this ab? */
1090 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1091 if (has_cntl)
1092 room_left -= (to_send * 2);
1093 else
1094 room_left -= to_send;
1095 if (room_left < 0) {
1096 *len_sent = 0;
1097 audit_log_end(*ab);
1098 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1099 if (!*ab)
1100 return 0;
1104 * first record needs to say how long the original string was
1105 * so we can be sure nothing was lost.
1107 if ((i == 0) && (too_long))
1108 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1109 has_cntl ? 2*len : len);
1112 * normally arguments are small enough to fit and we already
1113 * filled buf above when we checked for control characters
1114 * so don't bother with another copy_from_user
1116 if (len >= max_execve_audit_len)
1117 ret = copy_from_user(buf, p, to_send);
1118 else
1119 ret = 0;
1120 if (ret) {
1121 WARN_ON(1);
1122 send_sig(SIGKILL, current, 0);
1123 return -1;
1125 buf[to_send] = '\0';
1127 /* actually log it */
1128 audit_log_format(*ab, " a%d", arg_num);
1129 if (too_long)
1130 audit_log_format(*ab, "[%d]", i);
1131 audit_log_format(*ab, "=");
1132 if (has_cntl)
1133 audit_log_n_hex(*ab, buf, to_send);
1134 else
1135 audit_log_string(*ab, buf);
1137 p += to_send;
1138 len_left -= to_send;
1139 *len_sent += arg_num_len;
1140 if (has_cntl)
1141 *len_sent += to_send * 2;
1142 else
1143 *len_sent += to_send;
1145 /* include the null we didn't log */
1146 return len + 1;
1149 static void audit_log_execve_info(struct audit_context *context,
1150 struct audit_buffer **ab)
1152 int i, len;
1153 size_t len_sent = 0;
1154 const char __user *p;
1155 char *buf;
1157 p = (const char __user *)current->mm->arg_start;
1159 audit_log_format(*ab, "argc=%d", context->execve.argc);
1162 * we need some kernel buffer to hold the userspace args. Just
1163 * allocate one big one rather than allocating one of the right size
1164 * for every single argument inside audit_log_single_execve_arg()
1165 * should be <8k allocation so should be pretty safe.
1167 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1168 if (!buf) {
1169 audit_panic("out of memory for argv string\n");
1170 return;
1173 for (i = 0; i < context->execve.argc; i++) {
1174 len = audit_log_single_execve_arg(context, ab, i,
1175 &len_sent, p, buf);
1176 if (len <= 0)
1177 break;
1178 p += len;
1180 kfree(buf);
1183 static void show_special(struct audit_context *context, int *call_panic)
1185 struct audit_buffer *ab;
1186 int i;
1188 ab = audit_log_start(context, GFP_KERNEL, context->type);
1189 if (!ab)
1190 return;
1192 switch (context->type) {
1193 case AUDIT_SOCKETCALL: {
1194 int nargs = context->socketcall.nargs;
1195 audit_log_format(ab, "nargs=%d", nargs);
1196 for (i = 0; i < nargs; i++)
1197 audit_log_format(ab, " a%d=%lx", i,
1198 context->socketcall.args[i]);
1199 break; }
1200 case AUDIT_IPC: {
1201 u32 osid = context->ipc.osid;
1203 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1204 from_kuid(&init_user_ns, context->ipc.uid),
1205 from_kgid(&init_user_ns, context->ipc.gid),
1206 context->ipc.mode);
1207 if (osid) {
1208 char *ctx = NULL;
1209 u32 len;
1210 if (security_secid_to_secctx(osid, &ctx, &len)) {
1211 audit_log_format(ab, " osid=%u", osid);
1212 *call_panic = 1;
1213 } else {
1214 audit_log_format(ab, " obj=%s", ctx);
1215 security_release_secctx(ctx, len);
1218 if (context->ipc.has_perm) {
1219 audit_log_end(ab);
1220 ab = audit_log_start(context, GFP_KERNEL,
1221 AUDIT_IPC_SET_PERM);
1222 if (unlikely(!ab))
1223 return;
1224 audit_log_format(ab,
1225 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1226 context->ipc.qbytes,
1227 context->ipc.perm_uid,
1228 context->ipc.perm_gid,
1229 context->ipc.perm_mode);
1231 break; }
1232 case AUDIT_MQ_OPEN: {
1233 audit_log_format(ab,
1234 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1235 "mq_msgsize=%ld mq_curmsgs=%ld",
1236 context->mq_open.oflag, context->mq_open.mode,
1237 context->mq_open.attr.mq_flags,
1238 context->mq_open.attr.mq_maxmsg,
1239 context->mq_open.attr.mq_msgsize,
1240 context->mq_open.attr.mq_curmsgs);
1241 break; }
1242 case AUDIT_MQ_SENDRECV: {
1243 audit_log_format(ab,
1244 "mqdes=%d msg_len=%zd msg_prio=%u "
1245 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1246 context->mq_sendrecv.mqdes,
1247 context->mq_sendrecv.msg_len,
1248 context->mq_sendrecv.msg_prio,
1249 context->mq_sendrecv.abs_timeout.tv_sec,
1250 context->mq_sendrecv.abs_timeout.tv_nsec);
1251 break; }
1252 case AUDIT_MQ_NOTIFY: {
1253 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1254 context->mq_notify.mqdes,
1255 context->mq_notify.sigev_signo);
1256 break; }
1257 case AUDIT_MQ_GETSETATTR: {
1258 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1259 audit_log_format(ab,
1260 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1261 "mq_curmsgs=%ld ",
1262 context->mq_getsetattr.mqdes,
1263 attr->mq_flags, attr->mq_maxmsg,
1264 attr->mq_msgsize, attr->mq_curmsgs);
1265 break; }
1266 case AUDIT_CAPSET: {
1267 audit_log_format(ab, "pid=%d", context->capset.pid);
1268 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1269 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1270 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1271 break; }
1272 case AUDIT_MMAP: {
1273 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1274 context->mmap.flags);
1275 break; }
1276 case AUDIT_EXECVE: {
1277 audit_log_execve_info(context, &ab);
1278 break; }
1280 audit_log_end(ab);
1283 static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1285 int i, call_panic = 0;
1286 struct audit_buffer *ab;
1287 struct audit_aux_data *aux;
1288 struct audit_names *n;
1290 /* tsk == current */
1291 context->personality = tsk->personality;
1293 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1294 if (!ab)
1295 return; /* audit_panic has been called */
1296 audit_log_format(ab, "arch=%x syscall=%d",
1297 context->arch, context->major);
1298 if (context->personality != PER_LINUX)
1299 audit_log_format(ab, " per=%lx", context->personality);
1300 if (context->return_valid)
1301 audit_log_format(ab, " success=%s exit=%ld",
1302 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1303 context->return_code);
1305 audit_log_format(ab,
1306 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1307 context->argv[0],
1308 context->argv[1],
1309 context->argv[2],
1310 context->argv[3],
1311 context->name_count);
1313 audit_log_task_info(ab, tsk);
1314 audit_log_key(ab, context->filterkey);
1315 audit_log_end(ab);
1317 for (aux = context->aux; aux; aux = aux->next) {
1319 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1320 if (!ab)
1321 continue; /* audit_panic has been called */
1323 switch (aux->type) {
1325 case AUDIT_BPRM_FCAPS: {
1326 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1327 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1328 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1329 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1330 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1331 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1332 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1333 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1334 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1335 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1336 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1337 break; }
1340 audit_log_end(ab);
1343 if (context->type)
1344 show_special(context, &call_panic);
1346 if (context->fds[0] >= 0) {
1347 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1348 if (ab) {
1349 audit_log_format(ab, "fd0=%d fd1=%d",
1350 context->fds[0], context->fds[1]);
1351 audit_log_end(ab);
1355 if (context->sockaddr_len) {
1356 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1357 if (ab) {
1358 audit_log_format(ab, "saddr=");
1359 audit_log_n_hex(ab, (void *)context->sockaddr,
1360 context->sockaddr_len);
1361 audit_log_end(ab);
1365 for (aux = context->aux_pids; aux; aux = aux->next) {
1366 struct audit_aux_data_pids *axs = (void *)aux;
1368 for (i = 0; i < axs->pid_count; i++)
1369 if (audit_log_pid_context(context, axs->target_pid[i],
1370 axs->target_auid[i],
1371 axs->target_uid[i],
1372 axs->target_sessionid[i],
1373 axs->target_sid[i],
1374 axs->target_comm[i]))
1375 call_panic = 1;
1378 if (context->target_pid &&
1379 audit_log_pid_context(context, context->target_pid,
1380 context->target_auid, context->target_uid,
1381 context->target_sessionid,
1382 context->target_sid, context->target_comm))
1383 call_panic = 1;
1385 if (context->pwd.dentry && context->pwd.mnt) {
1386 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1387 if (ab) {
1388 audit_log_d_path(ab, " cwd=", &context->pwd);
1389 audit_log_end(ab);
1393 i = 0;
1394 list_for_each_entry(n, &context->names_list, list) {
1395 if (n->hidden)
1396 continue;
1397 audit_log_name(context, n, NULL, i++, &call_panic);
1400 /* Send end of event record to help user space know we are finished */
1401 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1402 if (ab)
1403 audit_log_end(ab);
1404 if (call_panic)
1405 audit_panic("error converting sid to string");
1409 * audit_free - free a per-task audit context
1410 * @tsk: task whose audit context block to free
1412 * Called from copy_process and do_exit
1414 void __audit_free(struct task_struct *tsk)
1416 struct audit_context *context;
1418 context = audit_get_context(tsk, 0, 0);
1419 if (!context)
1420 return;
1422 /* Check for system calls that do not go through the exit
1423 * function (e.g., exit_group), then free context block.
1424 * We use GFP_ATOMIC here because we might be doing this
1425 * in the context of the idle thread */
1426 /* that can happen only if we are called from do_exit() */
1427 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1428 audit_log_exit(context, tsk);
1429 if (!list_empty(&context->killed_trees))
1430 audit_kill_trees(&context->killed_trees);
1432 audit_free_context(context);
1436 * audit_syscall_entry - fill in an audit record at syscall entry
1437 * @arch: architecture type
1438 * @major: major syscall type (function)
1439 * @a1: additional syscall register 1
1440 * @a2: additional syscall register 2
1441 * @a3: additional syscall register 3
1442 * @a4: additional syscall register 4
1444 * Fill in audit context at syscall entry. This only happens if the
1445 * audit context was created when the task was created and the state or
1446 * filters demand the audit context be built. If the state from the
1447 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1448 * then the record will be written at syscall exit time (otherwise, it
1449 * will only be written if another part of the kernel requests that it
1450 * be written).
1452 void __audit_syscall_entry(int arch, int major,
1453 unsigned long a1, unsigned long a2,
1454 unsigned long a3, unsigned long a4)
1456 struct task_struct *tsk = current;
1457 struct audit_context *context = tsk->audit_context;
1458 enum audit_state state;
1460 if (!context)
1461 return;
1463 BUG_ON(context->in_syscall || context->name_count);
1465 if (!audit_enabled)
1466 return;
1468 context->arch = arch;
1469 context->major = major;
1470 context->argv[0] = a1;
1471 context->argv[1] = a2;
1472 context->argv[2] = a3;
1473 context->argv[3] = a4;
1475 state = context->state;
1476 context->dummy = !audit_n_rules;
1477 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1478 context->prio = 0;
1479 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1481 if (state == AUDIT_DISABLED)
1482 return;
1484 context->serial = 0;
1485 context->ctime = CURRENT_TIME;
1486 context->in_syscall = 1;
1487 context->current_state = state;
1488 context->ppid = 0;
1492 * audit_syscall_exit - deallocate audit context after a system call
1493 * @success: success value of the syscall
1494 * @return_code: return value of the syscall
1496 * Tear down after system call. If the audit context has been marked as
1497 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1498 * filtering, or because some other part of the kernel wrote an audit
1499 * message), then write out the syscall information. In call cases,
1500 * free the names stored from getname().
1502 void __audit_syscall_exit(int success, long return_code)
1504 struct task_struct *tsk = current;
1505 struct audit_context *context;
1507 if (success)
1508 success = AUDITSC_SUCCESS;
1509 else
1510 success = AUDITSC_FAILURE;
1512 context = audit_get_context(tsk, success, return_code);
1513 if (!context)
1514 return;
1516 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1517 audit_log_exit(context, tsk);
1519 context->in_syscall = 0;
1520 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1522 if (!list_empty(&context->killed_trees))
1523 audit_kill_trees(&context->killed_trees);
1525 audit_free_names(context);
1526 unroll_tree_refs(context, NULL, 0);
1527 audit_free_aux(context);
1528 context->aux = NULL;
1529 context->aux_pids = NULL;
1530 context->target_pid = 0;
1531 context->target_sid = 0;
1532 context->sockaddr_len = 0;
1533 context->type = 0;
1534 context->fds[0] = -1;
1535 if (context->state != AUDIT_RECORD_CONTEXT) {
1536 kfree(context->filterkey);
1537 context->filterkey = NULL;
1539 tsk->audit_context = context;
1542 static inline void handle_one(const struct inode *inode)
1544 #ifdef CONFIG_AUDIT_TREE
1545 struct audit_context *context;
1546 struct audit_tree_refs *p;
1547 struct audit_chunk *chunk;
1548 int count;
1549 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1550 return;
1551 context = current->audit_context;
1552 p = context->trees;
1553 count = context->tree_count;
1554 rcu_read_lock();
1555 chunk = audit_tree_lookup(inode);
1556 rcu_read_unlock();
1557 if (!chunk)
1558 return;
1559 if (likely(put_tree_ref(context, chunk)))
1560 return;
1561 if (unlikely(!grow_tree_refs(context))) {
1562 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1563 audit_set_auditable(context);
1564 audit_put_chunk(chunk);
1565 unroll_tree_refs(context, p, count);
1566 return;
1568 put_tree_ref(context, chunk);
1569 #endif
1572 static void handle_path(const struct dentry *dentry)
1574 #ifdef CONFIG_AUDIT_TREE
1575 struct audit_context *context;
1576 struct audit_tree_refs *p;
1577 const struct dentry *d, *parent;
1578 struct audit_chunk *drop;
1579 unsigned long seq;
1580 int count;
1582 context = current->audit_context;
1583 p = context->trees;
1584 count = context->tree_count;
1585 retry:
1586 drop = NULL;
1587 d = dentry;
1588 rcu_read_lock();
1589 seq = read_seqbegin(&rename_lock);
1590 for(;;) {
1591 struct inode *inode = d->d_inode;
1592 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1593 struct audit_chunk *chunk;
1594 chunk = audit_tree_lookup(inode);
1595 if (chunk) {
1596 if (unlikely(!put_tree_ref(context, chunk))) {
1597 drop = chunk;
1598 break;
1602 parent = d->d_parent;
1603 if (parent == d)
1604 break;
1605 d = parent;
1607 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1608 rcu_read_unlock();
1609 if (!drop) {
1610 /* just a race with rename */
1611 unroll_tree_refs(context, p, count);
1612 goto retry;
1614 audit_put_chunk(drop);
1615 if (grow_tree_refs(context)) {
1616 /* OK, got more space */
1617 unroll_tree_refs(context, p, count);
1618 goto retry;
1620 /* too bad */
1621 printk(KERN_WARNING
1622 "out of memory, audit has lost a tree reference\n");
1623 unroll_tree_refs(context, p, count);
1624 audit_set_auditable(context);
1625 return;
1627 rcu_read_unlock();
1628 #endif
1631 static struct audit_names *audit_alloc_name(struct audit_context *context,
1632 unsigned char type)
1634 struct audit_names *aname;
1636 if (context->name_count < AUDIT_NAMES) {
1637 aname = &context->preallocated_names[context->name_count];
1638 memset(aname, 0, sizeof(*aname));
1639 } else {
1640 aname = kzalloc(sizeof(*aname), GFP_NOFS);
1641 if (!aname)
1642 return NULL;
1643 aname->should_free = true;
1646 aname->ino = (unsigned long)-1;
1647 aname->type = type;
1648 list_add_tail(&aname->list, &context->names_list);
1650 context->name_count++;
1651 #if AUDIT_DEBUG
1652 context->ino_count++;
1653 #endif
1654 return aname;
1658 * audit_reusename - fill out filename with info from existing entry
1659 * @uptr: userland ptr to pathname
1661 * Search the audit_names list for the current audit context. If there is an
1662 * existing entry with a matching "uptr" then return the filename
1663 * associated with that audit_name. If not, return NULL.
1665 struct filename *
1666 __audit_reusename(const __user char *uptr)
1668 struct audit_context *context = current->audit_context;
1669 struct audit_names *n;
1671 list_for_each_entry(n, &context->names_list, list) {
1672 if (!n->name)
1673 continue;
1674 if (n->name->uptr == uptr)
1675 return n->name;
1677 return NULL;
1681 * audit_getname - add a name to the list
1682 * @name: name to add
1684 * Add a name to the list of audit names for this context.
1685 * Called from fs/namei.c:getname().
1687 void __audit_getname(struct filename *name)
1689 struct audit_context *context = current->audit_context;
1690 struct audit_names *n;
1692 if (!context->in_syscall) {
1693 #if AUDIT_DEBUG == 2
1694 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1695 __FILE__, __LINE__, context->serial, name);
1696 dump_stack();
1697 #endif
1698 return;
1701 #if AUDIT_DEBUG
1702 /* The filename _must_ have a populated ->name */
1703 BUG_ON(!name->name);
1704 #endif
1706 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1707 if (!n)
1708 return;
1710 n->name = name;
1711 n->name_len = AUDIT_NAME_FULL;
1712 n->name_put = true;
1713 name->aname = n;
1715 if (!context->pwd.dentry)
1716 get_fs_pwd(current->fs, &context->pwd);
1719 /* audit_putname - intercept a putname request
1720 * @name: name to intercept and delay for putname
1722 * If we have stored the name from getname in the audit context,
1723 * then we delay the putname until syscall exit.
1724 * Called from include/linux/fs.h:putname().
1726 void audit_putname(struct filename *name)
1728 struct audit_context *context = current->audit_context;
1730 BUG_ON(!context);
1731 if (!name->aname || !context->in_syscall) {
1732 #if AUDIT_DEBUG == 2
1733 printk(KERN_ERR "%s:%d(:%d): final_putname(%p)\n",
1734 __FILE__, __LINE__, context->serial, name);
1735 if (context->name_count) {
1736 struct audit_names *n;
1737 int i = 0;
1739 list_for_each_entry(n, &context->names_list, list)
1740 printk(KERN_ERR "name[%d] = %p = %s\n", i++,
1741 n->name, n->name->name ?: "(null)");
1743 #endif
1744 final_putname(name);
1746 #if AUDIT_DEBUG
1747 else {
1748 ++context->put_count;
1749 if (context->put_count > context->name_count) {
1750 printk(KERN_ERR "%s:%d(:%d): major=%d"
1751 " in_syscall=%d putname(%p) name_count=%d"
1752 " put_count=%d\n",
1753 __FILE__, __LINE__,
1754 context->serial, context->major,
1755 context->in_syscall, name->name,
1756 context->name_count, context->put_count);
1757 dump_stack();
1760 #endif
1764 * __audit_inode - store the inode and device from a lookup
1765 * @name: name being audited
1766 * @dentry: dentry being audited
1767 * @flags: attributes for this particular entry
1769 void __audit_inode(struct filename *name, const struct dentry *dentry,
1770 unsigned int flags)
1772 struct audit_context *context = current->audit_context;
1773 const struct inode *inode = dentry->d_inode;
1774 struct audit_names *n;
1775 bool parent = flags & AUDIT_INODE_PARENT;
1777 if (!context->in_syscall)
1778 return;
1780 if (!name)
1781 goto out_alloc;
1783 #if AUDIT_DEBUG
1784 /* The struct filename _must_ have a populated ->name */
1785 BUG_ON(!name->name);
1786 #endif
1788 * If we have a pointer to an audit_names entry already, then we can
1789 * just use it directly if the type is correct.
1791 n = name->aname;
1792 if (n) {
1793 if (parent) {
1794 if (n->type == AUDIT_TYPE_PARENT ||
1795 n->type == AUDIT_TYPE_UNKNOWN)
1796 goto out;
1797 } else {
1798 if (n->type != AUDIT_TYPE_PARENT)
1799 goto out;
1803 list_for_each_entry_reverse(n, &context->names_list, list) {
1804 /* does the name pointer match? */
1805 if (!n->name || n->name->name != name->name)
1806 continue;
1808 /* match the correct record type */
1809 if (parent) {
1810 if (n->type == AUDIT_TYPE_PARENT ||
1811 n->type == AUDIT_TYPE_UNKNOWN)
1812 goto out;
1813 } else {
1814 if (n->type != AUDIT_TYPE_PARENT)
1815 goto out;
1819 out_alloc:
1820 /* unable to find the name from a previous getname(). Allocate a new
1821 * anonymous entry.
1823 n = audit_alloc_name(context, AUDIT_TYPE_NORMAL);
1824 if (!n)
1825 return;
1826 out:
1827 if (parent) {
1828 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1829 n->type = AUDIT_TYPE_PARENT;
1830 if (flags & AUDIT_INODE_HIDDEN)
1831 n->hidden = true;
1832 } else {
1833 n->name_len = AUDIT_NAME_FULL;
1834 n->type = AUDIT_TYPE_NORMAL;
1836 handle_path(dentry);
1837 audit_copy_inode(n, dentry, inode);
1841 * __audit_inode_child - collect inode info for created/removed objects
1842 * @parent: inode of dentry parent
1843 * @dentry: dentry being audited
1844 * @type: AUDIT_TYPE_* value that we're looking for
1846 * For syscalls that create or remove filesystem objects, audit_inode
1847 * can only collect information for the filesystem object's parent.
1848 * This call updates the audit context with the child's information.
1849 * Syscalls that create a new filesystem object must be hooked after
1850 * the object is created. Syscalls that remove a filesystem object
1851 * must be hooked prior, in order to capture the target inode during
1852 * unsuccessful attempts.
1854 void __audit_inode_child(const struct inode *parent,
1855 const struct dentry *dentry,
1856 const unsigned char type)
1858 struct audit_context *context = current->audit_context;
1859 const struct inode *inode = dentry->d_inode;
1860 const char *dname = dentry->d_name.name;
1861 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1863 if (!context->in_syscall)
1864 return;
1866 if (inode)
1867 handle_one(inode);
1869 /* look for a parent entry first */
1870 list_for_each_entry(n, &context->names_list, list) {
1871 if (!n->name || n->type != AUDIT_TYPE_PARENT)
1872 continue;
1874 if (n->ino == parent->i_ino &&
1875 !audit_compare_dname_path(dname, n->name->name, n->name_len)) {
1876 found_parent = n;
1877 break;
1881 /* is there a matching child entry? */
1882 list_for_each_entry(n, &context->names_list, list) {
1883 /* can only match entries that have a name */
1884 if (!n->name || n->type != type)
1885 continue;
1887 /* if we found a parent, make sure this one is a child of it */
1888 if (found_parent && (n->name != found_parent->name))
1889 continue;
1891 if (!strcmp(dname, n->name->name) ||
1892 !audit_compare_dname_path(dname, n->name->name,
1893 found_parent ?
1894 found_parent->name_len :
1895 AUDIT_NAME_FULL)) {
1896 found_child = n;
1897 break;
1901 if (!found_parent) {
1902 /* create a new, "anonymous" parent record */
1903 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1904 if (!n)
1905 return;
1906 audit_copy_inode(n, NULL, parent);
1909 if (!found_child) {
1910 found_child = audit_alloc_name(context, type);
1911 if (!found_child)
1912 return;
1914 /* Re-use the name belonging to the slot for a matching parent
1915 * directory. All names for this context are relinquished in
1916 * audit_free_names() */
1917 if (found_parent) {
1918 found_child->name = found_parent->name;
1919 found_child->name_len = AUDIT_NAME_FULL;
1920 /* don't call __putname() */
1921 found_child->name_put = false;
1924 if (inode)
1925 audit_copy_inode(found_child, dentry, inode);
1926 else
1927 found_child->ino = (unsigned long)-1;
1929 EXPORT_SYMBOL_GPL(__audit_inode_child);
1932 * auditsc_get_stamp - get local copies of audit_context values
1933 * @ctx: audit_context for the task
1934 * @t: timespec to store time recorded in the audit_context
1935 * @serial: serial value that is recorded in the audit_context
1937 * Also sets the context as auditable.
1939 int auditsc_get_stamp(struct audit_context *ctx,
1940 struct timespec *t, unsigned int *serial)
1942 if (!ctx->in_syscall)
1943 return 0;
1944 if (!ctx->serial)
1945 ctx->serial = audit_serial();
1946 t->tv_sec = ctx->ctime.tv_sec;
1947 t->tv_nsec = ctx->ctime.tv_nsec;
1948 *serial = ctx->serial;
1949 if (!ctx->prio) {
1950 ctx->prio = 1;
1951 ctx->current_state = AUDIT_RECORD_CONTEXT;
1953 return 1;
1956 /* global counter which is incremented every time something logs in */
1957 static atomic_t session_id = ATOMIC_INIT(0);
1959 static int audit_set_loginuid_perm(kuid_t loginuid)
1961 /* if we are unset, we don't need privs */
1962 if (!audit_loginuid_set(current))
1963 return 0;
1964 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1965 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1966 return -EPERM;
1967 /* it is set, you need permission */
1968 if (!capable(CAP_AUDIT_CONTROL))
1969 return -EPERM;
1970 /* reject if this is not an unset and we don't allow that */
1971 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1972 return -EPERM;
1973 return 0;
1976 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1977 unsigned int oldsessionid, unsigned int sessionid,
1978 int rc)
1980 struct audit_buffer *ab;
1981 uid_t uid, oldloginuid, loginuid;
1983 if (!audit_enabled)
1984 return;
1986 uid = from_kuid(&init_user_ns, task_uid(current));
1987 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1988 loginuid = from_kuid(&init_user_ns, kloginuid),
1990 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1991 if (!ab)
1992 return;
1993 audit_log_format(ab, "pid=%d uid=%u"
1994 " old-auid=%u auid=%u old-ses=%u ses=%u"
1995 " res=%d",
1996 current->pid, uid,
1997 oldloginuid, loginuid, oldsessionid, sessionid,
1998 !rc);
1999 audit_log_end(ab);
2003 * audit_set_loginuid - set current task's audit_context loginuid
2004 * @loginuid: loginuid value
2006 * Returns 0.
2008 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2010 int audit_set_loginuid(kuid_t loginuid)
2012 struct task_struct *task = current;
2013 unsigned int oldsessionid, sessionid = (unsigned int)-1;
2014 kuid_t oldloginuid;
2015 int rc;
2017 oldloginuid = audit_get_loginuid(current);
2018 oldsessionid = audit_get_sessionid(current);
2020 rc = audit_set_loginuid_perm(loginuid);
2021 if (rc)
2022 goto out;
2024 /* are we setting or clearing? */
2025 if (uid_valid(loginuid))
2026 sessionid = (unsigned int)atomic_inc_return(&session_id);
2028 task->sessionid = sessionid;
2029 task->loginuid = loginuid;
2030 out:
2031 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2032 return rc;
2036 * __audit_mq_open - record audit data for a POSIX MQ open
2037 * @oflag: open flag
2038 * @mode: mode bits
2039 * @attr: queue attributes
2042 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2044 struct audit_context *context = current->audit_context;
2046 if (attr)
2047 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2048 else
2049 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2051 context->mq_open.oflag = oflag;
2052 context->mq_open.mode = mode;
2054 context->type = AUDIT_MQ_OPEN;
2058 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2059 * @mqdes: MQ descriptor
2060 * @msg_len: Message length
2061 * @msg_prio: Message priority
2062 * @abs_timeout: Message timeout in absolute time
2065 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2066 const struct timespec *abs_timeout)
2068 struct audit_context *context = current->audit_context;
2069 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2071 if (abs_timeout)
2072 memcpy(p, abs_timeout, sizeof(struct timespec));
2073 else
2074 memset(p, 0, sizeof(struct timespec));
2076 context->mq_sendrecv.mqdes = mqdes;
2077 context->mq_sendrecv.msg_len = msg_len;
2078 context->mq_sendrecv.msg_prio = msg_prio;
2080 context->type = AUDIT_MQ_SENDRECV;
2084 * __audit_mq_notify - record audit data for a POSIX MQ notify
2085 * @mqdes: MQ descriptor
2086 * @notification: Notification event
2090 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2092 struct audit_context *context = current->audit_context;
2094 if (notification)
2095 context->mq_notify.sigev_signo = notification->sigev_signo;
2096 else
2097 context->mq_notify.sigev_signo = 0;
2099 context->mq_notify.mqdes = mqdes;
2100 context->type = AUDIT_MQ_NOTIFY;
2104 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2105 * @mqdes: MQ descriptor
2106 * @mqstat: MQ flags
2109 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2111 struct audit_context *context = current->audit_context;
2112 context->mq_getsetattr.mqdes = mqdes;
2113 context->mq_getsetattr.mqstat = *mqstat;
2114 context->type = AUDIT_MQ_GETSETATTR;
2118 * audit_ipc_obj - record audit data for ipc object
2119 * @ipcp: ipc permissions
2122 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2124 struct audit_context *context = current->audit_context;
2125 context->ipc.uid = ipcp->uid;
2126 context->ipc.gid = ipcp->gid;
2127 context->ipc.mode = ipcp->mode;
2128 context->ipc.has_perm = 0;
2129 security_ipc_getsecid(ipcp, &context->ipc.osid);
2130 context->type = AUDIT_IPC;
2134 * audit_ipc_set_perm - record audit data for new ipc permissions
2135 * @qbytes: msgq bytes
2136 * @uid: msgq user id
2137 * @gid: msgq group id
2138 * @mode: msgq mode (permissions)
2140 * Called only after audit_ipc_obj().
2142 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2144 struct audit_context *context = current->audit_context;
2146 context->ipc.qbytes = qbytes;
2147 context->ipc.perm_uid = uid;
2148 context->ipc.perm_gid = gid;
2149 context->ipc.perm_mode = mode;
2150 context->ipc.has_perm = 1;
2153 void __audit_bprm(struct linux_binprm *bprm)
2155 struct audit_context *context = current->audit_context;
2157 context->type = AUDIT_EXECVE;
2158 context->execve.argc = bprm->argc;
2163 * audit_socketcall - record audit data for sys_socketcall
2164 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2165 * @args: args array
2168 int __audit_socketcall(int nargs, unsigned long *args)
2170 struct audit_context *context = current->audit_context;
2172 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2173 return -EINVAL;
2174 context->type = AUDIT_SOCKETCALL;
2175 context->socketcall.nargs = nargs;
2176 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2177 return 0;
2181 * __audit_fd_pair - record audit data for pipe and socketpair
2182 * @fd1: the first file descriptor
2183 * @fd2: the second file descriptor
2186 void __audit_fd_pair(int fd1, int fd2)
2188 struct audit_context *context = current->audit_context;
2189 context->fds[0] = fd1;
2190 context->fds[1] = fd2;
2194 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2195 * @len: data length in user space
2196 * @a: data address in kernel space
2198 * Returns 0 for success or NULL context or < 0 on error.
2200 int __audit_sockaddr(int len, void *a)
2202 struct audit_context *context = current->audit_context;
2204 if (!context->sockaddr) {
2205 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2206 if (!p)
2207 return -ENOMEM;
2208 context->sockaddr = p;
2211 context->sockaddr_len = len;
2212 memcpy(context->sockaddr, a, len);
2213 return 0;
2216 void __audit_ptrace(struct task_struct *t)
2218 struct audit_context *context = current->audit_context;
2220 context->target_pid = t->pid;
2221 context->target_auid = audit_get_loginuid(t);
2222 context->target_uid = task_uid(t);
2223 context->target_sessionid = audit_get_sessionid(t);
2224 security_task_getsecid(t, &context->target_sid);
2225 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2229 * audit_signal_info - record signal info for shutting down audit subsystem
2230 * @sig: signal value
2231 * @t: task being signaled
2233 * If the audit subsystem is being terminated, record the task (pid)
2234 * and uid that is doing that.
2236 int __audit_signal_info(int sig, struct task_struct *t)
2238 struct audit_aux_data_pids *axp;
2239 struct task_struct *tsk = current;
2240 struct audit_context *ctx = tsk->audit_context;
2241 kuid_t uid = current_uid(), t_uid = task_uid(t);
2243 if (audit_pid && t->tgid == audit_pid) {
2244 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2245 audit_sig_pid = tsk->pid;
2246 if (uid_valid(tsk->loginuid))
2247 audit_sig_uid = tsk->loginuid;
2248 else
2249 audit_sig_uid = uid;
2250 security_task_getsecid(tsk, &audit_sig_sid);
2252 if (!audit_signals || audit_dummy_context())
2253 return 0;
2256 /* optimize the common case by putting first signal recipient directly
2257 * in audit_context */
2258 if (!ctx->target_pid) {
2259 ctx->target_pid = t->tgid;
2260 ctx->target_auid = audit_get_loginuid(t);
2261 ctx->target_uid = t_uid;
2262 ctx->target_sessionid = audit_get_sessionid(t);
2263 security_task_getsecid(t, &ctx->target_sid);
2264 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2265 return 0;
2268 axp = (void *)ctx->aux_pids;
2269 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2270 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2271 if (!axp)
2272 return -ENOMEM;
2274 axp->d.type = AUDIT_OBJ_PID;
2275 axp->d.next = ctx->aux_pids;
2276 ctx->aux_pids = (void *)axp;
2278 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2280 axp->target_pid[axp->pid_count] = t->tgid;
2281 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2282 axp->target_uid[axp->pid_count] = t_uid;
2283 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2284 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2285 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2286 axp->pid_count++;
2288 return 0;
2292 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2293 * @bprm: pointer to the bprm being processed
2294 * @new: the proposed new credentials
2295 * @old: the old credentials
2297 * Simply check if the proc already has the caps given by the file and if not
2298 * store the priv escalation info for later auditing at the end of the syscall
2300 * -Eric
2302 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2303 const struct cred *new, const struct cred *old)
2305 struct audit_aux_data_bprm_fcaps *ax;
2306 struct audit_context *context = current->audit_context;
2307 struct cpu_vfs_cap_data vcaps;
2308 struct dentry *dentry;
2310 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2311 if (!ax)
2312 return -ENOMEM;
2314 ax->d.type = AUDIT_BPRM_FCAPS;
2315 ax->d.next = context->aux;
2316 context->aux = (void *)ax;
2318 dentry = dget(bprm->file->f_dentry);
2319 get_vfs_caps_from_disk(dentry, &vcaps);
2320 dput(dentry);
2322 ax->fcap.permitted = vcaps.permitted;
2323 ax->fcap.inheritable = vcaps.inheritable;
2324 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2325 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2327 ax->old_pcap.permitted = old->cap_permitted;
2328 ax->old_pcap.inheritable = old->cap_inheritable;
2329 ax->old_pcap.effective = old->cap_effective;
2331 ax->new_pcap.permitted = new->cap_permitted;
2332 ax->new_pcap.inheritable = new->cap_inheritable;
2333 ax->new_pcap.effective = new->cap_effective;
2334 return 0;
2338 * __audit_log_capset - store information about the arguments to the capset syscall
2339 * @new: the new credentials
2340 * @old: the old (current) credentials
2342 * Record the aguments userspace sent to sys_capset for later printing by the
2343 * audit system if applicable
2345 void __audit_log_capset(const struct cred *new, const struct cred *old)
2347 struct audit_context *context = current->audit_context;
2348 context->capset.pid = task_pid_nr(current);
2349 context->capset.cap.effective = new->cap_effective;
2350 context->capset.cap.inheritable = new->cap_effective;
2351 context->capset.cap.permitted = new->cap_permitted;
2352 context->type = AUDIT_CAPSET;
2355 void __audit_mmap_fd(int fd, int flags)
2357 struct audit_context *context = current->audit_context;
2358 context->mmap.fd = fd;
2359 context->mmap.flags = flags;
2360 context->type = AUDIT_MMAP;
2363 static void audit_log_task(struct audit_buffer *ab)
2365 kuid_t auid, uid;
2366 kgid_t gid;
2367 unsigned int sessionid;
2368 struct mm_struct *mm = current->mm;
2370 auid = audit_get_loginuid(current);
2371 sessionid = audit_get_sessionid(current);
2372 current_uid_gid(&uid, &gid);
2374 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2375 from_kuid(&init_user_ns, auid),
2376 from_kuid(&init_user_ns, uid),
2377 from_kgid(&init_user_ns, gid),
2378 sessionid);
2379 audit_log_task_context(ab);
2380 audit_log_format(ab, " pid=%d comm=", current->pid);
2381 audit_log_untrustedstring(ab, current->comm);
2382 if (mm) {
2383 down_read(&mm->mmap_sem);
2384 if (mm->exe_file)
2385 audit_log_d_path(ab, " exe=", &mm->exe_file->f_path);
2386 up_read(&mm->mmap_sem);
2387 } else
2388 audit_log_format(ab, " exe=(null)");
2392 * audit_core_dumps - record information about processes that end abnormally
2393 * @signr: signal value
2395 * If a process ends with a core dump, something fishy is going on and we
2396 * should record the event for investigation.
2398 void audit_core_dumps(long signr)
2400 struct audit_buffer *ab;
2402 if (!audit_enabled)
2403 return;
2405 if (signr == SIGQUIT) /* don't care for those */
2406 return;
2408 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2409 if (unlikely(!ab))
2410 return;
2411 audit_log_task(ab);
2412 audit_log_format(ab, " sig=%ld", signr);
2413 audit_log_end(ab);
2416 void __audit_seccomp(unsigned long syscall, long signr, int code)
2418 struct audit_buffer *ab;
2420 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2421 if (unlikely(!ab))
2422 return;
2423 audit_log_task(ab);
2424 audit_log_format(ab, " sig=%ld", signr);
2425 audit_log_format(ab, " syscall=%ld", syscall);
2426 audit_log_format(ab, " compat=%d", is_compat_task());
2427 audit_log_format(ab, " ip=0x%lx", KSTK_EIP(current));
2428 audit_log_format(ab, " code=0x%x", code);
2429 audit_log_end(ab);
2432 struct list_head *audit_killed_trees(void)
2434 struct audit_context *ctx = current->audit_context;
2435 if (likely(!ctx || !ctx->in_syscall))
2436 return NULL;
2437 return &ctx->killed_trees;