Lynx framebuffers multidomain implementation.
[linux/elbrus.git] / mm / hugetlb.c
blobc3e8660cb616015620741cfee3f6c45c7bb9ac27
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
43 __initdata LIST_HEAD(huge_boot_pages);
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
51 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52 * free_huge_pages, and surplus_huge_pages.
54 DEFINE_SPINLOCK(hugetlb_lock);
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
58 bool free = (spool->count == 0) && (spool->used_hpages == 0);
60 spin_unlock(&spool->lock);
62 /* If no pages are used, and no other handles to the subpool
63 * remain, free the subpool the subpool remain */
64 if (free)
65 kfree(spool);
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
70 struct hugepage_subpool *spool;
72 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73 if (!spool)
74 return NULL;
76 spin_lock_init(&spool->lock);
77 spool->count = 1;
78 spool->max_hpages = nr_blocks;
79 spool->used_hpages = 0;
81 return spool;
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
86 spin_lock(&spool->lock);
87 BUG_ON(!spool->count);
88 spool->count--;
89 unlock_or_release_subpool(spool);
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93 long delta)
95 int ret = 0;
97 if (!spool)
98 return 0;
100 spin_lock(&spool->lock);
101 if ((spool->used_hpages + delta) <= spool->max_hpages) {
102 spool->used_hpages += delta;
103 } else {
104 ret = -ENOMEM;
106 spin_unlock(&spool->lock);
108 return ret;
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112 long delta)
114 if (!spool)
115 return;
117 spin_lock(&spool->lock);
118 spool->used_hpages -= delta;
119 /* If hugetlbfs_put_super couldn't free spool due to
120 * an outstanding quota reference, free it now. */
121 unlock_or_release_subpool(spool);
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
126 return HUGETLBFS_SB(inode->i_sb)->spool;
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
131 return subpool_inode(file_inode(vma->vm_file));
135 * Region tracking -- allows tracking of reservations and instantiated pages
136 * across the pages in a mapping.
138 * The region data structures are protected by a combination of the mmap_sem
139 * and the hugetlb_instantiation_mutex. To access or modify a region the caller
140 * must either hold the mmap_sem for write, or the mmap_sem for read and
141 * the hugetlb_instantiation_mutex:
143 * down_write(&mm->mmap_sem);
144 * or
145 * down_read(&mm->mmap_sem);
146 * mutex_lock(&hugetlb_instantiation_mutex);
148 struct file_region {
149 struct list_head link;
150 long from;
151 long to;
154 static long region_add(struct list_head *head, long f, long t)
156 struct file_region *rg, *nrg, *trg;
158 /* Locate the region we are either in or before. */
159 list_for_each_entry(rg, head, link)
160 if (f <= rg->to)
161 break;
163 /* Round our left edge to the current segment if it encloses us. */
164 if (f > rg->from)
165 f = rg->from;
167 /* Check for and consume any regions we now overlap with. */
168 nrg = rg;
169 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170 if (&rg->link == head)
171 break;
172 if (rg->from > t)
173 break;
175 /* If this area reaches higher then extend our area to
176 * include it completely. If this is not the first area
177 * which we intend to reuse, free it. */
178 if (rg->to > t)
179 t = rg->to;
180 if (rg != nrg) {
181 list_del(&rg->link);
182 kfree(rg);
185 nrg->from = f;
186 nrg->to = t;
187 return 0;
190 static long region_chg(struct list_head *head, long f, long t)
192 struct file_region *rg, *nrg;
193 long chg = 0;
195 /* Locate the region we are before or in. */
196 list_for_each_entry(rg, head, link)
197 if (f <= rg->to)
198 break;
200 /* If we are below the current region then a new region is required.
201 * Subtle, allocate a new region at the position but make it zero
202 * size such that we can guarantee to record the reservation. */
203 if (&rg->link == head || t < rg->from) {
204 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205 if (!nrg)
206 return -ENOMEM;
207 nrg->from = f;
208 nrg->to = f;
209 INIT_LIST_HEAD(&nrg->link);
210 list_add(&nrg->link, rg->link.prev);
212 return t - f;
215 /* Round our left edge to the current segment if it encloses us. */
216 if (f > rg->from)
217 f = rg->from;
218 chg = t - f;
220 /* Check for and consume any regions we now overlap with. */
221 list_for_each_entry(rg, rg->link.prev, link) {
222 if (&rg->link == head)
223 break;
224 if (rg->from > t)
225 return chg;
227 /* We overlap with this area, if it extends further than
228 * us then we must extend ourselves. Account for its
229 * existing reservation. */
230 if (rg->to > t) {
231 chg += rg->to - t;
232 t = rg->to;
234 chg -= rg->to - rg->from;
236 return chg;
239 static long region_truncate(struct list_head *head, long end)
241 struct file_region *rg, *trg;
242 long chg = 0;
244 /* Locate the region we are either in or before. */
245 list_for_each_entry(rg, head, link)
246 if (end <= rg->to)
247 break;
248 if (&rg->link == head)
249 return 0;
251 /* If we are in the middle of a region then adjust it. */
252 if (end > rg->from) {
253 chg = rg->to - end;
254 rg->to = end;
255 rg = list_entry(rg->link.next, typeof(*rg), link);
258 /* Drop any remaining regions. */
259 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260 if (&rg->link == head)
261 break;
262 chg += rg->to - rg->from;
263 list_del(&rg->link);
264 kfree(rg);
266 return chg;
269 static long region_count(struct list_head *head, long f, long t)
271 struct file_region *rg;
272 long chg = 0;
274 /* Locate each segment we overlap with, and count that overlap. */
275 list_for_each_entry(rg, head, link) {
276 long seg_from;
277 long seg_to;
279 if (rg->to <= f)
280 continue;
281 if (rg->from >= t)
282 break;
284 seg_from = max(rg->from, f);
285 seg_to = min(rg->to, t);
287 chg += seg_to - seg_from;
290 return chg;
294 * Convert the address within this vma to the page offset within
295 * the mapping, in pagecache page units; huge pages here.
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298 struct vm_area_struct *vma, unsigned long address)
300 return ((address - vma->vm_start) >> huge_page_shift(h)) +
301 (vma->vm_pgoff >> huge_page_order(h));
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305 unsigned long address)
307 return vma_hugecache_offset(hstate_vma(vma), vma, address);
311 * Return the size of the pages allocated when backing a VMA. In the majority
312 * cases this will be same size as used by the page table entries.
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
316 struct hstate *hstate;
318 if (!is_vm_hugetlb_page(vma))
319 return PAGE_SIZE;
321 hstate = hstate_vma(vma);
323 return 1UL << huge_page_shift(hstate);
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
328 * Return the page size being used by the MMU to back a VMA. In the majority
329 * of cases, the page size used by the kernel matches the MMU size. On
330 * architectures where it differs, an architecture-specific version of this
331 * function is required.
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
336 return vma_kernel_pagesize(vma);
338 #endif
341 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
342 * bits of the reservation map pointer, which are always clear due to
343 * alignment.
345 #define HPAGE_RESV_OWNER (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
350 * These helpers are used to track how many pages are reserved for
351 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352 * is guaranteed to have their future faults succeed.
354 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355 * the reserve counters are updated with the hugetlb_lock held. It is safe
356 * to reset the VMA at fork() time as it is not in use yet and there is no
357 * chance of the global counters getting corrupted as a result of the values.
359 * The private mapping reservation is represented in a subtly different
360 * manner to a shared mapping. A shared mapping has a region map associated
361 * with the underlying file, this region map represents the backing file
362 * pages which have ever had a reservation assigned which this persists even
363 * after the page is instantiated. A private mapping has a region map
364 * associated with the original mmap which is attached to all VMAs which
365 * reference it, this region map represents those offsets which have consumed
366 * reservation ie. where pages have been instantiated.
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
370 return (unsigned long)vma->vm_private_data;
373 static void set_vma_private_data(struct vm_area_struct *vma,
374 unsigned long value)
376 vma->vm_private_data = (void *)value;
379 struct resv_map {
380 struct kref refs;
381 struct list_head regions;
384 static struct resv_map *resv_map_alloc(void)
386 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387 if (!resv_map)
388 return NULL;
390 kref_init(&resv_map->refs);
391 INIT_LIST_HEAD(&resv_map->regions);
393 return resv_map;
396 static void resv_map_release(struct kref *ref)
398 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
400 /* Clear out any active regions before we release the map. */
401 region_truncate(&resv_map->regions, 0);
402 kfree(resv_map);
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
407 VM_BUG_ON(!is_vm_hugetlb_page(vma));
408 if (!(vma->vm_flags & VM_MAYSHARE))
409 return (struct resv_map *)(get_vma_private_data(vma) &
410 ~HPAGE_RESV_MASK);
411 return NULL;
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
416 VM_BUG_ON(!is_vm_hugetlb_page(vma));
417 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
419 set_vma_private_data(vma, (get_vma_private_data(vma) &
420 HPAGE_RESV_MASK) | (unsigned long)map);
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
425 VM_BUG_ON(!is_vm_hugetlb_page(vma));
426 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
428 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
433 VM_BUG_ON(!is_vm_hugetlb_page(vma));
435 return (get_vma_private_data(vma) & flag) != 0;
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
441 VM_BUG_ON(!is_vm_hugetlb_page(vma));
442 if (!(vma->vm_flags & VM_MAYSHARE))
443 vma->vm_private_data = (void *)0;
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
449 if (vma->vm_flags & VM_NORESERVE) {
451 * This address is already reserved by other process(chg == 0),
452 * so, we should decrement reserved count. Without decrementing,
453 * reserve count remains after releasing inode, because this
454 * allocated page will go into page cache and is regarded as
455 * coming from reserved pool in releasing step. Currently, we
456 * don't have any other solution to deal with this situation
457 * properly, so add work-around here.
459 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460 return 1;
461 else
462 return 0;
465 /* Shared mappings always use reserves */
466 if (vma->vm_flags & VM_MAYSHARE)
467 return 1;
470 * Only the process that called mmap() has reserves for
471 * private mappings.
473 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474 return 1;
476 return 0;
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
481 int nid = page_to_nid(page);
482 list_move(&page->lru, &h->hugepage_freelists[nid]);
483 h->free_huge_pages++;
484 h->free_huge_pages_node[nid]++;
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
489 struct page *page;
491 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492 if (!is_migrate_isolate_page(page))
493 break;
495 * if 'non-isolated free hugepage' not found on the list,
496 * the allocation fails.
498 if (&h->hugepage_freelists[nid] == &page->lru)
499 return NULL;
500 list_move(&page->lru, &h->hugepage_activelist);
501 set_page_refcounted(page);
502 h->free_huge_pages--;
503 h->free_huge_pages_node[nid]--;
504 return page;
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
510 if (hugepages_treat_as_movable || hugepage_migration_support(h))
511 return GFP_HIGHUSER_MOVABLE;
512 else
513 return GFP_HIGHUSER;
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517 struct vm_area_struct *vma,
518 unsigned long address, int avoid_reserve,
519 long chg)
521 struct page *page = NULL;
522 struct mempolicy *mpol;
523 nodemask_t *nodemask;
524 struct zonelist *zonelist;
525 struct zone *zone;
526 struct zoneref *z;
527 unsigned int cpuset_mems_cookie;
530 * A child process with MAP_PRIVATE mappings created by their parent
531 * have no page reserves. This check ensures that reservations are
532 * not "stolen". The child may still get SIGKILLed
534 if (!vma_has_reserves(vma, chg) &&
535 h->free_huge_pages - h->resv_huge_pages == 0)
536 goto err;
538 /* If reserves cannot be used, ensure enough pages are in the pool */
539 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540 goto err;
542 retry_cpuset:
543 cpuset_mems_cookie = read_mems_allowed_begin();
544 zonelist = huge_zonelist(vma, address,
545 htlb_alloc_mask(h), &mpol, &nodemask);
547 for_each_zone_zonelist_nodemask(zone, z, zonelist,
548 MAX_NR_ZONES - 1, nodemask) {
549 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550 page = dequeue_huge_page_node(h, zone_to_nid(zone));
551 if (page) {
552 if (avoid_reserve)
553 break;
554 if (!vma_has_reserves(vma, chg))
555 break;
557 SetPagePrivate(page);
558 h->resv_huge_pages--;
559 break;
564 mpol_cond_put(mpol);
565 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
566 goto retry_cpuset;
567 return page;
569 err:
570 return NULL;
573 static void update_and_free_page(struct hstate *h, struct page *page)
575 int i;
577 VM_BUG_ON(h->order >= MAX_ORDER);
579 h->nr_huge_pages--;
580 h->nr_huge_pages_node[page_to_nid(page)]--;
581 for (i = 0; i < pages_per_huge_page(h); i++) {
582 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583 1 << PG_referenced | 1 << PG_dirty |
584 1 << PG_active | 1 << PG_reserved |
585 1 << PG_private | 1 << PG_writeback);
587 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
588 set_compound_page_dtor(page, NULL);
589 set_page_refcounted(page);
590 arch_release_hugepage(page);
591 __free_pages(page, huge_page_order(h));
594 struct hstate *size_to_hstate(unsigned long size)
596 struct hstate *h;
598 for_each_hstate(h) {
599 if (huge_page_size(h) == size)
600 return h;
602 return NULL;
605 static void free_huge_page(struct page *page)
608 * Can't pass hstate in here because it is called from the
609 * compound page destructor.
611 struct hstate *h = page_hstate(page);
612 int nid = page_to_nid(page);
613 struct hugepage_subpool *spool =
614 (struct hugepage_subpool *)page_private(page);
615 bool restore_reserve;
617 set_page_private(page, 0);
618 page->mapping = NULL;
619 BUG_ON(page_count(page));
620 BUG_ON(page_mapcount(page));
621 restore_reserve = PagePrivate(page);
622 ClearPagePrivate(page);
624 spin_lock(&hugetlb_lock);
625 hugetlb_cgroup_uncharge_page(hstate_index(h),
626 pages_per_huge_page(h), page);
627 if (restore_reserve)
628 h->resv_huge_pages++;
630 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631 /* remove the page from active list */
632 list_del(&page->lru);
633 update_and_free_page(h, page);
634 h->surplus_huge_pages--;
635 h->surplus_huge_pages_node[nid]--;
636 } else {
637 arch_clear_hugepage_flags(page);
638 enqueue_huge_page(h, page);
640 spin_unlock(&hugetlb_lock);
641 hugepage_subpool_put_pages(spool, 1);
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
646 INIT_LIST_HEAD(&page->lru);
647 set_compound_page_dtor(page, free_huge_page);
648 spin_lock(&hugetlb_lock);
649 set_hugetlb_cgroup(page, NULL);
650 h->nr_huge_pages++;
651 h->nr_huge_pages_node[nid]++;
652 spin_unlock(&hugetlb_lock);
653 put_page(page); /* free it into the hugepage allocator */
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
658 int i;
659 int nr_pages = 1 << order;
660 struct page *p = page + 1;
662 /* we rely on prep_new_huge_page to set the destructor */
663 set_compound_order(page, order);
664 __SetPageHead(page);
665 __ClearPageReserved(page);
666 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667 __SetPageTail(p);
669 * For gigantic hugepages allocated through bootmem at
670 * boot, it's safer to be consistent with the not-gigantic
671 * hugepages and clear the PG_reserved bit from all tail pages
672 * too. Otherwse drivers using get_user_pages() to access tail
673 * pages may get the reference counting wrong if they see
674 * PG_reserved set on a tail page (despite the head page not
675 * having PG_reserved set). Enforcing this consistency between
676 * head and tail pages allows drivers to optimize away a check
677 * on the head page when they need know if put_page() is needed
678 * after get_user_pages().
680 __ClearPageReserved(p);
681 set_page_count(p, 0);
682 p->first_page = page;
687 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688 * transparent huge pages. See the PageTransHuge() documentation for more
689 * details.
691 int PageHuge(struct page *page)
693 if (!PageCompound(page))
694 return 0;
696 page = compound_head(page);
697 return get_compound_page_dtor(page) == free_huge_page;
699 EXPORT_SYMBOL_GPL(PageHuge);
702 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703 * normal or transparent huge pages.
705 int PageHeadHuge(struct page *page_head)
707 if (!PageHead(page_head))
708 return 0;
710 return get_compound_page_dtor(page_head) == free_huge_page;
713 pgoff_t __basepage_index(struct page *page)
715 struct page *page_head = compound_head(page);
716 pgoff_t index = page_index(page_head);
717 unsigned long compound_idx;
719 if (!PageHuge(page_head))
720 return page_index(page);
722 if (compound_order(page_head) >= MAX_ORDER)
723 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
724 else
725 compound_idx = page - page_head;
727 return (index << compound_order(page_head)) + compound_idx;
730 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
732 struct page *page;
734 if (h->order >= MAX_ORDER)
735 return NULL;
737 page = alloc_pages_exact_node(nid,
738 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
739 __GFP_REPEAT|__GFP_NOWARN,
740 huge_page_order(h));
741 if (page) {
742 if (arch_prepare_hugepage(page)) {
743 __free_pages(page, huge_page_order(h));
744 return NULL;
746 prep_new_huge_page(h, page, nid);
749 return page;
753 * common helper functions for hstate_next_node_to_{alloc|free}.
754 * We may have allocated or freed a huge page based on a different
755 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
756 * be outside of *nodes_allowed. Ensure that we use an allowed
757 * node for alloc or free.
759 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
761 nid = next_node(nid, *nodes_allowed);
762 if (nid == MAX_NUMNODES)
763 nid = first_node(*nodes_allowed);
764 VM_BUG_ON(nid >= MAX_NUMNODES);
766 return nid;
769 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
771 if (!node_isset(nid, *nodes_allowed))
772 nid = next_node_allowed(nid, nodes_allowed);
773 return nid;
777 * returns the previously saved node ["this node"] from which to
778 * allocate a persistent huge page for the pool and advance the
779 * next node from which to allocate, handling wrap at end of node
780 * mask.
782 static int hstate_next_node_to_alloc(struct hstate *h,
783 nodemask_t *nodes_allowed)
785 int nid;
787 VM_BUG_ON(!nodes_allowed);
789 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
790 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
792 return nid;
796 * helper for free_pool_huge_page() - return the previously saved
797 * node ["this node"] from which to free a huge page. Advance the
798 * next node id whether or not we find a free huge page to free so
799 * that the next attempt to free addresses the next node.
801 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
803 int nid;
805 VM_BUG_ON(!nodes_allowed);
807 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
808 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
810 return nid;
813 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
814 for (nr_nodes = nodes_weight(*mask); \
815 nr_nodes > 0 && \
816 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
817 nr_nodes--)
819 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
820 for (nr_nodes = nodes_weight(*mask); \
821 nr_nodes > 0 && \
822 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
823 nr_nodes--)
825 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
827 struct page *page;
828 int nr_nodes, node;
829 int ret = 0;
831 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
832 page = alloc_fresh_huge_page_node(h, node);
833 if (page) {
834 ret = 1;
835 break;
839 if (ret)
840 count_vm_event(HTLB_BUDDY_PGALLOC);
841 else
842 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
844 return ret;
848 * Free huge page from pool from next node to free.
849 * Attempt to keep persistent huge pages more or less
850 * balanced over allowed nodes.
851 * Called with hugetlb_lock locked.
853 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
854 bool acct_surplus)
856 int nr_nodes, node;
857 int ret = 0;
859 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
861 * If we're returning unused surplus pages, only examine
862 * nodes with surplus pages.
864 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
865 !list_empty(&h->hugepage_freelists[node])) {
866 struct page *page =
867 list_entry(h->hugepage_freelists[node].next,
868 struct page, lru);
869 list_del(&page->lru);
870 h->free_huge_pages--;
871 h->free_huge_pages_node[node]--;
872 if (acct_surplus) {
873 h->surplus_huge_pages--;
874 h->surplus_huge_pages_node[node]--;
876 update_and_free_page(h, page);
877 ret = 1;
878 break;
882 return ret;
886 * Dissolve a given free hugepage into free buddy pages. This function does
887 * nothing for in-use (including surplus) hugepages.
889 static void dissolve_free_huge_page(struct page *page)
891 spin_lock(&hugetlb_lock);
892 if (PageHuge(page) && !page_count(page)) {
893 struct hstate *h = page_hstate(page);
894 int nid = page_to_nid(page);
895 list_del(&page->lru);
896 h->free_huge_pages--;
897 h->free_huge_pages_node[nid]--;
898 update_and_free_page(h, page);
900 spin_unlock(&hugetlb_lock);
904 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
905 * make specified memory blocks removable from the system.
906 * Note that start_pfn should aligned with (minimum) hugepage size.
908 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
910 unsigned int order = 8 * sizeof(void *);
911 unsigned long pfn;
912 struct hstate *h;
914 /* Set scan step to minimum hugepage size */
915 for_each_hstate(h)
916 if (order > huge_page_order(h))
917 order = huge_page_order(h);
918 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
919 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
920 dissolve_free_huge_page(pfn_to_page(pfn));
923 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
925 struct page *page;
926 unsigned int r_nid;
928 if (h->order >= MAX_ORDER)
929 return NULL;
932 * Assume we will successfully allocate the surplus page to
933 * prevent racing processes from causing the surplus to exceed
934 * overcommit
936 * This however introduces a different race, where a process B
937 * tries to grow the static hugepage pool while alloc_pages() is
938 * called by process A. B will only examine the per-node
939 * counters in determining if surplus huge pages can be
940 * converted to normal huge pages in adjust_pool_surplus(). A
941 * won't be able to increment the per-node counter, until the
942 * lock is dropped by B, but B doesn't drop hugetlb_lock until
943 * no more huge pages can be converted from surplus to normal
944 * state (and doesn't try to convert again). Thus, we have a
945 * case where a surplus huge page exists, the pool is grown, and
946 * the surplus huge page still exists after, even though it
947 * should just have been converted to a normal huge page. This
948 * does not leak memory, though, as the hugepage will be freed
949 * once it is out of use. It also does not allow the counters to
950 * go out of whack in adjust_pool_surplus() as we don't modify
951 * the node values until we've gotten the hugepage and only the
952 * per-node value is checked there.
954 spin_lock(&hugetlb_lock);
955 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
956 spin_unlock(&hugetlb_lock);
957 return NULL;
958 } else {
959 h->nr_huge_pages++;
960 h->surplus_huge_pages++;
962 spin_unlock(&hugetlb_lock);
964 if (nid == NUMA_NO_NODE)
965 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
966 __GFP_REPEAT|__GFP_NOWARN,
967 huge_page_order(h));
968 else
969 page = alloc_pages_exact_node(nid,
970 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
971 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
973 if (page && arch_prepare_hugepage(page)) {
974 __free_pages(page, huge_page_order(h));
975 page = NULL;
978 spin_lock(&hugetlb_lock);
979 if (page) {
980 INIT_LIST_HEAD(&page->lru);
981 r_nid = page_to_nid(page);
982 set_compound_page_dtor(page, free_huge_page);
983 set_hugetlb_cgroup(page, NULL);
985 * We incremented the global counters already
987 h->nr_huge_pages_node[r_nid]++;
988 h->surplus_huge_pages_node[r_nid]++;
989 __count_vm_event(HTLB_BUDDY_PGALLOC);
990 } else {
991 h->nr_huge_pages--;
992 h->surplus_huge_pages--;
993 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
995 spin_unlock(&hugetlb_lock);
997 return page;
1001 * This allocation function is useful in the context where vma is irrelevant.
1002 * E.g. soft-offlining uses this function because it only cares physical
1003 * address of error page.
1005 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1007 struct page *page = NULL;
1009 spin_lock(&hugetlb_lock);
1010 if (h->free_huge_pages - h->resv_huge_pages > 0)
1011 page = dequeue_huge_page_node(h, nid);
1012 spin_unlock(&hugetlb_lock);
1014 if (!page)
1015 page = alloc_buddy_huge_page(h, nid);
1017 return page;
1021 * Increase the hugetlb pool such that it can accommodate a reservation
1022 * of size 'delta'.
1024 static int gather_surplus_pages(struct hstate *h, int delta)
1026 struct list_head surplus_list;
1027 struct page *page, *tmp;
1028 int ret, i;
1029 int needed, allocated;
1030 bool alloc_ok = true;
1032 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1033 if (needed <= 0) {
1034 h->resv_huge_pages += delta;
1035 return 0;
1038 allocated = 0;
1039 INIT_LIST_HEAD(&surplus_list);
1041 ret = -ENOMEM;
1042 retry:
1043 spin_unlock(&hugetlb_lock);
1044 for (i = 0; i < needed; i++) {
1045 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1046 if (!page) {
1047 alloc_ok = false;
1048 break;
1050 list_add(&page->lru, &surplus_list);
1052 allocated += i;
1055 * After retaking hugetlb_lock, we need to recalculate 'needed'
1056 * because either resv_huge_pages or free_huge_pages may have changed.
1058 spin_lock(&hugetlb_lock);
1059 needed = (h->resv_huge_pages + delta) -
1060 (h->free_huge_pages + allocated);
1061 if (needed > 0) {
1062 if (alloc_ok)
1063 goto retry;
1065 * We were not able to allocate enough pages to
1066 * satisfy the entire reservation so we free what
1067 * we've allocated so far.
1069 goto free;
1072 * The surplus_list now contains _at_least_ the number of extra pages
1073 * needed to accommodate the reservation. Add the appropriate number
1074 * of pages to the hugetlb pool and free the extras back to the buddy
1075 * allocator. Commit the entire reservation here to prevent another
1076 * process from stealing the pages as they are added to the pool but
1077 * before they are reserved.
1079 needed += allocated;
1080 h->resv_huge_pages += delta;
1081 ret = 0;
1083 /* Free the needed pages to the hugetlb pool */
1084 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1085 if ((--needed) < 0)
1086 break;
1088 * This page is now managed by the hugetlb allocator and has
1089 * no users -- drop the buddy allocator's reference.
1091 put_page_testzero(page);
1092 VM_BUG_ON_PAGE(page_count(page), page);
1093 enqueue_huge_page(h, page);
1095 free:
1096 spin_unlock(&hugetlb_lock);
1098 /* Free unnecessary surplus pages to the buddy allocator */
1099 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1100 put_page(page);
1101 spin_lock(&hugetlb_lock);
1103 return ret;
1107 * When releasing a hugetlb pool reservation, any surplus pages that were
1108 * allocated to satisfy the reservation must be explicitly freed if they were
1109 * never used.
1110 * Called with hugetlb_lock held.
1112 static void return_unused_surplus_pages(struct hstate *h,
1113 unsigned long unused_resv_pages)
1115 unsigned long nr_pages;
1117 /* Uncommit the reservation */
1118 h->resv_huge_pages -= unused_resv_pages;
1120 /* Cannot return gigantic pages currently */
1121 if (h->order >= MAX_ORDER)
1122 return;
1124 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1127 * We want to release as many surplus pages as possible, spread
1128 * evenly across all nodes with memory. Iterate across these nodes
1129 * until we can no longer free unreserved surplus pages. This occurs
1130 * when the nodes with surplus pages have no free pages.
1131 * free_pool_huge_page() will balance the the freed pages across the
1132 * on-line nodes with memory and will handle the hstate accounting.
1134 while (nr_pages--) {
1135 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1136 break;
1137 cond_resched_lock(&hugetlb_lock);
1142 * Determine if the huge page at addr within the vma has an associated
1143 * reservation. Where it does not we will need to logically increase
1144 * reservation and actually increase subpool usage before an allocation
1145 * can occur. Where any new reservation would be required the
1146 * reservation change is prepared, but not committed. Once the page
1147 * has been allocated from the subpool and instantiated the change should
1148 * be committed via vma_commit_reservation. No action is required on
1149 * failure.
1151 static long vma_needs_reservation(struct hstate *h,
1152 struct vm_area_struct *vma, unsigned long addr)
1154 struct address_space *mapping = vma->vm_file->f_mapping;
1155 struct inode *inode = mapping->host;
1157 if (vma->vm_flags & VM_MAYSHARE) {
1158 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1159 return region_chg(&inode->i_mapping->private_list,
1160 idx, idx + 1);
1162 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1163 return 1;
1165 } else {
1166 long err;
1167 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1168 struct resv_map *resv = vma_resv_map(vma);
1170 err = region_chg(&resv->regions, idx, idx + 1);
1171 if (err < 0)
1172 return err;
1173 return 0;
1176 static void vma_commit_reservation(struct hstate *h,
1177 struct vm_area_struct *vma, unsigned long addr)
1179 struct address_space *mapping = vma->vm_file->f_mapping;
1180 struct inode *inode = mapping->host;
1182 if (vma->vm_flags & VM_MAYSHARE) {
1183 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1184 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1186 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1187 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1188 struct resv_map *resv = vma_resv_map(vma);
1190 /* Mark this page used in the map. */
1191 region_add(&resv->regions, idx, idx + 1);
1195 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1196 unsigned long addr, int avoid_reserve)
1198 struct hugepage_subpool *spool = subpool_vma(vma);
1199 struct hstate *h = hstate_vma(vma);
1200 struct page *page;
1201 long chg;
1202 int ret, idx;
1203 struct hugetlb_cgroup *h_cg;
1205 idx = hstate_index(h);
1207 * Processes that did not create the mapping will have no
1208 * reserves and will not have accounted against subpool
1209 * limit. Check that the subpool limit can be made before
1210 * satisfying the allocation MAP_NORESERVE mappings may also
1211 * need pages and subpool limit allocated allocated if no reserve
1212 * mapping overlaps.
1214 chg = vma_needs_reservation(h, vma, addr);
1215 if (chg < 0)
1216 return ERR_PTR(-ENOMEM);
1217 if (chg || avoid_reserve)
1218 if (hugepage_subpool_get_pages(spool, 1))
1219 return ERR_PTR(-ENOSPC);
1221 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1222 if (ret) {
1223 if (chg || avoid_reserve)
1224 hugepage_subpool_put_pages(spool, 1);
1225 return ERR_PTR(-ENOSPC);
1227 spin_lock(&hugetlb_lock);
1228 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1229 if (!page) {
1230 spin_unlock(&hugetlb_lock);
1231 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1232 if (!page) {
1233 hugetlb_cgroup_uncharge_cgroup(idx,
1234 pages_per_huge_page(h),
1235 h_cg);
1236 if (chg || avoid_reserve)
1237 hugepage_subpool_put_pages(spool, 1);
1238 return ERR_PTR(-ENOSPC);
1240 spin_lock(&hugetlb_lock);
1241 list_move(&page->lru, &h->hugepage_activelist);
1242 /* Fall through */
1244 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1245 spin_unlock(&hugetlb_lock);
1247 set_page_private(page, (unsigned long)spool);
1249 vma_commit_reservation(h, vma, addr);
1250 return page;
1254 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1255 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1256 * where no ERR_VALUE is expected to be returned.
1258 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1259 unsigned long addr, int avoid_reserve)
1261 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1262 if (IS_ERR(page))
1263 page = NULL;
1264 return page;
1267 int __weak alloc_bootmem_huge_page(struct hstate *h)
1269 struct huge_bootmem_page *m;
1270 int nr_nodes, node;
1272 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1273 void *addr;
1275 addr = memblock_virt_alloc_try_nid_nopanic(
1276 huge_page_size(h), huge_page_size(h),
1277 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1278 if (addr) {
1280 * Use the beginning of the huge page to store the
1281 * huge_bootmem_page struct (until gather_bootmem
1282 * puts them into the mem_map).
1284 m = addr;
1285 goto found;
1288 return 0;
1290 found:
1291 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1292 /* Put them into a private list first because mem_map is not up yet */
1293 list_add(&m->list, &huge_boot_pages);
1294 m->hstate = h;
1295 return 1;
1298 static void prep_compound_huge_page(struct page *page, int order)
1300 if (unlikely(order > (MAX_ORDER - 1)))
1301 prep_compound_gigantic_page(page, order);
1302 else
1303 prep_compound_page(page, order);
1306 /* Put bootmem huge pages into the standard lists after mem_map is up */
1307 static void __init gather_bootmem_prealloc(void)
1309 struct huge_bootmem_page *m;
1311 list_for_each_entry(m, &huge_boot_pages, list) {
1312 struct hstate *h = m->hstate;
1313 struct page *page;
1315 #ifdef CONFIG_HIGHMEM
1316 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1317 memblock_free_late(__pa(m),
1318 sizeof(struct huge_bootmem_page));
1319 #else
1320 page = virt_to_page(m);
1321 #endif
1322 WARN_ON(page_count(page) != 1);
1323 prep_compound_huge_page(page, h->order);
1324 WARN_ON(PageReserved(page));
1325 prep_new_huge_page(h, page, page_to_nid(page));
1327 * If we had gigantic hugepages allocated at boot time, we need
1328 * to restore the 'stolen' pages to totalram_pages in order to
1329 * fix confusing memory reports from free(1) and another
1330 * side-effects, like CommitLimit going negative.
1332 if (h->order > (MAX_ORDER - 1))
1333 adjust_managed_page_count(page, 1 << h->order);
1337 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1339 unsigned long i;
1341 for (i = 0; i < h->max_huge_pages; ++i) {
1342 if (h->order >= MAX_ORDER) {
1343 if (!alloc_bootmem_huge_page(h))
1344 break;
1345 } else if (!alloc_fresh_huge_page(h,
1346 &node_states[N_MEMORY]))
1347 break;
1349 h->max_huge_pages = i;
1352 static void __init hugetlb_init_hstates(void)
1354 struct hstate *h;
1356 for_each_hstate(h) {
1357 /* oversize hugepages were init'ed in early boot */
1358 if (h->order < MAX_ORDER)
1359 hugetlb_hstate_alloc_pages(h);
1363 static char * __init memfmt(char *buf, unsigned long n)
1365 if (n >= (1UL << 30))
1366 sprintf(buf, "%lu GB", n >> 30);
1367 else if (n >= (1UL << 20))
1368 sprintf(buf, "%lu MB", n >> 20);
1369 else
1370 sprintf(buf, "%lu KB", n >> 10);
1371 return buf;
1374 static void __init report_hugepages(void)
1376 struct hstate *h;
1378 for_each_hstate(h) {
1379 char buf[32];
1380 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1381 memfmt(buf, huge_page_size(h)),
1382 h->free_huge_pages);
1386 #ifdef CONFIG_HIGHMEM
1387 static void try_to_free_low(struct hstate *h, unsigned long count,
1388 nodemask_t *nodes_allowed)
1390 int i;
1392 if (h->order >= MAX_ORDER)
1393 return;
1395 for_each_node_mask(i, *nodes_allowed) {
1396 struct page *page, *next;
1397 struct list_head *freel = &h->hugepage_freelists[i];
1398 list_for_each_entry_safe(page, next, freel, lru) {
1399 if (count >= h->nr_huge_pages)
1400 return;
1401 if (PageHighMem(page))
1402 continue;
1403 list_del(&page->lru);
1404 update_and_free_page(h, page);
1405 h->free_huge_pages--;
1406 h->free_huge_pages_node[page_to_nid(page)]--;
1410 #else
1411 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1412 nodemask_t *nodes_allowed)
1415 #endif
1418 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1419 * balanced by operating on them in a round-robin fashion.
1420 * Returns 1 if an adjustment was made.
1422 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1423 int delta)
1425 int nr_nodes, node;
1427 VM_BUG_ON(delta != -1 && delta != 1);
1429 if (delta < 0) {
1430 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1431 if (h->surplus_huge_pages_node[node])
1432 goto found;
1434 } else {
1435 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1436 if (h->surplus_huge_pages_node[node] <
1437 h->nr_huge_pages_node[node])
1438 goto found;
1441 return 0;
1443 found:
1444 h->surplus_huge_pages += delta;
1445 h->surplus_huge_pages_node[node] += delta;
1446 return 1;
1449 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1450 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1451 nodemask_t *nodes_allowed)
1453 unsigned long min_count, ret;
1455 if (h->order >= MAX_ORDER)
1456 return h->max_huge_pages;
1459 * Increase the pool size
1460 * First take pages out of surplus state. Then make up the
1461 * remaining difference by allocating fresh huge pages.
1463 * We might race with alloc_buddy_huge_page() here and be unable
1464 * to convert a surplus huge page to a normal huge page. That is
1465 * not critical, though, it just means the overall size of the
1466 * pool might be one hugepage larger than it needs to be, but
1467 * within all the constraints specified by the sysctls.
1469 spin_lock(&hugetlb_lock);
1470 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1471 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1472 break;
1475 while (count > persistent_huge_pages(h)) {
1477 * If this allocation races such that we no longer need the
1478 * page, free_huge_page will handle it by freeing the page
1479 * and reducing the surplus.
1481 spin_unlock(&hugetlb_lock);
1482 ret = alloc_fresh_huge_page(h, nodes_allowed);
1483 spin_lock(&hugetlb_lock);
1484 if (!ret)
1485 goto out;
1487 /* Bail for signals. Probably ctrl-c from user */
1488 if (signal_pending(current))
1489 goto out;
1493 * Decrease the pool size
1494 * First return free pages to the buddy allocator (being careful
1495 * to keep enough around to satisfy reservations). Then place
1496 * pages into surplus state as needed so the pool will shrink
1497 * to the desired size as pages become free.
1499 * By placing pages into the surplus state independent of the
1500 * overcommit value, we are allowing the surplus pool size to
1501 * exceed overcommit. There are few sane options here. Since
1502 * alloc_buddy_huge_page() is checking the global counter,
1503 * though, we'll note that we're not allowed to exceed surplus
1504 * and won't grow the pool anywhere else. Not until one of the
1505 * sysctls are changed, or the surplus pages go out of use.
1507 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1508 min_count = max(count, min_count);
1509 try_to_free_low(h, min_count, nodes_allowed);
1510 while (min_count < persistent_huge_pages(h)) {
1511 if (!free_pool_huge_page(h, nodes_allowed, 0))
1512 break;
1513 cond_resched_lock(&hugetlb_lock);
1515 while (count < persistent_huge_pages(h)) {
1516 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1517 break;
1519 out:
1520 ret = persistent_huge_pages(h);
1521 spin_unlock(&hugetlb_lock);
1522 return ret;
1525 #define HSTATE_ATTR_RO(_name) \
1526 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1528 #define HSTATE_ATTR(_name) \
1529 static struct kobj_attribute _name##_attr = \
1530 __ATTR(_name, 0644, _name##_show, _name##_store)
1532 static struct kobject *hugepages_kobj;
1533 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1535 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1537 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1539 int i;
1541 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1542 if (hstate_kobjs[i] == kobj) {
1543 if (nidp)
1544 *nidp = NUMA_NO_NODE;
1545 return &hstates[i];
1548 return kobj_to_node_hstate(kobj, nidp);
1551 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1552 struct kobj_attribute *attr, char *buf)
1554 struct hstate *h;
1555 unsigned long nr_huge_pages;
1556 int nid;
1558 h = kobj_to_hstate(kobj, &nid);
1559 if (nid == NUMA_NO_NODE)
1560 nr_huge_pages = h->nr_huge_pages;
1561 else
1562 nr_huge_pages = h->nr_huge_pages_node[nid];
1564 return sprintf(buf, "%lu\n", nr_huge_pages);
1567 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1568 struct kobject *kobj, struct kobj_attribute *attr,
1569 const char *buf, size_t len)
1571 int err;
1572 int nid;
1573 unsigned long count;
1574 struct hstate *h;
1575 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1577 err = kstrtoul(buf, 10, &count);
1578 if (err)
1579 goto out;
1581 h = kobj_to_hstate(kobj, &nid);
1582 if (h->order >= MAX_ORDER) {
1583 err = -EINVAL;
1584 goto out;
1587 if (nid == NUMA_NO_NODE) {
1589 * global hstate attribute
1591 if (!(obey_mempolicy &&
1592 init_nodemask_of_mempolicy(nodes_allowed))) {
1593 NODEMASK_FREE(nodes_allowed);
1594 nodes_allowed = &node_states[N_MEMORY];
1596 } else if (nodes_allowed) {
1598 * per node hstate attribute: adjust count to global,
1599 * but restrict alloc/free to the specified node.
1601 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1602 init_nodemask_of_node(nodes_allowed, nid);
1603 } else
1604 nodes_allowed = &node_states[N_MEMORY];
1606 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1608 if (nodes_allowed != &node_states[N_MEMORY])
1609 NODEMASK_FREE(nodes_allowed);
1611 return len;
1612 out:
1613 NODEMASK_FREE(nodes_allowed);
1614 return err;
1617 static ssize_t nr_hugepages_show(struct kobject *kobj,
1618 struct kobj_attribute *attr, char *buf)
1620 return nr_hugepages_show_common(kobj, attr, buf);
1623 static ssize_t nr_hugepages_store(struct kobject *kobj,
1624 struct kobj_attribute *attr, const char *buf, size_t len)
1626 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1628 HSTATE_ATTR(nr_hugepages);
1630 #ifdef CONFIG_NUMA
1633 * hstate attribute for optionally mempolicy-based constraint on persistent
1634 * huge page alloc/free.
1636 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1637 struct kobj_attribute *attr, char *buf)
1639 return nr_hugepages_show_common(kobj, attr, buf);
1642 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1643 struct kobj_attribute *attr, const char *buf, size_t len)
1645 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1647 HSTATE_ATTR(nr_hugepages_mempolicy);
1648 #endif
1651 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1652 struct kobj_attribute *attr, char *buf)
1654 struct hstate *h = kobj_to_hstate(kobj, NULL);
1655 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1658 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1659 struct kobj_attribute *attr, const char *buf, size_t count)
1661 int err;
1662 unsigned long input;
1663 struct hstate *h = kobj_to_hstate(kobj, NULL);
1665 if (h->order >= MAX_ORDER)
1666 return -EINVAL;
1668 err = kstrtoul(buf, 10, &input);
1669 if (err)
1670 return err;
1672 spin_lock(&hugetlb_lock);
1673 h->nr_overcommit_huge_pages = input;
1674 spin_unlock(&hugetlb_lock);
1676 return count;
1678 HSTATE_ATTR(nr_overcommit_hugepages);
1680 static ssize_t free_hugepages_show(struct kobject *kobj,
1681 struct kobj_attribute *attr, char *buf)
1683 struct hstate *h;
1684 unsigned long free_huge_pages;
1685 int nid;
1687 h = kobj_to_hstate(kobj, &nid);
1688 if (nid == NUMA_NO_NODE)
1689 free_huge_pages = h->free_huge_pages;
1690 else
1691 free_huge_pages = h->free_huge_pages_node[nid];
1693 return sprintf(buf, "%lu\n", free_huge_pages);
1695 HSTATE_ATTR_RO(free_hugepages);
1697 static ssize_t resv_hugepages_show(struct kobject *kobj,
1698 struct kobj_attribute *attr, char *buf)
1700 struct hstate *h = kobj_to_hstate(kobj, NULL);
1701 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1703 HSTATE_ATTR_RO(resv_hugepages);
1705 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1706 struct kobj_attribute *attr, char *buf)
1708 struct hstate *h;
1709 unsigned long surplus_huge_pages;
1710 int nid;
1712 h = kobj_to_hstate(kobj, &nid);
1713 if (nid == NUMA_NO_NODE)
1714 surplus_huge_pages = h->surplus_huge_pages;
1715 else
1716 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1718 return sprintf(buf, "%lu\n", surplus_huge_pages);
1720 HSTATE_ATTR_RO(surplus_hugepages);
1722 static struct attribute *hstate_attrs[] = {
1723 &nr_hugepages_attr.attr,
1724 &nr_overcommit_hugepages_attr.attr,
1725 &free_hugepages_attr.attr,
1726 &resv_hugepages_attr.attr,
1727 &surplus_hugepages_attr.attr,
1728 #ifdef CONFIG_NUMA
1729 &nr_hugepages_mempolicy_attr.attr,
1730 #endif
1731 NULL,
1734 static struct attribute_group hstate_attr_group = {
1735 .attrs = hstate_attrs,
1738 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1739 struct kobject **hstate_kobjs,
1740 struct attribute_group *hstate_attr_group)
1742 int retval;
1743 int hi = hstate_index(h);
1745 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1746 if (!hstate_kobjs[hi])
1747 return -ENOMEM;
1749 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1750 if (retval)
1751 kobject_put(hstate_kobjs[hi]);
1753 return retval;
1756 static void __init hugetlb_sysfs_init(void)
1758 struct hstate *h;
1759 int err;
1761 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1762 if (!hugepages_kobj)
1763 return;
1765 for_each_hstate(h) {
1766 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1767 hstate_kobjs, &hstate_attr_group);
1768 if (err)
1769 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1773 #ifdef CONFIG_NUMA
1776 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1777 * with node devices in node_devices[] using a parallel array. The array
1778 * index of a node device or _hstate == node id.
1779 * This is here to avoid any static dependency of the node device driver, in
1780 * the base kernel, on the hugetlb module.
1782 struct node_hstate {
1783 struct kobject *hugepages_kobj;
1784 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1786 struct node_hstate node_hstates[MAX_NUMNODES];
1789 * A subset of global hstate attributes for node devices
1791 static struct attribute *per_node_hstate_attrs[] = {
1792 &nr_hugepages_attr.attr,
1793 &free_hugepages_attr.attr,
1794 &surplus_hugepages_attr.attr,
1795 NULL,
1798 static struct attribute_group per_node_hstate_attr_group = {
1799 .attrs = per_node_hstate_attrs,
1803 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1804 * Returns node id via non-NULL nidp.
1806 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1808 int nid;
1810 for (nid = 0; nid < nr_node_ids; nid++) {
1811 struct node_hstate *nhs = &node_hstates[nid];
1812 int i;
1813 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1814 if (nhs->hstate_kobjs[i] == kobj) {
1815 if (nidp)
1816 *nidp = nid;
1817 return &hstates[i];
1821 BUG();
1822 return NULL;
1826 * Unregister hstate attributes from a single node device.
1827 * No-op if no hstate attributes attached.
1829 static void hugetlb_unregister_node(struct node *node)
1831 struct hstate *h;
1832 struct node_hstate *nhs = &node_hstates[node->dev.id];
1834 if (!nhs->hugepages_kobj)
1835 return; /* no hstate attributes */
1837 for_each_hstate(h) {
1838 int idx = hstate_index(h);
1839 if (nhs->hstate_kobjs[idx]) {
1840 kobject_put(nhs->hstate_kobjs[idx]);
1841 nhs->hstate_kobjs[idx] = NULL;
1845 kobject_put(nhs->hugepages_kobj);
1846 nhs->hugepages_kobj = NULL;
1850 * hugetlb module exit: unregister hstate attributes from node devices
1851 * that have them.
1853 static void hugetlb_unregister_all_nodes(void)
1855 int nid;
1858 * disable node device registrations.
1860 register_hugetlbfs_with_node(NULL, NULL);
1863 * remove hstate attributes from any nodes that have them.
1865 for (nid = 0; nid < nr_node_ids; nid++)
1866 hugetlb_unregister_node(node_devices[nid]);
1870 * Register hstate attributes for a single node device.
1871 * No-op if attributes already registered.
1873 static void hugetlb_register_node(struct node *node)
1875 struct hstate *h;
1876 struct node_hstate *nhs = &node_hstates[node->dev.id];
1877 int err;
1879 if (nhs->hugepages_kobj)
1880 return; /* already allocated */
1882 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1883 &node->dev.kobj);
1884 if (!nhs->hugepages_kobj)
1885 return;
1887 for_each_hstate(h) {
1888 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1889 nhs->hstate_kobjs,
1890 &per_node_hstate_attr_group);
1891 if (err) {
1892 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1893 h->name, node->dev.id);
1894 hugetlb_unregister_node(node);
1895 break;
1901 * hugetlb init time: register hstate attributes for all registered node
1902 * devices of nodes that have memory. All on-line nodes should have
1903 * registered their associated device by this time.
1905 static void hugetlb_register_all_nodes(void)
1907 int nid;
1909 for_each_node_state(nid, N_MEMORY) {
1910 struct node *node = node_devices[nid];
1911 if (node->dev.id == nid)
1912 hugetlb_register_node(node);
1916 * Let the node device driver know we're here so it can
1917 * [un]register hstate attributes on node hotplug.
1919 register_hugetlbfs_with_node(hugetlb_register_node,
1920 hugetlb_unregister_node);
1922 #else /* !CONFIG_NUMA */
1924 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1926 BUG();
1927 if (nidp)
1928 *nidp = -1;
1929 return NULL;
1932 static void hugetlb_unregister_all_nodes(void) { }
1934 static void hugetlb_register_all_nodes(void) { }
1936 #endif
1938 static void __exit hugetlb_exit(void)
1940 struct hstate *h;
1942 hugetlb_unregister_all_nodes();
1944 for_each_hstate(h) {
1945 kobject_put(hstate_kobjs[hstate_index(h)]);
1948 kobject_put(hugepages_kobj);
1950 module_exit(hugetlb_exit);
1952 static int __init hugetlb_init(void)
1954 /* Some platform decide whether they support huge pages at boot
1955 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1956 * there is no such support
1958 if (HPAGE_SHIFT == 0)
1959 return 0;
1961 if (!size_to_hstate(default_hstate_size)) {
1962 default_hstate_size = HPAGE_SIZE;
1963 if (!size_to_hstate(default_hstate_size))
1964 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1966 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1967 if (default_hstate_max_huge_pages)
1968 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1970 hugetlb_init_hstates();
1971 gather_bootmem_prealloc();
1972 report_hugepages();
1974 hugetlb_sysfs_init();
1975 hugetlb_register_all_nodes();
1976 hugetlb_cgroup_file_init();
1978 return 0;
1980 module_init(hugetlb_init);
1982 /* Should be called on processing a hugepagesz=... option */
1983 void __init hugetlb_add_hstate(unsigned order)
1985 struct hstate *h;
1986 unsigned long i;
1988 if (size_to_hstate(PAGE_SIZE << order)) {
1989 pr_warning("hugepagesz= specified twice, ignoring\n");
1990 return;
1992 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1993 BUG_ON(order == 0);
1994 h = &hstates[hugetlb_max_hstate++];
1995 h->order = order;
1996 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1997 h->nr_huge_pages = 0;
1998 h->free_huge_pages = 0;
1999 for (i = 0; i < MAX_NUMNODES; ++i)
2000 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2001 INIT_LIST_HEAD(&h->hugepage_activelist);
2002 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2003 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2004 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2005 huge_page_size(h)/1024);
2007 parsed_hstate = h;
2010 static int __init hugetlb_nrpages_setup(char *s)
2012 unsigned long *mhp;
2013 static unsigned long *last_mhp;
2016 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2017 * so this hugepages= parameter goes to the "default hstate".
2019 if (!hugetlb_max_hstate)
2020 mhp = &default_hstate_max_huge_pages;
2021 else
2022 mhp = &parsed_hstate->max_huge_pages;
2024 if (mhp == last_mhp) {
2025 pr_warning("hugepages= specified twice without "
2026 "interleaving hugepagesz=, ignoring\n");
2027 return 1;
2030 if (sscanf(s, "%lu", mhp) <= 0)
2031 *mhp = 0;
2034 * Global state is always initialized later in hugetlb_init.
2035 * But we need to allocate >= MAX_ORDER hstates here early to still
2036 * use the bootmem allocator.
2038 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2039 hugetlb_hstate_alloc_pages(parsed_hstate);
2041 last_mhp = mhp;
2043 return 1;
2045 __setup("hugepages=", hugetlb_nrpages_setup);
2047 static int __init hugetlb_default_setup(char *s)
2049 default_hstate_size = memparse(s, &s);
2050 return 1;
2052 __setup("default_hugepagesz=", hugetlb_default_setup);
2054 static unsigned int cpuset_mems_nr(unsigned int *array)
2056 int node;
2057 unsigned int nr = 0;
2059 for_each_node_mask(node, cpuset_current_mems_allowed)
2060 nr += array[node];
2062 return nr;
2065 #ifdef CONFIG_SYSCTL
2066 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2067 struct ctl_table *table, int write,
2068 void __user *buffer, size_t *length, loff_t *ppos)
2070 struct hstate *h = &default_hstate;
2071 unsigned long tmp;
2072 int ret;
2074 if (!hugepages_supported())
2075 return -ENOTSUPP;
2077 tmp = h->max_huge_pages;
2079 if (write && h->order >= MAX_ORDER)
2080 return -EINVAL;
2082 table->data = &tmp;
2083 table->maxlen = sizeof(unsigned long);
2084 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2085 if (ret)
2086 goto out;
2088 if (write) {
2089 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2090 GFP_KERNEL | __GFP_NORETRY);
2091 if (!(obey_mempolicy &&
2092 init_nodemask_of_mempolicy(nodes_allowed))) {
2093 NODEMASK_FREE(nodes_allowed);
2094 nodes_allowed = &node_states[N_MEMORY];
2096 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2098 if (nodes_allowed != &node_states[N_MEMORY])
2099 NODEMASK_FREE(nodes_allowed);
2101 out:
2102 return ret;
2105 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2106 void __user *buffer, size_t *length, loff_t *ppos)
2109 return hugetlb_sysctl_handler_common(false, table, write,
2110 buffer, length, ppos);
2113 #ifdef CONFIG_NUMA
2114 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2115 void __user *buffer, size_t *length, loff_t *ppos)
2117 return hugetlb_sysctl_handler_common(true, table, write,
2118 buffer, length, ppos);
2120 #endif /* CONFIG_NUMA */
2122 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2123 void __user *buffer,
2124 size_t *length, loff_t *ppos)
2126 struct hstate *h = &default_hstate;
2127 unsigned long tmp;
2128 int ret;
2130 if (!hugepages_supported())
2131 return -ENOTSUPP;
2133 tmp = h->nr_overcommit_huge_pages;
2135 if (write && h->order >= MAX_ORDER)
2136 return -EINVAL;
2138 table->data = &tmp;
2139 table->maxlen = sizeof(unsigned long);
2140 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2141 if (ret)
2142 goto out;
2144 if (write) {
2145 spin_lock(&hugetlb_lock);
2146 h->nr_overcommit_huge_pages = tmp;
2147 spin_unlock(&hugetlb_lock);
2149 out:
2150 return ret;
2153 #endif /* CONFIG_SYSCTL */
2155 void hugetlb_report_meminfo(struct seq_file *m)
2157 struct hstate *h = &default_hstate;
2158 if (!hugepages_supported())
2159 return;
2160 seq_printf(m,
2161 "HugePages_Total: %5lu\n"
2162 "HugePages_Free: %5lu\n"
2163 "HugePages_Rsvd: %5lu\n"
2164 "HugePages_Surp: %5lu\n"
2165 "Hugepagesize: %8lu kB\n",
2166 h->nr_huge_pages,
2167 h->free_huge_pages,
2168 h->resv_huge_pages,
2169 h->surplus_huge_pages,
2170 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2173 int hugetlb_report_node_meminfo(int nid, char *buf)
2175 struct hstate *h = &default_hstate;
2176 if (!hugepages_supported())
2177 return 0;
2178 return sprintf(buf,
2179 "Node %d HugePages_Total: %5u\n"
2180 "Node %d HugePages_Free: %5u\n"
2181 "Node %d HugePages_Surp: %5u\n",
2182 nid, h->nr_huge_pages_node[nid],
2183 nid, h->free_huge_pages_node[nid],
2184 nid, h->surplus_huge_pages_node[nid]);
2187 void hugetlb_show_meminfo(void)
2189 struct hstate *h;
2190 int nid;
2192 if (!hugepages_supported())
2193 return;
2195 for_each_node_state(nid, N_MEMORY)
2196 for_each_hstate(h)
2197 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2198 nid,
2199 h->nr_huge_pages_node[nid],
2200 h->free_huge_pages_node[nid],
2201 h->surplus_huge_pages_node[nid],
2202 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2205 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2206 unsigned long hugetlb_total_pages(void)
2208 struct hstate *h;
2209 unsigned long nr_total_pages = 0;
2211 for_each_hstate(h)
2212 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2213 return nr_total_pages;
2216 static int hugetlb_acct_memory(struct hstate *h, long delta)
2218 int ret = -ENOMEM;
2220 spin_lock(&hugetlb_lock);
2222 * When cpuset is configured, it breaks the strict hugetlb page
2223 * reservation as the accounting is done on a global variable. Such
2224 * reservation is completely rubbish in the presence of cpuset because
2225 * the reservation is not checked against page availability for the
2226 * current cpuset. Application can still potentially OOM'ed by kernel
2227 * with lack of free htlb page in cpuset that the task is in.
2228 * Attempt to enforce strict accounting with cpuset is almost
2229 * impossible (or too ugly) because cpuset is too fluid that
2230 * task or memory node can be dynamically moved between cpusets.
2232 * The change of semantics for shared hugetlb mapping with cpuset is
2233 * undesirable. However, in order to preserve some of the semantics,
2234 * we fall back to check against current free page availability as
2235 * a best attempt and hopefully to minimize the impact of changing
2236 * semantics that cpuset has.
2238 if (delta > 0) {
2239 if (gather_surplus_pages(h, delta) < 0)
2240 goto out;
2242 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2243 return_unused_surplus_pages(h, delta);
2244 goto out;
2248 ret = 0;
2249 if (delta < 0)
2250 return_unused_surplus_pages(h, (unsigned long) -delta);
2252 out:
2253 spin_unlock(&hugetlb_lock);
2254 return ret;
2257 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2259 struct resv_map *resv = vma_resv_map(vma);
2262 * This new VMA should share its siblings reservation map if present.
2263 * The VMA will only ever have a valid reservation map pointer where
2264 * it is being copied for another still existing VMA. As that VMA
2265 * has a reference to the reservation map it cannot disappear until
2266 * after this open call completes. It is therefore safe to take a
2267 * new reference here without additional locking.
2269 if (resv)
2270 kref_get(&resv->refs);
2273 static void resv_map_put(struct vm_area_struct *vma)
2275 struct resv_map *resv = vma_resv_map(vma);
2277 if (!resv)
2278 return;
2279 kref_put(&resv->refs, resv_map_release);
2282 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2284 struct hstate *h = hstate_vma(vma);
2285 struct resv_map *resv = vma_resv_map(vma);
2286 struct hugepage_subpool *spool = subpool_vma(vma);
2287 unsigned long reserve;
2288 unsigned long start;
2289 unsigned long end;
2291 if (resv) {
2292 start = vma_hugecache_offset(h, vma, vma->vm_start);
2293 end = vma_hugecache_offset(h, vma, vma->vm_end);
2295 reserve = (end - start) -
2296 region_count(&resv->regions, start, end);
2298 resv_map_put(vma);
2300 if (reserve) {
2301 hugetlb_acct_memory(h, -reserve);
2302 hugepage_subpool_put_pages(spool, reserve);
2308 * We cannot handle pagefaults against hugetlb pages at all. They cause
2309 * handle_mm_fault() to try to instantiate regular-sized pages in the
2310 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2311 * this far.
2313 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2315 BUG();
2316 return 0;
2319 const struct vm_operations_struct hugetlb_vm_ops = {
2320 .fault = hugetlb_vm_op_fault,
2321 .open = hugetlb_vm_op_open,
2322 .close = hugetlb_vm_op_close,
2325 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2326 int writable)
2328 pte_t entry;
2330 if (writable) {
2331 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2332 vma->vm_page_prot)));
2333 } else {
2334 entry = huge_pte_wrprotect(mk_huge_pte(page,
2335 vma->vm_page_prot));
2337 entry = pte_mkyoung(entry);
2338 entry = pte_mkhuge(entry);
2339 entry = arch_make_huge_pte(entry, vma, page, writable);
2341 return entry;
2344 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2345 unsigned long address, pte_t *ptep)
2347 pte_t entry;
2349 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2350 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2351 update_mmu_cache(vma, address, ptep);
2354 static int is_hugetlb_entry_migration(pte_t pte)
2356 swp_entry_t swp;
2358 if (huge_pte_none(pte) || pte_present(pte))
2359 return 0;
2360 swp = pte_to_swp_entry(pte);
2361 if (non_swap_entry(swp) && is_migration_entry(swp))
2362 return 1;
2363 else
2364 return 0;
2367 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2369 swp_entry_t swp;
2371 if (huge_pte_none(pte) || pte_present(pte))
2372 return 0;
2373 swp = pte_to_swp_entry(pte);
2374 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2375 return 1;
2376 else
2377 return 0;
2380 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2381 struct vm_area_struct *vma)
2383 pte_t *src_pte, *dst_pte, entry;
2384 struct page *ptepage;
2385 unsigned long addr;
2386 int cow;
2387 struct hstate *h = hstate_vma(vma);
2388 unsigned long sz = huge_page_size(h);
2389 unsigned long mmun_start; /* For mmu_notifiers */
2390 unsigned long mmun_end; /* For mmu_notifiers */
2391 int ret = 0;
2393 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2395 mmun_start = vma->vm_start;
2396 mmun_end = vma->vm_end;
2397 if (cow)
2398 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2400 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2401 spinlock_t *src_ptl, *dst_ptl;
2402 src_pte = huge_pte_offset(src, addr);
2403 if (!src_pte)
2404 continue;
2405 dst_pte = huge_pte_alloc(dst, addr, sz);
2406 if (!dst_pte) {
2407 ret = -ENOMEM;
2408 break;
2411 /* If the pagetables are shared don't copy or take references */
2412 if (dst_pte == src_pte)
2413 continue;
2415 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2416 src_ptl = huge_pte_lockptr(h, src, src_pte);
2417 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2418 entry = huge_ptep_get(src_pte);
2419 if (huge_pte_none(entry)) { /* skip none entry */
2421 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2422 is_hugetlb_entry_hwpoisoned(entry))) {
2423 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2425 if (is_write_migration_entry(swp_entry) && cow) {
2427 * COW mappings require pages in both
2428 * parent and child to be set to read.
2430 make_migration_entry_read(&swp_entry);
2431 entry = swp_entry_to_pte(swp_entry);
2432 set_huge_pte_at(src, addr, src_pte, entry);
2434 set_huge_pte_at(dst, addr, dst_pte, entry);
2435 } else {
2436 if (cow)
2437 huge_ptep_set_wrprotect(src, addr, src_pte);
2438 entry = huge_ptep_get(src_pte);
2439 ptepage = pte_page(entry);
2440 get_page(ptepage);
2441 page_dup_rmap(ptepage);
2442 set_huge_pte_at(dst, addr, dst_pte, entry);
2444 spin_unlock(src_ptl);
2445 spin_unlock(dst_ptl);
2448 if (cow)
2449 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2451 return ret;
2454 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2455 unsigned long start, unsigned long end,
2456 struct page *ref_page)
2458 int force_flush = 0;
2459 struct mm_struct *mm = vma->vm_mm;
2460 unsigned long address;
2461 pte_t *ptep;
2462 pte_t pte;
2463 spinlock_t *ptl;
2464 struct page *page;
2465 struct hstate *h = hstate_vma(vma);
2466 unsigned long sz = huge_page_size(h);
2467 const unsigned long mmun_start = start; /* For mmu_notifiers */
2468 const unsigned long mmun_end = end; /* For mmu_notifiers */
2470 WARN_ON(!is_vm_hugetlb_page(vma));
2471 BUG_ON(start & ~huge_page_mask(h));
2472 BUG_ON(end & ~huge_page_mask(h));
2474 tlb_start_vma(tlb, vma);
2475 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2476 again:
2477 for (address = start; address < end; address += sz) {
2478 ptep = huge_pte_offset(mm, address);
2479 if (!ptep)
2480 continue;
2482 ptl = huge_pte_lock(h, mm, ptep);
2483 if (huge_pmd_unshare(mm, &address, ptep))
2484 goto unlock;
2486 pte = huge_ptep_get(ptep);
2487 if (huge_pte_none(pte))
2488 goto unlock;
2491 * Migrating hugepage or HWPoisoned hugepage is already
2492 * unmapped and its refcount is dropped, so just clear pte here.
2494 if (unlikely(!pte_present(pte))) {
2495 huge_pte_clear(mm, address, ptep);
2496 goto unlock;
2499 page = pte_page(pte);
2501 * If a reference page is supplied, it is because a specific
2502 * page is being unmapped, not a range. Ensure the page we
2503 * are about to unmap is the actual page of interest.
2505 if (ref_page) {
2506 if (page != ref_page)
2507 goto unlock;
2510 * Mark the VMA as having unmapped its page so that
2511 * future faults in this VMA will fail rather than
2512 * looking like data was lost
2514 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2517 pte = huge_ptep_get_and_clear(mm, address, ptep);
2518 tlb_remove_tlb_entry(tlb, ptep, address);
2519 if (huge_pte_dirty(pte))
2520 set_page_dirty(page);
2522 page_remove_rmap(page);
2523 force_flush = !__tlb_remove_page(tlb, page);
2524 if (force_flush) {
2525 spin_unlock(ptl);
2526 break;
2528 /* Bail out after unmapping reference page if supplied */
2529 if (ref_page) {
2530 spin_unlock(ptl);
2531 break;
2533 unlock:
2534 spin_unlock(ptl);
2537 * mmu_gather ran out of room to batch pages, we break out of
2538 * the PTE lock to avoid doing the potential expensive TLB invalidate
2539 * and page-free while holding it.
2541 if (force_flush) {
2542 force_flush = 0;
2543 tlb_flush_mmu(tlb);
2544 if (address < end && !ref_page)
2545 goto again;
2547 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2548 tlb_end_vma(tlb, vma);
2551 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2552 struct vm_area_struct *vma, unsigned long start,
2553 unsigned long end, struct page *ref_page)
2555 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2558 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2559 * test will fail on a vma being torn down, and not grab a page table
2560 * on its way out. We're lucky that the flag has such an appropriate
2561 * name, and can in fact be safely cleared here. We could clear it
2562 * before the __unmap_hugepage_range above, but all that's necessary
2563 * is to clear it before releasing the i_mmap_mutex. This works
2564 * because in the context this is called, the VMA is about to be
2565 * destroyed and the i_mmap_mutex is held.
2567 vma->vm_flags &= ~VM_MAYSHARE;
2570 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2571 unsigned long end, struct page *ref_page)
2573 struct mm_struct *mm;
2574 struct mmu_gather tlb;
2576 mm = vma->vm_mm;
2578 tlb_gather_mmu(&tlb, mm, start, end);
2579 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2580 tlb_finish_mmu(&tlb, start, end);
2584 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2585 * mappping it owns the reserve page for. The intention is to unmap the page
2586 * from other VMAs and let the children be SIGKILLed if they are faulting the
2587 * same region.
2589 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2590 struct page *page, unsigned long address)
2592 struct hstate *h = hstate_vma(vma);
2593 struct vm_area_struct *iter_vma;
2594 struct address_space *mapping;
2595 pgoff_t pgoff;
2598 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2599 * from page cache lookup which is in HPAGE_SIZE units.
2601 address = address & huge_page_mask(h);
2602 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2603 vma->vm_pgoff;
2604 mapping = file_inode(vma->vm_file)->i_mapping;
2607 * Take the mapping lock for the duration of the table walk. As
2608 * this mapping should be shared between all the VMAs,
2609 * __unmap_hugepage_range() is called as the lock is already held
2611 mutex_lock(&mapping->i_mmap_mutex);
2612 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2613 /* Do not unmap the current VMA */
2614 if (iter_vma == vma)
2615 continue;
2618 * Unmap the page from other VMAs without their own reserves.
2619 * They get marked to be SIGKILLed if they fault in these
2620 * areas. This is because a future no-page fault on this VMA
2621 * could insert a zeroed page instead of the data existing
2622 * from the time of fork. This would look like data corruption
2624 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2625 unmap_hugepage_range(iter_vma, address,
2626 address + huge_page_size(h), page);
2628 mutex_unlock(&mapping->i_mmap_mutex);
2630 return 1;
2634 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2635 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2636 * cannot race with other handlers or page migration.
2637 * Keep the pte_same checks anyway to make transition from the mutex easier.
2639 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2640 unsigned long address, pte_t *ptep, pte_t pte,
2641 struct page *pagecache_page, spinlock_t *ptl)
2643 struct hstate *h = hstate_vma(vma);
2644 struct page *old_page, *new_page;
2645 int outside_reserve = 0;
2646 unsigned long mmun_start; /* For mmu_notifiers */
2647 unsigned long mmun_end; /* For mmu_notifiers */
2649 old_page = pte_page(pte);
2651 retry_avoidcopy:
2652 /* If no-one else is actually using this page, avoid the copy
2653 * and just make the page writable */
2654 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2655 page_move_anon_rmap(old_page, vma, address);
2656 set_huge_ptep_writable(vma, address, ptep);
2657 return 0;
2661 * If the process that created a MAP_PRIVATE mapping is about to
2662 * perform a COW due to a shared page count, attempt to satisfy
2663 * the allocation without using the existing reserves. The pagecache
2664 * page is used to determine if the reserve at this address was
2665 * consumed or not. If reserves were used, a partial faulted mapping
2666 * at the time of fork() could consume its reserves on COW instead
2667 * of the full address range.
2669 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2670 old_page != pagecache_page)
2671 outside_reserve = 1;
2673 page_cache_get(old_page);
2675 /* Drop page table lock as buddy allocator may be called */
2676 spin_unlock(ptl);
2677 new_page = alloc_huge_page(vma, address, outside_reserve);
2679 if (IS_ERR(new_page)) {
2680 long err = PTR_ERR(new_page);
2681 page_cache_release(old_page);
2684 * If a process owning a MAP_PRIVATE mapping fails to COW,
2685 * it is due to references held by a child and an insufficient
2686 * huge page pool. To guarantee the original mappers
2687 * reliability, unmap the page from child processes. The child
2688 * may get SIGKILLed if it later faults.
2690 if (outside_reserve) {
2691 BUG_ON(huge_pte_none(pte));
2692 if (unmap_ref_private(mm, vma, old_page, address)) {
2693 BUG_ON(huge_pte_none(pte));
2694 spin_lock(ptl);
2695 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2696 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2697 goto retry_avoidcopy;
2699 * race occurs while re-acquiring page table
2700 * lock, and our job is done.
2702 return 0;
2704 WARN_ON_ONCE(1);
2707 /* Caller expects lock to be held */
2708 spin_lock(ptl);
2709 if (err == -ENOMEM)
2710 return VM_FAULT_OOM;
2711 else
2712 return VM_FAULT_SIGBUS;
2716 * When the original hugepage is shared one, it does not have
2717 * anon_vma prepared.
2719 if (unlikely(anon_vma_prepare(vma))) {
2720 page_cache_release(new_page);
2721 page_cache_release(old_page);
2722 /* Caller expects lock to be held */
2723 spin_lock(ptl);
2724 return VM_FAULT_OOM;
2727 copy_user_huge_page(new_page, old_page, address, vma,
2728 pages_per_huge_page(h));
2729 __SetPageUptodate(new_page);
2731 mmun_start = address & huge_page_mask(h);
2732 mmun_end = mmun_start + huge_page_size(h);
2733 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2735 * Retake the page table lock to check for racing updates
2736 * before the page tables are altered
2738 spin_lock(ptl);
2739 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2740 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2741 ClearPagePrivate(new_page);
2743 /* Break COW */
2744 huge_ptep_clear_flush(vma, address, ptep);
2745 set_huge_pte_at(mm, address, ptep,
2746 make_huge_pte(vma, new_page, 1));
2747 page_remove_rmap(old_page);
2748 hugepage_add_new_anon_rmap(new_page, vma, address);
2749 /* Make the old page be freed below */
2750 new_page = old_page;
2752 spin_unlock(ptl);
2753 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2754 page_cache_release(new_page);
2755 page_cache_release(old_page);
2757 /* Caller expects lock to be held */
2758 spin_lock(ptl);
2759 return 0;
2762 /* Return the pagecache page at a given address within a VMA */
2763 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2764 struct vm_area_struct *vma, unsigned long address)
2766 struct address_space *mapping;
2767 pgoff_t idx;
2769 mapping = vma->vm_file->f_mapping;
2770 idx = vma_hugecache_offset(h, vma, address);
2772 return find_lock_page(mapping, idx);
2776 * Return whether there is a pagecache page to back given address within VMA.
2777 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2779 static bool hugetlbfs_pagecache_present(struct hstate *h,
2780 struct vm_area_struct *vma, unsigned long address)
2782 struct address_space *mapping;
2783 pgoff_t idx;
2784 struct page *page;
2786 mapping = vma->vm_file->f_mapping;
2787 idx = vma_hugecache_offset(h, vma, address);
2789 page = find_get_page(mapping, idx);
2790 if (page)
2791 put_page(page);
2792 return page != NULL;
2795 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2796 unsigned long address, pte_t *ptep, unsigned int flags)
2798 struct hstate *h = hstate_vma(vma);
2799 int ret = VM_FAULT_SIGBUS;
2800 int anon_rmap = 0;
2801 pgoff_t idx;
2802 unsigned long size;
2803 struct page *page;
2804 struct address_space *mapping;
2805 pte_t new_pte;
2806 spinlock_t *ptl;
2809 * Currently, we are forced to kill the process in the event the
2810 * original mapper has unmapped pages from the child due to a failed
2811 * COW. Warn that such a situation has occurred as it may not be obvious
2813 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2814 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2815 current->pid);
2816 return ret;
2819 mapping = vma->vm_file->f_mapping;
2820 idx = vma_hugecache_offset(h, vma, address);
2823 * Use page lock to guard against racing truncation
2824 * before we get page_table_lock.
2826 retry:
2827 page = find_lock_page(mapping, idx);
2828 if (!page) {
2829 size = i_size_read(mapping->host) >> huge_page_shift(h);
2830 if (idx >= size)
2831 goto out;
2832 page = alloc_huge_page(vma, address, 0);
2833 if (IS_ERR(page)) {
2834 ret = PTR_ERR(page);
2835 if (ret == -ENOMEM)
2836 ret = VM_FAULT_OOM;
2837 else
2838 ret = VM_FAULT_SIGBUS;
2839 goto out;
2841 clear_huge_page(page, address, pages_per_huge_page(h));
2842 __SetPageUptodate(page);
2844 if (vma->vm_flags & VM_MAYSHARE) {
2845 int err;
2846 struct inode *inode = mapping->host;
2848 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2849 if (err) {
2850 put_page(page);
2851 if (err == -EEXIST)
2852 goto retry;
2853 goto out;
2855 ClearPagePrivate(page);
2857 spin_lock(&inode->i_lock);
2858 inode->i_blocks += blocks_per_huge_page(h);
2859 spin_unlock(&inode->i_lock);
2860 } else {
2861 lock_page(page);
2862 if (unlikely(anon_vma_prepare(vma))) {
2863 ret = VM_FAULT_OOM;
2864 goto backout_unlocked;
2866 anon_rmap = 1;
2868 } else {
2870 * If memory error occurs between mmap() and fault, some process
2871 * don't have hwpoisoned swap entry for errored virtual address.
2872 * So we need to block hugepage fault by PG_hwpoison bit check.
2874 if (unlikely(PageHWPoison(page))) {
2875 ret = VM_FAULT_HWPOISON |
2876 VM_FAULT_SET_HINDEX(hstate_index(h));
2877 goto backout_unlocked;
2882 * If we are going to COW a private mapping later, we examine the
2883 * pending reservations for this page now. This will ensure that
2884 * any allocations necessary to record that reservation occur outside
2885 * the spinlock.
2887 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2888 if (vma_needs_reservation(h, vma, address) < 0) {
2889 ret = VM_FAULT_OOM;
2890 goto backout_unlocked;
2893 ptl = huge_pte_lockptr(h, mm, ptep);
2894 spin_lock(ptl);
2895 size = i_size_read(mapping->host) >> huge_page_shift(h);
2896 if (idx >= size)
2897 goto backout;
2899 ret = 0;
2900 if (!huge_pte_none(huge_ptep_get(ptep)))
2901 goto backout;
2903 if (anon_rmap) {
2904 ClearPagePrivate(page);
2905 hugepage_add_new_anon_rmap(page, vma, address);
2907 else
2908 page_dup_rmap(page);
2909 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2910 && (vma->vm_flags & VM_SHARED)));
2911 set_huge_pte_at(mm, address, ptep, new_pte);
2913 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2914 /* Optimization, do the COW without a second fault */
2915 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2918 spin_unlock(ptl);
2919 unlock_page(page);
2920 out:
2921 return ret;
2923 backout:
2924 spin_unlock(ptl);
2925 backout_unlocked:
2926 unlock_page(page);
2927 put_page(page);
2928 goto out;
2931 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2932 unsigned long address, unsigned int flags)
2934 pte_t *ptep;
2935 pte_t entry;
2936 spinlock_t *ptl;
2937 int ret;
2938 struct page *page = NULL;
2939 struct page *pagecache_page = NULL;
2940 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2941 struct hstate *h = hstate_vma(vma);
2943 address &= huge_page_mask(h);
2945 ptep = huge_pte_offset(mm, address);
2946 if (ptep) {
2947 entry = huge_ptep_get(ptep);
2948 if (unlikely(is_hugetlb_entry_migration(entry))) {
2949 migration_entry_wait_huge(vma, mm, ptep);
2950 return 0;
2951 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2952 return VM_FAULT_HWPOISON_LARGE |
2953 VM_FAULT_SET_HINDEX(hstate_index(h));
2956 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2957 if (!ptep)
2958 return VM_FAULT_OOM;
2961 * Serialize hugepage allocation and instantiation, so that we don't
2962 * get spurious allocation failures if two CPUs race to instantiate
2963 * the same page in the page cache.
2965 mutex_lock(&hugetlb_instantiation_mutex);
2966 entry = huge_ptep_get(ptep);
2967 if (huge_pte_none(entry)) {
2968 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2969 goto out_mutex;
2972 ret = 0;
2975 * If we are going to COW the mapping later, we examine the pending
2976 * reservations for this page now. This will ensure that any
2977 * allocations necessary to record that reservation occur outside the
2978 * spinlock. For private mappings, we also lookup the pagecache
2979 * page now as it is used to determine if a reservation has been
2980 * consumed.
2982 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2983 if (vma_needs_reservation(h, vma, address) < 0) {
2984 ret = VM_FAULT_OOM;
2985 goto out_mutex;
2988 if (!(vma->vm_flags & VM_MAYSHARE))
2989 pagecache_page = hugetlbfs_pagecache_page(h,
2990 vma, address);
2994 * hugetlb_cow() requires page locks of pte_page(entry) and
2995 * pagecache_page, so here we need take the former one
2996 * when page != pagecache_page or !pagecache_page.
2997 * Note that locking order is always pagecache_page -> page,
2998 * so no worry about deadlock.
3000 page = pte_page(entry);
3001 get_page(page);
3002 if (page != pagecache_page)
3003 lock_page(page);
3005 ptl = huge_pte_lockptr(h, mm, ptep);
3006 spin_lock(ptl);
3007 /* Check for a racing update before calling hugetlb_cow */
3008 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3009 goto out_ptl;
3012 if (flags & FAULT_FLAG_WRITE) {
3013 if (!huge_pte_write(entry)) {
3014 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3015 pagecache_page, ptl);
3016 goto out_ptl;
3018 entry = huge_pte_mkdirty(entry);
3020 entry = pte_mkyoung(entry);
3021 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3022 flags & FAULT_FLAG_WRITE))
3023 update_mmu_cache(vma, address, ptep);
3025 out_ptl:
3026 spin_unlock(ptl);
3028 if (pagecache_page) {
3029 unlock_page(pagecache_page);
3030 put_page(pagecache_page);
3032 if (page != pagecache_page)
3033 unlock_page(page);
3034 put_page(page);
3036 out_mutex:
3037 mutex_unlock(&hugetlb_instantiation_mutex);
3039 return ret;
3042 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3043 struct page **pages, struct vm_area_struct **vmas,
3044 unsigned long *position, unsigned long *nr_pages,
3045 long i, unsigned int flags)
3047 unsigned long pfn_offset;
3048 unsigned long vaddr = *position;
3049 unsigned long remainder = *nr_pages;
3050 struct hstate *h = hstate_vma(vma);
3052 while (vaddr < vma->vm_end && remainder) {
3053 pte_t *pte;
3054 spinlock_t *ptl = NULL;
3055 int absent;
3056 struct page *page;
3059 * Some archs (sparc64, sh*) have multiple pte_ts to
3060 * each hugepage. We have to make sure we get the
3061 * first, for the page indexing below to work.
3063 * Note that page table lock is not held when pte is null.
3065 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3066 if (pte)
3067 ptl = huge_pte_lock(h, mm, pte);
3068 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3071 * When coredumping, it suits get_dump_page if we just return
3072 * an error where there's an empty slot with no huge pagecache
3073 * to back it. This way, we avoid allocating a hugepage, and
3074 * the sparse dumpfile avoids allocating disk blocks, but its
3075 * huge holes still show up with zeroes where they need to be.
3077 if (absent && (flags & FOLL_DUMP) &&
3078 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3079 if (pte)
3080 spin_unlock(ptl);
3081 remainder = 0;
3082 break;
3086 * We need call hugetlb_fault for both hugepages under migration
3087 * (in which case hugetlb_fault waits for the migration,) and
3088 * hwpoisoned hugepages (in which case we need to prevent the
3089 * caller from accessing to them.) In order to do this, we use
3090 * here is_swap_pte instead of is_hugetlb_entry_migration and
3091 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3092 * both cases, and because we can't follow correct pages
3093 * directly from any kind of swap entries.
3095 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3096 ((flags & FOLL_WRITE) &&
3097 !huge_pte_write(huge_ptep_get(pte)))) {
3098 int ret;
3100 if (pte)
3101 spin_unlock(ptl);
3102 ret = hugetlb_fault(mm, vma, vaddr,
3103 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3104 if (!(ret & VM_FAULT_ERROR))
3105 continue;
3107 remainder = 0;
3108 break;
3111 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3112 page = pte_page(huge_ptep_get(pte));
3113 same_page:
3114 if (pages) {
3115 pages[i] = mem_map_offset(page, pfn_offset);
3116 get_page_foll(pages[i]);
3119 if (vmas)
3120 vmas[i] = vma;
3122 vaddr += PAGE_SIZE;
3123 ++pfn_offset;
3124 --remainder;
3125 ++i;
3126 if (vaddr < vma->vm_end && remainder &&
3127 pfn_offset < pages_per_huge_page(h)) {
3129 * We use pfn_offset to avoid touching the pageframes
3130 * of this compound page.
3132 goto same_page;
3134 spin_unlock(ptl);
3136 *nr_pages = remainder;
3137 *position = vaddr;
3139 return i ? i : -EFAULT;
3142 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3143 unsigned long address, unsigned long end, pgprot_t newprot)
3145 struct mm_struct *mm = vma->vm_mm;
3146 unsigned long start = address;
3147 pte_t *ptep;
3148 pte_t pte;
3149 struct hstate *h = hstate_vma(vma);
3150 unsigned long pages = 0;
3152 BUG_ON(address >= end);
3153 flush_cache_range(vma, address, end);
3155 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3156 for (; address < end; address += huge_page_size(h)) {
3157 spinlock_t *ptl;
3158 ptep = huge_pte_offset(mm, address);
3159 if (!ptep)
3160 continue;
3161 ptl = huge_pte_lock(h, mm, ptep);
3162 if (huge_pmd_unshare(mm, &address, ptep)) {
3163 pages++;
3164 spin_unlock(ptl);
3165 continue;
3167 pte = huge_ptep_get(ptep);
3168 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3169 spin_unlock(ptl);
3170 continue;
3172 if (unlikely(is_hugetlb_entry_migration(pte))) {
3173 swp_entry_t entry = pte_to_swp_entry(pte);
3175 if (is_write_migration_entry(entry)) {
3176 pte_t newpte;
3178 make_migration_entry_read(&entry);
3179 newpte = swp_entry_to_pte(entry);
3180 set_huge_pte_at(mm, address, ptep, newpte);
3181 pages++;
3183 spin_unlock(ptl);
3184 continue;
3186 if (!huge_pte_none(pte)) {
3187 pte = huge_ptep_get_and_clear(mm, address, ptep);
3188 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3189 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3190 set_huge_pte_at(mm, address, ptep, pte);
3191 pages++;
3193 spin_unlock(ptl);
3196 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3197 * may have cleared our pud entry and done put_page on the page table:
3198 * once we release i_mmap_mutex, another task can do the final put_page
3199 * and that page table be reused and filled with junk.
3201 flush_tlb_range(vma, start, end);
3202 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3204 return pages << h->order;
3207 int hugetlb_reserve_pages(struct inode *inode,
3208 long from, long to,
3209 struct vm_area_struct *vma,
3210 vm_flags_t vm_flags)
3212 long ret, chg;
3213 struct hstate *h = hstate_inode(inode);
3214 struct hugepage_subpool *spool = subpool_inode(inode);
3217 * Only apply hugepage reservation if asked. At fault time, an
3218 * attempt will be made for VM_NORESERVE to allocate a page
3219 * without using reserves
3221 if (vm_flags & VM_NORESERVE)
3222 return 0;
3225 * Shared mappings base their reservation on the number of pages that
3226 * are already allocated on behalf of the file. Private mappings need
3227 * to reserve the full area even if read-only as mprotect() may be
3228 * called to make the mapping read-write. Assume !vma is a shm mapping
3230 if (!vma || vma->vm_flags & VM_MAYSHARE)
3231 chg = region_chg(&inode->i_mapping->private_list, from, to);
3232 else {
3233 struct resv_map *resv_map = resv_map_alloc();
3234 if (!resv_map)
3235 return -ENOMEM;
3237 chg = to - from;
3239 set_vma_resv_map(vma, resv_map);
3240 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3243 if (chg < 0) {
3244 ret = chg;
3245 goto out_err;
3248 /* There must be enough pages in the subpool for the mapping */
3249 if (hugepage_subpool_get_pages(spool, chg)) {
3250 ret = -ENOSPC;
3251 goto out_err;
3255 * Check enough hugepages are available for the reservation.
3256 * Hand the pages back to the subpool if there are not
3258 ret = hugetlb_acct_memory(h, chg);
3259 if (ret < 0) {
3260 hugepage_subpool_put_pages(spool, chg);
3261 goto out_err;
3265 * Account for the reservations made. Shared mappings record regions
3266 * that have reservations as they are shared by multiple VMAs.
3267 * When the last VMA disappears, the region map says how much
3268 * the reservation was and the page cache tells how much of
3269 * the reservation was consumed. Private mappings are per-VMA and
3270 * only the consumed reservations are tracked. When the VMA
3271 * disappears, the original reservation is the VMA size and the
3272 * consumed reservations are stored in the map. Hence, nothing
3273 * else has to be done for private mappings here
3275 if (!vma || vma->vm_flags & VM_MAYSHARE)
3276 region_add(&inode->i_mapping->private_list, from, to);
3277 return 0;
3278 out_err:
3279 if (vma)
3280 resv_map_put(vma);
3281 return ret;
3284 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3286 struct hstate *h = hstate_inode(inode);
3287 long chg = region_truncate(&inode->i_mapping->private_list, offset);
3288 struct hugepage_subpool *spool = subpool_inode(inode);
3290 spin_lock(&inode->i_lock);
3291 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3292 spin_unlock(&inode->i_lock);
3294 hugepage_subpool_put_pages(spool, (chg - freed));
3295 hugetlb_acct_memory(h, -(chg - freed));
3298 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3299 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3300 struct vm_area_struct *vma,
3301 unsigned long addr, pgoff_t idx)
3303 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3304 svma->vm_start;
3305 unsigned long sbase = saddr & PUD_MASK;
3306 unsigned long s_end = sbase + PUD_SIZE;
3308 /* Allow segments to share if only one is marked locked */
3309 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3310 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3313 * match the virtual addresses, permission and the alignment of the
3314 * page table page.
3316 if (pmd_index(addr) != pmd_index(saddr) ||
3317 vm_flags != svm_flags ||
3318 sbase < svma->vm_start || svma->vm_end < s_end)
3319 return 0;
3321 return saddr;
3324 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3326 unsigned long base = addr & PUD_MASK;
3327 unsigned long end = base + PUD_SIZE;
3330 * check on proper vm_flags and page table alignment
3332 if (vma->vm_flags & VM_MAYSHARE &&
3333 vma->vm_start <= base && end <= vma->vm_end)
3334 return 1;
3335 return 0;
3339 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3340 * and returns the corresponding pte. While this is not necessary for the
3341 * !shared pmd case because we can allocate the pmd later as well, it makes the
3342 * code much cleaner. pmd allocation is essential for the shared case because
3343 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3344 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3345 * bad pmd for sharing.
3347 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3349 struct vm_area_struct *vma = find_vma(mm, addr);
3350 struct address_space *mapping = vma->vm_file->f_mapping;
3351 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3352 vma->vm_pgoff;
3353 struct vm_area_struct *svma;
3354 unsigned long saddr;
3355 pte_t *spte = NULL;
3356 pte_t *pte;
3357 spinlock_t *ptl;
3359 if (!vma_shareable(vma, addr))
3360 return (pte_t *)pmd_alloc(mm, pud, addr);
3362 mutex_lock(&mapping->i_mmap_mutex);
3363 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3364 if (svma == vma)
3365 continue;
3367 saddr = page_table_shareable(svma, vma, addr, idx);
3368 if (saddr) {
3369 spte = huge_pte_offset(svma->vm_mm, saddr);
3370 if (spte) {
3371 get_page(virt_to_page(spte));
3372 break;
3377 if (!spte)
3378 goto out;
3380 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3381 spin_lock(ptl);
3382 if (pud_none(*pud))
3383 pud_populate(mm, pud,
3384 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3385 else
3386 put_page(virt_to_page(spte));
3387 spin_unlock(ptl);
3388 out:
3389 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3390 mutex_unlock(&mapping->i_mmap_mutex);
3391 return pte;
3395 * unmap huge page backed by shared pte.
3397 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3398 * indicated by page_count > 1, unmap is achieved by clearing pud and
3399 * decrementing the ref count. If count == 1, the pte page is not shared.
3401 * called with page table lock held.
3403 * returns: 1 successfully unmapped a shared pte page
3404 * 0 the underlying pte page is not shared, or it is the last user
3406 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3408 pgd_t *pgd = pgd_offset(mm, *addr);
3409 pud_t *pud = pud_offset(pgd, *addr);
3411 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3412 if (page_count(virt_to_page(ptep)) == 1)
3413 return 0;
3415 pud_clear(pud);
3416 put_page(virt_to_page(ptep));
3417 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3418 return 1;
3420 #define want_pmd_share() (1)
3421 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3422 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3424 return NULL;
3426 #define want_pmd_share() (0)
3427 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3429 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3430 pte_t *huge_pte_alloc(struct mm_struct *mm,
3431 unsigned long addr, unsigned long sz)
3433 pgd_t *pgd;
3434 pud_t *pud;
3435 pte_t *pte = NULL;
3437 pgd = pgd_offset(mm, addr);
3438 pud = pud_alloc(mm, pgd, addr);
3439 if (pud) {
3440 if (sz == PUD_SIZE) {
3441 pte = (pte_t *)pud;
3442 } else {
3443 BUG_ON(sz != PMD_SIZE);
3444 if (want_pmd_share() && pud_none(*pud))
3445 pte = huge_pmd_share(mm, addr, pud);
3446 else
3447 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3450 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3452 return pte;
3455 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3457 pgd_t *pgd;
3458 pud_t *pud;
3459 pmd_t *pmd = NULL;
3461 pgd = pgd_offset(mm, addr);
3462 if (pgd_present(*pgd)) {
3463 pud = pud_offset(pgd, addr);
3464 if (pud_present(*pud)) {
3465 if (pud_huge(*pud))
3466 return (pte_t *)pud;
3467 pmd = pmd_offset(pud, addr);
3470 return (pte_t *) pmd;
3473 struct page *
3474 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3475 pmd_t *pmd, int write)
3477 struct page *page;
3479 if (!pmd_present(*pmd))
3480 return NULL;
3481 page = pte_page(*(pte_t *)pmd);
3482 if (page)
3483 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3484 return page;
3487 struct page *
3488 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3489 pud_t *pud, int write)
3491 struct page *page;
3493 page = pte_page(*(pte_t *)pud);
3494 if (page)
3495 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3496 return page;
3499 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3501 /* Can be overriden by architectures */
3502 __attribute__((weak)) struct page *
3503 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3504 pud_t *pud, int write)
3506 BUG();
3507 return NULL;
3510 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3512 #ifdef CONFIG_MEMORY_FAILURE
3514 /* Should be called in hugetlb_lock */
3515 static int is_hugepage_on_freelist(struct page *hpage)
3517 struct page *page;
3518 struct page *tmp;
3519 struct hstate *h = page_hstate(hpage);
3520 int nid = page_to_nid(hpage);
3522 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3523 if (page == hpage)
3524 return 1;
3525 return 0;
3529 * This function is called from memory failure code.
3530 * Assume the caller holds page lock of the head page.
3532 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3534 struct hstate *h = page_hstate(hpage);
3535 int nid = page_to_nid(hpage);
3536 int ret = -EBUSY;
3538 spin_lock(&hugetlb_lock);
3539 if (is_hugepage_on_freelist(hpage)) {
3541 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3542 * but dangling hpage->lru can trigger list-debug warnings
3543 * (this happens when we call unpoison_memory() on it),
3544 * so let it point to itself with list_del_init().
3546 list_del_init(&hpage->lru);
3547 set_page_refcounted(hpage);
3548 h->free_huge_pages--;
3549 h->free_huge_pages_node[nid]--;
3550 ret = 0;
3552 spin_unlock(&hugetlb_lock);
3553 return ret;
3555 #endif
3557 bool isolate_huge_page(struct page *page, struct list_head *list)
3559 VM_BUG_ON_PAGE(!PageHead(page), page);
3560 if (!get_page_unless_zero(page))
3561 return false;
3562 spin_lock(&hugetlb_lock);
3563 list_move_tail(&page->lru, list);
3564 spin_unlock(&hugetlb_lock);
3565 return true;
3568 void putback_active_hugepage(struct page *page)
3570 VM_BUG_ON_PAGE(!PageHead(page), page);
3571 spin_lock(&hugetlb_lock);
3572 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3573 spin_unlock(&hugetlb_lock);
3574 put_page(page);
3577 bool is_hugepage_active(struct page *page)
3579 VM_BUG_ON_PAGE(!PageHuge(page), page);
3581 * This function can be called for a tail page because the caller,
3582 * scan_movable_pages, scans through a given pfn-range which typically
3583 * covers one memory block. In systems using gigantic hugepage (1GB
3584 * for x86_64,) a hugepage is larger than a memory block, and we don't
3585 * support migrating such large hugepages for now, so return false
3586 * when called for tail pages.
3588 if (PageTail(page))
3589 return false;
3591 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3592 * so we should return false for them.
3594 if (unlikely(PageHWPoison(page)))
3595 return false;
3596 return page_count(page) > 0;